WorldWideScience

Sample records for u1-like zinc finger

  1. DUF581 is plant specific FCS-like zinc finger involved in protein-protein interaction.

    Directory of Open Access Journals (Sweden)

    Muhammed Jamsheer K

    Full Text Available Zinc fingers are a ubiquitous class of protein domain with considerable variation in structure and function. Zf-FCS is a highly diverged group of C2-C2 zinc finger which is present in animals, prokaryotes and viruses, but not in plants. In this study we identified that a plant specific domain of unknown function, DUF581 is a zf-FCS type zinc finger. Based on HMM-HMM comparison and signature motif similarity we named this domain as FCS-Like Zinc finger (FLZ domain. A genome wide survey identified that FLZ domain containing genes are bryophytic in origin and this gene family is expanded in spermatophytes. Expression analysis of selected FLZ gene family members of A. thaliana identified an overlapping expression pattern suggesting a possible redundancy in their function. Unlike the zf-FCS domain, the FLZ domain found to be highly conserved in sequence and structure. Using a combination of bioinformatic and protein-protein interaction tools, we identified that FLZ domain is involved in protein-protein interaction.

  2. The unique N-terminal zinc finger of synaptotagmin-like protein 4 reveals FYVE structure.

    Science.gov (United States)

    Miyamoto, Kazuhide; Nakatani, Arisa; Saito, Kazuki

    2017-12-01

    Synaptotagmin-like protein 4 (Slp4), expressed in human platelets, is associated with dense granule release. Slp4 is comprised of the N-terminal zinc finger, Slp homology domain, and C2 domains. We synthesized a compact construct (the Slp4N peptide) corresponding to the Slp4 N-terminal zinc finger. Herein, we have determined the solution structure of the Slp4N peptide by nuclear magnetic resonance (NMR). Furthermore, experimental, chemical modification of Cys residues revealed that the Slp4N peptide binds two zinc atoms to mediate proper folding. NMR data showed that eight Cys residues coordinate zinc atoms in a cross-brace fashion. The Simple Modular Architecture Research Tool database predicted the structure of Slp4N as a RING finger. However, the actual structure of the Slp4N peptide adopts a unique C 4 C 4 -type FYVE fold and is distinct from a RING fold. To create an artificial RING finger (ARF) with specific ubiquitin-conjugating enzyme (E2)-binding capability, cross-brace structures with eight zinc-ligating residues are needed as the scaffold. The cross-brace structure of the Slp4N peptide could be utilized as the scaffold for the design of ARFs. © 2017 The Protein Society.

  3. Role of zinc finger structure in nuclear localization of transcription factor Sp1

    International Nuclear Information System (INIS)

    Ito, Tatsuo; Azumano, Makiko; Uwatoko, Chisana; Itoh, Kohji; Kuwahara, Jun

    2009-01-01

    Transcription factor Sp1 is localized in the nucleus and regulates gene expression. Our previous study demonstrated that the carboxyl terminal region of Sp1 containing 3-zinc finger region as DNA binding domain can also serve as nuclear localization signal (NLS). However, the nuclear transport mechanism of Sp1 has not been well understood. In this study, we performed a gene expression study on mutant Sp1 genes causing a set of amino acid substitutions in zinc finger domains to elucidate nuclear import activity. Nuclear localization of the GFP-fused mutant Sp1 proteins bearing concomitant substitutions in the first and third zinc fingers was highly inhibited. These mutant Sp1 proteins had also lost the binding ability as to the GC box sequence. The results suggest that the overall tertiary structure formed by the three zinc fingers is essential for nuclear localization of Sp1 as well as dispersed basic amino acids within the zinc fingers region.

  4. Interaction of Sp1 zinc finger with transport factor in the nuclear localization of transcription factor Sp1

    International Nuclear Information System (INIS)

    Ito, Tatsuo; Kitamura, Haruka; Uwatoko, Chisana; Azumano, Makiko; Itoh, Kohji; Kuwahara, Jun

    2010-01-01

    Research highlights: → Sp1 zinc fingers themselves interact with importin α. → Sp1 zinc finger domains play an essential role as a nuclear localization signal. → Sp1 can be transported into the nucleus in an importin-dependent manner. -- Abstract: Transcription factor Sp1 is localized in the nucleus and regulates the expression of many cellular genes, but the nuclear transport mechanism of Sp1 is not well understood. In this study, we revealed that GST-fused Sp1 protein bound to endogenous importin α in HeLa cells via the Sp1 zinc finger domains, which comprise the DNA binding domain of Sp1. It was found that the Sp1 zinc finger domains directly interacted with a wide range of importin α including the armadillo (arm) repeat domain and the C-terminal acidic domain. Furthermore, it turned out that all three zinc fingers of Sp1 are essential for binding to importin α. Taken together, these results suggest that the Sp1 zinc finger domains play an essential role as a NLS and Sp1 can be transported into the nucleus in an importin-dependent manner even though it possesses no classical NLSs.

  5. Intracellular HIV-1 Gag localization is impaired by mutations in the nucleocapsid zinc fingers

    Directory of Open Access Journals (Sweden)

    Muriaux Delphine

    2007-08-01

    Full Text Available Abstract Background The HIV-1 nucleocapsid protein (NC is formed of two CCHC zinc fingers flanked by highly basic regions. HIV-1 NC plays key roles in virus structure and replication via its nucleic acid binding and chaperoning properties. In fact, NC controls proviral DNA synthesis by reverse transcriptase (RT, gRNA dimerization and packaging, and virion assembly. Results We previously reported a role for the first NC zinc finger in virion structure and replication 1. To investigate the role of both NC zinc fingers in intracellular Gag trafficking, and in virion assembly, we generated series of NC zinc fingers mutations. Results show that all Zinc finger mutations have a negative impact on virion biogenesis and maturation and rendered defective the mutant viruses. The NC zinc finger mutations caused an intracellular accumulation of Gag, which was found either diffuse in the cytoplasm or at the plasma membrane but not associated with endosomal membranes as for wild type Gag. Evidences are also provided showing that the intracellular interactions between NC-mutated Gag and the gRNA were impaired. Conclusion These results show that Gag oligomerization mediated by gRNA-NC interactions is required for correct Gag trafficking, and assembly in HIV-1 producing cells and the release of infectious viruses.

  6. Mechanisms of inhibition of zinc-finger transcription factors by selenium compounds ebselen and selenite.

    Science.gov (United States)

    Larabee, Jason L; Hocker, James R; Hanas, Jay S

    2009-03-01

    The anti-inflammatory selenium compounds, ebselen (2-phenyl-1,2-benzisoselenazol-3[2H]-one) and selenite, were found to alter the DNA binding mechanisms and structures of cysteine-rich zinc-finger transcription factors. As assayed by DNase I protection, DNA binding by TFIIIA (transcription factor IIIA, prototypical Cys(2)His(2) zinc finger protein), was inhibited by micromolar amounts of ebselen. In a gel shift assay, ebselen inhibited the Cys(2)His(2) zinc finger-containing DNA binding domain (DBD) of the NF-kappaB mediated transcription factor Sp1. Ebselen also inhibited DNA binding by the p50 subunit of the pro-inflammatory Cys-containing NF-kappaB transcription factor. Electrospray ionization mass spectrometry (ESI-MS) was utilized to elucidate mechanisms of chemical interaction between ebselen and a zinc-bound Cys(2)His(2) zinc finger polypeptide modeled after the third finger of Sp1 (Sp1-3). Exposing Sp1-3 to micromolar amounts of ebselen resulted in Zn(2+) release from this peptide and the formation of a disulfide bond by oxidation of zinc finger SH groups, the likely mechanism for DNA binding inhibition. Selenite was shown by ESI-MS to also eject zinc from Sp1-3 as well as induce disulfide bond formation through SH oxidation. The selenite-dependent inhibition/oxidation mechanism differed from that of ebselen by inducing the formation of a stable selenotrisulfide bond. Selenite-induced selenotrisulfide formation was dependent upon the structure of the Cys(2)His(2) zinc finger as alteration in the finger structure enhanced this reaction as well as selenite-dependent zinc release. Ebselen and selenite-dependent inhibition/oxidation of Cys-rich zinc finger proteins, with concomitant release of zinc and finger structural changes, points to mechanisms at the atomic and protein level for selenium-induced alterations in Cys-rich proteins, and possible amelioration of certain inflammatory, neurodegenerative, and oncogenic responses.

  7. Zinc finger protein 521 overexpression increased transcript levels of ...

    Indian Academy of Sciences (India)

    2016-02-12

    Feb 12, 2016 ... Zinc finger protein 521 is highly expressed in brain, neural stem cells and early progenitors of the human .... Membranes were blocked for 1 h with 10% skim milk and ..... fat-like development of white fat and thermogenesis.

  8. Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome

    Directory of Open Access Journals (Sweden)

    Böhm Siegfried

    2004-07-01

    Full Text Available Background The classical C2H2 zinc finger domain is involved in a wide range of functions and can bind to DNA, RNA and proteins. The comparison of zinc finger proteins in several eukaryotes has shown that there is a lot of lineage specific diversification and expansion. Although the number of characterized plant proteins that carry the classical C2H2 zinc finger motifs is growing, a systematic classification and analysis of a plant genome zinc finger gene set is lacking. Results We found through in silico analysis 176 zinc finger proteins in Arabidopsis thaliana that hence constitute the most abundant family of putative transcriptional regulators in this plant. Only a minority of 33 A. thaliana zinc finger proteins are conserved in other eukaryotes. In contrast, the majority of these proteins (81% are plant specific. They are derived from extensive duplication events and form expanded families. We assigned the proteins to different subgroups and families and focused specifically on the two largest and evolutionarily youngest families (A1 and C1 that are suggested to be primarily involved in transcriptional regulation. The newly defined family A1 (24 members comprises proteins with tandemly arranged zinc finger domains. Family C1 (64 members, earlier described as the EPF-family in Petunia, comprises proteins with one isolated or two to five dispersed fingers and a mostly invariant QALGGH motif in the zinc finger helices. Based on the amino acid pattern in these helices we could describe five different signature sequences prevalent in C1 zinc finger domains. We also found a number of non-finger domains that are conserved in these families. Conclusions Our analysis of the few evolutionarily conserved zinc finger proteins of A. thaliana suggests that most of them could be involved in ancient biological processes like RNA metabolism and chromatin-remodeling. In contrast, the majority of the unique A. thaliana zinc finger proteins are known or

  9. ZifBASE: a database of zinc finger proteins and associated resources

    Directory of Open Access Journals (Sweden)

    Punetha Ankita

    2009-09-01

    databases like UniprotKB, PDB, ModBase and Protein Model Portal and PubMed for making it more informative. Conclusion A database is established to maintain the information of the sequence features, including the class, framework, number of fingers, residues, position, recognition site and physio-chemical properties (molecular weight, isoelectric point of both natural and engineered zinc finger proteins and dissociation constant of few. ZifBASE can provide more effective and efficient way of accessing the zinc finger protein sequences and their target binding sites with the links to their three-dimensional structures. All the data and functions are available at the advanced web-based search interface http://web.iitd.ac.in/~sundar/zifbase.

  10. Solution NMR characterization of Sgf73(1-104) indicates that Zn ion is required to stabilize zinc finger motif

    International Nuclear Information System (INIS)

    Lai, Chaohua; Wu, Minhao; Li, Pan; Shi, Chaowei; Tian, Changlin; Zang, Jianye

    2010-01-01

    Zinc finger motif contains a zinc ion coordinated by several conserved amino acid residues. Yeast Sgf73 protein was identified as a component of SAGA (Spt/Ada/Gcn5 acetyltransferase) multi-subunit complex and Sgf73 protein was known to contain two zinc finger motifs. Sgf73(1-104), containing the first zinc finger motif, was necessary to modulate the deubiquitinase activity of SAGA complex. Here, Sgf73(1-104) was over-expressed using bacterial expression system and purified for solution NMR (nuclear magnetic resonance) structural studies. Secondary structure and site-specific relaxation analysis of Sgf73(1-104) were achieved after solution NMR backbone assignment. Solution NMR and circular dichroism analysis of Sgf73(1-104) after zinc ion removal using chelation reagent EDTA (ethylene-diamine-tetraacetic acid) demonstrated that zinc ion was required to maintain stable conformation of the zinc finger motif.

  11. A novel zinc finger protein 219-like (ZNF219L) is involved in the regulation of collagen type 2 alpha 1a (col2a1a) gene expression in zebrafish notochord.

    Science.gov (United States)

    Lien, Huang-Wei; Yang, Chung-Hsiang; Cheng, Chia-Hsiung; Hung, Chin-Chun; Liao, Wei-Hao; Hwang, Pung-Pung; Han, Yu-San; Huang, Chang-Jen

    2013-01-01

    The notochord is required for body plan patterning in vertebrates, and defects in notochord development during embryogenesis can lead to diseases affecting the adult. It is therefore important to elucidate the gene regulatory mechanism underlying notochord formation. In this study, we cloned the zebrafish zinc finger 219-like (ZNF219L) based on mammalian ZNF219, which contains nine C2H2-type zinc finger domains. Through whole-mount in situ hybridization, we found that znf219L mRNA is mainly expressed in the zebrafish midbrain-hindbrain boundary, hindbrain, and notochord during development. The znf219L morpholino knockdown caused partial abnormal notochord phenotype and reduced expression of endogenous col2a1a in the notochord specifically. In addition, ZNF219L could recognize binding sites with GGGGG motifs and trigger augmented activity of the col2a1a promoter in a luciferase assay. Furthermore, in vitro binding experiments revealed that ZNF219L recognizes the GGGGG motifs in the promoter region of the zebrafish col2a1a gene through its sixth and ninth zinc finger domains. Taken together, our results reveal that ZNF219L is involved in regulating the expression of col2a1a in zebrafish notochord specifically.

  12. Solution structure of an archaeal DNA binding protein with an eukaryotic zinc finger fold.

    Directory of Open Access Journals (Sweden)

    Florence Guillière

    Full Text Available While the basal transcription machinery in archaea is eukaryal-like, transcription factors in archaea and their viruses are usually related to bacterial transcription factors. Nevertheless, some of these organisms show predicted classical zinc fingers motifs of the C2H2 type, which are almost exclusively found in proteins of eukaryotes and most often associated with transcription regulators. In this work, we focused on the protein AFV1p06 from the hyperthermophilic archaeal virus AFV1. The sequence of the protein consists of the classical eukaryotic C2H2 motif with the fourth histidine coordinating zinc missing, as well as of N- and C-terminal extensions. We showed that the protein AFV1p06 binds zinc and solved its solution structure by NMR. AFV1p06 displays a zinc finger fold with a novel structure extension and disordered N- and C-termini. Structure calculations show that a glutamic acid residue that coordinates zinc replaces the fourth histidine of the C2H2 motif. Electromobility gel shift assays indicate that the protein binds to DNA with different affinities depending on the DNA sequence. AFV1p06 is the first experimentally characterised archaeal zinc finger protein with a DNA binding activity. The AFV1p06 protein family has homologues in diverse viruses of hyperthermophilic archaea. A phylogenetic analysis points out a common origin of archaeal and eukaryotic C2H2 zinc fingers.

  13. Effect of the linkers between the zinc fingers in zinc finger protein 809 on gene silencing and nuclear localization

    Energy Technology Data Exchange (ETDEWEB)

    Ichida, Yu, E-mail: ichida-y@ncchd.go.jp; Utsunomiya, Yuko; Onodera, Masafumi

    2016-03-18

    Zinc finger protein 809 (ZFP809) belongs to the Kruppel-associated box-containing zinc finger protein (KRAB-ZFP) family and functions in repressing the expression of Moloney murine leukemia virus (MoMLV). ZFP809 binds to the primer-binding site (PBS)located downstream of the MoMLV-long terminal repeat (LTR) and induces epigenetic modifications at integration sites, such as repressive histone modifications and de novo DNA methylation. KRAB-ZFPs contain consensus TGEKP linkers between C2H2 zinc fingers. The phosphorylation of threonine residues within linkers leads to the inactivation of zinc finger binding to target sequences. ZFP809 also contains consensus linkers between zinc fingers. However, the function of ZFP809 linkers remains unknown. In the present study, we constructed ZFP809 proteins containing mutated linkers and examined their ability to silence transgene expression driven by MLV, binding ability to MLV PBS, and cellular localization. The results of the present study revealed that the linkers affected the ability of ZFP809 to silence transgene expression. Furthermore, this effect could be partly attributed to changes in the localization of ZFP809 proteins containing mutated linkers. Further characterization of ZFP809 linkers is required for understanding the functions and features of KRAB-ZFP-containing linkers. - Highlights: • ZFP809 has three consensus linkers between the zinc fingers. • Linkers are required for ZFP809 to silence transgene expression driven by MLV-LTR. • Linkers affect the precise nuclear localization of ZFP809.

  14. A multiscale approach to simulating the conformational properties of unbound multi-C₂H₂ zinc finger proteins.

    Science.gov (United States)

    Liu, Lei; Wade, Rebecca C; Heermann, Dieter W

    2015-09-01

    The conformational properties of unbound multi-Cys2 His2 (mC2H2) zinc finger proteins, in which zinc finger domains are connected by flexible linkers, are studied by a multiscale approach. Three methods on different length scales are utilized. First, atomic detail molecular dynamics simulations of one zinc finger and its adjacent flexible linker confirmed that the zinc finger is more rigid than the flexible linker. Second, the end-to-end distance distributions of mC2H2 zinc finger proteins are computed using an efficient atomistic pivoting algorithm, which only takes excluded volume interactions into consideration. The end-to-end distance distribution gradually changes its profile, from left-tailed to right-tailed, as the number of zinc fingers increases. This is explained by using a worm-like chain model. For proteins of a few zinc fingers, an effective bending constraint favors an extended conformation. Only for proteins containing more than nine zinc fingers, is a somewhat compacted conformation preferred. Third, a mesoscale model is modified to study both the local and the global conformational properties of multi-C2H2 zinc finger proteins. Simulations of the CCCTC-binding factor (CTCF), an important mC2H2 zinc finger protein for genome spatial organization, are presented. © 2015 Wiley Periodicals, Inc.

  15. Nucleolin modulates the subcellular localization of GDNF-inducible zinc finger protein 1 and its roles in transcription and cell proliferation

    International Nuclear Information System (INIS)

    Dambara, Atsushi; Morinaga, Takatoshi; Fukuda, Naoyuki; Yamakawa, Yoshinori; Kato, Takuya; Enomoto, Atsushi; Asai, Naoya; Murakumo, Yoshiki; Matsuo, Seiichi; Takahashi, Masahide

    2007-01-01

    GZF1 is a zinc finger protein induced by glial cell-line-derived neurotrophic factor (GDNF). It is a sequence-specific transcriptional repressor with a BTB/POZ (Broad complex, Tramtrack, Bric a brac/Poxvirus and zinc finger) domain and ten zinc finger motifs. In the present study, we used immunoprecipitation and mass spectrometry to identify nucleolin as a GZF1-binding protein. Deletion analysis revealed that zinc finger motifs 1-4 of GZF1 mediate its association with nucleolin. When zinc fingers 1-4 were deleted from GZF1 or nucleolin expression was knocked down by short interference RNA (siRNA), nuclear localization of GZF1 was impaired. These results suggest that nucleolin is involved in the proper subcellular distribution of GZF1. In addition, overexpression of nucleolin moderately inhibited the transcriptional repressive activity of GZF1 whereas knockdown of nucleolin expression by siRNA enhanced its activity. Thus, the repressive activity of GZF1 is modulated by the level at which nucleolin is expressed. Finally, we found that knockdown of GZF1 and nucleolin expression markedly impaired cell proliferation. These findings suggest that the physiological functions of GZF1 may be regulated by the protein's association with nucleolin

  16. Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains

    International Nuclear Information System (INIS)

    Vallee, B.L.; Auld, D.S.; Coleman, J.E.

    1991-01-01

    The authors recognize three distinct motifs of DNA-binding zinc proteins: (i) zinc fingers, (ii) zinc clusters, and (iii) zinc twists. Until very recently, x-ray crystallographic or NMR three-dimensional structure analyses of DNA-binding zinc proteins have not been available to serve as standards of reference for the zinc binding sites of these families of proteins. Those of the DNA-binding domains of the fungal transcription factor GAL4 and the rat glucocorticoid receptor are the first to have been determined. Both proteins contain two zinc binding sites, and in both, cysteine residues are the sole zinc ligands. In GAL4, two zinc atoms are bound to six cysteine residues which form a zinc cluster akin to that of metallothionein; the distance between the two zinc atoms of GAL4 is ∼3.5 angstrom. In the glucocorticoid receptor, each zinc atom is bound to four cysteine residues; the interatomic zinc-zinc distance is ∼13 angstrom, and in this instance, a zinc twist is represented by a helical DNA recognition site located between the two zinc atoms. Zinc clusters and zinc twists are here recognized as two distinctive motifs in DNA-binding proteins containing multiple zinc atoms. For native zinc fingers, structural data do not exist as yet; consequently, the interatomic distances between zinc atoms are not known. As further structural data become available, the structural and functional significance of these different motifs in their binding to DNA and other proteins participating in the transmission of the genetic message will become apparent

  17. Zinc fingers 1, 2, 5 and 6 of transcriptional regulator, PRDM4, are required for its nuclear localisation

    Energy Technology Data Exchange (ETDEWEB)

    Tunbak, Hale, E-mail: h.tunbak@ucl.ac.uk [The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT (United Kingdom); Georgiou, Christiana, E-mail: christiana.georgiou.10@ucl.ac.uk [The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT (United Kingdom); Guan, Cui, E-mail: c.guan@qmul.ac.uk [School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Richardson, William David, E-mail: w.richardson@ucl.ac.uk [The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT (United Kingdom); Chittka, Alexandra, E-mail: a.chittka@ucl.ac.uk [The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2016-05-27

    PRDM4 is a member of the PRDM family of transcriptional regulators which control various aspects of cellular differentiation and proliferation. PRDM proteins exert their biological functions both in the cytosol and the nucleus of cells. All PRDM proteins are characterised by the presence of two distinct structural motifs, the PR/SET domain and the zinc finger (ZF) motifs. We previously observed that deletion of all six zinc fingers found in PRDM4 leads to its accumulation in the cytosol, whereas overexpressed full length PRDM4 is found predominantly in the nucleus. Here, we investigated the requirements for single zinc fingers in the nuclear localisation of PRDM4. We demonstrate that ZF's 1, 2, 5 and 6 contribute to the accumulation of PRDM4 in the nucleus. Their effect is additive as deleting either ZF1-2 or ZF 5–6 redistributes PRDM4 protein from being almost exclusively nuclear to cytosolic and nuclear. We investigated the potential mechanism of nuclear shuttling of PRDM4 via the importin α/β-mediated pathway and find that PRDM4 nuclear targeting is independent of α/β-mediated nuclear import. -- Highlights: •Zinc fingers 1, 2, 5, and 6 are necessary for efficient nuclear localisation of PRDM4. •Zinc fingers 3 and 4 are dispensable for nuclear localisation of PRDM4. •Zinc knuckle is dispensable for nuclear localisation of PRDM4. •PRDM4 nuclear transport is independent of importin α/β-mediated pathway of nuclear import.

  18. A novel human AP endonuclease with conserved zinc-finger-like motifs involved in DNA strand break responses

    OpenAIRE

    Kanno, Shin-ichiro; Kuzuoka, Hiroyuki; Sasao, Shigeru; Hong, Zehui; Lan, Li; Nakajima, Satoshi; Yasui, Akira

    2007-01-01

    DNA damage causes genome instability and cell death, but many of the cellular responses to DNA damage still remain elusive. We here report a human protein, PALF (PNK and APTX-like FHA protein), with an FHA (forkhead-associated) domain and novel zinc-finger-like CYR (cysteine–tyrosine–arginine) motifs that are involved in responses to DNA damage. We found that the CYR motif is widely distributed among DNA repair proteins of higher eukaryotes, and that PALF, as well as a Drosophila protein with...

  19. Luciferase-Zinc-Finger System for the Rapid Detection of Pathogenic Bacteria.

    Science.gov (United States)

    Shi, Chu; Xu, Qing; Ge, Yue; Jiang, Ling; Huang, He

    2017-08-09

    Rapid and reliable detection of pathogenic bacteria is crucial for food safety control. Here, we present a novel luciferase-zinc finger system for the detection of pathogens that offers rapid and specific profiling. The system, which uses a zinc-finger protein domain to probe zinc finger recognition sites, was designed to bind the amplified conserved regions of 16S rDNA, and the obtained products were detected using a modified luciferase. The luciferase-zinc finger system not only maintained luciferase activity but also allowed the specific detection of different bacterial species, with a sensitivity as low as 10 copies and a linear range from 10 to 10 4 copies per microliter of the specific PCR product. Moreover, the system is robust and rapid, enabling the simultaneous detection of 6 species of bacteria in artificially contaminated samples with excellent accuracy. Thus, we envision that our luciferase-zinc finger system will have far-reaching applications.

  20. ZNF322, a novel human C2H2 Krueppel-like zinc-finger protein, regulates transcriptional activation in MAPK signaling pathways

    International Nuclear Information System (INIS)

    Li Yongqing; Wang Yuequn; Zhang Caibo; Yuan Wuzhou; Wang Jun; Zhu Chuanbing; Chen Lei; Huang Wen; Zeng Weiqi; Wu Xiushan; Liu Mingyao

    2004-01-01

    Cardiac differentiation involves a cascade of coordinated gene expression that regulates cell proliferation and matrix protein formation in a defined temporal-spatial manner. The C 2 H 2 zinc finger-containing transcription factors have been implicated as critical regulators of multiple cardiac-expressed genes and are important for human heart development and diseases. Here we have identified and characterized a novel zinc-finger gene named ZNF322 using degenerated primers from a human embryo heart cDNA library. The gene contains four exons and spans 23.2 kb in chromosome 6p22.1 region, and transcribes a 2.7 kb mRNA that encodes a protein with 402 amino acid residues. The predicted protein contains 9 tandem C 2 H 2 -type zinc-finger motifs. Northern blot analysis shows that ZNF322 is expressed in every human tissue examined at adult stage and during embryonic developmental stages from 80 days to 24 weeks. When overexpressed in COS-7 cells, ZNF322-EGFP fusion protein is detected in the nucleus and cytoplasm. Reporter gene assays show that ZNF322 is a transcriptional activator. Furthermore, overexpression of ZNF322 in COS-7 cells activates the transcriptional activity of SRE and AP-1. Together, these results suggest that ZNF322 is a member of the zinc-finger transcription factor family and may act as a positive regulator in gene transcription mediated by the MAPK signaling pathways

  1. Protein, Calcium, Zinc, and Iron Contents of Finger Millet Grain Response to Varietal Differences and Phosphorus Application in Kenya

    Directory of Open Access Journals (Sweden)

    Wekha N. Wafula

    2018-02-01

    Full Text Available This study was carried out to investigate the influence of phosphorus fertilizers on the concentrations of nutrients, particularly calcium, protein, zinc, and iron in finger millet grains grown in different agro-ecologies in Kenya. The on-station experiments were carried out at Kiboko (Eastern Kenya, Kakamega, and Alupe (Western Kenya in 2015 during the short and long rainy seasons. The trials were laid out in a randomized complete block design (RCBD in a 4 × 3 factorial arrangement with three replicates. The treatments comprised of four levels of phosphorus (0, 12.5, 25.0 and 37.5 kg ha−1 P2O5 and three finger millet varieties (U-15, P-224 and a local variety. Application of phosphorus significantly (p ≤ 0.05 increased the protein content of finger millet grain in varieties in all the three sites. Variety U-15 had the highest protein content (11.0% at 25 kg ha−1 P2O5 with the control (zero P on variety P-224 eliciting the lowest (4.4% at Kiboko. At Kakamega, the 25 kg ha−1 P2O5 treatment with U-15 variety had the highest protein content (15.3% while the same variety at 12.5 kg ha−1 P2O5 rate elicited the highest protein content (15.0% at Alupe. Phosphorus application significantly enhanced the nutritional quality of finger millet grains specifically protein, calcium, iron, and zinc. Variety P-224 had the highest calcium content in all sites and highest iron content at Kakamega while the local varieties had the highest zinc content in all sites. The varieties responded differently to each quality component but generally, based on the protein content, the 25 kg ha−1 P2O5 is recommended.

  2. Functional analysis of a novel KRAB/C2H2 zinc finger protein Mipu1

    International Nuclear Information System (INIS)

    Jiang, Lei; Tang, Daolin; Wang, Kangkai; Zhang, Huali; Yuan, Can; Duan, Dayue; Xiao, Xianzhong

    2007-01-01

    A novel rat gene, Mipu1, encodes a 608 amino acid protein with an amino-terminal KRAB domain and 14 carboxyl-terminal C 2 H 2 zinc finger motifs. Mipu1 is localized to the nucleus through its KRAB domain or the linker adjacent to its zinc finger region. Using the GST-Mipu1 bound to glutathione-Sepharose beads, a consensus putative DNA binding site (5'-TGTCTTATCGAA-3') was extracted from a random oligonucleotide library. EMSA and target detection assay showed that the probe containing the putative site can bind to purified GST-Mipu1 fusion protein. The oligonucleotide containing the putative site was inserted into the pGL3-promotor vector to produce a reporter construct. The expression of reporter gene was repressed by overexpression of Mipu1 in a dose-dependent manner. Mutation analysis of the consensus sequence indicated that the repression mediated by Mipu1 is sequence-dependent. These results suggest that Mipu1 is a nuclear protein, which functions as a transcriptional repressor

  3. Activation of transcriptional activities of AP-1 and SRE by a new zinc-finger protein ZNF641

    International Nuclear Information System (INIS)

    Qi Xingzhu; Li Yongqing; Xiao Jing; Yuan Wuzhou; Yan Yan; Wang Yuequn; Liang Shuyuan; Zhu Chuanbing; Chen Yingduan; Liu Mingyao; Wu Xiushan

    2006-01-01

    Mitogen-activated protein kinases (MAPKs) are evolutionarily conserved enzymes in cell signal transduction connecting cell-surface receptors to critical regulatory targets within cells and control cell survival, adaptation, and proliferation. Previous studies revealed that zinc-finger proteins are involved in the regulation of the MAPK signaling pathways. Here, we report the identification and characterization of a novel human zinc-finger protein, ZNF641. The cDNA of ZNF641 is 4.9 kb, encoding 438 amino acids in the nucleus. The protein is highly conserved in evolution across different vertebrate species from mouse to human. Northern blot analysis indicates that ZNF641 is expressed in most of the examined human tissues, with a high level in skeletal muscle. Overexpression of pCMV-Tag2B-ZNF641 in the COS-7 cells activates the transcriptional activities of AP-1 and SRE. Deletion analysis indicates that the linker between KRAB box and C 2 H 2 -type zinc-fingers represents the basal activation domain. These results suggest that ZNF641 may be a positive regulator in MAPK-mediated signaling pathways that lead to the activation of AP-1 and SRE

  4. Finger millet (Eleucine coracana) flour as a vehicle for fortification with zinc.

    Science.gov (United States)

    Tripathi, Bhumika; Platel, Kalpana

    2010-01-01

    Millets, being less expensive compared to cereals and the staple for the poorer sections of population, could be the choice for fortification with micronutrients such as zinc. In view of this, finger millet, widely grown and commonly consumed in southern India, was explored as a vehicle for fortification with zinc in this investigation. Finger millet flour fortified with either zinc oxide or zinc stearate so as to provide 50mg zinc per kg flour, was specifically examined for the bioaccessibility of the fortified mineral, as measured by in vitro simulated gastrointestinal digestion procedure and storage stability. Addition of the zinc salts increased the bioaccessible zinc content by 1.5-3 times that of the unfortified flour. Inclusion of EDTA along with the fortified salt significantly enhanced the bioaccessibility of zinc from the fortified flours, the increase being three-fold. Inclusion of citric acid along with the zinc salt and EDTA during fortification did not have any additional beneficial effect on zinc bioaccessiblity. Moisture and free fatty acid contents of the stored fortified flours indicated the keeping quality of the same, up to 60 days. Both zinc oxide and zinc stearate were equally effective as fortificants, when used in combination with EDTA as a co-fortificant. The preparation of either roti or dumpling from the fortified flours stored up to 60 days did not result in any significant compromise in the bioaccessible zinc content. Thus, the present study has revealed that finger millet flour can effectively be used as a vehicle for zinc fortification to derive additional amounts of bioaccessible zinc, with reasonably good storage stability, to combat zinc deficiency. Copyright 2009 Elsevier GmbH. All rights reserved.

  5. ZNF328, a novel human zinc-finger protein, suppresses transcriptional activities of SRE and AP-1

    International Nuclear Information System (INIS)

    Ou Ying; Wang Shenqiu; Cai Zhenyu; Wang Yuequn; Wang Canding; Li Yongqing; Li Fang; Yuan Wuzhou; Liu Bisheng; Wu Xiushan; Liu Mingyao

    2005-01-01

    The zinc finger proteins containing the Kruppel-associated box domain (KRAB-ZFPs) are the single largest class of transcription factors in human genome. Many of the KRAB-ZFPs are involved in cardiac development or cardiovascular diseases. Here, we have identified a novel human KRAB zinc finger gene, named ZNF328, from the human fetal heart cDNA library. The complete sequence of ZNF328 cDNA contains a 2376-bp open reading frame (ORF) and encodes a 792 amino acid protein with an N-terminal KRAB domain and classical zinc finger C 2 H 2 motifs in the C-terminus. Northern blot analysis indicates that the protein is expressed in most of the examined human adult and embryonic tissues. ZNF328 is a transcription suppressor when fused to Gal-4 DNA-binding domain and cotransfected with VP-16. Overexpression of ZNF328 in COS-7 cells inhibits the transcriptional activities of SRE and AP-1. Deletion analysis with a series of truncated fusion proteins indicates that the KRAB motif is a basal repression domain when cotransfected with VP-16. Similar results were obtained when the truncated fusion proteins were assayed for the transcriptional activities of SRE and AP-1. These results suggest that ZNF328 protein may act as a transcriptional repressor in mitogen-activated protein kinase (MAPK) signaling pathway to mediate cellular functions

  6. Viral RNA annealing activities of human immunodeficiency virus type 1 nucleocapsid protein require only peptide domains outside the zinc fingers.

    Science.gov (United States)

    De Rocquigny, H; Gabus, C; Vincent, A; Fournié-Zaluski, M C; Roques, B; Darlix, J L

    1992-07-15

    The nucleocapsid (NC) of human immunodeficiency virus type 1 consists of a large number of NC protein molecules, probably wrapping the dimeric RNA genome within the virion inner core. NC protein is a gag-encoded product that contains two zinc fingers flanked by basic residues. In human immunodeficiency virus type 1 virions, NCp15 is ultimately processed into NCp7 and p6 proteins. During virion assembly the retroviral NC protein is necessary for core formation and genomic RNA encapsidation, which are essential for virus infectivity. In vitro NCp15 activates viral RNA dimerization, a process most probably linked in vivo to genomic RNA packaging, and replication primer tRNA(Lys,3) annealing to the initiation site of reverse transcription. To characterize the domains of human immunodeficiency virus type 1 NC protein necessary for its various functions, the 72-amino acid NCp7 and several derived peptides were synthesized in a pure form. We show here that synthetic NCp7 with or without the two zinc fingers has the RNA annealing activities of NCp15. Further deletions of the N-terminal 12 and C-terminal 8 amino acids, leading to a 27-residue peptide lacking the finger domains, have little or no effect on NC protein activity in vitro. However deletion of short sequences containing basic residues flanking the first finger leads to a complete loss of NC protein activity. It is proposed that the basic residues and the zinc fingers cooperate to select and package the genomic RNA in vivo. Inhibition of the viral RNA binding and annealing activities associated with the basic residues flanking the first zinc finger of NC protein could therefore be used as a model for the design of antiviral agents.

  7. The DnaJ-like zinc finger domain protein PSA2 affects light acclimation and chloroplast development in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yan-Wen eWang

    2016-03-01

    Full Text Available The biosynthesis of chlorophylls and carotenoids and the assembly of thylakoid membranes are critical for the photoautotrophic growth of plants. Different factors are involved in these two processes. In recent years, members of the DnaJ-like zinc finger domain proteins have been found to take part in the biogenesis and/or the maintenance of plastids. One member of this family of proteins, PSA2, was recently found to localize to the thylakoid lumen and regulate the accumulation of photosystem I. In this study, we report that the silencing of PSA2 in Arabidopsis thaliana resulted in variegated leaves and retarded growth. Although both chlorophylls and total carotenoids decreased in the psa2 mutant, violaxanthin and zeaxanthin accumulated in the mutant seedlings grown under growth condition. Lower levels of non-photochemical quenching and electron transport rate were also found in the psa2 mutant seedlings under growth condition compared with those of the wild-type plants, indicating an impaired capability to acclimate to normal light irradiance when PSA2 was silenced. Moreover, we also observed an abnormal assembly of grana thylakoids and poorly developed stroma thylakoids in psa2 chloroplasts. Taken together, our results demonstrate that PSA2 is a member of the DnaJ-like zinc finger domain protein family that affects light acclimation and chloroplast development.

  8. Role of protein structure and the role of individual fingers in zinc finger protein-DNA recognition: a molecular dynamics simulation study and free energy calculations

    Science.gov (United States)

    Hamed, Mazen Y.

    2018-05-01

    Molecular dynamics and MM_GBSA energy calculations on various zinc finger proteins containing three and four fingers bound to their target DNA gave insights into the role of each finger in the DNA binding process as part of the protein structure. The wild type Zif 268 (PDB code: 1AAY) gave a ΔG value of - 76.1 (14) kcal/mol. Zinc fingers ZF1, ZF2 and ZF3 were mutated in one experiment and in another experiment one finger was cut and the rest of the protein was studied for binding. The ΔΔG values for the Zinc Finger protein with both ZF1 and ZF2 mutated was + 80 kcal/mol, while mutating only ZF1 the ΔΔG value was + 52 kcal/mol (relative to the wild type). Cutting ZF3 and studying the protein consisting only of ZF1 linked to ZF2 gave a ΔΔG value of + 68 kcal/mol. Upon cutting ZF1, the resulting ZF2 linked to ZF3 protein gave a ΔΔG value of + 41 kcal/mol. The above results shed light on the importance of each finger in the binding process, especially the role of ZF1 as the anchoring finger followed in importance by ZF2 and ZF3. The energy difference between the binding of the wild type protein Zif268 (1AAY) and that for individual finger binding to DNA according to the formula: ΔΔGlinkers, otherstructuralfactors = ΔGzif268 - (ΔGF1+F2+F3) gave a value = - 44.5 kcal/mol. This stabilization can be attributed to the contribution of linkers and other structural factors in the intact protein in the DNA binding process. DNA binding energies of variant proteins of the wild type Zif268 which differ in their ZF1 amino acid sequence gave evidence of a good relationship between binding energy and recognition and specificity, this finding confirms the reported vital role of ZF1 in the ZF protein scanning and anchoring to the target DNA sequence. The role of hydrogen bonds in both specific and nonspecific amino acid-DNA contacts is discussed in relation to mutations. The binding energies of variant Zinc Finger proteins confirmed the role of ZF1 in the recognition

  9. Rmt1 catalyzes zinc-finger independent arginine methylation of ribosomal protein Rps2 in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Lipson, Rebecca S.; Webb, Kristofor J.; Clarke, Steven G.

    2010-01-01

    Rps2/rpS2 is a well conserved protein of the eukaryotic ribosomal small subunit. Rps2 has previously been shown to contain asymmetric dimethylarginine residues, the addition of which is catalyzed by zinc-finger-containing arginine methyltransferase 3 (Rmt3) in the fission yeast Schizosaccharomyces pombe and protein arginine methyltransferase 3 (PRMT3) in mammalian cells. Here, we demonstrate that despite the lack of a zinc-finger-containing homolog of Rmt3/PRMT3 in the budding yeast Saccharomyces cerevisiae, Rps2 is partially modified to generate asymmetric dimethylarginine and monomethylarginine residues. We find that this modification of Rps2 is dependent upon the major arginine methyltransferase 1 (Rmt1) in S. cerevisiae. These results are suggestive of a role for Rmt1 in modifying the function of Rps2 in a manner distinct from that occurring in S. pombe and mammalian cells.

  10. The creation of the artificial RING finger from the cross-brace zinc finger by α-helical region substitution

    International Nuclear Information System (INIS)

    Miyamoto, Kazuhide; Togiya, Kayo

    2010-01-01

    The creation of the artificial RING finger as ubiquitin-ligating enzyme (E3) has been demonstrated. In this study, by the α-helical region substitution between the EL5 RING finger and the Williams-Beuren syndrome transcription factor (WSTF) PHD finger, the artificial E3 (WSTF PHD R ING finger) was newly created. The experiments of the chemical modification of residues Cys and the circular dichroism spectra revealed that the WSTF PHD R ING finger binds two zinc atoms and adopts the zinc-dependent ordered-structure. In the substrate-independent ubiquitination assay, the WSTF PHD R ING finger functions as E3 and was poly- or mono-ubiquitinated. The present strategy is very simple and convenient, and consequently it might be widely applicable to the creation of various artificial E3 RING fingers with the specific ubiquitin-conjugating enzyme (E2)-binding capability.

  11. The artificial zinc finger coding gene 'Jazz' binds the utrophin promoter and activates transcription.

    Science.gov (United States)

    Corbi, N; Libri, V; Fanciulli, M; Tinsley, J M; Davies, K E; Passananti, C

    2000-06-01

    Up-regulation of utrophin gene expression is recognized as a plausible therapeutic approach in the treatment of Duchenne muscular dystrophy (DMD). We have designed and engineered new zinc finger-based transcription factors capable of binding and activating transcription from the promoter of the dystrophin-related gene, utrophin. Using the recognition 'code' that proposes specific rules between zinc finger primary structure and potential DNA binding sites, we engineered a new gene named 'Jazz' that encodes for a three-zinc finger peptide. Jazz belongs to the Cys2-His2 zinc finger type and was engineered to target the nine base pair DNA sequence: 5'-GCT-GCT-GCG-3', present in the promoter region of both the human and mouse utrophin gene. The entire zinc finger alpha-helix region, containing the amino acid positions that are crucial for DNA binding, was specifically chosen on the basis of the contacts more frequently represented in the available list of the 'code'. Here we demonstrate that Jazz protein binds specifically to the double-stranded DNA target, with a dissociation constant of about 32 nM. Band shift and super-shift experiments confirmed the high affinity and specificity of Jazz protein for its DNA target. Moreover, we show that chimeric proteins, named Gal4-Jazz and Sp1-Jazz, are able to drive the transcription of a test gene from the human utrophin promoter.

  12. Dynamics of Linker Residues Modulate the Nucleic Acid Binding Properties of the HIV-1 Nucleocapsid Protein Zinc Fingers

    Science.gov (United States)

    Zargarian, Loussiné; Tisné, Carine; Barraud, Pierre; Xu, Xiaoqian; Morellet, Nelly; René, Brigitte; Mély, Yves; Fossé, Philippe; Mauffret, Olivier

    2014-01-01

    The HIV-1 nucleocapsid protein (NC) is a small basic protein containing two zinc fingers (ZF) separated by a short linker. It is involved in several steps of the replication cycle and acts as a nucleic acid chaperone protein in facilitating nucleic acid strand transfers occurring during reverse transcription. Recent analysis of three-dimensional structures of NC-nucleic acids complexes established a new property: the unpaired guanines targeted by NC are more often inserted in the C-terminal zinc finger (ZF2) than in the N-terminal zinc finger (ZF1). Although previous NMR dynamic studies were performed with NC, the dynamic behavior of the linker residues connecting the two ZF domains remains unclear. This prompted us to investigate the dynamic behavior of the linker residues. Here, we collected 15N NMR relaxation data and used for the first time data at several fields to probe the protein dynamics. The analysis at two fields allows us to detect a slow motion occurring between the two domains around a hinge located in the linker at the G35 position. However, the amplitude of motion appears limited in our conditions. In addition, we showed that the neighboring linker residues R29, A30, P31, R32, K33 displayed restricted motion and numerous contacts with residues of ZF1. Our results are fully consistent with a model in which the ZF1-linker contacts prevent the ZF1 domain to interact with unpaired guanines, whereas the ZF2 domain is more accessible and competent to interact with unpaired guanines. In contrast, ZF1 with its large hydrophobic plateau is able to destabilize the double-stranded regions adjacent to the guanines bound by ZF2. The linker residues and the internal dynamics of NC regulate therefore the different functions of the two zinc fingers that are required for an optimal chaperone activity. PMID:25029439

  13. A novel zinc finger protein Zfp277 mediates transcriptional repression of the Ink4a/arf locus through polycomb repressive complex 1

    DEFF Research Database (Denmark)

    Negishi, Masamitsu; Saraya, Atsunori; Mochizuki, Shinobu

    2010-01-01

    . METHODOLOGY/PRINCIPAL FINDINGS: We examined the function of Zinc finger domain-containing protein 277 (Zfp277), a novel zinc finger protein that interacts with the PcG protein Bmi1. Zfp277 binds to the Ink4a/Arf locus in a Bmi1-independent manner and interacts with polycomb repressor complex (PRC) 1 through...... is essential for the recruitment of PRC1 to the Ink4a/Arf locus. Our findings also highlight dynamic regulation of both Zfp277 and PcG proteins by the oxidative stress pathways....

  14. Zinc-finger proteins in health and disease.

    Science.gov (United States)

    Cassandri, Matteo; Smirnov, Artem; Novelli, Flavia; Pitolli, Consuelo; Agostini, Massimiliano; Malewicz, Michal; Melino, Gerry; Raschellà, Giuseppe

    2017-01-01

    Zinc-finger proteins (ZNFs) are one of the most abundant groups of proteins and have a wide range of molecular functions. Given the wide variety of zinc-finger domains, ZNFs are able to interact with DNA, RNA, PAR (poly-ADP-ribose) and other proteins. Thus, ZNFs are involved in the regulation of several cellular processes. In fact, ZNFs are implicated in transcriptional regulation, ubiquitin-mediated protein degradation, signal transduction, actin targeting, DNA repair, cell migration, and numerous other processes. The aim of this review is to provide a comprehensive summary of the current state of knowledge of this class of proteins. Firstly, we describe the actual classification of ZNFs, their structure and functions. Secondly, we focus on the biological role of ZNFs in the development of organisms under normal physiological and pathological conditions.

  15. Zinc finger nuclease: a new approach for excising HIV-1 proviral DNA from infected human T cells.

    Science.gov (United States)

    Qu, Xiying; Wang, Pengfei; Ding, Donglin; Wang, Xiaohui; Zhang, Gongmin; Zhou, Xin; Liu, Lin; Zhu, Xiaoli; Zeng, Hanxian; Zhu, Huanzhang

    2014-09-01

    A major reason that Acquired Immune Deficiency Syndrome (AIDS) cannot be completely cured is the human immunodeficiency virus 1 (HIV-1) provirus integrated into the human genome. Though existing therapies can inhibit replication of HIV-1, they cannot eradicate it. A molecular therapy gains popularity due to its specifically targeting to HIV-1 infected cells and effectively removing the HIV-1, regardless of viral genes being active or dormant. Now, we propose a new method which can excellently delete the HIV provirus from the infected human T cell genome. First, we designed zinc-finger nucleases (ZFNs) that target a sequence within the long terminal repeat (LTR) U3 region that is highly conserved in whole clade. Then, we screened out one pair of ZFN and named it as ZFN-U3. We discovered that ZFN-U3 can exactly target and eliminate the full-length HIV-1 proviral DNA after the infected human cell lines treated with it, and the frequency of its excision was about 30 % without cytotoxicity. These results prove that ZFN-U3 can efficiently excise integrated HIV-1 from the human genome in infected cells. This method to delete full length HIV-1 in human genome can therefore provide a novel approach to cure HIV-infected individuals in the future.

  16. The maize INDETERMINATE1 flowering time regulator defines a highly conserved zinc finger protein family in higher plants

    Directory of Open Access Journals (Sweden)

    Colasanti Joseph

    2006-06-01

    Full Text Available Abstract Background The maize INDETERMINATE1 gene, ID1, is a key regulator of the transition to flowering and the founding member of a transcription factor gene family that encodes a protein with a distinct arrangement of zinc finger motifs. The zinc fingers and surrounding sequence make up the signature ID domain (IDD, which appears to be found in all higher plant genomes. The presence of zinc finger domains and previous biochemical studies showing that ID1 binds to DNA suggests that members of this gene family are involved in transcriptional regulation. Results Comparison of IDD genes identified in Arabidopsis and rice genomes, and all IDD genes discovered in maize EST and genomic databases, suggest that ID1 is a unique member of this gene family. High levels of sequence similarity amongst all IDD genes from maize, rice and Arabidopsis suggest that they are derived from a common ancestor. Several unique features of ID1 suggest that it is a divergent member of the maize IDD family. Although no clear ID1 ortholog was identified in the Arabidopsis genome, highly similar genes that encode proteins with identity extending beyond the ID domain were isolated from rice and sorghum. Phylogenetic comparisons show that these putative orthologs, along with maize ID1, form a group separate from other IDD genes. In contrast to ID1 mRNA, which is detected exclusively in immature leaves, several maize IDD genes showed a broad range of expression in various tissues. Further, Western analysis with an antibody that cross-reacts with ID1 protein and potential orthologs from rice and sorghum shows that all three proteins are detected in immature leaves only. Conclusion Comparative genomic analysis shows that the IDD zinc finger family is highly conserved among both monocots and dicots. The leaf-specific ID1 expression pattern distinguishes it from other maize IDD genes examined. A similar leaf-specific localization pattern was observed for the putative ID1 protein

  17. Lead inhibition of DNA-binding mechanism of Cys(2)His(2) zinc finger proteins.

    Science.gov (United States)

    Hanas, J S; Rodgers, J S; Bantle, J A; Cheng, Y G

    1999-11-01

    The association of lead with chromatin in cells suggests that deleterious metal effects may in part be mediated through alterations in gene function. To elucidate if and how lead may alter DNA binding of cysteine-rich zinc finger proteins, lead ions were analyzed for their ability to alter the DNA binding mechanism of the Cys(2)His(2) zinc finger protein transcription factor IIIA (TFIIIA). As assayed by DNase I protection, the interaction of TFIIIA with the 50-bp internal control region of the 5S ribosomal gene was partially inhibited by 5 microM lead ions and completely inhibited by 10 to 20 microM lead ions. Preincubation of free TFIIIA with lead resulted in DNA-binding inhibition, whereas preincubation of a TFIIIA/5S RNA complex with lead did not result in DNA-binding inhibition. Because 5S RNA binds TFIIIA zinc fingers, this result is consistent with an inhibition mechanism via lead binding to zinc fingers. The complete loss of DNase I protection on the 5S gene indicates the mechanism of inhibition minimally involves the N-terminal fingers of TFIIIA. Inhibition was not readily reversible and occurred in the presence of an excess of beta-mercaptoethanol. Inhibition kinetics were fast, progressing to completion in approximately 5 min. Millimolar concentrations of sulfhydryl-specific arsenic ions were not inhibitory for TFIIIA binding. Micromolar concentrations of lead inhibited DNA binding by Sp1, another Cys(2)His(2) finger protein, but not by the nonfinger protein AP2. Inhibition of Cys(2)His(2) zinc finger transcription factors by lead ions at concentrations near those known to have deleterious physiological effects points to new molecular mechanisms for lead toxicity in promoting disease.

  18. A novel zinc-finger-like gene from Tamarix hispida is involved in salt and osmotic tolerance.

    Science.gov (United States)

    An, Yan; Wang, Yucheng; Lou, Lingling; Zheng, Tangchun; Qu, Guan-Zheng

    2011-11-01

    In the present study, a zinc-finger-like cDNA (ThZFL) was cloned from the Tamarix hispida. Northern blot analysis showed that the expression of ThZFL can be induced by salt, osmotic stress and ABA treatment. Overexpression of the ThZFL confers salt and osmotic stress tolerance in both yeast Saccharomyces cerevisiae and tobacco. Furthermore, MDA levels in ThZFL transformed tobacco were significantly decreased compared with control plants under salt and osmotic stress, suggesting ThZFL may confer stress tolerance by decreasing membrane lipid peroxidation. Subcellular localization analysis showed the ThZFL protein is localized in the cell wall. Our results indicated the ThZFL gene is an excellent candidate for genetic engineering to improve salt and osmotic tolerance in agricultural plants.

  19. Myocardial ischemic preconditioning upregulated protein 1(Mipu1):zinc finger protein 667 - a multifunctional KRAB/C{sub 2}H{sub 2} zinc finger protein

    Energy Technology Data Exchange (ETDEWEB)

    Han, D.; Zhang, C. [Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province (China); Fan, W.J. [Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province (China); The Second Affiliated Hospital, University of South China, Hengyang City, Hunan Province (China); Pan, W.J.; Feng, D.M.; Qu, S.L.; Jiang, Z.S. [Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province (China)

    2014-10-31

    Myocardial ischemic preconditioning upregulated protein 1 (Mipu1) is a newly discovered upregulated gene produced in rats during the myocardial ischemic preconditioning process. Mipu1 cDNA contains a 1824-base pair open reading frame and encodes a 608 amino acid protein with an N-terminal Krüppel-associated box (KRAB) domain and classical zinc finger C{sub 2}H{sub 2} motifs in the C-terminus. Mipu1 protein is located in the cell nucleus. Recent studies found that Mipu1 has a protective effect on the ischemia-reperfusion injury of heart, brain, and other organs. As a nuclear factor, Mipu1 may perform its protective function through directly transcribing and repressing the expression of proapoptotic genes to repress cell apoptosis. In addition, Mipu1 also plays an important role in regulating the gene expression of downstream inflammatory mediators by inhibiting the activation of activator protein-1 and serum response element.

  20. Zinc finger protein 521 antagonizes early B-cell factor 1 and modulates the B-lymphoid differentiation of primary hematopoietic progenitors

    NARCIS (Netherlands)

    Mega, Tiziana; Lupia, Michela; Amodio, Nicola; Horton, Sarah J.; Mesuraca, Maria; Pelaggi, Daniela; Agosti, Valter; Grieco, Michele; Chiarella, Emanuela; Spina, Raffaella; Moore, Malcolm A. S.; Schuringa, Jan Jacob; Bond, Heather M.; Morrone, Giovanni

    2011-01-01

    Zinc finger protein 521 (EHZF/ZNF521) is a multi-functional transcription co-factor containing 30 zinc fingers and an N-terminal motif that binds to the nucleosome remodelling and histone deacetylase (NuRD) complex. ZNF521 is believed to be a relevant player in the regulation of the homeostasis of

  1. Zinc-fingers and homeoboxes 1 (ZHX1) binds DNA methyltransferase (DNMT) 3B to enhance DNMT3B-mediated transcriptional repression

    International Nuclear Information System (INIS)

    Kim, Sung-Hak; Park, Jinah; Choi, Moon-Chang; Kim, Hwang-Phill; Park, Jung-Hyun; Jung, Yeonjoo; Lee, Ju-Hee; Oh, Do-Youn; Im, Seock-Ah; Bang, Yung-Jue; Kim, Tae-You

    2007-01-01

    DNA methyltransferases (DNMT) 3B is a de novo DNMT that represses transcription independent of DNMT activity. In order to gain a better insight into DNMT3B-mediated transcriptional repression, we performed a yeast two-hybrid analysis using DNMT3B as a bait. Of the various binding candidates, ZHX1, a member of zinc-finger and homeobox protein, was found to interact with DNMT3B in vivo and in vitro. N-terminal PWWP domain of DNMT3B was required for its interaction with homeobox motifs of ZHX1. ZHX1 contains nuclear localization signal at C-terminal homeobox motif, and both ZHX1 and DNMT3B were co-localized in nucleus. Furthermore, we found that ZHX1 enhanced the transcriptional repression mediated by DNMT3B when DNMT3B is directly targeted to DNA. These results showed for First the direct linkage between DNMT and zinc-fingers homeoboxes protein, leading to enhanced gene silencing by DNMT3B

  2. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xi; Zhou, Xixi [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Du, Libo [Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Wenlan [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Liu, Yang [Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Hudson, Laurie G. [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Liu, Ke Jian, E-mail: kliu@salud.unm.edu [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States)

    2014-01-15

    Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects of arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure. - Highlights: • Arsenite binding is equivalent to zinc deficiency in reducing PARP-1 function. • Zinc reverses arsenic inhibition of PARP-1 activity and enhancement of DNA damage. • Arsenite binding and zinc loss alter the conformation of zinc finger

  3. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair

    International Nuclear Information System (INIS)

    Sun, Xi; Zhou, Xixi; Du, Libo; Liu, Wenlan; Liu, Yang; Hudson, Laurie G.; Liu, Ke Jian

    2014-01-01

    Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects of arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure. - Highlights: • Arsenite binding is equivalent to zinc deficiency in reducing PARP-1 function. • Zinc reverses arsenic inhibition of PARP-1 activity and enhancement of DNA damage. • Arsenite binding and zinc loss alter the conformation of zinc finger

  4. A novel human AP endonuclease with conserved zinc-finger-like motifs involved in DNA strand break responses

    Science.gov (United States)

    Kanno, Shin-ichiro; Kuzuoka, Hiroyuki; Sasao, Shigeru; Hong, Zehui; Lan, Li; Nakajima, Satoshi; Yasui, Akira

    2007-01-01

    DNA damage causes genome instability and cell death, but many of the cellular responses to DNA damage still remain elusive. We here report a human protein, PALF (PNK and APTX-like FHA protein), with an FHA (forkhead-associated) domain and novel zinc-finger-like CYR (cysteine–tyrosine–arginine) motifs that are involved in responses to DNA damage. We found that the CYR motif is widely distributed among DNA repair proteins of higher eukaryotes, and that PALF, as well as a Drosophila protein with tandem CYR motifs, has endo- and exonuclease activities against abasic site and other types of base damage. PALF accumulates rapidly at single-strand breaks in a poly(ADP-ribose) polymerase 1 (PARP1)-dependent manner in human cells. Indeed, PALF interacts directly with PARP1 and is required for its activation and for cellular resistance to methyl-methane sulfonate. PALF also interacts directly with KU86, LIGASEIV and phosphorylated XRCC4 proteins and possesses endo/exonuclease activity at protruding DNA ends. Various treatments that produce double-strand breaks induce formation of PALF foci, which fully coincide with γH2AX foci. Thus, PALF and the CYR motif may play important roles in DNA repair of higher eukaryotes. PMID:17396150

  5. A DHHC-type zinc finger protein gene regulates shoot branching in ...

    African Journals Online (AJOL)

    hope&shola

    Arabidopsis. Key words: Arabidopsis, DHHC-type zinc finger protein, At5g04270, shoot branching. ..... and human HIP14 (Ducker et al., 2004), were isolated and identified to .... the control of branching in the rms1 mutant of pea. Plant Physiol.

  6. The Zinc Finger of Prolyl Hydroxylase Domain Protein 2 Is Essential for Efficient Hydroxylation of Hypoxia-Inducible Factor α.

    Science.gov (United States)

    Arsenault, Patrick R; Song, Daisheng; Chung, Yu Jin; Khurana, Tejvir S; Lee, Frank S

    2016-09-15

    Prolyl hydroxylase domain protein 2 (PHD2) (also known as EGLN1) is a key oxygen sensor in mammals that posttranslationally modifies hypoxia-inducible factor α (HIF-α) and targets it for degradation. In addition to its catalytic domain, PHD2 contains an evolutionarily conserved zinc finger domain, which we have previously proposed recruits PHD2 to the HSP90 pathway to promote HIF-α hydroxylation. Here, we provide evidence that this recruitment is critical both in vitro and in vivo We show that in vitro, the zinc finger can function as an autonomous recruitment domain to facilitate interaction with HIF-α. In vivo, ablation of zinc finger function by a C36S/C42S Egln1 knock-in mutation results in upregulation of the erythropoietin gene, erythrocytosis, and augmented hypoxic ventilatory response, all hallmarks of Egln1 loss of function and HIF stabilization. Hence, the zinc finger ordinarily performs a critical positive regulatory function. Intriguingly, the function of this zinc finger is impaired in high-altitude-adapted Tibetans, suggesting that their adaptation to high altitude may, in part, be due to a loss-of-function EGLN1 allele. Thus, these findings have important implications for understanding both the molecular mechanism of the hypoxic response and human adaptation to high altitude. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. The Promyelocytic Leukemia Zinc Finger Protein: Two Decades of Molecular Oncology

    International Nuclear Information System (INIS)

    Suliman, Bandar Ali; Xu, Dakang; Williams, Bryan Raymond George

    2012-01-01

    The promyelocytic leukemia zinc finger (PLZF) protein, also known as Zbtb16 or Zfp145, was first identified in a patient with acute promyelocytic leukemia, where a reciprocal chromosomal translocation t(11;17)(q23;q21) resulted in a fusion with the RARA gene encoding retinoic acid receptor alpha. The wild-type Zbtb16 gene encodes a transcription factor that belongs to the POK (POZ and Krüppel) family of transcriptional repressors. In addition to nine Krüppel-type sequence-specific zinc fingers, which make it a member of the Krüppel-like zinc finger protein family, the PLZF protein contains an N-terminal BTB/POZ domain and RD2 domain. PLZF has been shown to be involved in major developmental and biological processes, such as spermatogenesis, hind limb formation, hematopoiesis, and immune regulation. PLZF is localized mainly in the nucleus where it exerts its transcriptional repression function, and many post-translational modifications affect this ability and also have an impact on its cytoplasmic/nuclear dissociation. PLZF achieves its transcriptional regulation by binding to many secondary molecules to form large multi-protein complexes that bind to the regulatory elements in the promoter region of the target genes. These complexes are also capable of physically interacting with its target proteins. Recently, PLZF has become implicated in carcinogenesis as a tumor suppressor gene, since it regulates the cell cycle and apoptosis in many cell types. This review will examine the major advances in our knowledge of PLZF biological activities that augment its value as a therapeutic target, particularly in cancer and immunological diseases.

  8. Krüppel-like factors: Three fingers in control

    Directory of Open Access Journals (Sweden)

    Swamynathan Shivalingappa K

    2010-04-01

    Full Text Available Abstract Krüppel-like factors (KLFs, members of the zinc-finger family of transcription factors capable of binding GC-rich sequences, have emerged as critical regulators of important functions all over the body. They are characterised by a highly conserved C-terminal DNA-binding motif containing three C2H2 zinc-finger domains, with variable N-terminal regulatory domains. Currently, there are 17 KLFs annotated in the human genome. In spite of their structural similarity to one another, the genes encoding different KLFs are scattered all over the genome. By virtue of their ability to activate and/or repress the expression of a large number of genes, KLFs regulate a diverse array of developmental events and cellular processes, such as erythropoiesis, cardiac remodelling, adipogenesis, maintenance of stem cells, epithelial barrier formation, control of cell proliferation and neoplasia, flow-mediated endothelial gene expression, skeletal and smooth muscle development, gluconeogenesis, monocyte activation, intestinal and conjunctival goblet cell development, retinal neuronal regeneration and neonatal lung development. Characteristic features, nomenclature, evolution and functional diversities of the human KLFs are reviewed here.

  9. Krüppel-like factors: three fingers in control.

    Science.gov (United States)

    Swamynathan, Shivalingappa K

    2010-04-01

    Krüppel-like factors (KLFs), members of the zinc-finger family of transcription factors capable of binding GC-rich sequences, have emerged as critical regulators of important functions all over the body. They are characterised by a highly conserved C-terminal DNA-binding motif containing three C2H2 zinc-finger domains, with variable N-terminal regulatory domains. Currently, there are 17 KLFs annotated in the human genome. In spite of their structural similarity to one another, the genes encoding different KLFs are scattered all over the genome. By virtue of their ability to activate and/or repress the expression of a large number of genes, KLFs regulate a diverse array of developmental events and cellular processes, such as erythropoiesis, cardiac remodelling, adipogenesis, maintenance of stem cells, epithelial barrier formation, control of cell proliferation and neoplasia, flow-mediated endothelial gene expression, skeletal and smooth muscle development, gluconeogenesis, monocyte activation, intestinal and conjunctival goblet cell development, retinal neuronal regeneration and neonatal lung development. Characteristic features, nomenclature, evolution and functional diversities of the human KLFs are reviewed here.

  10. Revisiting and re-engineering the classical zinc finger peptide: consensus peptide-1 (CP-1).

    Science.gov (United States)

    Besold, Angelique N; Widger, Leland R; Namuswe, Frances; Michalek, Jamie L; Michel, Sarah L J; Goldberg, David P

    2016-04-01

    Zinc plays key structural and catalytic roles in biology. Structural zinc sites are often referred to as zinc finger (ZF) sites, and the classical ZF contains a Cys2His2 motif that is involved in coordinating Zn(II). An optimized Cys2His2 ZF, named consensus peptide 1 (CP-1), was identified more than 20 years ago using a limited set of sequenced proteins. We have reexamined the CP-1 sequence, using our current, much larger database of sequenced proteins that have been identified from high-throughput sequencing methods, and found the sequence to be largely unchanged. The CCHH ligand set of CP-1 was then altered to a CAHH motif to impart hydrolytic activity. This ligand set mimics the His2Cys ligand set of peptide deformylase (PDF), a hydrolytically active M(II)-centered (M = Zn or Fe) protein. The resultant peptide [CP-1(CAHH)] was evaluated for its ability to coordinate Zn(II) and Co(II) ions, adopt secondary structure, and promote hydrolysis. CP-1(CAHH) was found to coordinate Co(II) and Zn(II) and a pentacoordinate geometry for Co(II)-CP-1(CAHH) was implicated from UV-vis data. This suggests a His2Cys(H2O)2 environment at the metal center. The Zn(II)-bound CP-1(CAHH) was shown to adopt partial secondary structure by 1-D (1)H NMR spectroscopy. Both Zn(II)-CP-1(CAHH) and Co(II)-CP-1(CAHH) show good hydrolytic activity toward the test substrate 4-nitrophenyl acetate, exhibiting faster rates than most active synthetic Zn(II) complexes.

  11. The primary structure of L37--a rat ribosomal protein with a zinc finger-like motif.

    Science.gov (United States)

    Chan, Y L; Paz, V; Olvera, J; Wool, I G

    1993-04-30

    The amino acid sequence of the rat 60S ribosomal subunit protein L37 was deduced from the sequence of nucleotides in a recombinant cDNA. Ribosomal protein L37 has 96 amino acids, the NH2-terminal methionine is removed after translation of the mRNA, and has a molecular weight of 10,939. Ribosomal protein L37 has a single zinc finger-like motif of the C2-C2 type. Hybridization of the cDNA to digests of nuclear DNA suggests that there are 13 or 14 copies of the L37 gene. The mRNA for the protein is about 500 nucleotides in length. Rat L37 is related to Saccharomyces cerevisiae ribosomal protein YL35 and to Caenorhabditis elegans L37. We have identified in the data base a DNA sequence that encodes the chicken homolog of rat L37.

  12. Characterization of the SUMO-binding activity of the myeloproliferative and mental retardation (MYM-type zinc fingers in ZNF261 and ZNF198.

    Directory of Open Access Journals (Sweden)

    Catherine M Guzzo

    Full Text Available SUMO-binding proteins interact with SUMO modified proteins to mediate a wide range of functional consequences. Here, we report the identification of a new SUMO-binding protein, ZNF261. Four human proteins including ZNF261, ZNF198, ZNF262, and ZNF258 contain a stretch of tandem zinc fingers called myeloproliferative and mental retardation (MYM-type zinc fingers. We demonstrated that MYM-type zinc fingers from ZNF261 and ZNF198 are necessary and sufficient for SUMO-binding and that individual MYM-type zinc fingers function as SUMO-interacting motifs (SIMs. Our binding studies revealed that the MYM-type zinc fingers from ZNF261 and ZNF198 interact with the same surface on SUMO-2 recognized by the archetypal consensus SIM. We also present evidence that MYM-type zinc fingers in ZNF261 contain zinc, but that zinc is not required for SUMO-binding. Immunofluorescence microscopy studies using truncated fragments of ZNF198 revealed that MYM-type zinc fingers of ZNF198 are necessary for localization to PML-nuclear bodies (PML-NBs. In summary, our studies have identified and characterized the SUMO-binding activity of the MYM-type zinc fingers in ZNF261 and ZNF198.

  13. A plant EPF-type zinc-finger protein, CaPIF1, involved in defence against pathogens.

    Science.gov (United States)

    Oh, Sang-Keun; Park, Jeong Mee; Joung, Young Hee; Lee, Sanghyeob; Chung, Eunsook; Kim, Soo-Yong; Yu, Seung Hun; Choi, Doil

    2005-05-01

    SUMMARY To understand better the defence responses of plants to pathogen attack, we challenged hot pepper plants with bacterial pathogens and identified transcription factor-encoding genes whose expression patterns were altered during the subsequent hypersensitive response. One of these genes, CaPIF1 (Capsicum annuum Pathogen-Induced Factor 1), was characterized further. This gene encodes a plant-specific EPF-type protein that contains two Cys(2)/His(2) zinc fingers. CaPIF1 expression was rapidly and specifically induced when pepper plants were challenged with bacterial pathogens to which they are resistant. In contrast, challenge with a pathogen to which the plants are susceptible only generated weak CaPIF1 expression. CaPIF1 expression was also strongly induced in pepper leaves by the exogenous application of ethephon, an ethylene-releasing compound, and salicylic acid, whereas methyl jasmonate had only moderate effects. CaPIF1 localized to the nuclei of onion epidermis when expressed as a CaPIF1-smGFP fusion protein. Transgenic tobacco plants over-expressing CaPIF1 driven by the CaMV 35S promoter showed increased resistance to challenge with a tobacco-specific pathogen or non-host bacterial pathogens. These plants also showed constitutive up-regulation of multiple defence-related genes. Moreover, virus-induced silencing of the CaPIF1 orthologue in Nicotiana benthamiana enhanced susceptibility to the same host or non-host bacterial pathogens. These observations provide evidence that an EPF-type Cys(2)/His(2) zinc-finger protein plays a crucial role in the activation of the pathogen defence response in plants.

  14. Structural and dynamical characterization of the Miz-1 zinc fingers 5-8 by solution-state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, David; Bedard, Mikaeel; Bilodeau, Josee; Lavigne, Pierre, E-mail: pierre.lavigne@usherbrooke.ca [Universite de Sherbrooke, Departement de Biochimie, Faculte de Medecine et des Sciences de la Sante, Institut de Pharmacologie de Sherbrooke (Canada)

    2013-10-15

    Myc-interacting zinc finger protein-1 (Miz-1) is a BTB/POZ transcription factor that activates the transcription of cytostatic genes, such as p15{sup INK4B} or p21{sup CIP1}. The C-terminus of Miz-1 contains 13 consensus C{sub 2}H{sub 2} zinc finger domains (ZF). ZFs 1-4 have been shown to interact with SMAD3/4, while the remaining ZFs are expected to bind the promoters of target genes. We have noted unusual features in ZF 5 and the linker between ZFs 5 and 6. Indeed, a glutamate is found instead of the conserved basic residue two positions before the second zinc-coordinating histidine on the ZF 5 helix, and the linker sequence is DTDKE in place of the classical TGEKP sequence. In a canonical {beta}{beta}{alpha} fold, such unusual primary structure elements should cause severe electrostatic repulsions. In this context, we have characterized the structure and the dynamics of a Miz-1 construct comprising ZFs 5-8 (Miz 5-8) by solution-state NMR. Whilst ZFs 5, 7 and 8 were shown to adopt the classical {beta}{beta}{alpha} fold for C{sub 2}H{sub 2} ZFs, the number of long-range NOEs was insufficient to define a classical fold for ZF 6. We show by using {sup 15}N-relaxation dispersion experiments that this lack of NOEs is due to the presence of extensive motions on the {mu}s-ms timescale. Since this negatively charged region would have to be located near the phosphodiester backbone in a DNA complex, we propose that in addition to promoting conformational searches, it could serve as a hinge region to keep ZFs 1-4 away from DNA.

  15. The zinc fingers of the Small Optic Lobes (SOL) calpain bind polyubiquitin.

    Science.gov (United States)

    Hastings, Margaret H; Qiu, Alvin; Zha, Congyao; Farah, Carole A; Mahdid, Yacine; Ferguson, Larissa; Sossin, Wayne S

    2018-05-28

    The Small Optic Lobes (SOL) calpain is a highly conserved member of the calpain family expressed in the nervous system. A dominant negative form of the SOL calpain inhibited consolidation of one form of synaptic plasticity, non-associative facilitation, in sensory-motor neuronal cultures in Aplysia, presumably by inhibiting cleavage of protein kinase Cs (PKCs) into constitutively active protein kinase Ms (PKMs) (Hu et al, 2017a). SOL calpains have a conserved set of 5-6 N-terminal zinc fingers. Bioinformatic analysis suggests that these zinc fingers could bind to ubiquitin. In this study, we show that both the Aplysia and mouse SOL calpain (also known as Calpain 15) zinc fingers bind ubiquitinated proteins, and we confirm that Aplysia SOL binds poly- but not mono or di-ubiquitin. No specific zinc finger is required for polyubiquitin binding. Neither polyubiquitin nor calcium was sufficient to induce purified Aplysia SOL calpain to autolyse or to cleave the atypical PKC to PKM in vitro. In Aplysia, overexpression of the atypical PKC in sensory neurons leads to an activity-dependent cleavage event and an increase in nuclear ubiquitin staining. Activity-dependent cleavage is partially blocked by a dominant negative SOL calpain, but not by a dominant negative classical calpain. The cleaved PKM was stabilized by the dominant negative classical calpain and destabilized by a dominant negative form of the PKM stabilizing proteinKIdney/BRAin protein(KIBRA). These studies provide new insight into SOL calpain's function and regulation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. GhZFP1, a novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5.

    Science.gov (United States)

    Guo, Ying-Hui; Yu, Yue-Ping; Wang, Dong; Wu, Chang-Ai; Yang, Guo-Dong; Huang, Jin-Guang; Zheng, Cheng-Chao

    2009-01-01

    * Zinc finger proteins are a superfamily involved in many aspects of plant growth and development. However, CCCH-type zinc finger proteins involved in plant stress tolerance are poorly understood. * A cDNA clone designated Gossypium hirsutum zinc finger protein 1 (GhZFP1), which encodes a novel CCCH-type zinc finger protein, was isolated from a salt-induced cotton (G. hirsutum) cDNA library using differential hybridization screening and further studied in transgenic tobacco Nicotiana tabacum cv. NC89. Using yeast two-hybrid screening (Y2H), proteins GZIRD21A (GhZFP1 interacting and responsive to dehydration protein 21A) and GZIPR5 (GhZFP1 interacting and pathogenesis-related protein 5), which interacted with GhZFP1, were isolated. * GhZFP1 contains two typical zinc finger motifs (Cx8Cx5Cx3H and Cx5Cx4Cx3H), a putative nuclear export sequence (NES) and a potential nuclear localization signal (NLS). Transient expression analysis using a GhZFP1::GFP fusion gene in onion epidermal cells indicated a nuclear localization for GhZFP1. RNA blot analysis showed that the GhZFP1 transcript was induced by salt (NaCl), drought and salicylic acid (SA). The regions in GhZFP1 that interact with GZIRD21A and GZIPR5 were identified using truncation mutations. * Overexpression of GhZFP1 in transgenic tobacco enhanced tolerance to salt stress and resistance to Rhizoctonia solani. Therefore, it appears that GhZFP1 might be involved as an important regulator in plant responses to abiotic and biotic stresses.

  17. Regulation of hedgehog signaling by Myc-interacting zinc finger protein 1, Miz1.

    Directory of Open Access Journals (Sweden)

    Jiuyi Lu

    Full Text Available Smoothened (Smo mediated Hedgehog (Hh signaling plays an essential role in regulating embryonic development and postnatal tissue homeostasis. Aberrant activation of the Hh pathway contributes to the formation and progression of various cancers. In vertebrates, however, key regulatory mechanisms responsible for transducing signals from Smo to the nucleus remain to be delineated. Here, we report the identification of Myc-interacting Zinc finger protein 1 (Miz1 as a Smo and Gli2 binding protein that positively regulates Hh signaling. Overexpression of Miz1 increases Gli luciferase reporter activity, whereas knockdown of endogenous Miz1 has the opposite effect. Activation of Smo induces translocation of Miz1 to the primary cilia together with Smo and Gli2. Furthermore, Miz1 is localized to the nucleus upon Hh activation in a Smo-dependent manner, and loss of Miz1 prevents the nuclear translocation of Gli2. More importantly, silencing Miz1 expression inhibits cell proliferation in vitro and the growth of Hh-driven medulloblastoma tumors allografted in SCID mice. Taken together, these results identify Miz1 as a novel regulator in the Hh pathway that plays an important role in mediating Smo-dependent oncogenic signaling.

  18. Automatic polymerase chain reaction product detection system for food safety monitoring using zinc finger protein fused to luciferase

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Wataru; Kezuka, Aki; Murakami, Yoshiyuki; Lee, Jinhee; Abe, Koichi [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Motoki, Hiroaki; Matsuo, Takafumi; Shimura, Nobuaki [System Instruments Co., Ltd., 776-2 Komiya-cho, Hachioji, Tokyo 192-0031 (Japan); Noda, Mamoru; Igimi, Shizunobu [Division of Biomedical Food Research, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan); Ikebukuro, Kazunori, E-mail: ikebu@cc.tuat.ac.jp [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan)

    2013-11-01

    Graphical abstract: -- Highlights: •Zif268 fused to luciferase was used for E. coli O157, Salmonella and coliform detection. •Artificial zinc finger protein fused to luciferase was constructed for Norovirus detection. •An analyzer that automatically detects PCR products by zinc finger protein fused to luciferase was developed. •Target pathogens were specifically detected by the automatic analyzer with zinc finger protein fused to luciferase. -- Abstract: An automatic polymerase chain reaction (PCR) product detection system for food safety monitoring using zinc finger (ZF) protein fused to luciferase was developed. ZF protein fused to luciferase specifically binds to target double stranded DNA sequence and has luciferase enzymatic activity. Therefore, PCR products that comprise ZF protein recognition sequence can be detected by measuring the luciferase activity of the fusion protein. We previously reported that PCR products from Legionella pneumophila and Escherichia coli (E. coli) O157 genomic DNA were detected by Zif268, a natural ZF protein, fused to luciferase. In this study, Zif268–luciferase was applied to detect the presence of Salmonella and coliforms. Moreover, an artificial zinc finger protein (B2) fused to luciferase was constructed for a Norovirus detection system. In the luciferase activity detection assay, several bound/free separation process is required. Therefore, an analyzer that automatically performed the bound/free separation process was developed to detect PCR products using the ZF–luciferase fusion protein. By means of the automatic analyzer with ZF–luciferase fusion protein, target pathogenic genomes were specifically detected in the presence of other pathogenic genomes. Moreover, we succeeded in the detection of 10 copies of E. coli BL21 without extraction of genomic DNA by the automatic analyzer and E. coli was detected with a logarithmic dependency in the range of 1.0 × 10 to 1.0 × 10{sup 6} copies.

  19. Automatic polymerase chain reaction product detection system for food safety monitoring using zinc finger protein fused to luciferase

    International Nuclear Information System (INIS)

    Yoshida, Wataru; Kezuka, Aki; Murakami, Yoshiyuki; Lee, Jinhee; Abe, Koichi; Motoki, Hiroaki; Matsuo, Takafumi; Shimura, Nobuaki; Noda, Mamoru; Igimi, Shizunobu; Ikebukuro, Kazunori

    2013-01-01

    Graphical abstract: -- Highlights: •Zif268 fused to luciferase was used for E. coli O157, Salmonella and coliform detection. •Artificial zinc finger protein fused to luciferase was constructed for Norovirus detection. •An analyzer that automatically detects PCR products by zinc finger protein fused to luciferase was developed. •Target pathogens were specifically detected by the automatic analyzer with zinc finger protein fused to luciferase. -- Abstract: An automatic polymerase chain reaction (PCR) product detection system for food safety monitoring using zinc finger (ZF) protein fused to luciferase was developed. ZF protein fused to luciferase specifically binds to target double stranded DNA sequence and has luciferase enzymatic activity. Therefore, PCR products that comprise ZF protein recognition sequence can be detected by measuring the luciferase activity of the fusion protein. We previously reported that PCR products from Legionella pneumophila and Escherichia coli (E. coli) O157 genomic DNA were detected by Zif268, a natural ZF protein, fused to luciferase. In this study, Zif268–luciferase was applied to detect the presence of Salmonella and coliforms. Moreover, an artificial zinc finger protein (B2) fused to luciferase was constructed for a Norovirus detection system. In the luciferase activity detection assay, several bound/free separation process is required. Therefore, an analyzer that automatically performed the bound/free separation process was developed to detect PCR products using the ZF–luciferase fusion protein. By means of the automatic analyzer with ZF–luciferase fusion protein, target pathogenic genomes were specifically detected in the presence of other pathogenic genomes. Moreover, we succeeded in the detection of 10 copies of E. coli BL21 without extraction of genomic DNA by the automatic analyzer and E. coli was detected with a logarithmic dependency in the range of 1.0 × 10 to 1.0 × 10 6 copies

  20. Overexpression of a New Zinc Finger Protein Transcription Factor OsCTZFP8 Improves Cold Tolerance in Rice

    Directory of Open Access Journals (Sweden)

    Yong-Mei Jin

    2018-01-01

    Full Text Available Cold stress is one of the most important abiotic stresses in rice. C2H2 zinc finger proteins play important roles in response to abiotic stresses in plants. In the present study, we isolated and functionally characterized a new C2H2 zinc finger protein transcription factor OsCTZFP8 in rice. OsCTZFP8 encodes a C2H2 zinc finger protein, which contains a typical zinc finger motif, as well as a potential nuclear localization signal (NLS and a leucine-rich region (L-box. Expression of OsCTZFP8 was differentially induced by several abiotic stresses and was strongly induced by cold stress. Subcellular localization assay and yeast one-hybrid analysis revealed that OsCTZFP8 was a nuclear protein and has transactivation activity. To characterize the function of OsCTZFP8 in rice, the full-length cDNA of OsCTZFP8 was isolated and transgenic rice with overexpression of OsCTZFP8 driven by the maize ubiquitin promoter was generated using Agrobacterium-mediated transformation. Among 46 independent transgenic lines, 6 single-copy homozygous overexpressing lines were selected by Southern blot analysis and Basta resistance segregation assay in both T1 and T2 generations. Transgenic rice overexpressing OsCTZFP8 exhibited cold tolerant phenotypes with significantly higher pollen fertilities and seed setting rates than nontransgenic control plants. In addition, yield per plant of OsCTZFP8-expressing lines was significantly (p<0.01 higher than that of nontransgenic control plants under cold treatments. These results demonstrate that OsCTZFP8 was a C2H2 zinc finger transcription factor that plays an important role in cold tolerance in rice.

