WorldWideScience

Sample records for u-oh bond lengths

  1. Relation between frequency and H bond length in heavy water: Towards the understanding of the unusual properties of H bond dynamics in nanoporous media

    International Nuclear Information System (INIS)

    Pommeret, Stanislas; Leicknam, Jean-Claude; Bratos, Savo; Musat, Raluca; Renault, Jean Philippe

    2009-01-01

    The published work on H bond dynamics mainly refers to diluted solutions HDO/D 2 O rather than to normal water. The reasons for this choice are both theoretical and experimental. Mechanical isolation of the OH vibrator eliminating the resonant energy transfer makes it a better probe of the local H bond network, while the dilution in heavy water reduces the infrared absorption, which permits the use of thicker experimental cells. The isotopic substitution does not alter crucially the nature of the problem. The length r of an OH . . . O group is statistically distributed over a large interval comprised between 2.7 and 3.2 A with a mean value r 0 = 2.86 A. Liquid water may thus be viewed as a mixture of hydrogen bonds of different length. Two important characteristics of hydrogen bonding must be mentioned. (i) The OH stretching vibrations are strongly affected by this interaction. The shorter the length r of the hydrogen bond, the strongest the H bond link and the lower is its frequency ω: the covalent OH bond energy is lent to the OH. . .O bond and reinforces the latter. A number of useful relationships between ω and r were published to express this correlation. The one adopted in our previous work is the relationship due to Mikenda. (ii) Not only the OH vibrations, but also the HDO rotations are influenced noticeably by hydrogen bonding. This is due to steric forces that hinder the HDO rotations. As they are stronger in short than in long hydrogen bonds, rotations are slower in the first case than in the second. This effect was only recently discovered, but its existence is hardly to be contested. In the present contribution, we want to revisit the relationship between the frequency of the OH vibrator and the distance OH. . .O.

  2. H2XP:OH2 Complexes: Hydrogen vs. Pnicogen Bonds

    Directory of Open Access Journals (Sweden)

    Ibon Alkorta

    2016-02-01

    Full Text Available A search of the Cambridge Structural Database (CSD was carried out for phosphine-water and arsine-water complexes in which water is either the proton donor in hydrogen-bonded complexes, or the electron-pair donor in pnicogen-bonded complexes. The range of experimental P-O distances in the phosphine complexes is consistent with the results of ab initio MP2/aug’-cc-pVTZ calculations carried out on complexes H2XP:OH2, for X = NC, F, Cl, CN, OH, CCH, H, and CH3. Only hydrogen-bonded complexes are found on the H2(CH3P:HOH and H3P:HOH potential surfaces, while only pnicogen-bonded complexes exist on H2(NCP:OH2, H2FP:OH2, H2(CNP:OH2, and H2(OHP:OH2 surfaces. Both hydrogen-bonded and pnicogen-bonded complexes are found on the H2ClP:OH2 and H2(CCHP:OH2 surfaces, with the pnicogen-bonded complexes more stable than the corresponding hydrogen-bonded complexes. The more electronegative substituents prefer to form pnicogen-bonded complexes, while the more electropositive substituents form hydrogen-bonded complexes. The H2XP:OH2 complexes are characterized in terms of their structures, binding energies, charge-transfer energies, and spin-spin coupling constants 2hJ(O-P, 1hJ(H-P, and 1J(O-H across hydrogen bonds, and 1pJ(P-O across pnicogen bonds.

  3. Bond lengths and bond strengths in compounds of the 5f elements

    International Nuclear Information System (INIS)

    Zachariasen, W.H.

    1975-01-01

    The variation of bond length (D) with bond strength (S) in normal valence compounds of 3d, 4d, 5d-4f, and 6d-5f elements can be represented approximately as D(S)=D(0.5) F(S), where D(0.5) is a characteristic constant for a given bond and F(S) an empirical function which is the same for all bonds. A bond strength Ssub(ij)=ssub(ji) is assigned to the bond between atoms i and j such that Σsub(j) Ssub(ij)=vsub(i) and Σsub(i) Ssub(ij)=vsub(j), where vsub(i) and vsub(j) are the normal valences of the two atoms. The function F(S) decreases monotonically with increasing S, and is normalized to unity at S=0.5, so that the constant D(0.5) has the physical meaning of being the bond length adjusted to S=0.5. The method described above was used to interpret and systematize the experimental results on bond lengths in oxides, halides, and oxyhalides of the 5f elements. (U.S.)

  4. Absolute and relative-rate measurement of the rate coefficient for reaction of perfluoro ethyl vinyl ether (C2F5OCF[double bond, length as m-dash]CF2) with OH.

    Science.gov (United States)

    Srinivasulu, G; Bunkan, A J C; Amedro, D; Crowley, J N

    2018-01-31

    The rate coefficient (k 1 ) for the reaction of OH radicals with perfluoro ethyl vinyl ether (PEVE, C 2 F 5 OCF[double bond, length as m-dash]CF 2 ) has been measured as a function of temperature (T = 207-300 K) using the technique of pulsed laser photolysis with detection of OH by laser-induced fluorescence (PLP-LIF) at pressures of 50 or 100 Torr N 2 bath gas. In addition, the rate coefficient was measured at 298 K and in one atmosphere of air by the relative-rate technique with loss of PEVE and reference reactant monitored in situ by IR absorption spectroscopy. The rate coefficient has a negative temperature dependence which can be parameterized as: k 1 (T) = 6.0 × 10 -13  exp[(480 ± 38/T)] cm 3 molecule -1 s -1 and a room temperature value of k 1 (298 K) = (3.0 ± 0.3) × 10 -12 cm 3 molecule -1 s -1 . Highly accurate rate coefficients from the PLP-LIF experiments were achieved by optical on-line measurements of PEVE and by performing the measurements at two different apparatuses. The large rate coefficient and the temperature dependence indicate that the reaction proceeds via OH addition to the C[double bond, length as m-dash]C double bond, the high pressure limit already being reached at 50 Torr N 2 . Based on the rate coefficient and average OH levels, the atmospheric lifetime of PEVE was estimated to be a few days.

  5. Bond-Length Distortions in Strained Semiconductor Alloys

    International Nuclear Information System (INIS)

    Woicik, J.C.; Pellegrino, J.G.; Steiner, B.; Miyano, K.E.; Bompadre, S.G.; Sorensen, L.B.; Lee, T.; Khalid, S.

    1997-01-01

    Extended x-ray absorption fine structure measurements performed at In-K edge have resolved the outstanding issue of bond-length strain in semiconductor-alloy heterostructures. We determine the In-As bond length to be 2.581±0.004 Angstrom in a buried, 213 Angstrom thick Ga 0.78 In 0.22 As layer grown coherently on GaAs(001). This bond length corresponds to a strain-induced contraction of 0.015±0.004 Angstrom relative to the In-As bond length in bulk Ga 1-x In x As of the same composition; it is consistent with a simple model which assumes a uniform bond-length distortion in the epilayer despite the inequivalent In-As and Ga-As bond lengths. copyright 1997 The American Physical Society

  6. Determination by vibrational spectra of the strength and the bond length of atoms U and O in uranyl complexes

    International Nuclear Information System (INIS)

    Rodriguez S, A.; Martinez Q, E.

    1996-01-01

    The vibrational spectra of different uranyl compounds were studied. The wave number was related to the harmonic oscillator model and to the mathematical expression of Badger as modified by Jones, to determine the strength and the bond length of atoms U and O in UO 2 2+ . A mathematical simplification develop by us is proposed and its results compared with values obtained by other methods. (Author)

  7. On prediction of OH stretching frequencies in intramolecularly hydrogen bonded systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Spanget-Larsen, Jens

    2012-01-01

    OH stretching frequencies are investigated for a series of non-tautomerizing systems with intramolecular hydrogen bonds. Effective OH stretching wavenumbers are predicted by the application of empirical correlation procedures based on the results of B3LYP/6-31G(d) theoretical calculations...