  1. Characterization of two novel nuclear BTB/POZ domain zinc finger isoforms. Association with differentiation of hippocampal neurons, cerebellar granule cells, and macroglia

    DEFF Research Database (Denmark)

    Mitchelmore, Cathy; Kjaerulff, Karen M; Pedersen, Hans C

    2002-01-01

    BTB/POZ (broad complex tramtrack bric-a-brac/poxvirus and zinc finger) zinc finger factors are a class of nuclear DNA-binding proteins involved in development, chromatin remodeling, and cancer. However, BTB/POZ domain zinc finger factors linked to development of the mammalian cerebral cortex......, cerebellum, and macroglia have not been described previously. We report here the isolation and characterization of two novel nuclear BTB/POZ domain zinc finger isoforms, designated HOF(L) and HOF(S), that are specifically expressed in early hippocampal neurons, cerebellar granule cells, and gliogenic...

  2. Prediction of DNA-binding specificity in zinc finger proteins

    Indian Academy of Sciences (India)

    2012-06-25

    Jun 25, 2012 ... Support Vector Machine (SVM) is a state-of-the-art classifica- tion technique. Using canonical binding model, the C2H2 zinc finger protein–DNA interaction interface is modelled by the pairwise amino acid–base interactions. Using a classification framework, known examples of non-binding ZF–DNA pairs.

  3. Investigating the DNA-binding ability of GATA-1-N-terminal zinc finger

    International Nuclear Information System (INIS)

    Wong, R.; Newton, A.; Crossley, M.; Mackay, J.

    2001-01-01

    Erythroid transcription factor GATA-1 interacts with both DNA and other proteins through its zinc finger domains (ZnFs). While it has been known for me time that the C-terminal ZnF binds DNA at GATA sites, only recently has it been observed that the N-terminal finger (NF) is capable of interacting with GATC sites. Further, a number of naturally occurring mutations in NF (V205M, G208S, R216Q, D218G) that lead to anaemia and thrombocytopenia have been identified. We are interested in characterising the NF-DNA interaction and determining the effects of mutation upon this interaction. Using nuclear magnetic resonance (NMR) spectroscopy, we have observed an interaction between recombinant NF and a 16-mer DNA duplex containing a core GATC sequence. This result forms the basis from which residues in NF involved in DNA binding can be identified, and work is being carried out to improve the quality of the NMR data with the aim of determining the solution structure of the NF-DNA complex. The DNA-binding affinity of both wild-type and mutant NFs mentioned above is also being investigated using isothermal titration calorimetry. These data suggest that the strength of the interaction between NF and the 16-mer DNA duplex is in the sub-micromolar range, and comparisons between the DNA-binding affinities of the NF mutants are being made. Together, these studies will help us to understand how GATA-1 acts as a transcriptional regulator and how mutations in NF domain of GATA-1 may lead to blood disorders

  4. Arabidopsis KHZ1 and KHZ2, two novel non-tandem CCCH zinc-finger and K-homolog domain proteins, have redundant roles in the regulation of flowering and senescence.

    Science.gov (United States)

    Yan, Zongyun; Jia, Jianheng; Yan, Xiaoyuan; Shi, Huiying; Han, Yuzhen

    2017-12-01

    The two novel CCCH zinc-finger and K-homolog (KH) proteins, KHZ1 and KHZ2, play important roles in regulating flowering and senescence redundantly in Arabidopsis. The CCCH zinc-finger proteins and K-homolog (KH) proteins play important roles in plant development and stress responses. However, the biological functions of many CCCH zinc-finger proteins and KH proteins remain uncharacterized. In Arabidopsis, KHZ1 and KHZ2 are characterized as two novel CCCH zinc-finger and KH domain proteins which belong to subfamily VII in CCCH family. We obtained khz1, khz2 mutants and khz1 khz2 double mutants, as well as overexpression (OE) lines of KHZ1 and KHZ2. Compared with the wild type (WT), the khz2 mutants displayed no defects in growth and development, and the khz1 mutants were slightly late flowering, whereas the khz1 khz2 double mutants showed a pronounced late flowering phenotype. In contrast, artificially overexpressing KHZ1 and KHZ2 led to the early flowering. Consistent with the late flowering phenotype, the expression of flowering repressor gene FLC was up-regulated, while the expression of flowering integrator and floral meristem identity (FMI) genes were down-regulated significantly in khz1 khz2. In addition, we also observed that the OE plants of KHZ1 and KHZ2 showed early leaf senescence significantly, whereas the khz1 khz2 double mutants showed delayed senescence of leaf and the whole plant. Both KHZ1 and KHZ2 were ubiquitously expressed throughout the tissues of Arabidopsis. KHZ1 and KHZ2 were localized to the nucleus, and possessed both transactivation activities and RNA-binding abilities. Taken together, we conclude that KHZ1 and KHZ2 have redundant roles in the regulation of flowering and senescence in Arabidopsis.

  5. The pro1(+) gene from Sordaria macrospora encodes a C6 zinc finger transcription factor required for fruiting body development.

    Science.gov (United States)

    Masloff, S; Pöggeler, S; Kück, U

    1999-05-01

    During sexual morphogenesis, the filamentous ascomycete Sordaria macrospora differentiates into multicellular fruiting bodies called perithecia. Previously it has been shown that this developmental process is under polygenic control. To further understand the molecular mechanisms involved in fruiting body formation, we generated the protoperithecia forming mutant pro1, in which the normal development of protoperithecia into perithecia has been disrupted. We succeeded in isolating a cosmid clone from an indexed cosmid library, which was able to complement the pro1(-) mutation. Deletion analysis, followed by DNA sequencing, subsequently demonstrated that fertility was restored to the pro1 mutant by an open reading frame encoding a 689-amino-acid polypeptide, which we named PRO1. A region from this polypeptide shares significant homology with the DNA-binding domains found in fungal C6 zinc finger transcription factors, such as the GAL4 protein from yeast. However, other typical regions of C6 zinc finger proteins, such as dimerization elements, are absent in PRO1. The involvement of the pro1(+) gene in fruiting body development was further confirmed by trying to complement the mutant phenotype with in vitro mutagenized and truncated versions of the pro1 open reading frame. Southern hybridization experiments also indicated that pro1(+) homologues are present in other sexually propagating filamentous ascomycetes.

  6. Activating human genes with zinc finger proteins, transcription activator-like effectors and CRISPR/Cas9 for gene therapy and regenerative medicine.

    Science.gov (United States)

    Gersbach, Charles A; Perez-Pinera, Pablo

    2014-08-01

    New technologies have recently been developed to control the expression of human genes in their native genomic context by engineering synthetic transcription factors that can be targeted to any DNA sequence. The ability to precisely regulate any gene as it occurs naturally in the genome provides a means to address a variety of diseases and disorders. This approach also circumvents some of the traditional challenges of gene therapy. In this editorial, we review the technologies that have enabled targeted human gene activation, including the engineering of transcription factors based on zinc finger proteins, transcription activator-like effectors and the CRISPR/Cas9 system. Additionally, we highlight examples in which these methods have been developed for therapeutic applications and discuss challenges and opportunities.

  7. The LSD1-Type Zinc Finger Motifs of Pisum sativa LSD1 Are a Novel Nuclear Localization Signal and Interact with Importin Alpha

    OpenAIRE

    He, Shanping; Huang, Kuowei; Zhang, Xu; Yu, Xiangchun; Huang, Ping; An, Chengcai

    2011-01-01

    BACKGROUND: Genetic studies of the Arabidopsis mutant lsd1 highlight the important role of LSD1 in the negative regulation of plant programmed cell death (PCD). Arabidopsis thaliana LSD1 (AtLSD1) contains three LSD1-type zinc finger motifs, which are involved in the protein-protein interaction. METHODOLOGY/PRINCIPAL FINDINGS: To further understand the function of LSD1, we have analyzed cellular localization and functional localization domains of Pisum sativa LSD1 (PsLSD1), which is a homolog ...

  8. Predicting success of oligomerized pool engineering (OPEN for zinc finger target site sequences

    Directory of Open Access Journals (Sweden)

    Goodwin Mathew J

    2010-11-01

    Full Text Available Abstract Background Precise and efficient methods for gene targeting are critical for detailed functional analysis of genomes and regulatory networks and for potentially improving the efficacy and safety of gene therapies. Oligomerized Pool ENgineering (OPEN is a recently developed method for engineering C2H2 zinc finger proteins (ZFPs designed to bind specific DNA sequences with high affinity and specificity in vivo. Because generation of ZFPs using OPEN requires considerable effort, a computational method for identifying the sites in any given gene that are most likely to be successfully targeted by this method is desirable. Results Analysis of the base composition of experimentally validated ZFP target sites identified important constraints on the DNA sequence space that can be effectively targeted using OPEN. Using alternate encodings to represent ZFP target sites, we implemented Naïve Bayes and Support Vector Machine classifiers capable of distinguishing "active" targets, i.e., ZFP binding sites that can be targeted with a high rate of success, from those that are "inactive" or poor targets for ZFPs generated using current OPEN technologies. When evaluated using leave-one-out cross-validation on a dataset of 135 experimentally validated ZFP target sites, the best Naïve Bayes classifier, designated ZiFOpT, achieved overall accuracy of 87% and specificity+ of 90%, with an ROC AUC of 0.89. When challenged with a completely independent test set of 140 newly validated ZFP target sites, ZiFOpT performance was comparable in terms of overall accuracy (88% and specificity+ (92%, but with reduced ROC AUC (0.77. Users can rank potentially active ZFP target sites using a confidence score derived from the posterior probability returned by ZiFOpT. Conclusion ZiFOpT, a machine learning classifier trained to identify DNA sequences amenable for targeting by OPEN-generated zinc finger arrays, can guide users to target sites that are most likely to function

  9. Characterization and chondrocyte differentiation stage-specific expression of KRAB zinc-finger protein gene ZNF470

    International Nuclear Information System (INIS)

    Hering, Thomas M.; Kazmi, Najam H.; Huynh, Tru D.; Kollar, John; Xu, Laura; Hunyady, Aaron B.; Johnstone, Brian

    2004-01-01

    As part of a study to identify novel transcriptional regulators of chondrogenesis-related gene expression, we have cloned and characterized cDNA for zinc-finger protein 470 (ZNF470), the human ortholog of which encodes a 717 amino acid residue protein containing 17 Cys 2 His 2 zinc-finger domains, as well as KRAB-A and KRAB-B motifs. The cDNA library used to isolate the initial ZNF470 clone was prepared from human bone marrow-derived mesenchymal progenitor cells at an intermediate stage of chondrogenic differentiation. We have determined the intron-exon structure of the human ZNF470 gene, which has been mapped to a zinc-finger cluster in a known imprinted region of human chromosome 19q13.4. ZNF470 is expressed at high levels in human testis and is expressed at low or undetectible levels in other adult tissues. Human ZNF470 expressed in mammalian cells as an EGFP fusion protein localizes predominantly to the nucleus, consistent with a role in transcriptional regulation. ZNF470, analyzed by quantitative real time PCR, was transiently expressed before the maximal expression of COL2A1 during chondrogenic differentiation in vitro. We have also characterized the bovine ortholog of human ZNF470, which encodes a 508 amino acid residue protein having 10 zinc-finger domains. A bovine ZNF470 cDNA clone was used to examine expression of ZNF470 in bovine articular chondrocytes treated with retinoic acid to stimulate dedifferentiation. Bovine ZNF470 expression was undetectable in freshly isolated bovine articular chondrocytes, but was dramatically upregulated in dedifferentiated retinoic acid-treated chondrocytes. These results, in two model systems, suggest a possible role for ZNF470 in the regulation of chondrogenesis-specific gene expression

  10. Glycoengineering of Human Cell Lines Using Zinc Finger Nuclease Gene Targeting

    DEFF Research Database (Denmark)

    Steentoft, Catharina; Bennett, Eric Paul; Clausen, Henrik

    2013-01-01

    Lectin affinity chromatography is a powerful technique for isolation of glycoproteins carrying a specific glycan structure of interest. However, the enormous diversity of glycans present on the cell surface, as well as on individual proteins, makes it difficult to isolate an entire glycoproteome...... with one or even a series of lectins. Here we present a technique to generate cell lines with homogenous truncated O-glycans using zinc finger nuclease gene targeting. Because of their simplified O-glycoproteome, the cells have been named SimpleCells. Glycoproteins from SimpleCells can be isolated...... in a single purification step by lectin chromatography performed on a long lectin column. This protocol describes Zinc finger nuclease gene targeting of human cells to simplify the glycoproteome, as well as lectin chromatography and isolation of glycopeptides from total cell lysates of SimpleCells....

  11. Expression of zinc finger E-box-binding homeobox factor 1 in epithelial ovarian cancer: A clinicopathological analysis of 238 patients

    OpenAIRE

    LI, XIUFANG; HUANG, RUIXIA; LI, RUTH HOLM; TROPE, CLAES G.; NESLAND, JAHN M.; SUO, ZHENHE

    2015-01-01

    A growing body of evidence indicates that aberrant activation of epithelial-to-mesenchymal transition (EMT) plays a key role in tumor cell invasion and metastasis. Zinc finger E-box-binding homeobox factor 1 (ZEB1), as a crucial mediator of EMT, contributes to the malignant progression of various epithelial tumors. To determine whether ZEB1 is involved in the progression of ovarian cancer, we immunohistochemically evaluated the expression of ZEB1 in 238 cases of epithelial ovarian cancer (EOC...

  12. Localized frustration and binding-induced conformational change in recognition of 5S RNA by TFIIIA zinc finger.

    Science.gov (United States)

    Tan, Cheng; Li, Wenfei; Wang, Wei

    2013-12-19

    Protein TFIIIA is composed of nine tandemly arranged Cys2His2 zinc fingers. It can bind either to the 5S RNA gene as a transcription factor or to the 5S RNA transcript as a chaperone. Although structural and biochemical data provided valuable information on the recognition between the TFIIIIA and the 5S DNA/RNA, the involved conformational motions and energetic factors contributing to the binding affinity and specificity remain unclear. In this work, we conducted MD simulations and MM/GBSA calculations to investigate the binding-induced conformational changes in the recognition of the 5S RNA by the central three zinc fingers of TFIIIA and the energetic factors that influence the binding affinity and specificity at an atomistic level. Our results revealed drastic interdomain conformational changes between these three zinc fingers, involving the exposure/burial of several crucial DNA/RNA binding residues, which can be related to the competition between DNA and RNA for the binding of TFIIIA. We also showed that the specific recognition between finger 4/finger 6 and the 5S RNA introduces frustrations to the nonspecific interactions between finger 5 and the 5S RNA, which may be important to achieve optimal binding affinity and specificity.

  13. U2AF1 mutations alter splice site recognition in hematological malignancies.

    Science.gov (United States)

    Ilagan, Janine O; Ramakrishnan, Aravind; Hayes, Brian; Murphy, Michele E; Zebari, Ahmad S; Bradley, Philip; Bradley, Robert K

    2015-01-01

    Whole-exome sequencing studies have identified common mutations affecting genes encoding components of the RNA splicing machinery in hematological malignancies. Here, we sought to determine how mutations affecting the 3' splice site recognition factor U2AF1 alter its normal role in RNA splicing. We find that U2AF1 mutations influence the similarity of splicing programs in leukemias, but do not give rise to widespread splicing failure. U2AF1 mutations cause differential splicing of hundreds of genes, affecting biological pathways such as DNA methylation (DNMT3B), X chromosome inactivation (H2AFY), the DNA damage response (ATR, FANCA), and apoptosis (CASP8). We show that U2AF1 mutations alter the preferred 3' splice site motif in patients, in cell culture, and in vitro. Mutations affecting the first and second zinc fingers give rise to different alterations in splice site preference and largely distinct downstream splicing programs. These allele-specific effects are consistent with a computationally predicted model of U2AF1 in complex with RNA. Our findings suggest that U2AF1 mutations contribute to pathogenesis by causing quantitative changes in splicing that affect diverse cellular pathways, and give insight into the normal function of U2AF1's zinc finger domains. © 2015 Ilagan et al.; Published by Cold Spring Harbor Laboratory Press.

  14. Finger-like voids induced by viscous fingering during phase inversion of alumina/PES/NMP suspensions

    KAUST Repository

    Wang, Bo

    2012-07-01

    The formation mechanism of phase-inversion ceramic hollow fibre membranes has not been well understood. In this paper, we report on the formation of finger-like macrovoids during non-solvent-induced phase inversion of alumina/PES/NMP suspensions. A membrane structure without such finger-like macrovoids was observed when the suspension was slowly immersed into pure ethanol or a mixture of 70. wt% NMP and 30. wt% water, whereas finger-like macrovoids occurred when the suspension was slid into the non-solvents at higher speeds. We found that the formation process of finger-like macrovoids could be fully or partially reversed when nascent membranes were taken out from water shortly after immersion, depending on the duration of the immersion. Splitting of the fingers during the formation of the macrovoids was also observed during the phase inversion of two alumina/PES/NMP suspensions. These experimental observations were not predicted by current theories of finger-like macrovoid formation in polymer membranes, but appear to mimic the well-known viscous fingering phenomenon. We therefore propose that in the phase inversion of ceramic suspensions, the viscous fingering phenomenon is an important mechanism in the formation of finger-like voids. © 2012 Elsevier B.V.

  15. Genetic analysis of Kruppel-like zinc finger 11 variants in 5864 Danish individuals: potential effect on insulin resistance and modified signal transducer and activator of transcription-3 binding by promoter variant -1659G>C

    DEFF Research Database (Denmark)

    Gutiérrez-Aguilar, Ruth; Froguel, Philippe; Hamid, Yasmin H

    2008-01-01

    CONTEXT: The transcription factor Krüppel-like zinc finger 11 (KLF11) has been suggested to contribute to genetic risk of type 2 diabetes (T2D). Our previous results showed that four KLF11 variants, in strong linkage disequilibrium (LD block including +185 A>G/Gln62Arg and -1659 G>C) were...

  16. Molecular Characterization of the Schistosoma mansoni Zinc Finger Protein SmZF1 as a Transcription Factor

    Science.gov (United States)

    D'Astolfo, Diego S.; Cardoso, Fernanda C.; Rajão, Matheus A.; Mourão, Marina M.; Gava, Elisandra; Oliveira, Sérgio C.; Macedo, Andréa M.; Machado, Carlos R.; Pena, Sérgio D. J.; Kitten, Gregory T.; Franco, Glória R.

    2009-01-01

    Background During its development, the parasite Schistosoma mansoni is exposed to different environments and undergoes many morphological and physiological transformations as a result of profound changes in gene expression. Characterization of proteins involved in the regulation of these processes is of importance for the understanding of schistosome biology. Proteins containing zinc finger motifs usually participate in regulatory processes and are considered the major class of transcription factors in eukaryotes. It has already been shown, by EMSA (Eletrophoretic Mobility Shift Assay), that SmZF1, a S. mansoni zinc finger (ZF) protein, specifically binds both DNA and RNA oligonucleotides. This suggests that this protein might act as a transcription factor in the parasite. Methodology/Principal Findings In this study we extended the characterization of SmZF1 by determining its subcellular localization and by verifying its ability to regulate gene transcription. We performed immunohistochemistry assays using adult male and female worms, cercariae and schistosomula to analyze the distribution pattern of SmZF1 and verified that the protein is mainly detected in the cells nuclei of all tested life cycle stages except for adult female worms. Also, SmZF1 was heterologously expressed in mammalian COS-7 cells to produce the recombinant protein YFP-SmZF1, which was mainly detected in the nucleus of the cells by confocal microscopy and Western blot assays. To evaluate the ability of this protein to regulate gene transcription, cells expressing YFP-SmZF1 were tested in a luciferase reporter system. In this system, the luciferase gene is downstream of a minimal promoter, upstream of which a DNA region containing four copies of the SmZF1 putative best binding site (D1-3DNA) was inserted. SmZF1 increased the reporter gene transcription by two fold (p≤0.003) only when its specific binding site was present. Conclusion Taken together, these results strongly support the hypothesis

  17. Zinc finger protein 521 antagonizes early B-cell factor 1 and modulates the B-lymphoid differentiation of primary hematopoietic progenitors.

    Science.gov (United States)

    Mega, Tiziana; Lupia, Michela; Amodio, Nicola; Horton, Sarah J; Mesuraca, Maria; Pelaggi, Daniela; Agosti, Valter; Grieco, Michele; Chiarella, Emanuela; Spina, Raffaella; Moore, Malcolm A S; Schuringa, Jan Jacob; Bond, Heather M; Morrone, Giovanni

    2011-07-01

    Zinc finger protein 521 (EHZF/ZNF521) is a multi-functional transcription co-factor containing 30 zinc fingers and an amino-terminal motif that binds to the nucleosome remodelling and histone deacetylase (NuRD) complex. ZNF521 is believed to be a relevant player in the regulation of the homeostasis of the hematopoietic stem/progenitor cell compartment, however the underlying molecular mechanisms are still largely unknown. Here, we show that this protein plays an important role in the control of B-cell development by inhibiting the activity of early B-cell factor-1 (EBF1), a master factor in B-lineage specification. In particular, our data demonstrate that: (1) ZNF521 binds to EBF1 via its carboxyl-terminal portion and this interaction is required for EBF1 inhibition; (2) NuRD complex recruitment by ZNF521 is not essential for the inhibition of transactivation of EBF1-dependent promoters; (3) ZNF521 represses EBF1 target genes in a human B-lymphoid molecular context; and (4) RNAi-mediated silencing of ZNF521/Zfp521 in primary human and murine hematopoietic progenitors strongly enhances the generation of B-lymphocytes in vitro. Taken together, our data indicate that ZNF521 can antagonize B-cell development and lend support to the notion that it may contribute to conserve the multipotency of primitive lympho-myeloid progenitors by preventing or delaying their EBF1-driven commitment toward the B-cell lineage.

  18. Mining the O-glycoproteome using zinc-finger nuclease-glycoengineered SimpleCell lines

    DEFF Research Database (Denmark)

    Steentoft, Catharina; Vakhrushev, Sergey Y; Vester-Christensen, Malene B

    2011-01-01

    Zinc-finger nuclease (ZFN) gene targeting is emerging as a versatile tool for engineering of multiallelic gene deficiencies. A longstanding obstacle for detailed analysis of glycoproteomes has been the extensive heterogeneities in glycan structures and attachment sites. Here we applied ZFN target...

  19. Engineering and Application of Zinc Finger Proteins and TALEs for Biomedical Research.

    Science.gov (United States)

    Kim, Moon-Soo; Kini, Anu Ganesh

    2017-08-01

    Engineered DNA-binding domains provide a powerful technology for numerous biomedical studies due to their ability to recognize specific DNA sequences. Zinc fingers (ZF) are one of the most common DNA-binding domains and have been extensively studied for a variety of applications, such as gene regulation, genome engineering and diagnostics. Another novel DNA-binding domain known as a transcriptional activator-like effector (TALE) has been more recently discovered, which has a previously undescribed DNA-binding mode. Due to their modular architecture and flexibility, TALEs have been rapidly developed into artificial gene targeting reagents. Here, we describe the methods used to design these DNA-binding proteins and their key applications in biomedical research.

  20. Co(II) Coordination in Prokaryotic Zinc Finger Domains as Revealed by UV-Vis Spectroscopy

    Science.gov (United States)

    Sivo, Valeria; D'Abrosca, Gianluca; Russo, Luigi; Iacovino, Rosa; Pedone, Paolo Vincenzo; Fattorusso, Roberto

    2017-01-01

    Co(II) electronic configuration allows its use as a spectroscopic probe in UV-Vis experiments to characterize the metal coordination sphere that is an essential component of the functional structure of zinc-binding proteins and to evaluate the metal ion affinities of these proteins. Here, exploiting the capability of the prokaryotic zinc finger to use different combinations of residues to properly coordinate the structural metal ion, we provide the UV-Vis characterization of Co(II) addition to Ros87 and its mutant Ros87_C27D which bears an unusual CysAspHis2 coordination sphere. Zinc finger sites containing only one cysteine have been infrequently characterized. We show for the CysAspHis2 coordination an intense d-d transition band, blue-shifted with respect to the Cys2His2 sphere. These data complemented by NMR and CD data demonstrate that the tetrahedral geometry of the metal site is retained also in the case of a single-cysteine coordination sphere. PMID:29386985

  1. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases

    DEFF Research Database (Denmark)

    Chen, Fuqiang; Pruett-Miller, Shondra M; Huang, Yuping

    2011-01-01

    Zinc-finger nucleases (ZFNs) have enabled highly efficient gene targeting in multiple cell types and organisms. Here we describe methods for using simple ssDNA oligonucleotides in tandem with ZFNs to efficiently produce human cell lines with three distinct genetic outcomes: (i) targeted point...

  2. Targeting Ligandable Pockets on Plant Homeodomain (PHD) Zinc Finger Domains by a Fragment-Based Approach.

    Science.gov (United States)

    Amato, Anastasia; Lucas, Xavier; Bortoluzzi, Alessio; Wright, David; Ciulli, Alessio

    2018-04-20

    Plant homeodomain (PHD) zinc fingers are histone reader domains that are often associated with human diseases. Despite this, they constitute a poorly targeted class of readers, suggesting low ligandability. Here, we describe a successful fragment-based campaign targeting PHD fingers from the proteins BAZ2A and BAZ2B as model systems. We validated a pool of in silico fragments both biophysically and structurally and solved the first crystal structures of PHD zinc fingers in complex with fragments bound to an anchoring pocket at the histone binding site. The best-validated hits were found to displace a histone H3 tail peptide in competition assays. This work identifies new chemical scaffolds that provide suitable starting points for future ligand optimization using structure-guided approaches. The demonstrated ligandability of the PHD reader domains could pave the way for the development of chemical probes to drug this family of epigenetic readers.

  3. Design, construction, and analysis of specific zinc finger nucleases for microphthalmia - associate transcription factor

    Directory of Open Access Journals (Sweden)

    Wenwen Wang

    2012-08-01

    Full Text Available This work studied the design, construction, and cleavage analysis of zinc finger nucleases (ZFNs that could cut the specific sequences within microphthalmia - associate transcription factor (mitfa of zebra fish. The target site and ZFPs were selected and designed with zinc finger tools, while the ZFPs were synthesized using DNAWorks and two-step PCR. The ZFNs were constructed, expressed, purified, and analyzed in vitro. As expected, the designed ZFNs could create a double-stand break (DSB at the target site in vitro. The DNAWorks, two-step PCR, and an optimized process of protein expression were firstly induced in the construction of ZFNs successfully, which was an effective and simplified protocol. These results could be useful for further application of ZFNs - mediated gene targeting.

  4. Chemical Approach to Biological Safety: Molecular-Level Control of an Integrated Zinc Finger Nuclease

    DEFF Research Database (Denmark)

    Németh, Eszter; Asaka, Masamitsu N; Kato, Kohsuke

    2018-01-01

    circular dichroism spectroscopy, and nano-electrospray ionisation mass spectrometry. In situ intramolecular activation of the nuclease domain was observed, resulting in specific cleavage of DNA with moderate activity. This study represents a new approach to AN design through integrated nucleases consisting......Application of artificial nucleases (ANs) in genome editing is still hindered by their cytotoxicity related to off-target cleavages. This problem can be targeted by regulation of the nuclease domain. Here, we provide an experimental survey of computationally designed integrated zinc finger...... nucleases, constructed by linking the inactivated catalytic centre and the allosteric activator sequence of the colicin E7 nuclease domain to the two opposite termini of a zinc finger array. DNA specificity and metal binding were confirmed by electrophoretic mobility shift assays, synchrotron radiation...

  5. Fear-of-intimacy-mediated zinc transport controls the function of zinc-finger transcription factors involved in myogenesis.

    Science.gov (United States)

    Carrasco-Rando, Marta; Atienza-Manuel, Alexandra; Martín, Paloma; Burke, Richard; Ruiz-Gómez, Mar

    2016-06-01

    Zinc is a component of one-tenth of all human proteins. Its cellular concentration is tightly regulated because its dyshomeostasis has catastrophic health consequences. Two families of zinc transporters control zinc homeostasis in organisms, but there is little information about their specific developmental roles. We show that the ZIP transporter Fear-of-intimacy (Foi) is necessary for the formation of Drosophila muscles. In foi mutants, myoblasts segregate normally, but their specification is affected, leading to the formation of a misshapen muscle pattern and distorted midgut. The observed phenotypes could be ascribed to the inactivation of specific zinc-finger transcription factors (ZFTFs), supporting the hypothesis that they are a consequence of intracellular depletion of zinc. Accordingly, foi phenotypes can be rescued by mesodermal expression of other ZIP members with similar subcellular localization. We propose that Foi acts mostly as a transporter to regulate zinc intracellular homeostasis, thereby impacting on the activity of ZFTFs that control specific developmental processes. Our results additionally suggest a possible explanation for the presence of large numbers of zinc transporters in organisms based on differences in ion transport specificity and/or degrees of activity among transporters. © 2016. Published by The Company of Biologists Ltd.

  6. Expression of Arabidopsis FCS-Like Zinc finger genes is differentially regulated by sugars, cellular energy level, and abiotic stress

    Directory of Open Access Journals (Sweden)

    Muhammed eJamsheer K

    2015-09-01

    Full Text Available Cellular energy status is an important regulator of plant growth, development, and stress mitigation. Environmental stresses ultimately lead to energy deficit in the cell which activates the SNF1-RELATED KINASE 1 (SnRK1 signaling cascade which eventually triggering a massive reprogramming of transcription to enable the plant to survive under low-energy conditions. The role of Arabidopsis thaliana FCS-Like Zinc finger (FLZ gene family in energy and stress signaling is recently come to highlight after their interaction with kinase subunits of SnRK1 were identified. In a detailed expression analysis in different sugars, energy starvation, and replenishment series, we identified that the expression of most of the FLZ genes is differentially modulated by cellular energy level. It was found that FLZ gene family contains genes which are both positively and negatively regulated by energy deficit as well as energy-rich conditions. Genetic and pharmacological studies identified the role of HEXOKINASE 1- dependent and energy signaling pathways in the sugar-induced expression of FLZ genes. Further, these genes were also found to be highly responsive to different stresses as well as abscisic acid. In over-expression of kinase subunit of SnRK1, FLZ genes were found to be differentially regulated in accordance with their response towards energy fluctuation suggesting that these genes may work downstream to the established SnRK1 signaling under low-energy stress. Taken together, the present study provides a conceptual framework for further studies related to SnRK1-FLZ interaction in relation to sugar and energy signaling and stress response.

  7. DPL-1 DP, LIN-35 Rb and EFL-1 E2F act with the MCD-1 zinc-finger protein to promote programmed cell death in Caenorhabditis elegans.

    Science.gov (United States)

    Reddien, Peter W; Andersen, Erik C; Huang, Michael C; Horvitz, H Robert

    2007-04-01

    The genes egl-1, ced-9, ced-4, and ced-3 play major roles in programmed cell death in Caenorhabditis elegans. To identify genes that have more subtle activities, we sought mutations that confer strong cell-death defects in a genetically sensitized mutant background. Specifically, we screened for mutations that enhance the cell-death defects caused by a partial loss-of-function allele of the ced-3 caspase gene. We identified mutations in two genes not previously known to affect cell death, dpl-1 and mcd-1 (modifier of cell death). dpl-1 encodes the C. elegans homolog of DP, the human E2F-heterodimerization partner. By testing genes known to interact with dpl-1, we identified roles in cell death for four additional genes: efl-1 E2F, lin-35 Rb, lin-37 Mip40, and lin-52 dLin52. mcd-1 encodes a novel protein that contains one zinc finger and that is synthetically required with lin-35 Rb for animal viability. dpl-1 and mcd-1 act with efl-1 E2F and lin-35 Rb to promote programmed cell death and do so by regulating the killing process rather than by affecting the decision between survival and death. We propose that the DPL-1 DP, MCD-1 zinc finger, EFL-1 E2F, LIN-35 Rb, LIN-37 Mip40, and LIN-52 dLin52 proteins act together in transcriptional regulation to promote programmed cell death.

  8. Promyelocytic leukaemia zinc finger maintains self-renewal of male germline stem cells (mGSCs) and its expression pattern in dairy goat testis.

    Science.gov (United States)

    Song, W; Zhu, H; Li, M; Li, N; Wu, J; Mu, H; Yao, X; Han, W; Liu, W; Hua, J

    2013-08-01

    Previous studies have shown that promyelocytic leukaemia zinc finger (PLZF) is a spermatogonia-specific transcription factor in the testis, required to regulate self-renewal and maintenance of the spermatogonia stem cell. Up to now, expression and function of PLZF in the goat testis has not been known. The objectives of this study were to investigate PLZF expression pattern in the dairy goat and its effect on male goat germline stem cell (mGSC) self-renewal and differentiation. Testis development and expression patterns of PLZF in the dairy goat were analysed by haematoxylin and eosin staining, immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR). Furthermore, effects of PLZF overexpression on mGSC self-renewal and differentiation were evaluated by quantitative RT-PCR (QRT-PCR), immunofluorescence and BrdU incorporation assay. Promyelocytic leukaemia zinc finger was essential for dairy goat testis development and expression of several proliferation and pluripotency-associated proteins including OCT4, C-MYC were upregulated by PLZF overexpression. The study demonstrated that PLZF played a key role in maintaining self-renewal of mGSCs and its overexpression enhanced expression of proliferation-associated genes. Promyelocytic leukaemia zinc finger could function in the dairy goat as well as in other species in maintaining self-renewal of germline stem cells and this study provides a model to study the mechanism on self-renewal and differentiation of mGSCs in livestock. © 2013 John Wiley & Sons Ltd.

  9. Control of Hepatic Gluconeogenesis by the Promyelocytic Leukemia Zinc Finger Protein

    Science.gov (United States)

    Chen, Siyu; Qian, Jinchun; Shi, Xiaoli; Gao, Tingting; Liang, Tingming

    2014-01-01

    The promyelocytic leukemia zinc finger (PLZF) protein is involved in major biological processes including energy metabolism, although its role remains unknown. In this study, we demonstrated that hepatic PLZF expression was induced in fasted or diabetic mice. PLZF promoted gluconeogenic gene expression and hepatic glucose output, leading to hyperglycemia. In contrast, hepatic PLZF knockdown improved glucose homeostasis in db/db mice. Mechanistically, peroxisome proliferator-activated receptor γ coactivator 1α and the glucocorticoid receptor synergistically activated PLZF expression. We conclude that PLZF is a critical regulator of hepatic gluconeogenesis. PLZF manipulation may benefit the treatment of metabolic diseases associated with gluconeogenesis. PMID:25333514

  10. The solution structure of the N-terminal zinc finger of GATA-1 reveals a specific binding face for the transcriptional co-factor FOG

    International Nuclear Information System (INIS)

    Kowalski, K.; Czolij, R.; King, G.F.; Crossley, M.; Mackay, J.P.

    1999-01-01

    Zinc fingers (ZnFs) are generally regarded as DNA-binding motifs. However, a number of recent reports have implicated particular ZnFs in the mediation of protein-protein interactions. The N-terminal ZnF of GATA-1 (NF) is one such finger, having been shown to interact with a number of other proteins, including the recently discovered transcriptional co-factor FOG. Here we solve the three-dimensional structure of the NF in solution using multidimensional 1H/15N NMR spectroscopy, and we use 1H/15N spin relaxation measurements to investigate its backbone dynamics. The structure consists of two distorted β-hairpins and a single α-helix, and is similar to that of the C-terminal ZnF of chicken GATA-1. Comparisons of the NF structure with those of other C4-type zinc binding motifs, including hormone receptor and LIM domains, also reveal substantial structural homology. Finally, we use the structure to map the spatial locations of NF residues shown by mutagenesis to be essential for FOG binding, and demonstrate that these residues all lie on a single face of the NF. Notably, this face is well removed from the putative DNA- binding face of the NF, an observation which is suggestive of simultaneous roles for the NF; that is, stabilisation of GATA-1 DNA complexes and recruitment of FOG to GATA-1-controlled promoter regions

  11. Isolation of three B-box zinc finger proteins that interact with STF1 and COP1 defines a HY5/COP1 interaction network involved in light control of development in soybean

    International Nuclear Information System (INIS)

    Shin, Su Young; Kim, Seong Hee; Kim, Hye Jin; Jeon, Su Jeong; Sim, Soon Ae; Ryu, Gyeong Ryul; Yoo, Cheol Min; Cheong, Yong Hwa; Hong, Jong Chan

    2016-01-01

    LONG HYPOCOTYL5 (HY5) and STF1 (Soybean TGACG-motif binding Factor 1) are two related bZIP transcription factors that play a positive role in photomorphogenesis and hormonal signaling. In this study, we compared full length STF1 and truncated STF1 overexpression lines and found that the C-terminal 133 amino acids (194–306) possess all the HY5-like function in Arabidopsis. The STF1-DC1 mutant (1–306), with a 20 amino acid deletion at the carboxy terminus, failed to complement the hy5 mutant phenotype, which suggests an intact C-terminus is required for STF1 function. To understand the role of the C-terminal domain in photomorphogenesis we used a yeast two-hybrid screen to isolate proteins that bind to the STF1 C-terminus. We isolated three soybean cDNAs encoding the zinc-finger proteins GmSTO, GmSTH, and GmSTH2, which interact with STF1. These proteins belong to a family of B-box zinc finger proteins that include Arabidopsis SALT TOLERANCE (STO) and STO HOMOLOG (STH) and STH2, which play a role in light-dependent development and gene expression. The C-terminal 63 amino acids of STF1, containing a leucine zipper and the two N-terminal B-boxes, contains the domain involved in interactions between STF1 and GmSTO. In addition, we identified an interaction between soybean COP1 (GmCOP1) and GmSTO and GmSTH, as well as STF1, which strongly suggests the presence of a similar regulatory circuit for light signaling in soybean as in Arabidopsis. This study shows that photomorphogenic control requires complex molecular interactions among several different classes of transcription factors such as bZIP, B-box factors, and COP1, a ubiquitin ligase. - Highlights: • STF1 interact with GmSTO, GmSTH and GmSTH2. • The bZIP transcription factor STF1 requires an intact C-terminal domain for STF1 function. • STF1 and GmSTO are nuclear proteins.

  12. Finger-like voids induced by viscous fingering during phase inversion of alumina/PES/NMP suspensions

    KAUST Repository

    Wang, Bo; Lai, Zhiping

    2012-01-01

    membrane structure without such finger-like macrovoids was observed when the suspension was slowly immersed into pure ethanol or a mixture of 70. wt% NMP and 30. wt% water, whereas finger-like macrovoids occurred when the suspension was slid into the non

  13. Different Binding Properties and Function of CXXC Zinc Finger Domains in Dnmt1 and Tet1

    Science.gov (United States)

    Meilinger, Daniela; Bultmann, Sebastian; Fellinger, Karin; Hasenöder, Stefan; Wang, Mengxi; Qin, Weihua; Söding, Johannes; Spada, Fabio; Leonhardt, Heinrich

    2011-01-01

    Several mammalian proteins involved in chromatin and DNA modification contain CXXC zinc finger domains. We compared the structure and function of the CXXC domains in the DNA methyltransferase Dnmt1 and the methylcytosine dioxygenase Tet1. Sequence alignment showed that both CXXC domains have a very similar framework but differ in the central tip region. Based on the known structure of a similar MLL1 domain we developed homology models and designed expression constructs for the isolated CXXC domains of Dnmt1 and Tet1 accordingly. We show that the CXXC domain of Tet1 has no DNA binding activity and is dispensable for catalytic activity in vivo. In contrast, the CXXC domain of Dnmt1 selectively binds DNA substrates containing unmethylated CpG sites. Surprisingly, a Dnmt1 mutant construct lacking the CXXC domain formed covalent complexes with cytosine bases both in vitro and in vivo and rescued DNA methylation patterns in dnmt1−/− embryonic stem cells (ESCs) just as efficiently as wild type Dnmt1. Interestingly, neither wild type nor ΔCXXC Dnmt1 re-methylated imprinted CpG sites of the H19a promoter in dnmt1−/− ESCs, arguing against a role of the CXXC domain in restraining Dnmt1 methyltransferase activity on unmethylated CpG sites. PMID:21311766

  14. Different binding properties and function of CXXC zinc finger domains in Dnmt1 and Tet1.

    Directory of Open Access Journals (Sweden)

    Carina Frauer

    2011-02-01

    Full Text Available Several mammalian proteins involved in chromatin and DNA modification contain CXXC zinc finger domains. We compared the structure and function of the CXXC domains in the DNA methyltransferase Dnmt1 and the methylcytosine dioxygenase Tet1. Sequence alignment showed that both CXXC domains have a very similar framework but differ in the central tip region. Based on the known structure of a similar MLL1 domain we developed homology models and designed expression constructs for the isolated CXXC domains of Dnmt1 and Tet1 accordingly. We show that the CXXC domain of Tet1 has no DNA binding activity and is dispensable for catalytic activity in vivo. In contrast, the CXXC domain of Dnmt1 selectively binds DNA substrates containing unmethylated CpG sites. Surprisingly, a Dnmt1 mutant construct lacking the CXXC domain formed covalent complexes with cytosine bases both in vitro and in vivo and rescued DNA methylation patterns in dnmt1⁻/⁻ embryonic stem cells (ESCs just as efficiently as wild type Dnmt1. Interestingly, neither wild type nor ΔCXXC Dnmt1 re-methylated imprinted CpG sites of the H19a promoter in dnmt1⁻/⁻ ESCs, arguing against a role of the CXXC domain in restraining Dnmt1 methyltransferase activity on unmethylated CpG sites.

  15. ZFNGenome: A comprehensive resource for locating zinc finger nuclease target sites in model organisms

    Directory of Open Access Journals (Sweden)

    Voytas Daniel F

    2011-01-01

    Full Text Available Abstract Background Zinc Finger Nucleases (ZFNs have tremendous potential as tools to facilitate genomic modifications, such as precise gene knockouts or gene replacements by homologous recombination. ZFNs can be used to advance both basic research and clinical applications, including gene therapy. Recently, the ability to engineer ZFNs that target any desired genomic DNA sequence with high fidelity has improved significantly with the introduction of rapid, robust, and publicly available techniques for ZFN design such as the Oligomerized Pool ENgineering (OPEN method. The motivation for this study is to make resources for genome modifications using OPEN-generated ZFNs more accessible to researchers by creating a user-friendly interface that identifies and provides quality scores for all potential ZFN target sites in the complete genomes of several model organisms. Description ZFNGenome is a GBrowse-based tool for identifying and visualizing potential target sites for OPEN-generated ZFNs. ZFNGenome currently includes a total of more than 11.6 million potential ZFN target sites, mapped within the fully sequenced genomes of seven model organisms; S. cerevisiae, C. reinhardtii, A. thaliana, D. melanogaster, D. rerio, C. elegans, and H. sapiens and can be visualized within the flexible GBrowse environment. Additional model organisms will be included in future updates. ZFNGenome provides information about each potential ZFN target site, including its chromosomal location and position relative to transcription initiation site(s. Users can query ZFNGenome using several different criteria (e.g., gene ID, transcript ID, target site sequence. Tracks in ZFNGenome also provide "uniqueness" and ZiFOpT (Zinc Finger OPEN Targeter "confidence" scores that estimate the likelihood that a chosen ZFN target site will function in vivo. ZFNGenome is dynamically linked to ZiFDB, allowing users access to all available information about zinc finger reagents, such as the

  16. C2H2 type of zinc finger transcription factors in foxtail millet define response to abiotic stresses.

    Science.gov (United States)

    Muthamilarasan, Mehanathan; Bonthala, Venkata Suresh; Mishra, Awdhesh Kumar; Khandelwal, Rohit; Khan, Yusuf; Roy, Riti; Prasad, Manoj

    2014-09-01

    C2H2 type of zinc finger transcription factors (TFs) play crucial roles in plant stress response and hormone signal transduction. Hence considering its importance, genome-wide investigation and characterization of C2H2 zinc finger proteins were performed in Arabidopsis, rice and poplar but no such study was conducted in foxtail millet which is a C4 Panicoid model crop well known for its abiotic stress tolerance. The present study identified 124 C2H2-type zinc finger TFs in foxtail millet (SiC2H2) and physically mapped them onto the genome. The gene duplication analysis revealed that SiC2H2s primarily expanded in the genome through tandem duplication. The phylogenetic tree classified these TFs into five groups (I-V). Further, miRNAs targeting SiC2H2 transcripts in foxtail millet were identified. Heat map demonstrated differential and tissue-specific expression patterns of these SiC2H2 genes. Comparative physical mapping between foxtail millet SiC2H2 genes and its orthologs of sorghum, maize and rice revealed the evolutionary relationships of C2H2 type of zinc finger TFs. The duplication and divergence data provided novel insight into the evolutionary aspects of these TFs in foxtail millet and related grass species. Expression profiling of candidate SiC2H2 genes in response to salinity, dehydration and cold stress showed differential expression pattern of these genes at different time points of stresses.

  17. Genome-wide analysis of the CCCH zinc finger family identifies tissue specific and stress responsive candidates in chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Pradhan, Seema; Kant, Chandra; Verma, Subodh; Bhatia, Sabhyata

    2017-01-01

    The CCCH zinc finger is a group of proteins characterised by a typical motif consisting of three cysteine residues and one histidine residue. These proteins have been reported to play important roles in regulation of plant growth, developmental processes and environmental responses. In the present study, genome wide analysis of the CCCH zinc finger gene family was carried out in the available chickpea genome. Various bioinformatics tools were employed to predict 58 CCCH zinc finger genes in chickpea (designated CarC3H1-58), which were analysed for their physio-chemical properties. Phylogenetic analysis classified the proteins into 12 groups in which members of a particular group had similar structural organization. Further, the numbers as well as the types of CCCH motifs present in the CarC3H proteins were compared with those from Arabidopsis and Medicago truncatula. Synteny analysis revealed valuable information regarding the evolution of this gene family. Tandem and segmental duplication events were identified and their Ka/Ks values revealed that the CarC3H gene family in chickpea had undergone purifying selection. Digital, as well as real time qRT-PCR expression analysis was performed which helped in identification of several CarC3H members that expressed preferentially in specific chickpea tissues as well as during abiotic stresses (desiccation, cold, salinity). Moreover, molecular characterization of an important member CarC3H45 was carried out. This study provides comprehensive genomic information about the important CCCH zinc finger gene family in chickpea. The identified tissue specific and abiotic stress specific CCCH genes could be potential candidates for further characterization to delineate their functional roles in development and stress.

  18. Two short basic sequences surrounding the zinc finger of nucleocapsid protein NCp10 of Moloney murine leukemia virus are critical for RNA annealing activity.

    Science.gov (United States)

    De Rocquigny, H; Ficheux, D; Gabus, C; Allain, B; Fournie-Zaluski, M C; Darlix, J L; Roques, B P

    1993-02-25

    The 56 amino acid nucleocapsid protein (NCp10) of Moloney Murine Leukemia Virus, contains a CysX2CysX4HisX4Cys zinc finger flanked by basic residues. In vitro NCp10 promotes genomic RNA dimerization, a process most probably linked to genomic RNA packaging, and replication primer tRNA(Pro) annealing to the initiation site of reverse transcription. To characterize the amino-acid sequences involved in the various functions of NCp10, we have synthesized by solid phase method the native protein and a series of derived peptides shortened at the N- or C-terminus with or without the zinc finger domain. In the latter case, the two parts of the protein were linked by a Glycine - Glycine spacer. The in vitro studies of these peptides show that nucleic acid annealing activities of NCp10 do not require a zinc finger but are critically dependent on the presence of specific sequences located on each side of the CCHC domain and containing proline and basic residues. Thus, deletion of 11R or 49PRPQT, of the fully active 29 residue peptide 11RQGGERRRSQLDRDGGKKPRGPRGPRPQT53 leads to a complete loss of NCp10 activity. Therefore it is proposed that in NCp10, the zinc finger directs the spatial recognition of the target RNAs by the basic domains surrounding the zinc finger.

  19. Structures of three members of Pfam PF02663 (FmdE) implicated in microbial methanogenesis reveal a conserved α+β core domain and an auxiliary C-terminal treble-clef zinc finger

    International Nuclear Information System (INIS)

    Axelrod, Herbert L.; Das, Debanu; Abdubek, Polat; Astakhova, Tamara; Bakolitsa, Constantina; Carlton, Dennis; Chen, Connie; Chiu, Hsiu-Ju; Clayton, Thomas; Deller, Marc C.; Duan, Lian; Ellrott, Kyle; Farr, Carol L.; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Kumar, Abhinav; Lam, Winnie W.; Marciano, David; McMullan, Daniel; Miller, Mitchell D.; Morse, Andrew T.; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Puckett, Christina; Reyes, Ron; Sefcovic, Natasha; Tien, Henry J.; Trame, Christine B.; Bedem, Henry van den; Weekes, Dana; Wooten, Tiffany; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2010-01-01

    The first structures from the FmdE Pfam family (PF02663) reveal that some members of this family form tightly intertwined dimers consisting of two domains (N-terminal α+β core and C-terminal zinc-finger domains), whereas others contain only the core domain. The presence of the zinc-finger domain suggests that some members of this family may perform functions associated with transcriptional regulation, protein–protein interaction, RNA binding or metal-ion sensing. Examination of the genomic context for members of the FmdE Pfam family (PF02663), such as the protein encoded by the fmdE gene from the methanogenic archaeon Methanobacterium thermoautotrophicum, indicates that 13 of them are co-transcribed with genes encoding subunits of molybdenum formylmethanofuran dehydrogenase (EC 1.2.99.5), an enzyme that is involved in microbial methane production. Here, the first crystal structures from PF02663 are described, representing two bacterial and one archaeal species: B8FYU2-DESHY from the anaerobic dehalogenating bacterium Desulfitobacterium hafniense DCB-2, Q2LQ23-SYNAS from the syntrophic bacterium Syntrophus aciditrophicus SB and Q9HJ63-THEAC from the thermoacidophilic archaeon Thermoplasma acidophilum. Two of these proteins, Q9HJ63-THEAC and Q2LQ23-SYNAS, contain two domains: an N-terminal thioredoxin-like α+β core domain (NTD) consisting of a five-stranded, mixed β-sheet flanked by several α-helices and a C-terminal zinc-finger domain (CTD). B8FYU2-DESHY, on the other hand, is composed solely of the NTD. The CTD of Q9HJ63-THEAC and Q2LQ23-SYNAS is best characterized as a treble-clef zinc finger. Two significant structural differences between Q9HJ63-THEAC and Q2LQ23-SYNAS involve their metal binding. First, zinc is bound to the putative active site on the NTD of Q9HJ63-THEAC, but is absent from the NTD of Q2LQ23-SYNAS. Second, whereas the structure of the CTD of Q2LQ23-SYNAS shows four Cys side chains within coordination distance of the Zn atom, the structure

  20. Zinc finger protein 219-like (ZNF219L) and Sox9a regulate synuclein-γ2 (sncgb) expression in the developing notochord of zebrafish.

    Science.gov (United States)

    Lien, Huang-Wei; Yang, Chung-Hsiang; Cheng, Chia-Hsiung; Liao, Yung-Feng; Han, Yu-San; Huang, Chang-Jen

    2013-12-13

    Zebrafish synuclein-γ2 (sncgb) has been reported to be expressed specifically in the notochord. However, the mechanism by which the sncgb gene promoter is regulated has not been described. In this paper, we demonstrate that Zinc finger protein 219-like (ZNF219L) and sox9a are involved in the regulation of sncgb gene expression. Furthermore, we observed that over-expression of both ZNF219L and Sox9a resulted in increased sncgb expression. In addition, ZNF219L is physically associated with Sox9a, and simultaneous morpholino knockdown of znf219L and sox9a caused a synergistic decrease of sncgb expression in the notochord. Taken together, our results reveal that coordination of ZNF219L with Sox9a is involved in the regulation of notochord-specific expression of sncgb. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  1. A bio-inspired zinc finger analogue anchored in 2D hexagonal meso-porous silica for room temperature CO_2 activation via a hydrogeno-carbonate route

    International Nuclear Information System (INIS)

    Doghri, Hanene; Baranova, Elena A.; Albela, Belen; Bonneviot, Laurent; Mongia Said-Zina

    2017-01-01

    Bio-inspired diethylenetriamine-zinc(II) complexes were anchored into the nano-pores of hexagonal meso-porous MCM41-like silicas targeting a carbamate free and low temperature CO_2 recycling process. A step-by-step approach was adopted to perform an in situ synthesis in order to mimic the zinc finger of carbonic anhydrases, the fastest family of enzymes. In the presence of a surface-masking pattern of TMA"+ ions, some silanol groups were capped using grafted trimethylsilyl functions, TMSgr, (gr for grafted). After removing the masking ions, a tridentate diethylenetriamine ligand was anchored using diethylenetriamine propyl-trimethoxysilane. The so-called DETA_a_n ligands (an for anchored) were partially mono-protonated using either cyclohexane or isopropanol as a solvent. Nonetheless, up to two thirds of them were metallated by Zn(II) ions, leading to the targeted anchored zinc finger mimic [Zn(DETAan)L]+(L = Cl or OH). CO_2 is then adsorbed at room temperature and in humid ambient air by the formation of an intermediate hydrogeno-carbonate-zinc complex. Specific IR signatures at 1330 and 1400 cm"-"1 together with characteristic C 1s and Zn 2p3/2 XPS binding energies at 286.4 and 1024.6 eV advocate for a rather symmetrical bidentate [η"2-CO_3] structural unit in the anchored complex [Zn(DETA_a_n)(η"2-HCO_3"*)]"+, where the Zn(II) ion is most likely penta-coordinated. The internal pH value varied by less than 0.5 depending on the metal reacting with the DETA_a_n ligand and its ability to generate HCO_3"-, due to the buffering effect of surface silanol and amino groups according to the level of protonation of the DETA moieties measured from the N 1s XPS spectra. In contrast to nitrate ions, chloride ions were found to inhibit the formation of hydrogeno-carbonate. (authors)

  2. Engineering HIV-resistant human CD4+ T cells with CXCR4-specific zinc-finger nucleases.

    Directory of Open Access Journals (Sweden)

    Craig B Wilen

    2011-04-01

    Full Text Available HIV-1 entry requires the cell surface expression of CD4 and either the CCR5 or CXCR4 coreceptors on host cells. Individuals homozygous for the ccr5Δ32 polymorphism do not express CCR5 and are protected from infection by CCR5-tropic (R5 virus strains. As an approach to inactivating CCR5, we introduced CCR5-specific zinc-finger nucleases into human CD4+ T cells prior to adoptive transfer, but the need to protect cells from virus strains that use CXCR4 (X4 in place of or in addition to CCR5 (R5X4 remains. Here we describe engineering a pair of zinc finger nucleases that, when introduced into human T cells, efficiently disrupt cxcr4 by cleavage and error-prone non-homologous DNA end-joining. The resulting cells proliferated normally and were resistant to infection by X4-tropic HIV-1 strains. CXCR4 could also be inactivated in ccr5Δ32 CD4+ T cells, and we show that such cells were resistant to all strains of HIV-1 tested. Loss of CXCR4 also provided protection from X4 HIV-1 in a humanized mouse model, though this protection was lost over time due to the emergence of R5-tropic viral mutants. These data suggest that CXCR4-specific ZFNs may prove useful in establishing resistance to CXCR4-tropic HIV for autologous transplant in HIV-infected individuals.

  3. Enhanced cellulase production from Trichoderma reesei Rut-C30 by engineering with an artificial zinc finger protein library.

    Science.gov (United States)

    Zhang, Fei; Bai, Fengwu; Zhao, Xinqing

    2016-10-01

    Trichoderma reesei Rut-C30 is a well-known cellulase producer, and improvement of its cellulase production is of great interest. An artificial zinc finger protein (AZFP) library is constructed for expression in T. reesei Rut-C30, and a mutant strain T. reesei U3 is selected based on its enhanced cellulase production. The U3 mutant shows a 55% rise in filter paper activity and 8.1-fold increased β-glucosidase activity, when compared to the native strain T. reesei Rut-C30. It is demonstrated that enhanced β-glucosidase activity was due to elevated transcription level of β-glucosidase gene in the U3 mutant. Moreover, significant elevation in transcription levels of several putative Azfp-U3 target genes is detected in the U3 mutant, including genes encoding hypothetical transcription factors and a putative glycoside hydrolase. Furthermore, U3 cellulase shows 115% higher glucose yield from pretreated corn stover, when compared to the cellulase of T. reesei Rut-C30. These results demonstrate that AZFP can be used to improve cellulase production in T. reesei Rut-C30. Our current work offers the establishment of an alternative strategy to develop fungal cell factories for improved production of high value industrial products. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Regulation of hippocampus-dependent memory by the zinc finger protein Zbtb20 in mature CA1 neurons.

    Science.gov (United States)

    Ren, Anjing; Zhang, Huan; Xie, Zhifang; Ma, Xianhua; Ji, Wenli; He, David Z Z; Yuan, Wenjun; Ding, Yu-Qiang; Zhang, Xiao-Hui; Zhang, Weiping J

    2012-10-01

    The mammalian hippocampus harbours neural circuitry that is crucial for associative learning and memory. The mechanisms that underlie the development and regulation of this complex circuitry are not fully understood. Our previous study established an essential role for the zinc finger protein Zbtb20 in the specification of CA1 field identity in the developing hippocampus. Here, we show that conditionally deleting Zbtb20 specifically in mature CA1 pyramidal neurons impaired hippocampus-dependent memory formation, without affecting hippocampal architecture or the survival, identity and basal excitatory synaptic activity of CA1 pyramidal neurons. We demonstrate that mature CA1-specific Zbtb20 knockout mice exhibited reductions in long-term potentiation (LTP) and NMDA receptor (NMDAR)-mediated excitatory post-synaptic currents. Furthermore, we show that activity-induced phosphorylation of ERK and CREB is impaired in the hippocampal CA1 of Zbtb20 mutant mice. Collectively, these results indicate that Zbtb20 in mature CA1 plays an important role in LTP and memory by regulating NMDAR activity, and activation of ERK and CREB.

  5. FYVE zinc-finger proteins in the plant model Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Jensen, R B; La Cour, T; Albrethsen, J

    2001-01-01

    Classic FYVE zinc-finger domains recognize the phosphoinositide signal PtdIns3P and share the basic (R/K)(1)(R/K)HHCR(6) (single-letter amino acid codes) consensus sequence. This domain is present in predicted PtdIns3P 5-kinases and lipases from Arabidopsis thaliana. Other Arabidopsis proteins......) of the basic motif. Dot-blot and liposome-binding assays were used in vitro to examine the phospholipid-binding ability of isolated PRAF domains. Whereas the PH domain preferentially bound PtdIns(4,5)P(2), the variant FYVE domain showed a weaker charge-dependent binding of phosphoinositides. In contrast....... A biochemical function for PRAF was indicated by its ability to catalyse guanine nucleotide exchange on some of the small GTPases of the Rab family, permitting a discussion of the biological roles of plant FYVE proteins and their regulation by phosphoinositides....

  6. An A20/AN1-type zinc finger protein modulates gibberellins and abscisic acid contents and increases sensitivity to abiotic stress in rice (Oryza sativa).

    Science.gov (United States)

    Zhang, Ye; Lan, Hongxia; Shao, Qiaolin; Wang, Ruqin; Chen, Hui; Tang, Haijuan; Zhang, Hongsheng; Huang, Ji

    2016-01-01

    The plant hormones gibberellins (GA) and abscisic acid (ABA) play important roles in plant development and stress responses. Here we report a novel A20/AN1-type zinc finger protein ZFP185 involved in GA and ABA signaling in the regulation of growth and stress response. ZFP185 was constitutively expressed in various rice tissues. Overexpression of ZFP185 in rice results in a semi-dwarfism phenotype, reduced cell size, and the decrease of endogenous GA3 content. By contrast, higher GA3 content was observed in RNAi plants. The application of exogenous GA3 can fully rescue the semi-dwarfism phenotype of ZFP185 overexpressing plants, suggesting the negative role of ZFP185 in GA biosynthesis. Besides GA, overexpression of ZFP185 decreased ABA content and expression of several ABA biosynthesis-related genes. Moreover, it was found that ZFP185, unlike previously known A20/AN1-type zinc finger genes, increases sensitivity to drought, cold, and salt stresses, implying the negative role of ZFP185 in stress tolerance. ZFP185 was localized in the cytoplasm and lacked transcriptional activation potential. Our study suggests that ZFP185 regulates plant growth and stress responses by affecting GA and ABA biosynthesis in rice. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Differential sensitivities of cellular XPA and PARP-1 to arsenite inhibition and zinc rescue.

    Science.gov (United States)

    Ding, Xiaofeng; Zhou, Xixi; Cooper, Karen L; Huestis, Juliana; Hudson, Laurie G; Liu, Ke Jian

    2017-09-15

    Arsenite directly binds to the zinc finger domains of the DNA repair protein poly (ADP ribose) polymerase (PARP)-1, and inhibits PARP-1 activity in the base excision repair (BER) pathway. PARP inhibition by arsenite enhances ultraviolet radiation (UVR)-induced DNA damage in keratinocytes, and the increase in DNA damage is reduced by zinc supplementation. However, little is known about the effects of arsenite and zinc on the zinc finger nucleotide excision repair (NER) protein xeroderma pigmentosum group A (XPA). In this study, we investigated the difference in response to arsenite exposure between XPA and PARP-1, and the differential effectiveness of zinc supplementation in restoring protein DNA binding and DNA damage repair. Arsenite targeted both XPA and PARP-1 in human keratinocytes, resulting in zinc loss from each protein and a pronounced decrease in XPA and PARP-1 binding to chromatin as demonstrated by Chip-on-Western assays. Zinc effectively restored DNA binding of PARP-1 and XPA to chromatin when zinc concentrations were equal to those of arsenite. In contrast, zinc was more effective in rescuing arsenite-augmented direct UVR-induced DNA damage than oxidative DNA damage. Taken together, our findings indicate that arsenite interferes with PARP-1 and XPA binding to chromatin, and that zinc supplementation fully restores DNA binding activity to both proteins in the cellular context. Interestingly, rescue of arsenite-inhibited DNA damage repair by supplemental zinc was more sensitive for DNA damage repaired by the XPA-associated NER pathway than for the PARP-1-dependent BER pathway. This study expands our understanding of arsenite's role in DNA repair inhibition and co-carcinogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Epigenetic regulation of puberty via Zinc finger protein-mediated transcriptional repression.

    Science.gov (United States)

    Lomniczi, Alejandro; Wright, Hollis; Castellano, Juan Manuel; Matagne, Valerie; Toro, Carlos A; Ramaswamy, Suresh; Plant, Tony M; Ojeda, Sergio R

    2015-12-16

    In primates, puberty is unleashed by increased GnRH release from the hypothalamus following an interval of juvenile quiescence. GWAS implicates Zinc finger (ZNF) genes in timing human puberty. Here we show that hypothalamic expression of several ZNFs decreased in agonadal male monkeys in association with the pubertal reactivation of gonadotropin secretion. Expression of two of these ZNFs, GATAD1 and ZNF573, also decreases in peripubertal female monkeys. However, only GATAD1 abundance increases when gonadotropin secretion is suppressed during late infancy. Targeted delivery of GATAD1 or ZNF573 to the rat hypothalamus delays puberty by impairing the transition of a transcriptional network from an immature repressive epigenetic configuration to one of activation. GATAD1 represses transcription of two key puberty-related genes, KISS1 and TAC3, directly, and reduces the activating histone mark H3K4me2 at each promoter via recruitment of histone demethylase KDM1A. We conclude that GATAD1 epitomizes a subset of ZNFs involved in epigenetic repression of primate puberty.

  9. Regulation of Nitrogen Metabolism by GATA Zinc Finger Transcription Factors in Yarrowia lipolytica

    OpenAIRE

    Pomraning, Kyle R.; Bredeweg, Erin L.; Baker, Scott E.

    2017-01-01

    ABSTRACT Fungi accumulate lipids in a manner dependent on the quantity and quality of the nitrogen source on which they are growing. In the oleaginous yeast Yarrowia lipolytica, growth on a complex source of nitrogen enables rapid growth and limited accumulation of neutral lipids, while growth on a simple nitrogen source promotes lipid accumulation in large lipid droplets. Here we examined the roles of nitrogen catabolite repression and its regulation by GATA zinc finger transcription factors...

  10. Zinc Finger Nuclease induced DNA double stranded breaks and rearrangements in MLL

    International Nuclear Information System (INIS)

    Do, To Uyen; Ho, Bay; Shih, Shyh-Jen; Vaughan, Andrew

    2012-01-01

    Highlights: ► A Zinc Finger Nuclease (ZFN) targeting a leukemogenic hot spot for rearrangement in MLL is created. ► The novel ZFN efficiently cleaves MLL exon 13. ► Despite MLL cleavage and evidence of mis-repair, no leukemogenic translocations were produced. ► MLL cleavage alone is insufficient to generate leukemogenic translocations. - Abstract: Radiation treatment or chemotherapy has been linked with a higher risk of secondary cancers such as therapy related Acute Myeloid Leukemia (tAML). Several of these cancers have been shown to be correlated to the introduction of double stranded breaks (DSB) and rearrangements within the Mixed Lineage Leukemia (MLL) gene. We used Zinc Finger Nucleases (ZFNs) to introduce precise cuts within MLL to examine how a single DNA DSB might lead to chromosomal rearrangements. A ZFN targeting exon 13 within the Breakpoint Cluster Region of MLL was transiently expressed in a human lymphoblast cell line originating from a CML patient. Although FISH analysis showed ZFN DSB at this region increased the rate of MLL fragmentation, we were unable to detect leukemogenic rearrangements or translocations via inverse PCR. Interestingly, gene fragmentation as well as small interstitial deletions, insertions and base substitutions increased with the inhibition of DNA-PK, suggesting repair of this particular DSB is linked to non-homologous end joining (NHEJ). Although mis-repair of DSBs may be necessary for the initiation of leukemogenic translocations, a MLL targeted DNA break alone is insufficient

  11. Zinc Finger Nuclease induced DNA double stranded breaks and rearrangements in MLL

    Energy Technology Data Exchange (ETDEWEB)

    Do, To Uyen [Graduate Group in Immunology, University of California Davis, Davis, CA 95616 (United States); Department of Radiation Oncology, University of California Davis, Sacramento CA 95817 (United States); Ho, Bay; Shih, Shyh-Jen [Department of Radiation Oncology, University of California Davis, Sacramento CA 95817 (United States); Vaughan, Andrew, E-mail: Andrew.vaughan@ucdmc.ucdavis.edu [Graduate Group in Immunology, University of California Davis, Davis, CA 95616 (United States); Department of Radiation Oncology, University of California Davis, Sacramento CA 95817 (United States)

    2012-12-15

    Highlights: ► A Zinc Finger Nuclease (ZFN) targeting a leukemogenic hot spot for rearrangement in MLL is created. ► The novel ZFN efficiently cleaves MLL exon 13. ► Despite MLL cleavage and evidence of mis-repair, no leukemogenic translocations were produced. ► MLL cleavage alone is insufficient to generate leukemogenic translocations. - Abstract: Radiation treatment or chemotherapy has been linked with a higher risk of secondary cancers such as therapy related Acute Myeloid Leukemia (tAML). Several of these cancers have been shown to be correlated to the introduction of double stranded breaks (DSB) and rearrangements within the Mixed Lineage Leukemia (MLL) gene. We used Zinc Finger Nucleases (ZFNs) to introduce precise cuts within MLL to examine how a single DNA DSB might lead to chromosomal rearrangements. A ZFN targeting exon 13 within the Breakpoint Cluster Region of MLL was transiently expressed in a human lymphoblast cell line originating from a CML patient. Although FISH analysis showed ZFN DSB at this region increased the rate of MLL fragmentation, we were unable to detect leukemogenic rearrangements or translocations via inverse PCR. Interestingly, gene fragmentation as well as small interstitial deletions, insertions and base substitutions increased with the inhibition of DNA-PK, suggesting repair of this particular DSB is linked to non-homologous end joining (NHEJ). Although mis-repair of DSBs may be necessary for the initiation of leukemogenic translocations, a MLL targeted DNA break alone is insufficient.

  12. Targeted genome editing by lentiviral protein transduction of zinc-finger and TAL-effector nucleases.

    Science.gov (United States)

    Cai, Yujia; Bak, Rasmus O; Mikkelsen, Jacob Giehm

    2014-04-24

    Future therapeutic use of engineered site-directed nucleases, like zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), relies on safe and effective means of delivering nucleases to cells. In this study, we adapt lentiviral vectors as carriers of designer nuclease proteins, providing efficient targeted gene disruption in vector-treated cell lines and primary cells. By co-packaging pairs of ZFN proteins with donor RNA in 'all-in-one' lentiviral particles, we co-deliver ZFN proteins and the donor template for homology-directed repair leading to targeted DNA insertion and gene correction. Comparative studies of ZFN activity in a predetermined target locus and a known nearby off-target locus demonstrate reduced off-target activity after ZFN protein transduction relative to conventional delivery approaches. Additionally, TALEN proteins are added to the repertoire of custom-designed nucleases that can be delivered by protein transduction. Altogether, our findings generate a new platform for genome engineering based on efficient and potentially safer delivery of programmable nucleases.DOI: http://dx.doi.org/10.7554/eLife.01911.001. Copyright © 2014, Cai et al.

  13. A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants.

    Science.gov (United States)

    Kim, J C; Lee, S H; Cheong, Y H; Yoo, C M; Lee, S I; Chun, H J; Yun, D J; Hong, J C; Lee, S Y; Lim, C O; Cho, M J

    2001-02-01

    Cold stress on plants induces changes in the transcription of cold response genes. A cDNA clone encoding C2H2-type zinc finger protein, SCOF-1, was isolated from soybean. The transcription of SCOF-1 is specifically induced by low temperature and abscisic acid (ABA) but not by dehydration or high salinity. Constitutive overexpression of SCOF-1 induced cold-regulated (COR) gene expression and enhanced cold tolerance of non-acclimated transgenic Arabidopsis and tobacco plants. SCOF-1 localized to the nucleus but did not bind directly to either C-repeat/dehydration (CRT/DRE) or ABA responsive element (ABRE), cis-acting DNA regulatory elements present in COR gene promoters. However, SCOF-1 greatly enhanced the DNA binding activity of SGBF-1, a soybean G-box binding bZIP transcription factor, to ABRE in vitro. SCOF-1 also interacted with SGBF-1 in a yeast two-hybrid system. The SGBF-1 transactivated the beta-glucuronidase reporter gene driven by the ABRE element in Arabidopsis leaf protoplasts. Furthermore, the SCOF-1 enhanced ABRE-dependent gene expression mediated by SGBF-1. These results suggest that SCOF-1 may function as a positive regulator of COR gene expression mediated by ABRE via protein-protein interaction, which in turn enhances cold tolerance of plants.

  14. Transformation of Leaf-like Zinc Dendrite in Oxidation and Reduction Cycle

    International Nuclear Information System (INIS)

    Nakata, Akiyoshi; Murayama, Haruno; Fukuda, Katsutoshi; Yamane, Tomokazu; Arai, Hajime; Hirai, Toshiro; Uchimoto, Yoshiharu; Yamaki, Jun-ichi; Ogumi, Zempachi

    2015-01-01

    Highlights: • Leaf-like zinc dendrites change to leaf-like residual oxides at high oxidation current density (10 mA cm −2 ) whereas it completely dissolves at low oxidation current density (1 mA cm −2 ). • Leaf-like residual oxide products is transformed to zinc deposits with particulate morphology, resulting in good rechargeability. • The residual zinc oxide provides sufficient zincate on its reduction, preventing the diffusion-limited condition that causes leaf-like dendrite formation. - Abstract: Zinc is a promising negative electrode material for aqueous battery systems whereas it shows insufficient rechargeability for use in secondary batteries. It has been reported that leaf-like dendrite deposits are often the origin of cell-failure, however, their nature and behavior on discharge (oxidation) - charge (reduction) cycling have been only poorly understood. Here we investigate the transformation of the leaf-like zinc dendrites using ex-situ scanning electron microscopy, X-ray computational tomography and in-situ X-ray diffraction. It is shown that the leaf-like zinc dendrites obtained under diffusion-limited conditions are nearly completely dissolved at a low oxidation current density of 1 mA cm −2 and cause re-evolution of the zinc dendrites. Oxidation at a high current density of 10 mA cm −2 leads to the formation of leaf-like zinc oxide residual products that result in particulate zinc deposits in the following reduction process, enabling good rechargeability. The reaction behavior of this oxide residue is detailed and discussed for the development of long-life zinc electrodes

  15. Occupancy of a C2-C2 type 'zinc-finger' protein domain by copper. Direct observation by electrospray ionization mass spectrometry.

    Science.gov (United States)

    Hutchens, T W; Allen, M H; Li, C M; Yip, T T

    1992-09-07

    The metal ion specificity of most 'zinc-finger' metal binding domains is unknown. The human estrogen receptor protein contains two different C2-C2 type 'zinc-finger' sequences within its DNA-binding domain (ERDBD). Copper inhibits the function of this protein by mechanisms which remain unclear. We have used electrospray ionization mass spectrometry to evaluate directly the 71-residue ERDBD (K180-M250) in the absence and presence of Cu(II) ions. The ERDBD showed a high affinity for Cu and was completely occupied with 4 Cu bound; each Cu ion was evidently bound to only two ligand residues (net loss of only 2 Da per bound Cu). The Cu binding stoichiometry was confirmed by atomic absorption. These results (i) provide the first direct physical evidence for the ability of the estrogen receptor DNA-binding domain to bind Cu and (ii) document a twofold difference in the Zn- and Cu-binding capacity. Differences in the ERDBD domain structure with bound Zn and Cu are predicted. Given the relative intracellular contents of Zn and Cu, our findings demonstrate the need to investigate further the Cu occupancy of this and other zinc-finger domains both in vitro and in vivo.

  16. A Novel Prokaryotic Green Fluorescent Protein Expression System for Testing Gene Editing Tools Activity Like Zinc Finger Nuclease.

    Science.gov (United States)

    Sabzehei, Faezeh; Kouhpayeh, Shirin; Dastjerdeh, Mansoureh Shahbazi; Khanahmad, Hossein; Salehi, Rasoul; Naderi, Shamsi; Taghizadeh, Razieh; Rabiei, Parisa; Hejazi, Zahra; Shariati, Laleh

    2017-01-01

    Gene editing technology has created a revolution in the field of genome editing. The three of the most famous tools in gene editing technology are zinc finger nucleases (ZFNs), transcription activator-like effector nucleases, clustered regularly interspaced short palindromic repeats (CRISPR), and CRISPR-associated systems. As their predictable nature, it is necessary to assess their efficiency. There are some methods for this purpose, but most of them are time labor and complicated. Here, we introduce a new prokaryotic reporter system, which makes it possible to evaluate the efficiency of gene editing tools faster, cheaper, and simpler than previous methods. At first, the target sites of a custom ZFN, which is designed against a segment of ampicillin resistance gene, were cloned on both sides of green fluorescent protein (GFP) gene to construct pPRO-GFP. Then pPRO-GFP was transformed into Escherichia coli TOP10F' that contains pZFN (contains expression cassette of a ZFN against ampicillin resistant gene), or p15A-KanaR as a negative control. The transformed bacteria were cultured on three separate media that contained ampicillin, kanamycin, and ampicillin + kanamycin; then the resulted colonies were assessed by flow cytometry. The results of flow cytometry showed a significant difference between the case (bacteria contain pZFN) and control (bacteria contain p15A, KanaR) in MFI (Mean Fluorescence Intensity) ( P < 0.0001). According to ZFN efficiency, it can bind and cut the target sites, the bilateral cutting can affect the intensity of GFP fluorescence. Our flow cytometry results showed that this ZFN could reduce the intensity of GFP color and colony count of bacteria in media containing amp + kana versus control sample.

  17. Proviral HIV-genome-wide and pol-gene specific Zinc Finger Nucleases: Usability for targeted HIV gene therapy

    Directory of Open Access Journals (Sweden)

    Wayengera Misaki

    2011-07-01

    Full Text Available Abstract Background Infection with HIV, which culminates in the establishment of a latent proviral reservoir, presents formidable challenges for ultimate cure. Building on the hypothesis that ex-vivo or even in-vivo abolition or disruption of HIV-gene/genome-action by target mutagenesis or excision can irreversibly abrogate HIV's innate fitness to replicate and survive, we previously identified the isoschizomeric bacteria restriction enzymes (REases AcsI and ApoI as potent cleavers of the HIV-pol gene (11 and 9 times in HIV-1 and 2, respectively. However, both enzymes, along with others found to cleave across the entire HIV-1 genome, slice (SX at palindromic sequences that are prevalent within the human genome and thereby pose the risk of host genome toxicity. A long-term goal in the field of R-M enzymatic therapeutics has thus been to generate synthetic restriction endonucleases with longer recognition sites limited in specificity to HIV. We aimed (i to assemble and construct zinc finger arrays and nucleases (ZFN with either proviral-HIV-pol gene or proviral-HIV-1 whole-genome specificity respectively, and (ii to advance a model for pre-clinically testing lentiviral vectors (LV that deliver and transduce either ZFN genotype. Methods and Results First, we computationally generated the consensus sequences of (a 114 dsDNA-binding zinc finger (Zif arrays (ZFAs or ZifHIV-pol and (b two zinc-finger nucleases (ZFNs which, unlike the AcsI and ApoI homeodomains, possess specificity to >18 base-pair sequences uniquely present within the HIV-pol gene (ZifHIV-polFN. Another 15 ZFNs targeting >18 bp sequences within the complete HIV-1 proviral genome were constructed (ZifHIV-1FN. Second, a model for constructing lentiviral vectors (LVs that deliver and transduce a diploid copy of either ZifHIV-polFN or ZifHIV-1FN chimeric genes (termed LV- 2xZifHIV-polFN and LV- 2xZifHIV-1FN, respectively is proposed. Third, two preclinical models for controlled testing of

  18. Proviral HIV-genome-wide and pol-gene specific zinc finger nucleases: usability for targeted HIV gene therapy.

    Science.gov (United States)

    Wayengera, Misaki

    2011-07-22

    Infection with HIV, which culminates in the establishment of a latent proviral reservoir, presents formidable challenges for ultimate cure. Building on the hypothesis that ex-vivo or even in-vivo abolition or disruption of HIV-gene/genome-action by target mutagenesis or excision can irreversibly abrogate HIV's innate fitness to replicate and survive, we previously identified the isoschizomeric bacteria restriction enzymes (REases) AcsI and ApoI as potent cleavers of the HIV-pol gene (11 and 9 times in HIV-1 and 2, respectively). However, both enzymes, along with others found to cleave across the entire HIV-1 genome, slice (SX) at palindromic sequences that are prevalent within the human genome and thereby pose the risk of host genome toxicity. A long-term goal in the field of R-M enzymatic therapeutics has thus been to generate synthetic restriction endonucleases with longer recognition sites limited in specificity to HIV. We aimed (i) to assemble and construct zinc finger arrays and nucleases (ZFN) with either proviral-HIV-pol gene or proviral-HIV-1 whole-genome specificity respectively, and (ii) to advance a model for pre-clinically testing lentiviral vectors (LV) that deliver and transduce either ZFN genotype. First, we computationally generated the consensus sequences of (a) 114 dsDNA-binding zinc finger (Zif) arrays (ZFAs or ZifHIV-pol) and (b) two zinc-finger nucleases (ZFNs) which, unlike the AcsI and ApoI homeodomains, possess specificity to >18 base-pair sequences uniquely present within the HIV-pol gene (ZifHIV-polFN). Another 15 ZFNs targeting >18 bp sequences within the complete HIV-1 proviral genome were constructed (ZifHIV-1FN). Second, a model for constructing lentiviral vectors (LVs) that deliver and transduce a diploid copy of either ZifHIV-polFN or ZifHIV-1FN chimeric genes (termed LV- 2xZifHIV-polFN and LV- 2xZifHIV-1FN, respectively) is proposed. Third, two preclinical models for controlled testing of the safety and efficacy of either of these

  19. Promiscuous and specific phospholipid binding by domains in ZAC, a membrane-associated Arabidopsis protein with an ARF GAP zinc finger and a C2 domain

    DEFF Research Database (Denmark)

    Jensen, R B; Lykke-Andersen, K; Frandsen, G I

    2000-01-01

    domain are separated by a region without homology to other known proteins. Zac promoter/beta-glucuronidase reporter assays revealed highest expression levels in flowering tissue, rosettes and roots. ZAC protein was immuno-detected mainly in association with membranes and fractionated with Golgi...... and plasma membrane marker proteins. ZAC membrane association was confirmed in assays by a fusion between ZAC and the green fluorescence protein and prompted an analysis of the in vitro phospholipid-binding ability of ZAC. Phospholipid dot-blot and liposome-binding assays indicated that fusion proteins...... zinc finger motif, but proteins containing only the zinc finger domain (residues 1-105) did not bind PI-3-P. Recombinant ZAC possessed GTPase-activating activity on Arabidopsis ARF proteins. These data identify a novel PI-3-P-binding protein region and thereby provide evidence...

  20. Selection for a Zinc-Finger Protein Contributes to Seed Oil Increase during Soybean Domestication1[OPEN

    Science.gov (United States)

    Li, Qing-Tian; Lu, Xiang; Song, Qing-Xin; Chen, Hao-Wei; Wei, Wei; Tao, Jian-Jun; Ma, Biao; Bi, Ying-Dong; Li, Wei; Lai, Yong-Cai; Shui, Guang-Hou; Chen, Shou-Yi

    2017-01-01

    Seed oil is a momentous agronomical trait of soybean (Glycine max) targeted by domestication in breeding. Although multiple oil-related genes have been uncovered, knowledge of the regulatory mechanism of seed oil biosynthesis is currently limited. We demonstrate that the seed-preferred gene GmZF351, encoding a tandem CCCH zinc finger protein, is selected during domestication. Further analysis shows that GmZF351 facilitates oil accumulation by directly activating WRINKLED1, BIOTIN CARBOXYL CARRIER PROTEIN2, 3-KETOACYL-ACYL CARRIER PROTEIN SYNTHASE III, DIACYLGLYCEROL O-ACYLTRANSFERASE1, and OLEOSIN2 in transgenic Arabidopsis (Arabidopsis thaliana) seeds. Overexpression of GmZF351 in transgenic soybean also activates lipid biosynthesis genes, thereby accelerating seed oil accumulation. The ZF351 haplotype from the cultivated soybean group and the wild soybean (Glycine soja) subgroup III correlates well with high gene expression level, seed oil contents and promoter activity, suggesting that selection of GmZF351 expression leads to increased seed oil content in cultivated soybean. Our study provides novel insights into the regulatory mechanism for seed oil accumulation, and the manipulation of GmZF351 may have great potential in the improvement of oil production in soybean and other related crops. PMID:28184009

  1. X-ray Absorption Spectroscopy Combined with Time-Dependent Density Functional Theory Elucidates Differential Substitution Pathways of Au(I) and Au(III) with Zinc Fingers.

    Science.gov (United States)

    Abbehausen, Camilla; de Paiva, Raphael Enoque Ferraz; Bjornsson, Ragnar; Gomes, Saulo Quintana; Du, Zhifeng; Corbi, Pedro Paulo; Lima, Frederico Alves; Farrell, Nicholas

    2018-01-02

    A combination of two elements' (Au, Zn) X-ray absorption spectroscopy (XAS) and time-dependent density functional theory (TD-DFT) allowed the elucidation of differential substitution pathways of Au(I) and Au(III) compounds reacting with biologically relevant zinc fingers (ZnFs). Gold L 3 -edge XAS probed the interaction of gold and the C-terminal Cys 2 HisCys finger of the HIV-1 nucleocapsid protein NCp7, and the Cys 2 His 2 human transcription factor Sp1. The use of model compounds helped assign oxidation states and the identity of the gold-bound ligands. The computational studies accurately reproduced the experimental XAS spectra and allowed the proposition of structural models for the interaction products at early time points. The direct electrophilic attack on the ZnF by the highly thiophilic Au(I) resulted in a linear P-Au-Cys coordination sphere after zinc ejection whereas for the Sp1, loss of PEt 3 results in linear Cys-Au-Cys or Cys-Au-His arrangements. Reactions with Au(III) compounds, on the other hand, showed multiple binding modes. Prompt reaction between [AuCl(dien)] 2+ and [Au(dien)(DMAP)] 3+ with Sp1 showed a partially reduced Au center and a final linear His-Au-His coordination. Differently, in the presence of NCp7, [AuCl(dien)] 2+ readily reduces to Au(I) and changes from square-planar to linear geometry with Cys-Au-His coordination, while [Au(dien)(DMAP)] 3+ initially maintains its Au(III) oxidation state and square-planar geometry and the same first coordination sphere. The latter is the first observation of a "noncovalent" interaction of a Au(III) complex with a zinc finger and confirms early hypotheses that stabilization of Au(III) occurs with N-donor ligands. Modification of the zinc coordination sphere, suggesting full or partial zinc ejection, is observed in all cases, and for [Au(dien)(DMAP)] 3+ this represents a novel mechanism for nucleocapsid inactivation. The combination of XAS and TD-DFT presents the first direct experimental

  2. A FYVE zinc finger domain protein specifically links mRNA transport to endosome trafficking.

    Science.gov (United States)

    Pohlmann, Thomas; Baumann, Sebastian; Haag, Carl; Albrecht, Mario; Feldbrügge, Michael

    2015-05-18

    An emerging theme in cellular logistics is the close connection between mRNA and membrane trafficking. A prominent example is the microtubule-dependent transport of mRNAs and associated ribosomes on endosomes. This coordinated process is crucial for correct septin filamentation and efficient growth of polarised cells, such as fungal hyphae. Despite detailed knowledge on the key RNA-binding protein and the molecular motors involved, it is unclear how mRNAs are connected to membranes during transport. Here, we identify a novel factor containing a FYVE zinc finger domain for interaction with endosomal lipids and a new PAM2-like domain required for interaction with the MLLE domain of the key RNA-binding protein. Consistently, loss of this FYVE domain protein leads to specific defects in mRNA, ribosome, and septin transport without affecting general functions of endosomes or their movement. Hence, this is the first endosomal component specific for mRNP trafficking uncovering a new mechanism to couple mRNPs to endosomes.

  3. C3HC4-type RING finger protein NbZFP1 is involved in growth and fruit development in Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Wenxian Wu

    Full Text Available C3HC4-type RING finger proteins constitute a large family in the plant kingdom and play important roles in various physiological processes of plant life. In this study, a C3HC4-type zinc finger gene was isolated from Nicotiana benthamiana. Sequence analysis indicated that the gene encodes a 24-kDa protein with 191 amino acids containing one typical C3HC4-type zinc finger domain; this gene was named NbZFP1. Transient expression of pGDG-NbZFP1 demonstrated that NbZFP1 was localized to the chloroplast, especially in the chloroplasts of cells surrounding leaf stomata. Virus-induced gene silencing (VIGS analysis indicated that silencing of NbZFP1 hampered fruit development, although the height of the plants was normal. An overexpression construct was then designed and transferred into Nicotiana benthamiana, and PCR and Southern blot showed that the NbZFP1 gene was successfully integrated into the Nicotiana benthamiana genome. The transgenic lines showed typical compactness, with a short internode length and sturdy stems. This is the first report describing the function of a C3HC4-type RING finger protein in tobacco.

  4. The zinc finger E-box-binding homeobox 1 (Zeb1) promotes the conversion of mouse fibroblasts into functional neurons.

    Science.gov (United States)

    Yan, Long; Li, Yue; Shi, Zixiao; Lu, Xiaoyin; Ma, Jiao; Hu, Baoyang; Jiao, Jianwei; Wang, Hongmei

    2017-08-04

    The zinc finger E-box-binding transcription factor Zeb1 plays a pivotal role in the epithelial-mesenchymal transition. Numerous studies have focused on the molecular mechanisms by which Zeb1 contributes to this process. However, the functions of Zeb1 beyond the epithelial-mesenchymal transition remain largely elusive. Using a transdifferentiation system to convert mouse embryonic fibroblasts (MEFs) into functional neurons via the neuronal transcription factors achaete-scute family bHLH (basic helix-loop-helix) transcription factor1 ( Ascl1 ), POU class 3 homeobox 2 (POU3F2/ Brn2 ), and neurogenin 2 (Neurog2, Ngn2 ) (ABN), we found that Zeb1 was up-regulated during the early stages of transdifferentiation. Knocking down Zeb1 dramatically attenuated the transdifferentiation efficiency, whereas Zeb1 overexpression obviously increased the efficiency of transdifferentiation from MEFs to neurons. Interestingly, Zeb1 improved the transdifferentiation efficiency induced by even a single transcription factor ( e.g. Asc1 or Ngn2 ). Zeb1 also rapidly promoted the maturation of induced neuron cells to functional neurons and improved the formation of neuronal patterns and electrophysiological characteristics. Induced neuron cells could form functional synapse in vivo after transplantation. Genome-wide RNA arrays showed that Zeb1 overexpression up-regulated the expression of neuron-specific genes and down-regulated the expression of epithelial-specific genes during conversion. Taken together, our results reveal a new role for Zeb1 in the transdifferentiation of MEFs into neurons. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. OsDOG, a gibberellin-induced A20/AN1 zinc-finger protein, negatively regulates gibberellin-mediated cell elongation in rice.

    Science.gov (United States)

    Liu, Yaju; Xu, Yunyuan; Xiao, Jun; Ma, Qibin; Li, Dan; Xue, Zhen; Chong, Kang

    2011-07-01

    The A20/AN1 zinc-finger proteins (ZFPs) play pivotal roles in animal immune responses and plant stress responses. From previous gibberellin (GA) microarray data and A20/AN1 ZFP family member association, we chose Oryza sativa dwarf rice with overexpression of gibberellin-induced gene (OsDOG) to examine its function in the GA pathway. OsDOG was induced by gibberellic acid (GA(3)) and repressed by the GA-synthesis inhibitor paclobutrazol. Different transgenic lines with constitutive expression of OsDOG showed dwarf phenotypes due to deficiency of cell elongation. Additional GA(1) and real-time PCR quantitative assay analyses confirmed that the decrease of GA(1) in the overexpression lines resulted from reduced expression of GA3ox2 and enhanced expression of GA2ox1 and GA2ox3. Adding exogenous GA rescued the constitutive expression phenotypes of the transgenic lines. OsDOG has a novel function in regulating GA homeostasis and in negative maintenance of plant cell elongation in rice. Copyright © 2011 Elsevier GmbH. All rights reserved.

  6. Functional promoter variant in zinc finger protein 202 predicts severe atherosclerosis and ischemic heart disease

    DEFF Research Database (Denmark)

    Frikke-Schmidt, R.; Nordestgaard, Børge; Grande, Peer

    2008-01-01

    Objectives This study was designed to test the hypotheses that single nucleotide polymorphisms ( SNPs), in zinc finger protein 202 ( ZNF202), predict severe atherosclerosis and ischemic heart disease ( IHD). Background ZNF202 is a transcriptional repressor controlling promoter elements in genes...... involved in vascular maintenance and lipid metabolism. Methods We first determined genotype association for 9 ZNF202 SNPs with severe atherosclerosis ( ankle brachial index >0.7 vs. ...,998 controls. Finally, we determined whether g. -660A>G altered transcriptional activity of the ZNF202 promoter in vitro. Results Cross-sectionally, ZNF202 g. -660 GG versus AA homozygosity predicted an odds ratio for severe atherosclerosis of 2.01 ( 95% confidence interval [CI]: 1.34 to 3.01). Prospectively...

  7. The PR/SET Domain Zinc Finger Protein Prdm4 Regulates Gene Expression in Embryonic Stem Cells but Plays a Nonessential Role in the Developing Mouse Embryo

    Science.gov (United States)

    Bogani, Debora; Morgan, Marc A. J.; Nelson, Andrew C.; Costello, Ita; McGouran, Joanna F.; Kessler, Benedikt M.

    2013-01-01

    Prdm4 is a highly conserved member of the Prdm family of PR/SET domain zinc finger proteins. Many well-studied Prdm family members play critical roles in development and display striking loss-of-function phenotypes. Prdm4 functional contributions have yet to be characterized. Here, we describe its widespread expression in the early embryo and adult tissues. We demonstrate that DNA binding is exclusively mediated by the Prdm4 zinc finger domain, and we characterize its tripartite consensus sequence via SELEX (systematic evolution of ligands by exponential enrichment) and ChIP-seq (chromatin immunoprecipitation-sequencing) experiments. In embryonic stem cells (ESCs), Prdm4 regulates key pluripotency and differentiation pathways. Two independent strategies, namely, targeted deletion of the zinc finger domain and generation of a EUCOMM LacZ reporter allele, resulted in functional null alleles. However, homozygous mutant embryos develop normally and adults are healthy and fertile. Collectively, these results strongly suggest that Prdm4 functions redundantly with other transcriptional partners to cooperatively regulate gene expression in the embryo and adult animal. PMID:23918801

  8. A FYVE zinc finger domain protein specifically links mRNA transport to endosome trafficking

    Science.gov (United States)

    Pohlmann, Thomas; Baumann, Sebastian; Haag, Carl; Albrecht, Mario; Feldbrügge, Michael

    2015-01-01

    An emerging theme in cellular logistics is the close connection between mRNA and membrane trafficking. A prominent example is the microtubule-dependent transport of mRNAs and associated ribosomes on endosomes. This coordinated process is crucial for correct septin filamentation and efficient growth of polarised cells, such as fungal hyphae. Despite detailed knowledge on the key RNA-binding protein and the molecular motors involved, it is unclear how mRNAs are connected to membranes during transport. Here, we identify a novel factor containing a FYVE zinc finger domain for interaction with endosomal lipids and a new PAM2-like domain required for interaction with the MLLE domain of the key RNA-binding protein. Consistently, loss of this FYVE domain protein leads to specific defects in mRNA, ribosome, and septin transport without affecting general functions of endosomes or their movement. Hence, this is the first endosomal component specific for mRNP trafficking uncovering a new mechanism to couple mRNPs to endosomes. DOI: http://dx.doi.org/10.7554/eLife.06041.001 PMID:25985087

  9. Human ribosomal protein L37 has motifs predicting serine/threonine phosphorylation and a zinc-finger domain.

    Science.gov (United States)

    Barnard, G F; Staniunas, R J; Puder, M; Steele, G D; Chen, L B

    1994-08-02

    Ribosomal protein L37 mRNA is overexpressed in colon cancer. The nucleotide sequences of human L37 from several tumor and normal, colon and liver cDNA sources were determined to be identical. L37 mRNA was approximately 375 nucleotides long encoding 97 amino acids with M(r) = 11,070, pI = 12.6, multiple potential serine/threonine phosphorylation sites and a zinc-finger domain. The human sequence is compared to other species.

  10. Gain, loss and divergence in primate zinc-finger genes: a rich resource for evolution of gene regulatory differences between species.

    Directory of Open Access Journals (Sweden)

    Katja Nowick

    Full Text Available The molecular changes underlying major phenotypic differences between humans and other primates are not well understood, but alterations in gene regulation are likely to play a major role. Here we performed a thorough evolutionary analysis of the largest family of primate transcription factors, the Krüppel-type zinc finger (KZNF gene family. We identified and curated gene and pseudogene models for KZNFs in three primate species, chimpanzee, orangutan and rhesus macaque, to allow for a comparison with the curated set of human KZNFs. We show that the recent evolutionary history of primate KZNFs has been complex, including many lineage-specific duplications and deletions. We found 213 species-specific KZNFs, among them 7 human-specific and 23 chimpanzee-specific genes. Two human-specific genes were validated experimentally. Ten genes have been lost in humans and 13 in chimpanzees, either through deletion or pseudogenization. We also identified 30 KZNF orthologs with human-specific and 42 with chimpanzee-specific sequence changes that are predicted to affect DNA binding properties of the proteins. Eleven of these genes show signatures of accelerated evolution, suggesting positive selection between humans and chimpanzees. During primate evolution the most extensive re-shaping of the KZNF repertoire, including most gene additions, pseudogenizations, and structural changes occurred within the subfamily homininae. Using zinc finger (ZNF binding predictions, we suggest potential impact these changes have had on human gene regulatory networks. The large species differences in this family of TFs stands in stark contrast to the overall high conservation of primate genomes and potentially represents a potent driver of primate evolution.

  11. Design of a colicin E7 based chimeric zinc-finger nuclease

    Science.gov (United States)

    Németh, Eszter; Schilli, Gabriella K.; Nagy, Gábor; Hasenhindl, Christoph; Gyurcsik, Béla; Oostenbrink, Chris

    2014-08-01

    Colicin E7 is a natural bacterial toxin. Its nuclease domain (NColE7) enters the target cell and kills it by digesting the nucleic acids. The HNH-motif as the catalytic centre of NColE7 at the C-terminus requires the positively charged N-terminal loop for the nuclease activity—offering opportunities for allosteric control in a NColE7-based artificial nuclease. Accordingly, four novel zinc finger nucleases were designed by computational methods exploiting the special structural features of NColE7. The constructed models were subjected to MD simulations. The comparison of structural stability and functional aspects showed that these models may function as safely controlled artificial nucleases. This study was complemented by random mutagenesis experiments identifying potentially important residues for NColE7 function outside the catalytic region.

  12. TIF1alpha: a possible link between KRAB zinc finger proteins and nuclear receptors

    DEFF Research Database (Denmark)

    Le Douarin, B; You, J; Nielsen, Anders Lade

    1998-01-01

    Ligand-induced gene activation by nuclear receptors (NRs) is thought to be mediated by transcriptional intermediary factors (TIFs), that interact with their ligand-dependent AF-2 activating domain. Included in the group of the putative AF-2 TIFs identified so far is TIF1alpha, a member of a new...... family of proteins which contains an N-terminal RBCC (RING finger-B boxes-coiled coil) motif and a C-terminal bromodomain preceded by a PHD finger. In addition to these conserved domains present in a number of transcriptional regulatory proteins, TIF1alpha was found to contain several protein......-protein interaction sites. Of these, one specifically interacts with NRs bound to their agonistic ligand and not with NR mutants that are defective in the AF-2 activity. Immediately adjacent to this 'NR box', TIF1alpha contains an interaction site for members of the chromatin organization modifier (chromo) family, HP...

  13. The zinc finger transcription factor 191 is required for early embryonic development and cell proliferation

    International Nuclear Information System (INIS)

    Li Jianzhong; Chen Xia; Yang Hua; Wang Shuiliang; Guo Baoyu; Yu Long; Wang Zhugang; Fu Jiliang

    2006-01-01

    Human zinc finger protein 191 (ZNF191/ZNF24) was cloned and characterized as a SCAN family member, which shows 94% identity to its mouse homologue zinc finger protein 191 (Zfp191). ZNF191 can specifically interact with an intronic polymorphic TCAT repeat (HUMTH01) in the tyrosine hydroxylase (TH) gene. Allelic variations of HUMTH01 have been stated to have a quantitative silencing effect on TH gene expression and to correlate with quantitative and qualitative changes in the binding by ZNF191. Zfp191 is widely expressed during embryonic development and in multiple tissues and organs in adult. To investigate the functions of Zfp191 in vivo, we have used homologous recombination to generate mice that are deficient in Zfp191. Heterozygous Zfp191 +/- mice are normal and fertile. Homozygous Zfp191 -/- embryos are severely retarded in development and die at approximately 7.5 days post-fertilization. Unexpectedly, in Zfp191 -/- and Zfp191 +/- embryos, TH gene expression is not affected. Blastocyst outgrowth experiments and the RNA interference-mediated knockdown of ZNF191 in cultured cells revealed an essential role for Zfp191 in cell proliferation. In further agreement with this function, no viable Zfp191 -/- cell lines were obtained by derivation of embryonic stem (ES) cells from blastocysts of Zfp191 +/- intercrosses or by forced homogenotization of heterozygous ES cells at high concentrations of G418. These data show that Zfp191 is indispensable for early embryonic development and cell proliferation

  14. Sda1, a Cys2-His2 zinc finger transcription factor, is involved in polyol metabolism and fumonisin B1 production in Fusarium verticillioides.

    Directory of Open Access Journals (Sweden)

    Martha Malapi-Wight

    Full Text Available The ubiquitous ascomycete Fusarium verticillioides causes ear rot and stalk rot of maize, both of which reduce grain quality and yield. Additionally, F. verticillioides produces the mycotoxin fumonisin B1 (FB1 during infection of maize kernels, and thus potentially compromises human and animal health. The current knowledge is fragmentary regarding the regulation of FB1 biosynthesis, particularly when considering interplay with environmental factors such as nutrient availability. In this study, SDA1 of F. verticillioides, predicted to encode a Cys-2 His-2 zinc finger transcription factor, was shown to play a key role in catabolizing select carbon sources. Growth of the SDA1 knock-out mutant (Δsda1 was completely inhibited when sorbitol was the sole carbon source and was severely impaired when exclusively provided mannitol or glycerol. Deletion of SDA1 unexpectedly increased FB1 biosynthesis, but reduced arabitol and mannitol biosynthesis, as compared to the wild-type progenitor. Trichoderma reesei ACE1, a regulator of cellulase and xylanase expression, complemented the F. verticillioides Δsda1 mutant, which indicates that Ace1 and Sda1 are functional orthologs. Taken together, the data indicate that Sda1 is a transcriptional regulator of carbon metabolism and toxin production in F. verticillioides.

  15. Structural and functional organization of the HF.10 human zinc finger gene (ZNF35) located on chromosome 3p21-p22

    DEFF Research Database (Denmark)

    Lanfrancone, L; Pengue, G; Pandolfi, P P

    1992-01-01

    We report the structural and functional characterization of the HF.10 zinc finger gene (ZNF35) in normal human cells, as well as a processed pseudogene. The HF.10 gene spans about 13 kb and it is interrupted by three introns. All 11 zinc finger DNA-binding domains are contiguously encoded within...... and partial nucleotide sequencing of the HF.10 pseudogene indicated that it has arisen by retroposition of spliced HF.10 mRNA. In situ hybridization experiments revealed that both the functional locus and the pseudogene map to chromosome 3p21p22, a region that is frequently deleted in small cell lung...... and renal carcinomas. Hybridization of the HF.10 gene and the HF.10 pseudogene DNA probes to metaphases from a small cell lung carcinoma cell line with the 3p deletion revealed that both loci are part of the deleted chromosome region....

  16. Rod-like zinc oxide constructed by nanoparticles: synthesis, characterization and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Jia Zhigang [Chemisty Department, Zhejiang University, Hangzhou 310027 (China); Yue Linhai [Chemisty Department, Zhejiang University, Hangzhou 310027 (China)], E-mail: zjchem_yue@126.com; Zheng Yifan [College of Chemical Engineering and Materials, Zhejiang University of Technology, Hangzhou 310014 (China); Xu Zhude [Chemisty Department, Zhejiang University, Hangzhou 310027 (China)

    2008-01-15

    One-dimensional (1D) rod-like structure of znic oxide constructed by nanoparticles was synthesized by the thermal treatment of zinc oxalate sub-micron rods, which were obtained via alcohol thermal process. The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and photoluminescence (PL) spectrum. SEM and TEM show that the morphology of zinc oxalate dihydrate precursor is rod-like, about 400 nm in average diameter and 3 {mu}m in average length. The zinc oxide obtained by annealing zinc oxalate exhibits 1D rod-like structure constructed by ZnO nanoparticles in original direction of the precursor. The room-temperature photoluminescence spectrum of as-prepared ZnO shows UV emission around 398 nm and a diverse visible emission peaks indicating that there are deep level defects in ZnO nanoparticles.

  17. Rod-like zinc oxide constructed by nanoparticles: synthesis, characterization and optical properties

    International Nuclear Information System (INIS)

    Jia Zhigang; Yue Linhai; Zheng Yifan; Xu Zhude

    2008-01-01

    One-dimensional (1D) rod-like structure of znic oxide constructed by nanoparticles was synthesized by the thermal treatment of zinc oxalate sub-micron rods, which were obtained via alcohol thermal process. The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and photoluminescence (PL) spectrum. SEM and TEM show that the morphology of zinc oxalate dihydrate precursor is rod-like, about 400 nm in average diameter and 3 μm in average length. The zinc oxide obtained by annealing zinc oxalate exhibits 1D rod-like structure constructed by ZnO nanoparticles in original direction of the precursor. The room-temperature photoluminescence spectrum of as-prepared ZnO shows UV emission around 398 nm and a diverse visible emission peaks indicating that there are deep level defects in ZnO nanoparticles

  18. Zinc finger arrays binding human papillomavirus types 16 and 18 genomic DNA: precursors of gene-therapeutics for in-situ reversal of associated cervical neoplasia

    Directory of Open Access Journals (Sweden)

    Wayengera Misaki

    2012-07-01

    Full Text Available Abstract Background Human papillomavirus (HPV types 16 and 18 are the high-risk, sexually transmitted infectious causes of most cervical intraepithelial neoplasias (CIN or cancers. While efficacious vaccines to reduce the sexual acquisition of these high-risk HPVs have recently been introduced, no virus-targeted therapies exist for those already exposed and infected. Considering the oncogenic role of the transforming (E6 and E7 genes of high-risk HPVs in the slow pathogenesis of cervical cancer, we hypothesize that timely disruption or abolition of HPV genome expression within pre-cancerous lesions identified at screening may reverse neoplasia. We aimed to derive model zinc finger nucleases (ZFNs for mutagenesis of the genomes of two high-risk HPV (types 16 & 18. Methods and results Using ZiFiT software and the complete genomes of HPV types16 and 18, we computationally generated the consensus amino acid sequences of the DNA-binding domains (F1, F2, & F3 of (i 296 & 327 contextually unpaired (or single three zinc-finger arrays (sZFAs and (ii 9 & 13 contextually paired (left and right three- zinc-finger arrays (pZFAs that bind genomic DNA of HPV-types 16 and 18 respectively, inclusive of the E7 gene (s/pZFAHpV/E7. In the absence of contextually paired three-zinc-finger arrays (pZFAs that bind DNA corresponding to the genomic context of the E6 gene of either HPV type, we derived the DNA binding domains of another set of 9 & 14 contextually unpaired E6 gene-binding ZFAs (sZFAE6 to aid the future quest for paired ZFAs to target E6 gene sequences in both HPV types studied (pZFAE6. This paper presents models for (i synthesis of hybrid ZFNs that cleave within the genomic DNA of either HPV type, by linking the gene sequences of the DNA-cleavage domain of the FokI endonuclease FN to the gene sequences of a member of the paired-HPV-binding ZFAs (pZFAHpV/E7 + FN, and (ii delivery of the same into precancerous lesions using HPV-derived viral plasmids or

  19. Knockout of Myostatin by Zinc-finger Nuclease in Sheep Fibroblasts and Embryos

    Directory of Open Access Journals (Sweden)

    Xuemei Zhang

    2016-10-01

    Full Text Available Myostatin (MSTN can negatively regulate the growth and development of skeletal muscle, and natural mutations can cause “double-muscling” trait in animals. In order to block the inhibiting effect of MSTN on muscle growth, we transferred zinc-finger nucleases (ZFN which targeted sheep MSTN gene into cultured fibroblasts. Gene targeted colonies were isolated from transfected fibroblasts by serial dilution culture and screened by sequencing. Two colonies were identified with mono-allele mutation and one colony with bi-allelic deletion. Further, we introduced the MSTN-ZFN mRNA into sheep embryos by microinjection. Thirteen of thirty-seven parthenogenetic embryos were targeted by ZFN, with the efficiency of 35%. Our work established the technical foundation for generation of MSTN gene editing sheep by somatic cloning and microinjection ZFN into embryos.

  20. Zinc Finger Takes on a Whole New Meaning: Reducing and Monitoring Zinc Blanks in the Isotope Lab

    Science.gov (United States)

    Wilkes, E. B.; Wasylenki, L. E.; Anbar, A. D.

    2010-12-01

    In terms of avoiding contamination, zinc is one of the most difficult elements to study isotopically. The reason for this is that zinc stearate is a very common mold release agent in the production of plastics, including those most often used in isotope geochemistry clean labs. While polyethylene bottles, polypropylene centrifuge tubes, pipette tips, and Kimwipes are all potential sources of contaminant zinc, by far the largest amount of zinc is introduced to the laboratory by gloves. Most items can be effectively rid of zinc by soaking in dilute hydrochloric acid, but gloves cannot be cleaned easily, and use of gloves can quickly lead to contamination on many surfaces throughout the lab. We recently conducted several experiments in which dissolved zinc was partly adsorbed onto synthetic Mn oxyhydroxide particles. The dissolved and adsorbed pools were separated by filtration, purified with ion exchange chemistry, and analyzed for isotope composition by MC-ICP-MS. We used a commercially purchased ICP standard solution both as our standard (delta66/64Zn = 0) and as the source of the zinc in the experiments. Whenever gloves were worn during purification, process blanks contained as much as 150 ng Zn, and both the dissolved and adsorbed pools of zinc came out enriched in heavy isotopes relative to the starting pool, contrary to our expectation of mass balance. When gloves were not worn, blanks were brands of vinyl gloves, including one brand recommended to us for being “low” in zinc, measured +10‰ relative to our standard. We therefore concluded that glove zinc contaminated most of our experimental samples. We were only able to see such clear evidence of contamination because (1) we were doing an experiment in which we expected one light and one heavy pool of zinc compared to our standard, and (2) we happened to use an ICP standard solution for delta = 0 that is strongly enriched in light isotopes relative to both brands of gloves. We caution others who measure

  1. Gene repair of an Usher syndrome causing mutation by zinc-finger nuclease mediated homologous recombination.

    Science.gov (United States)

    Overlack, Nora; Goldmann, Tobias; Wolfrum, Uwe; Nagel-Wolfrum, Kerstin

    2012-06-26

    Human Usher syndrome (USH) is the most frequent cause of inherited deaf-blindness. It is clinically and genetically heterogeneous, assigned to three clinical types of which the most severe type is USH1. No effective treatment for the ophthalmic component of USH exists. Gene augmentation is an attractive strategy for hereditary retinal diseases. However, several USH genes, like USH1C, are expressed in various isoforms, hampering gene augmentation. As an alternative treatment strategy, we applied the zinc-finger nuclease (ZFN) technology for targeted gene repair of an USH1C, causing mutation by homologous recombination. We designed ZFNs customized for the p.R31X nonsense mutation in Ush1c. We evaluated ZFNs for DNA cleavage capability and analyzed ZFNs biocompatibilities by XTT assays. We demonstrated ZFNs mediated gene repair on genomic level by digestion assays and DNA sequencing, and on protein level by indirect immunofluorescence and Western blot analyses. The specifically designed ZFNs did not show cytotoxic effects in a p.R31X cell line. We demonstrated that ZFN induced cleavage of their target sequence. We showed that simultaneous application of ZFN and rescue DNA induced gene repair of the disease-causing mutation on the genomic level, resulting in recovery of protein expression. In our present study, we analyzed for the first time ZFN-activated gene repair of an USH gene. The data highlight the ability of ZFNs to induce targeted homologous recombination and mediate gene repair in USH. We provide further evidence that the ZFN technology holds great potential to recover disease-causing mutations in inherited retinal disorders.

  2. Zinc finger protein 598 inhibits cell survival by promoting UV-induced apoptosis.

    Science.gov (United States)

    Yang, Qiaohong; Gupta, Romi

    2018-01-19

    UV is one of the major causes of DNA damage induced apoptosis. However, cancer cells adopt alternative mechanisms to evade UV-induced apoptosis. To identify factors that protect cancer cells from UV-induced apoptosis, we performed a genome wide short-hairpin RNA (shRNA) screen, which identified Zinc finger protein 598 (ZNF598) as a key regulator of UV-induced apoptosis. Here, we show that UV irradiation transcriptionally upregulates ZNF598 expression. Additionally, ZNF598 knockdown in cancer cells inhibited UV-induced apoptosis. In our study, we observe that ELK1 mRNA level as well as phosphorylated ELK1 levels was up regulated upon UV irradiation, which was necessary for UV irradiation induced upregulation of ZNF598. Cells expressing ELK1 shRNA were also resistant to UV-induced apoptosis, and phenocopy ZNF598 knockdown. Upon further investigation, we found that ZNF598 knockdown inhibits UV-induced apoptotic gene expression, which matches with decrease in percentage of annexin V positive cell. Similarly, ectopic expression of ZNF598 promoted apoptotic gene expression and also increased annexin V positive cells. Collectively, these results demonstrate that ZNF598 is a UV irradiation regulated gene and its loss results in resistance to UV-induced apoptosis.

  3. Alterations in protein kinase C activity and processing during zinc-deficiency-induced cell death.

    Science.gov (United States)

    Chou, Susan S; Clegg, Michael S; Momma, Tony Y; Niles, Brad J; Duffy, Jodie Y; Daston, George P; Keen, Carl L

    2004-10-01

    Protein kinases C (PKCs) are a family of serine/threonine kinases that are critical for signal transduction pathways involved in growth, differentiation and cell death. All PKC isoforms have four conserved domains, C1-C4. The C1 domain contains cysteine-rich finger-like motifs, which bind two zinc atoms. The zinc-finger motifs modulate diacylglycerol binding; thus, intracellular zinc concentrations could influence the activity and localization of PKC family members. 3T3 cells were cultured in zinc-deficient or zinc-supplemented medium for up to 32 h. Cells cultured in zinc-deficient medium had decreased zinc content, lowered cytosolic classical PKC activity, increased caspase-3 processing and activity, and reduced cell number. Zinc-deficient cytosols had decreased activity and expression levels of PKC-alpha, whereas PKC-alpha phosphorylation was not altered. Inhibition of PKC-alpha with Gö6976 had no effect on cell number in the zinc-deficient group. Proteolysis of the novel PKC family member, PKC-delta, to its 40-kDa catalytic fragment occurred in cells cultured in the zinc-deficient medium. Occurrence of the PKC-delta fragment in mitochondria was co-incident with caspase-3 activation. Addition of the PKC-delta inhibitor, rottlerin, or zinc to deficient medium reduced or eliminated proteolysis of PKC-delta, activated caspase-3 and restored cell number. Inhibition of caspase-3 processing by Z-DQMD-FMK (Z-Asp-Gln-Met-Asp-fluoromethylketone) did not restore cell number in the zinc-deficient group, but resulted in processing of full-length PKC-delta to a 56-kDa fragment. These results support the concept that intracellular zinc concentrations influence PKC activity and processing, and that zinc-deficiency-induced apoptosis occurs in part through PKC-dependent pathways.

  4. Frequency of inflammatory-like MR imaging findings in asymptomatic fingers of healthy volunteers

    International Nuclear Information System (INIS)

    Agten, Christoph A.; Rosskopf, Andrea B.; Jonczy, Maciej; Pfirrmann, Christian W.A.; Buck, Florian M.; Brunner, Florian

    2018-01-01

    To describe the frequency of inflammatory-like findings on MR imaging in asymptomatic volunteers and compare them with patients with known rheumatoid arthritis and psoriatic arthritis. MR images of fingers in 42 asymptomatic volunteers and 33 patients with rheumatoid/psoriatic arthritis were analyzed. The Outcome Measures in Rheumatology Clinical Trials (OMERACT) Rheumatoid/Psoriatic Arthritis MRI Scoring System (RAMRIS/PsAMRIS) and tenosynovitis scoring system were used to assess: bone marrow edema (BME), erosions, tendon sheath fluid/tenosynovitis, joint effusion, and soft-tissue edema. Findings and scores were compared between volunteers and patients. Inter-reader agreement was calculated (intraclass correlation coefficients, ICC). In volunteers, tendon sheath fluid was very common in at least one location (42/42 volunteers for reader 1, 34/42 volunteers for reader 2). BME, erosions, joint effusion, and soft-tissue edema were absent (except one BME in the 3rd proximal phalanx for reader 1). Tendon sheath fluid scores in volunteers and tenosynovitis scores in patients were high (reader 1, 7.17 and 5.39; reader 2, 2.31 and 5.45). Overall, inter-reader agreement was substantial (ICC = 0.696-0.844), except for tendon sheath fluid (ICC = 0.258). Fluid in the finger flexor tendon sheaths may be a normal finding and without gadolinium administration should not be interpreted as tenosynovitis. Bone marrow edema, erosions, joint effusion, and soft-tissue edema in the fingers most likely reflect pathology if present. (orig.)

  5. Frequency of inflammatory-like MR imaging findings in asymptomatic fingers of healthy volunteers

    Energy Technology Data Exchange (ETDEWEB)

    Agten, Christoph A.; Rosskopf, Andrea B.; Jonczy, Maciej; Pfirrmann, Christian W.A.; Buck, Florian M. [University Hospital Balgrist, Radiology, Zurich (Switzerland); University of Zurich, Faculty of Medicine, Zurich (Switzerland); Brunner, Florian [University of Zurich, Faculty of Medicine, Zurich (Switzerland); University Hospital Balgrist, Department of Physical Medicine and Rheumatology, Zurich (Switzerland)

    2018-02-15

    To describe the frequency of inflammatory-like findings on MR imaging in asymptomatic volunteers and compare them with patients with known rheumatoid arthritis and psoriatic arthritis. MR images of fingers in 42 asymptomatic volunteers and 33 patients with rheumatoid/psoriatic arthritis were analyzed. The Outcome Measures in Rheumatology Clinical Trials (OMERACT) Rheumatoid/Psoriatic Arthritis MRI Scoring System (RAMRIS/PsAMRIS) and tenosynovitis scoring system were used to assess: bone marrow edema (BME), erosions, tendon sheath fluid/tenosynovitis, joint effusion, and soft-tissue edema. Findings and scores were compared between volunteers and patients. Inter-reader agreement was calculated (intraclass correlation coefficients, ICC). In volunteers, tendon sheath fluid was very common in at least one location (42/42 volunteers for reader 1, 34/42 volunteers for reader 2). BME, erosions, joint effusion, and soft-tissue edema were absent (except one BME in the 3rd proximal phalanx for reader 1). Tendon sheath fluid scores in volunteers and tenosynovitis scores in patients were high (reader 1, 7.17 and 5.39; reader 2, 2.31 and 5.45). Overall, inter-reader agreement was substantial (ICC = 0.696-0.844), except for tendon sheath fluid (ICC = 0.258). Fluid in the finger flexor tendon sheaths may be a normal finding and without gadolinium administration should not be interpreted as tenosynovitis. Bone marrow edema, erosions, joint effusion, and soft-tissue edema in the fingers most likely reflect pathology if present. (orig.)

  6. Zinc-finger antiviral protein inhibits XMRV infection.

    Directory of Open Access Journals (Sweden)

    Xinlu Wang

    Full Text Available BACKGROUND: The zinc-finger antiviral protein (ZAP is a host factor that specifically inhibits the replication of certain viruses, including Moloney murine leukemia virus (MoMLV, HIV-1, and certain alphaviruses and filoviruses. ZAP binds to specific viral mRNAs and recruits cellular mRNA degradation machinery to degrade the target RNA. The common features of ZAP-responsive RNA sequences remain elusive and thus whether a virus is susceptible to ZAP can only be determined experimentally. Xenotropic murine leukemia virus-related virus (XMRV is a recently identified γ-retrovirus that was originally thought to be involved in prostate cancer and chronic fatigue syndrome but recently proved to be a laboratory artefact. Nonetheless, XMRV as a new retrovirus has been extensively studied. Since XMRV and MoMLV share only 67.9% sequence identity in the 3'UTRs, which is the target sequence of ZAP in MoMLV, whether XMRV is susceptible to ZAP remains to be determined. FINDINGS: We constructed an XMRV-luc vector, in which the coding sequences of Gag-Pol and part of Env were replaced with luciferase-coding sequence. Overexpression of ZAP potently inhibited the expression of XMRV-luc in a ZAP expression-level-dependent manner, while downregulation of endogenous ZAP rendered cells more sensitive to infection. Furthermore, ZAP inhibited the spreading of replication-competent XMRV. Consistent with the previously reported mechanisms by which ZAP inhibits viral infection, ZAP significantly inhibited the accumulation of XMRV-luc mRNA in the cytoplasm. The ZAP-responsive element in XMRV mRNA was mapped to the 3'UTR. CONCLUSIONS: ZAP inhibits XMRV replication by preventing the accumulation of viral mRNA in the cytoplasm. Documentation of ZAP inhibiting XMRV helps to broaden the spectrum of ZAP's antiviral activity. Comparison of the target sequences of ZAP in XMRV and MoMLV helps to better understand the features of ZAP-responsive elements.

  7. Zinc finger transcription factors displaced SREBP proteins as the major Sterol regulators during Saccharomycotina evolution.

    Directory of Open Access Journals (Sweden)

    Sarah L Maguire

    2014-01-01

    Full Text Available In most eukaryotes, including the majority of fungi, expression of sterol biosynthesis genes is regulated by Sterol-Regulatory Element Binding Proteins (SREBPs, which are basic helix-loop-helix transcription activators. However, in yeasts such as Saccharomyces cerevisiae and Candida albicans sterol synthesis is instead regulated by Upc2, an unrelated transcription factor with a Gal4-type zinc finger. The SREBPs in S. cerevisiae (Hms1 and C. albicans (Cph2 have lost a domain, are not major regulators of sterol synthesis, and instead regulate filamentous growth. We report here that rewiring of the sterol regulon, with Upc2 taking over from SREBP, likely occurred in the common ancestor of all Saccharomycotina. Yarrowia lipolytica, a deep-branching species, is the only genome known to contain intact and full-length orthologs of both SREBP (Sre1 and Upc2. Deleting YlUPC2, but not YlSRE1, confers susceptibility to azole drugs. Sterol levels are significantly reduced in the YlUPC2 deletion. RNA-seq analysis shows that hypoxic regulation of sterol synthesis genes in Y. lipolytica is predominantly mediated by Upc2. However, YlSre1 still retains a role in hypoxic regulation; growth of Y. lipolytica in hypoxic conditions is reduced in a Ylupc2 deletion and is abolished in a Ylsre1/Ylupc2 double deletion, and YlSre1 regulates sterol gene expression during hypoxia adaptation. We show that YlSRE1, and to a lesser extent YlUPC2, are required for switching from yeast to filamentous growth in hypoxia. Sre1 appears to have an ancestral role in the regulation of filamentation, which became decoupled from its role in sterol gene regulation by the arrival of Upc2 in the Saccharomycotina.

  8. Zinc Finger Transcription Factors Displaced SREBP Proteins as the Major Sterol Regulators during Saccharomycotina Evolution

    Science.gov (United States)

    Maguire, Sarah L.; Wang, Can; Holland, Linda M.; Brunel, François; Neuvéglise, Cécile; Nicaud, Jean-Marc; Zavrel, Martin; White, Theodore C.; Wolfe, Kenneth H.; Butler, Geraldine

    2014-01-01

    In most eukaryotes, including the majority of fungi, expression of sterol biosynthesis genes is regulated by Sterol-Regulatory Element Binding Proteins (SREBPs), which are basic helix-loop-helix transcription activators. However, in yeasts such as Saccharomyces cerevisiae and Candida albicans sterol synthesis is instead regulated by Upc2, an unrelated transcription factor with a Gal4-type zinc finger. The SREBPs in S. cerevisiae (Hms1) and C. albicans (Cph2) have lost a domain, are not major regulators of sterol synthesis, and instead regulate filamentous growth. We report here that rewiring of the sterol regulon, with Upc2 taking over from SREBP, likely occurred in the common ancestor of all Saccharomycotina. Yarrowia lipolytica, a deep-branching species, is the only genome known to contain intact and full-length orthologs of both SREBP (Sre1) and Upc2. Deleting YlUPC2, but not YlSRE1, confers susceptibility to azole drugs. Sterol levels are significantly reduced in the YlUPC2 deletion. RNA-seq analysis shows that hypoxic regulation of sterol synthesis genes in Y. lipolytica is predominantly mediated by Upc2. However, YlSre1 still retains a role in hypoxic regulation; growth of Y. lipolytica in hypoxic conditions is reduced in a Ylupc2 deletion and is abolished in a Ylsre1/Ylupc2 double deletion, and YlSre1 regulates sterol gene expression during hypoxia adaptation. We show that YlSRE1, and to a lesser extent YlUPC2, are required for switching from yeast to filamentous growth in hypoxia. Sre1 appears to have an ancestral role in the regulation of filamentation, which became decoupled from its role in sterol gene regulation by the arrival of Upc2 in the Saccharomycotina. PMID:24453983

  9. Specificity protein 1-zinc finger protein 179 pathway is involved in the attenuation of oxidative stress following brain injury

    Directory of Open Access Journals (Sweden)

    Jian-Ying Chuang

    2017-04-01

    Full Text Available After sudden traumatic brain injuries, secondary injuries may occur during the following days or weeks, which leads to the accumulation of reactive oxygen species (ROS. Since ROS exacerbate brain damage, it is important to protect neurons against their activity. Zinc finger protein 179 (Znf179 was shown to act as a neuroprotective factor, but the regulation of gene expression under oxidative stress remains unknown. In this study, we demonstrated an increase in Znf179 protein levels in both in vitro model of hydrogen peroxide (H2O2-induced ROS accumulation and animal models of traumatic brain injury. Additionally, we examined the sub-cellular localization of Znf179, and demonstrated that oxidative stress increases Znf179 nuclear shuttling and its interaction with specificity protein 1 (Sp1. Subsequently, the positive autoregulation of Znf179 expression, which is Sp1-dependent, was further demonstrated using luciferase reporter assay and green fluorescent protein (GFP-Znf179-expressing cells and transgenic mice. The upregulation of Sp1 transcriptional activity induced by the treatment with nerve growth factor (NGF led to an increase in Znf179 levels, which further protected cells against H2O2-induced damage. However, Sp1 inhibitor, mithramycin A, was shown to inhibit NGF effects, leading to a decrease in Znf179 expression and lower cellular protection. In conclusion, the results obtained in this study show that Znf179 autoregulation through Sp1-dependent mechanism plays an important role in neuroprotection, and NGF-induced Sp1 signaling may help attenuate more extensive (ROS-induced damage following brain injury.

  10. Intrinsic and extrinsic connections of Tet3 dioxygenase with CXXC zinc finger modules.

    Directory of Open Access Journals (Sweden)

    Nan Liu

    Full Text Available Tet proteins are emerging as major epigenetic modulators of cell fate and plasticity. However, little is known about how Tet proteins are targeted to selected genomic loci in distinct biological contexts. Previously, a CXXC-type zinc finger domain in Tet1 was shown to bind CpG-rich DNA sequences. Interestingly, in human and mouse the Tet2 and Tet3 genes are adjacent to Cxxc4 and Cxxc10-1, respectively. The CXXC domains encoded by these loci, together with those in Tet1 and Cxxc5, identify a distinct homology group within the CXXC domain family. Here we provide evidence for alternative mouse Tet3 transcripts including the Cxxc10-1 sequence (Tet3(CXXC and for an interaction between Tet3 and Cxxc4. In vitro Cxxc4 and the isolated CXXC domains of Tet1 and Tet3(CXXC bind DNA substrates with similar preference towards the modification state of cytosine at a single CpG site. In vivo Tet1 and Tet3 isoforms with and without CXXC domain hydroxylate genomic 5-methylcytosine with similar activity. Relative transcript levels suggest that distinct ratios of Tet3(CXXC isoforms and Tet3-Cxxc4 complex may be present in adult tissues. Our data suggest that variable association with CXXC modules may contribute to context specific functions of Tet proteins.

  11. Identification of a novel zinc finger protein gene (ZNF298) in the GAP2 of human chromosome 21q

    International Nuclear Information System (INIS)

    Shibuya, Kazunori; Kudoh, Jun; Okui, Michiyo; Shimizu, Nobuyoshi

    2005-01-01

    We have isolated a novel zinc finger protein gene, designated ZNF298, as a candidate gene for a particular phenotype of Down syndrome or bipolar affective disorder (BPAD) which maps to human chromosome 21q22.3. ZNF298 gene consists of 25 exons spanning approximately 80 kb in a direction from the telomere to centromere. There are four kinds of transcripts that harbor three types of 3' UTR. These four transcripts (ZNF298a, ZNF298b, ZNF298c, and ZNF298d) contain putative open reading frames encoding 1178, 1198, 555, and 515 amino acids, respectively. ZNF298 gene was ubiquitously expressed in various tissues at very low level. The protein motif analysis revealed that ZNF298 proteins contain a SET [Su(var)3-9, Enhancer-of-zeste, Trithorax] domain, multiple C2H2-type zinc finger (ZnF C 2H2) domains, several nuclear localization signals (NLSs), and PEST sequences. Nuclear localization of ZNF298 protein was confirmed by transfection of expression vector of GFP-tagged protein into two human cell lines. Interestingly, this gene crosses over a clone gap (GAP2) remaining in the band 21q22.3. We obtained the DNA fragments corresponding to GAP2 using ZNF298 cDNA sequence as anchor primers for PCR and determined its genomic DNA sequence

  12. ZNF649, a novel Kruppel type zinc-finger protein, functions as a transcriptional suppressor

    International Nuclear Information System (INIS)

    Yang Hong; Yuan Wuzhou; Wang Ying; Zhu Chuanbing; Liu Bisheng; Wang Yuequn; Yang, Dan; Li Yongqing; Wang Canding; Wu Xiushan; Liu Mingyao

    2005-01-01

    Cardiac differentiation involves a cascade of coordinated gene expression that regulates cell proliferation and matrix protein formation in a defined temporo-spatial manner. Many of the KRAB-ZFPs are involved in cardiac development or cardiovascular diseases. Here we report the identification and characterization of a novel human zinc-finger gene named ZNF649. The cDNA of ZNF649 is 3176 bp, encoding a protein of 505 amino acids in the nuclei. Northern blot analysis indicates that ZNF649 is expressed in most of the examined human adult and embryonic tissues. ZNF649 is a transcription suppressor when fused to GAL-4 DNA-binding domain and cotransfected with VP-16. Overexpression of ZNF649 in COS-7 cells inhibits the transcriptional activities of SRE and AP-1. Deletion analysis with a series of truncated fusion proteins indicates that the KRAB motif is a basal repression domain when the truncated fusion proteins were assayed for the transcriptional activities of SRE and AP-1. These results suggest that ZNF649 protein may act as a transcriptional repressor in mitogen-activated protein kinase signaling pathway to mediate cellular functions

  13. An engineered split M.HhaI-zinc finger fusion lacks the intended methyltransferase specificity

    International Nuclear Information System (INIS)

    Meister, Glenna E.; Chandrasegaran, Srinivasan; Ostermeier, Marc

    2008-01-01

    The ability to site-specifically methylate DNA in vivo would have wide applicability to the study of basic biomedical problems as well as enable studies on the potential of site-specific DNA methylation as a therapeutic strategy for the treatment of diseases. Natural DNA methyltransferases lack the specificity required for these applications. Nomura and Barbas [W. Nomura, C.F. Barbas 3rd, In vivo site-specific DNA methylation with a designed sequence-enabled DNA methylase, J. Am. Chem. Soc. 129 (2007) 8676-8677] have reported that an engineered DNA methyltransferase comprised of fragments of M.HhaI methyltransferase and zinc finger proteins has very high specificity for the chosen target site. Our analysis of this engineered enzyme shows that the fusion protein methylates target and non-target sites with similar efficiency

  14. ZNF307, a novel zinc finger gene suppresses p53 and p21 pathway

    International Nuclear Information System (INIS)

    Li Jing; Wang Yuequn; Fan Xiongwei; Mo Xiaoyang; Wang Zequn; Li Yongqing; Yin Zhaochu; Deng Yun; Luo Na; Zhu Chuanbing; Liu Mingyao; Ma Qian; Ocorr, Karen; Yuan Wuzhou; Wu Xiushan

    2007-01-01

    We have cloned a novel KRAB-related zinc finger gene, ZNF307, encoding a protein of 545 aa. ZNF307 is conserved across species in evolution and is differentially expressed in human adult and fetal tissues. The fusion protein of EGFP-ZNF307 localizes in the nucleus. Transcriptional activity assays show ZNF307 suppresses transcriptional activity of L8G5-luciferase. Overexpressing ZNF307 in different cell lines also inhibits the transcriptional activities of p53 and p21. Moreover, ZNF307 works by reducing the p53 protein level and p53 protein reduction is achieved by increasing transcription of MDM2 and EP300. ZNF307 might suppress p53-p21 pathway through activating MDM2 and EP300 expression and inducing p53 degradation

  15. Engineered zinc-finger transcription factors inhibit the replication and transcription of HBV in vitro and in vivo.

    Science.gov (United States)

    Luo, Wei; Wang, Junxia; Xu, Dengfeng; Bai, Huili; Zhang, Yangli; Zhang, Yuhong; Li, Xiaosong

    2018-04-01

    In the present study, an artificial zinc-finger transcription factor eukaryotic expression vector specifically recognizing and binding to the hepatitis B virus (HBV) enhancer (Enh) was constructed, which inhibited the replication and expression of HBV DNA. The HBV EnhI‑specific pcDNA3.1‑artificial transcription factor (ATF) vector was successfully constructed, and then transformed or injected into HepG2.2.15 cells and HBV transgenic mice, respectively. The results demonstrated that the HBV EnhI (1,070‑1,234 bp)‑specific ATF significantly inhibited the replication and transcription of HBV DNA in vivo and in vitro. The HBV EnhI‑specific ATF may be a meritorious component of progressive combination therapies for eliminating HBV DNA in infected patients. A radical cure for chronic HBV infection may become feasible by using this bioengineering technology.

  16. A novel thiolated human-like collage zinc complex as a promising zinc supplement: physicochemical characteristics and biocompatibility.

    Science.gov (United States)

    Zhu, Chenhui; Ma, Xiaoxuan; Wang, Yonghui; Mi, Yu; Fan, Daidi; Deng, Jianjun; Xue, Wenjiao

    2014-11-01

    To improve zinc binding ability to human-like collagen (HLC) and stability of metal complex, HLC was thiolated by mercaptosuccinylation reaction with S-acetylmercaptosuccinic anhydride (S-AMSA) at pH8.0. One mole of thiolated HLC-Zn (SHLC-Zn) complex possessed 24.3mol zinc ions when pH was 8.0 and zinc concentration was 15 mM. The physicochemical properties and biocompatibility of thiolated HLC-Zn (SHLC-Zn) complex were investigated by UV-vis, CD, electrophoresis analysis, differential scanning calorimetry (DSC) and cell viability assay, respectively. The results showed that SHLC-Zn complex(1) exhibited higher zinc ions than that of native HLC and still maintained the secondary structure of HLC though interaction occurred between SHLC and zinc ions, (2) increased the apparent molecular weight when compared with native HLC, (3) exhibited greater thermal stability than native HLC, and (4) presented toxicity free for BHK cells. This study suggests that the SHLC-Zn complex is a potential nutrition as well as zinc supplement in the medical application. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Bioaccessible mineral content of malted finger millet (Eleusine coracana), wheat (Triticum aestivum), and barley (Hordeum vulgare).

    Science.gov (United States)

    Platel, Kalpana; Eipeson, Sushma W; Srinivasan, Krishnapura

    2010-07-14

    Malted grains are extensively used in weaning and geriatric foods. Malting generally improves the nutrient content and digestibility of foods. The present investigation examined the influence of malting of finger millet, wheat, and barley on the bioaccessibility of iron, zinc, calcium, copper, and manganese. Malting increased the bioaccessibility of iron by >3-fold from the two varieties of finger millet and by >2-fold from wheat, whereas such a beneficial influence was not seen in barley. The bioaccessibility of zinc from wheat and barley increased to an extent of 234 and 100%, respectively, as a result of malting. However, malting reduced the bioaccessibility of zinc from finger millet. Malting marginally increased the bioaccessibility of calcium from white finger millet and wheat. Whereas malting did not exert any influence on bioaccessibility of copper from finger millet and wheat, it significantly decreased (75%) the same from barley. Malting did increase the bioaccessibility of manganese from brown finger millet (17%) and wheat (42%). Thus, malting could be an appropriate food-based strategy to derive iron and other minerals maximally from food grains.

  18. Effects of zinc supplementation and zinc chelation on in vitro β-cell function in INS-1E cells

    DEFF Research Database (Denmark)

    Nygaard, Sanne Bjørn; Larsen, Agnete; Knuhtsen, Astrid

    2014-01-01

    BACKGROUND: Zinc is essential for the activities of pancreatic β-cells, especially insulin storage and secretion. Insulin secretion leads to co-release of zinc which contributes to the paracrine communication in the pancreatic islets. Zinc-transporting proteins (zinc-regulated transporter, iron......-regulated transporter-like proteins [ZIPs] and zinc transporters [ZnTs]) and metal-buffering proteins (metallothioneins, MTs) tightly regulate intracellular zinc homeostasis. The present study investigated how modulation of cellular zinc availability affects β-cell function using INS-1E cells. RESULTS: Using INS-1E...... cells, we found that zinc supplementation and zinc chelation had significant effects on insulin content and insulin secretion. Supplemental zinc within the physiological concentration range induced insulin secretion. Insulin content was reduced by zinc chelation with N,N,N',N-tektrakis(2-pyridylmethyl...

  19. Proliferation and osteo/odontogenic differentiation of stem cells from apical papilla regulated by Zinc fingers and homeoboxes 2: An in vitro study

    International Nuclear Information System (INIS)

    Wan, Fang; Gao, Lifen; Lu, Yating; Ma, Hongxin; Wang, Hongxing; Liang, Xiaohong; Wang, Yan; Ma, Chunhong

    2016-01-01

    In the process of tooth root development, stem cells from the apical papilla (SCAPs) can differentiate into odontoblasts and form root dentin, however, molecules regulating SCAPs differentiation have not been elucidated. Zinc fingers and homeoboxes 2 (ZHX2) is a novel transcriptional inhibitor. It is reported to modulate the development of nerve cells, liver cells, B cells, red blood cells, and so on. However, the role of ZHX2 in tooth root development remains unclear. In this study, we explored the potential role of ZHX2 in the process of SCAPs differentiation. The results showed that overexpression of ZHX2 upregulated the expression of osteo/odontogenic related genes and ALP activity, inhibited the proliferation of SCAPs. Consistently, ZHX2 knockdown reduced SCAPs mineralization and promoted SCAPs proliferation. These results indicated that ZHX2 plays a critical role in the proliferation and osteo/odontogenic differentiation of SCAPs. - Highlights: • Zinc fingers and homeoboxes 2 (ZHX2) is a novel transcriptional inhibitor. • we found another new biological function of ZHX2 for the first time. • ZHX2 inhibit SCAPs proliferation. • ZHX2 promote the osteo/odontogenic differentiation of SCAPs.

  20. Proliferation and osteo/odontogenic differentiation of stem cells from apical papilla regulated by Zinc fingers and homeoboxes 2: An in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Fang [Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection & Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong 250012 (China); VIP Center, Shandong Provincial Key Laboratory of Oral Biomedicine, School and Hospital of Stomatology, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012 (China); Gao, Lifen [Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection & Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong 250012 (China); Lu, Yating [VIP Center, Shandong Provincial Key Laboratory of Oral Biomedicine, School and Hospital of Stomatology, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012 (China); Ma, Hongxin; Wang, Hongxing; Liang, Xiaohong [Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection & Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong 250012 (China); Wang, Yan, E-mail: wangyan1965@sdu.edu.cn [VIP Center, Shandong Provincial Key Laboratory of Oral Biomedicine, School and Hospital of Stomatology, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012 (China); Ma, Chunhong, E-mail: machunhong@sdu.edu.cn [Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection & Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong 250012 (China)

    2016-01-15

    In the process of tooth root development, stem cells from the apical papilla (SCAPs) can differentiate into odontoblasts and form root dentin, however, molecules regulating SCAPs differentiation have not been elucidated. Zinc fingers and homeoboxes 2 (ZHX2) is a novel transcriptional inhibitor. It is reported to modulate the development of nerve cells, liver cells, B cells, red blood cells, and so on. However, the role of ZHX2 in tooth root development remains unclear. In this study, we explored the potential role of ZHX2 in the process of SCAPs differentiation. The results showed that overexpression of ZHX2 upregulated the expression of osteo/odontogenic related genes and ALP activity, inhibited the proliferation of SCAPs. Consistently, ZHX2 knockdown reduced SCAPs mineralization and promoted SCAPs proliferation. These results indicated that ZHX2 plays a critical role in the proliferation and osteo/odontogenic differentiation of SCAPs. - Highlights: • Zinc fingers and homeoboxes 2 (ZHX2) is a novel transcriptional inhibitor. • we found another new biological function of ZHX2 for the first time. • ZHX2 inhibit SCAPs proliferation. • ZHX2 promote the osteo/odontogenic differentiation of SCAPs.

  1. Selection for a Zinc-Finger Protein Contributes to Seed Oil Increase during Soybean Domestication.

    Science.gov (United States)

    Li, Qing-Tian; Lu, Xiang; Song, Qing-Xin; Chen, Hao-Wei; Wei, Wei; Tao, Jian-Jun; Bian, Xiao-Hua; Shen, Ming; Ma, Biao; Zhang, Wan-Ke; Bi, Ying-Dong; Li, Wei; Lai, Yong-Cai; Lam, Sin-Man; Shui, Guang-Hou; Chen, Shou-Yi; Zhang, Jin-Song

    2017-04-01

    Seed oil is a momentous agronomical trait of soybean ( Glycine max ) targeted by domestication in breeding. Although multiple oil-related genes have been uncovered, knowledge of the regulatory mechanism of seed oil biosynthesis is currently limited. We demonstrate that the seed-preferred gene GmZF351 , encoding a tandem CCCH zinc finger protein, is selected during domestication. Further analysis shows that GmZF351 facilitates oil accumulation by directly activating WRINKLED1 , BIOTIN CARBOXYL CARRIER PROTEIN2 , 3-KETOACYL-ACYL CARRIER PROTEIN SYNTHASE III , DIACYLGLYCEROL O-ACYLTRANSFERASE1 , and OLEOSIN2 in transgenic Arabidopsis ( Arabidopsis thaliana ) seeds. Overexpression of GmZF351 in transgenic soybean also activates lipid biosynthesis genes, thereby accelerating seed oil accumulation. The ZF351 haplotype from the cultivated soybean group and the wild soybean ( Glycine soja ) subgroup III correlates well with high gene expression level, seed oil contents and promoter activity, suggesting that selection of GmZF351 expression leads to increased seed oil content in cultivated soybean. Our study provides novel insights into the regulatory mechanism for seed oil accumulation, and the manipulation of GmZF351 may have great potential in the improvement of oil production in soybean and other related crops. © 2017 American Society of Plant Biologists. All Rights Reserved.

  2. Zebrafish Model of NF1 for Structure-Function Analysis, Mechanisms of Glial Tumorigenesis, and Chemical Biology

    Science.gov (United States)

    2015-08-01

    models. Zinc-finger nucleases (ZFNs) are chimeric fusions between a zinc-finger protein (ZFP) and the nuclease domain of FokI (Urnov et al., 2010). ZFNs...reference line. Once a target site is chosen, the user can click on the ZFN entry (QueryID; see Fig. 4B) for details about each construct (Fig. 4C...Zhong, Y. (1997). Requirement of Drosophila NF1 for activation of adenylyl cyclase by PACAP38-like neuro- peptides . Science 276, 795–798.ports 8, 1265

  3. ZNF383, a novel KRAB-containing zinc finger protein, suppresses MAPK signaling pathway

    International Nuclear Information System (INIS)

    Cao Lei; Wang Zhi; Zhu Chuanbing; Zhao Yulian; Yuan Wuzhou; Li Jing; Wang Yuequn; Ying Zhaochu; Li Yongqing; Yu Weishi; Wu Xiushan; Liu Mingyao

    2005-01-01

    Mitogen-activated protein kinases (MAPKs) are major components of pathways controlling embryogenesis, cell differentiation, cell proliferation, and cell death. One of the most explored functions of MAPK signaling is the regulation of gene expression by direct or indirect phosphorylation and subsequent activation of transcription factors. In this article, we isolated a novel KRAB-related zinc finger gene named ZNF383 from an early embryo heart cDNA library. The cDNA of ZNF383 is 2220 bp, encoding a protein of 475 amino acids. The protein is conserved in evolution across different species. Northern blot analysis indicates that a 2.2 kb transcript specific for ZNF383 is detected in most of the examined human adult and embryonic tissues with a higher level in skeletal muscle. In COS-7 cells, ZNF383 protein is localized to nucleus and cytoplasm. ZNF383 is a transcription repressor when fused to Gal-4 DNA-binding domain and cotransfected with VP-16. Deletion analysis indicates that the KRAB box of ZNF383 is responsible for the transcriptional repressor activity. Overexpression of ZNF383 in cells inhibits the transcriptional activities of AP-1 and SRE, suggesting that ZNF383 may act as a negative regulator in MAPK-mediated signaling pathways

  4. Expression of RIZ1 protein (Retinoblastoma-interacting zinc-finger protein 1) in prostate cancer epithelial cells changes with cancer grade progression and is modulated in vitro by DHT and E2.

    Science.gov (United States)

    Rossi, Valentina; Staibano, Stefania; Abbondanza, Ciro; Pasquali, Daniela; De Rosa, Caterina; Mascolo, Massimo; Bellastella, Giuseppe; Visconti, Daniela; De Bellis, Annamaria; Moncharmont, Bruno; De Rosa, Gaetano; Puca, Giovanni Alfredo; Bellastella, Antonio; Sinisi, Antonio Agostino

    2009-12-01

    The nuclear protein methyl-transferase Retinoblastoma-interacting zinc-finger protein 1 (RIZ1) is considered to be a downstream effector of estrogen action in target tissues. Silencing of RIZ1 expression is common in many tumors. We analyzed RIZ1 expression in normal and malignant prostate tissue and evaluated whether estradiol (E2) or dihydrotestosterone (DHT) treatment modulated RIZ1 in cultured prostate epithelial cells (PEC). Moreover, we studied the possible involvement of RIZ1 in estrogen action on the EPN prostate cell line, constitutively expressing both estrogen receptor (ER)-alpha and beta. RIZ1 protein, found in the nucleus of normal PECs by immunohistochemistry, was progressively lost in cancer tissues as the Gleason score increased and was only detected in the cytoplasmic compartment. RIZ1 transcript levels, as assayed by semi-quantitative RT-PCR in primary PEC cultures, were significantly reduced in cancer cells (P DHT treatment significantly increased RIZ1 transcript and protein levels (P DHT or E2 treatment in vitro. Furthermore, the E2 effects on ER-expressing prostate cells involve RIZ1, which confirms a possible role for ER-mediated pathways in a non-classic E(2)-target tissue.

  5. Zinc-finger protein 418 overexpression protects against cardiac hypertrophy and fibrosis.

    Directory of Open Access Journals (Sweden)

    Liming Pan

    Full Text Available This study aimed to investigated the effect and mechanism of zinc-finger protein 418 (ZNF418 on cardiac hypertrophy caused by aortic banding (AB, phenylephrine (PE or angiotensin II (Ang II in vivo and in vitro.The expression of ZNF418 in hearts of patients with dilated cardiomyopathy (DCM or hypertrophic cardiomyopathy (HCM and AB-induced cardiac hypertrophy mice, as well as in Ang II- or PE-induced hypertrophic primary cardiomyocytes was detected by western blotting. Then, the expression of ZNF418 was up-regulated or down-regulated in AB-induced cardiac hypertrophy mice and Ang II -induced hypertrophic primary cardiomyocytes. The hypertrophic responses and fibrosis were evaluated by echocardiography and histological analysis. The mRNA levels of hypertrophy markers and fibrotic markers were detected by RT-qPCR. Furthermore, the phosphorylation and total levels of c-Jun were measured by western blotting.ZNF418 was markedly down-regulated in hearts of cardiac hypertrophy and hypertrophic primary cardiomyocytes. Down-regulated ZNF418 exacerbated the myocyte size and fibrosis, moreover increased the mRNA levels of ANP, BNP, β-MHC, MCIP1.4, collagen 1a, collagen III, MMP-2 and fibronection in hearts of AB-treated ZNF418 knockout mice or Ang II-treated cardiomyocytes with AdshZNF418. Conversely, these hypertrophic responses were reduced in the ZNF418 transgenic (TG mice treated by AB and the AdZNF418-transfected primary cardiomyocytes treated by Ang II. Additionally, the deficiency of ZNF418 enhanced the phosphorylation level of c-jun, and overexpression of ZNF418 suppressed the phosphorylation level of c-jun in vivo and in vitro.ZNF418 maybe attenuate hypertrophic responses by inhibiting the activity of c-jun/AP-1.

  6. Highly transparent front electrodes with metal fingers for p-i-n thin-film silicon solar cells

    Directory of Open Access Journals (Sweden)

    Moulin Etienne

    2015-01-01

    Full Text Available The optical and electrical properties of transparent conductive oxides (TCOs, traditionally used in thin-film silicon (TF-Si solar cells as front-electrode materials, are interlinked, such that an increase in TCO transparency is generally achieved at the cost of reduced lateral conductance. Combining a highly transparent TCO front electrode of moderate conductance with metal fingers to support charge collection is a well-established technique in wafer-based technologies or for TF-Si solar cells in the substrate (n-i-p configuration. Here, we extend this concept to TF-Si solar cells in the superstrate (p-i-n configuration. The metal fingers are used in conjunction with a millimeter-scale textured foil, attached to the glass superstrate, which provides an antireflective and retroreflective effect; the latter effect mitigates the shadowing losses induced by the metal fingers. As a result, a substantial increase in power conversion efficiency, from 8.7% to 9.1%, is achieved for 1-μm-thick microcrystalline silicon solar cells deposited on a highly transparent thermally treated aluminum-doped zinc oxide layer combined with silver fingers, compared to cells deposited on a state-of-the-art zinc oxide layer.

  7. Regulation of trichome development in tobacco by JcZFP8, a C2H2 zinc finger protein gene from Jatropha curcas L.

    Science.gov (United States)

    Shi, Xiaodong; Gu, Yuxi; Dai, Tingwei; Wu, Yang; Wu, Peng; Xu, Ying; Chen, Fang

    2018-06-05

    Trichomes are epidermal outgrowths of plant tissues that can secrete or store large quantities of secondary metabolites, which contribute to plant defense responses against stress. The use of bioengineering methods for regulating the development of trichomes and metabolism is a widely researched topic. In the present study, we demonstrate that JcZFP8, a C2H2 zinc finger protein gene from Jatropha curcas L., can regulate trichome development in transgenic tobacco. To understand the underlying mechanisms, we performed transcriptome profiling of overexpression JcZFP8 transgenic plants and wild-type tobacco. Based on the analysis of differentially expressed genes, we determined that genes of the plant hormone signal transduction pathway was significantly enriched, suggesting that these pathways were modulated in the transgenic plants. In addition, the transcript levels of the known trichome-related genes in Arabidopsis were not significantly changed, whereas CycB2 and MYB genes were differentially expressed in the transgenic plants. Despite tobacco and Arabidopsis have different types of trichomes, all the pathways were associated with C2H2 zinc finger protein genes. Our findings help us to understand the regulation of multicellular trichome formation and suggest a new metabolic engineering method for the improvement of plants. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Zinc Deficiency with Acrodermatitis Enteropathica-like Eruption After Pancreaticoduodenectomy

    Directory of Open Access Journals (Sweden)

    Hsin-Hsien Yu

    2007-10-01

    Full Text Available Pancreaticoduodenectomy (PD is the standard operation for periampullary lesions. Most reports have focused on the clinical outcome, complications and tumor recurrence after PD. Few studies have focused on the nutritional sequelae that result from the extended resection of the upper gastrointestinal tract and disruption of the normal physiologic process of digestion. Zinc is absorbed mainly in the duodenum and proximal jejunum, which are removed during PD. Herein, we report two patients who experienced zinc deficiency with acrodermatitis enteropathica-like eruption, alopecia, glossitis and nail dystrophy after PD. The lesions improved dramatically after supplementation with zinc sulfate, pancreatic enzyme and diet instructions. No symptoms related to zinc deficiency were noted on follow-up after nutritional instructions had been given to the patients.

  9. SUMOylation of the KRAB zinc-finger transcription factor PARIS/ZNF746 regulates its transcriptional activity

    International Nuclear Information System (INIS)

    Nishida, Tamotsu; Yamada, Yoshiji

    2016-01-01

    Parkin-interacting substrate (PARIS), a member of the family of Krüppel-associated box (KRAB)-containing zinc-finger transcription factors, is a substrate of the ubiquitin E3 ligase parkin. PARIS represses the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), although the underlying mechanisms remain largely unknown. In the present study, we demonstrate that PARIS can be SUMOylated, and its SUMOylation plays a role in the repression of PGC-1a promoter activity. Protein inhibitor of activated STAT y (PIASy) was identified as an interacting protein of PARIS and shown to enhance its SUMOylation. PIASy repressed PGC-1a promoter activity, and this effect was attenuated by PARIS in a manner dependent on its SUMOylation status. Co-expression of SUMO-1 with PIASy completely repressed PGC-1a promoter activity independently of PARIS expression. PARIS-mediated PGC-1a promoter repression depended on the activity of histone deacetylases (HDAC), whereas PIASy repressed the PGC-1a promoter in an HDAC-independent manner. Taken together, these results suggest that PARIS and PIASy modulate PGC-1a gene transcription through distinct molecular mechanisms. -- Highlights: •PARIS can be SUMOylated in vivo and in vitro. •SUMOylation of PARIS functions in the repression of PGC-1a promoter activity. •PIASy interacts with PARIS and enhances its SUMOylation. •PIASy influences PARIS-mediated repression of PGC-1a promoter activity.

  10. SUMOylation of the KRAB zinc-finger transcription factor PARIS/ZNF746 regulates its transcriptional activity

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Tamotsu, E-mail: nishida@gene.mie-u.ac.jp; Yamada, Yoshiji

    2016-05-13

    Parkin-interacting substrate (PARIS), a member of the family of Krüppel-associated box (KRAB)-containing zinc-finger transcription factors, is a substrate of the ubiquitin E3 ligase parkin. PARIS represses the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), although the underlying mechanisms remain largely unknown. In the present study, we demonstrate that PARIS can be SUMOylated, and its SUMOylation plays a role in the repression of PGC-1a promoter activity. Protein inhibitor of activated STAT y (PIASy) was identified as an interacting protein of PARIS and shown to enhance its SUMOylation. PIASy repressed PGC-1a promoter activity, and this effect was attenuated by PARIS in a manner dependent on its SUMOylation status. Co-expression of SUMO-1 with PIASy completely repressed PGC-1a promoter activity independently of PARIS expression. PARIS-mediated PGC-1a promoter repression depended on the activity of histone deacetylases (HDAC), whereas PIASy repressed the PGC-1a promoter in an HDAC-independent manner. Taken together, these results suggest that PARIS and PIASy modulate PGC-1a gene transcription through distinct molecular mechanisms. -- Highlights: •PARIS can be SUMOylated in vivo and in vitro. •SUMOylation of PARIS functions in the repression of PGC-1a promoter activity. •PIASy interacts with PARIS and enhances its SUMOylation. •PIASy influences PARIS-mediated repression of PGC-1a promoter activity.

  11. The KRAB Zinc Finger Protein Roma/Zfp157 Is a Critical Regulator of Cell-Cycle Progression and Genomic Stability

    Directory of Open Access Journals (Sweden)

    Teresa L.F. Ho

    2016-04-01

    Full Text Available Regulation of DNA replication and cell division is essential for tissue growth and maintenance of genomic integrity and is particularly important in tissues that undergo continuous regeneration such as mammary glands. We have previously shown that disruption of the KRAB-domain zinc finger protein Roma/Zfp157 results in hyperproliferation of mammary epithelial cells (MECs during pregnancy. Here, we delineate the mechanism by which Roma engenders this phenotype. Ablation of Roma in MECs leads to unscheduled proliferation, replication stress, DNA damage, and genomic instability. Furthermore, mouse embryonic fibroblasts (MEFs depleted for Roma exhibit downregulation of p21Cip1 and geminin and have accelerated replication fork velocities, which is accompanied by a high rate of mitotic errors and polyploidy. In contrast, overexpression of Roma in MECs halts cell-cycle progression, whereas siRNA-mediated p21Cip1 knockdown ameliorates, in part, this phenotype. Thus, Roma is an essential regulator of the cell cycle and is required to maintain genomic stability.

  12. Gold finger formation studied by high-resolution mass spectrometry and in silico methods

    NARCIS (Netherlands)

    Laskay, Ü.A.; Garino, C.; Tsybin, Y.O.; Salassa, L.; Casini, A.

    2015-01-01

    High-resolution mass spectrometry and quantum mechanics/molecular mechanics studies were employed for characterizing the formation of two gold finger (GF) domains from the reaction of zinc fingers (ZF) with gold complexes. The influence of both the gold oxidation state and the ZF coordination sphere

  13. The Effect of Salts in Promoting Specific and Competitive Interactions between Zinc Finger Proteins and Metals

    Science.gov (United States)

    Li, Gongyu; Yuan, Siming; Zheng, Shihui; Chen, Yuting; Zheng, Zhen; Liu, Yangzhong; Huang, Guangming

    2017-12-01

    Specific protein-metal interactions (PMIs) fulfill essential functions in cells and organic bodies, and activation of these functions in vivo are mostly modulated by the complex environmental factors, including pH value, small biomolecules, and salts. Specifically, the role of salts in promoting specific PMIs and their competition among various metals has remained untapped mainly due to the difficulty to distinguish nonspecific PMIs from specific PMIs by classic spectroscopic techniques. Herein, we report Hofmeister salts differentially promote the specific PMIs by combining nanoelectrospray ionization mass spectrometry and spectroscopic techniques (fluorescence measurement and circular dichroism). Furthermore, to explore the influence of salts in competitive binding between metalloproteins and various metals, we designed a series of competitive experiments and applied to a well-defined model system, the competitive binding of zinc (II) and arsenic (III) to holo-promyelocytic leukemia protein (PML). These experiments not only provided new insights at the molecular scale as complementary to previous NMR and spectroscopic results, but also deduced the relative binding ability between zinc finger proteins and metals at the molecular scale, which avoids the mass spectrometric titration-based determination of binding constants that is frequently affected and often degraded by variable solution conditions including salt contents. [Figure not available: see fulltext.

  14. Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases.

    Directory of Open Access Journals (Sweden)

    Tatiana Flisikowska

    Full Text Available Rabbits are widely used in biomedical research, yet techniques for their precise genetic modification are lacking. We demonstrate that zinc finger nucleases (ZFNs introduced into fertilized oocytes can inactivate a chosen gene by mutagenesis and also mediate precise homologous recombination with a DNA gene-targeting vector to achieve the first gene knockout and targeted sequence replacement in rabbits. Two ZFN pairs were designed that target the rabbit immunoglobulin M (IgM locus within exons 1 and 2. ZFN mRNAs were microinjected into pronuclear stage fertilized oocytes. Founder animals carrying distinct mutated IgM alleles were identified and bred to produce offspring. Functional knockout of the immunoglobulin heavy chain locus was confirmed by serum IgM and IgG deficiency and lack of IgM(+ and IgG(+ B lymphocytes. We then tested whether ZFN expression would enable efficient targeted sequence replacement in rabbit oocytes. ZFN mRNA was co-injected with a linear DNA vector designed to replace exon 1 of the IgM locus with ∼1.9 kb of novel sequence. Double strand break induced targeted replacement occurred in up to 17% of embryos and in 18% of fetuses analyzed. Two major goals have been achieved. First, inactivation of the endogenous IgM locus, which is an essential step for the production of therapeutic human polyclonal antibodies in the rabbit. Second, establishing efficient targeted gene manipulation and homologous recombination in a refractory animal species. ZFN mediated genetic engineering in the rabbit and other mammals opens new avenues of experimentation in immunology and many other research fields.

  15. Structural basis for ubiquitin recognition by ubiquitin-binding zinc finger of FAAP20.

    Directory of Open Access Journals (Sweden)

    Aya Toma

    Full Text Available Several ubiquitin-binding zinc fingers (UBZs have been reported to preferentially bind K63-linked ubiquitin chains. In particular, the UBZ domain of FAAP20 (FAAP20-UBZ, a member of the Fanconi anemia core complex, seems to recognize K63-linked ubiquitin chains, in order to recruit the complex to DNA interstrand crosslinks and mediate DNA repair. By contrast, it is reported that the attachment of a single ubiquitin to Rev1, a translesion DNA polymerase, increases binding of Rev1 to FAAP20. To clarify the specificity of FAAP20-UBZ, we determined the crystal structure of FAAP20-UBZ in complex with K63-linked diubiquitin at 1.9 Å resolution. In this structure, FAAP20-UBZ interacts only with one of the two ubiquitin moieties. Consistently, binding assays using surface plasmon resonance spectrometry showed that FAAP20-UBZ binds ubiquitin and M1-, K48- and K63-linked diubiquitin chains with similar affinities. Residues in the vicinity of Ala168 within the α-helix and the C-terminal Trp180 interact with the canonical Ile44-centered hydrophobic patch of ubiquitin. Asp164 within the α-helix and the C-terminal loop mediate a hydrogen bond network, which reinforces ubiquitin-binding of FAAP20-UBZ. Mutations of the ubiquitin-interacting residues disrupted binding to ubiquitin in vitro and abolished the accumulation of FAAP20 to DNA damage sites in vivo. Finally, structural comparison among FAAP20-UBZ, WRNIP1-UBZ and RAD18-UBZ revealed distinct modes of ubiquitin binding. UBZ family proteins could be divided into at least three classes, according to their ubiquitin-binding modes.

  16. Tamarix hispida zinc finger protein ThZFP1 participates in salt and osmotic stress tolerance by increasing proline content and SOD and POD activities.

    Science.gov (United States)

    Zang, Dandan; Wang, Chao; Ji, Xiaoyu; Wang, Yucheng

    2015-06-01

    Zinc finger proteins (ZFPs) are a large family that play important roles in various biological processes, such as signal transduction, RNA binding, morphogenesis, transcriptional regulation, abiotic or biotic stress response. However, the functions of ZFPs involved in abiotic stress are largely not known. In the present study, we cloned and functionally characterized a ZFP gene, ThZFP1, from Tamarix hispida. The expression of ThZFP1 is highly induced by NaCl, mannitol or ABA treatment. To study the function of ThZFP1 involved in abiotic stress response, transgenic T. hispida plants with overexpression or knockdown of ThZFP1 were generated using a transient transformation system. Gain- and loss-of-function studies of ThZFP1 suggested that ThZFP1 can induce the expression of a series of genes, including delta-pyrroline-5-carboxylate synthetase (P5CS), peroxidase (POD) and superoxide dismutase (SOD), leading to accumulation of proline and enhanced activities of SOD and POD. These physiological changes enhanced proline content and reactive oxygen species (ROS) scavenging capability when exposed to salt or osmotic stress. All the results obtained from T. hispida plants were further confirmed by analyses of the transgenic Arabidopsis plants overexpressing ThZFP1. These data together suggested that ThZFP1 positively regulates proline accumulation and activities of SOD and POD under salt and osmotic stress conditions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NF-κB regulation

    Science.gov (United States)

    Tokunaga, Fuminori; Nishimasu, Hiroshi; Ishitani, Ryuichiro; Goto, Eiji; Noguchi, Takuya; Mio, Kazuhiro; Kamei, Kiyoko; Ma, Averil; Iwai, Kazuhiro; Nureki, Osamu

    2012-01-01

    LUBAC (linear ubiquitin chain assembly complex) activates the canonical NF-κB pathway through linear polyubiquitination of NEMO (NF-κB essential modulator, also known as IKKγ) and RIP1. However, the regulatory mechanism of LUBAC-mediated NF-κB activation remains elusive. Here, we show that A20 suppresses LUBAC-mediated NF-κB activation by binding linear polyubiquitin via the C-terminal seventh zinc finger (ZF7), whereas CYLD suppresses it through deubiquitinase (DUB) activity. We determined the crystal structures of A20 ZF7 in complex with linear diubiquitin at 1.70–1.98 Å resolutions. The crystal structures revealed that A20 ZF7 simultaneously recognizes the Met1-linked proximal and distal ubiquitins, and that genetic mutations associated with B cell lymphomas map to the ubiquitin-binding sites. Our functional analysis indicated that the binding of A20 ZF7 to linear polyubiquitin contributes to the recruitment of A20 into a TNF receptor (TNFR) signalling complex containing LUBAC and IκB kinase (IKK), which results in NF-κB suppression. These findings provide new insight into the regulation of immune and inflammatory responses. PMID:23032187

  18. Zinc depletion promotes apoptosis-like death in drug-sensitive and antimony-resistance Leishmania donovani.

    Science.gov (United States)

    Saini, Shalini; Bharati, Kavita; Shaha, Chandrima; Mukhopadhyay, Chinmay K

    2017-09-05

    Micronutrients are essential for survival and growth for all the organisms including pathogens. In this manuscript, we report that zinc (Zn) chelator N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethylenediamine (TPEN) affects growth and viability of intracellular pathogen Leishmania donovani (LD) by a concentration and time dependent manner. Simultaneous addition of zinc salt reverses the effect of TPEN. Further experiments provide evidence of apoptosis-like death of the parasite due to Zn-depletion. TPEN treatment enhances caspase-like activity suggesting increase in apoptosis-like events in LD. Specific inhibitors of cathepsin B and Endoclease G block TPEN-induced leishmanial death. Evidences show involvement of reactive oxygen species (ROS) potentially of extra-mitochondrial origin in TPEN-induced LD death. Pentavalent antimonials remained the prime source of treatment against leishmaniasis for several decades; however, antimony-resistant Leishmania is now common source of the disease. We also reveal that Zn-depletion can promote apoptosis-like death in antimony-resistant parasites. In summary, we present a new finding about the role of zinc in the survival of drug sensitive and antimony-resistant LD.