  8. Statics and dynamics of free and hydrogen-bonded OH groups at the air/water interface.

    Science.gov (United States)

    Vila Verde, Ana; Bolhuis, Peter G; Campen, R Kramer

    2012-08-09

    We use classical atomistic molecular dynamics simulations of two water models (SPC/E and TIP4P/2005) to investigate the orientation and reorientation dynamics of two subpopulations of OH groups belonging to water molecules at the air/water interface at 300 K: those OH groups that donate a hydrogen bond (called "bonded") and those that do not (called "free"). Free interfacial OH groups reorient in two distinct regimes: a fast regime from 0 to 1 ps and a slow regime thereafter. Qualitatively similar behavior was reported by others for free OH groups near extended hydrophobic surfaces. In contrast, the net reorientation of bonded OH groups occurs at a rate similar to that of bulk water. This similarity in reorientation rate results from compensation of two effects: decreasing frequency of hydrogen-bond breaking/formation (i.e., hydrogen-bond exchange) and faster rotation of intact hydrogen bonds. Both changes result from the decrease in density at the air/water interface relative to the bulk. Interestingly, because of the presence of capillary waves, the slowdown of hydrogen-bond exchange is significantly smaller than that reported for water near extended hydrophobic surfaces, but it is almost identical to that reported for water near small hydrophobic solutes. In this sense water at the air/water interface has characteristics of water of hydration of both small and extended hydrophobic solutes.

  9. Cooperativity of hydrogen-bonded networks in 7-azaindole(CH3OH)n (n=2,3) clusters evidenced by IR-UV ion-dip spectroscopy and natural bond orbital analysis.

    Science.gov (United States)

    Sakota, Kenji; Kageura, Yutaka; Sekiya, Hiroshi

    2008-08-07

    IR-UV ion-dip spectra of the 7-azaindole (7AI)(CH(3)OH)(n) (n=1-3) clusters have been measured in the hydrogen-bonded NH and OH stretching regions to investigate the stable structures of 7AI(CH(3)OH)(n) (n=1-3) in the S(0) state and the cooperativity of the H-bonding interactions in the H-bonded networks. The comparison of the IR-UV ion-dip spectra with IR spectra obtained by quantum chemistry calculations shows that 7AI(CH(3)OH)(n) (n=1-3) have cyclic H-bonded structures, where the NH group and the heteroaromatic N atom of 7AI act as the proton donor and proton acceptor, respectively. The H-bonded OH stretch fundamental of 7AI(CH(3)OH)(2) is remarkably redshifted from the corresponding fundamental of (CH(3)OH)(2) by 286 cm(-1), which is an experimental manifestation of the cooperativity in H-bonding interaction. Similarly, two localized OH fundamentals of 7AI(CH(3)OH)(3) also exhibit large redshifts. The cooperativity of 7AI(CH(3)OH)(n) (n=2,3) is successfully explained by the donor-acceptor electron delocalization interactions between the lone-pair orbital in the proton acceptor and the antibonding orbital in the proton donor in natural bond orbital (NBO) analyses.

  10. OH stretching frequencies in systems with intramolecular hydrogen bonds

    DEFF Research Database (Denmark)

    Spanget-Larsen, Jens; Hansen, Bjarke Knud Vilster; Hansen, Poul Erik

    2011-01-01

    OH stretching wavenumbers were investigated for 30 species with intramolecularly hydrogen bonded hydroxyl groups, covering the range from 3600 to ca. 1900 cm-1. Theoretical wavenumbers were predicted with B3LYP/6-31G(d) density functional theory using the standard harmonic approximation, as well...

  11. Origin of the X-Hal (Hal = Cl, Br) bond-length change in the halogen-bonded complexes.

    Science.gov (United States)

    Wang, Weizhou; Hobza, Pavel

    2008-05-01

    The origin of the X-Hal bond-length change in the halogen bond of the X-Hal...Y type has been investigated at the MP2(full)/6-311++G(d,p) level of theory using a natural bond orbital analysis, atoms in molecules procedure, and electrostatic potential fitting methods. Our results have clearly shown that various theories explaining the nature of the hydrogen bond cannot be applied to explain the origin of the X-Hal bond-length change in the halogen bond. We provide a new explanation for this change. The elongation of the X-Hal bond length is caused by the electron-density transfer to the X-Hal sigma* antibonding orbital. For the blue-shifting halogen bond, the electron-density transfer to the X-Hal sigma* antibonding orbital is only of minor importance; it is the electrostatic attractive interaction that causes the X-Hal bond contraction.

  12. Analysis of surface bond lengths reported for chemisorption on metal surfaces

    Science.gov (United States)

    Mitchell, K. A. R.

    1985-01-01

    A review is given of bond length information available from the techniques of surface crystallography (particularly with LEED, SEXAFS and photoelectron diffraction) for chemisorption on well-defined surfaces of metals (M). For adsorbed main-group atoms (X), measured X-M interatomic distances for 38 combinations of X and M have been assessed with a bond order-bond length relation in combination with the Schomaker-Stevenson approach for determining single-bond lengths. When the surface bond orders are fixed primarily by the valency of X, this approach appears to provide a simple framework for predicing X-M surface bond lengths. Further, in cases where agreement has been reached from different surface crystallographic techniques, this framework has the potential for assessing refinements to the surface bonding model (e.g. in determining the roles of the effective surface valency of M, and of coordinate bonding and supplementary π bonding between X and M). Preliminary comparisons of structural data are also given for molecular adsorption (CO and ethylidyne) and for the chemisorption of other metal atoms.

  13. UV photolysis of 4-iodo-, 4-bromo-, and 4-chlorophenol: competition between C-Y (Y = halogen) and O-H bond fission.

    Science.gov (United States)

    Sage, Alan G; Oliver, Thomas A A; King, Graeme A; Murdock, Daniel; Harvey, Jeremy N; Ashfold, Michael N R

    2013-04-28

    The wavelength dependences of C-Y and O-H bond fission following ultraviolet photoexcitation of 4-halophenols (4-YPhOH) have been investigated using a combination of velocity map imaging, H Rydberg atom photofragment translational spectroscopy, and high level spin-orbit resolved electronic structure calculations, revealing a systematic evolution in fragmentation behaviour across the series Y = I, Br, Cl (and F). All undergo O-H bond fission following excitation at wavelengths λ ≲ 240 nm, on repulsive ((n∕π)σ∗) potential energy surfaces (PESs), yielding fast H atoms with mean kinetic energies ∼11,000 cm(-1). For Y = I and Br, this process occurs in competition with prompt C-I and C-Br bond cleavage on another (n∕π)σ∗ PES, but no Cl∕Cl∗ products unambiguously attributable to one photon induced C-Cl bond fission are observed from 4-ClPhOH. Differences in fragmentation behaviour at longer excitation wavelengths are more marked. Prompt C-I bond fission is observed following excitation of 4-IPhOH at all λ ≤ 330 nm; the wavelength dependent trends in I∕I∗ product branching ratio, kinetic energy release, and recoil anisotropy suggest that (with regard to C-I bond fission) 4-IPhOH behaves like a mildly perturbed iodobenzene. Br atoms are observed when exciting 4-BrPhOH at long wavelengths also, but their velocity distributions suggest that dissociation occurs after internal conversion to the ground state. O-H bond fission, by tunnelling (as in phenol), is observed only in the cases of 4-FPhOH and, more weakly, 4-ClPhOH. These observed differences in behaviour can be understood given due recognition of (i) the differences in the vertical excitation energies of the C-Y centred (n∕π)σ∗ potentials across the series Y = I bond strength, cf. that of the rival O-H bond, and (ii) the much increased spin-orbit coupling in, particularly, 4-IPhOH. The present results provide (another) reminder of the risks inherent in extrapolating photochemical

  14. Redshift or adduct stabilization -- a computational study of hydrogen bonding in adducts of protonated carboxylic acids

    DEFF Research Database (Denmark)

    Olesen, Solveig Gaarn; Hammerum, Steen

    2009-01-01

    It is generally expected that the hydrogen bond strength in a D-H-A adduct is predicted by the difference between the proton affinities of D and A, measured by the adduct stabilization, and demonstrated by the IR redshift of the D-H bond stretching vibrational frequency. These criteria do...... not always yield consistent predictions, as illustrated by the hydrogen bonds formed by the E and Z OH groups of protonated carboxylic acids. The delta-PA and the stabilization of a series of hydrogen bonded adducts indicate that the E OH group forms the stronger hydrogen bonds, whereas the bond length...... carboxylic acids are different. The OH bond length and IR redshift afford the better measure of hydrogen bond strength....