  19. Herpes simplex virus induces the marked up-regulation of the zinc finger transcriptional factor INSM1, which modulates the expression and localization of the immediate early protein ICP0

    Directory of Open Access Journals (Sweden)

    Kimura Hiroshi

    2011-05-01

    Full Text Available Abstract Background Herpes simplex viruses (HSVs rapidly shut off macromolecular synthesis in host cells. In contrast, global microarray analyses have shown that HSV infection markedly up-regulates a number of host cell genes that may play important roles in HSV-host cell interactions. To understand the regulatory mechanisms involved, we initiated studies focusing on the zinc finger transcription factor insulinoma-associated 1 (INSM1, a host cell protein markedly up-regulated by HSV infection. Results INSM1 gene expression in HSV-1-infected normal human epidermal keratinocytes increased at least 400-fold 9 h after infection; INSM1 promoter activity was also markedly stimulated. Expression and subcellular localization of the immediate early HSV protein ICP0 was affected by INSM1 expression, and chromatin immunoprecipitation (ChIP assays revealed binding of INSM1 to the ICP0 promoter. Moreover, the role of INSM1 in HSV-1 infection was further clarified by inhibition of HSV-1 replication by INSM1-specific siRNA. Conclusions The results suggest that INSM1 up-regulation plays a positive role in HSV-1 replication, probably by binding to the ICP0 promoter.

  20. Mutations in the putative zinc-binding motif of UL52 demonstrate a complex interdependence between the UL5 and UL52 subunits of the human herpes simplex virus type 1 helicase/primase complex.

    Science.gov (United States)

    Chen, Yan; Carrington-Lawrence, Stacy D; Bai, Ping; Weller, Sandra K

    2005-07-01

    Herpes simplex virus type 1 (HSV-1) encodes a heterotrimeric helicase-primase (UL5/8/52) complex. UL5 contains seven motifs found in helicase superfamily 1, and UL52 contains conserved motifs found in primases. The contributions of each subunit to the biochemical activities of the complex, however, remain unclear. We have previously demonstrated that a mutation in the putative zinc finger at UL52 C terminus abrogates not only primase but also ATPase, helicase, and DNA-binding activities of a UL5/UL52 subcomplex, indicating a complex interdependence between the two subunits. To test this hypothesis and to further investigate the role of the zinc finger in the enzymatic activities of the helicase-primase, a series of mutations were constructed in this motif. They differed in their ability to complement a UL52 null virus: totally defective, partial complementation, and potentiating. In this study, four of these mutants were studied biochemically after expression and purification from insect cells infected with recombinant baculoviruses. All mutants show greatly reduced primase activity. Complementation-defective mutants exhibited severe defects in ATPase, helicase, and DNA-binding activities. Partially complementing mutants displayed intermediate levels of these activities, except that one showed a wild-type level of helicase activity. These data suggest that the UL52 zinc finger motif plays an important role in the activities of the helicase-primase complex. The observation that mutations in UL52 affected helicase, ATPase, and DNA-binding activities indicates that UL52 binding to DNA via the zinc finger may be necessary for loading UL5. Alternatively, UL5 and UL52 may share a DNA-binding interface.

  1. Zinc finger protein rotund deficiency affects development of the thoracic leg in Bombyx mori.

    Science.gov (United States)

    Zhou, Chun-Yan; Zha, Xing-Fu; Liu, Hua-Wei; Xia, Qing-You

    2017-06-01

    The insect limb develops from the imaginal disc or larval leg during metamorphosis. The molecular mechanisms involved in the development from the larval to the adult leg are poorly understood. Herein, we cloned the full length of a zinc finger gene rotund from Bombyx mori (Bmrn), which contained a 1419 bp open reading frame, and encoded a 473 amino acid protein. Reverse transcription polymerase chain reaction and Western blot analyses demonstrated that Bmrn was expressed at higher levels in the epidermis than in other tissues tested, and it showed a very high expression level during metamorphosis. Knock-down of Bmrn produced defects in the tarsus and pretarsus, including the fusion and reduction of tarsomeres, and the developmental arrest of pretarsus. Our data showed that Bmrn is involved in the formation of the tarsus and pretarsus, whereas its homologous gene in Drosophila has been shown to affect three tarsal segments (t2-t4), suggesting that the remodeling of the leg has involved changes in the patterning of gene regulation during evolution. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  2. High-efficiency genome editing via 2A-coupled co-expression of fluorescent proteins and zinc finger nucleases or CRISPR/Cas9 nickase pairs

    DEFF Research Database (Denmark)

    Duda, Katarzyna; Lonowski, Lindsey A; Kofoed-Nielsen, Michael

    2014-01-01

    Targeted endonucleases including zinc finger nucleases (ZFNs) and clustered regularly interspaced short palindromic repeats (CRISPRs)/Cas9 are increasingly being used for genome editing in higher species. We therefore devised a broadly applicable and versatile method for increasing editing...... higher genome editing rates. For ZFNs, this approach, combined with delivery of donors as single-stranded oligodeoxynucleotides and nucleases as messenger ribonucleic acid, enabled high knockin efficiencies in demanding applications, including biallelic codon conversion frequencies reaching 30......-70% at high transfection efficiencies and ∼2% at low transfection efficiencies, simultaneous homozygous knockin mutation of two genes with ∼1.5% efficiency as well as generation of cell pools with almost complete codon conversion via three consecutive targeting and FACS events. Observed off-target effects...

  3. Molecular Imaging of Human Embryonic Stem Cells Stably Expressing Human PET Reporter Genes After Zinc Finger Nuclease-Mediated Genome Editing.

    Science.gov (United States)

    Wolfs, Esther; Holvoet, Bryan; Ordovas, Laura; Breuls, Natacha; Helsen, Nicky; Schönberger, Matthias; Raitano, Susanna; Struys, Tom; Vanbilloen, Bert; Casteels, Cindy; Sampaolesi, Maurilio; Van Laere, Koen; Lambrichts, Ivo; Verfaillie, Catherine M; Deroose, Christophe M

    2017-10-01

    Molecular imaging is indispensable for determining the fate and persistence of engrafted stem cells. Standard strategies for transgene induction involve the use of viral vectors prone to silencing and insertional mutagenesis or the use of nonhuman genes. Methods: We used zinc finger nucleases to induce stable expression of human imaging reporter genes into the safe-harbor locus adeno-associated virus integration site 1 in human embryonic stem cells. Plasmids were generated carrying reporter genes for fluorescence, bioluminescence imaging, and human PET reporter genes. Results: In vitro assays confirmed their functionality, and embryonic stem cells retained differentiation capacity. Teratoma formation assays were performed, and tumors were imaged over time with PET and bioluminescence imaging. Conclusion: This study demonstrates the application of genome editing for targeted integration of human imaging reporter genes in human embryonic stem cells for long-term molecular imaging. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  4. The ZNF75 zinc finger gene subfamily: Isolation and mapping of the four members in humans and great apes

    Energy Technology Data Exchange (ETDEWEB)

    Villa, A.; Strina, D.; Frattini, A. [Consiglio Nazionale delle Ricerche, Milan (Italy)] [and others

    1996-07-15

    We have previously reported the characterization of the human ZNF75 gene located on Xq26, which has only limited homology (less than 65%) to other ZF genes in the databases. Here, we describe three human zinc finger genes with 86 to 95% homology to ZNF75 at the nucleotide level, which represent all the members of the human ZNF75 subfamily. One of these, ZNF75B, is a pseudogene mapped to chromosome 12q13. The other two, ZNF75A and ZNF75C, maintain on ORF in the sequenced region, and at least the latter is expressed in the U937 cell line. They were mapped to chromosomes 16 and 11, respectively. All these genes are conserved in chimpanzees, gorillas, and orangutans. The ZNF75B homologue is a pseudogene in all three great apes, and in chimpanzee it is located on chromosome 10 (phylogenetic XII), at p13 (corresponding to the human 12q13). The chimpanzee homologue of ZNF75 is also located on the Xq26 chromosome, in the same region, as detected by in situ hybridization. As expected, nucleotide changes were clearly more abundant between human and organutan than between human and chimpanzee or gorilla homologues. Members of the same class were more similar to each other than to the other homologues within the same species. This suggests that the duplication and/or retrotranscription events occurred in a common ancestor long before great ape speciation. This, together with the existance of at least two genes in cows and horses, suggests a relatively high conservation of this gene family. 20 refs., 5 figs., 1 tab.

  5. Zinc(II) and the single-stranded DNA binding protein of bacteriophage T4

    International Nuclear Information System (INIS)

    Gauss, P.; Krassa, K.B.; McPheeters, D.S.; Nelson, M.A.; Gold, L.

    1987-01-01

    The DNA binding domain of the gene 32 protein of the bacteriophage T4 contains a single zinc-finger sequence. The gene 32 protein is an extensively studied member of a class of proteins that bind relatively nonspecifically to single-stranded DNA. The authors have sequenced and characterized mutations in gene 32 whose defective proteins are activated by increasing the Zn(II) concentration in the growth medium. The results identify a role for the gene 32 protein in activation of T4 late transcription. Several eukaryotic proteins with zinc fingers participate in activation of transcription, and the gene 32 protein of T4 should provide a simple, well-characterized system in which genetics can be utilized to study the role of a zinc finger in nucleic acid binding and gene expression

  6. PML-associated repressor of transcription (PAROT), a novel KRAB-zinc finger repressor, is regulated through association with PML nuclear bodies

    International Nuclear Information System (INIS)

    Fleischer, Sandra; Wiemann, Stefan; Will, Hans; Hofmann, Thomas G.

    2006-01-01

    Promyelocytic leukemia nuclear bodies (PML-NBs) are implicated in transcriptional regulation. Here we identify a novel transcriptional repressor, PML-associated repressor of transcription (PAROT), which is regulated in its repressor activity through recruitment to PML-NBs. PAROT is a Krueppel-associated box ( KRAB) zinc-finger (ZNF) protein, which comprises an amino terminal KRAB-A and KRAB-B box, a linker domain and 8 tandemly repeated C 2 H 2 -ZNF motifs at its carboxy terminus. Consistent with its domain structure, when tethered to DNA, PAROT represses transcription, and this is partially released by the HDAC inhibitor trichostatin A. PAROT colocalizes with members of the heterochromatin protein 1 (HP1) family and with transcriptional intermediary factor-1β/KRAB-associated protein 1 (TIF-1β/KAP1), a transcriptional corepressor for the KRAB-ZNF family. Interestingly, PML isoform IV, in contrast to PML-III, efficiently recruits PAROT and TIF-1β from heterochromatin to PML-NBs. PML-NB recruitment of PAROT partially releases its transcriptional repressor activity, indicating that PAROT can be regulated through subnuclear compartmentalization. Taken together, our data identify a novel transcriptional repressor and provide evidence for its regulation through association with PML-NBs

  7. Contamination by human fingers. The Midas touch

    International Nuclear Information System (INIS)

    Gwozdz, R.; Grass, F.

    2004-01-01

    Anthropogenic activity is one of the causes of contamination in the human environment: contamination of air, water, top soils, plants and food products has complex effects on human health problems. Wear and abrasion of various surfaces are constant processes in daily life, and commonly include interaction between human fingers and surfaces of every conceivable material. New methods for investigation of trace transfer processes by human fingers are described. Results of transfer for commonly used metals such as gold, silver, zinc, cadmium, tin, cobalt, nickel, chromium and iron are presented. Relationship between transfer of metals by touch and the general problem of purity in analytical activities is briefly discussed. (author)

  8. Targeted mutagenesis using zinc-finger nucleases in perennial fruit trees.

    Science.gov (United States)

    Peer, Reut; Rivlin, Gil; Golobovitch, Sara; Lapidot, Moshe; Gal-On, Amit; Vainstein, Alexander; Tzfira, Tzvi; Flaishman, Moshe A

    2015-04-01

    Targeting a gene in apple or fig with ZFN, introduced by transient or stable transformation, should allow genome editing with high precision to advance basic science and breeding programs. Genome editing is a powerful tool for precise gene manipulation in any organism; it has recently been shown to be of great value for annual plants. Classical breeding strategies using conventional cross-breeding and induced mutations have played an important role in the development of new cultivars in fruit trees. However, fruit-tree breeding is a lengthy process with many limitations. Efficient and widely applied methods for targeted modification of fruit-tree genomes are not yet available. In this study, transgenic apple and fig lines carrying a zinc-finger nuclease (ZFNs) under the control of a heat-shock promoter were developed. Editing of a mutated uidA gene, following expression of the ZFN genes by heat shock, was confirmed by GUS staining and PCR product sequencing. Finally, whole plants with a repaired uidA gene due to deletion of a stop codon were regenerated. The ZFN-mediated gene modifications were stable and passed onto regenerants from ZFN-treated tissue cultures. This is the first demonstration of efficient and precise genome editing, using ZFN at a specific genomic locus, in two different perennial fruit trees-apple and fig. We conclude that targeting a gene in apple or fig with a ZFN introduced by transient or stable transformation should allow knockout of a gene of interest. Using this technology for genome editing allows for marker gene-independent and antibiotic selection-free genome engineering with high precision in fruit trees to advance basic science as well as nontransgenic breeding programs.

  9. Genome-wide identification and characterization of stress-associated protein (SAP gene family encoding A20/AN1 zinc-finger proteins in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Zhou Yong

    2018-01-01

    Full Text Available Stress associated proteins (SAPs play important roles in developmental processes, responses to various stresses and hormone stimulation in plants. However, little is known about the SAP gene family in Medicago truncatula. In this study, a total of 17 MtSAP genes encoding A20/AN1 zinc-finger proteins were characterized. Out of these 17 genes, 15 were distributed over all 8 chromosomes at different densities, and two segmental duplication events were detected. The phylogenetic analysis of these proteins and their orthologs from Arabidopsis and rice suggested that they could be classified into five out of the seven groups of SAP family genes, with genes in the same group showing similar structures and conserved domains. The cis-elements of the MtSAP promoters were studied, and many cis-elements related to stress and plant hormone responses were identified. We also investigated the stress-responsive expression patterns of the MtSAP genes under various stresses, including drought, exposure to NaCl and cold. The qRT-PCR results showed that numerous MtSAP genes exhibited transcriptional responses to multiple abiotic stresses. These results lay the foundation for further functional characterization of SAP genes. To the best of our knowledge, this is the first report of a genome-wide analysis of the SAP gene family in M. truncatula.

  10. The Zinc-Finger Thylakoid-Membrane Protein FIP Is Involved With Abiotic Stress Response in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Karina L. Lopes

    2018-04-01

    Full Text Available Many plant genes have their expression modulated by stress conditions. Here, we used Arabidopsis FtsH5 protease, which expression is regulated by light stress, as bait in a yeast two-hybrid screen to search for new proteins involved in the stress response. As a result, we found FIP (FtsH5 Interacting Protein, which possesses an amino proximal cleavable transit peptide, a hydrophobic membrane-anchoring region, and a carboxyl proximal C4-type zinc-finger domain. In vivo experiments using FIP fused to green fluorescent protein (GFP showed a plastid localization. This finding was corroborated by chloroplast import assays that showed FIP inserted in the thylakoid membrane. FIP expression was down-regulated in plants exposed to high light intensity, oxidative, salt, and osmotic stresses, whereas mutant plants expressing low levels of FIP were more tolerant to these abiotic stresses. Our data shows a new thylakoid-membrane protein involved with abiotic stress response in Arabidopsis thaliana.

  11. Two C3H Type Zinc Finger Protein Genes, CpCZF1 and CpCZF2, from Chimonanthus praecox Affect Stamen Development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Huamin Liu

    2017-08-01

    Full Text Available Wintersweet (Chimonanthus praecox is a popular garden plant because of its flowering time, sweet fragrance, and ornamental value. However, research into the molecular mechanism that regulates flower development in wintersweet is still limited. In this study, we sought to investigate the molecular characteristics, expression patterns, and potential functions of two C3H-type zinc finger (CZF protein genes, CpCZF1 and CpCZF2, which were isolated from the wintersweet flowers based on the flower developmental transcriptome database. CpCZF1 and CpCZF2 were more highly expressed in flower organs than in vegetative tissues, and during the flower development, their expression profiles were associated with flower primordial differentiation, especially that of petal and stamen primordial differentiation. Overexpression of either CpCZF1 or CpCZF2 caused alterations on stamens in transgenic Arabidopsis. The expression levels of the stamen identity-related genes, such as AGAMOUS (AG, PISTILLATA (PI, SEPALLATA1 (SEP1, SEPALLATA2 (SEP2, SEPALLATA3 (SEP3, APETALA1 (AP1, APETALA2 (AP2, and boundary gene RABBIT EAR (RBE were significantly up-regulated in CpCZF1 overexpression lines. Additionally, the transcripts of AG, PI, APETALA3 SEP1-3, AP1, and RBE were markedly increased in CpCZF2 overexpressed plant inflorescences. Moreover, CpCZF1 and CpCZF2 could interact with each other by using yeast two-hybrid and bimolecular fluorescence complementation assays. Our results suggest that CpCZF1 and CpCZF2 may be involved in the regulation of stamen development and cause the formation of abnormal flowers in transgenic Arabidopsis plants.

  12. Potentiometric Zinc Ion Sensor Based on Honeycomb-Like NiO Nanostructures

    Directory of Open Access Journals (Sweden)

    Magnus Willander

    2012-11-01

    Full Text Available In this study honeycomb-like NiO nanostructures were grown on nickel foam by a simple hydrothermal growth method. The NiO nanostructures were characterized by field emission electron microscopy (FESEM, high resolution transmission electron microscopy (HRTEM and X-ray diffraction (XRD techniques. The characterized NiO nanostructures were uniform, dense and polycrystalline in the crystal phase. In addition to this, the NiO nanostructures were used in the development of a zinc ion sensor electrode by functionalization with the highly selective zinc ion ionophore 12-crown-4. The developed zinc ion sensor electrode has shown a good linear potentiometric response for a wide range of zinc ion concentrations, ranging from 0.001 mM to 100 mM, with sensitivity of 36 mV/decade. The detection limit of the present zinc ion sensor was found to be 0.0005 mM and it also displays a fast response time of less than 10 s. The proposed zinc ion sensor electrode has also shown good reproducibility, repeatability, storage stability and selectivity. The zinc ion sensor based on the functionalized NiO nanostructures was also used as indicator electrode in potentiometric titrations and it has demonstrated an acceptable stoichiometric relationship for the determination of zinc ion in unknown samples. The NiO nanostructures-based zinc ion sensor has potential for analysing zinc ion in various industrial, clinical and other real samples.

  13. Molecular cloning and expression analysis of a zebrafish novel zinc finger protein gene rnf141

    Directory of Open Access Journals (Sweden)

    Wenqian Deng

    2009-01-01

    Full Text Available ZNF230 is a novel zinc finger gene cloned by our laboratory. In order to understand the potential functions of this gene in vertebrate development, we cloned the zebrafish orthologue of human ZNF230, named rnf141. The cDNA fragment of rnf141 was obtained by rapid amplification of cDNA ends (RACE. The open reading frame (ORF encodes a polypeptide of 222 amino acids which shares 75.65% identity with the human ZNF230. RT-PCR analysis in zebrafish embryo and adult tissues revealed that rnf141 transcripts are maternally derived and that rnf141 mRNA has a broad distribution. Zygotic rnf141 message is strongly localized in the central nervous system, as shown by whole-mount in situ hybridization. Knockdown and over expression of rnf141 can induce abnormal phenotypes, including abnormal development of brain, as well as yolk sac and axis extendsion. Marker gene analysis showed that rnf141 may play a role in normal dorsoventral patterning of zebrafish embryos, suggesting that rnf141 may have a broad function during early development of vertebrates.

  14. Inhibition of poly(ADP-ribose)polymerase-1 and DNA repair by uranium.

    Science.gov (United States)

    Cooper, Karen L; Dashner, Erica J; Tsosie, Ranalda; Cho, Young Mi; Lewis, Johnnye; Hudson, Laurie G

    2016-01-15

    Uranium has radiological and non-radiological effects within biological systems and there is increasing evidence for genotoxic and carcinogenic properties attributable to uranium through its heavy metal properties. In this study, we report that low concentrations of uranium (as uranyl acetate; uranium exacerbates DNA damage and cytotoxicity induced by hydrogen peroxide, suggesting that uranium may inhibit DNA repair processes. Concentrations of uranyl acetate in the low micromolar range inhibited the zinc finger DNA repair protein poly(ADP-ribose) polymerase (PARP)-1 and caused zinc loss from PARP-1 protein. Uranyl acetate exposure also led to zinc loss from the zinc finger DNA repair proteins Xeroderma Pigmentosum, Complementation Group A (XPA) and aprataxin (APTX). In keeping with the observed inhibition of zinc finger function of DNA repair proteins, exposure to uranyl acetate enhanced retention of induced DNA damage. Co-incubation of uranyl acetate with zinc largely overcame the impact of uranium on PARP-1 activity and DNA damage. These findings present evidence that low concentrations of uranium can inhibit DNA repair through disruption of zinc finger domains of specific target DNA repair proteins. This may provide a mechanistic basis to account for the published observations that uranium exposure is associated with DNA repair deficiency in exposed human populations. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Formation of zeolite-like zinc 1,3,5-benzenetriphosphonate open-frameworks by topotactic pillaring of anionic layers.

    Science.gov (United States)

    Maeda, Kazuyuki; Takamatsu, Ryohei; Mochizuki, Miki; Kawawa, Kanako; Kondo, Atsushi

    2013-08-07

    An ab initio powder X-ray crystal structure analysis revealed that layered zinc 1,3,5-benzenetriphosphonates containing interlayer tetramethylammonium (ZBP-TMA) or 4,4'-bipyridinium cations (ZBP-bpy) are transformed to novel isomorphous 3D open-framework compounds ZBP-M (M: K, Rb, and Cs) by treatment in aqueous alkali metal chloride solutions. ZBP-Ms have a pillared layer-type of anionic framework containing 2D zigzag channels connected with cage-like spaces. The potassium atoms in ZBP-K are located near 8MR windows in the 2D zigzag channels, and the potassium cations are successfully exchanged with ammonium cations retaining the open-framework structure. The ammonium form (ZBP-NH4) showed remarkable cation exchange selectivity for Rb(+) and Cs(+) in a mixture of alkali metal cations. It is assumed that zinc ions partially dissolved from the starting layered ZBP precursors are intercalated in ZBP layers to form pillared layered 3D open-frameworks. These results clearly show that topotactic pillared layer approaches are applicable not only to zeolite-related materials but also to novel open-framework metal organophosphonates.

  16. Cloning and characterization of a novel human zinc finger gene, hKid3, from a C2H2-ZNF enriched human embryonic cDNA library

    International Nuclear Information System (INIS)

    Gao Li; Sun Chong; Qiu Hongling; Liu Hui; Shao Huanjie; Wang Jun; Li Wenxin

    2004-01-01

    To investigate the zinc finger genes involved in human embryonic development, we constructed a C 2 H 2 -ZNF enriched human embryonic cDNA library, from which a novel human gene named hKid3 was identified. The hKid3 cDNA encodes a 554 amino acid protein with an amino-terminal KRAB domain and 11 carboxyl-terminal C 2 H 2 zinc finger motifs. Northern blot analysis indicates that two hKid3 transcripts of 6 and 8.5 kb express in human fetal brain and kidney. The 6 kb transcript can also be detected in human adult brain, heart, and skeletal muscle while the 8.5 kb transcript appears to be embryo-specific. GFP-fused hKid3 protein is localized to nuclei and the ZF domain is necessary and sufficient for nuclear localization. To explore the DNA-binding specificity of hKid3, an oligonucleotide library was selected by GST fusion protein of hKid3 ZF domain, and the consensus core sequence 5'-CCAC-3' was evaluated by competitive electrophoretic mobility shift assay. Moreover, The KRAB domain of hKid3 exhibits transcription repressor activity when tested in GAL4 fusion protein assay. These results indicate that hKid3 may function as a transcription repressor with regulated expression pattern during human development of brain and kidney

  17. Zinc Deficiency in Humans and its Amelioration

    OpenAIRE

    Yashbir Singh Shivay

    2015-01-01

    Zinc (Zn) deficiency in humans has recently received considerable attention. Global mortality in children under 5 years of age in 2004 due to Zn deficiency was estimated at 4,53,207 as against 6,66,771 for vitamin A deficiency; 20,854 for iron deficiency and 3,619 for iodine deficiency. In humans 2800-3000 proteins contain Zn prosthetic group and Zn is an integral component of zinc finger prints that regulate DNA transcription. Zinc is a Type-2 nutrient, which means that its concentration in ...

  18. Determination of the characteristics of a Schottky barrier formed by latent finger mark corrosion of brass

    International Nuclear Information System (INIS)

    Bond, J W

    2009-01-01

    The ideality factor (η) and barrier height (φ B ) for a metal-copper(I) oxide rectifying contact formed by the latent finger mark corrosion of α phase brass have been determined from forward bias I/V characteristics in the range 0.4 V ≤ V ≤ 0.55 V. Rectifying contacts formed from the finger mark deposits of different people gave η = 1.5-1.6 ± 0.1 and φ B = 0.49-0.52 ± 0.04 V. A Mott-Schottky plot of capacitance-voltage measurements in reverse bias gave the built in potential ψ bi = 0.4 ± 0.1 V, the gradient of the plot confirming the conductivity of the finger mark corrosion as p type. X-ray photoelectron spectroscopy spectra of the corrosion showed that Cu(I), Cu(II) and Zn(II) can co-exist on the surface, the Cu(I) : Cu(II) and Zn : Cu ratios determining whether a rectifying contact is formed. Initial findings suggest that when the concentration of Cu(I) dominates the Cu(I) : Cu(II) ratio (approximately 6 : 1), or when Cu(II) is absent, a rectifying contact can be formed subject to the Zn : Cu ratio being approximately 1 : 3. As the surface concentration of zinc increases, the rectifying contact is degraded until the concentration of zinc approaches that of copper when no evidence of a Schottky barrier is observed and the contact appears ohmic.

  19. Ultrasound irradiation based in-situ synthesis of star-like Tragacanth gum/zinc oxide nanoparticles on cotton fabric.

    Science.gov (United States)

    Ghayempour, Soraya; Montazer, Majid

    2017-01-01

    Application of natural biopolymers for green and safe synthesis of zinc oxide nanoparticles on the textiles is a novel and interesting approach. The present study offers the use of natural biopolymer, Tragacanth gum, as the reducing, stabilizing and binding agent for in-situ synthesis of zinc oxide nanoparticles on the cotton fabric. Ultrasonic irradiation leads to clean and easy synthesis of zinc oxide nanoparticles in short-time at low-temperature. FESEM/EDX, XRD, FT-IR spectroscopy, DSC, photocatalytic activities and antimicrobial assay are used to characterize Tragacanth gum/zinc oxide nanoparticles coated cotton fabric. The analysis confirmed synthesis of star-like zinc oxide nanoparticles with hexagonal wurtzite structure on the cotton fabric with the average particle size of 62nm. The finished cotton fabric showed a good photocatalytic activity on degradation of methylene blue and 100% antimicrobial properties with inhibition zone of 3.3±0.1, 3.1±0.1 and 3.0±0.1mm against Staphylococcus aureus, Escherichia coli and Candida albicans. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Zinc finger AN1-type containing 4 is a novel marker for predicting metastasis and poor prognosis in oral squamous cell carcinoma.

    Science.gov (United States)

    Kurihara-Shimomura, Miyako; Sasahira, Tomonori; Nakamura, Hiroshi; Nakashima, Chie; Kuniyasu, Hiroki; Kirita, Tadaaki

    2018-05-01

    Head and neck cancer, including oral squamous cell carcinoma (OSCC), is the sixth most common cancer worldwide and has a high potential for locoregional invasion and nodal metastasis. Therefore, discovery of a useful molecular biomarker capable of predicting tumour progression and metastasis of OSCC is crucial. We have previously reported zinc finger AN1-type containing 4 (ZFAND4) as one of the most upregulated genes in recurrent OSCC using a cDNA microarray analysis. Although ZFAND4 has been shown to promote cell proliferation of gastric cancer, its expression and clinicopathological roles in OSCC remain unclear. In this study, we examined ZFAND4 expression by immunohistochemistry in 214 cases of OSCC. High cytoplasmic expression of ZFAND4 was observed in 45 out of 214 (21%) patients with OSCC. Expression levels of ZFAND4 were strongly associated with metastasis to the lymph nodes (p=0.0429) and distant organs (p=0.0068). Cases with high expression of ZFAND4 had a significantly unfavourable prognosis compared with patients with low expression of ZFAND4 (p<0.0001). Furthermore, ZFAND4 overexpression was an independent poor prognostic factor for OSCC as determined by multivariate analysis using the Cox proportional hazards model (p<0.0001). These results suggest that ZFAND4 is a useful marker for predicting metastasis and poor prognosis in patients with OSCC. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  1. Supplementary data: Table 1. Identification numbers of sequences ...

    Indian Academy of Sciences (India)

    Lenovo

    . -. -. SP1. Stimulating protein 1, ubiquitous zinc finger transcription factor. +. +. GSH2. Homeodomain transcription factor Gsh-2. -. +. RUSH. SWI/SNF related nucleophosphoproteins with a RING finger DNA binding motif. +. +. TAL1. T-cell acute ...

  2. On the incompatibility of Richards’ equation and finger-like infiltration in unsaturated homogeneous porous media

    Czech Academy of Sciences Publication Activity Database

    Fürst, T.; Vodák, R.; Šír, Miloslav; Bíl, M.

    2009-01-01

    Roč. 45, č. 3 (2009), W03408 ISSN 0043-1397 R&D Projects: GA ČR GA526/08/1016 Institutional research plan: CEZ:AV0Z20600510 Keywords : Richards’ equation * finger-like infiltration * cellular automata Subject RIV: DA - Hydrology ; Limnology Impact factor: 2.447, year: 2009

  3. Inhibition of poly(ADP-ribose)polymerase-1 and DNA repair by uranium

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Karen L.; Dashner, Erica J. [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Tsosie, Ranalda [Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812 (United States); Cho, Young Mi [Department of Food and Nutrition, College of Human Ecology, Hanyang University, Seoul 133-791 (Korea, Republic of); Lewis, Johnnye [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Community Environmental Health Program, University of New Mexico Health Sciences Center College of Pharmacy, Albuquerque, NM 87131 (United States); Hudson, Laurie G., E-mail: lhudson@salud.unm.edu [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States)

    2016-01-15

    Uranium has radiological and non-radiological effects within biological systems and there is increasing evidence for genotoxic and carcinogenic properties attributable to uranium through its heavy metal properties. In this study, we report that low concentrations of uranium (as uranyl acetate; < 10 μM) is not cytotoxic to human embryonic kidney cells or normal human keratinocytes; however, uranium exacerbates DNA damage and cytotoxicity induced by hydrogen peroxide, suggesting that uranium may inhibit DNA repair processes. Concentrations of uranyl acetate in the low micromolar range inhibited the zinc finger DNA repair protein poly(ADP-ribose) polymerase (PARP)-1 and caused zinc loss from PARP-1 protein. Uranyl acetate exposure also led to zinc loss from the zinc finger DNA repair proteins Xeroderma Pigmentosum, Complementation Group A (XPA) and aprataxin (APTX). In keeping with the observed inhibition of zinc finger function of DNA repair proteins, exposure to uranyl acetate enhanced retention of induced DNA damage. Co-incubation of uranyl acetate with zinc largely overcame the impact of uranium on PARP-1 activity and DNA damage. These findings present evidence that low concentrations of uranium can inhibit DNA repair through disruption of zinc finger domains of specific target DNA repair proteins. This may provide a mechanistic basis to account for the published observations that uranium exposure is associated with DNA repair deficiency in exposed human populations. - Highlights: • Low micromolar concentration of uranium inhibits polymerase-1 (PARP-1) activity. • Uranium causes zinc loss from multiple DNA repair proteins. • Uranium enhances retention of DNA damage caused by ultraviolet radiation. • Zinc reverses the effects of uranium on PARP activity and DNA damage repair.

  4. A Family of Zinc Finger Proteins Is Required forChromosome-specific Pairing and Synapsis during Meiosis in C.elegans

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Carolyn M.; Dernburg, Abby F.

    2006-06-07

    Homologous chromosome pairing and synapsis are prerequisitefor accurate chromosome segregation during meiosis. Here, we show that afamily of four related C2H2 zinc-finger proteins plays a central role inthese events in C. elegans. These proteins are encoded within a tandemgene cluster. In addition to the X-specific HIM-8 protein, threeadditional paralogs collectively mediate the behavior of the fiveautosomes. Each chromosome relies on a specific member of the family topair and synapse with its homolog. These "ZIM" proteins concentrate atspecial regions called meiotic pairing centers on the correspondingchromosomes. These sites are dispersed along the nuclear envelope duringearly meiotic prophase, suggesting a role analogous to thetelomere-mediated meiotic bouquet in other organisms. To gain insightinto the evolution of these components, wecharacterized homologs in C.briggsae and C. remanei, which revealed changes in copy number of thisgene family within the nematode lineage.

  5. Transcription factor CgMTF-1 regulates CgZnT1 and CgMT expression in Pacific oyster (Crassostrea gigas) under zinc stress

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Jie; Zhang, Linlin [Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong (China); Li, Li, E-mail: lili@qdio.ac.cn [Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong (China); Li, Chunyan; Wang, Ting [Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Zhang, Guofan, E-mail: gfzhang@qdio.ac.cn [Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong (China)

    2015-08-15

    Highlights: • CgMTF-1 and CgZnT1 were first identified in oysters. • CgMTF-1 localized in cell nucleus under unstressed conditions. • CgMTF-1 proteins could bind with the typical MRE motif. • CgMTF-1 activated CgZnT1, CgMT1 and CgMT4 promoters and regulated their expressions under zinc exposure. - Abstract: Oysters accumulate zinc at high tissue concentrations, and the metal response element (MRE)-binding transcription factor (MTF) functions as the cellular zinc sensor that coordinates the expression of genes involved in zinc efflux and storage, as well as those that protect against metal toxicity. In this study, we cloned MTF-1 in oysters and examined its regulation mechanism for its classic target genes, including MTs and ZnT1 under zinc exposure conditions. We cloned CgMTF-1 and determined the subcellular locations of its protein product in HEK293 cells. CgMTF-1 has a 2826 bp open reading frame that encodes a predicted polypeptide with 707 amino acid residues, showing six well-conserved zinc finger domains that are required for metal binding. In HEK293 cell lines, CgMTF-1 primarily localizes in the cell nucleus under unstressed conditions and nuclear translocation was not critical for the activation of this gene. We searched for CgMTF-1-regulated genes in oysters using RNA interference. Decreased expression levels of CgMT1, CgMT4, and CgZnT1 were observed after CgMTF-1 interference (>70% inhibition) under zinc exposure, indicating the critical role of CgMTF-1 in the regulation of these genes. We searched for a direct regulation mechanism involving CgMTF-1 for CgMT1, CgMT4, and CgZnT1 in vitro. EMSA experiments indicated that CgMTF-1 can bind with the MREs found in the CgZnT1, CgMT1 and CgMT4 promoter regions. Additionally, luciferase reporter gene experiments indicated that CgMTF-1 could activate the CgMT1, CgMT4, and CgZnT1 promoters. Overall, our results suggest that CgMTF-1 directly coordinates the regulation of CgMTs and CgZnT1 expression and plays

  6. Transcription factor CgMTF-1 regulates CgZnT1 and CgMT expression in Pacific oyster (Crassostrea gigas) under zinc stress

    International Nuclear Information System (INIS)

    Meng, Jie; Zhang, Linlin; Li, Li; Li, Chunyan; Wang, Ting; Zhang, Guofan

    2015-01-01

    Highlights: • CgMTF-1 and CgZnT1 were first identified in oysters. • CgMTF-1 localized in cell nucleus under unstressed conditions. • CgMTF-1 proteins could bind with the typical MRE motif. • CgMTF-1 activated CgZnT1, CgMT1 and CgMT4 promoters and regulated their expressions under zinc exposure. - Abstract: Oysters accumulate zinc at high tissue concentrations, and the metal response element (MRE)-binding transcription factor (MTF) functions as the cellular zinc sensor that coordinates the expression of genes involved in zinc efflux and storage, as well as those that protect against metal toxicity. In this study, we cloned MTF-1 in oysters and examined its regulation mechanism for its classic target genes, including MTs and ZnT1 under zinc exposure conditions. We cloned CgMTF-1 and determined the subcellular locations of its protein product in HEK293 cells. CgMTF-1 has a 2826 bp open reading frame that encodes a predicted polypeptide with 707 amino acid residues, showing six well-conserved zinc finger domains that are required for metal binding. In HEK293 cell lines, CgMTF-1 primarily localizes in the cell nucleus under unstressed conditions and nuclear translocation was not critical for the activation of this gene. We searched for CgMTF-1-regulated genes in oysters using RNA interference. Decreased expression levels of CgMT1, CgMT4, and CgZnT1 were observed after CgMTF-1 interference (>70% inhibition) under zinc exposure, indicating the critical role of CgMTF-1 in the regulation of these genes. We searched for a direct regulation mechanism involving CgMTF-1 for CgMT1, CgMT4, and CgZnT1 in vitro. EMSA experiments indicated that CgMTF-1 can bind with the MREs found in the CgZnT1, CgMT1 and CgMT4 promoter regions. Additionally, luciferase reporter gene experiments indicated that CgMTF-1 could activate the CgMT1, CgMT4, and CgZnT1 promoters. Overall, our results suggest that CgMTF-1 directly coordinates the regulation of CgMTs and CgZnT1 expression and plays

  7. Spontaneous eye blinks are entrained by finger tapping.

    Science.gov (United States)

    Cong, D-K; Sharikadze, M; Staude, G; Deubel, H; Wolf, W

    2010-02-01

    We studied the mutual cross-talk between spontaneous eye blinks and continuous, self-paced unimanual and bimanual tapping. Both types of motor activities were analyzed with regard to their time-structure in synchronization-continuation tapping tasks which involved different task instructions, namely "standard" finger tapping (Experiment 1), "strong" tapping (Experiment 2) requiring more forceful finger movements, and "impulse-like" tapping (Experiment 3) where upward-downward finger movements had to be very fast. In a further control condition (Experiment 4), tapping was omitted altogether. The results revealed a prominent entrainment of spontaneous blink behavior by the manual tapping, with bimanual tapping being more effective than unimanual tapping, and with the "strong" and "impulse-like" tapping showing the largest effects on blink timing. Conversely, we found no significant effects of the tapping on the timing of the eye blinks across all experiments. The findings suggest a functional overlap of the motor control structures responsible for voluntary, rhythmic finger movements and eye blinking behavior.

  8. A conserved function of the zinc finger transcription factor Sp8/9 in allometric appendage growth in the milkweed bug Oncopeltus fasciatus.

    Science.gov (United States)

    Schaeper, Nina D; Prpic, Nikola-Michael; Wimmer, Ernst A

    2009-08-01

    The genes encoding the closely related zinc finger transcription factors Buttonhead (Btd) and D-Sp1 are expressed in the developing limb primordia of Drosophila melanogaster and are required for normal growth of the legs. The D-Sp1 homolog of the red flour beetle Tribolium castaneum, Sp8 (appropriately termed Sp8/9), is also required for the proper growth of the leg segments. Here we report on the isolation and functional study of the Sp8/9 gene from the milkweed bug Oncopeltus fasciatus. We show that Sp8/9 is expressed in the developing appendages throughout development and that the downregulation of Sp8/9 via RNAi leads to antennae, rostrum, and legs with shortened and fused segments. This supports a conserved role of Sp8/9 in allometric leg segment growth. However, all leg segments including the claws are present and the expression of the leg genes Distal-less, dachshund, and homothorax are proportionally normal, thus providing no evidence for a role of Sp8/9 in appendage specification.

  9. Evaluation of the nutritional characteristics of a finger millet based complementary food.

    Science.gov (United States)

    Mbithi-Mwikya, Stephen; Van Camp, John; Mamiro, Peter R S; Ooghe, Wilfried; Kolsteren, Patrick; Huyghebaert, Andre

    2002-05-08

    Finger millet (Eleusine coracana), kidney beans (Phaseolus vulgaris), peanuts (Arachis hypogoea), and mango (Mangifera indica) were processed separately and then combined, on the basis of their amino acid scores and energy content, into a complementary food for children of weaning age. The finger millet and kidney beans were processed by germination, autoclaving, and lactic acid fermentation. A mixture containing, on a dry matter basis, 65.2, 19.1, 8.0, and 7.7% of the processed finger millet, kidney beans, peanuts, and mango, respectively, gave a composite protein with an in vitro protein digestibility of 90.2% and an amino acid chemical score of 0.84. This mixture had an energy density of 16.3 kJ.g(-1) of dry matter and a decreased antinutrient content and showed a measurable improvement in the in vitro extractability for calcium, iron, and zinc. A 33% (w/v) pap made from a mix of the processed ingredients had an energy density of 5.4 kJ.g(-1) of pap, which is sufficient to meet the energy requirements of well-nourished children of 6-24 months of age at three servings a day and at the FAO average breast-feeding frequency.

  10. Interdependence of free zinc changes and protein complex assembly - insights into zinc signal regulation.

    Science.gov (United States)

    Kocyła, Anna; Adamczyk, Justyna; Krężel, Artur

    2018-01-24

    Cellular zinc (Zn(ii)) is bound with proteins that are part of the proteomes of all domains of life. It is mostly utilized as a catalytic or structural protein cofactor, which results in a vast number of binding architectures. The Zn(ii) ion is also important for the formation of transient protein complexes with a Zn(ii)-dependent quaternary structure that is formed upon cellular zinc signals. The mechanisms by which proteins associate with and dissociate from Zn(ii) and the connection with cellular Zn(ii) changes remain incompletely understood. In this study, we aimed to examine how zinc protein domains with various Zn(ii)-binding architectures are formed under free Zn(ii) concentration changes and how formation of the Zn(ii)-dependent assemblies is related to the protein concentration and reactivity. To accomplish these goals we chose four zinc domains with different Zn(ii)-to-protein binding stoichiometries: classical zinc finger (ZnP), LIM domain (Zn 2 P), zinc hook (ZnP 2 ) and zinc clasp (ZnP 1 P 2 ) folds. Our research demonstrated a lack of changes in the saturation level of intraprotein zinc binding sites, despite various peptide concentrations, while homo- and heterodimers indicated a concentration-dependent tendency. In other words, at a certain free Zn(ii) concentration, the fraction of a formed dimeric complex increases or decreases with subunit concentration changes. Secondly, even small or local changes in free Zn(ii) may significantly affect protein saturation depending on its architecture, function and subcellular concentration. In our paper, we indicate the importance of interdependence of free Zn(ii) availability and protein subunit concentrations for cellular zinc signal regulation.

  11. Conversion of Human Fibroblasts to Stably Self-Renewing Neural Stem Cells with a Single Zinc-Finger Transcription Factor

    Directory of Open Access Journals (Sweden)

    Ebrahim Shahbazi

    2016-04-01

    Full Text Available Direct conversion of somatic cells into neural stem cells (NSCs by defined factors holds great promise for mechanistic studies, drug screening, and potential cell therapies for different neurodegenerative diseases. Here, we report that a single zinc-finger transcription factor, Zfp521, is sufficient for direct conversion of human fibroblasts into long-term self-renewable and multipotent NSCs. In vitro, Zfp521-induced NSCs maintained their characteristics in the absence of exogenous factor expression and exhibited morphological, molecular, developmental, and functional properties that were similar to control NSCs. In addition, the single-seeded induced NSCs were able to form NSC colonies with efficiency comparable with control NSCs and expressed NSC markers. The converted cells were capable of surviving, migrating, and attaining neural phenotypes after transplantation into neonatal mouse and adult rat brains, without forming tumors. Moreover, the Zfp521-induced NSCs predominantly expressed rostral genes. Our results suggest a facilitated approach for establishing human NSCs through Zfp521-driven conversion of fibroblasts.

  12. Zinc Deficiency‐Like Syndrome in Fleckvieh Calves: Clinical and Pathological Findings and Differentiation from Bovine Hereditary Zinc Deficiency

    Science.gov (United States)

    Jung, S.; Majzoub‐Altweck, M.; Trefz, F.M.; Seifert, C.; Knubben‐Schweizer, G.; Fries, R.; Hermanns, W.; Gollnick, N.S.

    2018-01-01

    Background Zinc deficiency‐like (ZDL) syndrome is an inherited defect of Fleckvieh calves, with striking similarity to bovine hereditary zinc deficiency (BHZD). However, the causative mutation in a phospholipase D4 encoding gene (PLD4) shows no connection to zinc metabolism. Objectives To describe clinical signs, laboratory variables, and pathological findings of ZDL syndrome and their utility to differentiate ZDL from BHZD and infectious diseases with similar phenotype. Animals Nine hospitalized calves with crusting dermatitis and confirmed mutation in PLD4 and medical records from 25 calves with crusting dermatitis or suspected zinc deficiency. Methods Prospective and retrospective case series. Results The 9 calves (age: 5–53 weeks) displayed a moderate to severe crusting dermatitis mainly on the head, ventrum, and joints. Respiratory and digestive tract inflammations were frequently observed. Zinc supplementation did not lead to remission of clinical signs in 4 calves. Laboratory variables revealed slight anemia in 8 calves, hypoalbuminemia in 6 calves, but reduced serum zinc concentrations in only 3 calves. Mucosal erosions/ulcerations were present in 7 calves and thymus atrophy or reduced thymic weights in 8 calves. Histologically, skin lesions were indistinguishable from BHZD. Retrospective analysis of medical records revealed the presence of this phenotype since 1988 and pedigree analysis revealed a common ancestor of several affected calves. Conclusions and Clinical Importance ZDL syndrome should be suspected in Fleckvieh calves with crusting dermatitis together with diarrhea or respiratory tract inflammations without response to oral zinc supplementation. Definite diagnosis requires molecular genetic confirmation of the PLD4 mutation. PMID:29424482

  13. Fingering instabilities in bacterial community phototaxis

    Science.gov (United States)

    Vps, Ritwika; Man Wah Chau, Rosanna; Casey Huang, Kerwyn; Gopinathan, Ajay

    Synechocystis sp PCC 6803 is a phototactic cyanobacterium that moves directionally in response to a light source. During phototaxis, these bacterial communities show emergent spatial organisation resulting in the formation of finger-like projections at the propagating front. In this study, we propose an analytical model that elucidates the underlying physical mechanisms which give rise to these spatial patterns. We describe the migrating front during phototaxis as a one-dimensional curve by considering the effects of phototactic bias, diffusion and surface tension. By considering the propagating front as composed of perturbations to a flat solution and using linear stability analysis, we predict a critical bias above which the finger-like projections appear as instabilities. We also predict the wavelengths of the fastest growing mode and the critical mode above which the instabilities disappear. We validate our predictions through comparisons to experimental data obtained by analysing images of phototaxis in Synechocystis communities. Our model also predicts the observed loss of instabilities in taxd1 mutants (cells with inactive TaxD1, an important photoreceptor in finger formation), by considering diffusion in mutually perpendicular directions and a lower, negative bias.

  14. Dissecting the interactions of SERRATE with RNA and DICER-LIKE 1 in Arabidopsis microRNA precursor processing

    KAUST Repository

    Iwata, Yuji

    2013-08-05

    Efficient and precise microRNA (miRNA) biogenesis in Arabidopsis is mediated by the RNaseIII-family enzyme DICER-LIKE 1 (DCL1), double-stranded RNA-binding protein HYPONASTIC LEAVES 1 and the zinc-finger (ZnF) domain-containing protein SERRATE (SE). In the present study, we examined primary miRNA precursor (pri-miRNA) processing by highly purified recombinant DCL1 and SE proteins and found that SE is integral to pri-miRNA processing by DCL1. SE stimulates DCL1 cleavage of the pri-miRNA in an ionic strength-dependent manner. SE uses its N-terminal domain to bind to RNA and requires both N-terminal and ZnF domains to bind to DCL1. However, when DCL1 is bound to RNA, the interaction with the ZnF domain of SE becomes indispensible and stimulates the activity of DCL1 without requiring SE binding to RNA. Our results suggest that the interactions among SE, DCL1 and RNA are a potential point for regulating pri-miRNA processing. 2013 The Author(s) 2013.

  15. Improved ethanol production at high temperature by consolidated bioprocessing using Saccharomyces cerevisiae strain engineered with artificial zinc finger protein.

    Science.gov (United States)

    Khatun, M Mahfuza; Yu, Xinshui; Kondo, Akihiko; Bai, Fengwu; Zhao, Xinqing

    2017-12-01

    In this work, the consolidated bioprocessing (CBP) yeast Saccharomyces cerevisiae MNII/cocδBEC3 was transformed by an artificial zinc finger protein (AZFP) library to improve its thermal tolerance, and the strain MNII-AZFP with superior growth at 42°C was selected. Improved degradation of acid swollen cellulose by 45.9% led to an increase in ethanol production, when compared to the control strain. Moreover, the fermentation of Jerusalem artichoke stalk (JAS) by MNII-AZFP was shortened by 12h at 42°C with a concomitant improvement in ethanol production. Comparative transcriptomics analysis suggested that the AZFP in the mutant exerted beneficial effect by modulating the expression of multiple functional genes. These results provide a feasible strategy for efficient ethanol production from JAS and other cellulosic biomass through CBP based-fermentation at elevated temperatures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. In Vivo Zinc Finger Nuclease-mediated Targeted Integration of a Glucose-6-phosphatase Transgene Promotes Survival in Mice With Glycogen Storage Disease Type IA

    Science.gov (United States)

    Landau, Dustin J; Brooks, Elizabeth Drake; Perez-Pinera, Pablo; Amarasekara, Hiruni; Mefferd, Adam; Li, Songtao; Bird, Andrew; Gersbach, Charles A; Koeberl, Dwight D

    2016-01-01

    Glycogen storage disease type Ia (GSD Ia) is caused by glucose-6-phosphatase (G6Pase) deficiency in association with severe, life-threatening hypoglycemia that necessitates lifelong dietary therapy. Here we show that use of a zinc-finger nuclease (ZFN) targeted to the ROSA26 safe harbor locus and a ROSA26-targeting vector containing a G6PC donor transgene, both delivered with adeno-associated virus (AAV) vectors, markedly improved survival of G6Pase knockout (G6Pase-KO) mice compared with mice receiving the donor vector alone (P Ia, as compared with normal littermates, at 8 months following vector administration (P Ia. PMID:26865405

  17. A highly efficient urea detection using flower-like zinc oxide nanostructures

    International Nuclear Information System (INIS)

    Tak, Manvi; Gupta, Vinay; Tomar, Monika

    2015-01-01

    A novel matrix based on flower-like zinc oxide nanostructures (ZnONF) has been fabricated using hydrothermal method and exploited successfully for the development of urea biosensor. Urease (Urs) is physically immobilized onto the ZnO nanostructure matrix synthesized over platinized silicon substrate. The surface morphology and crystallographic structure of the as-grown ZnONF have been characterized using a scanning electron microscope (SEM) and X-ray diffraction (XRD) techniques. The fabricated amperometric biosensor (Urs/ZnONF/Pt/Ti/Si) exhibits a linear sensing response towards urea over the concentration range 1.65 mM to 16.50 mM with an enhanced sensitivity (~ 132 μA/mM/cm 2 ) and a fast response time of 4 s. The relatively low value of Michaelis–Menten constant (K m ) of 0.19 mM confirms the high affinity of the immobilized urease on the nanostructured ZnONF surface towards its analyte (urea). The obtained results demonstrate that flower-like ZnO nanostructures serve as a promising matrix for the realization of efficient amperometric urea biosensor with enhanced response characteristics. - Graphical abstract: The article focuses on the synthesis of flower-like morphology possessing zinc oxide nanostructures and its application towards urea detection with high sensitivity as well as selectivity. - Highlights: • Flower-like ZnO nanostructures based urea biosensor has been fabricated. • Grown ZnO nanostructures offer an advantageous urease immobilization platform owing to its very high surface area. • High sensitivity (~ 132 μA/mM/cm 2 ) and low Michaelis–Menten parameter (K m ) value (~ 0.19 mM) were observed

  18. Generation of SNCA Cell Models Using Zinc Finger Nuclease (ZFN) Technology for Efficient High-Throughput Drug Screening.

    Science.gov (United States)

    Dansithong, Warunee; Paul, Sharan; Scoles, Daniel R; Pulst, Stefan M; Huynh, Duong P

    2015-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by loss of dopaminergic neurons of the substantia nigra. The hallmark of PD is the appearance of neuronal protein aggregations known as Lewy bodies and Lewy neurites, of which α-synuclein forms a major component. Familial PD is rare and is associated with missense mutations of the SNCA gene or increases in gene copy number resulting in SNCA overexpression. This suggests that lowering SNCA expression could be therapeutic for PD. Supporting this hypothesis, SNCA reduction was neuroprotective in cell line and rodent PD models. We developed novel cell lines expressing SNCA fused to the reporter genes luciferase (luc) or GFP with the objective to enable high-throughput compound screening (HTS) for small molecules that can lower SNCA expression. Because SNCA expression is likely regulated by far-upstream elements (including the NACP-REP1 located at 8852 bp upstream of the transcription site), we employed zinc finger nuclease (ZFN) genome editing to insert reporter genes in-frame downstream of the SNCA gene in order to retain native SNCA expression control. This ensured full retention of known and unknown up- and downstream genetic elements controlling SNCA expression. Treatment of cells with the histone deacetylase inhibitor valproic acid (VPA) resulted in significantly increased SNCA-luc and SNCA-GFP expression supporting the use of our cell lines for identifying small molecules altering complex modes of expression control. Cells expressing SNCA-luc treated with a luciferase inhibitor or SNCA siRNA resulted in Z'-scores ≥ 0.75, suggesting the suitability of these cell lines for use in HTS. This study presents a novel use of genome editing for the creation of cell lines expressing α-synuclein fusion constructs entirely under native expression control. These cell lines are well suited for HTS for compounds that lower SNCA expression directly or by acting at long-range sites to the SNCA

  19. Electroplating U-0.75 Ti, 105-mm, XM774 penetrators with nickel and zinc

    International Nuclear Information System (INIS)

    Dini, J.W.; Johnson, H.R.

    1976-06-01

    Procedures were developed and utilized whereby 105-mm U-Ti penetrators were plated with 1.0 mil of nickel and 0.2 mil of zinc and then chromated. Twenty-three full-size penetrators were coated to demonstrate the feasibility of the system and to provide parts for ballistic tests. Dimensional inspection of the parts before and after etching and plating revealed the coating process to be viable and repeatable

  20. Reactive Oxygen Species Regulate the Inflammatory Function of NKT Cells through Promyelocytic Leukemia Zinc Finger.

    Science.gov (United States)

    Kim, Yeung-Hyen; Kumar, Ajay; Chang, Cheong-Hee; Pyaram, Kalyani

    2017-11-15

    Reactive oxygen species (ROS) are byproducts of aerobic metabolism and contribute to both physiological and pathological conditions as second messengers. ROS are essential for activation of T cells, but how ROS influence NKT cells is unknown. In the present study, we investigated the role of ROS in NKT cell function. We found that NKT cells, but not CD4 or CD8 T cells, have dramatically high ROS in the spleen and liver of mice but not in the thymus or adipose tissues. Accordingly, ROS-high NKT cells exhibited increased susceptibility and apoptotic cell death with oxidative stress. High ROS in the peripheral NKT cells were primarily produced by NADPH oxidases and not mitochondria. We observed that sorted ROS-high NKT cells were enriched in NKT1 and NKT17 cells, whereas NKT2 cells were dominant in ROS-low cells. Furthermore, treatment of NKT cells with antioxidants led to reduced frequencies of IFN-γ- and IL-17-expressing cells, indicating that ROS play a role in regulating the inflammatory function of NKT cells. The transcription factor promyelocytic leukemia zinc finger (PLZF) seemed to control the ROS levels. NKT cells from adipose tissues that do not express PLZF and those from PLZF haplodeficient mice have low ROS. Conversely, ROS were highly elevated in CD4 T cells from mice ectopically expressing PLZF. Thus, our findings demonstrate that PLZF controls ROS levels, which in turn governs the inflammatory function of NKT cells. Copyright © 2017 by The American Association of Immunologists, Inc.

  1. Zinc Deficiency-Like Syndrome in Fleckvieh Calves: Clinical and Pathological Findings and Differentiation from Bovine Hereditary Zinc Deficiency.

    Science.gov (United States)

    Langenmayer, M C; Jung, S; Majzoub-Altweck, M; Trefz, F M; Seifert, C; Knubben-Schweizer, G; Fries, R; Hermanns, W; Gollnick, N S

    2018-03-01

    Zinc deficiency-like (ZDL) syndrome is an inherited defect of Fleckvieh calves, with striking similarity to bovine hereditary zinc deficiency (BHZD). However, the causative mutation in a phospholipase D4 encoding gene (PLD4) shows no connection to zinc metabolism. To describe clinical signs, laboratory variables, and pathological findings of ZDL syndrome and their utility to differentiate ZDL from BHZD and infectious diseases with similar phenotype. Nine hospitalized calves with crusting dermatitis and confirmed mutation in PLD4 and medical records from 25 calves with crusting dermatitis or suspected zinc deficiency. Prospective and retrospective case series. The 9 calves (age: 5-53 weeks) displayed a moderate to severe crusting dermatitis mainly on the head, ventrum, and joints. Respiratory and digestive tract inflammations were frequently observed. Zinc supplementation did not lead to remission of clinical signs in 4 calves. Laboratory variables revealed slight anemia in 8 calves, hypoalbuminemia in 6 calves, but reduced serum zinc concentrations in only 3 calves. Mucosal erosions/ulcerations were present in 7 calves and thymus atrophy or reduced thymic weights in 8 calves. Histologically, skin lesions were indistinguishable from BHZD. Retrospective analysis of medical records revealed the presence of this phenotype since 1988 and pedigree analysis revealed a common ancestor of several affected calves. ZDL syndrome should be suspected in Fleckvieh calves with crusting dermatitis together with diarrhea or respiratory tract inflammations without response to oral zinc supplementation. Definite diagnosis requires molecular genetic confirmation of the PLD4 mutation. Copyright © 2018 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  2. Specific Labeling of Zinc Finger Proteins using Non-canonical Amino Acids and Copper-free Click Chemistry

    Science.gov (United States)

    Kim, Younghoon; Kim, Sung Hoon; Ferracane, Dean; Katzenellenbogen, John A.

    2012-01-01

    Zinc finger proteins (ZFPs) play a key role in transcriptional regulation and serve as invaluable tools for gene modification and genetic engineering. Development of efficient strategies for labeling metalloproteins such as ZFPs is essential for understanding and controlling biological processes. In this work, we engineered ZFPs containing cysteine-histidine (Cys2-His2) motifs by metabolic incorporation of the unnatural amino acid azidohomoalanine (AHA), followed by specific protein labeling via click chemistry. We show that cyclooctyne promoted [3 + 2] dipolar cycloaddition with azides, known as copper-free click chemistry, provides rapid and specific labeling of ZFPs at high yields as determined by mass spectrometry analysis. We observe that the DNA-binding activity of ZFPs labeled by conventional copper-mediated click chemistry was completely abolished, whereas ZFPs labeled by copper-free click chemistry retain their sequence-specific DNA-binding activity under native conditions, as determined by electrophoretic mobility shift assays, protein microarrays and kinetic binding assays based on Förster resonance energy transfer (FRET). Our work provides a general framework to label metalloproteins such as ZFPs by metabolic incorporation of unnatural amino acids followed by copper-free click chemistry. PMID:22871171

  3. Evolution of the zinc compound nanostructures in zinc acetate single-source solution

    International Nuclear Information System (INIS)

    Wang Ying; Li Yinhua; Zhou Zhengzhi; Zu Xihong; Deng Yulin

    2011-01-01

    A series of nanostructured zinc compounds with different nanostructures such as nanobelts, flake-like, flower-like, and twinning crystals was synthesized using zinc acetate (Zn(Ac) 2 ) as a single-source. The evolution of the zinc compounds from layered basic zinc acetate (LBZA) to bilayered basic zinc acetate (BLBZA) and twinned ZnO nano/microcrystal was studied. The low-angle X-ray diffraction spectra indicate the layered spacing is 1.34 and 2.1 nm for LBZA and BLBZA, respectively. The Fourier transform infrared (FTIR) spectra results confirmed that the bonding force of acetate anion with zinc cations decreases with the phase transformation from Zn(Ac) 2 to BLBZA, and finally to LBZA. The OH − groups gradually replaced the acetate groups coordinated to the matrix zinc cation, and the acetate groups were released completely. Finally, the Zn(OH) 2 and ZnO were formed at high temperature. The conversion process from Zn(Ac) 2 to ZnO with release of acetate anions can be described as Zn(Ac) 2 → BLBZA → LBZA → Zn(OH) 2 → ZnO.

  4. Engineering drought tolerant tomato plants over-expressing BcZAT12 gene encoding a C₂H₂ zinc finger transcription factor.

    Science.gov (United States)

    Rai, Avinash Chandra; Singh, Major; Shah, Kavita

    2013-01-01

    Efficient genetic transformation of cotyledonary explants of tomato (Solanum lycopersicum, cv. H-86, Kashi vishesh) was obtained. Disarmed Agrobacterium tumifaciens strain GV 3101 was used in conjugation with binary vector pBinAR containing a construct consisting of the coding sequence of the BcZAT12 gene under the regulatory control of the stress inducible Bclea1a promoter. ZAT12 encodes a C₂H₂ zinc finger protein which confers multiple abiotic stress tolerance to plants. Integration of ZAT12 gene into nuclear genome of individual kanamycin resistant transformed T₀ tomato lines was confirmed by Southern blot hybridization with segregation analysis of T(1) plants showing Mendelian inheritance of the transgene. Expression of ZAT12 in drought-stressed transformed tomato lines was verified in T₂ generation plants using RT-PCR. Of the six transformed tomato lines (ZT1-ZT6) the transformants ZT1 and ZT5 showed maximum expression of BcZAT12 gene transcripts when exposed to 7 days drought stress. Analysis of relative water content (RWC), electrolyte leakage (EL), chlorophyll colour index (CCI), H₂O₂ level and catalase activity suggested that tomato BcZAT12 transformants ZT1 and ZT5 have significantly increased levels of drought tolerance. These results suggest that BcZAT12 transformed tomato cv. H-86 has real potential for molecular breeding programs aimed at augmenting yield of tomato in regions affected with drought stress. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. The conserved basic residues and the charged amino acid residues at the α-helix of the zinc finger motif regulate the nuclear transport activity of triple C2H2 zinc finger proteins

    Science.gov (United States)

    Lin, Chih-Ying

    2018-01-01

    Zinc finger (ZF) motifs on proteins are frequently recognized as a structure for DNA binding. Accumulated reports indicate that ZF motifs contain nuclear localization signal (NLS) to facilitate the transport of ZF proteins into nucleus. We investigated the critical factors that facilitate the nuclear transport of triple C2H2 ZF proteins. Three conserved basic residues (hot spots) were identified among the ZF sequences of triple C2H2 ZF proteins that reportedly have NLS function. Additional basic residues can be found on the α-helix of the ZFs. Using the ZF domain (ZFD) of Egr-1 as a template, various mutants were constructed and expressed in cells. The nuclear transport activity of various mutants was estimated by analyzing the proportion of protein localized in the nucleus. Mutation at any hot spot of the Egr-1 ZFs reduced the nuclear transport activity. Changes of the basic residues at the α-helical region of the second ZF (ZF2) of the Egr-1 ZFD abolished the NLS activity. However, this activity can be restored by substituting the acidic residues at the homologous positions of ZF1 or ZF3 with basic residues. The restored activity dropped again when the hot spots at ZF1 or the basic residues in the α-helix of ZF3 were mutated. The variations in nuclear transport activity are linked directly to the binding activity of the ZF proteins with importins. This study was extended to other triple C2H2 ZF proteins. SP1 and KLF families, similar to Egr-1, have charged amino acid residues at the second (α2) and the third (α3) positions of the α-helix. Replacing the amino acids at α2 and α3 with acidic residues reduced the NLS activity of the SP1 and KLF6 ZFD. The reduced activity can be restored by substituting the α3 with histidine at any SP1 and KLF6 ZFD. The results show again the interchangeable role of ZFs and charge residues in the α-helix in regulating the NLS activity of triple C2H2 ZF proteins. PMID:29381770

  6. Generation of knockout rabbits using transcription activator-like effector nucleases

    OpenAIRE

    Wang, Yu; Fan, Nana; Song, Jun; Zhong, Juan; Guo, Xiaogang; Tian, Weihua; Zhang, Quanjun; Cui, Fenggong; Li, Li; Newsome, Philip N; Frampton, Jon; Esteban, Miguel A; Lai, Liangxue

    2014-01-01

    Zinc-finger nucleases and transcription activator-like effector nucleases are novel gene-editing platforms contributing to redefine the boundaries of modern biological research. They are composed of a non-specific cleavage domain and a tailor made DNA-binding module, which enables a broad range of genetic modifications by inducing efficient DNA double-strand breaks at desired loci. Among other remarkable uses, these nucleases have been employed to produce gene knockouts in mid-size and large ...

  7. Influence of heat processing on the bioaccessibility of zinc and iron from cereals and pulses consumed in India.

    Science.gov (United States)

    Hemalatha, Sreeramaiah; Platel, Kalpana; Srinivasan, Krishnapura

    2007-01-01

    Influence of heat processing on the bioaccessibility of zinc and iron from food grains consumed in India was evaluated. Cereals - rice (Oryza sativa), finger millet (Eleusine coracana), sorghum (Sorghum vulgare), wheat (Triticum aestivum), and maize (Zea mays), and pulses - chickpea (Cicer arietinum) - whole and decorticated, green gram (Phaseolus aureus) - whole and decorticated, decorticated black gram (Phaseolus mungo), decorticated red gram (Cajanus cajan), cowpea (Vigna catjang), and French bean (Phaseolus vulgaris) were examined for zinc and iron bioaccessibility by employing an in vitro dialysability procedure. Both pressure-cooking and microwave heating were tested for their influence on mineral bioaccessibility. Zinc bioaccessibility from food grains was considerably reduced upon pressure-cooking, especially in pulses. Among cereals, pressure-cooking decreased zinc bioaccessibility by 63% and 57% in finger millet and rice, respectively. All the pressure-cooked cereals showed similar percent zinc bioaccessibility with the exception of finger millet. Bioaccessibility of zinc from pulses was generally lower as a result of pressure-cooking or microwave heating. The decrease in bioaccessibility of zinc caused by microwave heating ranged from 11.4% in chickpea (whole) to 63% in cowpea. Decrease in zinc bioaccessibility was 48% in pressure-cooked whole chickpea, 45% and 55% in pressure-cooked or microwave-heated whole green gram, 32% and 22% in pressure-cooked or microwave-heated decorticated green gram, and 45% in microwave-heated black gram. Iron bioaccessibility, on the other hand, was significantly enhanced generally from all the food grains studied upon heat treatment. Thus, heat treatment of grains produced contrasting effect on zinc and iron bioaccessibility.

  8. The effectiveness of zinc supplementation in men with isolated hypogonadotropic hypogonadism

    Directory of Open Access Journals (Sweden)

    Yan-Ling Liu

    2017-01-01

    Full Text Available A multicenter, open-label, randomized, controlled superiority trial with 18 months of follow-up was conducted to investigate whether oral zinc supplementation could further promote spermatogenesis in males with isolated hypogonadotropic hypogonadism (IHH receiving sequential purified urinary follicular-stimulating hormone/human chorionic gonadotropin (uFSH/hCG replacement. Sixty-seven Chinese male IHH patients were recruited from the Departments of Endocrinology in eight tertiary hospitals and randomly allocated into the sequential uFSH/hCG group (Group A, n = 34 or the sequential uFSH plus zinc supplementation group (Group B, n = 33. In Group A, patients received sequential uFSH (75 U, three times a week every other 3 months and hCG (2000 U, twice a week treatments. In Group B, patients received oral zinc supplementation (40 mg day−1 in addition to the sequential uFSH/hCG treatment given to patients in Group A. The primary outcome was the proportion of patients with a sperm concentration ≥1.0 × 106 ml−1 during the 18 months. The comparison of efficacy between Groups A and B was analyzed. Nineteen of 34 (55.9% patients receiving sequential uFSH/hCG and 20 of 33 (60.6% patients receiving sequential uFSH/hCG plus zinc supplementation achieved sperm concentrations ≥1.0 × 106 ml−1 by intention to treat analyses. No differences between Group A and Group B were observed as far as the efficacy of inducing spermatogenesis (P = 0.69. We concluded that the sequential uFSH/hCG plus zinc supplementation regimen had a similar efficacy to the sequential uFSH/hCG treatment alone. The additional improvement of 40 mg day−1 oral zinc supplementation on spermatogenesis and masculinization in male IHH patients is very subtle.

  9. Zfp462 deficiency causes anxiety-like behaviors with excessive self-grooming in mice.

    Science.gov (United States)

    Wang, B; Zheng, Y; Shi, H; Du, X; Zhang, Y; Wei, B; Luo, M; Wang, H; Wu, X; Hua, X; Sun, M; Xu, X

    2017-02-01

    Zfp462 is a newly identified vertebrate-specific zinc finger protein that contains nearly 2500 amino acids and 23 putative C2H2-type zinc finger domains. So far, the functions of Zfp462 remain unclear. In our study, we showed that Zfp462 is expressed predominantly in the developing brain, especially in the cerebral cortex and hippocampus regions from embryonic day 7.5 to early postnatal stage. By using a piggyBac transposon-generated Zfp462 knockout (KO) mouse model, we found that Zfp462 KO mice exhibited prenatal lethality with normal neural tube patterning, whereas heterozygous (Het) Zfp462 KO (Zfp462 +/- ) mice showed developmental delay with low body weight and brain weight. Behavioral studies showed that Zfp462 +/- mice presented anxiety-like behaviors with excessive self-grooming and hair loss, which were similar to the pathological grooming behaviors in Hoxb8 KO mice. Further analysis of grooming microstructure showed the impairment of grooming patterning in Zfp462 +/- mice. In addition, the mRNA levels of Pbx1 (pre-B-cell leukemia homeobox 1, an interacting protein of Zfp462) and Hoxb8 decreased in the brains of Zfp462 +/- mice, which may be the cause of anxiety-like behaviors. Finally, imipramine, a widely used and effective anti-anxiety medicine, rescued anxiety-like behaviors and excessive self-grooming in Zfp462 +/- mice. In conclusion, Zfp462 deficiency causes anxiety-like behaviors with excessive self-grooming in mice. This provides a novel genetic mouse model for anxiety disorders and a useful tool to determine potential therapeutic targets for anxiety disorders and screen anti-anxiety drugs. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  10. A highly efficient urea detection using flower-like zinc oxide nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Tak, Manvi; Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Tomar, Monika, E-mail: monikatomar@gmail.com [Department of Physics, Miranda House, University of Delhi, Delhi 110007 (India)

    2015-12-01

    A novel matrix based on flower-like zinc oxide nanostructures (ZnONF) has been fabricated using hydrothermal method and exploited successfully for the development of urea biosensor. Urease (Urs) is physically immobilized onto the ZnO nanostructure matrix synthesized over platinized silicon substrate. The surface morphology and crystallographic structure of the as-grown ZnONF have been characterized using a scanning electron microscope (SEM) and X-ray diffraction (XRD) techniques. The fabricated amperometric biosensor (Urs/ZnONF/Pt/Ti/Si) exhibits a linear sensing response towards urea over the concentration range 1.65 mM to 16.50 mM with an enhanced sensitivity (~ 132 μA/mM/cm{sup 2}) and a fast response time of 4 s. The relatively low value of Michaelis–Menten constant (K{sub m}) of 0.19 mM confirms the high affinity of the immobilized urease on the nanostructured ZnONF surface towards its analyte (urea). The obtained results demonstrate that flower-like ZnO nanostructures serve as a promising matrix for the realization of efficient amperometric urea biosensor with enhanced response characteristics. - Graphical abstract: The article focuses on the synthesis of flower-like morphology possessing zinc oxide nanostructures and its application towards urea detection with high sensitivity as well as selectivity. - Highlights: • Flower-like ZnO nanostructures based urea biosensor has been fabricated. • Grown ZnO nanostructures offer an advantageous urease immobilization platform owing to its very high surface area. • High sensitivity (~ 132 μA/mM/cm{sup 2}) and low Michaelis–Menten parameter (K{sub m}) value (~ 0.19 mM) were observed.

  11. The influence of intrinsic sympathomimetic activity and beta-1 receptor selectivity on the recovery of finger skin temperature after finger cooling in normotensive subjects.

    Science.gov (United States)

    Lenders, J W; Salemans, J; de Boo, T; Lemmens, W A; Thien, T; van't Laar, A

    1986-03-01

    A double-blind randomized study was designed to investigate differences in the recovery of finger skin temperature after finger cooling during dosing with placebo or one of four beta-blockers: propranolol, atenolol, pindolol, and acebutolol. In 11 normotensive nonsmoking subjects, finger skin temperature was measured with a thermocouple before and 20 minutes after immersion of one hand in a water bath at 16 degrees C. This finger cooling test caused no significant changes in systemic hemodynamics such as arterial blood pressure, heart rate, and forearm blood flow. The recovery of finger skin temperature during propranolol dosing was better than that during pindolol and atenolol dosing. There were no differences between the recoveries of skin temperature during pindolol, atenolol, and acebutolol dosing. Thus we could demonstrate no favorable effect of intrinsic sympathomimetic activity or beta 1-selectivity on the recovery of finger skin temperature after finger cooling.

  12. Knockout of exogenous EGFP gene in porcine somatic cells using zinc-finger nucleases

    International Nuclear Information System (INIS)

    Watanabe, Masahito; Umeyama, Kazuhiro; Matsunari, Hitomi; Takayanagi, Shuko; Haruyama, Erika; Nakano, Kazuaki; Fujiwara, Tsukasa; Ikezawa, Yuka; Nakauchi, Hiromitsu

    2010-01-01

    Research highlights: → EGFP gene integrated in porcine somatic cells could be knocked out using the ZFN-KO system. → ZFNs induced targeted mutations in porcine primary cultured cells. → Complete absence of EGFP fluorescence was confirmed in ZFN-treated cells. -- Abstract: Zinc-finger nucleases (ZFNs) are expected as a powerful tool for generating gene knockouts in laboratory and domestic animals. Currently, it is unclear whether this technology can be utilized for knocking-out genes in pigs. Here, we investigated whether knockout (KO) events in which ZFNs recognize and cleave a target sequence occur in porcine primary cultured somatic cells that harbor the exogenous enhanced green fluorescent protein (EGFP) gene. ZFN-encoding mRNA designed to target the EGFP gene was introduced by electroporation into the cell. Using the Surveyor nuclease assay and flow cytometric analysis, we confirmed ZFN-induced cleavage of the target sequence and the disappearance of EGFP fluorescence expression in ZFN-treated cells. In addition, sequence analysis revealed that ZFN-induced mutations such as base substitution, deletion, or insertion were generated in the ZFN cleavage site of EGFP-expression negative cells that were cloned from ZFN-treated cells, thereby showing it was possible to disrupt (i.e., knock out) the function of the EGFP gene in porcine somatic cells. To our knowledge, this study provides the first evidence that the ZFN-KO system can be applied to pigs. These findings may open a new avenue to the creation of gene KO pigs using ZFN-treated cells and somatic cell nuclear transfer.

  13. Comparison of Serum Zinc Level in Patients with Diabetes Type 1 and 2 and Its' Relation to HbA1c

    Directory of Open Access Journals (Sweden)

    Fatemeh Dorreh

    2014-01-01

    Full Text Available Background: Diabetes Mellitus (DM is a major health care problem. The relationship between DM and zinc has frequently been reported in various research. The present study aims to investigate serum zinc level in patients with type 1 (IDDM and type 2 (NIDDM. Association between glyaceted hemoglobin and level of zinc is also evaluted. Materials and Methods: This cross-sectional study was conducted on 60 subjects with DM (Type l: N=30; Type 2: N=30 who met inclusion criteria of the study. Patients’ serum zinc level and HbA1c were measured. Data were analyzed using t-test and Mann-Withney U test. Results: Seventy five percent of the subjects were female. The average age of the IDDM was 15.36±5.28 years and that of NIDDM was 48.70±11.45 years. The average HbA1c of subjects was 8.06±1.64%. The average serum level of zinc in IDDM group was 95.82±14.51 μg/dl and that of NIDDM was 97.47±32.36 μg/dl, no significant difference was found between the two groups. Serum zinc difficiency was detected in 20% of the patients with NIDDM and 16.6% of the patients with IDDM. However, no significant correlation between HbA1c and serum level of zinc was detected in this study. Conclusion: Zinc deficiency was detected among a significant percentage of IDDM and NIDDM patients, but no significant correlation between serum zinc level and HbA1c was detected.

  14. Activation of Fetal γ-globin Gene Expression via Direct Protein Delivery of Synthetic Zinc-finger DNA-Binding Domains

    Directory of Open Access Journals (Sweden)

    Mir A Hossain

    2016-01-01

    Full Text Available Reactivation of γ-globin expression has been shown to ameliorate disease phenotypes associated with mutations in the adult β-globin gene, including sickle cell disease. Specific mutations in the promoter of the γ-globin genes are known to prevent repression of the genes in the adult and thus lead to hereditary persistence of fetal hemoglobin. One such hereditary persistence of fetal hemoglobin is associated with a sequence located 567 bp upstream of the Gγ-globin gene which assembles a GATA-containing repressor complex. We generated two synthetic zinc-finger DNA-binding domains (ZF-DBDs targeting this sequence. The -567Gγ ZF-DBDs associated with high affinity and specificity with the target site in the γ-globin gene promoter. We delivered the -567Gγ ZF-DBDs directly to primary erythroid cells. Exposure of these cells to the recombinant -567Gγ ZF-DBDs led to increased expression of the γ-globin gene. Direct protein delivery of ZF-DBDs that compete with transcription regulatory proteins will have broad implications for modulating gene expression in analytical or therapeutic settings.

  15. Genome-Wide Identification, Evolution and Expression Analysis of the Grape (Vitis vinifera L. Zinc Finger-Homeodomain Gene Family

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2014-04-01

    Full Text Available Plant zinc finger-homeodomain (ZHD genes encode a family of transcription factors that have been demonstrated to play an important role in the regulation of plant growth and development. In this study, we identified a total of 13 ZHD genes (VvZHD in the grape genome that were further classified into at least seven groups. Genome synteny analysis revealed that a number of VvZHD genes were present in the corresponding syntenic blocks of Arabidopsis, indicating that they arose before the divergence of these two species. Gene expression analysis showed that the identified VvZHD genes displayed distinct spatiotemporal expression patterns, and were differentially regulated under various stress conditions and hormone treatments, suggesting that the grape VvZHDs might be also involved in plant response to a variety of biotic and abiotic insults. Our work provides insightful information and knowledge about the ZHD genes in grape, which provides a framework for further characterization of their roles in regulation of stress tolerance as well as other aspects of grape productivity.

  16. Integration of tactile input across fingers in a patient with finger agnosia.

    Science.gov (United States)

    Anema, Helen A; Overvliet, Krista E; Smeets, Jeroen B J; Brenner, Eli; Dijkerman, H Chris

    2011-01-01

    Finger agnosia has been described as an inability to explicitly individuate between the fingers, which is possibly due to fused neural representations of these fingers. Hence, are patients with finger agnosia unable to keep tactile information perceived over several fingers separate? Here, we tested a finger agnosic patient (GO) on two tasks that measured the ability to keep tactile information simultaneously perceived by individual fingers separate. In experiment 1 GO performed a haptic search task, in which a target (the absence of a protruded line) needed to be identified among distracters (protruded lines). The lines were presented simultaneously to the fingertips of both hands. Similarly to the controls, her reaction time decreased when her fingers were aligned as compared to when her fingers were stretched and in an unaligned position. This suggests that she can keep tactile input from different fingers separate. In experiment two, GO was required to judge the position of a target tactile stimulus to the index finger, relatively to a reference tactile stimulus to the middle finger, both in fingers uncrossed and crossed position. GO was able to indicate the relative position of the target stimulus as well as healthy controls, which indicates that she was able to keep tactile information perceived by two neighbouring fingers separate. Interestingly, GO performed better as compared to the healthy controls in the finger crossed condition. Together, these results suggest the GO is able to implicitly distinguish between tactile information perceived by multiple fingers. We therefore conclude that finger agnosia is not caused by minor disruptions of low-level somatosensory processing. These findings further underpin the idea of a selective impaired higher order body representation restricted to the fingers as underlying cause of finger agnosia. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Facile and Eco-Friendly Synthesis of Finger-Like Co3O4 Nanorods for Electrochemical Energy Storage

    Science.gov (United States)

    Sun, Shijiao; Zhao, Xiangyu; Yang, Meng; Ma, Liqun; Shen, Xiaodong

    2015-01-01

    Co3O4 nanorods were prepared by a facile hydrothermal method. Eco-friendly deionized water rather than organic solvent was used as the hydrothermal media. The as-prepared Co3O4 nanorods are composed of many nanoparticles of 30–50 nm in diameter, forming a finger-like morphology. The Co3O4 electrode shows a specific capacitance of 265 F g−1 at 2 mV s−1 in a supercapacitor and delivers an initial specific discharge capacity as high as 1171 mAh g−1 at a current density of 50 mA g−1 in a lithium ion battery. Excellent cycling stability and electrochemical reversibility of the Co3O4 electrode were also obtained. PMID:28347124

  18. Facile and Eco-Friendly Synthesis of Finger-Like Co3O4 Nanorods for Electrochemical Energy Storage

    Directory of Open Access Journals (Sweden)

    Shijiao Sun

    2015-12-01

    Full Text Available Co3O4 nanorods were prepared by a facile hydrothermal method. Eco-friendly deionized water rather than organic solvent was used as the hydrothermal media. The as-prepared Co3O4 nanorods are composed of many nanoparticles of 30–50 nm in diameter, forming a finger-like morphology. The Co3O4 electrode shows a specific capacitance of 265 F g−1 at 2 mV s−1 in a supercapacitor and delivers an initial specific discharge capacity as high as 1171 mAh g−1 at a current density of 50 mA g−1 in a lithium ion battery. Excellent cycling stability and electrochemical reversibility of the Co3O4 electrode were also obtained.