  15. UV photolysis of 4-iodo-, 4-bromo-, and 4-chlorophenol: Competition between C-Y (Y = halogen) and O-H bond fission

    Science.gov (United States)

    Sage, Alan G.; Oliver, Thomas A. A.; King, Graeme A.; Murdock, Daniel; Harvey, Jeremy N.; Ashfold, Michael N. R.

    2013-04-01

    The wavelength dependences of C-Y and O-H bond fission following ultraviolet photoexcitation of 4-halophenols (4-YPhOH) have been investigated using a combination of velocity map imaging, H Rydberg atom photofragment translational spectroscopy, and high level spin-orbit resolved electronic structure calculations, revealing a systematic evolution in fragmentation behaviour across the series Y = I, Br, Cl (and F). All undergo O-H bond fission following excitation at wavelengths λ ≲ 240 nm, on repulsive ((n/π)σ*) potential energy surfaces (PESs), yielding fast H atoms with mean kinetic energies ˜11 000 cm-1. For Y = I and Br, this process occurs in competition with prompt C-I and C-Br bond cleavage on another (n/π)σ* PES, but no Cl/Cl* products unambiguously attributable to one photon induced C-Cl bond fission are observed from 4-ClPhOH. Differences in fragmentation behaviour at longer excitation wavelengths are more marked. Prompt C-I bond fission is observed following excitation of 4-IPhOH at all λ ≤ 330 nm; the wavelength dependent trends in I/I* product branching ratio, kinetic energy release, and recoil anisotropy suggest that (with regard to C-I bond fission) 4-IPhOH behaves like a mildly perturbed iodobenzene. Br atoms are observed when exciting 4-BrPhOH at long wavelengths also, but their velocity distributions suggest that dissociation occurs after internal conversion to the ground state. O-H bond fission, by tunnelling (as in phenol), is observed only in the cases of 4-FPhOH and, more weakly, 4-ClPhOH. These observed differences in behaviour can be understood given due recognition of (i) the differences in the vertical excitation energies of the C-Y centred (n/π)σ* potentials across the series Y = I increased spin-orbit coupling in, particularly, 4-IPhOH. The present results provide (another) reminder of the risks inherent in extrapolating photochemical behaviour measured for one molecule at one wavelength to other (related) molecules and to

  16. The extended variant of the bond valence-bond length correlation curve for boron(III)-oxygen bonds

    International Nuclear Information System (INIS)

    Sidey, Vasyl

    2015-01-01

    The extended variant of the bond valence (s)-bond length (r) correlation curve for boron(III)-oxygen bonds has been closely approximated using the three-parameter function s = [k/(r - l)] - m, where s is measured in valence units (vu), r is measured in Aa, k = 0.53 Aa.vu, l = 0.975(1) Aa and m = 0.32 vu. The function s = exp[(r 0 - r)/b] traditionally used in the modern bond valence model requires the separate set of the bond valence parameters (r 0 = 1.362 Aa; b = 0.23 Aa) in order to approximate the above s-r curve for the bonds shorter than ∝1.3 Aa.

  17. The O-H Bond Dissociation Energies of Substituted Phenols and Proton Affinities of Substituted Phenoxide Ions: A DFT Study

    Directory of Open Access Journals (Sweden)

    Tadafumi Uchimaru

    2002-04-01

    Full Text Available Abstract: The accurate O-H bond dissociation enthalpies for a series of meta and para substituted phenols (X-C6H4-OH, X=H, F, Cl, CH3, OCH3, OH, NH2, CF3, CN, and NO2 have been calculated by using the (ROB3LYP procedure with 6-311G(d,p and 6-311++G(2df,2p basis sets. The proton affinities of the corresponding phenoxide ions (XC6H4-O- have also been computed at the same level of theory. The effect of change of substituent position on the energetics of substituted phenols has been analyzed. The correlations of Hammett’s substituent constants with the bond dissociation enthalpies of the O-H bonds of phenols and proton affinities of phenoxide ions have been explored.

  18. Ultrafast OH-stretching frequency shifts of hydrogen- bonded 2-naphthol photoacid-base complexes in solution

    Directory of Open Access Journals (Sweden)

    Batista VictorS.

    2013-03-01

    Full Text Available We characterize the transient solvent-dependent OH-stretching frequency shifts of photoacid 2-naphthol hydrogen-bonded with CH3CN in the S0- and S1-states using a combined experimental and theoretical approach, and disentangle specific hydrogen-bonding contributions from nonspecific dielectric response.

  19. Hydrogen-bonding behavior of various conformations of the HNO3…(CH3OH)2 ternary system.

    Science.gov (United States)

    Özsoy, Hasan; Uras-Aytemiz, Nevin; Balcı, F Mine

    2017-12-21

    Nine minima were found on the intermolecular potential energy surface for the ternary system HNO 3 (CH 3 OH) 2 at the MP2/aug-cc-pVDZ level of theory. The cooperative effect, which is a measure of the hydrogen-bonding strength, was probed in these nine conformations of HNO 3 …(CH 3 OH) 2 . The results are discussed here in terms of structures, energetics, infrared vibrational frequencies, and topological parameters. The cooperative effect was observed to be an important contributor to the total interaction energies of the cyclic conformers of HNO 3 …(CH 3 OH) 2 , meaning that it cannot be neglected in simulations in which the pair-additive potential is applied. Graphical abstract The H-bonding behavior of various conformations of the HNO 3 (CH 3 OH) 2 trimer was investigated.

  20. Hydrogen-Bonding Network and OH Stretch Vibration of Cellulose: Comparison of Computational Modeling with Polarized IR and SFG Spectra.

    Science.gov (United States)

    Lee, Christopher M; Kubicki, James D; Fan, Bingxin; Zhong, Linghao; Jarvis, Michael C; Kim, Seong H

    2015-12-10

    Hydrogen bonds play critical roles in noncovalent directional interactions determining the crystal structure of cellulose. Although diffraction studies accurately determined the coordinates of carbon and oxygen atoms in crystalline cellulose, the structural information on hydrogen atoms involved in hydrogen-bonding is still elusive. This could be complemented by vibrational spectroscopy; but the assignment of the OH stretch peaks has been controversial. In this study, we performed calculations using density functional theory with dispersion corrections (DFT-D2) for the cellulose Iβ crystal lattices with the experimentally determined carbon and oxygen coordinates. DFT-D2 calculations revealed that the OH stretch vibrations of cellulose are highly coupled and delocalized through intra- and interchain hydrogen bonds involving all OH groups in the crystal. Additionally, molecular dynamics (MD) simulations of a single cellulose microfibril showed that the conformations of OH groups exposed at the microfibril surface are not well-defined. Comparison of the computation results with the experimentally determined IR dichroism of uniaxially aligned cellulose microfibrils and the peak positions of various cellulose crystals allowed unambiguous identification of OH stretch modes observed in the vibrational spectra of cellulose.

  1. Influence of alkyl chain length and temperature on thermophysical properties of ammonium-based ionic liquids with molecular solvent.