  19. Sequence-specific DNA binding activity of the cross-brace zinc finger motif of the piggyBac transposase

    Science.gov (United States)

    Morellet, Nelly; Li, Xianghong; Wieninger, Silke A; Taylor, Jennifer L; Bischerour, Julien; Moriau, Séverine; Lescop, Ewen; Bardiaux, Benjamin; Mathy, Nathalie; Assrir, Nadine; Bétermier, Mireille; Nilges, Michael; Hickman, Alison B; Dyda, Fred; Craig, Nancy L; Guittet, Eric

    2018-01-01

    Abstract The piggyBac transposase (PB) is distinguished by its activity and utility in genome engineering, especially in humans where it has highly promising therapeutic potential. Little is known, however, about the structure–function relationships of the different domains of PB. Here, we demonstrate in vitro and in vivo that its C-terminal Cysteine-Rich Domain (CRD) is essential for DNA breakage, joining and transposition and that it binds to specific DNA sequences in the left and right transposon ends, and to an additional unexpectedly internal site at the left end. Using NMR, we show that the CRD adopts the specific fold of the cross-brace zinc finger protein family. We determine the interaction interfaces between the CRD and its target, the 5′-TGCGT-3′/3′-ACGCA-5′ motifs found in the left, left internal and right transposon ends, and use NMR results to propose docking models for the complex, which are consistent with our site-directed mutagenesis data. Our results provide support for a model of the PB/DNA interactions in the context of the transpososome, which will be useful for the rational design of PB mutants with increased activity. PMID:29385532

  20. Expression and function of the zinc finger transcription factor Sp6-9 in the spider Parasteatoda tepidariorum.

    Science.gov (United States)

    Königsmann, Tatiana; Turetzek, Natascha; Pechmann, Matthias; Prpic, Nikola-Michael

    2017-11-01

    Zinc finger transcription factors of the Sp6-9 group are evolutionarily conserved in all metazoans and have important functions in, e.g., limb formation and heart development. The function of Sp6-9-related genes has been studied in a number of vertebrates and invertebrates, but data from chelicerates (spiders and allies) was lacking so far. We have isolated the ortholog of Sp6-9 from the common house spider Parasteatoda tepidariorum and the cellar spider Pholcus phalangioides. We show that the Sp6-9 gene in these spider species is expressed in the developing appendages thus suggesting a conserved role in limb formation. Indeed, RNAi with Sp6-9 in P. tepidariorum leads not only to strong limb defects, but also to the loss of body segments and head defects in more strongly affected animals. Together with a new expression domain in the early embryo, these data suggest that Sp6-9 has a dual role P. tepidariorum. The early role in head and body segment formation is not known from other arthropods, but the role in limb formation is evolutionarily highly conserved.

  1. Zinc finger protein 139 expression in gastric cancer and its clinical significance.

    Science.gov (United States)

    Li, Yong; Zhao, Qun; Fan, Li-Qiao; Wang, Li-Li; Tan, Bi-Bo; Leng, Yan-Li; Liu, Yu; Wang, Dong

    2014-12-28

    To investigate the expression of zinc finger protein 139 (ZNF139) in gastric cancer (GC), and to analyze its clinical significance. A total of 108 patients who were diagnosed with GC and underwent surgery between January 2005 and March 2007 were enrolled in this study. Gastric tumor specimens and paired tumor-adjacent tissues were collected and paraffin-embedded, and the clinicopathologic characteristics and prognosis were recorded. The expression of ZNF139, Bcl-2, Bax, and caspase-3 were determined by immunohistochemistry, and apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling. SPSS 13.0 software was used for data processing and analyses, and significance was determined at P stage, lymphatic metastasis, and blood vessel invasion (all Ps < 0.05). Patients with overexpression of ZNF139 had a poorer prognosis (P < 0.01), and overexpression of ZNF139 was an independent factor for the prognosis of GC patients by a Cox survival analysis (P = 0.02). A negative relationship between ZNF139 and the apoptosis index was observed (r = -0.686; P < 0.01). The expression of Bcl-2 in GC was stronger than in tumor-adjacent tissues (66.67% vs 41.67%), whereas the expression levels of Bax and caspase-3 were lower in primary tumors (54.63% and 47.22%, respectively) than in tumor-adjacent tissues (73.15% and 73.15%, respectively) (all Ps < 0.05). The expression of ZNF139 negatively correlated with caspase-3 (r = -0.370; P < 0.01). The expressions of Bcl-2 and Bax were also negatively correlated (r = -0.231; P = 0.02). The expressions of caspase-3 and Bax protein were positively correlated (r = 0.217; P = 0.024). ZNF139 is related to clinicopathologic characteristics and prognosis of GC. Furthermore, it is overexpressed and involved in apoptosis in GC tissues by regulating caspase-3.

  2. Left hand finger force in violin playing: tempo, loudness, and finger differences.

    Science.gov (United States)

    Kinoshita, Hiroshi; Obata, Satoshi

    2009-07-01

    A three-dimensional force transducer was installed in the neck of a violin under the A string at the D5 position in order to study the force with which the violinist clamps the string against the fingerboard under normal playing conditions. Violinists performed repetitive sequences of open A- and fingered D-tones using the ring finger at tempi of 1, 2, 4, 8, and 16 notes/s at mezzo-forte. At selected tempi, the effects of dynamic level and the use of different fingers were investigated as well. The force profiles were clearly dependent on tempo and dynamic level. At slow tempi, the force profiles were characterized by an initial pulse followed by a level force to the end of the finger contact period. At tempi higher than 2 Hz, only pulsed profiles were observed. The peak force exceeded 4.5 N at 1 and 2 Hz and decreased to 1.7 N at 16 Hz. All force and impulse values were lower at softer dynamic levels, and when using the ring or little finger compared to the index finger.

  3. MicroRNA-141 inhibits migration of gastric cancer by targeting zinc finger E-box-binding homeobox 2.

    Science.gov (United States)

    Du, Ying; Wang, Lingfei; Wu, Honghai; Zhang, Yiyin; Wang, Kan; Wu, Dingting

    2015-09-01

    Human microRNA (miR)-141 is a member of the miR‑200 family, which has been reported to be downregulated in gastric cancer, and involved in the proliferation of gastric cancer cells. However, little is currently known regarding its role in the migration of gastric cancer. The present study investigated the function of miR‑141 in gastric cancer cell migration, and evaluated the contribution of zinc finger E‑box‑binding homeobox 1 and 2 (ZEB1/2) in miR‑141 mediated migration of gastric cancer cells. The expression levels of miR‑141 and its potential ZEB1/2 targets were examined by quantitative polymerase chain reaction (qPCR) and western blotting, respectively. The migration of SGC‑7901 and HGC‑27 gastric cancer cells, which had been transfected with an miRNA precursor, was examined by cell migration and wound healing assays. A luciferase activity assay was used to validate whether ZEB1/2 was a direct target of miR‑141. The results demonstrated that overexpression of miR‑141 markedly inhibited the migration of gastric cancer cells in vitro. Forced overexpression of miR‑141 significantly reduced the luciferase activity of the 3'‑untranslated region of ZEB2 in gastric cancer cells. Furthermore, the mRNA and protein expression levels of ZEB2 were reduced in cells overexpressing miR‑141, whereas the protein expression levels of E‑cadherin were increased. In gastric tumor samples the expression levels of ZEB2 were inversely correlated with the expression of miR‑141. These results suggest that miR‑141 may be involved in the inhibition of gastric cancer cell migration, and that ZEB2 is a target gene of miR-141.

  4. Differing Dynamics of Intrapersonal and Interpersonal Coordination: Two-finger and Four-Finger Tapping Experiments.

    Directory of Open Access Journals (Sweden)

    Kentaro Kodama

    Full Text Available Finger-tapping experiments were conducted to examine whether the dynamics of intrapersonal and interpersonal coordination systems can be described equally by the Haken-Kelso-Bunz model, which describes inter-limb coordination dynamics. This article reports the results of finger-tapping experiments conducted in both systems. Two within-subject factors were investigated: the phase mode and the number of fingers. In the intrapersonal experiment (Experiment 1, the participants were asked to tap, paced by a gradually hastening auditory metronome, looking at their fingers moving, using the index finger in the two finger condition, or the index and middle finger in the four-finger condition. In the interpersonal experiment (Experiment 2, pairs of participants performed the task while each participant used the outside hand, tapping with the index finger in the two finger condition, or the index and middle finger in the four-finger condition. Some results did not agree with the HKB model predictions. First, from Experiment 1, no significant difference was observed in the movement stability between the in-phase and anti-phase modes in the two finger condition. Second, from Experiment 2, no significant difference was found in the movement stability between the in-phase and anti-phase mode in the four-finger condition. From these findings, different coordination dynamics were inferred between intrapersonal and interpersonal coordination systems against prediction from the previous studies. Results were discussed according to differences between intrapersonal and interpersonal coordination systems in the availability of perceptual information and the complexity in the interaction between limbs derived from a nested structure.

  5. GPR39 (zinc receptor) knockout mice exhibit depression-like behavior and CREB/BDNF down-regulation in the hippocampus

    DEFF Research Database (Denmark)

    Młyniec, Katarzyna; Budziszewska, Bogusława; Holst, Birgitte

    2015-01-01

    Background: Zinc may act as a neurotransmitter in the central nervous system by activation of the GPR39 metabotropic receptors. Methods: In the present study, we investigated whether GPR39 knockout would cause depressive-like and/or anxiety-like behavior, as measured by the forced swim test, tail...... investigated activity in the hypothalamus-pituitary-adrenal axis under both zinc- and GPR39-deficient conditions. Zinc-deficient mice had higher serum corticosterone levels and lower glucocorticoid receptor levels in the hippocampus and frontal cortex. Conclusions: There were no changes in the GPR39 knockout...

  6. A Mini Zinc-Finger Protein (MIF from Gerbera hybrida Activates the GASA Protein Family Gene, GEG, to Inhibit Ray Petal Elongation

    Directory of Open Access Journals (Sweden)

    Meixiang Han

    2017-09-01

    Full Text Available Petal appearance is an important horticultural trail that is generally used to evaluate the ornamental value of plants. However, knowledge of the molecular regulation of petal growth is mostly derived from analyses of Arabidopsis thaliana, and relatively little is known about this process in ornamental plants. Previously, GEG (Gerbera hybrida homolog of the gibberellin [GA]–stimulated transcript 1 [GAST1] from tomato, a gene from the GA stimulated Arabidopsis (GASA family, was reported to be an inhibitor of ray petal growth in the ornamental species, G. hybrida. To explore the molecular regulatory mechanism of GEG in petal growth inhibition, a mini zinc-finger protein (MIF was identified using yeast one-hybrid (Y1H screen. The direct binding of GhMIF to the GEG promoter was verified by using an electrophoretic mobility shift assay and a dual-luciferase assay. A yeast two-hybrid (Y2H revealed that GhMIF acts as a transcriptional activator. Transient transformation assay indicated that GhMIF is involved in inhibiting ray petal elongation by activating the expression of GEG. Spatiotemporal expression analyses and hormone treatment assay showed that the expression of GhMIF and GEG is coordinated during petal development. Taken together, these results suggest that GhMIF acts as a direct transcriptional activator of GEG, a gene from the GASA protein family to regulate the petal elongation.

  7. Iron and zinc bioaccessibility of fermented maize, sorghum and millets from five locations in Zimbabwe.

    Science.gov (United States)

    Gabaza, Molly; Shumoy, Habtu; Muchuweti, Maud; Vandamme, Peter; Raes, Katleen

    2018-01-01

    The present study is an evaluation of iron and zinc bioaccessibility of fermented maize, sorghum, pearl millet and finger millet from five different locations in Zimbabwe. Iron and zinc contents ranged between 3.22 and 49.7 and 1.25-4.39mg/100gdm, respectively. Fermentation caused a reduction of between 20 and 88% of phytic acid (PA) while a general increase in soluble phenolic compounds (PC) and a decrease of the bound (PC) was observed. Bioaccessibility of iron and zinc ranged between 2.77 and 26.1% and 0.45-12.8%, respectively. The contribution of the fermented cereals towards iron and zinc absolute requirements ranged between 25 and 411% and 0.5-23% with higher contribution of iron coming from cereals that were contaminated with extrinsic iron. Populations subsisting on cereals could be more at risk of zinc rather than iron deficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Influence of DNA-methylation on zinc homeostasis in myeloid cells: Regulation of zinc transporters and zinc binding proteins.

    Science.gov (United States)

    Kessels, Jana Elena; Wessels, Inga; Haase, Hajo; Rink, Lothar; Uciechowski, Peter

    2016-09-01

    The distribution of intracellular zinc, predominantly regulated through zinc transporters and zinc binding proteins, is required to support an efficient immune response. Epigenetic mechanisms such as DNA methylation are involved in the expression of these genes. In demethylation experiments using 5-Aza-2'-deoxycytidine (AZA) increased intracellular (after 24 and 48h) and total cellular zinc levels (after 48h) were observed in the myeloid cell line HL-60. To uncover the mechanisms that cause the disturbed zinc homeostasis after DNA demethylation, the expression of human zinc transporters and zinc binding proteins were investigated. Real time PCR analyses of 14 ZIP (solute-linked carrier (SLC) SLC39A; Zrt/IRT-like protein), and 9 ZnT (SLC30A) zinc transporters revealed significantly enhanced mRNA expression of the zinc importer ZIP1 after AZA treatment. Because ZIP1 protein was also enhanced after AZA treatment, ZIP1 up-regulation might be the mediator of enhanced intracellular zinc levels. The mRNA expression of ZIP14 was decreased, whereas zinc exporter ZnT3 mRNA was also significantly increased; which might be a cellular reaction to compensate elevated zinc levels. An enhanced but not significant chromatin accessibility of ZIP1 promoter region I was detected by chromatin accessibility by real-time PCR (CHART) assays after demethylation. Additionally, DNA demethylation resulted in increased mRNA accumulation of zinc binding proteins metallothionein (MT) and S100A8/S100A9 after 48h. MT mRNA was significantly enhanced after 24h of AZA treatment also suggesting a reaction of the cell to restore zinc homeostasis. These data indicate that DNA methylation is an important epigenetic mechanism affecting zinc binding proteins and transporters, and, therefore, regulating zinc homeostasis in myeloid cells. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. ANALYSIS WITH MSC ADAMS OF A 5-FINGER AND 3-PHALANX /FINGER UNDER-ACTUATEDMECHANICAL HAND

    Directory of Open Access Journals (Sweden)

    Gheorghe POPESCU

    2013-05-01

    Full Text Available This paper studies the analysis with MSC ADAMS of a 5-fingered and 3-phalanx/finger underactuatedmechanical hand, designed by the author to work on industrial robots. Moreover, in order to increasegrasping safety in the automated handling process, the author has fitted each finger with a locking sequence inthe final phase of grasping. Thus, the mechanism of mechanical hand is considered to be a mechanical systemand is treated like a set of rigid bodies connected by mechanical linkages and elastic elements. To model andsimulate this mechanism with MSC ADAMS programme, the author covered the following stages: constructionof the model, testing-simulation, validation, finishing, parameterization, and optimization

  10. Anti-U-like as an alloantibody in S-s-U- and S-s-U+(var) black people.

    Science.gov (United States)

    Peyrard, Thierry; Lam, Yin; Saison, Carole; Arnaud, Lionel; Babinet, Jérôme; Rouger, Philippe; Bierling, Philippe; Janvier, Daniel

    2012-03-01

    S, s, and U antigens belong to the MNS system. They are carried by glycophorin B (GPB), encoded by GYPB. Black people with the low-prevalence S-s- phenotype, either U- or U+(var), can make a clinically significant anti-U. Anti-U-like, a cold immunoglobulin G autoantibody quite commonly observed in S-s+U+ black persons, was previously described to be nonreactive with ficin-, α-chymotrypsin-, and pronase-treated red blood cells (RBCs); nonreactive or weakly reactive with papain-treated RBCs; and reactive with trypsin-treated RBCs. Here we describe, in S-s- people from different molecular backgrounds, an alloantibody to a high-prevalence GPB antigen, which presents the same pattern of reactivity with proteases as autoanti-U-like. Four S-s- patients with an alloantibody to a high-prevalence GPB antigen were investigated by serologic and molecular methods. An alloantibody was observed in two S-s-U-/Del GYPB, one S-s-U+(var)/GYPB(P2), and one S-s-U+(var)/GYPB(NY) patients. As this alloantibody showed the same pattern of reactivity with proteases as autoanti-U-like, we decided to name it "anti-U-like." Anti-U-like made by the two S-s-U- patients was reactive with the S-s-U+(var) RBCs of the two other patients. S-s-U-/Del GYPB, S-s-U+(var)/GYPB(P2), and S-s-U+(var)/GYPB(NY) patients can make an alloanti-U-like. Anti-U-like made by S-s-U- people appears reactive with GYPB(P2) and GYPB(NY) RBCs, which both express a weak and partial U-like reactivity. We recommend transfusing S-s-U- RBCs in S-s-U- patients showing alloanti-U-like. Our study contributes to a better understanding of alloimmunization to GPB in black people and confirms importance of genotyping in S-s- patients, especially those with sickle cell disease to be frequently transfused. © 2011 American Association of Blood Banks.

  11. NCBI nr-aa BLAST: CBRC-PTRO-08-0058 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-PTRO-08-0058 ref|NP_009060.2| zinc finger protein of the cerebellum 2 [Homo sa...piens] sp|O95409|ZIC2_HUMAN Zinc finger protein ZIC 2 (Zinc finger protein of the cerebellum 2) gb|AAG28409....1|AF193855_1 zinc finger protein of cerebellum ZIC2 [Homo sapiens] emb|CAH70367.1| Zic family member 2 (odd-

  12. Two-finger (TF) SPUDT cells.

    Science.gov (United States)

    Martin, Guenter; Biryukov, Sergey V; Schmidt, Hagen; Steiner, Bernd; Wall, Bert

    2011-03-01

    SPUDT cells including two fingers are only known thus far for so-called NSPUDT directions. In that case, usual solid-finger cells are used. The purpose of the present paper is to find SPUDT cell types consisting of two fingers only for pure mode directions. Two-finger (TF) cells for pure mode directions on substrates like 128°YX LiNbO(3) and YZ LiNbO(3) were found by means of an optimization procedure. The forward direction of a TF-cell SPUDT on 128°YX LiNbO(3) was determined experimentally. The properties of the new cells are compared with those of conventional SPUDT cells. The reflectivity of TF cells on 128°YX LiNbO(3) turns out to be two to three times larger than that of distributed acoustic reflection transducer (DART) and Hanma-Hunsinger cells at the same metal layer thickness.

  13. Can AtTZF1 act as a transcriptional activator or repressor in plants?

    OpenAIRE

    Pomeranz, Marcelo; Zhang, Li; Finer, John; Jang, Jyan-Chyun

    2011-01-01

    In animals, Tandem CCCH Zinc Finger (TZF) proteins can affect gene expression at both transcriptional and post-transcriptional levels. In Arabidopsis thaliana, AtTZF1 is a member of the TZF family characterized by a plant-unique tandem zinc finger motif. AtTZF1 can bind both DNA and RNA in vitro, and it can traffic between the nucleus and cytoplasmic foci. However, no in vivo DNA/RNA targets have been identified so far, and little is known about the molecular mechanisms underlying AtTZF1's pr...

  14. Generation of knockout rats with X-linked severe combined immunodeficiency (X-SCID using zinc-finger nucleases.

    Directory of Open Access Journals (Sweden)

    Tomoji Mashimo

    Full Text Available BACKGROUND: Although the rat is extensively used as a laboratory model, the inability to utilize germ line-competent rat embryonic stem (ES cells has been a major drawback for studies that aim to elucidate gene functions. Recently, zinc-finger nucleases (ZFNs were successfully used to create genome-specific double-stranded breaks and thereby induce targeted gene mutations in a wide variety of organisms including plants, drosophila, zebrafish, etc. METHODOLOGY/PRINCIPAL FINDINGS: We report here on ZFN-induced gene targeting of the rat interleukin 2 receptor gamma (Il2rg locus, where orthologous human and mouse mutations cause X-linked severe combined immune deficiency (X-SCID. Co-injection of mRNAs encoding custom-designed ZFNs into the pronucleus of fertilized oocytes yielded genetically modified offspring at rates greater than 20%, which possessed a wide variety of deletion/insertion mutations. ZFN-modified founders faithfully transmitted their genetic changes to the next generation along with the severe combined immune deficiency phenotype. CONCLUSIONS AND SIGNIFICANCE: The efficient and rapid generation of gene knockout rats shows that using ZFN technology is a new strategy for creating gene-targeted rat models of human diseases. In addition, the X-SCID rats that were established in this study will be valuable in vivo tools for evaluating drug treatment or gene therapy as well as model systems for examining the treatment of xenotransplanted malignancies.

  15. A Finger Exoskeleton Robot for Finger Movement Rehabilitation

    Directory of Open Access Journals (Sweden)

    Tzu-Heng Hsu

    2017-07-01

    Full Text Available In this study, a finger exoskeleton robot has been designed and presented. The prototype device was designed to be worn on the dorsal side of the hand to assist in the movement and rehabilitation of the fingers. The finger exoskeleton is 3D-printed to be low-cost and has a transmission mechanism consisting of rigid serial links which is actuated by a stepper motor. The actuation of the robotic finger is by a sliding motion and mimics the movement of the human finger. To make it possible for the patient to use the rehabilitation device anywhere and anytime, an Arduino™ control board and a speech recognition board were used to allow voice control. As the robotic finger follows the patients voice commands the actual motion is analyzed by Tracker image analysis software. The finger exoskeleton is designed to flex and extend the fingers, and has a rotation range of motion (ROM of 44.2°.

  16. Phosphorylation of the leukemic oncoprotein EVI1 on serine 196 modulates DNA binding, transcriptional repression and transforming ability.

    Directory of Open Access Journals (Sweden)

    Daniel J White

    Full Text Available The EVI1 (ecotropic viral integration site 1 gene at 3q26 codes for a transcriptional regulator with an essential role in haematopoiesis. Overexpression of EVI1 in acute myeloid leukaemia (AML is frequently associated with 3q26 rearrangements and confers extremely poor prognosis. EVI1 mediates transcriptional regulation, signalling, and epigenetic modifications by interacting with DNA, proteins and protein complexes. To explore to what extent protein phosphorylation impacts on EVI1 functions, we analysed endogenous EVI1 protein from a high EVI1 expressing Fanconi anaemia (FA derived AML cell line. Mass spectrometric analysis of immunoprecipitated EVI1 revealed phosphorylation at serine 196 (S196 in the sixth zinc finger of the N-terminal zinc finger domain. Mutated EVI1 with an aspartate substitution at serine 196 (S196D, which mimics serine phosphorylation of this site, exhibited reduced DNA-binding and transcriptional repression from a gene promotor selectively targeted by the N-terminal zinc finger domain. Forced expression of the S196D mutant significantly reduced EVI1 mediated transformation of Rat1 fibroblasts. While EVI1-mediated serial replating of murine haematopoietic progenitors was maintained by EVI1-S196D, this was associated with significantly higher Evi1-trancript levels compared with WT-EVI1 or EVI1-S196A, mimicking S196 non-phosphorylated EVI1. These data suggest that EVI1 function is modulated by phosphorylation of the first zinc finger domain.

  17. Photoperiodic regulation of flowering in perennial ryegrass involving a CONSTANS-like homolog

    DEFF Research Database (Denmark)

    Martin, J.; Storgaard, M.; Andersen, C.H.

    2004-01-01

    Photoperiod and vernalization are the two key environmental factors of the. oral induction of perennial ryegrass (Lolium perenne L.). Transition from vegetative to reproductive growth will only occur after an extended vernalization period, followed by an increase in day length and temperature. Here...... we report on the isolation and characterization of a L. perenne gene (LpCO) that is homologous to CONSTANS, and which is tightly coupled to the. oral inductive long day signal. Like other monocot CO-like proteins, the LpCO contains a zinc finger domain with a non-conserved B-Box2. Although the B-Box2...

  18. Repletion of zinc in zinc-deficient cells strongly up-regulates IL-1β-induced IL-2 production in T-cells.

    Science.gov (United States)

    Daaboul, Doha; Rosenkranz, Eva; Uciechowski, Peter; Rink, Lothar

    2012-10-01

    Mild zinc deficiency in humans negatively affects IL-2 production resulting in declined percentages of cytolytic T cells and decreased NK cell lytic activity, which enhances the susceptibility to infections and malignancies. T-cell activation is critically regulated by zinc and the normal physiological zinc level in T-cells slightly lies below the optimal concentration for T-cell functions. A further reduction in zinc level leads to T-cell dysfunction and autoreactivity, whereas high zinc concentrations (100 μM) were shown to inhibit interleukin-1 (IL-1)-induced IL-1 receptor kinase (IRAK) activation. In this study, we investigated the molecular mechanism by which zinc regulates the IL-1β-induced IL-2 expression in T-cells. Zinc supplementation to zinc-deficient T-cells increased intracellular zinc levels by altering the expression of zinc transporters, particularly Zip10 and Zip12. A zinc signal was observed in the murine T-cell line EL-4 6.1 after 1 h of stimulation with IL-1β, measured by specific zinc sensors FluoZin-3 and ZinPyr-1. This signal is required for the phosphorylation of MAPK p38 and NF-κB subunit p65, which triggers the transcription of IL-2 and strongly increases its production. These results indicate that short-term zinc supplementation to zinc-deficient T-cells leads to a fast rise in zinc levels which subsequently enhance cytokine production. In conclusion, low and excessive zinc levels might be equally problematic for zinc-deficient subjects, and stabilized zinc levels seem to be essential to avoid negative concentration-dependent zinc effects on T-cell activation.

  19. Growth hormone-releasing peptide-biotin conjugate stimulates myocytes differentiation through insulin-like growth factor-1 and collagen type I.

    Science.gov (United States)

    Lim, Chae Jin; Jeon, Jung Eun; Jeong, Se Kyoo; Yoon, Seok Jeong; Kwon, Seon Deok; Lim, Jina; Park, Keedon; Kim, Dae Yong; Ahn, Jeong Keun; Kim, Bong-Woo

    2015-09-01

    Based on the potential beneficial effects of growth hormone releasing peptide (GHRP)-6 on muscle functions, a newly synthesized GHRP-6-biotin conjugate was tested on cultured myoblast cells. Increased expression of myogenic marker proteins was observed in GHRP-6-biotin conjugate-treated cells. Additionally, increased expression levels of insulin-like growth factor-1 and collagen type I were observed. Furthermore, GHRP-6-biotin conjugate-treated cells showed increased metabolic activity, as indicated by increased concentrations of energy metabolites, such as ATP and lactate, and increased enzymatic activity of lactate dehydrogenase and creatine kinase. Finally, binding protein analysis suggested few candidate proteins, including desmin, actin, and zinc finger protein 691 as potential targets for GHRP6-biotin conjugate action. These results suggest that the newly synthesized GHRP-6-biotin conjugate has myogenic stimulating activity through, at least in part, by stimulating collagen type I synthesis and several key proteins. Practical applications of the GHRP-6-biotin conjugate could include improving muscle condition.

  20. The ZntA-like NpunR4017 plays a key role in maintaining homeostatic levels of zinc in Nostoc punctiforme.

    Science.gov (United States)

    Hudek, L; Bräu, L; Michalczyk, A A; Neilan, B A; Meeks, J C; Ackland, M L

    2015-12-01

    Analysis of cellular response to zinc exposure provides insights into how organisms maintain homeostatic levels of zinc that are essential, while avoiding potentially toxic cytosolic levels. Using the cyanobacterium Nostoc punctiforme as a model, qRT-PCR analyses established a profile of the changes in relative mRNA levels of the ZntA-like zinc efflux transporter NpunR4017 in response to extracellular zinc. In cells treated with 18 μM of zinc for 1 h, NpunR4017 mRNA levels increased by up to 1300 % above basal levels. The accumulation and retention of radiolabelled (65)Zn by NpunR4107-deficient and overexpressing strains were compared to wild-type levels. Disruption of NpunR4017 resulted in a significant increase in zinc accumulation up to 24 % greater than the wild type, while cells overexpressing NpunR4107 accumulated 22 % less than the wild type. Accumulation of (65)Zn in ZntA(-) Escherichia coli overexpressing NpunR4017 was reduced by up to 21 %, indicating the capacity for NpunR4017 to compensate for the loss of ZntA. These findings establish the newly identified NpunR4017 as a zinc efflux transporter and a key transporter for maintaining zinc homeostasis in N. punctiforme.

  1. Identification and characterization of a salt stress-inducible zinc finger protein from Festuca arundinacea

    Directory of Open Access Journals (Sweden)

    Martin Ruth C

    2012-01-01

    Full Text Available Abstract Background Increased biotic and abiotic plant stresses due to climate change together with an expected global human population of over 9 billion by 2050 intensifies the demand for agricultural production on marginal lands. Soil salinity is one of the major abiotic stresses responsible for reduced crop productivity worldwide and the salinization of arable land has dramatically increased over the last few decades. Consequently, as land becomes less amenable for conventional agriculture, plants grown on marginal soils will be exposed to higher levels of soil salinity. Forage grasses are a critical component of feed used in livestock production worldwide, with many of these same species of grasses being utilized for lawns, erosion prevention, and recreation. Consequently, it is important to develop a better understanding of salt tolerance in forage and related grass species. Findings A gene encoding a ZnF protein was identified during the analysis of a salt-stress suppression subtractive hybridization (SSH expression library from the forage grass species Festuca arundinacea. The expression pattern of FaZnF was compared to that of the well characterized gene for delta 1-pyrroline-5-carboxylate synthetase (P5CS, a key enzyme in proline biosynthesis, which was also identified in the salt-stress SSH library. The FaZnF and P5CS genes were both up-regulated in response to salt and drought stresses suggesting a role in dehydration stress. FaZnF was also up-regulated in response to heat and wounding, suggesting that it might have a more general function in multiple abiotic stress responses. Additionally, potential downstream targets of FaZnF (a MAPK [Mitogen-Activated Protein Kinase], GST [Glutathione-S-Transferase] and lipoxygenase L2 were found to be up-regulated in calli overexpressing FaZnF when compared to control cell lines. Conclusions This work provides evidence that FaZnF is an AN1/A20 zinc finger protein that is involved in the regulation

  2. Zinc Finger Nuclease: A New Approach to Overcome Beta-Lactam Antibiotic Resistance

    Science.gov (United States)

    Shahbazi Dastjerdeh, Mansoureh; Kouhpayeh, Shirin; Sabzehei, Faezeh; Khanahmad, Hossein; Salehi, Mansour; Mohammadi, Zahra; Shariati, Laleh; Hejazi, Zahra; Rabiei, Parisa; Manian, Mostafa

    2016-01-01

    Background: The evolution of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) has been accelerated recently by the indiscriminate application of antibiotics. Antibiotic resistance has challenged the success of medical interventions and therefore is considered a hazardous threat to human health. Objectives: The present study aimed to describe the use of zinc finger nuclease (ZFN) technology to target and disrupt a plasmid-encoded β-lactamase, which prevents horizontal gene transfer-mediated evolution of ARBs. Materials and Methods: An engineered ZFN was designed to target a specific sequence in the ampicillin resistance gene (ampR) of the pTZ57R plasmid. The Escherichia coli bacteria already contained the pZFN kanamycin-resistant (kanaR) plasmid as the case or the pP15A, kanaR empty vector as the control, were transformed with the pTZ57R; the ability of the designed ZFN to disrupt the β-lactamase gene was evaluated with the subsequent disturbed ability of the bacteria to grow on ampicillin (amp) and ampicillin-kanamycin (amp-kana)-containing media. The effect of mild hypothermia on the ZFN gene targeting efficiency was also evaluated. Results: The growth of bacteria in the case group on the amp and amp-kana-containing media was significantly lower compared with the control group at 37°C (P < 0.001). Despite being more efficient in hypothermic conditions at 30°C (P < 0.001), there were no significant associations between the incubation temperature and the ZFN gene targeting efficiency. Conclusions: Our findings revealed that the ZFN technology could be employed to overcome ampicillin resistance by the targeted disruption of the ampicillin resistance gene, which leads to inactivation of β-lactam synthesis. Therefore, ZFN technology could be engaged to decrease the antibiotic resistance issue with the construction of a ZFN archive against different ARGs. To tackle the resistance issue at the environmental level, recombinant phages

  3. The ascorbate peroxidase APX1 is a direct target of a zinc finger transcription factor ZFP36 and a late embryogenesis abundant protein OsLEA5 interacts with ZFP36 to co-regulate OsAPX1 in seed germination in rice.

    Science.gov (United States)

    Huang, Liping; Jia, Jing; Zhao, Xixi; Zhang, MengYao; Huang, Xingxiu; E Ji; Ni, Lan; Jiang, Mingyi

    2018-01-01

    Seed germination is a vital developmental process. Abscisic acid (ABA) is an essential repressor of seed germination, while ROS (reactive oxygen species) also plays a vital role in regulating seed germination. ABA could inhibit the production of ROS in seed germination, but the mechanism of ABA reduced ROS production in seed germination was hitherto unknown. Here, by ChIP (chromatin immunoprecipitation)-seq, we found that ZFP36, a rice zinc finger transcription factor, could directly bind to the promoter of OsAPX1, coding an ascorbate peroxidase (APX) which has the most affinity for H 2 O 2 (substrate; a type of ROS), and act as a transcriptional activator of OsAPX1 promoter. Moreover, ZFP36 could interact with a late embryogenesis abundant protein OsLEA5 to co-regulate the promoter activity of OsAPX1. The seed germination is highly inhibited in ZFP36 overexpression plants under ABA treatment, while an RNA interference (RNAi) mutant of OsLEA5 rice seeds were less sensitive to ABA, and exogenous ASC (ascorbate acid) could alleviate the inhibition induced by ABA. Thus, our conclusion is that OsAPX1 is a direct target of ZFP36 and OsLEA5 could interact with ZFP36 to co-regulate ABA-inhibited seed germination by controlling the expression of OsAPX1. Copyright © 2017. Published by Elsevier Inc.

  4. Efficient methods for targeted mutagenesis in zebrafish using zinc-finger nucleases: data from targeting of nine genes using CompoZr or CoDA ZFNs.

    Directory of Open Access Journals (Sweden)

    Raman Sood

    Full Text Available Recently, it has been shown that targeted mutagenesis using zinc-finger nucleases (ZFNs and transcription activator-like effector nucleases (TALENs can be used to generate knockout zebrafish lines for analysis of their function and/or developing disease models. A number of different methods have been developed for the design and assembly of gene-specific ZFNs and TALENs, making them easily available to most zebrafish researchers. Regardless of the choice of targeting nuclease, the process of generating mutant fish is similar. It is a time-consuming and multi-step process that can benefit significantly from development of efficient high throughput methods. In this study, we used ZFNs assembled through either the CompoZr (Sigma-Aldrich or the CoDA (context-dependent assembly platforms to generate mutant zebrafish for nine genes. We report our improved high throughput methods for 1 evaluation of ZFNs activity by somatic lesion analysis using colony PCR, eliminating the need for plasmid DNA extractions from a large number of clones, and 2 a sensitive founder screening strategy using fluorescent PCR with PIG-tailed primers that eliminates the stutter bands and accurately identifies even single nucleotide insertions and deletions. Using these protocols, we have generated multiple mutant alleles for seven genes, five of which were targeted with CompoZr ZFNs and two with CoDA ZFNs. Our data also revealed that at least five-fold higher mRNA dose was required to achieve mutagenesis with CoDA ZFNs than with CompoZr ZFNs, and their somatic lesion frequency was lower (<5% when compared to CopmoZr ZFNs (9-98%. This work provides high throughput protocols for efficient generation of zebrafish mutants using ZFNs and TALENs.

  5. Selection-independent generation of gene knockout mouse embryonic stem cells using zinc-finger nucleases.

    Directory of Open Access Journals (Sweden)

    Anna Osiak

    Full Text Available Gene knockout in murine embryonic stem cells (ESCs has been an invaluable tool to study gene function in vitro or to generate animal models with altered phenotypes. Gene targeting using standard techniques, however, is rather inefficient and typically does not exceed frequencies of 10(-6. In consequence, the usage of complex positive/negative selection strategies to isolate targeted clones has been necessary. Here, we present a rapid single-step approach to generate a gene knockout in mouse ESCs using engineered zinc-finger nucleases (ZFNs. Upon transient expression of ZFNs, the target gene is cleaved by the designer nucleases and then repaired by non-homologous end-joining, an error-prone DNA repair process that introduces insertions/deletions at the break site and therefore leads to functional null mutations. To explore and quantify the potential of ZFNs to generate a gene knockout in pluripotent stem cells, we generated a mouse ESC line containing an X-chromosomally integrated EGFP marker gene. Applying optimized conditions, the EGFP locus was disrupted in up to 8% of ESCs after transfection of the ZFN expression vectors, thus obviating the need of selection markers to identify targeted cells, which may impede or complicate downstream applications. Both activity and ZFN-associated cytotoxicity was dependent on vector dose and the architecture of the nuclease domain. Importantly, teratoma formation assays of selected ESC clones confirmed that ZFN-treated ESCs maintained pluripotency. In conclusion, the described ZFN-based approach represents a fast strategy for generating gene knockouts in ESCs in a selection-independent fashion that should be easily transferrable to other pluripotent stem cells.

  6. Comparative functional analysis of wheat (Triticum aestivum) zinc finger-containing glycine-rich RNA-binding proteins in response to abiotic stresses.

    Science.gov (United States)

    Xu, Tao; Gu, Lili; Choi, Min Ji; Kim, Ryeo Jin; Suh, Mi Chung; Kang, Hunseung

    2014-01-01

    Although the functional roles of zinc finger-containing glycine-rich RNA-binding proteins (RZs) have been characterized in several plant species, including Arabidopsis thaliana and rice (Oryza sativa), the physiological functions of RZs in wheat (Triticum aestivum) remain largely unknown. Here, the functional roles of the three wheat RZ family members, named TaRZ1, TaRZ2, and TaRZ3, were investigated using transgenic Arabidopsis plants under various abiotic stress conditions. Expression of TaRZs was markedly regulated by salt, dehydration, or cold stress. The TaRZ1 and TaRZ3 proteins were localized to the nucleus, whereas the TaRZ2 protein was localized to the nucleus, endoplasmic reticulum, and cytoplasm. Germination of all three TaRZ-expressing transgenic Arabidopsis seeds was retarded compared with that of wild-type seeds under salt stress conditions, whereas germination of TaRZ2- or TaRZ3-expressing transgenic Arabidopsis seeds was retarded under dehydration stress conditions. Seedling growth of TaRZ1-expressing transgenic plants was severely inhibited under cold or salt stress conditions, and seedling growth of TaRZ2-expressing plants was inhibited under salt stress conditions. By contrast, expression of TaRZ3 did not affect seedling growth of transgenic plants under any of the stress conditions. In addition, expression of TaRZ2 conferred freeze tolerance in Arabidopsis. Taken together, these results suggest that different TaRZ family members play various roles in seed germination, seedling growth, and freeze tolerance in plants under abiotic stress.

  7. Identity of zinc finger nucleases with specificity to herpes simplex virus type II genomic DNA: novel HSV-2 vaccine/therapy precursors

    Directory of Open Access Journals (Sweden)

    Wayengera Misaki

    2011-06-01

    Full Text Available Abstract Background Herpes simplex type II (HSV-2 is a member of the family herpesviridae. Human infection with this double stranded linear DNA virus causes genital ulcerative disease and existing treatment options only serve to resolve the symptomatology (ulcers associated with active HSV-2 infection but do not eliminate latent virus. As a result, infection with HSV-2 follows a life-long relapsing (active versus latent course. On the basis of a primitive bacterium anti-phage DNA defense, the restriction modification (R-M system, we previously identified the Escherichia coli restriction enzyme (REase EcoRII as a novel peptide to excise or irreversibly disrupt latent HSV-2 DNA from infected cells. However, sequences of the site specificity palindrome of EcoRII 5'-CCWGG-3' (W = A or T are equally present within the human genome and are a potential source of host-genome toxicity. This feature has limited previous HSV-2 EcoRII based therapeutic models to microbicides only, and highlights the need to engineer artificial REases (zinc finger nucleases-ZFNs with specificity to HSV-2 genomic-DNA only. Herein, the therapeutic-potential of zinc finger arrays (ZFAs and ZFNs is identified and modeled, with unique specificity to the HSV-2 genome. Methods and results Using the whole genome of HSV-2 strain HG52 (Dolan A et al.,, and with the ZFN-consortium's CoDA-ZiFiT software pre-set at default, more than 28,000 ZFAs with specificity to HSV-2 DNA were identified. Using computational assembly (through in-silico linkage to the Flavobacterium okeanokoites endonuclease Fok I of the type IIS class, 684 ZFNs with specificity to the HSV-2 genome, were constructed. Graphic-analysis of the HSV-2 genome-cleavage pattern using the afore-identified ZFNs revealed that the highest cleavage-incidence occurred within the 30,950 base-pairs (~between the genomic context coordinates 0.80 and 1.00 at the 3' end of the HSV-2 genome. At approximately 3,095 bp before and after the

  8. Results of zinc injection test for Hamaoka Unit-1

    International Nuclear Information System (INIS)

    Kani, K.; Masuda, H.; Hayashi, Y.; Sudo, S.; Yamazaki, K.

    1998-01-01

    A zinc injection test was preformed at Hamaoka Nuclear Power Station Unit-1 for suppressing radiation dose rate on primary coolant recirculation piping after the replacement of piping. Zinc ion was injected by using injection system where Depleted Zinc Oxide was dissolved in carbonated water. Controllability of the system was sufficient to maintain concentration of zinc in primary water. The concentration of zinc in the primary coolant was controlled from 1 ppb to 5 ppb gradually. The increasing trend of concentration of Co-60 in the coolant was suppressed at zinc concentration of 3 ppb. It is evaluated that the deposition coefficient of Co-60 onto the surface of primary coolant recirculation piping was suppressed to one-third of previous cycle in average, and one-fourth of that just before injection start at zinc concentration of 5 ppb. We concluded that zinc injection is effective for suppressing dose rate on the primary coolant piping and no adverse effect occurs by zinc injection up to 5 ppb in the primary coolant. (J.P.N.)

  9. ATL9, a RING zinc finger protein with E3 ubiquitin ligase activity implicated in chitin- and NADPH oxidase-mediated defense responses.

    Directory of Open Access Journals (Sweden)

    Marta Berrocal-Lobo

    2010-12-01

    Full Text Available Pathogen associated molecular patterns (PAMPs are signals detected by plants that activate basal defenses. One of these PAMPs is chitin, a carbohydrate present in the cell walls of fungi and in insect exoskeletons. Previous work has shown that chitin treatment of Arabidopsis thaliana induced defense-related genes in the absence of a pathogen and that the response was independent of the salicylic acid (SA, jasmonic acid (JA and ethylene (ET signaling pathways. One of these genes is ATL9 ( = ATL2G, which encodes a RING zinc-finger like protein. In the current work we demonstrate that ATL9 has E3 ubiquitin ligase activity and is localized to the endoplasmic reticulum. The expression pattern of ATL9 is positively correlated with basal defense responses against Golovinomyces cichoracearum, a biotrophic fungal pathogen. The basal levels of expression and the induction of ATL9 by chitin, in wild type plants, depends on the activity of NADPH oxidases suggesting that chitin-mediated defense response is NADPH oxidase dependent. Although ATL9 expression is not induced by treatment with known defense hormones (SA, JA or ET, full expression in response to chitin is compromised slightly in mutants where ET- or SA-dependent signaling is suppressed. Microarray analysis of the atl9 mutant revealed candidate genes that appear to act downstream of ATL9 in chitin-mediated defenses. These results hint at the complexity of chitin-mediated signaling and the potential interplay between elicitor-mediated signaling, signaling via known defense pathways and the oxidative burst.

  10. Vacuolar zinc transporter Zrc1 is required for detoxification of excess intracellular zinc in the human fungal pathogen Cryptococcus neoformans.

    Science.gov (United States)

    Cho, Minsu; Hu, Guanggan; Caza, Mélissa; Horianopoulos, Linda C; Kronstad, James W; Jung, Won Hee

    2018-01-01

    Zinc is an important transition metal in all living organisms and is required for numerous biological processes. However, excess zinc can also be toxic to cells and cause cellular stress. In the model fungus Saccharomyces cerevisiae, a vacuolar zinc transporter, Zrc1, plays important roles in the storage and detoxification of excess intracellular zinc to protect the cell. In this study, we identified an ortholog of the S. cerevisiae ZRC1 gene in the human fungal pathogen Cryptococcus neoformans. Zrc1 was localized in the vacuolar membrane in C. neoformans, and a mutant lacking ZRC1 showed significant growth defects under high-zinc conditions. These results suggested a role for Zrc1 in zinc detoxification. However, contrary to our expectation, the expression of Zrc1 was induced in cells grown in zinc-limited conditions and decreased upon the addition of zinc. These expression patterns were similar to those of Zip1, the high-affinity zinc transporter in the plasma membrane of C. neoformans. Furthermore, we used the zrc1 mutant in a murine model of cryptococcosis to examine whether a mammalian host could inhibit the survival of C. neoformans using zinc toxicity. We found that the mutant showed no difference in virulence compared with the wildtype strain. This result suggests that Zrc1-mediated zinc detoxification is not required for the virulence of C. neoformans, and imply that zinc toxicity may not be an important aspect of the host immune response to the fungus.

  11. Zinc finger proteins and other transcription regulators as response proteins in benzo[a]pyrene exposed cells

    International Nuclear Information System (INIS)

    Gao Zhihua; Jin Jinghua; Yang Jun; Yu Yingnian

    2004-01-01

    Proteomic analysis, which combines two-dimensional electrophoresis (2-DE) and mass spectrometry (MS), is an important approach to screen proteins responsive to specific stimuli. Benzo[a]pyrene (B[a]P), a prototype of polycyclic hydrocarbons (PAHs), is a potent procarcinogen generated from the combustion of fossil fuel and cigarette smoke. To further probe the molecular mechanism of mutagenesis and carcinogenesis, and to find potential molecular markers involved in cellular responses to B[a]P exposure, we performed proteomic analysis of whole cellular proteins in human amnion epithelial cells after B[a]P-treatment. Image visualization and statistical analysis indicated that more than 40 proteins showed significant changes following B[a]P-treatment (P<0.05). Among them, 20 proteins existed only in the control groups, while six were only present in B[a]P-treated cells. In addition, the expression of 10 proteins increased whereas 11 decreased after B[a]P-treatment. These proteins were subjected to in-gel tryptic digestion followed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) analysis. Using peptide mass fingerprinting (PMF) to search the nrNCBI database, we identified 22 proteins. Most of these proteins have unknown functions and have not been previously connected to a response to B[a]P exposure. To further annotate the characteristics of these proteins, GOblet analysis was carried out and results indicated that they were involved in multiple biological processes including regulation of transcription, cell proliferation, cell aging and other processes. However, expression changes were noted in a number of transcription regulators, including eight zinc finger proteins as well as SNF2L1 (SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 1), which is closely linked to the chromatin remodeling process. These data may provide new clues to further understand the implication of

  12. Covering the Dorsal Finger Defect with Reverse Cross Finger Flap

    Directory of Open Access Journals (Sweden)

    Kaan Gurbuz

    2014-12-01

    Full Text Available Reconstruction of finger extensor zone defects with or without tendon gaps still remains a challenge for surgeons. Although surgical treatments may differ, and range from the use of local, regional, to free flaps, the outcomes for all cases are not satisfactory. In this case report, we present a case of a 3rd finger extensor side crush injury including a defect of Dd (Digit Dorsal 1, Dd2 and Dd3 defects of extensor zones with tendon gap. Tendon gap was reconstructed using m. palmaris longus tendon graft and the defect was covered with reversed cross-finger flap (random pattern with good cosmetic and excellent functional results.

  13. Quantifying Parkinson's disease finger-tapping severity by extracting and synthesizing finger motion properties.

    Science.gov (United States)

    Sano, Yuko; Kandori, Akihiko; Shima, Keisuke; Yamaguchi, Yuki; Tsuji, Toshio; Noda, Masafumi; Higashikawa, Fumiko; Yokoe, Masaru; Sakoda, Saburo

    2016-06-01

    We propose a novel index of Parkinson's disease (PD) finger-tapping severity, called "PDFTsi," for quantifying the severity of symptoms related to the finger tapping of PD patients with high accuracy. To validate the efficacy of PDFTsi, the finger-tapping movements of normal controls and PD patients were measured by using magnetic sensors, and 21 characteristics were extracted from the finger-tapping waveforms. To distinguish motor deterioration due to PD from that due to aging, the aging effect on finger tapping was removed from these characteristics. Principal component analysis (PCA) was applied to the age-normalized characteristics, and principal components that represented the motion properties of finger tapping were calculated. Multiple linear regression (MLR) with stepwise variable selection was applied to the principal components, and PDFTsi was calculated. The calculated PDFTsi indicates that PDFTsi has a high estimation ability, namely a mean square error of 0.45. The estimation ability of PDFTsi is higher than that of the alternative method, MLR with stepwise regression selection without PCA, namely a mean square error of 1.30. This result suggests that PDFTsi can quantify PD finger-tapping severity accurately. Furthermore, the result of interpreting a model for calculating PDFTsi indicated that motion wideness and rhythm disorder are important for estimating PD finger-tapping severity.

  14. Reduction of arsenite-enhanced ultraviolet radiation-induced DNA damage by supplemental zinc

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Karen L.; King, Brenee S.; Sandoval, Monica M.; Liu, Ke Jian; Hudson, Laurie G., E-mail: lhudson@salud.unm.edu

    2013-06-01

    Arsenic is a recognized human carcinogen and there is evidence that arsenic augments the carcinogenicity of DNA damaging agents such as ultraviolet radiation (UVR) thereby acting as a co-carcinogen. Inhibition of DNA repair is one proposed mechanism to account for the co-carcinogenic actions of arsenic. We and others find that arsenite interferes with the function of certain zinc finger DNA repair proteins. Furthermore, we reported that zinc reverses the effects of arsenite in cultured cells and a DNA repair target protein, poly (ADP-ribose) polymerase-1. In order to determine whether zinc ameliorates the effects of arsenite on UVR-induced DNA damage in human keratinocytes and in an in vivo model, normal human epidermal keratinocytes and SKH-1 hairless mice were exposed to arsenite, zinc or both before solar-simulated (ss) UVR exposure. Poly (ADP-ribose) polymerase activity, DNA damage and mutation frequencies at the Hprt locus were measured in each treatment group in normal human keratinocytes. DNA damage was assessed in vivo by immunohistochemical staining of skin sections isolated from SKH-1 hairless mice. Cell-based findings demonstrate that ssUVR-induced DNA damage and mutagenesis are enhanced by arsenite, and supplemental zinc partially reverses the arsenite effect. In vivo studies confirm that zinc supplementation decreases arsenite-enhanced DNA damage in response to ssUVR exposure. From these data we can conclude that zinc offsets the impact of arsenic on ssUVR-stimulated DNA damage in cells and in vivo suggesting that zinc supplementation may provide a strategy to improve DNA repair capacity in arsenic exposed human populations. - Highlights: • Low levels of arsenite enhance UV-induced DNA damage in human keratinocytes. • UV-initiated HPRT mutation frequency is enhanced by arsenite. • Zinc supplementation offsets DNA damage and mutation frequency enhanced by arsenite. • Zinc-dependent reduction of arsenite enhanced DNA damage is confirmed in vivo.

  15. Influence of extracellular zinc on M1 microglial activation.

    Science.gov (United States)

    Higashi, Youichirou; Aratake, Takaaki; Shimizu, Shogo; Shimizu, Takahiro; Nakamura, Kumiko; Tsuda, Masayuki; Yawata, Toshio; Ueba, Tetuya; Saito, Motoaki

    2017-02-27

    Extracellular zinc, which is released from hippocampal neurons in response to brain ischaemia, triggers morphological changes in microglia. Under ischaemic conditions, microglia exhibit two opposite activation states (M1 and M2 activation), which may be further regulated by the microenvironment. We examined the role of extracellular zinc on M1 activation of microglia. Pre-treatment of microglia with 30-60 μM ZnCl 2 resulted in dose-dependent increases in interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumour necrosis factor-alpha (TNFα) secretion when M1 activation was induced by lipopolysaccharide administration. In contrast, the cell-permeable zinc chelator TPEN, the radical scavenger Trolox, and the P2X7 receptor antagonist A438079 suppressed the effects of zinc pre-treatment on microglia. Furthermore, endogenous zinc release was induced by cerebral ischaemia-reperfusion, resulting in increased expression of IL-1β, IL-6, TNFα, and the microglial M1 surface marker CD16/32, without hippocampal neuronal cell loss, in addition to impairments in object recognition memory. However, these effects were suppressed by the zinc chelator CaEDTA. These findings suggest that extracellular zinc may prime microglia to enhance production of pro-inflammatory cytokines via P2X7 receptor activation followed by reactive oxygen species generation in response to stimuli that trigger M1 activation, and that these inflammatory processes may result in deficits in object recognition memory.

  16. Synthesis, photoluminescence and forensic applications of blue light emitting azomethine-zinc (II complexes of bis(salicylidenecyclohexyl-1,2-diamino based organic ligands

    Directory of Open Access Journals (Sweden)

    M. Srinivas

    2017-06-01

    Full Text Available Various azomethine-zinc(II complexes (3a-c of bis(salicylidenecyclohexyl-1,2-diamino organic ligands were synthesized by one pot reaction of salicylaldehydes/2-hydroxy-1-naphthaldehyde (2 eq, cyclohexyl-1,2-diamine (1 eq and zinc acetate (1 eq in methanol solvent at reflux temperature. The synthesized complexes were characterized by FTIR, 1H NMR, and SEM. Their photophysical properties such as Photoluminescence (PL and Diffused Reflectance Spectra (DRS were studied. PL studies revealed that the emission peaks of the complexes in both solution and solid states appeared to occur at 395–600 nm and emitted blue light. The band gap energies determined from DRS were 2.98 eV (3a, 2.91 eV (3b, and 2.73 eV (3c. Based on these results, we ascertain that these Zn(II complexes can serve as a suitable non-dopant blue light emitting compound for flat panel display applications. Latent fingerprint detection study indicated that the powder compounds show good adhesion and finger ridge details without background staining. The demonstrated method can be applied to detect fingerprints on all types of smooth surfaces.

  17. Finger Forces in Clarinet Playing

    Directory of Open Access Journals (Sweden)

    Alex Hofmann

    2016-08-01

    Full Text Available Clarinettists close and open multiple tone holes to alter the pitch of the tones. Their fingering technique must be fast, precise, and coordinated with the tongue articulation. In this empirical study, finger force profiles and tongue techniques of clarinet students (N = 17 and professional clarinettists (N = 6 were investigated under controlled performance conditions. First, in an expressive-performance task, eight selected excerpts from the first Weber Concerto were performed. These excerpts were chosen to fit in a 2 x 2 x 2 design (register: low--high; tempo: slow--fast, dynamics: soft--loud. There was an additional condition controlled by the experimenter, which determined the expression levels (low--high of the performers. Second, a technical-exercise task, an isochronous 23-tone melody was designed that required different effectors to produce the sequence (finger-only, tongue-only, combined tongue-finger actions. The melody was performed in three tempo conditions (slow, medium, fast in a synchronization-continuation paradigm. Participants played on a sensor-equipped Viennese clarinet, which tracked finger forces and reed oscillations simultaneously. From the data, average finger force (Fmean and peak force (Fmax were calculated. The overall finger forces were low (Fmean = 1.17 N, Fmax = 3.05 N compared to those on other musical instruments (e.g. guitar. Participants applied the largest finger forces during the high expression level performance conditions (Fmean = 1.21 N.For the technical exercise task, timing and articulation information were extracted from the reed signal. Here, the timing precision of the fingers deteriorated the timing precision of the tongue for combined tongue-finger actions, especially for faster tempi. Although individual finger force profiles were overlapping, the group of professional players applied less finger force overall (Fmean = 0.54 N. Such sensor instruments provide useful insights into player

  18. AAV-mediated delivery of zinc finger nucleases targeting hepatitis B virus inhibits active replication.

    Directory of Open Access Journals (Sweden)

    Nicholas D Weber

    Full Text Available Despite an existing effective vaccine, hepatitis B virus (HBV remains a major public health concern. There are effective suppressive therapies for HBV, but they remain expensive and inaccessible to many, and not all patients respond well. Furthermore, HBV can persist as genomic covalently closed circular DNA (cccDNA that remains in hepatocytes even during otherwise effective therapy and facilitates rebound in patients after treatment has stopped. Therefore, the need for an effective treatment that targets active and persistent HBV infections remains. As a novel approach to treat HBV, we have targeted the HBV genome for disruption to prevent viral reactivation and replication. We generated 3 zinc finger nucleases (ZFNs that target sequences within the HBV polymerase, core and X genes. Upon the formation of ZFN-induced DNA double strand breaks (DSB, imprecise repair by non-homologous end joining leads to mutations that inactivate HBV genes. We delivered HBV-specific ZFNs using self-complementary adeno-associated virus (scAAV vectors and tested their anti-HBV activity in HepAD38 cells. HBV-ZFNs efficiently disrupted HBV target sites by inducing site-specific mutations. Cytotoxicity was seen with one of the ZFNs. scAAV-mediated delivery of a ZFN targeting HBV polymerase resulted in complete inhibition of HBV DNA replication and production of infectious HBV virions in HepAD38 cells. This effect was sustained for at least 2 weeks following only a single treatment. Furthermore, high specificity was observed for all ZFNs, as negligible off-target cleavage was seen via high-throughput sequencing of 7 closely matched potential off-target sites. These results show that HBV-targeted ZFNs can efficiently inhibit active HBV replication and suppress the cellular template for HBV persistence, making them promising candidates for eradication therapy.

  19. Global and stage specific patterns of Krüppel-associated-box zinc finger protein gene expression in murine early embryonic cells.

    Directory of Open Access Journals (Sweden)

    Andrea Corsinotti

    Full Text Available Highly coordinated transcription networks orchestrate the self-renewal of pluripotent stem cell and the earliest steps of mammalian development. KRAB-containing zinc finger proteins represent the largest group of transcription factors encoded by the genomes of higher vertebrates including mice and humans. Together with their putatively universal cofactor KAP1, they have been implicated in events as diverse as the silencing of endogenous retroelements, the maintenance of imprinting and the pluripotent self-renewal of embryonic stem cells, although the genomic targets and specific functions of individual members of this gene family remain largely undefined. Here, we first generated a list of Ensembl-annotated KRAB-containing genes encoding the mouse and human genomes. We then defined the transcription levels of these genes in murine early embryonic cells. We found that the majority of KRAB-ZFP genes are expressed in mouse pluripotent stem cells and other early progenitors. However, we also identified distinctively cell- or stage-specific patterns of expression, some of which are pluripotency-restricted. Finally, we determined that individual KRAB-ZFP genes exhibit highly distinctive modes of expression, even when grouped in genomic clusters, and that these cannot be correlated with the presence of prototypic repressive or activating chromatin marks. These results pave the way to delineating the role of specific KRAB-ZFPs in early embryogenesis.

  20. ENVIRONMENTAL IMPACT OF THE STORED DUST-LIKE ZINC AND IRON CONTAINING WASTES

    Directory of Open Access Journals (Sweden)

    Tatyana A. Lytaeva

    2017-05-01

    On the basis of laboratory research and field observations of the environmental components in the impact area of the storage of dust-like zinc and iron containing wastes, the article describes regularities of formation of hydrogeochemical halos of contamination by heavy metals and iron. Results include also the description of changes in physico-chemical groundwater composition under the storage area.

  1. The origin of interstellar asteroidal objects like 1I/2017 U1 'Oumuamua

    Science.gov (United States)

    Zwart, S. Portegies; Torres, S.; Pelupessy, I.; Bédorf, J.; Cai, Maxwell X.

    2018-05-01

    We study the origin of the interstellar object 1I/2017 U1 'Oumuamua by juxtaposing estimates based on the observations with simulations. We speculate that objects like 'Oumuamua are formed in the debris disc as left over from the star and planet formation process, and subsequently liberated. The liberation process is mediated either by interaction with other stars in the parental star-cluster, by resonant interactions within the planetesimal disc or by the relatively sudden mass loss when the host star becomes a compact object. Integrating 'Oumuamua backward in time in the Galactic potential together with stars from the Gaia-TGAS catalogue we find that about 1.3 Myr ago 'Oumuamua passed the nearby star HIP 17288 within a mean distance of 1.3 pc. By comparing nearby observed L-dwarfs with simulations of the Galaxy we conclude that the kinematics of 'Oumuamua is consistent with relatively young objects of 1.1-1.7 Gyr. We just met 'Oumuamua by chance, and with a derived mean Galactic density of ˜3 × 105 similarly sized objects within 100 au from the Sun or ˜1014 per cubic parsec we expect about 2 to 12 such visitors per year within 1 au from the Sun.

  2. Regulation of Nitrogen Metabolism by GATA Zinc Finger Transcription Factors in Yarrowia lipolytica

    Energy Technology Data Exchange (ETDEWEB)

    Pomraning, Kyle R.; Bredeweg, Erin L.; Baker, Scott E.

    2017-02-15

    ABSTRACT

    Fungi accumulate lipids in a manner dependent on the quantity and quality of the nitrogen source on which they are growing. In the oleaginous yeastYarrowia lipolytica, growth on a complex source of nitrogen enables rapid growth and limited accumulation of neutral lipids, while growth on a simple nitrogen source promotes lipid accumulation in large lipid droplets. Here we examined the roles of nitrogen catabolite repression and its regulation by GATA zinc finger transcription factors on lipid metabolism inY. lipolytica. Deletion of the GATA transcription factor genesgzf3andgzf2resulted in nitrogen source-specific growth defects and greater accumulation of lipids when the cells were growing on a simple nitrogen source. Deletion ofgzf1, which is most similar to activators of genes repressed by nitrogen catabolite repression in filamentous ascomycetes, did not affect growth on the nitrogen sources tested. We examined gene expression of wild-type and GATA transcription factor mutants on simple and complex nitrogen sources and found that expression of enzymes involved in malate metabolism, beta-oxidation, and ammonia utilization are strongly upregulated on a simple nitrogen source. Deletion ofgzf3results in overexpression of genes with GATAA sites in their promoters, suggesting that it acts as a repressor, whilegzf2is required for expression of ammonia utilization genes but does not grossly affect the transcription level of genes predicted to be controlled by nitrogen catabolite repression. Both GATA transcription factor mutants exhibit decreased expression of genes controlled by carbon catabolite repression via the repressormig1, including genes for beta-oxidation, highlighting the complex interplay between regulation of carbon, nitrogen, and lipid metabolism.

    IMPORTANCENitrogen source is

  3. Plate-fin array cooling using a finger-like piezoelectric fan

    International Nuclear Information System (INIS)

    Shyu, Jin-Cherng; Syu, Jhih-Zong

    2014-01-01

    In this study, the heat transfer of a plate-fin array cooled by a vibrating finger-like piezoelectric fan comprising four flexible rectangular blades was investigated. The results indicated that the heat transfer enhancement of the fin array cooled by a vibrating piezoelectric fan at x/L = 0.5 and H = 5 mm ranged between 1.5 and 3.3, regardless of the fin array orientation. However, the heat transfer enhancement caused by a fan being placed at either edge of the fin array yielded a dissimilar result between both of the fin array orientations because of the superimposed effects of the boundary layer development and the air flow induced by the fan. This dissimilarity was especially noticeable when the piezoelectric fan was composed of aluminum blades to accommodate the moderate Reynolds number. In addition to the Reynolds number, the ratio of the fan blade vibration envelope to the source area determined the Nu number of the piezoelectric fan-cooled fin array. This design enhanced the fin array heat transfer and reduced cooler volume by embedding multiple vibrating beams into the fin array. -- Highlights: • Heat transfer of a piezoelectric fan-cooled plate-fin array was investigated. • Effects of fan position, fan height and fan material on heat transfer were examined. • Similar heat transfer enhancement range was shown for both fin array orientations. • Fin heat transfer with a running Al fan at x = 0 was higher than that at x = 0.25L. • Besides fan Reynolds number, the area ratio also determined Nu of the fin array

  4. Proliferation and osteo/odontogenic differentiation of stem cells from apical papilla regulated by Zinc fingers and homeoboxes 2: An in vitro study.

    Science.gov (United States)

    Wan, Fang; Gao, Lifen; Lu, Yating; Ma, Hongxin; Wang, Hongxing; Liang, Xiaohong; Wang, Yan; Ma, Chunhong

    2016-01-15

    In the process of tooth root development, stem cells from the apical papilla (SCAPs) can differentiate into odontoblasts and form root dentin, however, molecules regulating SCAPs differentiation have not been elucidated. Zinc fingers and homeoboxes 2 (ZHX2) is a novel transcriptional inhibitor. It is reported to modulate the development of nerve cells, liver cells, B cells, red blood cells, and so on. However, the role of ZHX2 in tooth root development remains unclear. In this study, we explored the potential role of ZHX2 in the process of SCAPs differentiation. The results showed that overexpression of ZHX2 upregulated the expression of osteo/odontogenic related genes and ALP activity, inhibited the proliferation of SCAPs. Consistently, ZHX2 knockdown reduced SCAPs mineralization and promoted SCAPs proliferation. These results indicated that ZHX2 plays a critical role in the proliferation and osteo/odontogenic differentiation of SCAPs. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Trigger finger

    Science.gov (United States)

    ... digit; Trigger finger release; Locked finger; Digital flexor tenosynovitis ... cut or hand Yellow or green drainage from the cut Hand pain or discomfort Fever If your trigger finger returns, call your surgeon. You may need another surgery.

  6. Lead-zinc interactions in the production of osteocalcin by ROS 17/2.8 osteoblastic bone cells

    International Nuclear Information System (INIS)

    Pounds, J.G.

    1991-01-01

    The serum level of osteocalcin, a bone specific protein produced by osteoblasts and used clinically as a marker of osteoblast acceptive, is decreased in lead intoxicated children. Previous studies suggest that the reduced osteocalcin production appears to be the result of impaired transcriptional regulation of this 1,25-dihydroxyvitamin D 3 gene product, and not translation. As part of a study to investigate the potential interaction of Pb 2+ with Zn 2+ , and with the zinc fingers of the vitamin D receptor, ROS cells were treated with 0, 5, 10, or 25 μM lead acetate for 24 hr, in the presence of 10, 30, or 50 μM Zn followed by an additional 24 hr treatment with lead with 1,25-dihydroxyvitamin D 3 (100 pg/ml media). At the end of this period a radioimmunoassay was conducted to determine the amount of osteocalcin in the cells and secreted in the media. 1,25-dihydroxyvitamin D 3 caused an increase in osteocalcin secreted into the media in cultures containing 0 μM lead, but this increase was inhibited by lead in a concentration dependent manner, so that osteocalcin secretion in 10 or 25 μM lead treated groups was less than cultures without 1,25-dihydroxyvitamin D 3 treatment. This inhibitory effect of lead was blocked by increasing the medium zinc concentration of 50 μM. Increasing medium Pb 2+ concentrations decreased the amount of 65 Zn taken up by cells by ∼30%, which was nullified by increasing medium Zn. These results suggest that lead produces a localized and specific Zn deficiency in the vitamin D receptor zinc finger, and perhaps other zinc metalloproteins, and that these effects of lead are not mediated through general effects on RNA or protein synthesis

  7. Effect of zinc gluconate, sage oil on inflammatory patterns and hyperglycemia in zinc deficient diabetic rats.

    Science.gov (United States)

    Elseweidy, Mohamed M; Ali, Abdel-Moniem A; Elabidine, Nabila Zein; Mursey, Nada M

    2017-11-01

    The relationship between zinc homeostasis and pancreatic function had been established. In this study we aimed firstly to configure the inflammatory pattern and hyperglycemia in zinc deficient diabetic rats. Secondly to illustrate the effect of two selected agents namely Zinc gluconate and sage oil (Salvia Officinalis, family Lamiaceae). Rats were fed on Zinc deficient diet, deionized water for 28days along with Zinc level check up at intervals to achieve zinc deficient state then rats were rendered diabetic through receiving one dose of alloxan monohydrate (120mg/kg) body weight, classified later into 5 subgroups. Treatment with sage oil (0.042mg/kg IP) and Zinc gluconate orally (150mg/kg) body weight daily for 8 weeks significantly reduced serum glucose, C-reactive protein (CRP), Tumor necrosis factor alpha (TNF- α), interleukins-6 1 β, inflammatory8 (IFN ȣ), pancreatic 1L1-β along with an increase in serum Zinc and pancreatic Zinc transporter 8 (ZNT8). Histopathological results of pancreatic tissues showed a good correlation with the biochemical findings. Both sage oil and zinc gluconate induced an improvement in the glycemic and inflammatory states. This may be of value like the therapeutic agent for diabetes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Molecular characterization of two isoforms of ZFAND3 cDNA from the Japanese quail and the leopard gecko, and different expression patterns between testis and ovary.

    Science.gov (United States)

    Otake, Shigeo; Endo, Daisuke; Park, Min Kyun

    2011-11-15

    Zing finger AN1-type domain 3 (ZFAND3), also known as testis expressed sequence 27 (Tex27), is a gene found in the mouse testis, but its physiological function is unknown. We identified the full-length sequences of two isoforms (short and long) of ZFAND3 cDNA from Japanese quail and leopard gecko. This is the first cloning of avian and reptilian ZFAND3 cDNA. The two isoforms are generated by alternative polyadenylation in the 3'UTR and have the same ORF sequences encoding identical proteins. There were highly conserved regions in the 3'UTR of the long form near the polyadenylation sites from mammals to amphibians, suggesting that the features for determining the stability of mRNA or translation efficiency differ between isoforms. The deduced amino acid sequence of ZFAND3 has two putative zinc finger domains, an A20-like zinc finger domain at the N-terminal and an AN1-like zinc finger domain at the C-terminal. Sequence analysis revealed an additional exon in the genomic structures of the avian and reptilian ZFAND3 genes which is not present in mammals, amphibians, or fish, and this exon produces additional amino acid residues in the A20-like zinc finger domain. Expression analysis in Japanese quail revealed that the expression level of ZFAND3 mRNA was high in not only the testis but also the ovary, and ZFAND3 mRNA was expressed in both spermatides of the testis and oocytes of the ovary. While the short form mRNA was mainly expressed in the testis, the expression level of the long form mRNA was high in the ovary. These results suggest that ZFAND3 has physiological functions related to germ cell maturation and regulatory mechanisms that differ between the testis and ovary. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Physical characterization of plakophilin 1 reconstituted with and without zinc.

    Science.gov (United States)

    Hofmann, I; Mücke, N; Reed, J; Herrmann, H; Langowski, J

    2000-07-01

    Plakophilin 1 (PKP1) belongs to the arm-repeat protein family which is characterized by the presence of a conserved 42-amino-acid motif. Despite individual members of the family containing a similar type of structural domain, they exhibit diverse cellular functions. PKP1 is ubiquitously expressed in human tissues and, depending on the type of cell, found prominently in the karyoplasm and/or in desmosomes. In surface plasmon resonance detection experiments, we noticed that PKP1 specifically bound zinc but not calcium or magnesium. Therefore we have used circular dichroism spectroscopy, limited proteolysis, analytical ultracentrifugation, electron microscopy and dynamic light scattering to establish the physical properties of recombinant PKP1 depending on the presence or absence of zinc. The alpha helix content of PKP1 was considerably higher when reconstituted with zinc than without. By atomic absorption spectroscopy 7.3 atoms zinc were shown to be tightly associated with one molecule of wild-type PKP1. The zinc-reconstituted protein formed globular particles of 21.9 +/- 8.4 nm diameter, as measured by electron microscopy after glycerol spraying/rotary metal shadowing. In parallel, the average sedimentation coefficient (s20, w) for zinc-containing PKP1 was 41S and its diffusion coefficient, as obtained by dynamic light scattering, 1.48 x 10-7 cm2.s-1. The molecular mass of 2.44 x 106 obtained from s and D yields an average stoichiometry of 30 for the PKP1 oligomer. In contrast, PKP1, reconstituted without zinc, contained no significant amount of zinc, sedimented with 4.6S, and was present in monomeric form as determined by sedimentation equilibrium centrifugation.

  10. Finger Search in the Implicit Model

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Nielsen, Jesper Asbjørn Sindahl; Truelsen, Jakob

    2012-01-01

    We address the problem of creating a dictionary with the finger search property in the strict implicit model, where no information is stored between operations, except the array of elements. We show that for any implicit dictionary supporting finger searches in q(t) = Ω(logt) time, the time to move...... the finger to another element is Ω(q− 1(logn)), where t is the rank distance between the query element and the finger. We present an optimal implicit static structure matching this lower bound. We furthermore present a near optimal implicit dynamic structure supporting search, change-finger, insert......, and delete in times $\\mathcal{O}(q(t))$, $\\mathcal{O}(q^{-1}(\\log n)\\log n)$, $\\mathcal{O}(\\log n)$, and $\\mathcal{O}(\\log n)$, respectively, for any q(t) = Ω(logt). Finally we show that the search operation must take Ω(logn) time for the special case where the finger is always changed to the element...

  11. Growth of fingers at an unstable diffusing interface in a porous medium or hele-shaw cell

    Energy Technology Data Exchange (ETDEWEB)

    Wooding, R A

    1969-11-27

    Waves at an unstable horizontal interface, between 2 fluids moving vertically through a saturated porous medium, are observed to grow rapidly to become fingers (i.e., the amplitude greatly exceeds the wavelength). For a diffusing interface, in experiments using a Hele-Shaw cell, the mean amplitude taken over many fingers grows approx. as (time)U2D, followed by a transition to a growth proportional to time. Correspondingly, the mean wave number decreases approx. as (time)U-1/2D. Because of the rapid increase in amplitude, longitudinal dispersion ultimately becomes negligible relative to wave growth. To represent the observed quantities at large time, the transport equation is suitably weighted and averaged over the horizontal plane. Hyperbolic equations result, and the ascending and descending zones containing the fronts of the fingers are replaced by discontinuities. These averaged equations form an open set, but closure is achieved by assuming a law for the mean wave number based on similarity. (22 refs.)

  12. Integration of tactile input across fingers in a patient with finger agnosia.

    NARCIS (Netherlands)

    Anema, H.A.; Overvliet, K.E.; Smeets, J.B.J.; Brenner, E.; Dijkerman, H.C.

    2011-01-01

    Finger agnosia has been described as an inability to explicitly individuate between the fingers, which is possibly due to fused neural representations of these fingers. Hence, are patients with finger agnosia unable to keep tactile information perceived over several fingers separate? Here, we tested

  13. A zinc enolate of amide: Preparation and application in reformasky-like reaction leading to β-hydroxy amides

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hyun Hee; Kim, Seung Hoi [Dept. of Chemistry, Dankook University, Cheonan (Korea, Republic of)

    2015-04-15

    One of the best known functionalized organic complexes is the β-hydroxy carbonyl compound. This unique functionality has been frequently found in naturally occurring bioactive derivatives. The cross-coupling reaction of A with aldehydes were carried out in the absence of any catalyst and completed in most cases within 1.0 h at room temperature. We have developed an efficient synthetic route for the preparation of β-hydroxy amides. The method involved the preparation of room-temperature-stable organo zinc reagents (A, B, and C) in THF and their subsequent coupling reactions with various carbonyl derivatives under mild conditions. Significantly, this approach using zinc enolate of amides could expand the scope of Reformatsky-like reactions. Further studies to elucidate this synthetic protocol are currently under way in our laboratory.

  14. Zinc Leaching from Tire Crumb Rubber

    Science.gov (United States)

    Rhodes, E. P.; Ren, J.; Mays, D. C.

    2010-12-01

    Recent estimates indicate that more than 2 billion scrap tires are currently stockpiled in the United States and approximately 280 million more tires are added annually. Various engineering applications utilize recycled tires in the form of shredded tire crumb rubber. However, the use of tire crumb rubber may have negative environmental impacts, especially when the rubber comes into contact with water. A review of the literature indicates that leaching of zinc from tire crumb rubber is the most significant water quality concern associated with using this material. Zinc is generally used in tire manufacturing, representing approximately 1.3% of the final product by mass. This study will report results from the U.S. Environmental Protection Agency’s (EPA’s) Synthetic Precipitation Leaching Procedure, batch leaching tests, and column leaching tests performed to quantify the process by which zinc leaches from tire crumb rubber into water. Results are interpreted with a first-order kinetic attachment/detachment model, implemented with the U.S. Agricultural Research Service software HYDRUS-1D, in order to determine the circumstances when zinc leaching from tire crumb rubber would be expected to comply with the applicable discharge limits. One potential application for recycled tires is replacing sand with tire crumb rubber in granular media filters used for stormwater pollution control. For this to be a viable application, the total zinc in the stormwater discharge must be below the EPA’s benchmark value of 0.117 mg/L.

  15. Multiple hybrid de novo genome assembly of finger millet, an orphan allotetraploid crop.

    Science.gov (United States)

    Hatakeyama, Masaomi; Aluri, Sirisha; Balachadran, Mathi Thumilan; Sivarajan, Sajeevan Radha; Patrignani, Andrea; Grüter, Simon; Poveda, Lucy; Shimizu-Inatsugi, Rie; Baeten, John; Francoijs, Kees-Jan; Nataraja, Karaba N; Reddy, Yellodu A Nanja; Phadnis, Shamprasad; Ravikumar, Ramapura L; Schlapbach, Ralph; Sreeman, Sheshshayee M; Shimizu, Kentaro K

    2017-09-05

    Finger millet (Eleusine coracana (L.) Gaertn) is an important crop for food security because of its tolerance to drought, which is expected to be exacerbated by global climate changes. Nevertheless, it is often classified as an orphan/underutilized crop because of the paucity of scientific attention. Among several small millets, finger millet is considered as an excellent source of essential nutrient elements, such as iron and zinc; hence, it has potential as an alternate coarse cereal. However, high-quality genome sequence data of finger millet are currently not available. One of the major problems encountered in the genome assembly of this species was its polyploidy, which hampers genome assembly compared with a diploid genome. To overcome this problem, we sequenced its genome using diverse technologies with sufficient coverage and assembled it via a novel multiple hybrid assembly workflow that combines next-generation with single-molecule sequencing, followed by whole-genome optical mapping using the Bionano Irys® system. The total number of scaffolds was 1,897 with an N50 length >2.6 Mb and detection of 96% of the universal single-copy orthologs. The majority of the homeologs were assembled separately. This indicates that the proposed workflow is applicable to the assembly of other allotetraploid genomes. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  16. Generation of knockout rabbits using transcription activator-like effector nucleases.

    Science.gov (United States)

    Wang, Yu; Fan, Nana; Song, Jun; Zhong, Juan; Guo, Xiaogang; Tian, Weihua; Zhang, Quanjun; Cui, Fenggong; Li, Li; Newsome, Philip N; Frampton, Jon; Esteban, Miguel A; Lai, Liangxue

    2014-01-01

    Zinc-finger nucleases and transcription activator-like effector nucleases are novel gene-editing platforms contributing to redefine the boundaries of modern biological research. They are composed of a non-specific cleavage domain and a tailor made DNA-binding module, which enables a broad range of genetic modifications by inducing efficient DNA double-strand breaks at desired loci. Among other remarkable uses, these nucleases have been employed to produce gene knockouts in mid-size and large animals, such as rabbits and pigs, respectively. This approach is cost effective, relatively quick, and can produce invaluable models for human disease studies, biotechnology or agricultural purposes. Here we describe a protocol for the efficient generation of knockout rabbits using transcription activator-like effector nucleases, and a perspective of the field.

  17. Identification of Ftr1 and Zrt1 as iron and zinc micronutrient transceptors for activation of the PKA pathway in Saccharomyces cerevisiae.

    Science.gov (United States)

    Schothorst, Joep; Zeebroeck, Griet V; Thevelein, Johan M

    2017-03-02

    Multiple types of nutrient transceptors, membrane proteins that combine a transporter and receptor function, have now been established in a variety of organisms. However, so far all established transceptors utilize one of the macronutrients, glucose, amino acids, ammonium, nitrate, phosphate or sulfate, as substrate. This is also true for the Saccharomyces cerevisiae transceptors mediating activation of the PKA pathway upon re-addition of a macronutrient to glucose-repressed cells starved for that nutrient, re-establishing a fermentable growth medium. We now show that the yeast high-affinity iron transporter Ftr1 and high-affinity zinc transporter Zrt1 function as transceptors for the micronutrients iron and zinc . We show that replenishment of iron to iron-starved cells or zinc to zinc-starved cells triggers within 1-2 minutes a rapid surge in trehalase activity, a well-established PKA target. The activation with iron is dependent on Ftr1 and with zinc on Zrt1, and we show that it is independent of intracellular iron and zinc levels. Similar to the transceptors for macronutrients, Ftr1 and Zrt1 are strongly induced upon iron and zinc starvation, respectively, and they are rapidly downregulated by substrate-induced endocytosis. Our results suggest that transceptor-mediated signaling to the PKA pathway may occur in all cases where glucose-repressed yeast cells have been starved first for an essential nutrient, causing arrest of growth and low activity of the PKA pathway, and subsequently replenished with the lacking nutrient to re-establish a fermentable growth medium. The broadness of the phenomenon also makes it likely that nutrient transceptors use a common mechanism for signaling to the PKA pathway.

  18. Identification of Ftr1 and Zrt1 as iron and zinc micronutrient transceptors for activation of the PKA pathway in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Joep Schothort

    2017-03-01

    Full Text Available Multiple types of nutrient transceptors, membrane proteins that combine a transporter and receptor function, have now been established in a variety of organisms. However, so far all established transceptors utilize one of the macronutrients, glucose, amino acids, ammonium, nitrate, phosphate or sulfate, as substrate. This is also true for the Saccharomyces cerevisiae transceptors mediating activation of the PKA pathway upon re-addition of a macronutrient to glucose-repressed cells starved for that nutrient, re-establishing a fermentable growth medium. We now show that the yeast high-affinity iron transporter Ftr1 and high-affinity zinc transporter Zrt1 function as transceptors for the micronutrients iron and zinc. We show that replenishment of iron to iron-starved cells or zinc to zinc-starved cells triggers within 1-2 minutes a rapid surge in trehalase activity, a well-established PKA target. The activation with iron is dependent on Ftr1 and with zinc on Zrt1, and we show that it is independent of intracellular iron and zinc levels. Similar to the transceptors for macronutrients, Ftr1 and Zrt1 are strongly induced upon iron and zinc starvation, respectively, and they are rapidly downregulated by substrate-induced endocytosis. Our results suggest that transceptor-mediated signaling to the PKA pathway may occur in all cases where glucose-repressed yeast cells have been starved first for an essential nutrient, causing arrest of growth and low activity of the PKA pathway, and subsequently replenished with the lacking nutrient to re-establish a fermentable growth medium. The broadness of the phenomenon also makes it likely that nutrient transceptors use a common mechanism for signaling to the PKA pathway.