    Science.gov (United States)

    Kavitha, T; Attri, Pankaj; Venkatesu, Pannuru; Devi, R S Rama; Hofman, T

    2012-04-19

    Mixing of ionic liquids (ILs) with molecular solvent can expand the range of structural properties and the scope of molecular interactions between the molecules of the solvents. Exploiting of these phenomena essentially require a basic fundamental understanding of mixing behavior of ILs with molecular solvents. In this context, a series of protic ILs possessing tetra-alkyl ammonium cation [R(4)N](+) with commonly used anion hydroxide [OH](-) were synthesized and characterized by temperature dependent thermophysical properties. The ILs [R(4)N](+)[OH](-) are varying only in the length of alkyl chain (R is methyl, ethyl, propyl, or butyl) of tetra-alkyl ammonium on the cationic part. The ILs used for the present study included tetramethyl ammonium hydroxide [(CH(3))(4)N](+)[OH](-) (TMAH), tetraethyl ammonium hydroxide [(C(2)H(5))(4)N](+)[OH](-) (TEAH), tetrapropyl ammonium hydroxide [(C(3)H(7))(4)N](+)[OH](-) (TPAH) and tetrabutyl ammonium hydroxide [(C(4)H(9))(4)N](+)[OH](-) (TBAH). The alkyl chain length effect has been analyzed by precise measurements such as densities (ρ), ultrasonic sound velocity (u), and viscosity (η) of these ILs with polar solvent, N-methyl-2-pyrrolidone (NMP), over the full composition range as a function of temperature. The excess molar volume (V(E)), the deviation in isentropic compressibility (Δκ(s)) and deviation in viscosity (Δη) were predicted using these properties as a function of the concentration of ILs. Redlich-Kister polynomial was used to correlate the results. A qualitative analysis of the results is discussed in terms of the ion-dipole, ion-pair interactions, and hydrogen bonding between ILs and NMP molecules. Later, the hydrogen bonding features between ILs and NMP were also analyzed using a molecular modeling program with the help of HyperChem 7.

  2. Metal-metal bonds involving the f elements. 4. Molecular orbital studies of metal-metal and metal-ligand interactions in dinuclear uranium(V) systems

    International Nuclear Information System (INIS)

    Cayton, R.H.; Novo-Gradac, K.J.; Bursten, B.E.

    1991-01-01

    The electronic structures of a series of dinuclear uranium(V) complexes have been investigated using Xα-SW molecular orbital calculations including quasirelativistic corrections. Complexes of the formula U 2 H 10 and U 2 (OH) 10 were used to model the metal-ligand σ and π interactions, respectively, in the known species U 2 (O-i-Pr) 10 . Two basic geometries were investigated: a vertex-sharing bioctahedron with only terminal ligands (D 4h symmetry) and an edge-sharing bioctahedron containing two bridging ligands (D 2h symmetry). The latter geometry, which is that of U 2 (O-i-Pr) 10 , was also examined at U-U bonding and nonbonding distances. The calculations indicate that the U-U interactions are significantly perturbed when H is replaced by OH, owing to strong donation from the OH pπ orbitals into selected U 5f orbitals. The result is a lack of any appreciable U-U interaction for U 2 (OH) 10 in either the D 4h or D 2h geometry. In addition, the overall OH π donation to the U 5f levels is enhanced in the D 2h geometry. The electronic structure of a hypothetical U(V) dimer, Cp 2 U 2 O 4 , was also examined in both bridged and unsupported geometries. The unbridged geometry, like that for U 2 (OH) 10 , suffered from a destabilization of the U-U σ orbital due to ligand π donation and revealed no net U-U bonding. However, the geometry exhibiting two bridging oxo ligands maintains the U-U σ-bonding MO as its lowest energy U 5f orbital. 21 refs., 8 figs., 8 tabs

  3. Raman spectra from very concentrated aqueous NaOH and from wet and dry, solid, and anhydrous molten, LiOH, NaOH, and KOH.

    Science.gov (United States)

    Walrafen, George E; Douglas, Rudolph T W

    2006-03-21

    High-temperature, high-pressure Raman spectra were obtained from aqueous NaOH solutions up to 2NaOHH2O, with X(NaOH)=0.667 at 480 K. The spectra corresponding to the highest compositions, X(NaOH)> or =0.5, are dominated by H3O2-. An IR xi-function dispersion curve for aqueous NaOH, at 473 K and 1 kbar, calculated from the data of Franck and Charuel indicates that the OH- ion forms H3O2- by preferential H bonding with nonhydrogen-bonded OH groups. Raman spectra from wet to anhydrous, solid LiOH, NaOH, and KOH yield sharp, symmetric OH- stretching peaks at 3664, 3633, and 3596 cm(-1), respectively, plus water-related, i.e., H3O2-, peaks near LiOH, 3562 cm(-1), NaOH, 3596 cm(-1), and, KOH, 3500 cm(-1). Absence of H3O2- peaks from the solid assures that the corresponding melt is anhydrous. Raman spectra from the anhydrous melts yield OH- stretching peak frequencies: LiOH, 3614+/-4 cm(-1), 873 K; NaOH, 3610+/-2 cm(-1), 975 K; and, KOH, 3607+/-2 cm(-1), 773 K, but low-frequency asymmetry due to ion-pair interactions is present which is centered near 3550 cm(-1). The ion-pair-related asymmetry corresponds to the sole IR maximum near 3550 cm(-1) from anhydrous molten NaOH, at 623 K. Bose-Einstein correction of published low-frequency Raman data from molten LiOH revealed an acoustic phonon, near 205 cm(-1), related to restricted translation of OH- versus Li+, and an optical phonon, at 625 cm(-1) and tau approximately 0.05 ps, due to protonic precession and/or pendular motion. Strong H bonding between water and the O atom of OH- forms H3O2-, but the proton of OH- does not bond with H significantly. Large Raman bandwidths (aqueous solutions) are explained in terms of inhomogeneous broadening due to proton transfer in a double well. Vibrational assignments are presented for H3O2-.

  4. Scaling of the critical free length for progressive unfolding of self-bonded graphene

    Energy Technology Data Exchange (ETDEWEB)

    Kwan, Kenny; Cranford, Steven W., E-mail: s.cranford@neu.edu [Laboratory of Nanotechnology in Civil Engineering (NICE), Department of Civil and Environmental Engineering, Northeastern University, 400 Snell Engineering, 360 Huntington Avenue, Boston, Massachusetts 02115 (United States)

    2014-05-19

    Like filled pasta, rolled or folded graphene can form a large nanocapsule surrounding a hollow interior. Use as a molecular carrier, however, requires understanding of the opening of such vessels. Here, we investigate a monolayer sheet of graphene as a theoretical trial platform for such a nanocapsule. The graphene is bonded to itself via aligned disulfide (S-S) bonds. Through theoretical analysis and atomistic modeling, we probe the critical nonbonded length (free length, L{sub crit}) that induces fracture-like progressive unfolding as a function of folding radius (R{sub i}). We show a clear linear scaling relationship between the length and radius, which can be used to determine the necessary bond density to predict mechanical opening/closing. However, stochastic dissipated energy limits any exact elastic formulation, and the required energy far exceeds the dissociation energy of the S-S bond. We account for the necessary dissipated kinetic energy through a simple scaling factor (Ω), which agrees well with computational results.

  5. The Influences of Overlap Length, Bond Line Thickness and Pretreatmant on the Mechanical Properties of Adhesives : Focussing on Bonding Glass

    NARCIS (Netherlands)

    Vervloed, J.; Kwakernaak, A.; Poulis, H.

    2008-01-01

    This paper focuses on the influences of overlap length, bond line thickness and pretreatment on the mechanical properties of adhesive bonds. In order to determine the bond strength, lap shear tests were performed. The researched adhesives are a 2 component epoxy and MS polymer. The smallest overlap

  6. Crystal structures of Th(OH)PO4, U(OH)PO4 and Th2O(PO4)2. Condensation mechanism of M(IV)(OH)PO4 (M= Th, U) into M2O(PO4)2

    International Nuclear Information System (INIS)

    Dacheux, N.; Clavier, N.; Wallez, G.; Quarton, M.