  19. Viscous Fingering in Deformable Systems

    Science.gov (United States)

    Guan, Jian Hui; MacMinn, Chris

    2017-11-01

    Viscous fingering is a classical hydrodynamic instability that occurs when an invading fluid is injected into a porous medium or a Hele-Shaw cell that contains a more viscous defending fluid. Recent work has shown that viscous fingering in a Hele-Shaw cell is supressed when the flow cell is deformable. However, the mechanism of suppression relies on a net volumetric expansion of the flow area. Here, we study flow in a novel Hele-Shaw cell consisting of a rigid bottom plate and a flexible top plate that deforms in a way that is volume-conserving. In other words, fluid injection into the flow cell leads to a local expansion of the flow area (outward displacement of the flexible surface) that must be coupled to non-local contraction (inward displacement of the flexible surface). We explore the impact of this volumetric confinement on steady viscous flow and on viscous fingering. We would like to thank EPSRC for the funding for this work.

  20. Factors influencing zinc status of apparently healthy indians.

    Science.gov (United States)

    Agte, Vaishali V; Chiplonkar, Shashi A; Tarwadi, Kirtan V

    2005-10-01

    To identify dietary, environmental and socio-economic factors associated with mild zinc deficiency, three zinc status indices; erythrocyte membrane zinc (RBCMZn), plasma zinc and super oxide dismutase (SOD) were assessed in free living and apparently healthy Indian population. Dietary patterns of 232 men and 223 women (20-65 yr) from rural, industrial and urban regions of Western India were evaluated by food frequency questionnaire. RBCMZn was estimated using atomic absorption spectrometry, hemoglobin and serum ceruloplasmin by spectrophotometer. On a sub sample (48 men and 51 women) plasma zinc and SOD were also assessed. Mean RBCMZn was 0.5 +/- 0.1 micromols/g protein with 46% individuals showing zinc deficiency. Mean plasma zinc was 0.98 +/- 0.12 microg/mL with 25% men and 2.5% women having values below normal range. Mean SOD was 0.97 +/- 0.1 (u/mL cells). A significant positive correlation was observed between intakes of green leafy vegetables, other vegetables and milk products with RBCMZn status (p plasma zinc (p > 0.2). Cereal and legume intakes were negatively correlated with RBCMZn (p plasma zinc (p 0.2). Fruit and other vegetable intake were positively correlated with SOD (p Plasma zinc indicated positive association with zinc, thiamin and riboflavin intakes (p plasma zinc and SOD. Prominent determinants of zinc status were intakes of beta-carotene and zinc along with environmental conditions and family size.

  1. The effect of adding zinc to vitamin A on IGF-1, bone age and linear growth in stunted children.

    Science.gov (United States)

    Adriani, Merryana; Wirjatmadi, Bambang

    2014-10-01

    A randomized, double-blind, placebo controlled trial of a single dose of 200,000 I.U. of vitamin A with daily zinc supplementation was conducted with children in Mojo village, Surabaya City. Children aged 48 to 60 months were randomized to receive a single dose of 200,000 I.U. of vitamin A plus zinc sulfate (n=12) or a single dose of 200,000 I.U. of vitamin A (n=12) plus placebo six days a week for six months. Children were evaluated weekly for nutrient intake and for IGF-1, C-reactive protein levels, gamma globulin levels, serum zinc, serum retinol, bone age and the index height for age at six months. At the end of the study, there was a significant increase in the serum retinol level (pbone age (p<0.01), and gamma globulin level (p<0.04) and a significant decrease in the amount of infection/inflammation measured by CRP level (p<0.001). There was also a significant correlation between CRP level and height for age (p<0.01), and between gamma level and height for age (p<0.01). These results suggest that combined vitamin A and zinc supplementation reduces the risk of infection and increases linear growth among children, and thus may play a key role in controlling infection and stunted growth for children under five years old. Copyright © 2014 Elsevier GmbH. All rights reserved.

  2. Systems-level comparison of host responses induced by pandemic and seasonal influenza A H1N1 viruses in primary human type I-like alveolar epithelial cells in vitro

    Directory of Open Access Journals (Sweden)

    Guan Yi

    2010-10-01

    Full Text Available Abstract Background Pandemic influenza H1N1 (pdmH1N1 virus causes mild disease in humans but occasionally leads to severe complications and even death, especially in those who are pregnant or have underlying disease. Cytokine responses induced by pdmH1N1 viruses in vitro are comparable to other seasonal influenza viruses suggesting the cytokine dysregulation as seen in H5N1 infection is not a feature of the pdmH1N1 virus. However a comprehensive gene expression profile of pdmH1N1 in relevant primary human cells in vitro has not been reported. Type I alveolar epithelial cells are a key target cell in pdmH1N1 pneumonia. Methods We carried out a comprehensive gene expression profiling using the Affymetrix microarray platform to compare the transcriptomes of primary human alveolar type I-like alveolar epithelial cells infected with pdmH1N1 or seasonal H1N1 virus. Results Overall, we found that most of the genes that induced by the pdmH1N1 were similarly regulated in response to seasonal H1N1 infection with respect to both trend and extent of gene expression. These commonly responsive genes were largely related to the interferon (IFN response. Expression of the type III IFN IL29 was more prominent than the type I IFN IFNβ and a similar pattern of expression of both IFN genes was seen in pdmH1N1 and seasonal H1N1 infection. Genes that were significantly down-regulated in response to seasonal H1N1 but not in response to pdmH1N1 included the zinc finger proteins and small nucleolar RNAs. Gene Ontology (GO and pathway over-representation analysis suggested that these genes were associated with DNA binding and transcription/translation related functions. Conclusions Both seasonal H1N1 and pdmH1N1 trigger similar host responses including IFN-based antiviral responses and cytokine responses. Unlike the avian H5N1 virus, pdmH1N1 virus does not have an intrinsic capacity for cytokine dysregulation. The differences between pdmH1N1 and seasonal H1N1 viruses

  3. OVO homologue-like 1 (Ovol1) transcription factor: a novel target of neurogenin-3 in rodent pancreas.

    Science.gov (United States)

    Vetere, A; Li, W-C; Paroni, F; Juhl, K; Guo, L; Nishimura, W; Dai, X; Bonner-Weir, S; Sharma, A

    2010-01-01

    The basic helix-loop-helix transcription factor neurogenin-3 (NGN3) commits the fates of pancreatic progenitors to endocrine cell types, but knowledge of the mechanisms regulating the choice between proliferation and differentiation of these progenitors is limited. Using a chromatin immunoprecipitation cloning approach, we searched for direct targets of NGN3 and identified a zinc-finger transcription factor, OVO homologue-like 1 (OVOL1). Transactivation experiments were carried out to elucidate the functional role of NGN3 in Ovol1 gene expression. Embryonic and adult rodents pancreases were immunostained for OVOL1, Ki67 and NGN3. We showed that NGN3 negatively regulates transcription of Ovol1 in an E-box-dependent fashion. The presence of either NGN3 or NEUROD1, but not MYOD, reduced endogenous Ovol1 mRNA. OVOL1 was detected in pancreatic tissue around embryonic day 15.5, after which OVOL1 levels dramatically increased. In embryonic pancreas, OVOL1 protein levels were low in NGN3(+) or Ki67(+) cells, but high in quiescent differentiated cells. OVOL1 presence was maintained in adult pancreas, where it was detected in islets, pancreatic ducts and some acinar cells. Additionally OVOL1 presence was lacking in proliferating ductules in regenerating pancreas and induced in cells as they began to acquire their differentiated phenotype. The timing of OVOL1 appearance in pancreas and its increased levels in differentiated cells suggest that OVOL1 promotes the transition of cells from a proliferating, less-differentiated state to a quiescent more-differentiated state. We conclude that OVOL1, a downstream target of NGN3, may play an important role in regulating the balance between proliferation and differentiation of pancreatic cells.

  4. ZFP36L1 and ZFP36L2 inhibit cell proliferation in a cyclin D-dependent and p53-independent manner

    OpenAIRE

    Suk, Fat-Moon; Chang, Chi-Ching; Lin, Ren-Jye; Lin, Shyr-Yi; Liu, Shih-Chen; Jau, Chia-Feng; Liang, Yu-Chih

    2018-01-01

    ZFP36 family members include ZFP36, ZFP36L1, and ZFP36L2, which belong to CCCH-type zinc finger proteins with two tandem zinc finger (TZF) regions. Whether ZFP36L1 and ZFP36L2 have antiproliferative activities similar to that of ZFP36 is unclear. In this study, when ZFP36L1 or ZFP36L2 was overexpressed in T-REx-293 cells, cell proliferation was dramatically inhibited and the cell cycle was arrested at the G1 phase. The levels of cell-cycle-related proteins, including cyclin B, cyclin D, cycli...

  5. Surgical Treatment of Trigger Finger: Open Release

    Directory of Open Access Journals (Sweden)

    Firat Ozan

    2016-01-01

    Full Text Available In this study, open A1 pulley release results were evaluated in patients with a trigger finger diagnosis. 45 patients (29 females, 16 males, mean age 50.7 ± 11.9; range (24-79, 45 trigger fingers were released via open surgical technique. On the 25 of 45 cases were involved in the right hand and 16 of them were at the thumb, 2 at index, 6 at the middle and 1 at ring finger. Similarly, at the left hand, 15 of 20 cases were at the thumb, 1 at the index finger, 2 at middle finger and 2 at ring finger. Average follow-up time was 10.2 ± 2.7 (range, 6-15 months. Comorbidities in patients were; diabetes mellitus at 6 cases (13.3%, hypertension at 11 cases (24.4%, hyperthyroidism at 2 cases (4.4%, dyslipidemia at 2 cases (4.4% and lastly 2 cases had carpal tunnel syndrome operation. The mean time between the onset of symptoms to surgery was 6.9 ± 4.8 (range, 2-24 months. Patient satisfaction was very good in 34 cases (75.4% and good in 11 (24.6% patients. The distance between the pulpa of the operated finger and the palm was normal in every case postoperatively. We have not encountered any postoperative complications. We can recommend that; A1 pulley release via open incision is an effective and reliable method in trigger finger surgery.

  6. Use of Mutation Breeding Technique in Improving Finger Millet in Northern Zambia

    International Nuclear Information System (INIS)

    Msikita, R.N.

    2002-01-01

    Many breeders have observed that induced mutation increases genetic variability, and the expose to mutagenic agents increases mutation frequency. Studies have indicated the effect in height reduction, increased yield components,disease resistance, in crop like rice and wheat. A study was conducted in finger millet in thr Northern part of Zambia (Region III), a high rainfall area, aiming at improving finger length, number of fingers till ring capacity in order to increase the yield. the seed of Nyika variety, popular to farmers due to its medium maturity, palm shaped fingers (six fingers on average), and light brown grain. Three quantities of seed were irradiated at 15Kr, 20Kr and 30Kr doses. A dose of 15Kr of gamma rays irradiation continued to create good genetic change in the exposed material. These observations clearly suggest that 15Kr dose of gamma rays is the optimum one to expose/irradiate finger millet to create desired genetic changes. The results of 2000/2001 were not significantly different. However, FMM 165 had better yields (3193 Kg) than FMM 175 in Misamfu, while FMM 175 yielded better (3272 Kg) in Chinsali. During 2001/2002 both FMMs performed well in the national finger number of 10 per head. There were also highly significant differences among finger lengths.FMM 165 had finger length of 10.3 cm. Concerning grain yield FMM 165 and FMM 175 had 3802 and 3864 Kg/ha, respectively, which were above the overall mean 3864 Kg/ha. Grain yield correlated positively with finger number with an r-value of 0.19 and finger length r-value of 0.22 although it was not significant at 1% or 5%. Meanwhile in the advance trial there were significant differences among genotypes in finger number. Both FMMs had 9 fingers above the overall mean of 8.8. In the finger length there were highly significant differences. FMM 175 had a length of 11.5 cm while FMM 165 had 10.4 cm. There were highly significant differences among the genotypes in yield. FMM 165 (4636 Kg) and FMM 175

  7. Supplemental Table S4.xls

    Indian Academy of Sciences (India)

    143, AT3G05200.1, 8262, I, 0.6, 259312_at, ATL6 (Arabidopsis T?xicos en Levadura 6); protein binding / zinc ion binding. 144, LOC_Os08g37760.1, 8262, D, -1.07, Os.17554.1.S1_at, zinc finger, C3HC4 type family protein, expressed. 145, AT5G27420.1, 8262, D, -0.95, 246777_at, zinc finger (C3HC4-type RING finger) ...

  8. Urinary growth hormone (U-GH) excretion and serum insulin-like growth factor 1 (IGF-1) in patients with alcoholic cirrhosis

    DEFF Research Database (Denmark)

    Møller, S; Grønbaek, M; Main, K

    1993-01-01

    was significantly higher in patients than in the healthy controls (p liver function assessed by modified Child-Turcotte score (p encephalopathy (p ...Basal serum growth hormone (GH) levels are elevated and insulin-like growth factor 1 (IGF-1) concentrations in serum are suppressed in patients with chronic liver disease. The aim of this study was to measure the urinary GH (U-GH) excretion and IGF-1 concentrations in patients with cirrhosis...... and correlated with liver function (p

  9. Emotional Communication in Finger Braille

    Directory of Open Access Journals (Sweden)

    Yasuhiro Matsuda

    2010-01-01

    Full Text Available We describe analyses of the features of emotions (neutral, joy, sadness, and anger expressed by Finger Braille interpreters and subsequently examine the effectiveness of emotional expression and emotional communication between people unskilled in Finger Braille. The goal is to develop a Finger Braille system to teach emotional expression and a system to recognize emotion. The results indicate the following features of emotional expression by interpreters. The durations of the code of joy were significantly shorter than the durations of the other emotions, the durations of the code of sadness were significantly longer, and the finger loads of anger were significantly larger. The features of emotional expression by unskilled subjects were very similar to those of the interpreters, and the coincidence ratio of emotional communication was 75.1%. Therefore, it was confirmed that people unskilled in Finger Braille can express and communicate emotions using this communication medium.

  10. Finger-gate manipulated quantum transport in Dirac materials

    International Nuclear Information System (INIS)

    Kleftogiannis, Ioannis; Cheng, Shun-Jen; Tang, Chi-Shung

    2015-01-01

    We investigate the quantum transport properties of multichannel nanoribbons made of materials described by the Dirac equation, under an in-plane magnetic field. In the low energy regime, positive and negative finger-gate potentials allow the electrons to make intra-subband transitions via hole-like or electron-like quasibound states (QBS), respectively, resulting in dips in the conductance. In the high energy regime, double dip structures in the conductance are found, attributed to spin-flip or spin-nonflip inter-subband transitions through the QBSs. Inverting the finger-gate polarity offers the possibility to manipulate the spin polarized electronic transport to achieve a controlled spin-switch. (paper)

  11. Symptomatic zinc deficiency in experimental zinc deprivation.

    OpenAIRE

    Taylor, C M; Goode, H F; Aggett, P J; Bremner, I; Walker, B E; Kelleher, J

    1992-01-01

    An evaluation of indices of poor zinc status was undertaken in five male subjects in whom dietary zinc intake was reduced from 85 mumol d-1 in an initial phase of the study to 14 mumol d-1. One of the subjects developed features consistent with zinc deficiency after receiving the low zinc diet for 12 days. These features included retroauricular acneform macullo-papular lesions on the face, neck, and shoulders and reductions in plasma zinc, red blood cell zinc, neutrophil zinc and plasma alkal...

  12. The Saccharomyces cerevisiae RAD18 gene encodes a protein that contains potential zinc finger domains for nucleic acid binding and a putative nucleotide binding sequence

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.S.; Prakash, L. (Univ. of Rochester School of Medicine, NY (USA)); Weber, S. (Kodak Research Park, Rochester, NY (USA))

    1988-07-25

    The RAD18 gene of Saccharomyces cerevisiae is required for postreplication repair of UV damaged DNA. The authors have isolated the RAD18 gene, determined its nucleotide sequence and examined if deletion mutations of this gene show different or more pronounced phenotypic effects than the previously described point mutations. The RAD18 gene open reading frame encodes a protein of 487 amino acids, with a calculated molecular weight of 55,512. The RAD18 protein contains three potential zinc finger domains for nucleic acid binding, and a putative nucleotide binding sequence that is present in many proteins that bind and hydrolyze ATP. The DNA binding and nucleotide binding activities could enable the RAD18 protein to bind damaged sites in the template DNA with high affinity. Alternatively, or in addition, RAD18 protein may be a transcriptional regulator. The RAD18 deletion mutation resembles the previously described point mutations in its effects on viability, DNA repair, UV mutagenesis, and sporulation.

  13. Admittance Control of a Multi-Finger Arm Based on Manipulability of Fingers

    Directory of Open Access Journals (Sweden)

    Jian Huang

    2011-09-01

    Full Text Available In the previous studies, admittance control and impedance control for a finger-arm robot using the manipulability of the finger were studied and methods of realizing the controls have been proposed. In this study, two 3-DOF fingers are attached to the end-effector of a 6-DOF arm to configure a multi-finger arm robot. Based on the previous methods, the authors have proposed an admittance control for a multi-finger arm robot using the manipulability of the fingers in this study. Algorithms of the averaging method and the mini-max method were introduced to establish a manipulability criterion of the two fingers in order to generate a cooperative movement of the arm. Comparison of the admittance controls combined with the top search method and local optimization method for the multi-finger arm robot was made and features of the control methods were also discussed. The stiffness control and damping control were experimentally evaluated to demonstrate the effectiveness of the proposed methods.

  14. NCBI nr-aa BLAST: CBRC-PVAM-01-1002 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-PVAM-01-1002 sp|Q86UP3|ZFHX4_HUMAN RecName: Full=Zinc finger homeobox protein ...4; AltName: Full=Zinc finger homeodomain protein 4; Short=ZFH-4 gb|AAP20225.1| zinc finger homeodomain 4 protein [Homo sapiens] Q86UP3 0.0 86% ...

  15. NCBI nr-aa BLAST: CBRC-OPRI-01-1361 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-OPRI-01-1361 sp|Q86UP3|ZFHX4_HUMAN RecName: Full=Zinc finger homeobox protein ...4; AltName: Full=Zinc finger homeodomain protein 4; Short=ZFH-4 gb|AAP20225.1| zinc finger homeodomain 4 protein [Homo sapiens] Q86UP3 0.0 93% ...

  16. NCBI nr-aa BLAST: CBRC-TTRU-01-1120 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TTRU-01-1120 sp|Q86UP3|ZFHX4_HUMAN RecName: Full=Zinc finger homeobox protein ...4; AltName: Full=Zinc finger homeodomain protein 4; Short=ZFH-4 gb|AAP20225.1| zinc finger homeodomain 4 protein [Homo sapiens] Q86UP3 0.0 87% ...

  17. NCBI nr-aa BLAST: CBRC-MDOM-03-0053 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-MDOM-03-0053 sp|Q86UP3|ZFHX4_HUMAN RecName: Full=Zinc finger homeobox protein ...4; AltName: Full=Zinc finger homeodomain protein 4; Short=ZFH-4 gb|AAP20225.1| zinc finger homeodomain 4 protein [Homo sapiens] Q86UP3 0.0 94% ...

  18. NCBI nr-aa BLAST: CBRC-MDOM-03-0052 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-MDOM-03-0052 sp|Q86UP3|ZFHX4_HUMAN RecName: Full=Zinc finger homeobox protein ...4; AltName: Full=Zinc finger homeodomain protein 4; Short=ZFH-4 gb|AAP20225.1| zinc finger homeodomain 4 protein [Homo sapiens] Q86UP3 0.0 91% ...

  19. Generation of knockout rabbits using transcription activator-like effector nucleases

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2014-01-01

    Full Text Available Zinc-finger nucleases and transcription activator-like effector nucleases are novel gene-editing platforms contributing to redefine the boundaries of modern biological research. They are composed of a non-specific cleavage domain and a tailor made DNA-binding module, which enables a broad range of genetic modifications by inducing efficient DNA double-strand breaks at desired loci. Among other remarkable uses, these nucleases have been employed to produce gene knockouts in mid-size and large animals, such as rabbits and pigs, respectively. This approach is cost effective, relatively quick, and can produce invaluable models for human disease studies, biotechnology or agricultural purposes. Here we describe a protocol for the efficient generation of knockout rabbits using transcription activator-like effector nucleases, and a perspective of the field.

  20. Robotic finger perturbation training improves finger postural steadiness and hand dexterity.

    Science.gov (United States)

    Yoshitake, Yasuhide; Ikeda, Atsutoshi; Shinohara, Minoru

    2018-02-01

    The purpose of the study was to understand the effect of robotic finger perturbation training on steadiness in finger posture and hand dexterity in healthy young adults. A mobile robotic finger training system was designed to have the functions of high-speed mechanical response, two degrees of freedom, and adjustable loading amplitude and direction. Healthy young adults were assigned to one of the three groups: random perturbation training (RPT), constant force training (CFT), and control. Subjects in RPT and CFT performed steady posture training with their index finger using the robot in different modes: random force in RPT and constant force in CFT. After the 2-week intervention period, fluctuations of the index finger posture decreased only in RPT during steady position-matching tasks with an inertial load. Purdue pegboard test score improved also in RPT only. The relative change in finger postural fluctuations was negatively correlated with the relative change in the number of completed pegs in the pegboard test in RPT. The results indicate that finger posture training with random mechanical perturbations of varying amplitudes and directions of force is effective in improving finger postural steadiness and hand dexterity in healthy young adults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Robotic hand and fingers

    Science.gov (United States)

    Salisbury, Curt Michael; Dullea, Kevin J.

    2017-06-06

    Technologies pertaining to a robotic hand are described herein. The robotic hand includes one or more fingers releasably attached to a robotic hand frame. The fingers can abduct and adduct as well as flex and tense. The fingers are releasably attached to the frame by magnets that allow for the fingers to detach from the frame when excess force is applied to the fingers.

  2. Osseointegrated silicone finger prosthesis using dental implants: a renovated technique.

    Science.gov (United States)

    Vinnakota, Dileep Nag; Sankar, V Vijay; Chirumamilla, Naveen; Reddy, V Vamsikrishna

    2014-11-01

    In clinical practice, we come across patients with traumatically amputated or congenitally missing partial or complete fingers that can be restored using microsurgical replantation or transplantation procedures. However, in some cases this might not be possible due to systemic or local factors and the lost or missing part has to be replaced prosthetically to offer psychological and functional wellbeing. These prostheses can be constructed with various materials like acrylics or silicone retained with the help of auxiliary aids. However, these prostheses cause some hindrance in performing functions like writing, typing, etc. The aim of the present trial was to ameliorate the existing design of implant supported finger prosthesis. Distal phalange of middle finger replaced with implant supported silicone finger prosthesis is modified by utilizing a metal framework to support silicone material to improve rigidity while working. We could achieve a good function, esthetics and tactile sensibility with this modified design. Whenever, feasible this design can improve the performance and patients feel a deep sense of satisfaction and improved self-esteem with this modified prosthesis.

  3. Seaweeds for the remediation of wastewaters contaminated with zinc(II) ions

    International Nuclear Information System (INIS)

    Senthilkumar, R.; Vijayaraghavan, K.; Thilakavathi, M.; Iyer, P.V.R.; Velan, M.

    2006-01-01

    Eleven different species of marine macroalgae were screened at different pH conditions on the basis of zinc(II) biosorption potential. Among the seaweeds, a green alga, Ulva reticulata, exhibited a highest uptake of 36.1 mg/g at pH 5.5 and 100 mg/l initial zinc(II) concentration. Further experiments were conducted to evaluate the zinc(II) biosorption potential of U. reticulata. Sorption isotherm data obtained at different pH (5-6) and temperature (25-35 deg. C) conditions were fitted well with Sips model followed by Freundlich, Redlich-Peterson and Langmuir models. A maximum zinc(II) biosorption capacity of 135.5 mg/g was observed at optimum conditions of 5.5 (pH) and 30 deg. C (temperature), according to the Langmuir model. It was observed from the kinetic data that the zinc(II) biosorption process using U. reticulata follows pseudo-second-order kinetics. Various thermodynamic parameters, such as ΔG o , ΔH o and ΔS o were calculated and they indicated that the present system was a spontaneous and an endothermic process. The influence of the co-ions (Na + , K + , Ca 2+ and Mg 2+ ) along with zinc(II) present in the wastewater was also studied. Desorption of zinc(II) ions from the zinc(II)-loaded biomass were examined using 0.1 M CaCl 2 at different pH conditions in three sorption-desorption cycles. A fixed-bed column (2 cm i.d. and 35 cm height) was employed to evaluate the continuous biosorption performance of U. reticulata. The column experiments at different bed heights and flow rates revealed that the maximum zinc(II) uptake was obtained at the highest bed height (25 cm) and the lowest flow rate (5 ml/min). Column data were fitted well with Thomas, Yoon-Nelson and modified dose-response models. The column regeneration studies were carried out for three sorption-desorption cycles. A loss of sorption performance was observed during regeneration cycles indicated by a shortened breakthrough time and a decreased zinc(II) uptake

  4. Zinc finger nuclease-mediated precision genome editing of an endogenous gene in hexaploid bread wheat (Triticum aestivum) using a DNA repair template.

    Science.gov (United States)

    Ran, Yidong; Patron, Nicola; Kay, Pippa; Wong, Debbie; Buchanan, Margaret; Cao, Ying-Ying; Sawbridge, Tim; Davies, John P; Mason, John; Webb, Steven R; Spangenberg, German; Ainley, William M; Walsh, Terence A; Hayden, Matthew J

    2018-05-07

    Sequence-specific nucleases have been used to engineer targeted genome modifications in various plants. While targeted gene knockouts resulting in loss of function have been reported with relatively high rates of success, targeted gene editing using an exogenously supplied DNA repair template and site-specific transgene integration has been more challenging. Here, we report the first application of zinc finger nuclease (ZFN)-mediated, nonhomologous end-joining (NHEJ)-directed editing of a native gene in allohexaploid bread wheat to introduce, via a supplied DNA repair template, a specific single amino acid change into the coding sequence of acetohydroxyacid synthase (AHAS) to confer resistance to imidazolinone herbicides. We recovered edited wheat plants having the targeted amino acid modification in one or more AHAS homoalleles via direct selection for resistance to imazamox, an AHAS-inhibiting imidazolinone herbicide. Using a cotransformation strategy based on chemical selection for an exogenous marker, we achieved a 1.2% recovery rate of edited plants having the desired amino acid change and a 2.9% recovery of plants with targeted mutations at the AHAS locus resulting in a loss-of-function gene knockout. The latter results demonstrate a broadly applicable approach to introduce targeted modifications into native genes for nonselectable traits. All ZFN-mediated changes were faithfully transmitted to the next generation. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  5. The novel BTB/POZ and zinc finger factor Zbtb45 is essential for proper glial differentiation of neural and oligodendrocyte progenitor cells

    DEFF Research Database (Denmark)

    Södersten, Erik; Lilja, Tobias; Hermanson, Ola

    2010-01-01

    Understanding the regulatory mechanisms controlling the fate decisions of neural stem cells (NSCs) is a crucial issue to shed new light on mammalian central nervous system (CNS) development in health and disease. We have investigated a possible role for the previously uncharacterized BTB/POZ-doma......Understanding the regulatory mechanisms controlling the fate decisions of neural stem cells (NSCs) is a crucial issue to shed new light on mammalian central nervous system (CNS) development in health and disease. We have investigated a possible role for the previously uncharacterized BTB....../POZ-domain containing zinc finger factor Zbtb45 in the differentiation of NSCs and postnatal oligodendrocyte precursors. In situ hybridization histochemistry and RT-qPCR analysis revealed that Zbtb45 mRNA was ubiquitously expressed in the developing CNS in mouse embryos at embryonic day (E) 12.5 and 14.5. Zbtb45 m......RNA knockdown in embryonic forebrain NSCs by siRNA resulted in a rapid decrease in the expression of oligodendrocyte-characteristic genes after mitogen (FGF2) withdrawal, whereas the expression of astrocyte-associated genes such as CD44 and GFAP increased compared to control. Accordingly, the number...

  6. The beneficial effects of zinc on diabetes-induced kidney damage in murine rodent model of type 1 diabetes mellitus.

    Science.gov (United States)

    Yang, Fan; Li, Bing; Dong, Xiaoming; Cui, Wenpeng; Luo, Ping

    2017-07-01

    Diabetes mellitus is a chronic multi-factorial metabolic disorder resulting from impaired glucose homeostasis. Zinc is a key co-factor for the correct functioning of anti-oxidant enzymes. Zinc deficiency therefore, impairs their synthesis, leading to increased oxidative stress within cells. Zinc deficiency occurs commonly in diabetic patients. The aim of this study is to investigate the effects of varying concentrations of zinc on diabetic nephropathy (DN) and the underlying mechanisms involved. FVB male mice aged 8 weeks were injected intraperitoneally with multiple low-dose streptozotocin at a concentration of 50mg/kg body weight daily for 5 days. Diabetic and age-matched control mice were treated with special diets supplemented with zinc at varying concentrations (0.85mg/kg, 30mg/kg, 150mg/kg) for 3 months. The mice were fed with zinc diets to mimic the process of oral administration of zinc in human. Zinc deficiency to some extent aggravated the damage of diabetic kidney. Feeding with normal (30mg/kg zinc/kg diet) and especially high (150mg/kg zinc/kg diet) concentration zinc could protect the kidney against diabetes-induced damage. The beneficial effects of zinc on DN are achieved most likely due to the upregulation of Nrf2 and its downstream factors NQO1, SOD1, SOD2. Zinc upregulated the expression of Akt phosphorylation and GSK-3β phosphorylation, resulting in a reduction in Fyn nuclear translocation and export of Nrf2 to the cytosol. Thus, regular monitoring and maintaining of adequate levels of zinc are recommended in diabetic individuals in order to delay the development of DN. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Speed invariance of independent control of finger movements in pianists.

    Science.gov (United States)

    Furuya, Shinichi; Soechting, John F

    2012-10-01

    Independent control of finger movements characterizes skilled motor behaviors such as tool use and musical performance. The purpose of the present study was to identify the effect of movement frequency (tempo) on individuated finger movements in piano playing. Joint motion at the digits was recorded while 5 expert pianists were playing 30 excerpts from musical pieces with different fingering and key locations either at a predetermined normal tempo or as fast as possible. Principal component analysis and cluster analysis using an expectation-maximization algorithm determined three distinct patterns of finger movement coordination for a keypress with each of the index, middle, ring, and little fingers at each of the two tempi. The finger kinematics of each coordination pattern was overall similar across the tempi. Tone sequences assigned into each cluster were also similar for both tempi. A linear regression analysis determined no apparent difference in the amount of movement covariation between the striking and nonstriking fingers at both metacarpo-phalangeal and proximal-interphalangeal joints across the two tempi, which indicated no effect of tempo on independent finger movements in piano playing. In addition, the standard deviation of interkeystroke interval across strokes did not differ between the two tempi, indicating maintenance of rhythmic accuracy of keystrokes. Strong temporal constraints on finger movements during piano playing may underlie the maintained independent control of fingers over a wider range of tempi, a feature being likely to be specific to skilled pianists.

  8. Systematic analysis and comparison of the PHD-Finger gene family in Chinese pear (Pyrus bretschneideri) and its role in fruit development.

    Science.gov (United States)

    Cao, Yunpeng; Han, Yahui; Meng, Dandan; Abdullah, Muhammad; Li, Dahui; Jin, Qing; Lin, Yi; Cai, Yongping

    2018-04-20

    PHD-finger proteins, which belongs to the type of zinc finger family, and that play an important role in the regulation of both transcription and the chromatin state in eukaryotes. Currently, PHD-finger proteins have been well studied in animals, while few studies have been carried out on their function in plants. In the present study, 129 non-redundant PHD-finger genes were identified from 5 Rosaceae species (pear, apple, strawberry, mei, and peach); among them, 31 genes were identified in pear. Subsequently, we carried out a bioinformatics analysis of the PHD-finger genes. Thirty-one PbPHD genes were divided into 7 subfamilies based on the phylogenetic analysis, which are consistent with the intron-exon and conserved motif analyses. In addition, we identified five segmental duplication events, implying that the segmental duplications might be a crucial role in the expansion of the PHD-finger gene family in pear. The microsynteny analysis of five Rosaceae species showed that there were independent duplication events in addition to the genome-wide duplication of the pear genome. Subsequently, ten expressed PHD-finger genes of pear fruit were identified using qRT-PCR, and one of these genes, PbPHD10, was identified as an important candidate gene for the regulation of lignin synthesis. Our research provides useful information for the further analysis of the function of PHD-finger gene family in pear.

  9. Instrumented Glove Measures Positions Of Fingers

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1993-01-01

    Glove instrumented with flat membrane potentiometers to obtain crude measurements of relative positions of fingers. Resistance of each potentiometer varies with position of associated finger; translator circuit connected to each potentiometer converts analog reading to 1 of 10 digital levels. Digitized outputs from all fingers fed to indicating, recording, and/or data-processing equipment. Gloves and circuits intended for use in biomedical research, training in critical manual tasks, and other specialized applications.

  10. Metal cofactor modulated folding and target recognition of HIV-1 NCp7.

    Science.gov (United States)

    Ren, Weitong; Ji, Dongqing; Xu, Xiulian

    2018-01-01

    The HIV-1 nucleocapsid 7 (NCp7) plays crucial roles in multiple stages of HIV-1 life cycle, and its biological functions rely on the binding of zinc ions. Understanding the molecular mechanism of how the zinc ions modulate the conformational dynamics and functions of the NCp7 is essential for the drug development and HIV-1 treatment. In this work, using a structure-based coarse-grained model, we studied the effects of zinc cofactors on the folding and target RNA(SL3) recognition of the NCp7 by molecular dynamics simulations. After reproducing some key properties of the zinc binding and folding of the NCp7 observed in previous experiments, our simulations revealed several interesting features in the metal ion modulated folding and target recognition. Firstly, we showed that the zinc binding makes the folding transition states of the two zinc fingers less structured, which is in line with the Hammond effect observed typically in mutation, temperature or denaturant induced perturbations to protein structure and stability. Secondly, We showed that there exists mutual interplay between the zinc ion binding and NCp7-target recognition. Binding of zinc ions enhances the affinity between the NCp7 and the target RNA, whereas the formation of the NCp7-RNA complex reshapes the intrinsic energy landscape of the NCp7 and increases the stability and zinc affinity of the two zinc fingers. Thirdly, by characterizing the effects of salt concentrations on the target RNA recognition, we showed that the NCp7 achieves optimal balance between the affinity and binding kinetics near the physiologically relevant salt concentrations. In addition, the effects of zinc binding on the inter-domain conformational flexibility and folding cooperativity of the NCp7 were also discussed.

  11. Metal cofactor modulated folding and target recognition of HIV-1 NCp7.

    Directory of Open Access Journals (Sweden)

    Weitong Ren

    Full Text Available The HIV-1 nucleocapsid 7 (NCp7 plays crucial roles in multiple stages of HIV-1 life cycle, and its biological functions rely on the binding of zinc ions. Understanding the molecular mechanism of how the zinc ions modulate the conformational dynamics and functions of the NCp7 is essential for the drug development and HIV-1 treatment. In this work, using a structure-based coarse-grained model, we studied the effects of zinc cofactors on the folding and target RNA(SL3 recognition of the NCp7 by molecular dynamics simulations. After reproducing some key properties of the zinc binding and folding of the NCp7 observed in previous experiments, our simulations revealed several interesting features in the metal ion modulated folding and target recognition. Firstly, we showed that the zinc binding makes the folding transition states of the two zinc fingers less structured, which is in line with the Hammond effect observed typically in mutation, temperature or denaturant induced perturbations to protein structure and stability. Secondly, We showed that there exists mutual interplay between the zinc ion binding and NCp7-target recognition. Binding of zinc ions enhances the affinity between the NCp7 and the target RNA, whereas the formation of the NCp7-RNA complex reshapes the intrinsic energy landscape of the NCp7 and increases the stability and zinc affinity of the two zinc fingers. Thirdly, by characterizing the effects of salt concentrations on the target RNA recognition, we showed that the NCp7 achieves optimal balance between the affinity and binding kinetics near the physiologically relevant salt concentrations. In addition, the effects of zinc binding on the inter-domain conformational flexibility and folding cooperativity of the NCp7 were also discussed.

  12. Identification of ‘safe harbor’ loci in indica rice genome by harnessing the property of zinc-finger nucleases to induce DNA damage and repair.

    Directory of Open Access Journals (Sweden)

    Christian eCantos

    2014-06-01

    Full Text Available Zinc-finger nucleases (ZFNs have proved to be successful tools for targeted genome manipulation in several organisms. Their main property is the induction of double-strand breaks (DSBs at specific sites, which are further repaired through homologous recombination (HR or non-homologous end joining (NHEJ. However, for the appropriate integration of genes at specific chromosomal locations, proper sites for gene integration need to be identified. These regions, hereby named safe harbor loci, must be localized in non-coding regions and possess high gene expression. In the present study, three different ZFN constructs (pZFN1, pZFN2, pZFN3, harboring β-glucuronidase (GUS as a reporter gene, were used to identify safe harbor loci regions on rice chromosomes. The constructs were delivered into IR64 rice by using an improved Agrobacterium-mediated transformation protocol, based on the use of immature embryos. Gene expression was measured by histochemical GUS activity and the flanking regions were determined through thermal-asymmetric interlaced polymerase chain reaction (TAIL PCR. Following sequencing, 28 regions were identified as putative sites for safe integration, but only one was localized in a non-coding region and it also possessed high GUS expression. These findings have significant applicability to create crops with new and valuable traits, since the site can be subsequently used to stably introduce one or more genes in a targeted manner.

  13. [Treatment of trigger finger with located needle knife].

    Science.gov (United States)

    Zhang, Qi-Feng; Yang, Jiang; Xi, Sheng-Hua

    2016-07-25

    To investigate the clinical effects of located needle knife in the treatment of trigger finger. The clinical data of 133 patients(145 fingers) with trigger finger underwent treatment with located needle knife from September 2010 to March 2014 were retrospectively analyzed. There were 37 males(40 fingers) and 96 females (105 fingers), aged from 18 to 71 years old with a mean of 51.8 years. Course of disease was from 1 to 19 months with an average of 8.2 months. Affected fingers included 82 thumbs, 12 index fingers, 11 middle fingers, 36 ring fingers, and 4 little fingers. According to the standard of Quinnell grade, 42 fingers were grade III, 92 fingers were grade IV, and 11 fingers were grade V. Firstly the double pipe gab was put into the distal edge of hypertrophic tendon sheath, then small knife needle was used to release the sheath proximally along the tendon line direction. The informations of wound healing and nerve injury, postoperative finger function, finger pain at 6 months were observed. The operation time was from 8 to 25 min with an average of 9.8 min. All the patients were followed up from 6 to 26 months with an average of 12.5 months. No complications such as the wound inflammation and seepage, vascular or nerve injuries were found. According to the standard of Quinnell grade, 123 fingers got excellent results, 15 good, 7 poor. It's a good choice to treat trigger finger with located needle knife in advantage of minimal invasion, simple safe operation, and it should be promoted in clinic.

  14. NCBI nr-aa BLAST: CBRC-MDOM-01-0341 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-MDOM-01-0341 ref|NP_001121658.1| zinc finger protein, multitype 2 [Canis lupus... familiaris] gb|ACD67898.1| zinc finger multitype protein 2 [Canis lupus familiaris] NP_001121658.1 1.8 24% ...

  15. Multi-fingered robotic hand

    Science.gov (United States)

    Ruoff, Carl F. (Inventor); Salisbury, Kenneth, Jr. (Inventor)

    1990-01-01

    A robotic hand is presented having a plurality of fingers, each having a plurality of joints pivotally connected one to the other. Actuators are connected at one end to an actuating and control mechanism mounted remotely from the hand and at the other end to the joints of the fingers for manipulating the fingers and passing externally of the robot manipulating arm in between the hand and the actuating and control mechanism. The fingers include pulleys to route the actuators within the fingers. Cable tension sensing structure mounted on a portion of the hand are disclosed, as is covering of the tip of each finger with a resilient and pliable friction enhancing surface.

  16. Antibatic photovoltaic response in zinc-porphyrin-liked oligothiophenes

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Spanggaard, H.

    2005-01-01

    -stannylchloride and subsequent palladium catalysed Stille coupling. We further synthesised 5,15-bis(3, 4', 4", 4"', 4", 4""', 4""", 4"""'-octahexyl-[2, 2'; 5', 2" 5", 2'"; 5"', 2""; 5"", 2""'; 5""', 2"""; 5""", 2"""']octithiophene-5-yl)-10, 20-bis(3, 5-ditertbutylphenyl)zinc(II)porphyrin (5) from trimethyl(3, 4', 4", 4'", 4......"", 4""', 4""", 4"""'-Octahexyl-[2, 2'; 5', 2"; 5"; 2'"; 5"', 2""; 5"", 2"'"; 5""', 2"""; 5""", 2"""']octithiophene-5-yl)stannane (3-SnMe3) and 5, 15-dibromo-10, 20-bis(3, 5-ditertbutylphenyl)zinc(II)porphyrin (6) by Stille coupling. All the products were characterised by size exclusion chromatography...

  17. Cloning and analysis of the mouse Fanconi anemia group A cDNA and an overlapping penta zinc finger cDNA.

    Science.gov (United States)

    Wong, J C; Alon, N; Norga, K; Kruyt, F A; Youssoufian, H; Buchwald, M

    2000-08-01

    Despite the cloning of four disease-associated genes for Fanconi anemia (FA), the molecular pathogenesis of FA remains largely unknown. To study FA complementation group A using the mouse as a model system, we cloned and characterized the mouse homolog of the human FANCA cDNA. The mouse cDNA (Fanca) encodes a 161-kDa protein that shares 65% amino acid sequence identity with human FANCA. Fanca is located at the distal region of mouse chromosome 8 and has a ubiquitous pattern of expression in embryonic and adult tissues. Expression of the mouse cDNA in human FA-A cells restores the cellular drug sensitivity to normal levels. Thus, the expression pattern, protein structure, chromosomal location, and function of FANCA are conserved in the mouse. We also isolated a novel zinc finger protein, Zfp276, which has five C(2)H(2) domains. Interestingly, Zfp276 is situated in the Fanca locus, and the 3'UTR of its cDNA overlaps with the last four exons of Fanca in a tail-to-tail manner. Zfp276 is expressed in the same tissues as Fanca, but does not complement the mitomycin C (MMC)-sensitive phenotype of FA-A cells. The overlapping genomic organization between Zfp276 and Fanca may have relevance to the disease phenotype of FA. Copyright 2000 Academic Press.

  18. First large scale chemical synthesis of the 72 amino acid HIV-1 nucleocapsid protein NCp7 in an active form.

    Science.gov (United States)

    de Rocquigny, H; Ficheux, D; Gabus, C; Fournié-Zaluski, M C; Darlix, J L; Roques, B P

    1991-10-31

    The nucleocapsid protein (NC) of the human immunodeficiency virus type 1 plays a crucial role in the formation of infectious viral particles and therefore should be a major target for the development of antiviral agents. This requires an investigation of NC protein structure and of its interactions with both primer tRNA(Lys,3) and genomic RNA. Nucleocapsid protein NCp7, which results from the maturation of NCp15, contains two zinc fingers flanked by sequences rich in basic and proline residues. Here we report the first synthesis of large quantities of NCp7 able to activate HIV-1 RNA dimerization and replication primer tRNA(Lys,3) annealing to the initiation site of reverse transcription. In addition UV spectroscopic analyses performed to characterize the Co2+ binding properties of each zinc finger suggest that the two fingers probably interact in NCp7.

  19. VISIONS FOR FOOTWEAR TIP SHAPE ACCORDING TO THE CONFIGURATION FINGER

    Directory of Open Access Journals (Sweden)

    MALCOCI Marina

    2015-05-01

    Full Text Available Compatibility between the consumer and the interior leg permanent footwear raises a number of issues. And any new form of footwear is time for a new silhouette last. Fashion is a factor in determining the shape of the last significant role. The most important influence on fashion in footwear that has at one time is found in peak shape. During registered a variety of forms leading to the last, for example, pointed, oval, round, square, asymmetrical, curved, trapezoidal, etc. Each has added a tip top recommended. The paper analyzes the morphofunctional characteristic, namely, finger configuration. The configuration of the fingers is determined from the positions of all the fingers of one another, as are six variants. Analysis of the shape and configuration of the arm fingers allow us to make the following recommendations to consumers: people showing finger configuration as in variant V and VI are advised not to wear pointy shoes because of the limited movement of the foot, which favors the diversion finger I exterior and deformed finger V; persons who fall within I-IV variant can procure pointy shoes; a round-tipped shoes, square, curved or asymmetric may be purchased by any consumer regardless of the configuration of the fingers; shoes with cut edge must be present only in garderopa people in variant I and II; consumers whose configuration is like finger-VI and III variants are awkwardly shaped fingers can buy shoes closed in the previous summer, but of different perforations or overlapping strips.

  20. Differences in finger localisation performance of patients with finger agnosia.

    Science.gov (United States)

    Anema, Helen A; Kessels, Roy P C; de Haan, Edward H F; Kappelle, L Jaap; Leijten, Frans S; van Zandvoort, Martine J E; Dijkerman, H Chris

    2008-09-17

    Several neuropsychological studies have suggested parallel processing of somatosensory input when localising a tactile stimulus on one's own by pointing towards it (body schema) and when localising this touched location by pointing to it on a map of a hand (body image). Usually these reports describe patients with impaired detection, but intact sensorimotor localisation. This study examined three patients with a lesion of the angular gyrus with intact somatosensory processing, but with selectively disturbed finger identification (finger agnosia). These patients performed normally when pointing towards the touched finger on their own hand but failed to indicate this finger on a drawing of a hand or to name it. Similar defects in the perception of other body parts were not observed. The findings provide converging evidence for the dissociation between body image and body schema and, more importantly, reveal for the first time that this distinction is also present in higher-order cognitive processes selectively for the fingers.

  1. Personal recognition using finger knuckle shape oriented features and texture analysis

    Directory of Open Access Journals (Sweden)

    K. Usha

    2016-10-01

    Full Text Available Finger knuckle print is considered as one of the emerging hand biometric traits due to its potentiality toward the identification of individuals. This paper contributes a new method for personal recognition using finger knuckle print based on two approaches namely, geometric and texture analyses. In the first approach, the shape oriented features of the finger knuckle print are extracted by means of angular geometric analysis and then integrated to achieve better precision rate. Whereas, the knuckle texture feature analysis is carried out by means of multi-resolution transform known as Curvelet transform. This Curvelet transform has the ability to approximate curved singularities with minimum number of Curvelet coefficients. Since, finger knuckle patterns mainly consist of lines and curves, Curvelet transform is highly suitable for its representation. Further, the Curvelet transform decomposes the finger knuckle image into Curvelet sub-bands which are termed as ‘Curvelet knuckle’. Finally, principle component analysis is applied on each Curvelet knuckle for extracting its feature vector through the covariance matrix derived from their Curvelet coefficients. Extensive experiments were conducted using PolyU database and IIT finger knuckle database. The experimental results confirm that, our proposed method shows a high recognition rate of 98.72% with lower false acceptance rate of 0.06%.

  2. Tetanus following replantation of an amputated finger: a case report.

    Science.gov (United States)

    Hayashida, Kenji; Murakami, Chikako; Fujioka, Masaki

    2012-10-08

    Tetanus is an infectious disease caused by tetanus toxin produced by Clostridium tetani and induces severe neurological manifestations. We treated a patient who developed tetanus during hospitalization for replantation of an amputated finger. To the best of our knowledge, this is the first published case report of such an entity. A 49-year-old Japanese man had an amputation of his right middle finger at the distal interphalangeal joint region in an accident at work. His middle finger was successfully replanted, but his fingertip was partially necrotized because of crushing and so additional reconstruction with a reverse digital arterial flap was performed 15 days after the injury. Tetanus developed 21 days after replantation of the middle finger, but symptoms remitted via rapid diagnosis and treatment. In replantation after finger trauma with exposure of nerve and blood vessel bundles, concern over injuring nerves and blood vessels may prevent irrigation and debridement from being performed sufficiently; these treatments may have been insufficiently performed in this patient. It is likely that the replanted middle finger partially adhered, and Clostridium tetani colonized the partially necrotized region. Even when there is only limited soil contamination, administration of tetanus toxoid and anti-tetanus immunoglobulin is necessary when the fingers are injured outdoors and the finger nerves and blood vessels are exposed. The drugs should be administered just after replantation if the finger has been amputated. However, if clinicians pay attention to the possibility of tetanus development, treatment can be rapidly initiated.

  3. Clubbed fingers: the claws we lost?

    NARCIS (Netherlands)

    Brouwers, A.A.M.; Vermeij-Keers, C.; Zoelen, E.J.J. van; Gooren, L.J.G.

    2004-01-01

    Clubbed digits resemble the human embryonic fingers and toes, which took like the digits of a claw. Clubbed digits, thus, may represent the return of the embryonic claw and may even represent the claws man has lost during evolution, if ontogenesis realty recapitulates phylogenesis. We put forward

  4. Can Co(II) or Cd(II) substitute for Zn(II) in zinc fingers?

    Indian Academy of Sciences (India)

    Unknown

    Cysme) and histidine methylester (Hisme) has been studied as a model for the zinc core. ... obtained from the Sigma Chemical Company (USA). ..... entropy loss from the metal-binding site organization is expected to surpass the entropy.

  5. Admittance Control of a Multi-Finger Arm Based on Manipulability of Fingers

    Directory of Open Access Journals (Sweden)

    Takayuki Hori

    2011-09-01

    Full Text Available In the previous studies, admittance control and impedance control for a finger‐arm robot using the manipulability of the finger were studied and methods of realizing the controls have been proposed. In this study, two 3‐DOF fingers are attached to the end‐effector of a 6‐DOF arm to configure a multi‐finger arm robot. Based on the previous methods, the authors have proposed an admittance control for a multi‐finger arm robot using the manipulability of the fingers in this study. Algorithms of the averaging method and the mini‐max method were introduced to establish a manipulability criterion of the two fingers in order to generate a cooperative movement of the arm. Comparison of the admittance controls combined with the top search method and local optimization method for the multi‐finger arm robot was made and features of the control methods were also discussed. The stiffness control and damping control were experimentally evaluated to demonstrate the effectiveness of the proposed methods.

  6. The Transcriptional Repressive Activity of KRAB Zinc Finger Proteins Does Not Correlate with Their Ability to Recruit TRIM28.

    Directory of Open Access Journals (Sweden)

    Kristin E Murphy

    Full Text Available KRAB domain Zinc finger proteins are one of the most abundant families of transcriptional regulators in higher vertebrates. The prevailing view is that KRAB domain proteins function as potent transcriptional repressors by recruiting TRIM28 and promoting heterochromatin spreading. However, the extent to which all KRAB domain proteins are TRIM28-dependent transcriptional repressors is currently unclear. Our studies on mouse ZFP568 revealed that TRIM28 recruitment by KRAB domain proteins is not sufficient to warrant transcriptional repressive activity. By using luciferase reporter assays and yeast two-hybrid experiments, we tested the ability of ZFP568 and other mouse KRAB domain proteins to repress transcription and bind TRIM28. We found that some mouse KRAB domain proteins are poor transcriptional repressors despite their ability to recruit TRIM28, while others showed strong KRAB-dependent transcriptional repression, but no TRIM28 binding. Together, our results show that the transcriptional repressive activity of KRAB-ZNF proteins does not correlate with their ability to recruit TRIM28, and provide evidence that KRAB domains can regulate transcription in a TRIM28-independent fashion. Our findings challenge the current understanding of the molecular mechanisms used by KRAB domain proteins to control gene expression and highlight that a high percentage of KRAB domain proteins in the mouse genome differ from the consensus KRAB sequence at amino acid residues that are critical for TRIM28 binding and/or repressive activity.

  7. The zinc transporter ZIPT-7.1 regulates sperm activation in nematodes.

    Directory of Open Access Journals (Sweden)

    Yanmei Zhao

    2018-06-01

    Full Text Available Sperm activation is a fascinating example of cell differentiation, in which immotile spermatids undergo a rapid and dramatic transition to become mature, motile sperm. Because the sperm nucleus is transcriptionally silent, this transition does not involve transcriptional changes. Although Caenorhabditis elegans is a leading model for studies of sperm activation, the mechanisms by which signaling pathways induce this transformation remain poorly characterized. Here we show that a conserved transmembrane zinc transporter, ZIPT-7.1, regulates the induction of sperm activation in Caenorhabditis nematodes. The zipt-7.1 mutant hermaphrodites cannot self-fertilize, and males reproduce poorly, because mutant spermatids are defective in responding to activating signals. The zipt-7.1 gene is expressed in the germ line and functions in germ cells to promote sperm activation. When expressed in mammalian cells, ZIPT-7.1 mediates zinc transport with high specificity and is predominantly located on internal membranes. Finally, genetic epistasis places zipt-7.1 at the end of the spe-8 sperm activation pathway, and ZIPT-7.1 binds SPE-4, a presenilin that regulates sperm activation. Based on these results, we propose a new model for sperm activation. In spermatids, inactive ZIPT-7.1 is localized to the membranous organelles, which contain higher levels of zinc than the cytoplasm. When sperm activation is triggered, ZIPT-7.1 activity increases, releasing zinc from internal stores. The resulting increase in cytoplasmic zinc promotes the phenotypic changes characteristic of activation. Thus, zinc signaling is a key step in the signal transduction process that mediates sperm activation, and we have identified a zinc transporter that is central to this activation process.

  8. Zinc-induced Self-association of Complement C3b and Factor H

    Science.gov (United States)

    Nan, Ruodan; Tetchner, Stuart; Rodriguez, Elizabeth; Pao, Po-Jung; Gor, Jayesh; Lengyel, Imre; Perkins, Stephen J.

    2013-01-01

    The sub-retinal pigment epithelial deposits that are a hallmark of age-related macular degeneration contain both C3b and millimolar levels of zinc. C3 is the central protein of complement, whereas C3u is formed by the spontaneous hydrolysis of the thioester bridge in C3. During activation, C3 is cleaved to form active C3b, then C3b is inactivated by Factor I and Factor H to form the C3c and C3d fragments. The interaction of zinc with C3 was quantified using analytical ultracentrifugation and x-ray scattering. C3, C3u, and C3b associated strongly in >100 μm zinc, whereas C3c and C3d showed weak association. With zinc, C3 forms soluble oligomers, whereas C3u and C3b precipitate. We conclude that the C3, C3u, and C3b association with zinc depended on the relative positions of C3d and C3c in each protein. Computational predictions showed that putative weak zinc binding sites with different capacities exist in all five proteins, in agreement with experiments. Factor H forms large oligomers in >10 μm zinc. In contrast to C3b or Factor H alone, the solubility of the central C3b-Factor H complex was much reduced at 60 μm zinc and even more so at >100 μm zinc. The removal of the C3b-Factor H complex by zinc explains the reduced C3u/C3b inactivation rates by zinc. Zinc-induced precipitation may contribute to the initial development of sub-retinal pigment epithelial deposits in the retina as well as reducing the progression to advanced age-related macular degeneration in higher risk patients. PMID:23661701

  9. Decrease of non-point zinc runoff using porous concrete.

    Science.gov (United States)

    Harada, Shigeki; Komuro, Yoshinori

    2010-01-01

    The use of porous concrete columns to decrease the amount of zinc in stormwater runoff is examined. The concentration of zinc in a simulated stormwater fluid (zinc acetate solution), fed through concrete columns (slashed circle10x10cm) decreased by 50-81%, suggesting physical adsorption of zinc by the porous concrete. We propose the use of porous concrete columns (slashed circle50x10cm) as the base of sewage traps. Longer-term, high-zinc concentration monitoring revealed that porous concrete blocks adsorb 38.6mgcm(-3) of zinc. A period of no significant zinc runoff (with an acceptable concentration of zinc in runoff of 0.03mgL(-1), a zinc concentration equal to the Japanese Environmental Standard) is estimated for 41years using a 1-ha catchment area with 20 porous concrete sewage traps. Scanning electron microscopy of the porous concrete used in this study indicates that the needle-like particles formed by hydration action significantly increase zinc adsorption. Evidence suggests that the hydrant is ettringite and has an important role in zinc adsorption, the resulting immobilization of zinc and the subsequent effects on groundwater quality. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. Transcriptome wide identification and characterization of starch branching enzyme in finger millet.

    Science.gov (United States)

    Tyagi, Rajhans; Tiwari, Apoorv; Garg, Vijay Kumar; Gupta, Sanjay

    2017-01-01

    Starch-branching enzymes (SBEs) are one of the four major enzyme classes involved in starch biosynthesis in plants and play an important role in determining the structure and physical properties of starch granules. Multiple SBEs are involved in starch biosynthesis in plants. Finger millet is calcium rich important serial crop belongs to grass family and the transcriptome data of developing spikes is available on NCBI. In this study it was try to find out the gene sequence of starch branching enzyme and annotate the sequence and submit the sequence for further use. Rice SBE sequence was taken as reference and for characterization of the sequence different in silico tools were used. Four domains were found in the finger millet Starch branching enzyme like alpha amylase catalytic domain from 925 to2172 with E value 0, N-terminal Early set domain from 634 to 915 with E value 1.62 e-42, Alpha amylase, C-terminal all-beta domain from 2224 to 2511 with E value 5.80e-24 and 1,4-alpha-glucan-branching enzyme from 421 to 2517 with E value 0. Major binding interactions with the GLC (alpha-d-glucose), CA (calcium ion), GOL (glycerol), TRS (2-amino-2-hydroxymethylpropane- 1, 3-diol), MG (magnesium ion) and FLC (citrate anion) are fond with different residues. It was found in the phylogenetic study of the finger millet SBE with the 6 species of grass family that two clusters were form A and B. In cluster A, finger millet showed closeness with Oryzasativa and Setariaitalica, Sorghum bicolour and Zea mays while cluster B was formed with Triticumaestivum and Brachypodium distachyon. The nucleotide sequence of Finger millet SBE was submitted to NCBI with the accession no KY648913 and protein structure of SBE of finger millet was also submitted in PMDB with the PMDB id - PM0080938. This research presents a comparative overview of Finger millet SBE and includes their properties, structural and functional characteristics, and recent developments on their post-translational regulation.

  11. Tetanus following replantation of an amputated finger: a case report

    Directory of Open Access Journals (Sweden)

    Hayashida Kenji

    2012-10-01

    Full Text Available Abstract Introduction Tetanus is an infectious disease caused by tetanus toxin produced by Clostridium tetani and induces severe neurological manifestations. We treated a patient who developed tetanus during hospitalization for replantation of an amputated finger. To the best of our knowledge, this is the first published case report of such an entity. Case presentation A 49-year-old Japanese man had an amputation of his right middle finger at the distal interphalangeal joint region in an accident at work. His middle finger was successfully replanted, but his fingertip was partially necrotized because of crushing and so additional reconstruction with a reverse digital arterial flap was performed 15 days after the injury. Tetanus developed 21 days after replantation of the middle finger, but symptoms remitted via rapid diagnosis and treatment. Conclusions In replantation after finger trauma with exposure of nerve and blood vessel bundles, concern over injuring nerves and blood vessels may prevent irrigation and debridement from being performed sufficiently; these treatments may have been insufficiently performed in this patient. It is likely that the replanted middle finger partially adhered, and Clostridium tetani colonized the partially necrotized region. Even when there is only limited soil contamination, administration of tetanus toxoid and anti-tetanus immunoglobulin is necessary when the fingers are injured outdoors and the finger nerves and blood vessels are exposed. The drugs should be administered just after replantation if the finger has been amputated. However, if clinicians pay attention to the possibility of tetanus development, treatment can be rapidly initiated.

  12. IMAC fractionation in combination with LC-MS reveals H2B and NIF-1 peptides as potential bladder cancer biomarkers.

    Science.gov (United States)

    Frantzi, Maria; Zoidakis, Jerome; Papadopoulos, Theofilos; Zürbig, Petra; Katafigiotis, Ioannis; Stravodimos, Konstantinos; Lazaris, Andreas; Giannopoulou, Ioanna; Ploumidis, Achilles; Mischak, Harald; Mullen, William; Vlahou, Antonia

    2013-09-06

    Improvement in bladder cancer (BC) management requires more effective diagnosis and prognosis of disease recurrence and progression. Urinary biomarkers attract special interest because of the noninvasive means of urine collection. Proteomic analysis of urine entails the adoption of a fractionation methodology to reduce sample complexity. In this study, we applied immobilized metal affinity chromatography in combination with high-resolution LC-MS/MS for the discovery of native urinary peptides potentially associated with BC aggressiveness. This approach was employed toward urine samples from patients with invasive BC, noninvasive BC, and benign urogenital diseases. A total of 1845 peptides were identified, corresponding to a total of 638 precursor proteins. Specific enrichment for proteins involved in nucleosome assembly and for zinc-finger transcription factors was observed. The differential expression of two candidate biomarkers, histone H2B and NIF-1 (zinc finger 335) in BC, was verified in independent sets of urine samples by ELISA and by immunohistochemical analysis of BC tissue. The results collectively support changes in the expression of both of these proteins with tumor progression, suggesting their potential role as markers for discriminating BC stages. In addition, the data indicate a possible involvement of NIF-1 in BC progression, likely as a suppressor and through interactions with Sox9 and HoxA1.

  13. A U Ubale

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. A U Ubale. Articles written in Bulletin of Materials Science. Volume 28 Issue 1 February 2005 pp 43-47 Thin Films. Preparation and study of thickness dependent electrical characteristics of zinc sulfide thin films · A U Ubale D K Kulkarni · More Details Abstract Fulltext PDF.

  14. Infrared reflectance studies of hillock-like porous zinc oxide thin films

    International Nuclear Information System (INIS)

    Ching, C.G.; Lee, S.C.; Ng, S.S.; Hassan, Z.; Abu Hassan, H.

    2013-01-01

    We investigated the infrared (IR) reflectance characteristics of hillock-like porous zinc oxide (ZnO) thin films on silicon substrates. The IR reflectance spectra of the porous samples exhibited an extra resonance hump in the reststrahlen region of ZnO compared with the as-grown sample. Oscillation fringes with different behaviors were also observed in the non-reststrahlen region of ZnO. Standard multilayer optic technique was used with the effective medium theory to analyze the observations. Results showed that the porous ZnO layer consisted of several sublayers with different porosities and thicknesses. These findings were confirmed by scanning electron microscopy measurements. - Highlights: • Multilayer porous assumption qualitatively increased the overall spectra fitting. • IR reflectance is a sensitive method to probe the multilayer porous structure. • Hillock-like porous ZnO thin films fabricated using electrochemical etching method. • The thickness and porosity of the samples were determined. • Formation of extra resonance hump was due to splitting of reststrahlen band

  15. Does the oral zinc tolerance test measure zinc absorption

    Energy Technology Data Exchange (ETDEWEB)

    Valberg, L.S.; Flanagan, P.R.; Brennan, J.; Chamberlain, M.J.

    1985-01-01

    Increases in plasma zinc concentration were compared with radiozinc absorption after oral test doses. Ten healthy, fasting subjects were each given 385 mumol zinc chloride (25 mg Zn) labelled with 0.5 muCi /sup 65/ZnCl/sub 2/ and a non-absorbed marker, /sup 51/CrCl/sub 3/, dissolved in 100 ml of water; another 10 persons were given 354 mumol zinc chloride and 125 g of minced turkey containing 31 mumol zinc also labelled with /sup 65/Zn and /sup 51/Cr. Measurements were made of plasma zinc concentration at hourly intervals for 5 hours, radiozinc absorption by stool counting of unabsorbed radioactivity 12-36 hours later, and radiozinc retention by whole body counting at 7 days. The mean percentage of radiozinc absorbed and retained in the body from the two test meals was found to be identical (42%). In contrast the increased area under the plasma zinc curve up to 5 hours after the turkey meal, 28 +/- 9 mumol/L (mean +/- SD) was significantly less than that for zinc chloride alone, 47 +/- 15 mumol/L, p less than 0.005. Despite this difference, a good correlation was found between the area under the plasma zinc curve and /sup 65/Zn absorption in individual subjects after each meal. The discrepancy between the results of zinc absorption derived from the plasma zinc curve and /sup 65/Zn absorption for the liquid and solid test meals was most likely explained by binding of zinc to food and delayed gastric emptying of the solid meal. With a test meal of turkey meat at least this dampened the plasma appearance of zinc but did not affect its overall absorption.

  16. Does the oral zinc tolerance test measure zinc absorption

    International Nuclear Information System (INIS)

    Valberg, L.S.; Flanagan, P.R.; Brennan, J.; Chamberlain, M.J.

    1985-01-01

    Increases in plasma zinc concentration were compared with radiozinc absorption after oral test doses. Ten healthy, fasting subjects were each given 385 mumol zinc chloride (25 mg Zn) labelled with 0.5 muCi 65 ZnCl 2 and a non-absorbed marker, 51 CrCl 3 , dissolved in 100 ml of water; another 10 persons were given 354 mumol zinc chloride and 125 g of minced turkey containing 31 mumol zinc also labelled with 65 Zn and 51 Cr. Measurements were made of plasma zinc concentration at hourly intervals for 5 hours, radiozinc absorption by stool counting of unabsorbed radioactivity 12-36 hours later, and radiozinc retention by whole body counting at 7 days. The mean percentage of radiozinc absorbed and retained in the body from the two test meals was found to be identical (42%). In contrast the increased area under the plasma zinc curve up to 5 hours after the turkey meal, 28 +/- 9 mumol/L (mean +/- SD) was significantly less than that for zinc chloride alone, 47 +/- 15 mumol/L, p less than 0.005. Despite this difference, a good correlation was found between the area under the plasma zinc curve and 65 Zn absorption in individual subjects after each meal. The discrepancy between the results of zinc absorption derived from the plasma zinc curve and 65 Zn absorption for the liquid and solid test meals was most likely explained by binding of zinc to food and delayed gastric emptying of the solid meal. With a test meal of turkey meat at least this dampened the plasma appearance of zinc but did not affect its overall absorption

  17. Vertical Finger Displacement Is Reduced in Index Finger Tapping During Repeated Bout Rate Enhancement.

    Science.gov (United States)

    Mora-Jensen, Mark Holten; Madeleine, Pascal; Hansen, Ernst Albin

    2017-10-01

    The present study analyzed (a) whether a recently reported phenomenon of repeated bout rate enhancement in finger tapping (i.e., a cumulating increase in freely chosen finger tapping frequency following submaximal muscle activation in the form of externally unloaded voluntary tapping) could be replicated and (b) the hypotheses that the faster tapping was accompanied by changed vertical displacement of the fingertip and changed peak force during tapping. Right-handed, healthy, and recreationally active individuals (n = 24) performed two 3-min index finger tapping bouts at freely chosen tapping frequency, separated by 10-min rest. The recently reported phenomenon of repeated bout rate enhancement was replicated. The faster tapping (8.8 ± 18.7 taps/min, corresponding to 6.0 ± 11.0%, p = .033) was accompanied by reduced vertical displacement (1.6 ± 2.9 mm, corresponding to 6.3 ± 14.9%, p = .012) of the fingertip. Concurrently, peak force was unchanged. The present study points at separate control mechanisms governing kinematics and kinetics during finger tapping.

  18. Cloning and comparative analysis of zinc-finger protein gene on Y-chromosome (ZFY between Thai Bangkaew dog and other Thai canids

    Directory of Open Access Journals (Sweden)

    Ukadej Boonyaprakob

    2017-06-01

    Full Text Available The Thai Bangkaew dog is a Spitz-type dog that originated in Thailand. Legend has it that the dog is descended from hybrids between a native female dog and a male wild canid. To examine the mysterious story about the ancestry of the Thai Bangkaew dog's paternal lineage, sequence variation was examined for the last intron of the Y-chromosome-specific zinc-finger gene, ZFY, and its X homolog for male Thai Bangkaew dogs and other male Thai canids, including the Thai ridgeback and mixed breed dogs, Asiatic jackals (Canis aureus and a dhole (Cuon alpinus. A 1075-bp ZFY segment from DNA samples of Thai Bangkaew dogs was found to be 100% identical to the domestic dog ZFY and (if gaps are allowed showed 81% and 92% identity to jackal ZFY and dhole ZFY, respectively. However, if gaps were treated as missing data, the 1045-bp ZFY sequence for the Thai Bangkaew dogs was 100% identical to domestic dog ZFY and 99.5% to jackal ZFY and dhole ZFY, respectively. In addition, the 959-bp Thai Bangkaew ZFX fragments were identical and showed 100% identity to domestic dog ZFX. These genetic data suggest that the Thai Bangkaew dogs still present today share a common male ancestor with modern dogs, rather than being the descendants of dhole or jackal/dog hybrids.

  19. Expression of zinc transporter genes in rice as influenced by zinc-solubilizing Enterobacter cloacae strain ZSB14

    Directory of Open Access Journals (Sweden)

    Selvaraj eKrithika

    2016-04-01

    Full Text Available Zinc (Zn deficiency in major food crops has been considered as an important factor affecting the crop production and subsequently the human health. Rice (Oryza sativa is sensitive to Zn deficiency and thereby causes malnutrition to most of the rice-eating Asian populations. Application of zinc solubilizing bacteria (ZSB could be a sustainable agronomic approach to increase the soil available Zn which can mitigate the yield loss and consequently the nutritional quality of rice. Understanding the molecular interactions between rice and unexplored ZSB is useful for overcoming Zn deficiency problems. In the present study, the role of zinc solubilizing bacterial strain Enterobacter cloacae strain ZSB14 on regulation of Zn-regulated transporters and iron (Fe-regulated transporter-like protein (ZIP genes in rice under iron sufficient and deficient conditions was assessed by quantitative real-time reverse transcription PCR. The expression patterns of OsZIP1, OsZIP4 and OsZIP5 in root and shoot of rice were altered due to the Zn availability as dictated by Zn sources and ZSB inoculation. Fe sufficiency significantly reduced the root and shoot OsZIP1 expression, but not the OsZIP4 and OsZIP5 levels. Zinc oxide in the growth medium up-regulated all the assessed ZIP genes in root and shoot of rice seedlings. When ZSB was inoculated to rice seedlings grown with insoluble zinc oxide in the growth medium, the expression of root and shoot OsZIP1, OsZIP4 and OsZIP5 was reduced. In the absence of zinc oxide, ZSB inoculation up-regulated OsZIP1 and OsZIP5 expressions. Zinc nutrition provided to the rice seedling through ZSB-bound zinc oxide solubilization was comparable to the soluble zinc sulphate application which was evident through the ZIP genes’ expression and the Zn accumulation in root and shoot of rice seedlings. These results demonstrate that zinc solubilizing bacteria could play a crucial role in zinc fertilization and fortification of rice.

  20. Mesenchymal cells reactivate Snail1 expression to drive three-dimensional invasion programs

    DEFF Research Database (Denmark)

    Rowe, R.G.; Li, X.Y.; Hu, Y.

    2009-01-01

    Epithelial-mesenchymal transition (EMT) is required for mesodermal differentiation during development. The zinc-finger transcription factor, Snail1, can trigger EMT and is sufficient to transcriptionally reprogram epithelial cells toward a mesenchymal phenotype during neoplasia and fibrosis. Whet...

  1. Multiple Fingers - One Gestalt.

    Science.gov (United States)

    Lezkan, Alexandra; Manuel, Steven G; Colgate, J Edward; Klatzky, Roberta L; Peshkin, Michael A; Drewing, Knut

    2016-01-01

    The Gestalt theory of perception offered principles by which distributed visual sensations are combined into a structured experience ("Gestalt"). We demonstrate conditions whereby haptic sensations at two fingertips are integrated in the perception of a single object. When virtual bumps were presented simultaneously to the right hand's thumb and index finger during lateral arm movements, participants reported perceiving a single bump. A discrimination task measured the bump's perceived location and perceptual reliability (assessed by differential thresholds) for four finger configurations, which varied in their adherence to the Gestalt principles of proximity (small versus large finger separation) and synchrony (virtual spring to link movements of the two fingers versus no spring). According to models of integration, reliability should increase with the degree to which multi-finger cues integrate into a unified percept. Differential thresholds were smaller in the virtual-spring condition (synchrony) than when fingers were unlinked. Additionally, in the condition with reduced synchrony, greater proximity led to lower differential thresholds. Thus, with greater adherence to Gestalt principles, thresholds approached values predicted for optimal integration. We conclude that the Gestalt principles of synchrony and proximity apply to haptic perception of surface properties and that these principles can interact to promote multi-finger integration.

  2. Zinc-mediated binding of a low-molecular-weight stabilizer of the host anti-viral factor apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G.

    Science.gov (United States)

    Radwan, Mohamed O; Sonoda, Sachiko; Ejima, Tomohiko; Tanaka, Ayumi; Koga, Ryoko; Okamoto, Yoshinari; Fujita, Mikako; Otsuka, Masami

    2016-09-15

    Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G (APOBEC3G, A3G), is a human anti-virus restriction protein which works deaminase-dependently and -independently. A3G is known to be ubiquitinated by HIV-1 viral infectivity factor (Vif) protein, leading to proteasomal degradation. A3G contains two zinc ions at the N-terminal domain and the C-terminal domain. Four lysine residues, K(297), K(301), K(303), and K(334), are known to be required for Vif-mediated A3G ubiquitination and degradation. Previously, we reported compound SN-1, a zinc chelator that increases steady-state expression level of A3G in the presence of Vif. In this study, we prepared Biotin-SN-1, a biotinylated derivative of SN-1, to study the SN-1-A3G interaction. A pull-down assay revealed that Biotin-SN-1 bound A3G. A zinc-abstraction experiment indicated that SN-1 binds to the zinc site of A3G. We carried out a SN-1-A3G docking study using molecular operating environment. The calculations revealed that SN-1 binds to the C-terminal domain through Zn(2+), H(216), P(247), C(288), and Y(315). Notably, SN-1-binding covers the H(257), E(259), C(288), and C(291) residues that participate in zinc-mediated deamination, and the ubiquitination regions of A3G. The binding of SN-1 presumably perturbs the secondary structure between C(288) and Y(315), leading to less efficient ubiquitination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Recent development in PWR zinc injection

    International Nuclear Information System (INIS)

    Ocken, H.; Fruzzetti, K.; Frattini, P.; Wood, C.J.

    2002-01-01

    Zinc injection to the reactor coolant system (RCS) of PWRs holds the promise to alleviate two key challenges facing PWR plant operators: (1) reducing degradation of coolant system materials, including nickel-base alloy tubing and lower alloy penetrations due to stress corrosion cracking, and (2) lowering shutdown dose rates. Primary water stress corrosion cracking (PWSCC) is a dominant tube failure mode at many plants. This paper summarizes recent observations from U. S. and international PWRs that have implemented zinc injection, focusing primarily on coolant chemistry and dose rate issues. It also provides a look at the future direction of EPRI-sponsored projects on this topic. (authors)

  4. Response of hippocampal mossy fiber zinc to excessive glutamate release.

    Science.gov (United States)

    Takeda, Atsushi; Minami, Akira; Sakurada, Naomi; Nakajima, Satoko; Oku, Naoto

    2007-01-01

    The response of hippocampal mossy fiber zinc to excessive glutamate release was examined to understand the role of the zinc in excessive excitation in the hippocampus. Extracellular zinc and glutamate concentrations during excessive stimulation with high K(+) were compared between the hippocampal CA3 and CA1 by the in vivo microdialysis. Zinc concentration in the CA3 was more increased than that in the CA1, while glutamate concentration in the CA3 was less increased than that in the CA1. It is likely that more increase in extracellular zinc is linked with less increase in extracellular glutamate in the CA3. To see zinc action in mossy fiber synapses during excessive excitation, furthermore, 1mM glutamate was regionally delivered to the stratum lucidum in the presence of zinc or CaEDTA, a membrane-impermeable zinc chelator, and intracellular calcium signal was measured in the CA3 pyramidal cell layer. The persistent increase in calcium signal during stimulation with glutamate was significantly attenuated in the presence of 100 microM zinc, while significantly enhanced in the presence of 1mM CaEDTA. These results suggest that zinc released from mossy fibers attenuates the increase in intracellular calcium signal in mossy fiber synapses and postsynaptic CA3 neurons after excessive inputs to dentate granular cells.

  5. Compensating Hand Function in Chronic Stroke Patients Through the Robotic Sixth Finger.

    Science.gov (United States)

    Salvietti, Gionata; Hussain, Irfan; Cioncoloni, David; Taddei, Sabrina; Rossi, Simone; Prattichizzo, Domenico

    2017-02-01

    A novel solution to compensate hand grasping abilities is proposed for chronic stroke patients. The goal is to provide the patients with a wearable robotic extra-finger that can be worn on the paretic forearm by means of an elastic band. The proposed prototype, the Robotic Sixth Finger, is a modular articulated device that can adapt its structure to the grasped object shape. The extra-finger and the paretic hand act like the two parts of a gripper cooperatively holding an object. We evaluated the feasibility of the approach with four chronic stroke patients performing a qualitative test, the Frenchay Arm Test. In this proof of concept study, the use of the Robotic Sixth Finger has increased the total score of the patients by two points in a five points scale. The subjects were able to perform the two grasping tasks included in the test that were not possible without the robotic extra-finger. Adding a robotic opposing finger is a very promising approach that can significantly improve the functional compensation of the chronic stroke patient during everyday life activities.

  6. Availability of native and fertilizer zinc in some Indian soils: studies with 65Zinc

    International Nuclear Information System (INIS)

    Chaudhury, J.; Deb, D.L.

    1979-01-01

    Isotopically exchangeable zinc (Et values) was determined by different methods in some soils having pH(H 2 O) varying from 3.05 to 8.40 using 65 Zn. The Et values obtained using different extractants showed significant correlation with available zinc, organic carbon and soil pH. The recovery of applied zinc in the aqueous phase was less than one percent in most of the soils having pH higher than 7.0. Application of zinc with complexing agents like DTPA and EDTA increased the recovery of applied zinc in the solution to about 95 percent. Soil pH, organic C and DTPA extractable zinc showed significant relationship with the recovery of applied zinc under different treatments. Use of EDTA and DTPA extractants reduced the zinc buffering capacity of soil to a value less than one, irrespective of the initial pH of the soil, whereas the values were comparatively higher in presence of different levels of zinc carrier. (auth.)

  7. Non-cyanide process for flotation of a uranium-bearing lead-zinc polymetallic sulphide ore

    International Nuclear Information System (INIS)

    Li Qingxin

    1988-01-01

    The characteristics of the minerals of a urnium-bearing lead-zinc ore are described in this paper, And the experimentsl results of non-cyanide flotation process are given. The tests show that the selective flotation process of lead and zinc followed by uranium treatment is feasible in technology and reasonable in economics. When the run-of-mine contains 2.86%Pb, 2.47%Zn and 0,019%U, the lead concentrate containing 65.13%Pb, and 4.51%Zn, the zinc concentrate containing 52.00%Zn and 1.22%Pb, and the uranium concentrate containing 0.028%U can be obtained with the recoveries of 94.87%Pb, 87.61%Zn and 66.13%U respectively. The influence of sodium sulphite on flotaion process, the effect of sodium sulphite and the flotation mechanism of dibutyldithiophosphate ammonium are also discussed

  8. Effect of zinc supplementation on neuronal precursor proliferation in the rat hippocampus after traumatic brain injury.

    Science.gov (United States)

    Cope, Elise C; Morris, Deborah R; Gower-Winter, Shannon D; Brownstein, Naomi C; Levenson, Cathy W

    2016-05-01

    There is great deal of debate about the possible role of adult-born hippocampal cells in the prevention of depression and related mood disorders. We first showed that zinc supplementation prevents the development of the depression-like behavior anhedonia associated with an animal model of traumatic brain injury (TBI). This work then examined the effect of zinc supplementation on the proliferation of new cells in the hippocampus that have the potential to participate in neurogenesis. Rats were fed a zinc adequate (ZA, 30ppm) or zinc supplemented (ZS, 180ppm) diet for 4wk followed by TBI using controlled cortical impact. Stereological counts of EdU-positive cells showed that TBI doubled the density of proliferating cells 24h post-injury (pprecursor cells in the hippocampus was robust, use of targeted irradiation to eliminate these cells after zinc supplementation and TBI revealed that these cells are not the sole mechanism through which zinc acts to prevent depression associated with brain injury, and suggest that other zinc dependent mechanisms are needed for the anti-depressant effect of zinc in this model of TBI. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. GPR39 (zinc receptor) knockout mice exhibit depression-like behavior and CREB/BDNF down-regulation in the hippocampus.

    Science.gov (United States)

    Młyniec, Katarzyna; Budziszewska, Bogusława; Holst, Birgitte; Ostachowicz, Beata; Nowak, Gabriel

    2014-10-31

    Zinc may act as a neurotransmitter in the central nervous system by activation of the GPR39 metabotropic receptors. In the present study, we investigated whether GPR39 knockout would cause depressive-like and/or anxiety-like behavior, as measured by the forced swim test, tail suspension test, and light/dark test. We also investigated whether lack of GPR39 would change levels of cAMP response element-binding protein (CREB),brain-derived neurotrophic factor (BDNF) and tropomyosin related kinase B (TrkB) protein in the hippocampus and frontal cortex of GPR39 knockout mice subjected to the forced swim test, as measured by Western-blot analysis. In this study, GPR39 knockout mice showed an increased immobility time in both the forced swim test and tail suspension test, indicating depressive-like behavior and displayed anxiety-like phenotype. GPR39 knockout mice had lower CREB and BDNF levels in the hippocampus, but not in the frontal cortex, which indicates region specificity for the impaired CREB/BDNF pathway (which is important in antidepressant response) in the absence of GPR39. There were no changes in TrkB protein in either structure. In the present study, we also investigated activity in the hypothalamus-pituitary-adrenal axis under both zinc- and GPR39-deficient conditions. Zinc-deficient mice had higher serum corticosterone levels and lower glucocorticoid receptor levels in the hippocampus and frontal cortex. There were no changes in the GPR39 knockout mice in comparison with the wild-type control mice, which does not support a role of GPR39 in hypothalamus-pituitary-adrenal axis regulation. The results of this study indicate the involvement of the GPR39 Zn(2+)-sensing receptor in the pathophysiology of depression with component of anxiety. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  10. PML-RARα stabilized by zinc in human acute promyelocytic leukemia NB4 cells.