    2007-01-01

    Three new crystal structures, isotypic with β-Zr 2 O(PO 4 ) 2 , have been resolved by the Rietveld method. All crystallize with an orthorhombic cell (S.G.: Cmca) with a = 7.1393(2) Angstroms, b = 9.2641(2) Angstroms, c 12.5262(4) Angstroms, V = 828.46(4) (Angstroms) 3 and Z = 8 for Th(OH)PO 4 ; a = 7.0100(2) Angstroms, b = 9.1200(2) Angstroms, c = 12.3665(3) Angstroms, V 790.60(4) (Angstroms) 3 and Z = 8 for U(OH)PO 4 ; a 7.1691(3) Angstroms, b 9.2388(4) Angstroms, c = 12.8204(7) Angstroms, V 849.15(7) (Angstroms) 3 and Z = 4 for Th 2 O(PO 4 ) 2 . By heating, the M(OH)PO 4 (M Th, U) compounds condense topotactically into M 2 O(PO 4 ) 2 , with a change of the environment of the tetravalent cation that lowers from 8 to 7 oxygen atoms. The lower stability of Th 2 O(PO 4 ) 2 compared to that of U 2 O(PO 4 ) 2 seems to result from this unusual environment for tetravalent thorium. (authors)

  7. Predicted bond length variation in wurtzite and zinc-blende InGaN and AlGaN alloys

    International Nuclear Information System (INIS)

    Mattila, T.; Zunger, A.

    1999-01-01

    Valence force field simulations utilizing large supercells are used to investigate the bond lengths in wurtzite and zinc-blende In x Ga 1-x N and Al x Ga 1-x N random alloys. We find that (i) while the first-neighbor cation endash anion shell is split into two distinct values in both wurtzite and zinc-blende alloys (R Ga-N 1 ≠R In-N 1 ), the second-neighbor cation endash anion bonds are equal (R Ga-N 2 =R In-N 2 ). (ii) The second-neighbor cation endash anion bonds exhibit a crucial difference between wurtzite and zinc-blende binary structures: in wurtzite we find two bond distances which differ in length by 13% while in the zinc-blende structure there is only one bond length. This splitting is preserved in the alloy, and acts as a fingerprint, distinguishing the wurtzite from the zinc-blende structure. (iii) The small splitting of the first-neighbor cation endash anion bonds in the wurtzite structure due to nonideal c/a ratio is preserved in the alloy, but is obscured by the bond length broadening. (iv) The cation endash cation bond lengths exhibit three distinct values in the alloy (Ga endash Ga, Ga endash In, and In endash In), while the anion endash anion bonds are split into two values corresponding to N endash Ga endash N and N endash In endash N. (v) The cation endash related splitting of the bonds and alloy broadening are considerably larger in InGaN alloy than in AlGaN alloy due to larger mismatch between the binary compounds. (vi) The calculated first-neighbor cation endash anion and cation endash cation bond lengths in In x Ga 1-x N alloy are in good agreement with the available experimental data. The remaining bond lengths are provided as predictions. In particular, the predicted splitting for the second-neighbor cation endash anion bonds in the wurtzite structure awaits experimental testing. copyright 1999 American Institute of Physics

  8. Bond length variation in Zn substituted NiO studied from extended X-ray absorption fine structure

    Science.gov (United States)

    Singh, S. D.; Poswal, A. K.; Kamal, C.; Rajput, Parasmani; Chakrabarti, Aparna; Jha, S. N.; Ganguli, Tapas

    2017-06-01

    Bond length behavior for Zn substituted NiO is determined through extended x-ray absorption fine structure (EXAFS) measurements performed at ambient conditions. We report bond length value of 2.11±0.01 Å for Zn-O of rock salt (RS) symmetry, when Zn is doped in RS NiO. Bond length for Zn substituted NiO RS ternary solid solutions shows relaxed behavior for Zn-O bond, while it shows un-relaxed behavior for Ni-O bond. These observations are further supported by first-principles calculations. It is also inferred that Zn sublattice remains nearly unchanged with increase in lattice parameter. On the other hand, Ni sublattice dilates for Zn compositions up to 20% to accommodate increase in the lattice parameter. However, for Zn compositions more than 20%, it does not further dilate. It has been attributed to the large disorder that is incorporated in the system at and beyond 20% of Zn incorporation in the cubic RS lattice of ternary solid solutions. For these large percentages of Zn incorporation, the Ni and the Zn atoms re-arrange themselves microscopically about the same nominal bond length rather than systematically increase in magnitude to minimize the energy of the system. This results in an increase in the Debye-Waller factor with increase in the Zn concentration rather than a systematic increase in the bond lengths.

  9. Bond lengths in Cd1-xZnxTe beyond linear laws revisited

    International Nuclear Information System (INIS)

    Koteski, V.; Haas, H.; Holub-Krappe, E.; Ivanovic, N.; Mahnke, H.-E.

    2004-01-01

    We have investigated the development of local bond lengths with composition in the Cd 1-x Zn x Te mixed system by measuring the fine structure in X-ray absorption (EXAFS) at all three constituent atoms. The bond strength is found to dominate over the averaging of the bulk so that the local bond length deviates only slightly from its natural value determined for the pure binary components ZnTe and CdTe, respectively. The deviations are significantly less than predicted by a simple radial force constant model for tetrahedrally co-ordinated binary systems, and the bond-length variation with concentration is significantly non-linear. For the second shell, bimodal anion-anion distances are found while the cation-cation distances can already be described by the virtual crystal approximation. In the diluted regime close to the end-point compounds, we have complemented our experimental work by ab initio calculations based on density functional theory with the WIEN97 program using the linearised augmented plane wave method. Equilibrium atomic lattice positions have been calculated for the substitutional isovalent metal atom in a 32-atom super cell, Zn in the CdTe lattice or Cd in the ZnTe lattice, respectively, yielding good agreement with the atomic distances as determined in our EXAFS experiments

  10. Gas-phase synthesis and structure of monomeric ZnOH: a model species for metalloenzymes and catalytic surfaces.

    Science.gov (United States)

    Zack, Lindsay N; Sun, Ming; Bucchino, Matthew P; Clouthier, Dennis J; Ziurys, Lucy M

    2012-02-16

    Monomeric ZnOH has been studied for the first time using millimeter and microwave gas-phase spectroscopy. ZnOH is important in surface processes and at the active site of the enzyme carbonic anhydrase. In the millimeter-wave direct-absorption experiments, ZnOH was synthesized by reacting zinc vapor, produced in a Broida-type oven, with water. In the Fourier-transform microwave measurements, ZnOH was produced in a supersonic jet expansion of CH(3)OH and zinc vapor, created by laser ablation. Multiple rotational transitions of six ZnOH isotopologues in their X(2)A' ground states were measured over the frequency range of 22-482 GHz, and splittings due to fine and hyperfine structure were resolved. An asymmetric top pattern was observed in the spectra, showing that ZnOH is bent, indicative of covalent bonding. From these data, spectroscopic constants and an accurate structure were determined. The Zn-O bond length was found to be similar to that in carbonic anhydrase and other model enzyme systems.

  11. Different Roles of Endo- and Exo-cyclic Double Bonds in Limonene Ozonolysis System: Effect of Water and OH Radical Scavengers

    Science.gov (United States)

    Gong, Y.; Li, H.; Chen, Z.

    2017-12-01

    Limonene, as an important monoterpene, has a high emission rate both from biogenic and anthropogenic sources. Its doubly unsaturated structure leads to a high potential for secondary organic aerosol formation and a detailed understanding of roles of endo- and exo-cyclic double bonds in limonene ozonolysis is in urgent need. This study provided new insights into the mechanism and effect of both unsaturated bonds oxidation. A low and a high ratio set of [O3]/[limonene] experiments in the presence or absence of OH scavenger (2-butanol or cyclohexane) in the relative humidity (RH) range of 0-90% were conducted. Molar yields of hydrogen peroxide (H2O2) and hydromethyl hydroperoxide (HMHP) both increased rapidly as RH rose from 0 to 50%, then reached a plateau above 70% RH, while peroxyformic acid (PFA) and peroxyacetic acid (PAA) kept increasing with RH. The ozonolysis of exocyclic double bonds showed larger capacity for producing these peroxides than endocyclic ones, resulting in significantly higher yields of H2O2, HMHP, PFA and PAA in limonene ozonolysis than α-pinene when ozone was sufficient. The SOA mass fraction of total peroxides was 50% at high [O3]/[limonene] ratio, whereas only 12% at low ratio. The gas-particle partitioning coefficient of undetected peroxides rose up from (0.8-2.0)×10-3m3μg-1 at 0% RH to (4.0-5.2)×10-3m3μg-1 at 90% RH, indicating some water-dependent channels contributed low-volatility peroxides formation. A box model was employed to simulate the reaction system, and the results obviously underestimated the yield of H2O2, whilst overestimated the yield of undetected peroxides. It is interesting to note that SOA produced at high [O3]/[limonene] ratio could generate considerable amount of H2O2 in the aqueous phase, which may be another source of H2O2 in cloud drops. To elucidate the mechanism further, the yield of OH radicals formed from endocyclic double bonds was found to be about 3 times larger than that from exocyclic double bonds

  12. The Effect of Intermolecular Halogen Bond on 19F DNP Enhancement in 1, 4-Diiodotetrafluorobenzene/4-OH-TEMPO Supramolecular Assembly

    Directory of Open Access Journals (Sweden)

    GAO Shan

    2017-12-01

    Full Text Available Halogen bond, as hydrogen bond, is a non-covalent bond. Dynamic nuclear polarization (DNP technique has been used previously to study hydrogen bonds-mediated intermolecular interactions. However, no study has been carried out so far to study the halogen bond-mediated intermolecular interactions with DNP. In this work, 19F DNP polarization efficiency of the halogen bonds existing in supramolecular assembling by 4-OH-TEMPO and 1,4-diiodotetrafluorobenzene (DITFB was studied on a home-made DNP system. The formation of intermolecular halogen bonds appeared to increase 19F DNP polarization efficiency, suggesting that the spin-spin interactions among electrons were weakened by the halogen bonds, resulting in an increased T2e and a larger saturation factor.

  13. Bond length effects during the dissociation of O2 on Ni(1 1 1)

    International Nuclear Information System (INIS)

    Shuttleworth, I.G.

    2015-01-01

    Graphical abstract: - Highlights: • The dissociation of O 2 on Ni(1 1 1) has been investigated using the Nudged Elastic Band (NEB) technique. • An exceptional correlation has been identified between the O/Ni bond order and the O 2 bond length for a series of sterically different reaction paths. • Direct magnetic phenomena accompany these processes suggesting further mechanisms for experimental control. - Abstract: The interaction between O 2 and Ni(1 1 1) has been investigated using spin-polarised density functional theory. A series of low activation energy (E A = 103–315 meV) reaction pathways corresponding to precursor and non-precursor mediated adsorption have been identified. It has been seen that a predominantly pathway-independent correlation exists between O−Ni bond order and the O 2 bond length. This correlation demonstrates that the O−O interaction predominantly determines the bonding of this system

  14. Bond-length fluctuations in the copper oxide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, John B [Texas Materials Institute, ETC 9.102, University of Texas at Austin, Austin, TX 78712 (United States)

    2003-02-26

    Superconductivity in the copper oxides occurs at a crossover from localized to itinerant electronic behaviour, a transition that is first order. A spinodal phase segregation is normally accomplished by atomic diffusion; but where it occurs at too low a temperature for atomic diffusion, it may be realized by cooperative atomic displacements. Locally cooperative, fluctuating atomic displacements may stabilize a distinguishable phase lying between a localized-electron phase and a Fermi-liquid phase; this intermediate phase exhibits quantum-critical-point behaviour with strong electron-lattice interactions making charge transport vibronic. Ordering of the bond-length fluctuations at lower temperatures would normally stabilize a charge-density wave (CDW), which suppresses superconductivity. It is argued that in the copper oxide superconductors, crossover occurs at an optimal doping concentration for the formation of ordered two-electron/two-hole bosonic bags of spin S = 0 in a matrix of localized spins; the correlation bags contain two holes in a linear cluster of four copper centres ordered within alternate Cu-O-Cu rows of a CuO{sub 2} sheet. This ordering is optimal at a hole concentration per Cu atom of p {approx} 1/6, but it is not static. Hybridization of the vibronic electrons with the phonons that define long-range order of the fluctuating (Cu-O) bond lengths creates barely itinerant, vibronic quasiparticles of heavy mass. The heavy itinerant vibrons form Cooper pairs having a coherence length of the dimension of the bosonic bags. It is the hybridization of electrons and phonons that, it is suggested, stabilizes the superconductive state relative to a CDW state. (topical review)

  15. The Golden ratio, ionic and atomic radii and bond lengths

    Czech Academy of Sciences Publication Activity Database

    Heyrovská, Rajalakshmi

    2005-01-01

    Roč. 103, 6-8 (2005), s. 877-882 ISSN 0026-8976 R&D Projects: GA MPO(CZ) 1H-PK/42 Institutional research plan: CEZ:AV0Z40400503 Keywords : Bohr radius * bond lengths * axial ratios Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.351, year: 2005

  16. Fluorine substitution and nonconventional OH...pi intramolecular bond: high-resolution UV spectroscopy and ab initio calculations of 2-(p-fluorophenyl)ethanol.

    Science.gov (United States)

    Karaminkov, Rosen; Chervenkov, Sotir; Neusser, Hans J

    2008-05-21

    The para-fluorinated flexible neurotransmitter analogue 2-phenylethanol has been investigated by highly resolved resonance-enhanced two-photon ionisation two-colour UV laser spectroscopy with mass resolution and ab initio structural optimisations and energy calculations. Two stable conformations, gauche and anti, separated by a high potential barrier have been identified in the cold molecular beam by rotational analysis of the vibronic band structures. The theoretically predicted higher-lying conformations most likely relax to these two structures during the adiabatic expansion. The lowest-energy gauche conformer is stabilised by an intramolecular nonconventional OH...pi-type hydrogen bond between the terminal OH group of the side chain and the pi electrons of the phenyl ring. The good agreement between the experimental and theoretical results demonstrates that even the substitution with a strongly electronegative atom of 2-phenylethanol at the para position has no noticeable effect on the strength and orientation of the OH...pi bond.

  17. Hydrogen bonded networks in formamide [HCONH2]n (n = 1 – 10 ...

    Indian Academy of Sciences (India)

    gns

    Table S1: Comparison of interaction energy (I.E) in kcal/mol in four arrangements of formamide n=1-10 at B3LYP/D95** level of theory. n = #monomers. Table S2: O---H bond length (in Å) for formamide clusters n = (2-10). Table S3: N-H bond stretching frequency (in cm-1) for four arrangements of formamide clusters n.

  18. Cooperativity in Surface Bonding and Hydrogen Bonding of Water and Hydroxyl at Metal Surfaces

    DEFF Research Database (Denmark)

    Schiros, T.; Ogasawara, H.; Naslund, L. A.

    2010-01-01

    of the mixed phase at metal surfaces. The surface bonding can be considered to be similar to accepting a hydrogen bond, and we can thereby apply general cooperativity rules developed for hydrogen-bonded systems. This provides a simple understanding of why water molecules become more strongly bonded...... to the surface upon hydrogen bonding to OH and why the OH surface bonding is instead weakened through hydrogen bonding to water. We extend the application of this simple model to other observed cooperativity effects for pure water adsorption systems and H3O+ on metal surfaces.......We examine the balance of surface bonding and hydrogen bonding in the mixed OH + H2O overlayer on Pt(111), Cu(111), and Cu(110) via density functional theory calculations. We find that there is a cooperativity effect between surface bonding and hydrogen bonding that underlies the stability...

  19. Deuteriation of an asymmetric short hydrogen bond. X-ray crystal structure of KF.(CH2CO2D)2

    International Nuclear Information System (INIS)

    Emsley, J.; Jones, D.J.; Kuroda, R.