    Science.gov (United States)

    Zhu, Bo; Wang, Jia-Yu; Zhou, Jun-Jie; Zhou, Feng; Cheng, Wei; Liu, Ying-Ting; Wang, Jie; Chen, Xiao; Chen, Dian-Hua; Luo, Lan; Hua, Zi-Chun

    2017-10-01

    Acute promyelocytic leukemia (APL) is characterized and driven by the promyelocytic leukemia protein-retinoic acid receptor alpha (PML-RARα) fusion gene. Previous studies have highlighted the importance of PML-RARα degradation in the treatment against APL. Considering the presence of two zinc fingers in the PML-RARα fusion protein, we explored the function of zinc homeostasis in maintaining PML-RARα stability. We demonstrated for the first time that zinc depletion by its chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) triggered PML-RARα degradation in NB4 APL cells via the proteasome pathway rather than the autophagy-lysosomal pathway. In contrast, autophagy protected TPEN-mediated PML-RARα degradation in NB4 APL cells. We further demonstrated that crosstalk between zinc homeostasis and nitric oxide pathway played a key role in maintaining PML-RARα stability in NB4 APL cells. These results demonstrate that zinc homeostasis is vital for maintaining PML-RARα stability, and zinc depletion by TPEN may be useful as a potential strategy to trigger PML-RARα degradation in APL cells. We also found that TPEN triggered apoptosis of NB4 APL cells in a time-dependent manner. The relationship between PML-RARα degradation and apoptosis triggered by TPEN deserves further study. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Compression and flexural properties of finger jointed mango wood sections

    OpenAIRE

    Kumar, V.S Kishan; Sharma, C.M; Gupta, Sachin

    2014-01-01

    In this paper, an attempt was made to assess the effectiveness of finger jointing in utilising mango wood sections for various end uses like furniture. The study was based on the estimation of Modulus of elasticity and Modulus of rupture under static bending and Maximum Crushing Stress and Modulus of elasticity under compression parallel to grain of finger jointed sections and comparing them with the values measured for clear wood sections from the same lot. For joining the sections, the Poly...

  12. Number magnitude to finger mapping is disembodied and topological.

    Science.gov (United States)

    Plaisier, Myrthe A; Smeets, Jeroen B J

    2011-03-01

    It has been shown that humans associate fingers with numbers because finger counting strategies interact with numerical judgements. At the same time, there is evidence that there is a relation between number magnitude and space as small to large numbers seem to be represented from left to right. In the present study, we investigated whether number magnitude to finger mapping is embodied (related to the order of fingers on the hand) or disembodied (spatial). We let healthy human volunteers name random numbers between 1 and 30, while simultaneously tapping a random finger. Either the hands were placed directly next to each other, 30 cm apart, or the hands were crossed such that the left hand was on the right side of the body mid-line. The results show that naming a smaller number than the previous one was associated with tapping a finger to the left of the previously tapped finger. This shows that there is a spatial (disembodied) mapping between number magnitude and fingers. Furthermore, we show that this mapping is topological rather than metrically scaled.

  13. Saffman-Taylor fingers with kinetic undercooling

    KAUST Repository

    Gardiner, Bennett P. J.

    2015-02-23

    © 2015 American Physical Society. The mathematical model of a steadily propagating Saffman-Taylor finger in a Hele-Shaw channel has applications to two-dimensional interacting streamer discharges which are aligned in a periodic array. In the streamer context, the relevant regularization on the interface is not provided by surface tension but instead has been postulated to involve a mechanism equivalent to kinetic undercooling, which acts to penalize high velocities and prevent blow-up of the unregularized solution. Previous asymptotic results for the Hele-Shaw finger problem with kinetic undercooling suggest that for a given value of the kinetic undercooling parameter, there is a discrete set of possible finger shapes, each analytic at the nose and occupying a different fraction of the channel width. In the limit in which the kinetic undercooling parameter vanishes, the fraction for each family approaches 1/2, suggesting that this "selection" of 1/2 by kinetic undercooling is qualitatively similar to the well-known analog with surface tension. We treat the numerical problem of computing these Saffman-Taylor fingers with kinetic undercooling, which turns out to be more subtle than the analog with surface tension, since kinetic undercooling permits finger shapes which are corner-free but not analytic. We provide numerical evidence for the selection mechanism by setting up a problem with both kinetic undercooling and surface tension and numerically taking the limit that the surface tension vanishes.

  14. Saffman-Taylor fingers with kinetic undercooling

    KAUST Repository

    Gardiner, Bennett P. J.; McCue, Scott W.; Dallaston, Michael C.; Moroney, Timothy J.

    2015-01-01

    © 2015 American Physical Society. The mathematical model of a steadily propagating Saffman-Taylor finger in a Hele-Shaw channel has applications to two-dimensional interacting streamer discharges which are aligned in a periodic array. In the streamer context, the relevant regularization on the interface is not provided by surface tension but instead has been postulated to involve a mechanism equivalent to kinetic undercooling, which acts to penalize high velocities and prevent blow-up of the unregularized solution. Previous asymptotic results for the Hele-Shaw finger problem with kinetic undercooling suggest that for a given value of the kinetic undercooling parameter, there is a discrete set of possible finger shapes, each analytic at the nose and occupying a different fraction of the channel width. In the limit in which the kinetic undercooling parameter vanishes, the fraction for each family approaches 1/2, suggesting that this "selection" of 1/2 by kinetic undercooling is qualitatively similar to the well-known analog with surface tension. We treat the numerical problem of computing these Saffman-Taylor fingers with kinetic undercooling, which turns out to be more subtle than the analog with surface tension, since kinetic undercooling permits finger shapes which are corner-free but not analytic. We provide numerical evidence for the selection mechanism by setting up a problem with both kinetic undercooling and surface tension and numerically taking the limit that the surface tension vanishes.

  15. Sequence Classification: 778660 [

    Lifescience Database Archive (English)

    Full Text Available Non-TMB Non-TMH Non-TMB Non-TMB Non-TMB Non-TMB >gi|17507815|ref|NP_491621.1| the gene is express...ed protein retains C2H2 zinc-finger at its N-terminal region. like (1G100) || http://www.ncbi.nlm.nih.gov/protein/17507815 ...

  16. Overexpression of the transporters AtZIP1 and AtMTP1 in cassava changes zinc accumulation and partitioning

    Directory of Open Access Journals (Sweden)

    Eliana eGaitan-Solis

    2015-07-01

    Full Text Available Zinc deficiency in humans is a serious problem worldwide with an estimated one third of populations at risk for insufficient zinc in diet which leads to impairment of cognitive abilities and immune system function. The goal of this research was to increase the bioavailable zinc in the edible portion of cassava roots to improve the overall zinc nutrition of populations that rely on cassava as a dietary staple. To increase zinc concentrations, two A. thaliana genes coding for ZIP1 and MTP1 were overexpressed with a tuber-specific or constitutive promoter. Eighteen transgenic events from four constructs, out of a total of 73 events generated, showed significantly higher zinc concentrations in the edible portion of the storage root compared to the non-transgenic controls. The zinc content in the transgenic lines ranged from 4 - 73 mg/Kg Dry Weight (DW as compared to the non-transgenic control which contained 8 mg/Kg. Striking changes in whole plant phenotype such as smaller plant size and chlorotic leaves were observed in transgenic lines that over accumulated zinc. In a confined field trial five transgenic events grown for 12 months showed a range of zinc concentrations from 18 – 217 mg/Kg DW. Although the overexpression of zinc transporters was successful in increasing the zinc concentrations in 25% of the transgenic lines generated, it also resulted in a decrease in plant and tuber size and overall yield due to what appears to be zinc deficiency in the aerial parts of the plant.

  17. Nanosized zero-valent iron as Fenton-like reagent for ultrasonic-assisted leaching of zinc from blast furnace sludge

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailov, Ivan, E-mail: ivan.mikhailov@misis.ru [National University of Science and Technology “MISiS”, 4 Leninskiy prospekt, Moscow, 119049 (Russian Federation); Komarov, Sergey [Tohoku University, 6-6-02 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8576 (Japan); Levina, Vera; Gusev, Alexander; Issi, Jean-Paul; Kuznetsov, Denis [National University of Science and Technology “MISiS”, 4 Leninskiy prospekt, Moscow, 119049 (Russian Federation)

    2017-01-05

    Highlights: • nZVI is used as Fenton-like reagent for activation of Zn leaching from the BFS. • nZVI has positive effect on kinetics of Zn leaching though with some loss of efficiency. • A complex ultrasonic-assisted method for BFS recycling is proposed. - Abstract: Ultrasonic-assisted sulphuric acid leaching combined with a Fenton-like process, utilizing nanoscale zero-valent iron (nZVI), was investigated to enhance the leaching of zinc from the blast furnace sludge (BFS). The leaching of iron (Fe) and zinc (Zn) from the sludge was investigated using Milli-Q water/BFS ratio of 10 and varying the concentration of hydrogen peroxide, sulphuric acid, the temperature, the input energy for ultrasound irradiation, and the presence or absence of nZVI as a Fenton reagent. The results showed that with 1 g/l addition of nZVI and 0.05 M of hydrogen peroxide, the kinetic rate of Zn leaching increased with a maximum dissolution degree of 80.2%, after 5 min treatment. In the absence of nZVI, the maximum dissolution degree of Zn was 99.2%, after 15 min treatment with 0.1 M of hydrogen peroxide. The rate of Zn leaching at several concentrations of hydrogen peroxide is accelerated in the presence of nZVI although a reduction in efficiency was observed. The loss of Fe was no more than 3%. On the basis of these results, the possible route for BFS recycling has been proposed (BFS slurry mixed with sulphuric acid and hydrogen peroxide is recirculated under ultrasonic irradiation then separated).

  18. Molecular dynamics simulation reveals insights into the mechanism of unfolding by the A130T/V mutations within the MID1 zinc-binding Bbox1 domain.

    Directory of Open Access Journals (Sweden)

    Yunjie Zhao

    Full Text Available The zinc-binding Bbox1 domain in protein MID1, a member of the TRIM family of proteins, facilitates the ubiquitination of the catalytic subunit of protein phosphatase 2A and alpha4, a protein regulator of PP2A. The natural mutation of residue A130 to a valine or threonine disrupts substrate recognition and catalysis. While NMR data revealed the A130T mutant Bbox1 domain failed to coordinate both structurally essential zinc ions and resulted in an unfolded structure, the unfolding mechanism is unknown. Principle component analysis revealed that residue A130 served as a hinge point between the structured β-strand-turn-β-strand (β-turn-β and the lasso-like loop sub-structures that constitute loop1 of the ββα-RING fold that the Bbox1 domain adopts. Backbone RMSD data indicate significant flexibility and departure from the native structure within the first 5 ns of the molecular dynamics (MD simulation for the A130V mutant (>6 Å and after 30 ns for A130T mutant (>6 Å. Overall RMSF values were higher for the mutant structures and showed increased flexibility around residues 125 and 155, regions with zinc-coordinating residues. Simulated pKa values of the sulfhydryl group of C142 located near A130 suggested an increased in value to ~9.0, paralleling the increase in the apparent dielectric constants for the small cavity near residue A130. Protonation of the sulfhydryl group would disrupt zinc-coordination, directly contributing to unfolding of the Bbox1. Together, the increased motion of residues of loop 1, which contains four of the six zinc-binding cysteine residues, and the increased pKa of C142 could destabilize the structure of the zinc-coordinating residues and contribute to the unfolding.

  19. Expression Profiling and Functional Implications of a Set of Zinc Finger Proteins, ZNF423, ZNF470, ZNF521, and ZNF780B, in Primary Osteoarthritic Articular Chondrocytes

    Directory of Open Access Journals (Sweden)

    Maria Mesuraca

    2014-01-01

    Full Text Available Articular chondrocytes are responsible for the maintenance of healthy articulations; indeed, dysregulation of their functions, including the production of matrix proteins and matrix-remodeling proteases, may result in fraying of the tissue and development of osteoarthritis (OA. To explore transcriptional mechanisms that contribute to the regulation of chondrocyte homeostasis and may be implicated in OA development, we compared the gene expression profile of a set of zinc finger proteins potentially linked to the control of chondrocyte differentiation and/or functions (ZNF423, ZNF470, ZNF521, and ZNF780B in chondrocytes from patients affected by OA and from subjects not affected by OA. This analysis highlighted a significantly lower expression of the transcript encoding ZNF423 in chondrocytes from OA, particularly in elderly patients. Interestingly, this decrease was mirrored by the similarly reduced expression of PPARγ, a known target of ZNF423 with anti-inflammatory and chondroprotective properties. The ZNF521 mRNA instead was abundant in all primary chondrocytes studied; the RNAi-mediated silencing of this gene significantly altered the COL2A/COL1 expression ratio, associated with the maintenance of the differentiated phenotype, in chondrocytes cultivated in alginate beads. These results suggest a role for ZNF423 and ZNF521 in the regulation of chondrocyte homeostasis and warrant further investigations to elucidate their mechanism of action.

  20. Perceiving fingers in single-digit arithmetic problems.

    Science.gov (United States)

    Berteletti, Ilaria; Booth, James R

    2015-01-01

    In this study, we investigate in children the neural underpinnings of finger representation and finger movement involved in single-digit arithmetic problems. Evidence suggests that finger representation and finger-based strategies play an important role in learning and understanding arithmetic. Because different operations rely on different networks, we compared activation for subtraction and multiplication problems in independently localized finger somatosensory and motor areas and tested whether activation was related to skill. Brain activations from children between 8 and 13 years of age revealed that only subtraction problems significantly activated finger motor areas, suggesting reliance on finger-based strategies. In addition, larger subtraction problems yielded greater somatosensory activation than smaller problems, suggesting a greater reliance on finger representation for larger numerical values. Interestingly, better performance in subtraction problems was associated with lower activation in the finger somatosensory area. Our results support the importance of fine-grained finger representation in arithmetical skill and are the first neurological evidence for a functional role of the somatosensory finger area in proficient arithmetical problem solving, in particular for those problems requiring quantity manipulation. From an educational perspective, these results encourage investigating whether different finger-based strategies facilitate arithmetical understanding and encourage educational practices aiming at integrating finger representation and finger-based strategies as a tool for instilling stronger numerical sense.

  1. From zinc selenate to zinc selenide nano structures synthesized by reduction process

    International Nuclear Information System (INIS)

    Hutagalung, S.D.; Eng, S.T.; Ahmad, Z.A.; Ishak Mat; Yussof Wahab

    2009-01-01

    One-dimensional nano structure materials are very attractive because of their electronic and optical properties depending on their size. It is well known that properties of material can be tuned by reducing size to nano scale because at the small sizes, that they behave differently with its bulk materials and the band gap will control by the size. The tunability of the band gap makes nano structured materials useful for many applications. As one of the wide band gaps semiconductor compounds, zinc selenide (ZnSe) nano structures (nanoparticles, nano wires, nano rods) have received much attention for the application in optoelectronic devices, such as blue laser diode, light emitting diodes, solar cells and IR optical windows. In this study, ZnSe nano structures have been synthesized by reduction process of zinc selenate using hydrazine hydrate (N 2 H 4 .2H 2 O). The reductive agent of hydrazine hydrate was added to the starting materials of zinc selenate were heat treated at 500 degree Celsius for 1 hour under argon flow to form one-dimensional nano structures. The SEM and TEM images show the formation of nano composite-like structure, which some small nano bar and nano pellets stick to the rod. The x-ray diffraction and elemental composition analysis confirm the formation of mixture zinc oxide and zinc selenide phases. (author)

  2. Magnetism in Sc-doped ZnO with zinc vacancies: A hybrid density functional and GGA + U approaches

    KAUST Repository

    Kanoun, Mohammed; Goumri-Said, Souraya; Schwingenschlö gl, Udo; Manchon, Aurelien

    2012-01-01

    We investigate the zinc vacancy effects on the electronic structures and magnetic properties of Sc-doped ZnO, by performing first-principles calculations within both GGA + U and Heyd-Scuseria-Ernzerhof hybrid functional methods. We find that Sc impurities stabilize considerably Zn vacancies. The electronic and magnetic analysis shows a half metallic ferromagnetic character with a total magnetic moment of 2.01 μ B. The magnetism mainly stems from the O 2p states around the Zn vacancies. Calculations with the hybrid density functional agree with the GGA + U results but give an accurate description of the electronic structure for pure ZnO and Sc-doped ZnO with Zn vacancies. © 2012 Elsevier B.V. All rights reserved.

  3. Magnetism in Sc-doped ZnO with zinc vacancies: A hybrid density functional and GGA + U approaches

    KAUST Repository

    Kanoun, Mohammed

    2012-04-01

    We investigate the zinc vacancy effects on the electronic structures and magnetic properties of Sc-doped ZnO, by performing first-principles calculations within both GGA + U and Heyd-Scuseria-Ernzerhof hybrid functional methods. We find that Sc impurities stabilize considerably Zn vacancies. The electronic and magnetic analysis shows a half metallic ferromagnetic character with a total magnetic moment of 2.01 μ B. The magnetism mainly stems from the O 2p states around the Zn vacancies. Calculations with the hybrid density functional agree with the GGA + U results but give an accurate description of the electronic structure for pure ZnO and Sc-doped ZnO with Zn vacancies. © 2012 Elsevier B.V. All rights reserved.

  4. Mesofluidic controlled robotic or prosthetic finger

    Science.gov (United States)

    Lind, Randall F; Jansen, John F; Love, Lonnie J

    2013-11-19

    A mesofluidic powered robotic and/or prosthetic finger joint includes a first finger section having at least one mesofluidic actuator in fluid communication with a first actuator, a second mesofluidic actuator in fluid communication with a second actuator and a second prosthetic finger section pivotally connected to the first finger section by a joint pivot, wherein the first actuator pivotally cooperates with the second finger to provide a first mechanical advantage relative to the joint point and wherein the second actuator pivotally cooperates with the second finger section to provide a second mechanical advantage relative to the joint point.

  5. Perceiving fingers in single-digit arithmetic problems

    Directory of Open Access Journals (Sweden)

    Ilaria eBerteletti

    2015-03-01

    Full Text Available In this study, we investigate in children the neural underpinnings of finger representation and finger movement involved in single-digit arithmetic problems. Evidence suggests that finger representation and finger-based strategies play an important role in learning and understanding arithmetic. Because different operations rely on different networks, we compared activation for subtraction and multiplication problems in independently localized finger somatosensory and motor areas and tested whether activation was related to skill. Brain activations from children between 8 and 13 years of age revealed that only subtraction problems significantly activated finger motor areas, suggesting reliance on finger-based strategies. In addition, larger subtraction problems yielded greater somatosensory activation than smaller problems, suggesting a greater reliance on finger representation for larger numerical values. Interestingly, better performance in subtraction problems was associated with lower activation in the finger somatosensory area. Our results support the importance of fine-grained finger representation in arithmetical skill and are the first neurological evidence for a functional role of the somatosensory finger area in proficient arithmetical problem solving, in particular for those problems requiring quantity manipulation. From an educational perspective, these results encourage investigating whether different finger-based strategies facilitate arithmetical understanding and encourage educational practices aiming at integrating finger representation and finger-based strategies as a tool for instilling stronger numerical sense.

  6. A Zinc-Finger-Family Transcription Factor, AbVf19, Is Required for the Induction of a Gene Subset Important for Virulence in Alternaria brassicicola

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Akhil [Univ. of Hawaii, Manoa, HI (United States); Ohm, Robin A. [USDOE Joint Genome Inst., Walnut Creek, CA (United States); Oxiles, Lindsay [Univ. of Hawaii, Manoa, HI (United States); Brooks, Fred [Univ. of Hawaii, Manoa, HI (United States); Lawrence, Christopher B. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Grigoriev, Igor V. [USDOE Joint Genome Inst., Walnut Creek, CA (United States); Cho, Yangrae [Univ. of Hawaii, Manoa, HI (United States)

    2011-10-26

    Alternaria brassicicola is a successful saprophyte and necrotrophic plant pathogen with a broad host range within the family Brassicaceae. It produces secondary metabolites that marginally affect virulence. Cell wall degrading enzymes (CDWE) have been considered important for pathogenesis but none of them individually have been identified as significant virulence factors in A. brassicicola. In this study, knockout mutants of a gene, AbVf19, were created and produced considerably smaller lesions than the wild type on inoculated host plants. The presence of tandem zinc-finger domains in the predicted amino acid sequence and nuclear localization of AbVf19- reporter protein suggested that it was a transcription factor. Gene expression comparisons using RNA-seq identified 74 genes being downregulated in the mutant during a late stage of infection. Among the 74 downregulated genes, 28 were putative CWDE genes. These were hydrolytic enzyme genes that composed a small fraction of genes within each family of cellulases, pectinases, cutinases, and proteinases. The mutants grew slower than the wild type on an axenic medium with pectin as a major carbon source. This study demonstrated the existence and the importance of a transcription factor that regulates a suite of genes that are important for decomposing and utilizing plant material during the late stage of plant infection.

  7. The Relative Contribution to Small Finger Abduction of the Ulnar Versus Radial Slip of the EDM: Implications for Tendon Transfers.

    Science.gov (United States)

    Akinleye, Sheriff D; Culbertson, Maya Deza; Cappelleti, Giacomo; Garofolo, Garret; Choueka, Jack

    2017-09-01

    The extensor digiti minimi (EDM) tendon is commonly divided into a radial slip (EDM-R) and an ulnar slip (EDM-U). To our knowledge, the degree to which each EDM slip concomitantly abducts the small finger with active extension has not been formally tested. This study sought to characterize the comparative contributions of finger abduction inherent to each slip of the EDM to observe the sequelae of active small finger extension following transfer of the contralateral slip. Eighteen fresh-frozen cadaveric hands were used in this study. Starting with the hand in resting position, a controlled traction of 10 N was applied to each slip of the EDM tendon. The range of small finger abduction with respect to the fixed ring finger was recorded utilizing infrared reflective markers tracked through the range of motion using a digital video camera. The mean abduction of the small finger when the radial slip of the EDM tendon was tested was 13.33° (95% confidence interval [CI]: 10.10°-16.55°), which was significantly different ( P ≤ .001) than small finger abduction produced by the ulnar slip of the EDM, with a mean of 23.72° (95% CI: 19.40°-28.04°). Given the fact that the ulnar slip of the EDM tendon is shown to be the major contributor of aberrant abduction with active small finger extension, as traction on this slip produces almost twice as much abduction as the radial slip, the EDM-U is the ideal donor graft with respect to tendon transfers of the EDM.

  8. Electrodeposition behavior of nickel and nickel-zinc alloys from the zinc chloride-1-ethyl-3-methylimidazolium chloride low temperature molten salt

    International Nuclear Information System (INIS)

    Gou Shiping; Sun, I.-W.

    2008-01-01

    The electrodeposition of nickel and nickel-zinc alloys was investigated at polycrystalline tungsten electrode in the zinc chloride-1-ethyl-3-methylimidazolium chloride molten salt. Although nickel(II) chloride dissolved easily into the pure chloride-rich 1-ethyl-3-methylimidazolium chloride ionic melt, metallic nickel could not be obtained by electrochemical reduction of this solution. The addition of zinc chloride to this solution shifted the reduction of nickel(II) to more positive potential making the electrodeposition of nickel possible. The electrodeposition of nickel, however, requires an overpotential driven nucleation process. Dense and compact nickel deposits with good adherence could be prepared by controlling the deposition potential. X-ray powder diffraction measurements indicated the presence of crystalline nickel deposits. Non-anomalous electrodeposition of nickel-zinc alloys was achieved through the underpotential deposition of zinc on the deposited nickel at a potential more negative than that of the deposition of nickel. X-ray powder diffraction and energy-dispersive spectrometry measurements of the electrodeposits indicated that the composition and the phase types of the nickel-zinc alloys are dependent on the deposition potential. For the Ni-Zn alloy deposits prepared by underpotential deposition of Zn on Ni, the Zn content in the Ni-Zn was always less than 50 atom%

  9. An Optimal Design of Driving Mechanism in a 1 Degree of Freedom (d.o.f. Anthropomorphic Finger

    Directory of Open Access Journals (Sweden)

    M. Ceccarelli

    2005-01-01

    Full Text Available Mechanisms can be used in finger design to obtain suitable actuation systems and to give stiff robust behavior in grasping tasks. The design of driving mechanisms for fingers has been attached at LARM in Cassino with the aim to obtain one degree of freedom actuation for an anthropomorphic finger. The dimensional design of a finger-driving mechanism has been formulated as a multi-objective optimization problem by using evaluation criteria for fundamental characteristics regarding with finger motion, grasping equilibrium and force transmission. The feasibility of the herein proposed optimum design procedure for a finger-driving mechanism has been tested by numerical examples that have been also used to enhance a prototype previously built at LARM in Cassino.

  10. Impact of Finger Type in Fingerprint Authentication

    Science.gov (United States)

    Gafurov, Davrondzhon; Bours, Patrick; Yang, Bian; Busch, Christoph

    Nowadays fingerprint verification system is the most widespread and accepted biometric technology that explores various features of the human fingers for this purpose. In general, every normal person has 10 fingers with different size. Although it is claimed that recognition performance with little fingers can be less accurate compared to other finger types, to our best knowledge, this has not been investigated yet. This paper presents our study on the topic of influence of the finger type into fingerprint recognition performance. For analysis we employ two fingerprint verification software packages (one public and one commercial). We conduct test on GUC100 multi sensor fingerprint database which contains fingerprint images of all 10 fingers from 100 subjects. Our analysis indeed confirms that performance with small fingers is less accurate than performance with the others fingers of the hand. It also appears that best performance is being obtained with thumb or index fingers. For example, performance deterioration from the best finger (i.e. index or thumb) to the worst fingers (i.e. small ones) can be in the range of 184%-1352%.

  11. Design and preliminary evaluation of the FINGER rehabilitation robot: controlling challenge and quantifying finger individuation during musical computer game play.

    Science.gov (United States)

    Taheri, Hossein; Rowe, Justin B; Gardner, David; Chan, Vicki; Gray, Kyle; Bower, Curtis; Reinkensmeyer, David J; Wolbrecht, Eric T

    2014-02-04

    This paper describes the design and preliminary testing of FINGER (Finger Individuating Grasp Exercise Robot), a device for assisting in finger rehabilitation after neurologic injury. We developed FINGER to assist stroke patients in moving their fingers individually in a naturalistic curling motion while playing a game similar to Guitar Hero. The goal was to make FINGER capable of assisting with motions where precise timing is important. FINGER consists of a pair of stacked single degree-of-freedom 8-bar mechanisms, one for the index and one for the middle finger. Each 8-bar mechanism was designed to control the angle and position of the proximal phalanx and the position of the middle phalanx. Target positions for the mechanism optimization were determined from trajectory data collected from 7 healthy subjects using color-based motion capture. The resulting robotic device was built to accommodate multiple finger sizes and finger-to-finger widths. For initial evaluation, we asked individuals with a stroke (n = 16) and without impairment (n = 4) to play a game similar to Guitar Hero while connected to FINGER. Precision design, low friction bearings, and separate high speed linear actuators allowed FINGER to individually actuate the fingers with a high bandwidth of control (-3 dB at approximately 8 Hz). During the tests, we were able to modulate the subject's success rate at the game by automatically adjusting the controller gains of FINGER. We also used FINGER to measure subjects' effort and finger individuation while playing the game. Test results demonstrate the ability of FINGER to motivate subjects with an engaging game environment that challenges individuated control of the fingers, automatically control assistance levels, and quantify finger individuation after stroke.

  12. 1 SUPPLEMENTARY INFORMATION A novel zinc(II) complex ...

    Indian Academy of Sciences (India)

    BİLGİSAYAR

    1. SUPPLEMENTARY INFORMATION. A novel zinc(II) complex containing square pyramidal, octahedral and tetrahedral geometries on the same polymeric chain constructed from pyrazine-2,3-dicarboxylic acid and 1-vinylimidazole. HAKAN YILMAZ* and OMER ANDAC. Department of Chemistry, Ondokuz Mayis University, ...

  13. [When doors slam, fingers jam!].

    Science.gov (United States)

    Claudet, I; Toubal, K; Carnet, C; Rekhroukh, H; Zelmat, B; Debuisson, C; Cahuzac, J-P

    2007-08-01

    Epidemiological analysis in a universitary paediatric emergency unit of children admitted after accidental injuries resulting from fingers crushed in a door. Prospective, descriptive cohort study from September 6th, 2004 to July 1st, 2005 included all children admitted for finger injuries crushed in a non-automatic door. included accidents due to automatic doors, toy's or refrigerator doors, families who refused to participate to the study or families who had left the waiting area before medical examination. Collected data were patient and family characteristics, accident characteristics and its management. Three hundred and forty children affected by 427 digital lesions were included. The mean age was 5.5+/-3.8 years (range 4 months - 15.5 years). Male/female ratio was equal to 1.2: 1. Fifty-eight percent of patients belonged to families composed of 3 or more siblings. Ninety-three per cent of families came to hospital within the first 2 hours after the accident (mean delay 99+/-162 min, median range 54 minutes). Location of the accident was: domestic (62%, at home (64%)), at school (17%). Locations within the home were: the bedroom (33%), bathroom and toilets (21%). An adult was present in 75% of cases and responsible for the trauma in 25% of accidents, another child in 44%. The finger or fingers were trapped on the hinge side in 57% of patients. No specific safeguard devices were used by 94% of families. Among victims, 20% had several crushed digits; left and right hand were injured with an equal frequency. The commonest involved digits were: the middle finger (29%), the ring finger (23%). The nail plate was damaged in 60% of digital lesions, associated with a wound (50%), a distal phalanx fracture (P3) (12%). Six children had a partial or complete amputation of P3, 2 children a lesion of the extensor tendon, 1 child had a rupture of the external lateral ligament. Three percent of children required an admission to the paediatric orthopaedic surgery unit. Post

  14. The Geometry-Induced Superhydrophobic Property of Carpet-like Zinc Films

    International Nuclear Information System (INIS)

    Liang Li-Xing; Deng Yuan; Wang Yao

    2013-01-01

    Carpet-like zinc films with unique nanowires are fabricated by using a simple physical evaporation method. The definite morphologies of the films endow the superhydrophobic material with a contact angle of about 157.9°, and by additional modification of CF 3 (CF 2 ) 7 CH 2 CH 2 Si(OCH 3 ) 3 the water adhesive force could be tuned from 58.3 μN to 14.6 μN. In order to analyze the controllable adhesion of superhydrophobic Zn films, we study the microstructure and chemical compositions of the films by x-ray diffraction SEM, TEM, HRTEM and EDAX. Furthermore, a model based on the balance of micro-surface energy is proposed to illustrate the relationship of the geometry and wettability properties of the films. The model provides new insights into how to design-oriented microchannels and micro-protuberance on material surfaces, which is of benefit for controlling their ability of caught-collection in air bubbles and water-pinning collection

  15. Finger tips detection for two handed gesture recognition

    Science.gov (United States)

    Bhuyan, M. K.; Kar, Mithun Kumar; Neog, Debanga Raj

    2011-10-01

    In this paper, a novel algorithm is proposed for fingertips detection in view of two-handed static hand pose recognition. In our method, finger tips of both hands are detected after detecting hand regions by skin color-based segmentation. At first, the face is removed in the image by using Haar classifier and subsequently, the regions corresponding to the gesturing hands are isolated by a region labeling technique. Next, the key geometric features characterizing gesturing hands are extracted for two hands. Finally, for all possible/allowable finger movements, a probabilistic model is developed for pose recognition. Proposed method can be employed in a variety of applications like sign language recognition and human-robot-interactions etc.

  16. Arabidopsis CDS blastp result: AK288349 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288349 J090023P19 At2g46590.1 68415.m05811 Dof zinc finger protein DAG2 / Dof affecting germination... 2 (DAG2) identical to SP|Q9ZPY0 DOF zinc finger protein DAG2 (Dof affecting germination 2) {Arabidopsis thaliana} 1e-23 ...

  17. PREPARATION OF ZINC ENRICHED YEAST (SACCHAROMYCES CEREVISIAE BY CULTIVATION WITH DIFFERENT ZINC SALTS

    Directory of Open Access Journals (Sweden)

    Ľuboš Harangozo

    2012-02-01

    Full Text Available The yeast Saccharomyces cerevisiae is the best known microorganism and therefore widely used in many branches of industry. This study aims to investigate the accumulation of three inorganic zinc salts. Our research presents the ability of this yeast to absorb zinc from liquid medium and such enriched biomass use as a potential source of microelements in animal and/or human nutrition. It was found that the addition of different zinc forms, i.e. zinc nitrate, zinc sulphate and zinc chloride in fixed concentrations of 0, 25, 50 and 100 mg.100 ml-1 did not affect the amount of dry yeast biomass yielded, i.e. 1.0 – 1.2 g of yeast cells from 100 ml of cultivation medium, while higher presence of zinc solutions caused significantly lower yield of yeast biomass. The highest amount of zinc in yeast cells was achieved when added in the form of zinc nitrate in concentration of 200 mg.100 ml-1 YPD medium. The increment of intracellular zinc was up to 18.5 mg.g-1 of yeast biomass.

  18. Zinc promotes the death of hypoxic astrocytes by upregulating hypoxia-induced hypoxia-inducible factor-1alpha expression via poly(ADP-ribose) polymerase-1.

    Science.gov (United States)

    Pan, Rong; Chen, Chen; Liu, Wen-Lan; Liu, Ke-Jian

    2013-07-01

    Pathological release of excess zinc ions has been implicated in ischemic brain cell death. However, the underlying mechanisms remain to be elucidated. In stroke, ischemia-induced zinc release and hypoxia-inducible factor-1 (HIF-1) accumulation concurrently occur in the ischemic tissue. The present study tests the hypothesis that the presence of high intracellular zinc concentration is a major cause of modifications to PARP-1 and HIF-1α during hypoxia, which significantly contributes to cell death during ischemia. Primary cortical astrocytes and C8-D1A cells were exposed to different concentrations of zinc chloride. Cell death rate and protein expression of HIF-1 and Poly(ADP-ribose) polymerase (PARP)-1 were examined after 3-h hypoxic treatment. Although 3-h hypoxia or 100 μM of zinc alone did not induce noticeable cytotoxicity, their combination led to a dramatic increase in astrocytic cell death in a zinc-concentration-dependent manner. Exposure of astrocytes to hypoxia for 3 h remarkably increased the levels of intracellular zinc and HIF-1α protein, which was further augmented by added exogenous zinc. Notably, HIF-1α knockdown blocked zinc-induced astrocyte death. Moreover, knockdown of PARP-1, another important protein in the response of hypoxia, attenuated the overexpression of HIF-1α and reduced the cell death rate. Our studies show that zinc promotes hypoxic cell death through overexpression of the hypoxia response factor HIF-1α via the cell fate determine factor PARP-1 modification, which provides a novel mechanism for zinc-mediated ischemic brain injury. © 2013 John Wiley & Sons Ltd.

  19. Non-invasive determination of the irradiation dose in fingers using low-frequency EPR

    International Nuclear Information System (INIS)

    Zdravkova, M; Crokart, N; Trompier, F; Beghein, N; Gallez, B; Debuyst, R

    2004-01-01

    Several reports in the literature have described the effects of radiation in workers who exposed their fingers to intense radioactive sources. The radiation injuries occurring after local exposure to a high dose (20 to 100 Gy) could lead to the need for amputation. Follow-up of victims needs to be more rational with a precise knowledge of the irradiated area that risks tissue degradation and necrosis. It has been described previously that X-band electron paramagnetic resonance (EPR) spectroscopy could be used to assess the dose in irradiated amputated fingers. Here, we propose the use of low-frequency EPR spectroscopy to evaluate non-invasively the absorbed dose. Low-frequency microwaves are indeed less absorbed by water and penetrate more deeply into living material (∼10 mm in tissues using 1 GHz spectrometers). This work presents preliminary results obtained with baboon and human fingers compared with human dry phalanxes placed inside a surface-coil resonator. The EPR signal increased linearly with the dose. The ratio of the slopes of the dry bone to whole finger linear regression lines was around 5. The detection limit achievable with the present spectrometer and resonator is around 60 Gy, which is well within the range of accidentally exposed fingers. It is likely that the detection limit could be improved in the future, thanks to further technical spectrometer and resonator developments as well as to appropriate spectrum deconvolution into native and dosimetric signals

  20. EMG finger movement classification based on ANFIS

    Science.gov (United States)

    Caesarendra, W.; Tjahjowidodo, T.; Nico, Y.; Wahyudati, S.; Nurhasanah, L.

    2018-04-01

    An increase number of people suffering from stroke has impact to the rapid development of finger hand exoskeleton to enable an automatic physical therapy. Prior to the development of finger exoskeleton, a research topic yet important i.e. machine learning of finger gestures classification is conducted. This paper presents a study on EMG signal classification of 5 finger gestures as a preliminary study toward the finger exoskeleton design and development in Indonesia. The EMG signals of 5 finger gestures were acquired using Myo EMG sensor. The EMG signal features were extracted and reduced using PCA. The ANFIS based learning is used to classify reduced features of 5 finger gestures. The result shows that the classification of finger gestures is less than the classification of 7 hand gestures.

  1. Fingers that change color

    Science.gov (United States)

    ... gov/ency/article/003249.htm Fingers that change color To use the sharing features on this page, please enable JavaScript. Fingers or toes may change color when they are exposed to cold temperatures or ...

  2. Viscous fingering of HCI through gastric mucin

    Science.gov (United States)

    Bhaskar, K. Ramakrishnan; Garik, Peter; Turner, Bradley S.; Bradley, James Douglas; Bansil, Rama; Stanley, H. Eugene; Lamont, J. Thomas

    1992-12-01

    THE HCI in the mammalian stomach is concentrated enough to digest the stomach itself, yet the gastric epithelium remains undamaged. One protective factor is gastric mucus, which forms a protective layer over the surface epithelium1-4 and acts as a diffusion barrier5,6 Bicarbonate ions secreted by the gastric epithelium7 are trapped in the mucus gel, establishing a gradient from pH 1-2 at the lumen to pH 6-7 at the cell surface8-10. How does HCI, secreted at the base of gastric glands by parietal cells, traverse the mucus layer without acidifying it? Here we demonstrate that injection of HCI through solutions of pig gastric mucin produces viscous fingering patterns11-18 dependent on pH, mucin concentration and acid flow rate. Above pH 4, discrete fingers are observed, whereas below pH 4, HCI neither penetrates the mucin solution nor forms fingers. Our in vitro results suggest that HCI secreted by the gastric gland can penetrate the mucus gel layer (pH 5-7) through narrow fingers, whereas HC1 in the lumen (pH 2) is prevented from diffusing back to the epithelium by the high viscosity of gastric mucus gel on the luminal side.

  3. Half-metallic ferromagnetism with low magnetic moment in zinc-blende TiBi from first-principles calculations

    International Nuclear Information System (INIS)

    Chen, Zhi-Yuan; Xu, Bin; Gao, G.Y.

    2013-01-01

    The structural, electronic and magnetic properties of zinc-blende TiBi are investigated by using the first-principles full-potential linearized augmented plane-wave method. It is found that zinc-blende TiBi exhibits half-metallic ferromagnetism with the energy gap of 1.39 eV in the minority-spin channel. The calculated total magnetic moment of 1.00 µ B per formula unit mainly originates from the Ti atom. We also show that the half-metallicity of zinc-blende TiBi can be maintained up to 3% compression and 5% expansion of lattice constant with respect to the equilibrium lattice, and zinc-blende TiBi is still half-metallic when the spin–orbit coupling is considered. The robust half-metallicity and low magnetic moment make zinc-blende TiBi a potential candidate for spintronic applications. - Highlights: • Half-metallic ferromagnetism in zinc-blende TiBi. • Zinc-blende TiBi has low magnetic moment of 1.00 µ B /f.u. • Spin–orbit coupling does not destroy the half-metallicity of zinc-blende TiBi

  4. Evaluation of finger millet incorporated noodles for nutritive value and glycemic index.

    Science.gov (United States)

    Shukla, Kamini; Srivastava, Sarita

    2014-03-01

    The present study was undertaken to develop finger millet incorporated noodles for diabetic patients. Finger millet variety VL-149 was taken. The finger millet flour and refined wheat flour (RWF) were evaluated for nutrient composition. The finger millet flour (FMF) was blended in various proportions (30 to 50%) in refined wheat flour and used for the preparation of noodles. Control consisted of RWF noodles. Sensory quality and nutrient composition of finger millet noodles was evaluated. The 30% finger millet incorporated noodles were selected best on the basis of sensory evaluation. Noodles in that proportion along with control were evaluated for glycemic response. Nutrient composition of noodles showed that 50% finger millet incorporated noodles contained highest amount of crude fat (1.15%), total ash (1.40%), crude fiber (1.28%), carbohydrate (78.54%), physiological energy (351.36 kcal), insoluble dietary fiber (5.45%), soluble dietary fiber (3.71%), iron (5.58%) and calcium (88.39%), respectively. However, control RWF noodles contained highest amount of starch (63.02%), amylose (8.72%) and amylopectin (54.29%). The glycemic index (GI) of 30% finger millet incorporated noodles (best selected by sensory evaluation) was observed significantly lower (45.13) than control noodles (62.59). It was found that finger millet flour incorporated noodles were found nutritious and showed hypoglycemic effect.

  5. U1 small nuclear RNA variants differentially form ribonucleoprotein particles in vitro.

    Science.gov (United States)

    Somarelli, Jason A; Mesa, Annia; Rodriguez, Carol E; Sharma, Shalini; Herrera, Rene J

    2014-04-25

    The U1 small nuclear (sn)RNA participates in splicing of pre-mRNAs by recognizing and binding to 5' splice sites at exon/intron boundaries. U1 snRNAs associate with 5' splice sites in the form of ribonucleoprotein particles (snRNPs) that are comprised of the U1 snRNA and 10 core components, including U1A, U1-70K, U1C and the 'Smith antigen', or Sm, heptamer. The U1 snRNA is highly conserved across a wide range of taxa; however, a number of reports have identified the presence of expressed U1-like snRNAs in multiple species, including humans. While numerous U1-like molecules have been shown to be expressed, it is unclear whether these variant snRNAs have the capacity to form snRNPs and participate in splicing. The purpose of the present study was to further characterize biochemically the ability of previously identified human U1-like variants to form snRNPs and bind to U1 snRNP proteins. A bioinformatics analysis provided support for the existence of multiple expressed variants. In vitro gel shift assays, competition assays, and immunoprecipitations (IPs) revealed that the variants formed high molecular weight assemblies to varying degrees and associated with core U1 snRNP proteins to a lesser extent than the canonical U1 snRNA. Together, these data suggest that the human U1 snRNA variants analyzed here are unable to efficiently bind U1 snRNP proteins. The current work provides additional biochemical insights into the ability of the variants to assemble into snRNPs. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Role of Bmznf-2, a Bombyx mori CCCH zinc finger gene, in masculinisation and differential splicing of Bmtra-2.

    Science.gov (United States)

    Gopinath, Gajula; Arunkumar, Kallare P; Mita, Kazuei; Nagaraju, Javaregowda

    2016-08-01

    Deciphering the regulatory factors involved in Bombyx mori sex determination has been a puzzle, challenging researchers for nearly a century now. The pre-mRNA of B. mori doublesex (Bmdsx), a master regulator gene of sexual differentiation, is differentially spliced, producing Bmdsxm and Bmdsxf transcripts in males and females respectively. The putative proteins encoded by these differential transcripts orchestrate antagonistic functions, which lead to sexual differentiation. A recent study in B. mori illustrated the role of a W-derived fem piRNA in conferring femaleness. In females, the fem piRNA was shown to suppress the activity of a Z-linked CCCH type zinc finger (znf) gene, Masculiniser (masc), which indirectly promotes the Bmdsxm type of splicing. In this study, we report a novel autosomal (Chr 25) CCCH type znf motif encoding gene Bmznf-2 as one of the potential factors in the Bmdsx sex specific differential splicing, and we also provide insights into its role in the alternative splicing of Bmtra2 by using ovary derived BmN cells. Over-expression of Bmznf-2 induced Bmdsxm type of splicing (masculinisation) with a correspondingly reduced expression of Bmdsxf type isoform in BmN cells. Further, the site-directed mutational studies targeting the tandem CCCH znf motifs revealed their indispensability in the observed phenotype of masculinisation. Additionally, the dual luciferase assays in BmN cells using 5' UTR region of the Bmznf-2 strongly implied the existence of a translational repression over this gene. From these findings, we propose Bmznf-2 to be one of the potential factors of masculinisation similar to Masc. From the growing number of Bmdsx splicing regulators, we assume that the sex determination cascade of B. mori is quite intricate in nature; hence, it has to be further investigated for its comprehensive understanding. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Detection of zinc translocation into apical dendrite of CA1 pyramidal neuron after electrical stimulation.

    Science.gov (United States)

    Suh, Sang Won

    2009-02-15

    Translocation of the endogenous cation zinc from presynaptic terminals to postsynaptic neurons after brain insult has been implicated as a potential neurotoxic event. Several studies have previously demonstrated that a brief electrical stimulation is sufficient to induce the translocation of zinc from presynaptic vesicles into the cytoplasm (soma) of postsynaptic neurons. In the present work I have extended those findings in three ways: (i) providing evidence that zinc translocation occurs into apical dendrites, (ii) presenting data that there is an apparent translocation into apical dendrites when only a zinc-containing synaptic input is stimulated, and (iii) presenting data that there is no zinc translocation into apical dendrite of ZnT3 KO mice following electrical stimulation. Hippocampal slices were preloaded with the "trappable" zinc fluorescent probe, Newport Green. After washout, a single apical dendrite in the stratum radiatum of hippocampal CA1 area was selected and focused on. Burst stimulation (100Hz, 500microA, 0.2ms, monopolar) was delivered to either the adjacent Schaffer-collateral inputs (zinc-containing) or to the adjacent temporo-ammonic inputs (zinc-free) to the CA1 dendrites. Stimulation of the Schaffer collaterals increased the dendritic fluorescence, which was blocked by TTX, low-Ca medium, or the extracellular zinc chelator, CaEDTA. Stimulation of the temporo-ammonic pathway caused no significant rise in the fluorescence. Genetic depletion of vesicular zinc by ZnT3 KO showed no stimulation-induced apical dendrite zinc rise. The present study provides evidence that synaptically released zinc translocates into postsynaptic neurons through the apical dendrites of CA1 pyramidal neurons during physiological synaptic activity.

  8. On the relationship between finger width, velocity, and fluxes in thermohaline convection

    Science.gov (United States)

    Sreenivas, K. R.; Singh, O. P.; Srinivasan, J.

    2009-02-01

    Double-diffusive finger convection occurs in many natural processes. The theories for double-diffusive phenomena that exist at present consider systems with linear stratification in temperature and salinity. The double-diffusive systems with step change in salinity and temperature are, however, not amenable to simple stability analysis. Hence factors that control the width of the finger, velocity, and fluxes in systems that have step change in temperature and salinity have not been understood so far. In this paper we provide new physical insight regarding factors that influence finger convection in two-layer double-diffusive system through two-dimensional numerical simulations. Simulations have been carried out for density stability ratios (Rρ) from 1.5 to 10. For each density stability ratio, the thermal Rayleigh number (RaT) has been systematically varied from 7×103 to 7×108. Results from these simulations show how finger width, velocity, and flux ratios in finger convection are interrelated and the influence of governing parameters such as density stability ratio and the thermal Rayleigh number. The width of the incipient fingers at the time of onset of instability has been shown to vary as RaT-1/3. Velocity in the finger varies as RaT1/3/Rρ. Results from simulation agree with the scale analysis presented in the paper. Our results demonstrate that wide fingers have lower velocities and flux ratios compared to those in narrow fingers. This result contradicts present notions about the relation between finger width and flux ratio. A counterflow heat-exchanger analogy is used in understanding the dependence of flux ratio on finger width and velocity.

  9. Novel SM-like Higgs decay into displaced heavy neutrino pairs in U(1){sup ′} models

    Energy Technology Data Exchange (ETDEWEB)

    Accomando, Elena [School of Physics and Astronomy, University of Southampton,Highfield, Southampton SO17 1BJ (United Kingdom); Rose, Luigi Delle; Moretti, Stefano [School of Physics and Astronomy, University of Southampton,Highfield, Southampton SO17 1BJ (United Kingdom); Particle Physics Department, Rutherford Appleton Laboratory,Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Olaiya, Emmanuel; Shepherd-Themistocleous, Claire H. [Particle Physics Department, Rutherford Appleton Laboratory,Chilton, Didcot, Oxon OX11 0QX (United Kingdom)

    2017-04-13

    We examine the observability of heavy neutrino (ν{sub h}) signatures of a U(1){sup ′} enlarged Standard Model (SM) encompassing three heavy Majorana neutrinos alongside the known light neutrino states at the the Large Hadron Collider (LHC). We show that heavy neutrinos can be rather long-lived particles producing distinctive displaced vertices that can be accessed in the CERN LHC detectors. We concentrate here on the gluon fusion production mechanism gg→H{sub 1,2}→ν{sub h}ν{sub h}, where H{sub 1} is the discovered SM-like Higgs and H{sub 2} is a heavier state, yielding displaced leptons following ν{sub h} decays into weak gauge bosons. Using data collected by the end of the LHC Run 2, these signatures would prove to be accessible with negligibly small background.

  10. AcEST: DK943548 [AcEST

    Lifescience Database Archive (English)

    Full Text Available astX Result : Swiss-Prot sp_hit_id Q9Y2K1 Definition sp|Q9Y2K1|ZBTB1_HUMAN Zinc finger and BTB domain-contai......done Score E Sequences producing significant alignments: (bits) Value sp|Q9Y2K1|ZBTB1_HUMAN Zinc finger a...6.3 sp|Q9DDT5|SPT5H_DANRE Transcription elongation factor SPT5 OS=Da... 29 8.2 >sp|Q9Y2K1|ZBTB1_HUMAN Zinc f

  11. Finger multibiometric cryptosystems: fusion strategy and template security

    Science.gov (United States)

    Peng, Jialiang; Li, Qiong; Abd El-Latif, Ahmed A.; Niu, Xiamu

    2014-03-01

    We address two critical issues in the design of a finger multibiometric system, i.e., fusion strategy and template security. First, three fusion strategies (feature-level, score-level, and decision-level fusions) with the corresponding template protection technique are proposed as the finger multibiometric cryptosystems to protect multiple finger biometric templates of fingerprint, finger vein, finger knuckle print, and finger shape modalities. Second, we theoretically analyze different fusion strategies for finger multibiometric cryptosystems with respect to their impact on security and recognition accuracy. Finally, the performance of finger multibiometric cryptosystems at different fusion levels is investigated on a merged finger multimodal biometric database. The comparative results suggest that the proposed finger multibiometric cryptosystem at feature-level fusion outperforms other approaches in terms of verification performance and template security.

  12. Synthesis and characterization of zinc oxide nanoparticles by laser ablation of zinc in liquid

    International Nuclear Information System (INIS)

    Thareja, R.K.; Shukla, Shobha

    2007-01-01

    We report formation of colloidal suspension of zinc oxide nanoparticles by pulsed laser ablation of a zinc metal target at room temperature in different liquid environment. We have used photoluminescence, atomic force microscopy and X-ray diffraction to characterize the nanoparticles. The sample ablated in deionized water showed the photoluminescence peak at 384 nm (3.23 eV), whereas peaks at 370 nm (3.35 eV) were observed for sample prepared in isopropanol. The use of water and isopropanol as a solvent yielded spherical nanoparticles of 14-20 nm while in acetone we found two types of particles, one spherical nanoparticles with sizes around 100 nm and another platelet-like structure of 1 μm in diameter and 40 nm in width. The absorption peak of samples prepared in deionized water and isopropanol are seen to be substantially blue shifted relative to that of the bulk zinc oxide due to the strong confinement effect. The technique offers an alternative for preparing the nanoparticles of active metal

  13. Optimization for Guitar Fingering on Single Notes

    Science.gov (United States)

    Itoh, Masaru; Hayashida, Takumi

    This paper presents an optimization method for guitar fingering. The fingering is to determine a unique combination of string, fret and finger corresponding to the note. The method aims to generate the best fingering pattern for guitar robots rather than beginners. Furthermore, it can be applied to any musical score on single notes. A fingering action can be decomposed into three motions, that is, a motion of press string, release string and move fretting hand. The cost for moving the hand is estimated on the basis of Manhattan distance which is the sum of distances along fret and string directions. The objective is to minimize the total fingering costs, subject to fret, string and finger constraints. As a sequence of notes on the score forms a line on time series, the optimization for guitar fingering can be resolved into a multistage decision problem. Dynamic programming is exceedingly effective to solve such a problem. A level concept is introduced into rendering states so as to make multiple DP solutions lead a unique one among the DP backward processes. For example, if two fingerings have the same value of cost at different states on a stage, then the low position would be taken precedence over the high position, and the index finger would be over the middle finger.

  14. Organically pillared layered zinc hydroxides

    International Nuclear Information System (INIS)

    Kongshaug, K.O.; Fjellvaag, Helmer

    2004-01-01

    The two organically pillared layered zinc hydroxides [Zn 2 (OH) 2 (ndc)], CPO-6, and [Zn 3 (OH) 4 (bpdc)], CPO-7, were obtained in hydrothermal reactions between 2,6-naphthalenedicarboxylic acid (ndc) and zinc nitrate (CPO-6) and 4,4'biphenyldicarboxylate (bpdc) and zinc nitrate (CPO-7), respectively. In CPO-6, the tetrahedral zinc atoms are connected by two μ 2 -OH groups and two carboxylate oxygen atoms, forming infinite layers extending parallel to the bc-plane. These layers are pillared by ndc to form a three-dimensional structure. In CPO-7, the zinc hydroxide layers are containing four-, five- and six coordinated zinc atoms, and the layers are built like stairways running along the [001] direction. Each step is composed of three infinite chains running in the [010] direction. Both crystal structures were solved from conventional single crystal data. Crystal data for CPO-6: Monoclinic space group P2 1 /c (No. 14), a=11.9703(7), b=7.8154(5), c=6.2428(4) A, β=90.816(2) deg., V=583.97(6) A 3 and Z=4. Crystal data for CPO-7: Monoclinic space group C2/c (No. 15), a=35.220(4), b=6.2658(8), c=14.8888(17) A, β=112.580(4) deg., V=3033.8(6) A 3 and Z=8. The compounds were further characterized by thermogravimetric- and chemical analysis

  15. Role of Rayleigh numbers on characteristics of double diffusive salt fingers

    Science.gov (United States)

    Rehman, F.; Singh, O. P.

    2018-05-01

    Double diffusion convection, driven by two constituents of the fluid with different molecular diffusivity, is widely applied in oceanography and large number of other fields like astrophysics, geology, chemistry and metallurgy. In case of ocean, heat (T) and salinity (S) are the two components with varying diffusivity, where heat diffuses hundred times faster than salt. Component (T) stabilizes the system whereas components (S) destabilizes the system with overall density remains stable and forms the rising and sinking fingers known as salt fingers. Recent observations suggest that salt finger characteristics such as growth rates, wavenumber, and fluxes are strongly depending on the Rayleigh numbers as major driving force. In this paper, we corroborate this observation with the help of experiments, numerical simulations and linear theory. An eigenvalue expression for growth rate is derived from the linearized governing equations with explicit dependence on Rayleigh numbers, density stability ratio, Prandtl number and diffusivity ratio. Expressions for fastest growing fingers are also derived as a function various non-dimensional parameter. The predicted results corroborate well with the data reported from the field measurements, experiments and numerical simulations.

  16. Transcriptome analysis of salinity responsiveness in contrasting genotypes of finger millet (Eleusine coracana L.) through RNA-sequencing.

    Science.gov (United States)

    Rahman, Hifzur; Jagadeeshselvam, N; Valarmathi, R; Sachin, B; Sasikala, R; Senthil, N; Sudhakar, D; Robin, S; Muthurajan, Raveendran

    2014-07-01

    Finger millet (Eleusine coracana L.) is a hardy cereal known for its superior level of tolerance against drought, salinity, diseases and its nutritional properties. In this study, attempts were made to unravel the physiological and molecular basis of salinity tolerance in two contrasting finger millet genotypes viz., CO 12 and Trichy 1. Physiological studies revealed that the tolerant genotype Trichy 1 had lower Na(+) to K(+) ratio in leaves and shoots, higher growth rate (osmotic tolerance) and ability to accumulate higher amount of total soluble sugar in leaves under salinity stress. We sequenced the salinity responsive leaf transcriptome of contrasting finger millet genotypes using IonProton platform and generated 27.91 million reads. Mapping and annotation of finger millet transcripts against rice gene models led to the identification of salinity responsive genes and genotype specific responses. Several functional groups of genes like transporters, transcription factors, genes involved in cell signaling, osmotic homeostasis and biosynthesis of compatible solutes were found to be highly up-regulated in the tolerant Trichy 1. Salinity stress inhibited photosynthetic capacity and photosynthesis related genes in the susceptible genotype CO 12. Several genes involved in cell growth and differentiation were found to be up-regulated in both the genotypes but more specifically in tolerant genotype. Genes involved in flavonoid biosynthesis were found to be down-regulated specifically in the salinity tolerant Trichy 1. This study provides a genome-wide transcriptional analysis of two finger millet genotypes differing in their level of salinity tolerance during a gradually progressing salinity stress under greenhouse conditions.

  17. Identification of the ``a'' Genome of Finger Millet Using Chloroplast DNA

    Science.gov (United States)

    Hilu, K. W.

    1988-01-01

    Finger millet (Eleusine corocana subsp. coracana), an important cereal in East Africa and India, is a tetraploid species with unknown genomic components. A recent cytogenetic study confirmed the direct origin of this millet from the tetraploid E. coracana subsp. africana but questioned Eleusine indica as a genomic donor. Chloroplast (ct) DNA sequence analysis using restriction fragment pattern was used to examine the phylogenetic relationships between E. coracana subsp. coracana (domesticated finger millet), E. coracana subspecies africana (wild finger millet), and E. indica. Eleusine tristachya was included since it is the only other annual diploid species in the genus with a basic chromosome number of x = 9 like finger millet. Eight of the ten restriction endonucleases used had 16 to over 30 restriction sites per genome and were informative. E. coracana subsp. coracana and subsp. africana and E. indica were identical in all the restriction sites surveyed, while the ct genome of E. tristachya differed consistently by at least one mutational event for each restriction enzyme surveyed. This random survey of the ct genomes of these species points out E. indica as one of the genome donors (maternal genome donor) of domesticated finger millet contrary to a previous cytogenetic study. The data also substantiate E. coracana subsp. africana as the progenitor of domesticated finger millet. The disparity between the cytogenetic and the molecular approaches is discussed in light of the problems associated with chromosome pairing and polyploidy. PMID:8608927

  18. Identification of the "A" genome of finger millet using chloroplast DNA.

    Science.gov (United States)

    Hilu, K W

    1988-01-01

    Finger millet (Eleusine corocana subsp. coracana), an important cereal in East Africa and India, is a tetraploid species with unknown genomic components. A recent cytogenetic study confirmed the direct origin of this millet from the tetraploid E. coracana subsp. africana but questioned Eleusine indica as a genomic donor. Chloroplast (ct) DNA sequence analysis using restriction fragment pattern was used to examine the phylogenetic relationships between E. coracana subsp. coracana (domesticated finger millet), E. coracana subspecies africana (wild finger millet), and E. indica. Eleusine tristachya was included since it is the only other annual diploid species in the genus with a basic chromosome number of x = 9 like finger millet. Eight of the ten restriction endonucleases used had 16 to over 30 restriction sites per genome and were informative. E. coracana subsp. coracana and subsp. africana and E. indica were identical in all the restriction sites surveyed, while the ct genome of E, tristachya differed consistently by at least one mutational event for each restriction enzyme surveyed. This random survey of the ct genomes of these species points out E. indica as one of the genome donors (maternal genome donor) of domesticated finger millet contrary to a previous cytogenetic study. The data also substantiate E. coracana subsp. africana as the progenitor of domesticated finger millet. The disparity between the cytogenetic and the molecular approaches is discussed in light of the problems associated with chromosome pairing and polyploidy.

  19. TaCHP: a wheat zinc finger protein gene down-regulated by abscisic acid and salinity stress plays a positive role in stress tolerance.

    Science.gov (United States)

    Li, Cuiling; Lv, Jian; Zhao, Xin; Ai, Xinghui; Zhu, Xinlei; Wang, Mengcheng; Zhao, Shuangyi; Xia, Guangmin

    2010-09-01

    The plant response to abiotic stresses involves both abscisic acid (ABA)-dependent and ABA-independent signaling pathways. Here we describe TaCHP, a CHP-rich (for cysteine, histidine, and proline rich) zinc finger protein family gene extracted from bread wheat (Triticum aestivum), is differentially expressed during abiotic stress between the salinity-sensitive cultivar Jinan 177 and its tolerant somatic hybrid introgression cultivar Shanrong No.3. TaCHP expressed in the roots of seedlings at the three-leaf stage, and the transcript localized within the cells of the root tip cortex and meristem. TaCHP transcript abundance was higher in Shanrong No.3 than in Jinan 177, but was reduced by the imposition of salinity or drought stress, as well as by the exogenous supply of ABA. When JN17, a salinity hypersensitive wheat cultivar, was engineered to overexpress TaCHP, its performance in the face of salinity stress was improved, and the ectopic expression of TaCHP in Arabidopsis (Arabidopsis thaliana) also improved the ability of salt tolerance. The expression level of a number of stress reporter genes (AtCBF3, AtDREB2A, AtABI2, and AtABI1) was raised in the transgenic lines in the presence of salinity stress, while that of AtMYB15, AtABA2, and AtAAO3 was reduced in its absence. The presence in the upstream region of the TaCHP open reading frame of the cis-elements ABRE, MYBRS, and MYCRS suggests that it is a component of the ABA-dependent and -independent signaling pathways involved in the plant response to abiotic stress. We suggest that TaCHP enhances stress tolerance via the promotion of CBF3 and DREB2A expression.

  20. Zinc content of selected tissues and taste perception in rats fed zinc deficient and zinc adequate rations

    International Nuclear Information System (INIS)

    Boeckner, L.S.; Kies, C.

    1986-01-01

    The objective of the study was to determine the effects of feeding zinc sufficient and zinc deficient rations on taste sensitivity and zinc contents of selected organs in rats. The 36 Sprague-Dawley male weanling rats were divided into 2 groups and fed zinc deficient or zinc adequate rations. The animals were subjected to 4 trial periods in which a choice of deionized distilled water or a solution of quinine sulfate at 1.28 x 10 -6 was given. A randomized schedule for rat sacrifice was used. No differences were found between zinc deficient and zinc adequate rats in taste preference aversion scores for quinine sulfate in the first three trial periods; however, in the last trial period rats in the zinc sufficient group drank somewhat less water containing quinine sulfate as a percentage of total water consumption than did rats fed the zinc deficient ration. Significantly higher zinc contents of kidney, brain and parotid salivary glands were seen in zinc adequate rats compared to zinc deficient rats at the end of the study. However, liver and tongue zinc levels were lower for both groups at the close of the study than were those of rats sacrificed at the beginning of the study

  1. Novel structural features in two ZHX homeodomains derived from a systematic study of single and multiple domains

    NARCIS (Netherlands)

    Bird, L.E.; Ren, J.; Nettleship, J.E.; Folkers, G.E.|info:eu-repo/dai/nl/162277202; Owens, RJ; Stammers, D.K.

    2010-01-01

    Zhx1 to 3 (zinc-fingers and homeoboxes) form a set of paralogous genes encoding multi-domain proteins. ZHX proteins consist of two zinc fingers followed by five homeodomains. ZHXs have biological roles in cell cycle control by acting as co-repressors of the transcriptional regulator Nuclear Factor

  2. ZNF 197L is dispensable in mouse development

    African Journals Online (AJOL)

    Jane

    2011-07-27

    protein interactions (Kim et al., 1996; Friedman et .... A fragment of pU17 vector was used as a probe to detect the trapping ... RNA was isolated from adult mouse brain, heart, lung, .... Zinc finger peptides for the regulation of gene.

  3. Zinc finger nuclease mediated knockout of ADP-dependent glucokinase in cancer cell lines: effects on cell survival and mitochondrial oxidative metabolism.

    Directory of Open Access Journals (Sweden)

    Susan Richter

    Full Text Available Zinc finger nucleases (ZFN are powerful tools for editing genes in cells. Here we use ZFNs to interrogate the biological function of ADPGK, which encodes an ADP-dependent glucokinase (ADPGK, in human tumour cell lines. The hypothesis we tested is that ADPGK utilises ADP to phosphorylate glucose under conditions where ATP becomes limiting, such as hypoxia. We characterised two ZFN knockout clones in each of two lines (H460 and HCT116. All four clones had frameshift mutations in all alleles at the target site in exon 1 of ADPGK, and were ADPGK-null by immunoblotting. ADPGK knockout had little or no effect on cell proliferation, but compromised the ability of H460 cells to survive siRNA silencing of hexokinase-2 under oxic conditions, with clonogenic survival falling from 21±3% for the parental line to 6.4±0.8% (p = 0.002 and 4.3±0.8% (p = 0.001 for the two knockouts. A similar increased sensitivity to clonogenic cell killing was observed under anoxia. No such changes were found when ADPGK was knocked out in HCT116 cells, for which the parental line was less sensitive than H460 to anoxia and to hexokinase-2 silencing. While knockout of ADPGK in HCT116 cells caused few changes in global gene expression, knockout of ADPGK in H460 cells caused notable up-regulation of mRNAs encoding cell adhesion proteins. Surprisingly, we could discern no consistent effect on glycolysis as measured by glucose consumption or lactate formation under anoxia, or extracellular acidification rate (Seahorse XF analyser under oxic conditions in a variety of media. However, oxygen consumption rates were generally lower in the ADPGK knockouts, in some cases markedly so. Collectively, the results demonstrate that ADPGK can contribute to tumour cell survival under conditions of high glycolytic dependence, but the phenotype resulting from knockout of ADPGK is cell line dependent and appears to be unrelated to priming of glycolysis in these lines.

  4. Zinc finger nuclease mediated knockout of ADP-dependent glucokinase in cancer cell lines: effects on cell survival and mitochondrial oxidative metabolism.

    Science.gov (United States)

    Richter, Susan; Morrison, Shona; Connor, Tim; Su, Jiechuang; Print, Cristin G; Ronimus, Ron S; McGee, Sean L; Wilson, William R

    2013-01-01

    Zinc finger nucleases (ZFN) are powerful tools for editing genes in cells. Here we use ZFNs to interrogate the biological function of ADPGK, which encodes an ADP-dependent glucokinase (ADPGK), in human tumour cell lines. The hypothesis we tested is that ADPGK utilises ADP to phosphorylate glucose under conditions where ATP becomes limiting, such as hypoxia. We characterised two ZFN knockout clones in each of two lines (H460 and HCT116). All four clones had frameshift mutations in all alleles at the target site in exon 1 of ADPGK, and were ADPGK-null by immunoblotting. ADPGK knockout had little or no effect on cell proliferation, but compromised the ability of H460 cells to survive siRNA silencing of hexokinase-2 under oxic conditions, with clonogenic survival falling from 21±3% for the parental line to 6.4±0.8% (p = 0.002) and 4.3±0.8% (p = 0.001) for the two knockouts. A similar increased sensitivity to clonogenic cell killing was observed under anoxia. No such changes were found when ADPGK was knocked out in HCT116 cells, for which the parental line was less sensitive than H460 to anoxia and to hexokinase-2 silencing. While knockout of ADPGK in HCT116 cells caused few changes in global gene expression, knockout of ADPGK in H460 cells caused notable up-regulation of mRNAs encoding cell adhesion proteins. Surprisingly, we could discern no consistent effect on glycolysis as measured by glucose consumption or lactate formation under anoxia, or extracellular acidification rate (Seahorse XF analyser) under oxic conditions in a variety of media. However, oxygen consumption rates were generally lower in the ADPGK knockouts, in some cases markedly so. Collectively, the results demonstrate that ADPGK can contribute to tumour cell survival under conditions of high glycolytic dependence, but the phenotype resulting from knockout of ADPGK is cell line dependent and appears to be unrelated to priming of glycolysis in these lines.

  5. Finger tapping ability in healthy elderly and young adults.

    Science.gov (United States)

    Aoki, Tomoko; Fukuoka, Yoshiyuki

    2010-03-01

    The maximum isometric force production capacity of the fingers decreases with age. However, little information is available on age-related changes in dynamic motor capacity of individual fingers. The purpose of this study was to compare the dynamic motor function of individual fingers between elderly and young adults using rapid single-finger and double-finger tapping. Fourteen elderly and 14 young adults performed maximum frequency tapping by the index, middle, ring, or little finger (single-finger tapping) and with alternate movements of the index-middle, middle-ring, or ring-little finger-pair (double-finger tapping). The maximum pinch force between the thumb and each finger, tactile sensitivity of each fingertip, and time taken to complete a pegboard test were also measured. Compared with young subjects, the older subjects had significantly slower tapping rates in all fingers and finger-pairs in the tapping tasks. The age-related decline was also observed in the tactile sensitivities of all fingers and in the pegboard test. However, there was no group difference in the pinch force of any finger. The tapping rate of each finger did not correlate with the pinch force or tactile sensitivity for the corresponding finger in the elderly subjects. Maximum rate of finger tapping was lower in the elderly adults compared with the young adults. The decline of finger tapping ability in elderly adults seems to be less affected by their maximum force production capacities of the fingers as well as tactile sensitivities at the tips of the fingers.

  6. The genetic map of finger millet, Eleusine coracana.

    Science.gov (United States)

    Dida, Mathews M; Srinivasachary; Ramakrishnan, Sujatha; Bennetzen, Jeffrey L; Gale, Mike D; Devos, Katrien M

    2007-01-01

    Restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP), expressed-sequenced tag (EST), and simple sequence repeat (SSR) markers were used to generate a genetic map of the tetraploid finger millet (Eleusine coracana subsp. coracana) genome (2n = 4x = 36). Because levels of variation in finger millet are low, the map was generated in an inter-subspecific F(2) population from a cross between E. coracana subsp. coracana cv. Okhale-1 and its wild progenitor E. coracana subsp. africana acc. MD-20. Duplicated loci were used to identify homoeologous groups. Assignment of linkage groups to the A and B genome was done by comparing the hybridization patterns of probes in Okhale-1, MD-20, and Eleusine indica acc. MD-36. E. indica is the A genome donor to E. coracana. The maps span 721 cM on the A genome and 787 cM on the B genome and cover all 18 finger millet chromosomes, at least partially. To facilitate the use of marker-assisted selection in finger millet, a first set of 82 SSR markers was developed. The SSRs were identified in small-insert genomic libraries generated using methylation-sensitive restriction enzymes. Thirty-one of the SSRs were mapped. Application of the maps and markers in hybridization-based breeding programs will expedite the improvement of finger millet.

  7. AcEST: DK952414 [AcEST

    Lifescience Database Archive (English)

    Full Text Available CPKELPCGHRCKEMCHPGECPFNCNQKVKLRCPCKRIKKELQCNK 813 >sp|P40798|STC_DROME Protein shuttle craft...in 1... 190 4e-48 sp|Q6ZNB6|NFXL1_HUMAN NF-X1-type zinc finger protein NFXL1 OS=Ho... 58 4e-08 sp|P40798|STC..._DROME Protein shuttle craft OS=Drosophila melanoga... 54 6e-07 sp|A0JMY5|NFXL1_XENLA NF-X1-type zinc finger

  8. Finger replantation: surgical technique and indications.

    Science.gov (United States)

    Barbary, S; Dap, F; Dautel, G

    2013-12-01

    In this article, we discuss the surgical technique of finger replantation in detail, distinguishing particularities of technique in cases of thumb amputation, children fingertip replantation, ring finger avulsion, and very distal replantations. We emphasize the principles of bone shortening, the spare part concept, the special importance of nerve sutures and the use of vein graft in case of avulsion or crushing. However, even if finger replantation is now a routine procedure, a clear distinction should be made between revascularization and functional success. The indications for finger replantation are then detailed in the second part of this paper. The absolute indications for replantation are thumb, multiple fingers, transmetacarpal or hand, and any upper extremity amputation in a child whatever the level. Fingertip amputations distal to the insertion of the Flexor digitorum superficialis (FDS) are also a good indication. Other cases are more controversial because of the poor functional outcome, especially for the index finger, which is often functionally excluded. Copyright © 2013. Published by Elsevier SAS.

  9. Mössbauer and magnetic studies of nanocrystalline zinc ferrites synthesized by microwave combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Mohamed, E-mail: mamdouh-2000-2000@yahoo.com [Assiut University, Department of Physics (Egypt); Hassan, Azza Mohamed [Asuite University, Physics Department, Faculty of Sciences (Egypt); Ahmed, Mamdouh Abdel aal [Al Azhar University, Physics Department, Faculty of Science (Egypt); Zhu, Kaixin; Ganeshraja, Ayyakannu Sundaram; Wang, Junhu, E-mail: Wangjh@dicp.ac.cn [Chinese Academy Sciences, Mössbauer Effect Data Center & Laboratory of Catalysts and New Materials for Aerospace, Dalian Institute of Chemical Physics (China)

    2016-12-15

    Zinc ferrite nano-crystals were synthesized by a microwave assisted combustion route with varying the urea to metal nitrates (U/N) molar ratio The process takes only a few minutes to obtain Zinc ferrite powders. The Effect of U/N ratio on the obtained phases, particle size, magnetization and structural properties has been investigated. The specimens were characterized by XRD, Mössbauer and VSM techniques. The sample prepared with urea/metal nitrate ratio of 1/1 was a poorly crystalline phase with very small crystallite size. A second phase is also detected in the sample. The crystallite size increases while the second phase decrease with increasing the urea ratio. The saturation magnetization and coercivity of the as prepared nano-particles changed with the change of the U/N ratio. The powder with the highest U/N ratio showed the presence of an unusually high saturation magnetization of 16 emu/g at room temperature. The crystallinity of the as prepared powder was developed by annealing the samples at 700 {sup ∘}C and 900 {sup ∘}C. Both the saturation magnetization (Ms) and the remnant magnetization (Mr) were found to be highly dependent upon the annealing temperature. Mössbauer studies show magnetic ordering in the powder even at room temperature. The Mössbauer and the magnetic parameters of this fraction are different from the standard values for bulk zinc ferrite.

  10. Arabidopsis CDS blastp result: AK241364 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241364 J065152E11 At2g46590.1 68415.m05811 Dof zinc finger protein DAG2 / Dof affecting germination... 2 (DAG2) identical to SP|Q9ZPY0 DOF zinc finger protein DAG2 (Dof affecting germination 2) {Arabidopsis thaliana} 2e-20 ...

  11. Generic Automated Multi-function Finger Design

    Science.gov (United States)

    Honarpardaz, M.; Tarkian, M.; Sirkett, D.; Ölvander, J.; Feng, X.; Elf, J.; Sjögren, R.

    2016-11-01

    Multi-function fingers that are able to handle multiple workpieces are crucial in improvement of a robot workcell. Design automation of multi-function fingers is highly demanded by robot industries to overcome the current iterative, time consuming and complex manual design process. However, the existing approaches for the multi-function finger design automation are unable to entirely meet the robot industries’ need. This paper proposes a generic approach for design automation of multi-function fingers. The proposed approach completely automates the design process and requires no expert skill. In addition, this approach executes the design process much faster than the current manual process. To validate the approach, multi-function fingers are successfully designed for two case studies. Further, the results are discussed and benchmarked with existing approaches.

  12. Synthesis of Zinc Diethyldithiocarbamate (ZDEC) and Structure Characterization using Decoupling 1H NMR

    International Nuclear Information System (INIS)

    Sujarit, Jenjira; Phutdhawong, Weerachai

    2003-10-01

    A synthesis of zinc diethyldithiocarbamate (ZDEC) has been studied. The optimization mole ratio of the synthetic process was 2: 2: 2: 1 of diethylamine, carbondisulfide, sodium hydroxide, and zinc chloride. Characterization was carried out mainly by analyzing its spectroscopic properties especially decoupling 1 H NMR technique. ZDEC was obtained in 48.5% yield

  13. Uptake and partitioning of zinc in Lemnaceae.

    Science.gov (United States)

    Lahive, Elma; O'Callaghan, Michael J A; Jansen, Marcel A K; O'Halloran, John

    2011-11-01

    Macrophytes provide food and shelter for aquatic invertebrates and fish, while also acting as reservoirs for nutrients and trace elements. Zinc accumulation has been reported for various Lemnaceae species. However, comparative accumulation across species and the link between zinc accumulation and toxicity are poorly understood. Morphological distribution and cellular storage, in either bound or soluble form, are important for zinc tolerance. This study shows differences in the uptake and accumulation of zinc by three duckweed species. Landoltia punctata and Lemna minor generally accumulated more zinc than Lemna gibba. L. minor, but not L. gibba or L. punctata, accumulated greater concentrations of zinc in roots compared to fronds when exposed to high levels of zinc. The proportion of zinc stored in the bound form relative to the soluble-form was higher in L. minor. L. punctata accumulated greater concentrations of zinc in fronds compared to roots and increased the proportion of zinc it stored in the soluble form, when exposed to high zinc levels. L. gibba is the only species that significantly accumulated zinc at low concentrations, and was zinc-sensitive. Overall, internal zinc concentrations showed no consistent correlation with toxic effect. We conclude that relationships between zinc toxicity and uptake and accumulation are species specific reflecting, among others, zinc distribution and storage. Differences in zinc distribution and storage are also likely to have implications for zinc bioavailability and trophic mobility.

  14. Transition metal decorated graphene-like zinc oxide monolayer: A first-principles investigation

    Science.gov (United States)

    Lei, Jie; Xu, Ming-Chun; Hu, Shu-Jun

    2015-09-01

    Transition metal (TM) atoms have been extensively employed to decorate the two-dimensional materials, endowing them with promising physical properties. Here, we have studied the adsorption of TM atoms (V, Cr, Mn, Fe, and Co) on graphene-like zinc oxide monolayer (g-ZnO) and the substitution of Zn by TM using first-principles calculations to search for the most likely configurations when TM atoms are deposited on g-ZnO. We found that when a V atom is initially placed on the top of Zn atom, V will squeeze out Zn from the two-dimensional plane then substitute it, which is a no barrier substitution process. For heavier elements (Cr to Co), although the substitution configurations are more stable than the adsorption ones, there is an energy barrier for the adsorption-substitution transition with the height of tens to hundreds meV. Therefore, Cr to Co prefers to be adsorbed on the hollow site or the top of oxygen, which is further verified by the molecular dynamics simulations. The decoration of TM is revealed to be a promising approach in terms of tuning the work function of g-ZnO in a large energy range.

  15. New Finger Biometric Method Using Near Infrared Imaging

    Science.gov (United States)

    Lee, Eui Chul; Jung, Hyunwoo; Kim, Daeyeoul

    2011-01-01

    In this paper, we propose a new finger biometric method. Infrared finger images are first captured, and then feature extraction is performed using a modified Gaussian high-pass filter through binarization, local binary pattern (LBP), and local derivative pattern (LDP) methods. Infrared finger images include the multimodal features of finger veins and finger geometries. Instead of extracting each feature using different methods, the modified Gaussian high-pass filter is fully convolved. Therefore, the extracted binary patterns of finger images include the multimodal features of veins and finger geometries. Experimental results show that the proposed method has an error rate of 0.13%. PMID:22163741

  16. Testable flipped SU(5)xU(1){sub X} models

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Jing [Institute of Theoretical Science, University of Oregon, Eugene, OR 97403 (United States); Li Tianjun [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States) and Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100080 (China) and Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854 (United States)]. E-mail: tjli@physics.rutgers.edu; Nanopoulos, Dimitri V. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States); Astroparticle Physics Group, Houston Advanced Research Center (HARC), Mitchell Campus, Woodlands, TX 77381 (United States); Academy of Athens, Division of Natural Sciences, 28 Panepistimiou Avenue, Athens 10679 (Greece)

    2007-06-11

    The little hierarchy between the GUT scale and the string scale may give us some hints that can be tested at the LHC. To achieve string-scale gauge coupling unification, we introduce additional vector-like particles. We require that these vector-like particles be standard, form complete GUT multiplets, and have masses around the TeV scale or close to the string scale. Interestingly, only the flipped SU(5)xU(1){sub X} models can work elegantly. We consider all possible sets of vector-like particles with masses around the TeV scale. And we introduce vector-like particles with masses close to the string scale which can mimic the string-scale threshold corrections. We emphasize that all of these vector-like particles can be obtained in the interesting flipped SU(5)xU(1){sub X} string models from the four-dimensional free fermionic string construction. Assuming the low-energy supersymmetry, high-scale supersymmetry, and split supersymmetry, we show that the string-scale gauge coupling unification can indeed be achieved in the flipped SU(5)xU(1){sub X} models. These models can be tested at the LHC by observing simple sets of vector-like particles at the TeV scale. Moreover, we discuss a simple flipped SU(5)xU(1){sub X} model with string-scale gauge coupling unification and high-scale supersymmetry by introducing only one pair of the vector-like particles at the TeV scale, and we predict the corresponding Higgs boson masses. Also, we briefly comment on the string-scale gauge coupling unification in the model with low-energy supersymmetry by introducing only one pair of the vector-like particles at the intermediate scale. And we briefly comment on the mixings among the SM fermions and the corresponding extra vector-like particles.

  17. Current status of ultrasonography of the finger

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seun Ah; Kim, Baek Hyun [Dept. of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan (Korea, Republic of); Kim, Seon Jeong [Dept. of Radiology, Myongji Hospital, Seonam University College of Medicine, Goyang (Korea, Republic of); Kim, Ji Na [Dept. of Radiology, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon (Korea, Republic of); Park, Sun Young [Dept. of Radiology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang (Korea, Republic of); Choi, Kyung Hee [Incheon Baek Hospital, Incheon (Korea, Republic of)

    2016-03-15

    The recent development of advanced high-resolution transducers has enabled the fast, easy, and dynamic ultrasonographic evaluation of small, superficial structures such as the finger. In order to best exploit these advances, it is important to understand the normal anatomy and the basic pathologies of the finger, as exemplified by the following conditions involving the dorsal, volar, and lateral sections of the finger: sagittal band injuries, mallet finger, and Boutonnière deformity (dorsal aspect); flexor tendon tears, trigger finger, and volar plate injuries (volar aspect); gamekeeper’s thumb (Stener lesions) and other collateral ligament tears (lateral aspect); and other lesions. This review provides a basis for understanding the ultrasonography of the finger and will therefore be useful for radiologists.

  18. Current status of ultrasonography of the finger

    Directory of Open Access Journals (Sweden)

    Seun Ah Lee

    2016-04-01

    Full Text Available The recent development of advanced high-resolution transducers has enabled the fast, easy, and dynamic ultrasonographic evaluation of small, superficial structures such as the finger. In order to best exploit these advances, it is important to understand the normal anatomy and the basic pathologies of the finger, as exemplified by the following conditions involving the dorsal, volar, and lateral sections of the finger: sagittal band injuries, mallet finger, and Boutonnière deformity (dorsal aspect; flexor tendon tears, trigger finger, and volar plate injuries (volar aspect; gamekeeper’s thumb (Stener lesions and other collateral ligament tears (lateral aspect; and other lesions. This review provides a basis for understanding the ultrasonography of the finger and will therefore be useful for radiologists.