    1981-01-01

    Deuteriation of the strong hydrogen bonds of KF.(CH 2 CO 2 H) 2 shows no isotope effect on the bond lengths. The only significant change is in the bond angle at the fluoride ion which widens to 128.5 from 116 0 . The i.r. spectrum shows very little change. Since the O-H ... F - hydrogen bonds are highly asymmetric, these observations challenge previous predictions about the effects of deuteriation on such bonds. (author)

  20. Uranyl and/or rare-earth mellitates in extended organic-inorganic networks: A unique case of hetero-metallic cation-cation interaction with U-VI=O-Ln(III) bonding (Ln = Ce, Nd)

    International Nuclear Information System (INIS)

    Volkringer, Christophe; Henry, Natacha; Grandjean, Stephane; Loiseau, Thierry

    2012-01-01

    A series of uranyl and lanthanide (trivalent Ce, Nd) mellitates (mel) has been hydrothermally synthesized in aqueous solvent. Mixtures of these 4f and 5f elements also revealed the formation of a rare case of lanthanide-uranyl coordination polymers. Their structures, determined by XRD single-crystal analysis, exhibit three distinct architectures. The pure lanthanide mellitate Ln 2 (H 2 O) 6 (mel) possesses a 3D framework built up from the connection of isolated LnO 6 (H 2 O) 3 polyhedra (tri-capped trigonal prism) through the mellitate ligand. The structure of the uranyl mellitate (UO 2 ) 3 (H 2 O) 6 - (mel).11.5H 2 O is lamellar and consists of 8-fold coordinated uranium atoms linked to each other through the organic ligand giving rise to the formation of a 2D 3 6 net. The third structural type, (UO 2 ) 2 Ln(OH)(H 2 O) 3 (mel).2.5H 2 O, involves direct oxygen bondings between the lanthanide and uranyl centers, with the isolation of a hetero-metallic dinuclear motif. The 9-fold coordinated Ln cation, LnO 5 (OH)(H 2 O) 3 , is linked to the 7-fold coordinated uranyl (UO 2 )O-4(OH) (pentagonal bipyramid) via one μ 2 -hydroxo group and one μ 2 -oxo group. The latter is shared between the uranyl bonding (U=O = 1.777(4)1.779(6) angstrom) and a long Ln-O bonding (Ce-O = 2.822(4) angstrom; Nd-O = 2.792(6) angstrom). This unusual linkage is a unique illustration of the so-called cation cation interaction associating 4f and 5f metals. The dinuclear motif is then further connected through the mellitate ligand, and this generates organic inorganic layers that are linked to each other via discrete uranyl (UO 2 )O 4 units (square bipyramid), which ensure the three-dimensional cohesion of the structure. The mixed U-Ln carboxylate is thermally decomposed from 260 to 280 degrees C and then transformed into the basic uranium oxide (U 3 O 8 ) together with U-Ln oxide with the fluorite structural type ('(Ln,U)O 2 '). At 1400 degrees C, only fluorite type '(Ln,U)O 2 ' is formed with

  1. The Strength of Hydrogen Bonds between Fluoro-Organics and Alcohols, a Theoretical Study.

    Science.gov (United States)

    Rosenberg, Robert E

    2018-05-10

    Fluorinated organic compounds are ubiquitous in the pharmaceutical and agricultural industries. To better discern the mode of action of these compounds, it is critical to understand the strengths of hydrogen bonds involving fluorine. There are only a few published examples of the strengths of these bonds. This study provides a high level ab initio study of inter- and intramolecular hydrogen bonds between RF and R'OH, where R and R' are aryl, vinyl, alkyl, and cycloalkyl. Intermolecular binding energies average near 5 kcal/mol, while intramolecular binding energies average about 3 kcal/mol. Inclusion of zero-point energies and applying a counterpoise correction lessen the difference. In both series, modest increases in binding energies are seen with increased acidity of R'OH and increased electron donation of R in RF. In the intramolecular compounds, binding energy increases with the rigidity of the F-(C) n -OH ring. Inclusion of free energy corrections at 298 K results in exoergic binding energies for the intramolecular compounds and endoergic binding energies for the intermolecular compounds. Parameters such as bond lengths, vibrational frequencies, and atomic populations are consistent with formation of a hydrogen bond and with slightly stronger binding in the intermolecular cases over the intramolecular cases. However, these parameters correlated poorly with binding energies.

  2. The Hydrogen Bonded Structures of Two 5-Bromobarbituric Acids and Analysis of Unequal C5–X and C5–X′ Bond Lengths (X = X′ = F, Cl, Br or Me in 5,5-Disubstituted Barbituric Acids

    Directory of Open Access Journals (Sweden)

    Thomas Gelbrich

    2016-04-01

    Full Text Available The crystal structure of the methanol hemisolvate of 5,5-dibromobarbituric acid (1MH displays an H-bonded layer structure which is based on N–H∙∙∙O=C, N–H∙∙∙O(MeOH and (MeOHO–H∙∙∙O interactions. The barbiturate molecules form an H-bonded substructure which has the fes topology. 5,5′-Methanediylbis(5-bromobarbituric acid 2, obtained from a solution of 5,5-dibromobarbituric acid in nitromethane, displays a N–H···O=C bonded framework of the sxd type. The conformation of the pyridmidine ring and the lengths of the ring substituent bonds C5–X and C5–X′ in crystal forms of 5,5-dibromobarbituric acid and three closely related analogues (X = X′ = Br, Cl, F, Me have been investigated. In each case, a conformation close to a C5-endo envelope is correlated with a significant lengthening of the axial C5–X′ in comparison to the equatorial C5–X bond. Isolated molecule geometry optimizations at different levels of theory confirm that the C5-endo envelope is the global conformational energy minimum of 5,5-dihalogenbarbituric acids. The relative lengthening of the axial bond is therefore interpreted as an inherent feature of the preferred envelope conformation of the pyrimidine ring, which minimizes repulsive interactions between the axial substituent and pyrimidine ring atoms.

  3. Mechanism of CO 2 Fixation by Ir I -X Bonds (X = OH, OR, N, C)

    KAUST Repository

    Vummaleti, Sai V. C.; Talarico, Giovanni; Nolan, Steven P.; Cavallo, Luigi; Poater, Albert

    2015-01-01

    Density functional theory calculations have been used to investigate the CO2 fixation mechanism proposed by Nolan et al. for the IrI complex [Ir(cod)(IiPr)(OH)] (1; cod = 1,5-cyclooctadiene; IiPr = 1,3-diisopropylimidazol-2-ylidene) and its derivatives. For 1, our results suggest that CO2 insertion is the rate-limiting step rather than the dimerization step. Additionally, in agreement with the experimental results, our results show that CO2 insertion into the Ir-OR1 (R1 = H, methyl, and phenyl) and Ir-N bonds is kinetically facile, and the calculated activation energies span a range of only 12.0-23.0 kcal/mol. Substantially higher values (35.0-50.0 kcal/mol) are reported for analogous Ir-C bonds. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Mechanism of CO 2 Fixation by Ir I -X Bonds (X = OH, OR, N, C)

    KAUST Repository

    Vummaleti, Sai V. C.

    2015-09-08

    Density functional theory calculations have been used to investigate the CO2 fixation mechanism proposed by Nolan et al. for the IrI complex [Ir(cod)(IiPr)(OH)] (1; cod = 1,5-cyclooctadiene; IiPr = 1,3-diisopropylimidazol-2-ylidene) and its derivatives. For 1, our results suggest that CO2 insertion is the rate-limiting step rather than the dimerization step. Additionally, in agreement with the experimental results, our results show that CO2 insertion into the Ir-OR1 (R1 = H, methyl, and phenyl) and Ir-N bonds is kinetically facile, and the calculated activation energies span a range of only 12.0-23.0 kcal/mol. Substantially higher values (35.0-50.0 kcal/mol) are reported for analogous Ir-C bonds. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effect of Different Bar Embedment Length on Bond-Slip in Plain and Fiber Reinforced Concrete

    NARCIS (Netherlands)

    Jankovic, D.; Chopra, M.B.; Kunnath, S.K.