  19. Isolation and characterization of differentially expressed genes in ...

    African Journals Online (AJOL)

    Among them, six proteins (putative fatty acid oxygenase, heat shock sks2, PriA homologue, Ap-1 like transcription factor YAP7, mung bean seed albumin, and C2H2 Zinc finger domain protein) and one protein (peroxisomal biogenesis factor 6) showed increased expression levels at the fruiting process and the mycelial ...

  20. New Combination Therapies for Advanced Prostate Cancer Based on the Radiosensitizing Potential of 5-Azacytidine

    Science.gov (United States)

    2014-05-01

    the assistance of our Biometrics core facility to perform a statistical analysis of the data set presented in Appendix 9. We here discuss these...be maximal. The choice was made by the biometrics core to focus on the period between days 0 and 17. The analysis report is included as Appendix 10...zinc finger protein 552, zinc finger protein 587B, zinc finger protein 814, zinc finger protein 587 8000537 7.81 8.99 -2.28 0.047373 0.999947

  1. Zinc triggers microglial activation.

    Science.gov (United States)

    Kauppinen, Tiina M; Higashi, Youichirou; Suh, Sang Won; Escartin, Carole; Nagasawa, Kazuki; Swanson, Raymond A

    2008-05-28

    Microglia are resident immune cells of the CNS. When stimulated by infection, tissue injury, or other signals, microglia assume an activated, "ameboid" morphology and release matrix metalloproteinases, reactive oxygen species, and other proinflammatory factors. This innate immune response augments host defenses, but it can also contribute to neuronal death. Zinc is released by neurons under several conditions in which microglial activation occurs, and zinc chelators can reduce neuronal death in animal models of cerebral ischemia and neurodegenerative disorders. Here, we show that zinc directly triggers microglial activation. Microglia transfected with a nuclear factor-kappaB (NF-kappaB) reporter gene showed a severalfold increase in NF-kappaB activity in response to 30 microm zinc. Cultured mouse microglia exposed to 15-30 microm zinc increased nitric oxide production, increased F4/80 expression, altered cytokine expression, and assumed the activated morphology. Zinc-induced microglial activation was blocked by inhibiting NADPH oxidase, poly(ADP-ribose) polymerase-1 (PARP-1), or NF-kappaB activation. Zinc injected directly into mouse brain induced microglial activation in wild-type mice, but not in mice genetically lacking PARP-1 or NADPH oxidase activity. Endogenous zinc release, induced by cerebral ischemia-reperfusion, likewise induced a robust microglial reaction, and this reaction was suppressed by the zinc chelator CaEDTA. Together, these results suggest that extracellular zinc triggers microglial activation through the sequential activation of NADPH oxidase, PARP-1, and NF-kappaB. These findings identify a novel trigger for microglial activation and a previously unrecognized mechanism by which zinc may contribute to neurological disorders.

  2. The study and microstructure analysis of zinc and zinc oxide

    Czech Academy of Sciences Publication Activity Database

    Luptáková, Natália; Pešlová, F.; Kliber, J.

    2015-01-01

    Roč. 54, č. 1 (2015), s. 43-46 ISSN 0543-5846 Grant - others:KEGA(SK) KEGA 007 TnUAD-4/2013 Institutional support: RVO:68081723 Keywords : zinc * production of zinc oxide * microstructure * chemical composition * zinc slag Subject RIV: JG - Metal lurgy Impact factor: 0.959, year: 2014

  3. Insights using the molecular model of Lipoxygenase from Finger millet (Eleusine coracana (L.)).

    Science.gov (United States)

    Tiwari, Apoorv; Avashthi, Himanshu; Jha, Richa; Srivastava, Ambuj; Kumar Garg, Vijay; Wasudev Ramteke, Pramod; Kumar, Anil

    2016-01-01

    Lipoxygenase-1 (LOX-1) protein provides defense against pests and pathogens and its presence have been positively correlated with plant resistance against pathogens. Linoleate is a known substrate of lipoxygenase and it induces necrosis leading to the accumulation of isoflavonoid phytoalexins in plant leaves. Therefore, it is of interest to study the structural features of LOX-1 from Finger millet. However, the structure ofLOX-1 from Finger millet is not yet known. A homology model of LOX-1 from Finger millet is described. Domain architecture study suggested the presence of two domains namely PLAT (Phospho Lipid Acyl Transferase) and lipoxygenase. Molecular docking models of linoleate with lipoxygenase from finger millet, rice and sorghum are reported. The features of docked models showed that finger millet have higher pathogen resistance in comparison to other cereal crops. This data is useful for the molecular cloning of fulllength LOX-1 gene for validating its role in improving plant defense against pathogen infection and for various other biological processes.

  4. Low perinatal zinc status is not associated with the risk of type 1 diabetes in children

    DEFF Research Database (Denmark)

    Kyvsgaard, Julie N.; Overgaard, Anne J.; Jacobsen, Louise D.

    2017-01-01

    -based case-control study based on data from Danish Childhood Diabetes Register and the Danish Newborn Screening Biobank. Cases and controls were matched by birth year and month. Zinc status was analyzed in dried blood spots collected 5 to 7 days after birth. Logistic regression model was used to test...... the influence of zinc on risk of T1D. Linear regression modeling was used to examine the association between zinc status and covariates as well as age at onset. Zinc status was adjusted for HLA-DQB1 genotype, birth data and maternal age. RESULTS: Each doubling in perinatal zinc status was not associated with T1......D risk; odds ratio (OR) = 1.06 (95% confidence interval [CI] 0.84, 1.32) ( P  = 0.62), adjusted for birth year and season. This finding persisted after adjustment for possible confounders; OR = 1.01 (95% CI 0.77, 1.34) ( P  = 0.93). In none of the cohorts there were significant associations to age...

  5. The impact of tertiary wastewater treatment on copper and zinc complexation.

    Science.gov (United States)

    Constantino, C; Gardner, M; Comber, S D W; Scrimshaw, M D; Ellor, B

    2015-01-01

    Tightening quality standards for European waters has seen a move towards enhanced wastewater treatment technologies such as granulated organic carbon treatment and ozonation. Although these technologies are likely to be successful in degrading certain micro-organic contaminants, these may also destroy compounds which would otherwise complex and render metals significantly less toxic. This study examined the impact of enhanced tertiary treatment on the capacity of organic compounds within sewage effluents to complex copper and zinc. The data show that granulated organic carbon treatment removes a dissolved organic carbon (DOC) fraction that is unimportant to complexation such that no detrimental impact on complexation or metal bioavailability is likely to occur from this treatment type. High concentrations of ozone (>1 mg O3/mg DOC) are, however, likely to impact the complexation capacity for copper although this is unlikely to be important at the concentrations of copper typically found in effluent discharges or in rivers. Ozone treatment did not affect zinc complexation capacity. The complexation profiles of the sewage effluents show these to contain a category of non-humic ligand that appears unaffected by tertiary treatment and which displays a high affinity for zinc, suggesting these may substantially reduce the bioavailability of zinc in effluent discharges. The implication is that traditional metal bioavailability assessment approaches such as the biotic ligand model may overestimate zinc bioavailability in sewage effluents and effluent-impacted waters.

  6. Mobility of zinc in the Callovo-Oxfordian clay-stone

    Energy Technology Data Exchange (ETDEWEB)

    Savoye, S.; Fayette, A.; Beaucaire, C. [CEA, DEN, DPC, SECR, L3MR, F-91191 Gif s/Yvette (France); Lacour, J.-L. [CEA, DEN, DPC, SEARS, LANIE, F-91191 Gif s/Yvette (France)

    2013-07-01

    The diffusion of zinc was studied in the Callovo-Oxfordian clay-stone, which is a potential host rock for the retrievable disposal of high-level radioactive wastes. Two in-diffusion laboratory experiments were performed with initial zinc concentrations of 4 10{sup -5} mol L{sup -1} and 8 10{sup -6} mol L{sup -1} (resp.) for 35 days. The zinc rock profile was acquired using an original technique, the μLIBS, with a high resolution (10 μm), calibrated with the abrasive peeling method. The experimental data, i.e. Zn concentration monitoring in the source reservoir and Zn rock profile, were successfully reproduced using a chemical-transport code. In that code, the sorption of Zn was described by a multi-site ion-exchange model, with only the effective diffusion coefficient value being adjusted (De = 8 10{sup -11} m{sup 2} s{sup -1}). This De value, 2 times higher than that of tritiated water, indicates that zinc, like most cations, is also subject to enhanced diffusion in clay rocks. (authors)

  7. Characterization of the ZAT1p zinc transporter from Arabidopsis thaliana in microbial model organisms and reconstituted proteoliposomes.

    Science.gov (United States)

    Bloss, Tanja; Clemens, Stephan; Nies, Dietrich H

    2002-03-01

    The ZAT1p zinc transporter from Arabidopsis thaliana (L.) Heynh. is a member of the cation diffusion facilitator (CDF) protein family. When heterologously expressed in Escherichia coli, ZAT1p bound zinc in a metal blot. Binding of zinc occurred mainly to the hydrophilic amino acid region from H182 to H232. A ZAT1p/ZAT1p*Delta(M1-I25) protein mixture was purified and reconstituted into proteoliposomes. Uptake of zinc into the proteoliposomes did not require a proton gradient across the liposomal membrane. ZAT1p did not transport cobalt, and transported cadmium at only 1% of the zinc transport rate. ZAT1p functioned as an uptake system for 65Zn2+ in two strains of the Gram-negative bacterium Ralstonia metallidurans, which were different in their content of zinc-efflux systems. The ZAT1 gene did not rescue increased zinc sensitivity of a Delta ZRC1single-mutant strain or of a Delta ZRC1 Delta COT1 double-mutant strain of Saccharomyces cerevisiae, but ZAT1 complemented this phenotype in a Delta SpZRC1 mutant strain of Schizosaccharomyces pombe.

  8. Sulfidation of zinc plating sludge with Na2S for zinc resource recovery

    International Nuclear Information System (INIS)

    Kuchar, D.; Fukuta, T.; Onyango, M.S.; Matsuda, H.

    2006-01-01

    A high amount of zinc disposed in the landfill sites as a mixed-metal plating sludge represents a valuable zinc source. To recover zinc from the plating sludge, a sulfidation treatment is proposed in this study, while it is assumed that ZnS formed could be separated by flotation. The sulfidation treatment was conducted by contacting simulated zinc plating sludge with Na 2 S solution at S 2- to Zn 2+ molar ratio of 1.5 for a period of 1-48 h, while changing the solid to liquid (S:L) ratio from 0.25:50 to 1.00:50. The conversion of zinc compounds to ZnS was determined based on the consumption of sulfide ions. The reaction products formed by the sulfidation of zinc were identified by X-ray diffraction (XRD). As a result, it was found that the conversion of zinc compounds to ZnS increased with an increase in S:L ratio. A maximum conversion of 0.809 was obtained at an S:L ratio of 1.00:50 after 48 h. However, when the zinc sludge treated at S:L ratio of 1.00:50 for 48 h was subjected to XRD analyses, only ZnS was identified in the treated zinc sludge. The result suggested that the rest of zinc sludge remained unreacted inside the agglomerates of ZnS. The formation behavior of ZnS was predicted by Elovich equation, which was found to describe the system satisfactorily indicating the heterogeneous nature of the sludge

  9. Involvement of N-methyl-D-aspartate receptor subunits in zinc-mediated modification of CA1 long-term potentiation in the developing hippocampus.

    Science.gov (United States)

    Takeda, Atsushi; Itagaki, Kosuke; Ando, Masaki; Oku, Naoto

    2012-03-01

    Zinc is an endogenous N-methyl-D-aspartate (NMDA) receptor blocker. It is possible that zinc-mediated modification of hippocampal CA1 long-term potentiation (LTP) is linked to the expression of NMDA receptor subunits, which varies with postnatal development. In the present study, the effect of ZnCl(2) and CaEDTA, a membrane-impermeable zinc chelator, on CA1 LTP induction was examined in hippocampal slices from immature (3-week-old) and young (6-week-old) rats. Tetanus (10-100 Hz, 1 sec)-induced CA1 LTP was more greatly enhanced in 3-week-old rats. CA1 LTP was inhibited in the presence of 2-amino-5-phosphonovalerate (APV), an NMDA receptor antagonist, and CaEDTA in 3-week-old rats, as in the case of 6-week-old rats reported previously. In 3-week-old rats, on the other hand, 5 μM ZnCl(2) attenuated NMDA receptor-mediated EPSPs more than in 6-week-old rats and significantly attenuated CA1 LTP. Moreover, 5 μM ZnCl(2) significantly attenuated CA1 LTP in the presence of (2R,4S)-4-(3-phosphonopropyl)-2-piperidinecarboxylic acid (PPPA), an NR2A antagonist, in 3-week-old rats, but not that in the presence of ifenprodil, an NR2B antagonist, suggesting that zinc-mediated attenuation of CA1 LTP is associated with the preferential expression of NR2B subunit in 3-week-old rats. In 6-week-old rats, however, 5 μM ZnCl(2) significantly potentiated CA1 LTP and also CA1 LTP in the presence of PPPA. The present study demonstrates that endogenous zinc may participate in the induction of CA1 LTP. It is likely that the changes in expression of NMDA receptor subunits are involved in the zinc-mediated modification of CA1 LTP in the developing hippocampus. Copyright © 2011 Wiley Periodicals, Inc.

  10. Zinc species distribution in EDTA-extract residues of zinc-contaminated soil

    International Nuclear Information System (INIS)

    Chang, S.-H.; Wei, Y.-L.; Wang, H. Paul

    2007-01-01

    Soil sample from a site heavily contaminated with >10 wt.% zinc is sampled and extracted with aqueous solutions of ethylene diamine tetra-acetic acid (EDTA) that is a reagent frequently used to extract heavy metals in soil remediation. Three liquid/soil ratios (5/1, 20/1, and 100/1) were used in the extracting experiment. The molecular environment of the residual Zn in the EDTA-extract residues of zinc-contaminated soil is investigated with XANES technique. The results indicate that EDTA does not show considerable preference of chelating for any particular Zn species during the extraction. Zn species distribution in the sampled soil is found to resemble that in all EDTA-extract residues; Zn(OH) 2 is determined as the major zinc species (60-70%), seconded by organic zinc (21-26%) and zinc oxide (9-14%)

  11. Vector coherent state representations of SO5 contains SU2 + SU2 contains U1 + U1 and SO5 contains U1 + U1

    International Nuclear Information System (INIS)

    Pan Feng

    1991-01-01

    VCS representations of SO 5 contains SU 2 + SU 2 contains U 1 + U 1 and SO 5 contains U 1 + U 1 are discussed. Reduced matrix elements for SO 5 contains SU 2 + SU 2 are derived. The multiplicity of a weight for SO 5 is determined by using the K-matrix technique

  12. Reconstruction based finger-knuckle-print verification with score level adaptive binary fusion.

    Science.gov (United States)

    Gao, Guangwei; Zhang, Lei; Yang, Jian; Zhang, Lin; Zhang, David

    2013-12-01

    Recently, a new biometrics identifier, namely finger knuckle print (FKP), has been proposed for personal authentication with very interesting results. One of the advantages of FKP verification lies in its user friendliness in data collection. However, the user flexibility in positioning fingers also leads to a certain degree of pose variations in the collected query FKP images. The widely used Gabor filtering based competitive coding scheme is sensitive to such variations, resulting in many false rejections. We propose to alleviate this problem by reconstructing the query sample with a dictionary learned from the template samples in the gallery set. The reconstructed FKP image can reduce much the enlarged matching distance caused by finger pose variations; however, both the intra-class and inter-class distances will be reduced. We then propose a score level adaptive binary fusion rule to adaptively fuse the matching distances before and after reconstruction, aiming to reduce the false rejections without increasing much the false acceptances. Experimental results on the benchmark PolyU FKP database show that the proposed method significantly improves the FKP verification accuracy.

  13. From viscous fingers to wormholes - interactions between structures emerging in unstable growth

    Science.gov (United States)

    Budek, Agnieszka; Kwiatkowski, Kamil; Szymczak, Piotr

    2017-04-01

    Dissolution of porous and fractured rock can lead to instabilities, where long finger-like channels or „wormholes" are spontaneously formed, focusing the majority of the flow. Formation of those structures leads to a significant increase in permeability of the system, and is thus important in many engineering applications, e.g. in acidization during oil and gas recovery stimulation. In this communication, we analyse this process using two different numerical models (a network model and a Darcy scale one). We show that wormhole patterns depend strongly on the amount of soluble material in the system, as quantified by the permeability contrast κ between the dissolved and undissolved medium. For small and intermediate values of κ, a large number of relatively thin and strongly interacting channels are formed. The longer channels attract shorter ones, with loops being formed as a result. However, for large values of κ the pattern gets sparse with individual wormholes repelling each other. Interestingly, a similar succession of patterns can be observed in viscous fingering in a rectangular network of channels. In such a system, anisotropy of the network promotes the growth of long and thin fingers which behave similarly to wormholes. The attraction rate between growing fingers depends strongly on the viscosity ratio, I. The latter plays a role similar to that of permeability ratio for dissolution of porous material. To explain this behaviour, we have created a simple analytical model of interacting fingers, allowing us to quantify their mutual interaction as a function of finger lengths, distances between them and - most importantly - relative permeabilities. The theoretical predictions are in a good agreement with simulation data for both dissolution and viscous fingering processes.

  14. Transformation of zinc hydroxide chloride monohydrate to crystalline zinc oxide.

    Science.gov (United States)

    Moezzi, Amir; Cortie, Michael; McDonagh, Andrew

    2016-04-25

    Thermal decomposition of layered zinc hydroxide double salts provides an interesting alternative synthesis for particles of zinc oxide. Here, we examine the sequence of changes occurring as zinc hydroxide chloride monohydrate (Zn5(OH)8Cl2·H2O) is converted to crystalline ZnO by thermal decomposition. The specific surface area of the resultant ZnO measured by BET was 1.3 m(2) g(-1). A complicating and important factor in this process is that the thermal decomposition of zinc hydroxide chloride is also accompanied by the formation of volatile zinc-containing species under certain conditions. We show that this volatile compound is anhydrous ZnCl2 and its formation is moisture dependent. Therefore, control of atmospheric moisture is an important consideration that affects the overall efficiency of ZnO production by this process.

  15. When Does Return of Voluntary Finger Extension Occur Post-Stroke? A Prospective Cohort Study.

    Directory of Open Access Journals (Sweden)

    Caroline Winters

    Full Text Available Patients without voluntary finger extension early post-stroke are suggested to have a poor prognosis for regaining upper limb capacity at 6 months. Despite this poor prognosis, a number of patients do regain upper limb capacity. We aimed to determine the time window for return of voluntary finger extension during motor recovery and identify clinical characteristics of patients who, despite an initially poor prognosis, show upper limb capacity at 6 months post-stroke.Survival analysis was used to assess the time window for return of voluntary finger extension (Fugl-Meyer Assessment hand sub item finger extension≥1. A cut-off of ≥10 points on the Action Research Arm Test was used to define return of some upper limb capacity (i.e. ability to pick up a small object. Probabilities for regaining upper limb capacity at 6 months post-stroke were determined with multivariable logistic regression analysis using patient characteristics.45 of the 100 patients without voluntary finger extension at 8 ± 4 days post-stroke achieved an Action Research Arm Test score of ≥10 points at 6 months. The median time for regaining voluntary finger extension for these recoverers was 4 weeks (lower and upper percentile respectively 2 and 8 weeks. The median time to return of VFE was not reached for the whole group (N = 100. Patients who had moderate to good lower limb function (Motricity Index leg≥35 points, no visuospatial neglect (single-letter cancellation test asymmetry between the contralesional and ipsilesional sides of <2 omissions and sufficient somatosensory function (Erasmus MC modified Nottingham Sensory Assessment≥33 points had a 0.94 probability of regaining upper limb capacity at 6 months post-stroke.We recommend weekly monitoring of voluntary finger extension within the first 4 weeks post-stroke and preferably up to 8 weeks. Patients with paresis mainly restricted to the upper limb, no visuospatial neglect and sufficient somatosensory function are

  16. Can a Soft Robotic Probe Use Stiffness Control Like a Human Finger to Improve Efficacy of Haptic Perception?

    Science.gov (United States)

    Sornkarn, Nantachai; Nanayakkara, Thrishantha

    2017-01-01

    When humans are asked to palpate a soft tissue to locate a hard nodule, they regulate the stiffness, speed, and force of the finger during examination. If we understand the relationship between these behavioral variables and haptic information gain (transfer entropy) during manual probing, we can improve the efficacy of soft robotic probes for soft tissue palpation, such as in tumor localization in minimally invasive surgery. Here, we recorded the muscle co-contraction activity of the finger using EMG sensors to address the question as to whether joint stiffness control during manual palpation plays an important role in the haptic information gain. To address this question, we used a soft robotic probe with a controllable stiffness joint and a force sensor mounted at the base to represent the function of the tendon in a biological finger. Then, we trained a Markov chain using muscle co-contraction patterns of human subjects, and used it to control the stiffness of the soft robotic probe in the same soft tissue palpation task. The soft robotic experiments showed that haptic information gain about the depth of the hard nodule can be maximized by varying the internal stiffness of the soft probe.

  17. the strategy of finger use in children's addition Relationship with short-term memory, finger dexterity, and addition skills

    OpenAIRE

    Asakawa, Atsushi; Sugimura, Shinichiro

    2009-01-01

    Previous research has shown that the children's use of the fingers in additon changes with age. In this study, a part of data on the strategy of finger use by Asakawa and Sugimura (2009) was reanalyzed to clarify the relationship between, short-term memory, finger dexterity and addition skills. A two-way ANOVA showed a significant interaction between memory span and finger use. Examination of simple main effect indicated that significant effect of memory span at the group of the children who ...

  18. MRI of the wrist and finger joints in inflammatory joint diseases at 1-year interval: MRI features to predict bone erosions

    International Nuclear Information System (INIS)

    Savnik, Anette; Malmskov, Hanne; Graff, Lykke B.; Danneskiold-Samsoee, Bente; Bliddal, Henning; Thomsen, Henrik S.; Nielsen, Henrik; Boesen, Jens

    2002-01-01

    The aim of this study was to assess the ability of MRI determined synovial volumes and bone marrow oedema to predict progressions in bone erosions after 1 year in patients with different types of inflammatory joint diseases. Eighty-four patients underwent MRI, laboratory and clinical examination at baseline and 1 year later. Magnetic resonance imaging of the wrist and finger joints was performed in 22 patients with rheumatoid arthritis less than 3 years (group 1) who fulfilled the American College of Rheumatology (ACR) criteria for rheumatoid arthritis, 18 patients with reactive arthritis or psoriatic arthritis (group 2), 22 patients with more than 3 years duration of rheumatoid arthritis, who fulfilled the ACR criteria for rheumatoid arthritis (group 3), and 20 patients with arthralgia (group 4). The volume of the synovial membrane was outlined manually before and after gadodiamide injection on the T1-weighted sequences in the finger joints. Bones with marrow oedema were summed up in the wrist and fingers on short-tau inversion recovery sequences. These MRI features was compared with the number of bone erosions 1 year later. The MR images were scored independently under masked conditions. The synovial volumes in the finger joints assessed on pre-contrast images was highly predictive of bone erosions 1 year later in patients with rheumatoid arthritis (groups 1 and 3). The strongest individual predictor of bone erosions at 1-year follow-up was bone marrow oedema, if present at the wrist at baseline. Bone erosions on baseline MRI were in few cases reversible at follow-up MRI. The total synovial volume in the finger joints, and the presence of bone oedema in the wrist bones, seems to be predictive for the number of bone erosions 1 year later and may be used in screening. The importance of very early bone changes on MRI and the importance of the reversibility of these findings remain to be clarified. (orig.)

  19. Effects of Foliar Application of Nano Zinc Chelate and Zinc Sulfate on Zinc Content, Pigments and Photosynthetic Indices of Holy Basil (Ocimum sanctum(

    Directory of Open Access Journals (Sweden)

    Zohreh Moghimi pour

    2017-02-01

    Full Text Available Introduction: Holy basil is a perennial plant belongs to Lamiaceae family. The plant is a perennial and thrives well in the hot and humid climate. Its aerial parts have been in use for food, pharmaceuticals, cosmetics and perfumery industries. Leaves contain 0.5-1.5% essential oil and main oil components are eugenol, methyl eugenol, carvacrol, methyl chavicol and1,8-cineole. A balanced fertilization program with macro and micronutrients is very important in producing high quality yield. Zinc is involved in IAA production, chlorophyll biosynthesis, carbon assimilation, saccharids accumulation, reactive oxygen radicals scavenging and finally carbon utilization in volatile oil biosynthesis. Material and methods: In order to evaluate the effect on zinc foliar application on zinc content of leaves, photosynthetic indices and pigments of holy basil, an experiment was carried out in 2013 at a research farm of Horticultural Science, Shahid Chamran University (31°20'N latitude and 48°40'E longitude and 22.5 m mean sea level, Ahvaz (Iran, a region characterized by semi-dry climate. The experiment was arranged based on Randomized Complete Block Design (RCBD with six treatments and three replications. The treatments were nano zinc chelate (0, 0.5, 1 and 1.5 g.l-1 and zinc sulfate (1 and 1.5 g.l-1 fertilizers. Land preparation includes disking and the formation of raising beds (15cm high and 45cm wide across the top using a press-pan-type bed shaper. Holy basil seeds were sown on two rows on each bed, with 15 cm in-row and 40 cm between-row spacing. The plants were irrigated weekly as needed. Foliar application of zinc fertilizers was done at six-eight leaf stage and were repeated with interval 15 days until full bloom stage. Zinc content, stomata conductance (gs, CO2 under stomata (Ci, transpiration rate (E, net photosynthesis (Pn, light use efficiency (LUE, water use efficiency (WUE and also chlorophyll a, chlorophyll b, chlorophyll a+b and carotenoid

  20. Viscous fingering with permeability heterogeneity

    International Nuclear Information System (INIS)

    Tan, C.; Homsy, G.M.

    1992-01-01

    Viscous fingering in miscible displacements in the presence of permeability heterogeneities is studied using two-dimensional simulations. The heterogeneities are modeled as stationary random functions of space with finite correlation scale. Both the variance and scale of the heterogeneities are varied over modest ranges. It is found that the fingered zone grows linearly in time in a fashion analogous to that found in homogeneous media by Tan and Homsy [Phys. Fluids 31, 1330 (1988)], indicating a close coupling between viscous fingering on the one hand and flow through preferentially more permeable paths on the other. The growth rate of the mixing zone increases monotonically with the variance of the heterogeneity, as expected, but shows a maximum as the correlation scale is varied. The latter is explained as a ''resonance'' between the natural scale of fingers in homogeneous media and the correlation scale

  1. Torque control of underactuated tendon-driven fingers

    Directory of Open Access Journals (Sweden)

    M. E. Abdallah

    2011-02-01

    Full Text Available Given an underactuated tendon-driven finger, the finger posture is underdetermined and can move freely ("flop" in a region of slack tendons. This work shows that such an underactuated finger can be operated in tendon force control (rather than position control with effective performance. The force control eliminates the indeterminate slack while commanding a parameterized space of desired torques. The torque will either push the finger to the joint limits or wrap around an external object with variable torque – behavior that is sufficient for primarily gripping fingers. In addition, introducing asymmetric joint radii to the design allows the finger to command an expanded range of joint torques and to scan an expanded set of external surfaces. This study is motivated by the design and control of the secondary fingers of the NASA-GM R2 humanoid hand.

    This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010, 19 August 2010, Montréal, Canada.

  2. Effects of a Finger Tapping Fatiguing Task on M1-Intracortical Inhibition and Central Drive to the Muscle.

    Science.gov (United States)

    Madrid, Antonio; Madinabeitia-Mancebo, Elena; Cudeiro, Javier; Arias, Pablo

    2018-06-19

    The central drive to the muscle reduces when muscle force wanes during sustained MVC, and this is generally considered the neurophysiological footprint of central fatigue. The question is if force loss and the failure of central drive to the muscle are responsible mechanisms of fatigue induced by un-resisted repetitive movements. In various experimental blocks, we validated a 3D-printed hand-fixation system permitting the execution of finger-tapping and maximal voluntary contractions (MVC). Subsequently, we checked the suitability of the system to test the level of central drive to the muscle and developed an algorithm to test it at the MVC force plateau. Our main results show that the maximum rate of finger-tapping dropped at 30 s, while the excitability of inhibitory M1-intracortical circuits and corticospinal excitability increased (all by approximately 15%). Furthermore, values obtained immediately after finger-tapping showed that MVC force and the level of central drive to the muscle remained unchanged. Our data suggest that force and central drive to the muscle are not determinants of fatigue induced by short-lasting un-resisted repetitive finger movements, even in the presence of increased inhibition of the motor cortex. According to literature, this profile might be different in longer-lasting, more complex and/or resisted repetitive movements.

  3. Zinc status in HIV infected Ugandan children aged 1-5 years: a cross sectional baseline survey

    Directory of Open Access Journals (Sweden)

    Ndugwa Christopher M

    2010-09-01

    Full Text Available Abstract Background Low concentrations of serum zinc have been reported in HIV infected adults and are associated with disease progression and an increased risk of death. Few studies have been conducted in HIV infected children in Africa. We determined serum zinc levels and factors associated with zinc deficiency in HIV infected Ugandan children. Methods We measured the baseline zinc status of 247 children aged 1-5 years enrolled in a randomised trial for multiple micronutrient supplementation at paediatric HIV clinics in Uganda (http://ClinicalTrials.gov NCT00122941. Zinc status was determined using inductively coupled atomic emission spectrophotometry (ICP-AES. Clinical and laboratory characteristics were compared among zinc deficient (zinc Results Of the 247 children, 134 (54.3% had low serum zinc ( Conclusion Almost two thirds of HAART naïve and a third of HAART treated HIV infected children were zinc deficient. Increased access to HAART among HIV infected children living in Uganda might reduce the prevalence of zinc deficiency.

  4. Association between finger tapping, attention, memory, and cognitive diagnosis in elderly patients.

    Science.gov (United States)

    Rabinowitz, Israel; Lavner, Yizhar

    2014-08-01

    This study examined the association between spontaneous finger tapping and cognitive function, with a detailed analysis of the two main phases of finger tapping, the touch-phase and the off-phase. 170 elderly patients (83 men, 87 women; M age = 82.1 yr., SD = 6.2) underwent cognitive assessment including the Mini-Mental State Examination, a forward digit span test, and 15 sec. of finger tapping. Results indicated a significant increase in the length and variability of the finger-touch phase among participants with mild cognitive impairment or dementia compared to participants with no cognitive impairment, suggesting a relationship between finger tapping and attention, short-term memory, and cognitive diagnosis. Pattern classification analyses on the finger tapping parameters indicated a specificity of 0.91 and sensitivity of 0.52 for ruling out cognitive impairment.

  5. Fine structure study on low concentration zinc substituted hydroxyapatite nanoparticles

    International Nuclear Information System (INIS)

    Hu, Wei; Ma, Jun; Wang, Jianglin; Zhang, Shengmin

    2012-01-01

    The fine structure of zinc substituted hydroxyapatite was studied using experimental analysis and first-principles calculations. The synthetic hydroxyapatite nanoparticles containing low Zn concentration show rod-like morphology. The crystallite sizes and unit-cell volumes tended to decrease with the increased Zn concentration according to X-ray diffraction patterns. The Zn K-edge X-ray absorption spectra and fitting results suggest that the hydroxyapatite doped with 0.1 mole% zinc is different in the zinc coordination environments compared with that containing more zinc. The density function theory calculations were performed on zinc substituted hydroxyapatite. Two mechanisms included replacing calcium by zinc and inserting zinc along the hydroxyl column and were investigated, and the related substitution energies were calculated separately. It is found that the substitution energies are negative and lowest for inserting zinc between the two oxygen atoms along the hydroxyl column (c-axis). Combined with the spectral analysis, it is suggested that the inserting mechanism is favored for low concentration zinc substituted hydroxyapatite. Highlights: ► We investigate the fine structure of hydroxyapatite with low content of Zn. ► XANES spectra are similar but a little different at low zinc content. ► Zinc ions influence hydroxyapatite crystal formation and lattice parameters. ► Formation energies are calculated according to plane-wave density function theory. ► Low content of zinc prefers to locate at hydroxyl column in hydroxyapatite lattice.

  6. Phosphorylation of SAF-A/hnRNP-U Serine 59 by Polo-Like Kinase 1 Is Required for Mitosis.

    Science.gov (United States)

    Douglas, Pauline; Ye, Ruiqiong; Morrice, Nicholas; Britton, Sébastien; Trinkle-Mulcahy, Laura; Lees-Miller, Susan P

    2015-08-01

    Scaffold attachment factor A (SAF-A), also called heterogenous nuclear ribonuclear protein U (hnRNP-U), is phosphorylated on serine 59 by the DNA-dependent protein kinase (DNA-PK) in response to DNA damage. Since SAF-A, DNA-PK catalytic subunit (DNA-PKcs), and protein phosphatase 6 (PP6), which interacts with DNA-PKcs, have all been shown to have roles in mitosis, we asked whether DNA-PKcs phosphorylates SAF-A in mitosis. We show that SAF-A is phosphorylated on serine 59 in mitosis, that phosphorylation requires polo-like kinase 1 (PLK1) rather than DNA-PKcs, that SAF-A interacts with PLK1 in nocodazole-treated cells, and that serine 59 is dephosphorylated by protein phosphatase 2A (PP2A) in mitosis. Moreover, cells expressing SAF-A in which serine 59 is mutated to alanine have multiple characteristics of aberrant mitoses, including misaligned chromosomes, lagging chromosomes, polylobed nuclei, and delayed passage through mitosis. Our findings identify serine 59 of SAF-A as a new target of both PLK1 and PP2A in mitosis and reveal that both phosphorylation and dephosphorylation of SAF-A serine 59 by PLK1 and PP2A, respectively, are required for accurate and timely exit from mitosis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. The Relevance of the Colon to Zinc Nutrition

    Directory of Open Access Journals (Sweden)

    Geetha Lavaniya Gopalsamy

    2015-01-01

    Full Text Available Globally, zinc deficiency is widespread, despite decades of research highlighting its negative effects on health, and in particular upon child health in low-income countries. Apart from inadequate dietary intake of bioavailable zinc, other significant contributors to zinc deficiency include the excessive intestinal loss of endogenously secreted zinc and impairment in small intestinal absorptive function. Such changes are likely to occur in children suffering from environmental (or tropical enteropathy (EE—an almost universal condition among inhabitants of developing countries characterized by morphologic and functional changes in the small intestine. Changes to the proximal gut in environmental enteropathy will likely influence the nature and amount of zinc delivered into the large intestine. Consequently, we reviewed the current literature to determine if colonic absorption of endogenous or exogenous (dietary zinc could contribute to overall zinc nutriture. Whilst we found evidence that significant zinc absorption occurs in the rodent colon, and is favoured when microbially-fermentable carbohydrates (specifically resistant starch are consumed, it is unclear whether this process occur in humans and/or to what degree. Constraints in study design in the few available studies may well have masked a possible colonic contribution to zinc nutrition. Furthermore these few available human studies have failed to include the actual target population that would benefit, namely infants affected by EE where zinc delivery to the colon may be increased and who are also at risk of zinc deficiency. In conducting this review we have not been able to confirm a colonic contribution to zinc absorption in humans. However, given the observations in rodents and that feeding resistant starch to children is feasible, definitive studies utilising the dual stable isotope method in children with EE should be undertaken.

  8. Genomic Knockout of Endogenous Canine P-Glycoprotein in Wild-Type, Human P-Glycoprotein and Human BCRP Transfected MDCKII Cell Lines by Zinc Finger Nucleases.

    Science.gov (United States)

    Gartzke, Dominik; Delzer, Jürgen; Laplanche, Loic; Uchida, Yasuo; Hoshi, Yutaro; Tachikawa, Masanori; Terasaki, Tetsuya; Sydor, Jens; Fricker, Gert

    2015-06-01

    To investigate whether it is possible to specifically suppress the expression and function of endogenous canine P-glycoprotein (cPgp) in Madin-Darby canine kidney type II cells (MDCKII) transfected with hPGP and breast cancer resistance protein (hBCRP) by zinc finger nuclease (ZFN) producing sequence specific DNA double strand breaks. Wild-type, hPGP-transfected, and hBCRP-transfected MDCKII cells were transfected with ZFN targeting for cPgp. Net efflux ratios (NER) of Pgp and Bcrp substrates were determined by dividing efflux ratios (basal-to-apical / apical-to-basal) in over-expressing cell monolayers by those in wild-type ones. From ZFN-transfected cells, cell populations (ko-cells) showing knockout of cPgp were selected based on genotyping by PCR. qRT-PCR analysis showed the significant knock-downs of cPgp and interestingly also cMrp2 expressions. Specific knock-downs of protein expression for cPgp were shown by western blotting and quantitative targeted absolute proteomics. Endogenous canine Bcrp proteins were not detected. For PGP-transfected cells, NERs of 5 Pgp substrates in ko-cells were significantly greater than those in parental cells not transfected with ZFN. Similar result was obtained for BCRP-transfected cells with a dual Pgp and Bcrp substrate. Specific efflux mediated by hPGP or hBCRP can be determined with MDCKII cells where cPgp has been knocked out by ZFN.

  9. Speckle-type POZ (pox virus and zinc finger protein) protein gene deletion in ovarian cancer: Fluorescence in situ hybridization analysis of a tissue microarray.

    Science.gov (United States)

    Hu, Xiaoyu; Yang, Zhu; Zeng, Manman; Liu, Y I; Yang, Xiaotao; Li, Yanan; Li, X U; Yu, Qiubo

    2016-07-01

    The aim of the present study was to investigate the status of speckle-type POZ (pox virus and zinc finger protein) protein (SPOP) gene located on chromosome 17q21 in ovarian cancer (OC). The present study evaluated a tissue microarray, which contained 90 samples of ovarian cancer and 10 samples of normal ovarian tissue, using fluorescence in situ hybridization (FISH). FISH is a method where a SPOP-specific DNA red fluorescence probe was used for the experimental group and a centromere-specific DNA green fluorescence probe for chromosome 17 was used for the control group. The present study demonstrated that a deletion of the SPOP gene was observed in 52.27% (46/88) of the ovarian cancer tissues, but was not identified in normal ovarian tissues. Simultaneously, monosomy 17 was frequently identified in the ovarian cancer tissues, but not in the normal ovarian tissues. Furthermore, the present data revealed that the ovarian cancer histological subtype and grade were significantly associated with a deletion of the SPOP gene, which was assessed by the appearance of monosomy 17 in the ovarian cancer samples; the deletion of the SPOP gene was observed in a large proportion of serous epithelial ovarian cancer (41/61; 67.21%), particularly in grade 3 (31/37; 83.78%). In conclusion, deletion of the SPOP gene on chromosome 17 in ovarian cancer samples, which results from monosomy 17, indicates that the SPOP gene may serve as a tumor suppressor gene in ovarian cancer.

  10. Effects of HAb18G/CD147 knockout on hepatocellular carcinoma cells in vitro using a novel zinc-finger nuclease-targeted gene knockout approach.

    Science.gov (United States)

    Li, Hong-Wei; Yang, Xiang-Min; Tang, Juan; Wang, Shi-Jie; Chen, Zhi-Nan; Jiang, Jian-Li

    2015-03-01

    HAb18G/CD147 belongs to the immunoglobulin superfamily and predominantly functions as an inducer of matrix metalloproteinase secretion for tumor invasion and metastasis. This study was designed to investigate the effects of HAb18G/CD147 knockout on hepatocellular carcinoma cells using zinc-finger nuclease (ZFNs)-targeted gene knockout approach. The HCC cell line SMMC-7721 was used for ZFNs-targeted cleavage of the HAb18G/CD147 gene. RT-PCR and Western blot assays were used to detect HAb18G/CD147 expression. HAb18G phenotypic changes following HAb18G/CD147 knockout in SMMC-K7721 cells were assessed using tumor cell adhesion, invasion, migration and colony formation and flow cytometric assays. These data demonstrated that tumor cell adhesion, invasion, migration, and colony formation capabilities of SMMC-K7721 were significantly reduced compared to parental cells or SMMC-7721 with re-expression of HAb18G/CD147 protein transfected with HAb18G/CD147 cDNA. Moreover, knockout of HAb18G/CD147 expression also induced SMMC-K7721 cells to undergo apoptosis compared to SMMC-7721 and SMMC-R7721 (P CD147 reduced p53 levels in SMMC-R7721 cells, possibly through inhibition of the PI3K-Akt-MDM2 signaling pathway. The findings provide a novel insight into the mechanisms underlying HAb18G/CD147-induced progression of HCC cells.

  11. Proteomic analysis of JAZ interacting proteins under methyl jasmonate treatment in finger millet.

    Science.gov (United States)

    Sen, Saswati; Kundu, Sangeeta; Dutta, Samir Kr

    2016-11-01

    Jasmonic acid (JA) signaling pathway in plants is activated against various developmental processes as well as biotic and abiotic stresses. The Jasmonate ZIM-domain (JAZ) protein family, the key regulator of plant JA signaling pathway, also participates in phytohormone crosstalk. This is the first study revealing the in vivo interactions of finger millet (Eleusine coracana (L.) Gaertn.) JAZ protein (EcJAZ) under methyl jasmonate (MJ) treatment. The aim of the study was to explore not only the JA signaling pathway but also the phytohormone signaling crosstalk of finger millet, a highly important future crop. From the MJ-treated finger millet seedlings, the EcJAZ interacting proteins were purified by affinity chromatography with the EcJAZ-matrix. Twenty-one proteins of varying functionalities were successfully identified by MALDI-TOF-TOF Mass spectrometry. Apart from the previously identified JAZ binding proteins, most prominently, EcJAZ was found to interact with transcription factors like NAC, GATA and also with Cold responsive protein (COR), etc. that might have extended the range of functionalities of JAZ proteins. Moreover, to evaluate the interactions of EcJAZ in the JA-co-receptor complex, we generated ten in-silico models containing the EcJAZ degron and the COI1-SKP1 of five monocot cereals viz., rice, wheat, maize, Sorghum and Setaria with JA-Ile or coronatine. Our results indicated that the EcJAZ protein of finger millet could act as the signaling hub for the JA and other phytohormone signaling pathways, in response to a diverse set of stressors and developmental cues to provide survival fitness to the plant. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Protective effect of zinc against lethality of the irradiated mice

    International Nuclear Information System (INIS)

    Matsubara, J.; Inada, T.; Machida, K.

    1982-01-01

    The effects of adding 1000 ppm Zn in the drinking water 10 days before gamma irradiation (562 - 1000 rad) of mice were studied. The mice which had received zinc had a lower mortality rate and a longer survival time compared to the controls. The LD 50 of gamma radiation was 690 rad in the control group and 770 rad in the zinc group. Zinc added to the culture medium of human melanoma cells did not shown any change in radiosensitivity; thus the radioprotective effect of zinc appears to work at the whole body level. (U.K.)

  13. Medicago truncatula Zinc-Iron Permease6 provides zinc to rhizobia-infected nodule cells.

    Science.gov (United States)

    Abreu, Isidro; Saéz, Ángela; Castro-Rodríguez, Rosario; Escudero, Viviana; Rodríguez-Haas, Benjamín; Senovilla, Marta; Larue, Camille; Grolimund, Daniel; Tejada-Jiménez, Manuel; Imperial, Juan; González-Guerrero, Manuel

    2017-11-01

    Zinc is a micronutrient required for symbiotic nitrogen fixation. It has been proposed that in model legume Medicago truncatula, zinc is delivered by the root vasculature into the nodule and released in the infection/differentiation zone. There, transporters must introduce this element into rhizobia-infected cells to metallate the apoproteins that use zinc as a cofactor. MtZIP6 (Medtr4g083570) is an M. truncatula Zinc-Iron Permease (ZIP) that is expressed only in roots and nodules, with the highest expression levels in the infection/differentiation zone. Immunolocalization studies indicate that it is located in the plasma membrane of nodule rhizobia-infected cells. Down-regulating MtZIP6 expression levels with RNAi does not result in any strong phenotype when plants are fed mineral nitrogen. However, these plants displayed severe growth defects when they depended on nitrogen fixed by their nodules, losing of 80% of their nitrogenase activity. The reduction of this activity was likely an indirect effect of zinc being retained in the infection/differentiation zone and not reaching the cytosol of rhizobia-infected cells. These data are consistent with a model in which MtZIP6 would be responsible for zinc uptake by rhizobia-infected nodule cells in the infection/differentiation zone. © 2017 John Wiley & Sons Ltd.

  14. Primary syphilis of the fingers

    OpenAIRE

    Starzycki, Z

    1983-01-01

    Six patients were seen with primary syphilitic chancres on their fingers between 1965 and 1980. Of these, two had bipolar chancres on their fingers and genitals resulting from sexual foreplay. Because syphilis is rarely suspected in such cases diagnostic errors are common.

  15. Effects of dietary supplementation with tribasic zinc sulfate or zinc sulfate on growth performance, zinc content and expression of zinc transporters in young pigs.

    Science.gov (United States)

    Deng, Bo; Zhou, Xihong; Wu, Jie; Long, Ciming; Yao, Yajun; Peng, Hongxing; Wan, Dan; Wu, Xin

    2017-10-01

    An experiment was conducted to compare the effects of zinc sulfate (ZS) and tribasic zinc sulfate (TBZ) as sources of supplemental zinc on growth performance, serum zinc (Zn) content and messenger RNA (mRNA) expression of Zn transporters (ZnT1/ZnT2/ZnT5/ZIP4/DMT1) of young growing pigs. A total of 96 Duroc × Landrace × Yorkshire pigs were randomly allotted to two treatments and were fed a basal diet supplemented with 100 mg/kg Zn from either ZS or TBZ for 28 days. Feed : gain ratio in pigs fed TBZ were lower (P zinc transporter in either duodenum or jejunum of pigs fed TBZ were higher (P < 0.05) than pigs fed ZS. These results indicate that TBZ is more effective in serum Zn accumulation and intestinal Zn absorption, and might be a potential substitute for ZS in young growing pigs. © 2017 Japanese Society of Animal Science.

  16. Zinc and zinc transporters in macrophages and their roles in efferocytosis in COPD.

    Directory of Open Access Journals (Sweden)

    Rhys Hamon

    Full Text Available Our previous studies have shown that nutritional zinc restriction exacerbates airway inflammation accompanied by an increase in caspase-3 activation and an accumulation of apoptotic epithelial cells in the bronchioles of the mice. Normally, apoptotic cells are rapidly cleared by macrophage efferocytosis, limiting any secondary necrosis and inflammation. We therefore hypothesized that zinc deficiency is not only pro-apoptotic but also impairs macrophage efferocytosis. Impaired efferocytic clearance of apoptotic epithelial cells by alveolar macrophages occurs in chronic obstructive pulmonary disease (COPD, cigarette-smoking and other lung inflammatory diseases. We now show that zinc is a factor in impaired macrophage efferocytosis in COPD. Concentrations of zinc were significantly reduced in the supernatant of bronchoalveolar lavage fluid of patients with COPD who were current smokers, compared to healthy controls, smokers or COPD patients not actively smoking. Lavage zinc was positively correlated with AM efferocytosis and there was decreased efferocytosis in macrophages depleted of Zn in vitro by treatment with the membrane-permeable zinc chelator TPEN. Organ and cell Zn homeostasis are mediated by two families of membrane ZIP and ZnT proteins. Macrophages of mice null for ZIP1 had significantly lower intracellular zinc and efferocytosis capability, suggesting ZIP1 may play an important role. We investigated further using the human THP-1 derived macrophage cell line, with and without zinc chelation by TPEN to mimic zinc deficiency. There was no change in ZIP1 mRNA levels by TPEN but a significant 3-fold increase in expression of another influx transporter ZIP2, consistent with a role for ZIP2 in maintaining macrophage Zn levels. Both ZIP1 and ZIP2 proteins were localized to the plasma membrane and cytoplasm in normal human lung alveolar macrophages. We propose that zinc homeostasis in macrophages involves the coordinated action of ZIP1 and ZIP2

  17. Fusarium verticillioides from finger millet in Uganda.

    Science.gov (United States)

    Saleh, Amgad A; Esele, J P; Logrieco, Antonio; Ritieni, Alberto; Leslie, John F

    2012-01-01

    Finger millet (Eleusine coracana) is a subsistence crop grown in Sub-Saharan Africa and the Indian Sub-continent. Fusarium species occurring on this crop have not been reported. Approximately 13% of the Fusarium isolates recovered from finger millet growing at three different locations in eastern Uganda belong to Fusarium verticillioides, and could produce up to 18,600 µg/g of total fumonisins when cultured under laboratory conditions. These strains are all genetically unique, based on AFLP analyses, and form fertile perithecia when crossed with the standard mating type tester strains for this species. All but one of the strains is female-fertile and mating-type segregates 13:20 Mat-1:Mat-2. Three new sequences of the gene encoding translation elongation factor 1-α were found within the population. These results indicate a potential health risk for infants who consume finger millet gruel as a weaning food, and are consistent with the hypothesis that F. verticillioides originated in Africa and not in the Americas, despite its widespread association with maize grown almost anywhere worldwide.

  18. Flipped SU(5)xU(1){sub X} models from F-theory

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Jing [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Li Tianjun, E-mail: tjli@physics.rutgers.ed [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States); Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Nanopoulos, Dimitri V. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States); Astroparticle Physics Group, Houston Advanced Research Center (HARC), Mitchell Campus, Woodlands, TX 77381 (United States); Academy of Athens, Division of Natural Sciences, 28 Panepistimiou Avenue, Athens 10679 (Greece); Xie Dan [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)

    2010-05-01

    We systematically construct flipped SU(5)xU(1){sub X} models without and with bulk vector-like particles from F-theory. To realize the decoupling scenario, we introduce sets of vector-like particles in complete SU(5)xU(1) multiplets at the TeV scale, or at the intermediate scale, or at the TeV scale and high scale. To avoid the Landau pole problem for the gauge couplings, we can only introduce five sets of vector-like particles around the TeV scale. These vector-like particles can couple to the Standard Model singlet fields, and obtain suitable masses by Higgs mechanism. We study gauge coupling unification in detail. We show that the U(1){sub X} flux contributions to the gauge couplings preserve the SU(5)xU(1){sub X} gauge coupling unification. We calculate the SU(3){sub C}xSU(2){sub L} unification scales, and the SU(5)xU(1){sub X} unification scales and unified couplings. In most of our models, the high-scale or bulk vector-like particles can be considered as string-scale threshold corrections since their masses are close to the string scale. Furthermore, we discuss the phenomenological consequences of our models. In particular, in the models with TeV-scale vector-like particles, the vector-like particles can be observed at the Large Hadron Collider, the proton decay is within the reach of the future Hyper-Kamiokande experiment, the lightest CP-even Higgs boson mass can be increased, the hybrid inflation can be naturally realized, and the correct cosmic primordial density fluctuations can be generated.

  19. Radiation safety education reduces the incidence of adult fingers on neonatal chest radiographs

    International Nuclear Information System (INIS)

    Sahota, N; Burbridge, B E; Duncan, M D

    2014-01-01

    A previous audit revealed a high frequency of adult fingers visualised on neonatal intensive care unit (NICU) chest radiographs—representing an example of inappropriate occupational radiation exposure. Radiation safety education was provided to staff and we hypothesised that the education would reduce the frequency of adult fingers visualised on NICU chest radiographs. Two cross-sectional samples taken before and after the administration of the education were compared. We examined fingers visualised directly in the beam, fingers in the direct beam but eliminated by technologists editing the image, and fingers under the cones of the portable x-ray machine. There was a 46.2% reduction in fingers directly in the beam, 50.0% reduction in fingers directly in the beam but cropped out, and 68.4% reduction in fingers in the coned area. There was a 57.1% overall reduction in adult fingers visualised, which was statistically significant (Z value − 7.48, P < 0.0001). This study supports radiation safety education in minimising inappropriate occupational radiation exposure. (paper)

  20. Higgs phenomenology in the minimal S U (3 )L×U (1 )X model

    Science.gov (United States)

    Okada, Hiroshi; Okada, Nobuchika; Orikasa, Yuta; Yagyu, Kei

    2016-07-01

    We investigate the phenomenology of a model based on the S U (3 )c×S U (3 )L×U (1 )X gauge theory, the so-called 331 model. In particular, we focus on the Higgs sector of the model which is composed of three S U (3 )L triplet Higgs fields and is the minimal form for realizing a phenomenologically acceptable scenario. After the spontaneous symmetry breaking S U (3 )L×U (1 )X→S U (2 )L×U (1 )Y , our Higgs sector effectively becomes that with two S U (2 )L doublet scalar fields, in which the first- and the second-generation quarks couple to a different Higgs doublet from that which couples to the third-generation quarks. This structure causes the flavor-changing neutral current mediated by Higgs bosons at the tree level. By taking an alignment limit of the mass matrix for the C P -even Higgs bosons, which is naturally realized in the case with the breaking scale of S U (3 )L×U (1 )X much larger than that of S U (2 )L×U (1 )Y, we can avoid current constraints from flavor experiments such as the B0-B¯ 0 mixing even for the Higgs bosons masses that are O (100 ) GeV . In this allowed parameter space, we clarify that a characteristic deviation in quark Yukawa couplings of the Standard Model-like Higgs boson is predicted, which has a different pattern from that seen in two Higgs doublet models with a softly broken Z2 symmetry. We also find that the flavor-violating decay modes of the extra Higgs boson, e.g., H /A →t c and H±→t s , can be dominant, and they yield the important signature to distinguish our model from the two Higgs doublet models.

  1. Variations in the nerves of the thumb and index finger.

    Science.gov (United States)

    Wallace, W A; Coupland, R E

    1975-11-01

    The digital nerves to the thumb and index finger have been studied by dissecting twenty-five embalmed upper limbs. The palmar digital nerves to the thumb were constant in position and course, with a short lateral cutaneous branch from the radial palmar digital nerve in 30 per cent of cases. The palmar digital nerves to the index finger had a variable pattern, the commonest arrangement, well described in Gray's Anatomy, occurring in 74 per cent of cases. The variations and their frequency are described. By examining histological cross-sections of the index finger it was found that of about 5,000 endoneurial tubes entering the finger, 60 per cent passed beyond the distal digital crease to supply the pulp and nail bed. The depth of the palmar digital nerves was about 3 millimetres, but less at the digital creases, and their diameter lay between 1 and 1.5 millimetres as far as the distal digital crease. Clinical applications of the findings are discussed.

  2. Isotope aided micronutrient studies in rice production with special reference to zinc deficiency pt. 1

    International Nuclear Information System (INIS)

    Kim, T.S.; Song, K.J.; Han, K.W.; U, Z.K.

    1978-01-01

    Using tracer technique of 65 Zn, a field experiment has been carried out to evaluate the efficiency of zinc fertilzer by rice plant grown under flooded conditions. The treatments include zinc sulfate mixed throughout the soil with and without organic matter, combined urea-zinc fertilizer (N: 37.7%. Zn: 3.1%), and surface application at transplanting and two weeks after transplanting at the rate of 5 kg Zn/ha respectively. Other treatments were zinc sulfate mixed throughout the soil at the rate of 10 kg and 20 kg Zn/ha respectively. Root dipping in 2% ZnO suspension, only organic matter added, and control were also included. There was not much difference in rough grain yield between zinc levels and different application methods, but the highest yield was obtained from the treatment of the root dipping in 2% ZnO suspension. Among the 5 kg Zn/ha treatments, the highest total zinc yield was observed from the zinc mixed throughout the soil. The organic matter treatment seemed to reduce the zinc fertilizer efficiency. In case of the zinc fertilizer levels, 5 kg Zn/ha mixed throughout the soil showed the highest zinc fertilizer efficiency as compared with 10 kg and 20 kg Zn/ha treatments. (author)

  3. Mobile trap algorithm for zinc detection using protein sensors

    International Nuclear Information System (INIS)

    Inamdar, Munish V.; Lastoskie, Christian M.; Fierke, Carol A.; Sastry, Ann Marie

    2007-01-01

    We present a mobile trap algorithm to sense zinc ions using protein-based sensors such as carbonic anhydrase (CA). Zinc is an essential biometal required for mammalian cellular functions although its intracellular concentration is reported to be very low. Protein-based sensors like CA molecules are employed to sense rare species like zinc ions. In this study, the zinc ions are mobile targets, which are sought by the mobile traps in the form of sensors. Particle motions are modeled using random walk along with the first passage technique for efficient simulations. The association reaction between sensors and ions is incorporated using a probability (p 1 ) upon an ion-sensor collision. The dissociation reaction of an ion-bound CA molecule is modeled using a second, independent probability (p 2 ). The results of the algorithm are verified against the traditional simulation techniques (e.g., Gillespie's algorithm). This study demonstrates that individual sensor molecules can be characterized using the probability pair (p 1 ,p 2 ), which, in turn, is linked to the system level chemical kinetic constants, k on and k off . Further investigations of CA-Zn reaction using the mobile trap algorithm show that when the diffusivity of zinc ions approaches that of sensor molecules, the reaction data obtained using the static trap assumption differ from the reaction data obtained using the mobile trap formulation. This study also reveals similar behavior when the sensor molecule has higher dissociation constant. In both the cases, the reaction data obtained using the static trap formulation reach equilibrium at a higher number of complex molecules (ion-bound sensor molecules) compared to the reaction data from the mobile trap formulation. With practical limitations on the number sensors that can be inserted/expressed in a cell and stochastic nature of the intracellular ionic concentrations, fluorescence from the number of complex sensor molecules at equilibrium will be the measure

  4. Effects of zinc supplementation on catch-up growth in children with failure to thrive.

    Science.gov (United States)

    Park, Seul-Gi; Choi, Ha-Neul; Yang, Hye-Ran; Yim, Jung-Eun

    2017-12-01

    Although globally the numbers of children diagnosed with failure to thrive (FTT) have decreased, FTT is still a serious pediatric problem. We aimed to investigate the effects of zinc supplementation for 6 months on growth parameters of infants and children with FTT. In this retrospective study, of the 114 participants aged between 4 months and 6 years, 89 were included in the zinc supplementation group and were provided with nutrition counseling plus an oral zinc supplement for 6 months. The caregivers of the 25 participants in the control group received nutrition counseling alone. Medical data of these children, including sex, age, height, weight, serum zinc level, and serum insulin-like growth factor 1 (IGF1) level were analyzed. Zinc supplementation for 6 months increased weight-for-age Z-score and serum zinc levels (5.5%) in the zinc supplementation group of underweight category children. As for stunting category, height-for-age Z-score of the participants in the zinc supplementation group increased when compared with the baseline, and serum zinc levels increased in the normal or mild stunting group. Serum IGF1 levels did not change significantly in any group. Thus, zinc supplementation was more effective in children in the underweight category than those in the stunted category; this effect differed according to the degree of the FTT. These findings suggest that zinc supplementation may have beneficial effects for growth of infants and children with FTT, and zinc supplementation would be required according to degree of FTT.

  5. CD28 controls the development of innate-like CD8+ T cells by promoting the functional maturation of NKT cells.

    Science.gov (United States)

    Yousefi, Mitra; Duplay, Pascale

    2013-11-01

    NK T cells(NKT cells) share functional characteristics and homing properties that are distinct from conventional T cells. In this study, we investigated the contribution of CD28 in the functional development of γδ NKT and αβ NKT cells in mice. We show that CD28 promotes the thymic maturation of promyelocytic leukemia zinc finger(+) IL-4(+) NKT cells and upregulation of LFA-1 expression on NKT cells. We demonstrate that the developmental defect of γδ NKT cells in CD28-deficient mice is cell autonomous. Moreover, we show in both wild-type C57BL/6 mice and in downstream of tyrosine kinase-1 transgenic mice, a mouse model with increased numbers of γδ NKT cells, that CD28-mediated regulation of thymic IL-4(+) NKT cells promotes the differentiation of eomesodermin(+) CD44(high) innate-like CD8(+) T cells. These findings reveal a previously unappreciated mechanism by which CD28 controls NKT-cell homeostasis and the size of the innate-like CD8(+) T-cell pool. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Intrinsic functional defects of type 2 innate lymphoid cells impair innate allergic inflammation in promyelocytic leukemia zinc finger (PLZF)-deficient mice.

    Science.gov (United States)

    Verhoef, Philip A; Constantinides, Michael G; McDonald, Benjamin D; Urban, Joseph F; Sperling, Anne I; Bendelac, Albert

    2016-02-01

    The transcription factor promyelocytic leukemia zinc finger (PLZF) is transiently expressed during development of type 2 innate lymphoid cells (ILC2s) but is not present at the mature stage. We hypothesized that PLZF-deficient ILC2s have functional defects in the innate allergic response and represent a tool for studying innate immunity in a mouse with a functional adaptive immune response. We determined the consequences of PLZF deficiency on ILC2 function in response to innate and adaptive immune stimuli by using PLZF(-/-) mice and mixed wild-type:PLZF(-/-) bone marrow chimeras. PLZF(-/-) mice, wild-type littermates, or mixed bone marrow chimeras were treated with the protease allergen papain or the cytokines IL-25 and IL-33 or infected with the helminth Nippostrongylus brasiliensis to induce innate type 2 allergic responses. Mice were sensitized with intraperitoneal ovalbumin-alum, followed by intranasal challenge with ovalbumin alone, to induce adaptive TH2 responses. Lungs were analyzed for immune cell subsets, and alveolar lavage fluid was analyzed for ILC2-derived cytokines. In addition, ILC2s were stimulated ex vivo for their capacity to release type 2 cytokines. PLZF-deficient lung ILC2s exhibit a cell-intrinsic defect in the secretion of IL-5 and IL-13 in response to innate stimuli, resulting in defective recruitment of eosinophils and goblet cell hyperplasia. In contrast, the adaptive allergic inflammatory response to ovalbumin and alum was unimpaired. PLZF expression at the innate lymphoid cell precursor stage has a long-range effect on the functional properties of mature ILC2s and highlights the importance of these cells for innate allergic responses in otherwise immunocompetent mice. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. All rights reserved.

  7. 20-hydroxyecdysone enhances the expression of the chitinase 5 via Broad-Complex Zinc-Finger 4 during metamorphosis in silkworm, Bombyx mori.

    Science.gov (United States)

    Zhang, X; Zheng, S

    2017-04-01

    Insect chitinases are hydrolytic enzymes required for the degradation of chitin. They are essential for insect moulting and metamorphosis. In this study, the regulation mechanism of a chitinase gene, Bombyx mori chitinase 5 (BmCHT5), was studied. Quantitative reverse transcription PCR (qRT-PCR) analysis showed that BmCHT5 was up-regulated during the larval-larval and larval-pupa transitions and notably induced by 20-hydroxyecdysone (20E). Analysis of the BmCHT5 promoter revealed the presence of one Bombyx mori Broad-Complex Zinc-Finger Isoform 4 (BR-C Z4), two BR-C Z2 and two ecdysone-induced protein 74A (E74A) cis-regulatory elements (CREs) that are related to 20E. qRT-PCR showed that the expression of both BmBR-C Z4 and BmBR-C Z2 during metamorphosis, and when induced by 20E, was anastomotic with the variations in BmCHT5 mRNA level. In contrast, BmE74A did not follow this trend. An electrophoretic mobility shift assay did not retrieve a binding partner for the two BR-C Z2 CREs in the BmN cell line nuclear extract, whereas BR-C Z4 CRE specifically bound to BmBR-C Z4. Besides, luciferase activity analysis confirmed that BmBR-C Z4 could enhance the activity of the BmCHT5 promoter with BR-C Z4 CRE and could not enhance the promoter activity by mutating BR-C Z4 CRE. Taken together, these data suggest that the transcription factor BmBR-C Z4 enhances the expression of BmCHT5 during metamorphosis. © 2016 The Royal Entomological Society.

  8. Analysis of prosody in finger braille using electromyography.

    Science.gov (United States)

    Miyagi, Manabi; Nishida, Masafumi; Horiuchi, Yasuo; Ichikawa, Akira

    2006-01-01

    Finger braille is one of the communication methods for the deaf blind. The interpreter types braille codes on the fingers of deaf blind. Finger braille seems to be the most suitable medium for real-time communication by its speed and accuracy of transmitting characters. We hypothesize that the prosody information exists in the time structure and strength of finger braille typing. Prosody is the paralinguistic information that has functions to transmit the sentence structure, prominence, emotions and other form of information in real time communication. In this study, we measured the surface electromyography (sEMG) of finger movement to analyze the typing strength of finger braille. We found that the typing strength increases at the beginning of a phrase and a prominent phrase. The result shows the possibility that the prosody in the typing strength of finger braille can be applied to create an interpreter system for the deafblind.

  9. Finger Replantation in Sanglah General Hospital: Report of Five Cases and Literature Review

    Directory of Open Access Journals (Sweden)

    Agus Roy Rusly Hariantana Hamid

    2016-11-01

    Full Text Available Background: Replantation is the prime treatment for amputated hands and fingers due to functional and aesthetic advantages. The absolute indications for replantation are amputations of the thumb, multiple fingers, trans metacarpal or hand, and any upper extremity in a child, regardless of the amputation level. A fingertip amputation distal to the insertion of the flexor digitorum superficialis (FDS is also a good indication. Indications have been expanded to include amputation at nail level, and when there is a request from the patient, replantation is attempted even for a single finger amputation regardless of the amputation level. Based on the mechanism of injury, a clean-cut sharp amputation is more likely replanted compare to a crush and avulsion injuries. With a proper management of the amputated finger, replantation can be attempted even after 24 hours. This report was written to provide examples of finger replantation cases and the measures that can be taken in a resource-limited hospital in order to conduct a replantation. Case Series: We reported five out of nine digital replantation cases in Sanglah General Hospital between January and July 2014. Two patients were a six and an eleven years old boys who accidentally cut their finger while playing, the rests were male labors between 20-30 years old whose amputations due to machine injuries. Result: A 100% replant survival was achieved. After a period of follow up with occupational therapy, all patients regain good functional and cosmetic results. 

  10. Thermal stability improvement of a multiple finger power SiGe heterojunction bipolar transistor under different power dissipations using non-uniform finger spacing

    International Nuclear Information System (INIS)

    Chen Liang; Zhang Wan-Rong; Jin Dong-Yue; Shen Pei; Xie Hong-Yun; Ding Chun-Bao; Xiao Ying; Sun Bo-Tao; Wang Ren-Qing

    2011-01-01

    A method of non-uniform finger spacing is proposed to enhance thermal stability of a multiple finger power SiGe heterojunction bipolar transistor under different power dissipations. Temperature distribution on the emitter fingers of a multi-finger SiGe heterojunction bipolar transistor is studied using a numerical electro-thermal model. The results show that the SiGe heterojunction bipolar transistor with non-uniform finger spacing has a small temperature difference between fingers compared with a traditional uniform finger spacing heterojunction bipolar transistor at the same power dissipation. What is most important is that the ability to improve temperature non-uniformity is not weakened as power dissipation increases. So the method of non-uniform finger spacing is very effective in enhancing the thermal stability and the power handing capability of power device. Experimental results verify our conclusions. (interdisciplinary physics and related areas of science and technology)

  11. Dynamic transcriptomic profiles of zebrafish gills in response to zinc supplementation

    Directory of Open Access Journals (Sweden)

    Cunningham Phil

    2010-10-01

    Full Text Available Abstract Background Dietary zinc supplementation may help to promote growth, boost the immune system, protect against diabetes, and aid recovery from diarrhoea. We exploited the zebrafish (Danio rerio gill as a unique vertebrate ion transporting epithelium model to study the time-dependent regulatory networks of gene-expression leading to homeostatic control during zinc supplementation. This organ forms a conduit for zinc uptake whilst exhibiting conservation of zinc trafficking components. Results Fish were maintained with either zinc supplemented water (4.0 μM and diet (2023 mg zinc kg-1 or water and diet containing Zn2+ at 0.25 μM and 233 mg zinc kg-1, respectively. Gill tissues were harvested at five time points (8 hours to 14 days and transcriptome changes analysed in quintuplicate using a 16 K microarray with results anchored to gill Zn2+ influx and whole body nutrient composition (protein, carbohydrate, lipid, elements. The number of regulated genes increased up to day 7 but declined as the fish acclimated. In total 525 genes were regulated (having a fold-change more than 1.8 fold change and an adjusted P-value less than 0.1 which is controlling a 10% False discovery rate, FDR by zinc supplementation, but little overlap was observed between genes regulated at successive time-points. Many genes displayed cyclic expression, typical for homeostatic control mechanisms. Annotation enrichment analysis revealed strong overrepresentation of "transcription factors", with specific association evident with "steroid hormone receptors". A suite of genes linked to "development" were also statistically overrepresented. More specifically, early regulation of genes was linked to a few key transcription factors (e.g. Mtf1, Jun, Stat1, Ppara, Gata3 and was followed by hedgehog and bone morphogenic protein signalling. Conclusions The results suggest that zinc supplementation reactivated developmental pathways in the gill and stimulated stem cell

  12. Intravascular papillary endothelial hyperplasia: magnetic resonance imaging of finger lesions

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Jinkyeong; Kim, Jee-Young [The Catholic University of Korea, Department of Radiology, St. Vincent' s Hospital, College of Medicine, Suwon, Gyeonggi-do (Korea, Republic of); Yoo, Changyoung [The Catholic University of Korea, Department of Hospital Pathology, St. Vincent' s Hospital, College of Medicine, Suwon, Gyeonggi-do (Korea, Republic of)

    2016-02-15

    To describe magnetic resonance imaging (MRI) features of intravascular papillary endothelial hyperplasia (IPEH), to identify findings differentiating IPEH of the finger from that of other locations, and to correlate these with pathology. Nineteen patients with 20 I.E. masses of the finger (n = 13) and other locations (n = 7) were evaluated. All patients underwent MRI, and the results were correlated with pathology. Seventeen IPEHs, including all IPEHs of the finger, were located in the subcutis, the three other lesions in the muscle layer. On T1WI, all masses were isointense or slightly hyperintense. IPEHs of the finger (n = 13) revealed focal hyperintense nodules (n = 2) or central hypointensity (n = 2) on T1WI, hypointensity with a hyperintense rim (n = 7), hyperintensity with hypointense nodules (n = 5), or isointensity with a hypointense rim (n = 1) on T2WI, and rim enhancement (n = 5), heterogeneous enhancement with nodular nonenhanced areas (n = 6), peripheral nodular enhancement (n = 1), or no enhancement (n = 1) on gadolinium-enhanced T1WI. IPEHs of other locations (n = 7) demonstrated focal hyperintense nodules (n = 5) on T1WI, hyperintensity with hypointense nodules (n = 5) or heterogeneous signal intensity (n = 2) on T2WI, and rim or rim and septal enhancement (n = 6) or peripheral nodular enhancement (n = 1). Microscopically, IPEHs were composed of thrombi that were hypointense on T2WI and papillary endothelial proliferations that showed T2 hyperintensity and enhancement. MRI of finger IPEH reveals well-demarcated subcutaneous masses with hypointensity or hypointense nodules with peripheral hyperintensity on T2WI, as well as peripheral enhancement. T1 hyperintense nodules, internal heterogeneity on T2WI, and septal enhancement are more common in IPEH of other locations. (orig.)

  13. Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger.

    Science.gov (United States)

    Wang, Gang G; Song, Jikui; Wang, Zhanxin; Dormann, Holger L; Casadio, Fabio; Li, Haitao; Luo, Jun-Li; Patel, Dinshaw J; Allis, C David

    2009-06-11

    Histone H3 lysine 4 methylation (H3K4me) has been proposed as a critical component in regulating gene expression, epigenetic states, and cellular identities1. The biological meaning of H3K4me is interpreted by conserved modules including plant homeodomain (PHD) fingers that recognize varied H3K4me states. The dysregulation of PHD fingers has been implicated in several human diseases, including cancers and immune or neurological disorders. Here we report that fusing an H3K4-trimethylation (H3K4me3)-binding PHD finger, such as the carboxy-terminal PHD finger of PHF23 or JARID1A (also known as KDM5A or RBBP2), to a common fusion partner nucleoporin-98 (NUP98) as identified in human leukaemias, generated potent oncoproteins that arrested haematopoietic differentiation and induced acute myeloid leukaemia in murine models. In these processes, a PHD finger that specifically recognizes H3K4me3/2 marks was essential for leukaemogenesis. Mutations in PHD fingers that abrogated H3K4me3 binding also abolished leukaemic transformation. NUP98-PHD fusion prevented the differentiation-associated removal of H3K4me3 at many loci encoding lineage-specific transcription factors (Hox(s), Gata3, Meis1, Eya1 and Pbx1), and enforced their active gene transcription in murine haematopoietic stem/progenitor cells. Mechanistically, NUP98-PHD fusions act as 'chromatin boundary factors', dominating over polycomb-mediated gene silencing to 'lock' developmentally critical loci into an active chromatin state (H3K4me3 with induced histone acetylation), a state that defined leukaemia stem cells. Collectively, our studies represent, to our knowledge, the first report that deregulation of the PHD finger, an 'effector' of specific histone modification, perturbs the epigenetic dynamics on developmentally critical loci, catastrophizes cellular fate decision-making, and even causes oncogenesis during mammalian development.

  14. mRNA Levels of Placental Iron and Zinc Transporter Genes Are Upregulated in Gambian Women with Low Iron and Zinc Status.

    Science.gov (United States)

    Jobarteh, Modou Lamin; McArdle, Harry J; Holtrop, Grietje; Sise, Ebrima A; Prentice, Andrew M; Moore, Sophie E

    2017-07-01

    Background: The role of the placenta in regulating micronutrient transport in response to maternal status is poorly understood. Objective: We investigated the effect of prenatal nutritional supplementation on the regulation of placental iron and zinc transport. Methods: In a randomized trial in rural Gambia [ENID (Early Nutrition and Immune Development)], pregnant women were allocated to 1 of 4 nutritional intervention arms: 1 ) iron and folic acid (FeFol) tablets (FeFol group); 2 ) multiple micronutrient (MMN) tablets (MMN group); 3 ) protein energy (PE) as a lipid-based nutrient supplement (LNS; PE group); and 4 ) PE and MMN (PE+MMN group) as LNS. All arms included iron (60 mg/d) and folic acid (400 μg/d). The MMN and PE+MMN arms included 30 mg supplemental Zn/d. In a subgroup of ∼300 mother-infant pairs, we measured maternal iron status, mRNA levels of genes encoding for placental iron and zinc transport proteins, and cord blood iron levels. Results: Maternal plasma iron concentration in late pregnancy was 45% and 78% lower in the PE and PE+MMN groups compared to the FeFol and MMN groups, respectively ( P Zinc supplementation in the MMN arm was associated with higher maternal plasma zinc concentrations (10% increase; P zinc-uptake proteins, in this case zrt, irt-like protein (ZIP) 4 and ZIP8, were 96-205% lower in the PE+MMN arm than in the intervention arms without added zinc ( P zinc, the placenta upregulates the gene expression of iron and zinc uptake proteins, presumably in order to meet fetal demands in the face of low maternal supply. The ENID trial was registered at www.controlled-trials.com as ISRCTN49285450.

  15. Associations between Dietary Iron and Zinc Intakes, and between Biochemical Iron and Zinc Status in Women

    Directory of Open Access Journals (Sweden)

    Karen Lim

    2015-04-01

    Full Text Available Iron and zinc are found in similar foods and absorption of both may be affected by food compounds, thus biochemical iron and zinc status may be related. This cross-sectional study aimed to: (1 describe dietary intakes and biochemical status of iron and zinc; (2 investigate associations between dietary iron and zinc intakes; and (3 investigate associations between biochemical iron and zinc status in a sample of premenopausal women aged 18–50 years who were recruited in Melbourne and Sydney, Australia. Usual dietary intakes were assessed using a 154-item food frequency questionnaire (n = 379. Iron status was assessed using serum ferritin and hemoglobin, zinc status using serum zinc (standardized to 08:00 collection, and presence of infection/inflammation using C-reactive protein (n = 326. Associations were explored using multiple regression and logistic regression. Mean (SD iron and zinc intakes were 10.5 (3.5 mg/day and 9.3 (3.8 mg/day, respectively. Median (interquartile range serum ferritin was 22 (12–38 μg/L and mean serum zinc concentrations (SD were 12.6 (1.7 μmol/L in fasting samples and 11.8 (2.0 μmol/L in nonfasting samples. For each 1 mg/day increase in dietary iron intake, zinc intake increased by 0.4 mg/day. Each 1 μmol/L increase in serum zinc corresponded to a 6% increase in serum ferritin, however women with low serum zinc concentration (AM fasting < 10.7 μmol/L; AM nonfasting < 10.1 μmol/L were not at increased risk of depleted iron stores (serum ferritin <15 μg/L; p = 0.340. Positive associations were observed between dietary iron and zinc intakes, and between iron and zinc status, however interpreting serum ferritin concentrations was not a useful proxy for estimating the likelihood of low serum zinc concentrations and women with depleted iron stores were not at increased risk of impaired zinc status in this cohort.

  16. He-cooled divertor for DEMO. Fabrication technology for tungsten cooling fingers

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, J.; Norajitra, P.; Widak, V.; Krauss, W. [Forschungszentrum Karlsruhe GmbH (Germany)

    2008-07-01

    A modular helium-cooled divertor design based on the multi-jet impingement concept (HEMJ) has been developed for the ''post-ITER'' demonstration reactor (DEMO) at the Forschungszentrum Karlsruhe [1, 2]. The main function of the divertor is to keep the plasma free from impurities by catching particles, such as fusion ash and eroded particles from the first wall. From the divertor surface, a maximum heat load of 10 MW/m{sup 2} at least has to be removed. The whole divertor is split up into a number of cassettes (48 according to the latest design studies [3]). Each cassette is cooled separately. The target plates are provided with several cooling fingers to keep the thermal stresses low. Each cooling finger consists of a tungsten tile which is brazed to a thimble-like cap made of a tungsten alloy W-1%La2O3 (WL10) underneath. The thimble has to be connected to the ODS EUROFER steel structure, which is accomplished by brazing again. The tungsten/tungsten brazing is exposed to 1200 C operation temperature while the tungsten/steel brazing joint must withstand 700 C operating temperature. Cooling of the finger is achieved by multi-jet impingement with helium. The inlet temperature of helium is 600 C and rises up to 700 C at the outlet. With this kind of cooling, a mean heat transfer coefficient of 35.000 W/(m{sup 2*}K) can be reached. This compact report will focus on the manufacturing of such a cooling finger unit at FZK. It will cover the machining of the tungsten tile as well as of the thimble and, the brazing of the parts. The major aim of this activity is, on the one hand, to obtain functioning mock-ups with high quality and high reliability, in particular in terms of minimising the surface roughness, cracks, and micro-cracks. On the other hand, effort should also be laid on realising the mass production from economic point of view. (orig.)

  17. Touching lips and hearing fingers: effector-specific congruency between tactile and auditory stimulation modulates N1 amplitude and alpha desynchronization.

    Science.gov (United States)

    Shen, Guannan; Meltzoff, Andrew N; Marshall, Peter J

    2018-01-01

    Understanding the interactions between audition and sensorimotor processes is of theoretical importance, particularly in relation to speech processing. Although one current focus in this area is on interactions between auditory perception and the motor system, there has been less research on connections between the auditory and somatosensory modalities. The current study takes a novel approach to this omission by examining specific auditory-tactile interactions in the context of speech and non-speech sound production. Electroencephalography was used to examine brain responses when participants were presented with speech syllables (a bilabial sound /pa/ and a non-labial sound /ka/) or finger-snapping sounds that were simultaneously paired with tactile stimulation of either the lower lip or the right middle finger. Analyses focused on the sensory-evoked N1 in the event-related potential and the extent of alpha band desynchronization elicited by the stimuli. N1 amplitude over fronto-central sites was significantly enhanced when the bilabial /pa/ sound was paired with tactile lip stimulation and when the finger-snapping sound was paired with tactile stimulation of the finger. Post-stimulus alpha desynchronization at central sites was also enhanced when the /pa/ sound was accompanied by tactile stimulation of the lip. These novel findings indicate that neural aspects of somatosensory-auditory interactions are influenced by the congruency between the location of the bodily touch and the bodily origin of a perceived sound.

  18. Trigger Finger

    Science.gov (United States)

    ... in a bent position. People whose work or hobbies require repetitive gripping actions are at higher risk ... developing trigger finger include: Repeated gripping. Occupations and hobbies that involve repetitive hand use and prolonged gripping ...

  19. FINGER KNUCKLE PRINT RECOGNITION WITH SIFT AND K-MEANS ALGORITHM

    Directory of Open Access Journals (Sweden)

    A. Muthukumar

    2013-02-01

    Full Text Available In general, the identification and verification are done by passwords, pin number, etc., which is easily cracked by others. Biometrics is a powerful and unique tool based on the anatomical and behavioral characteristics of the human beings in order to prove their authentication. This paper proposes a novel recognition methodology of biometrics named as Finger Knuckle print (FKP. Hence this paper has focused on the extraction of features of Finger knuckle print using Scale Invariant Feature Transform (SIFT, and the key points are derived from FKP are clustered using K-Means Algorithm. The centroid of K-Means is stored in the database which is compared with the query FKP K-Means centroid value to prove the recognition and authentication. The comparison is based on the XOR operation. Hence this paper provides a novel recognition method to provide authentication. Results are performed on the PolyU FKP database to check the proposed FKP recognition method.

  20. Genetic and epigenetic mutations affect the DNA binding capability of human ZFP57 in transient neonatal diabetes type 1.

    Science.gov (United States)

    Baglivo, Ilaria; Esposito, Sabrina; De Cesare, Lucia; Sparago, Angela; Anvar, Zahra; Riso, Vincenzo; Cammisa, Marco; Fattorusso, Roberto; Grimaldi, Giovanna; Riccio, Andrea; Pedone, Paolo V

    2013-05-21

    In the mouse, ZFP57 contains three classical Cys2His2 zinc finger domains (ZF) and recognizes the methylated TGC(met)CGC target sequence using the first and the second ZFs. In this study, we demonstrate that the human ZFP57 (hZFP57) containing six Cys2His2 ZFs, binds the same methylated sequence through the third and the fourth ZFs, and identify the aminoacids critical for DNA interaction. In addition, we present evidences indicating that hZFP57 mutations and hypomethylation of the TNDM1 ICR both associated with Transient Neonatal Diabetes Mellitus type 1 result in loss of hZFP57 binding to the TNDM1 locus, likely causing PLAGL1 activation. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.