    2001-01-01

    This research aims to study the behaviour of the concrete-steel bond using numerical models, taking into account the effect of the different bar embedment length. Both plain and fiber reinforced concrete (FRC) are modeled. The interface bond stress as well as load-displacement response of the

  6. Origin of the OH vibrational blue shift in the LiOH crystal.

    Science.gov (United States)

    Hermansson, Kersti; Gajewski, Grzegorz; Mitev, Pavlin D

    2008-12-25

    The O-H vibrational frequency in crystalline hydroxides is either upshifted or downshifted by its crystalline surroundings. In the LiOH crystal, the experimental gas-to-solid O-H frequency upshift ("blue shift") is approximately +115 cm(-1). Here plane-wave DFT calculations for the isotope-isolated LiOH crystal have been performed and we discuss the origin of the OH frequency upshift, and the nature of the OH group and the interlayer interactions. We find that (1) the vibrational frequency upshift originates from interactions within the LiOH layer; this OH upshift is slightly lessened by the interlayer interactions; (2) the interlayer O-H - - - H-O interaction is largely electrostatic in character (but there is no hydrogen bonding); (3) the gas-to-solid vibrational shift for OH in LiOH(s) and its subsystems qualitatively adheres to a parabola-like "frequency vs electric field strength" correlation curve, which has a maximum for a positive electric field, akin to the correlation curve earlier found in the literature for an isolated OH(-) ion in an electric field.

  7. Replacement of Oxygen by Sulfur in Small Organic Molecules. 3. Theoretical Studies on the Tautomeric Equilibria of the 2OH and 4OH-Substituted Oxazole and Thiazole and the 3OH and 4OH-Substituted Isoxazole and Isothiazole in the Isolated State and in Solution

    Directory of Open Access Journals (Sweden)

    Peter I. Nagy

    2016-07-01

    Full Text Available This follow-up paper completes the author’s investigations to explore the in-solution structural preferences and relative free energies of all OH-substituted oxazole, thiazole, isoxazole, and isothiazole systems. The polarizable continuum dielectric solvent method calculations in the integral-equation formalism (IEF-PCM were performed at the DFT/B97D/aug-cc-pv(q+(dz level for the stable neutral tautomers with geometries optimized in dichloromethane and aqueous solution. With the exception of the predictions for the predominant tautomers of the 3OH isoxazole and isothiazole, the results of the IEF-PCM calculations for identifying the most stable tautomer of the given species in the two selected solvents agreed with those from experimental investigations. The calculations predict that the hydroxy proton, with the exception for the 4OH isoxazole and 4OH isothiazole, moves preferentially to the ring nitrogen or to a ring carbon atom in parallel with the development of a C=O group. The remaining, low-fraction OH tautomers will not be observable in the equilibrium compositions. Relative solvation free energies obtained by the free energy perturbation method implemented in Monte Carlo simulations are in moderate accord with the IEF-PCM results, but consideration of the ΔGsolv/MC values in calculating ΔGstot maintains the tautomeric preferences. It was revealed from the Monte Carlo solution structure analyses that the S atom is not a hydrogen-bond acceptor in any OH-substituted thiazole or isothiazole, and the OH-substituted isoxazole and oxazole ring oxygens may act as a weak hydrogen-bond acceptor at most. The molecules form 1.0−3.4 solute−water hydrogen bonds in generally unexplored numbers at some specific solute sites. Nonetheless, hydrogen-bond formation is favorable with the NH, C=O and OH groups.

  8. Research on the removal mechanism of antimony on α-MnO2 nanorod in aqueous solution: DFT + U method.

    Science.gov (United States)

    Li, Guifa; Zhao, Pengsen; Zheng, Haizhong; Yang, Lixia; Lu, Shiqiang; Peng, Ping

    2018-04-24

    Although previous papers have reported the desorption process of antimony (Sb) ions adsorbed on α-MnO 2 nanomaterials, some trace Sb(OH) 4 - molecular observed in experiments have not been understood clearly. Using two models as popular bulk surface and new microfacet, several parameters, such as adsorption energy, bond length, total density of state (TDOS) and activation energy, were calculated to research and analyze the catalytic reaction of Sb oxides on α-MnO 2 . The results show that the bulk surface model has the "mirror effect" in revealing the catalytic property of α-MnO 2 nanorods. Using MnO 2 [(100 × 110)] microfacet model, a new molecular Sb(OH) 4 - molecular appears in the reaction process of Sb(OH) 3  + H 2 O → Sb(OH) 4 -  + H + . Further comparing the geometric morphology and TDOS of Sb(OH) 4 - with Sb(OH) 6 - molecular, it is found that their bonding length, dihedral and energy orbital of bonding peaks are too close to set the Sb(OH) 4 - as the precursor product of Sb(OH) 6 - molecular. Then the desorption process of Sb ions on α-MnO 2 nanorods is virtually transformed into Sb(OH) 3  → Sb(OH) 4 -  → Sb(OH) 6 - way in aqueous solution. Thus, our findings open an avenue for detailed and comprehensive theoretical studies of catalytic reaction by nanomaterials. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Vibrational tug-of-war: The pKA dependence of the broad vibrational features of strongly hydrogen-bonded carboxylic acids

    Science.gov (United States)

    Van Hoozen, Brian L.; Petersen, Poul B.

    2018-04-01

    Medium and strong hydrogen bonds give rise to broad vibrational features frequently spanning several hundred wavenumbers and oftentimes exhibiting unusual substructures. These broad vibrational features can be modeled from first principles, in a reduced dimensional calculation, that adiabatically separates low-frequency modes, which modulate the hydrogen bond length, from high-frequency OH stretch and bend modes that contribute to the vibrational structure. Previously this method was used to investigate the origin of an unusual vibrational feature frequently found in the spectra of dimers between carboxylic acids and nitrogen-containing aromatic bases that spans over 900 cm-1 and contains two broad peaks. It was found that the width of this feature largely originates from low-frequency modes modulating the hydrogen bond length and that the structure results from Fermi resonance interactions. In this report, we examine how these features change with the relative acid and base strength of the components as reflected by their aqueous pKA values. Dimers with large pKA differences are found to have features that can extend to frequencies below 1000 cm-1. The relationships between mean OH/NH frequency, aqueous pKA, and O-N distance are examined in order to obtain a more rigorous understanding of the origin and shape of the vibrational features. The mean OH/NH frequencies are found to correlate well with O-N distances. The lowest OH stretch frequencies are found in dimer geometries with O-N distances between 2.5 and 2.6 Å. At larger O-N distances, the hydrogen bonding interaction is not as strong, resulting in higher OH stretch frequencies. When the O-N distance is smaller than 2.5 Å, the limited space between the O and N determines the OH stretch frequency, which gives rise to frequencies that decrease with O-N distances. These two effects place a lower limit on the OH stretch frequency which is calculated to be near 700 cm-1. Understanding how the vibrational features

  10. Bond length contraction in Au nanocrystals formed by ion implantation into thin SiO2

    International Nuclear Information System (INIS)

    Kluth, P.; Johannessen, B.; Giraud, V.; Cheung, A.; Glover, C.J.; Azevedo, G. de M; Foran, G.J.; Ridgway, M.C.

    2004-01-01

    Au nanocrystals (NCs) fabricated by ion implantation into thin SiO 2 and annealing were investigated by means of extended x-ray absorption fine structure (EXAFS) spectroscopy and transmission electron microscopy. A bond length contraction was observed and can be explained by surface tension effects in a simple liquid-drop model. Such results are consistent with previous reports on nonembedded NCs implying a negligible influence of the SiO 2 matrix. Cumulant analysis of the EXAFS data suggests surface reconstruction or relaxation involving a further shortened bond length. A deviation from the octahedral closed shell structure is apparent for NCs of size 25 A

  11. Charge transfer and bond lengths in YBa2Cu3-xMxO6+y

    International Nuclear Information System (INIS)

    Jorgensen, J.D.; Rhyne, J.J.; Neumann, D.A.; Miceli, P.F.; Tarascon, J.M.; Greene, L.H.; Barboux, P.

    1989-01-01

    We discuss the effects of doping on the Cu chain sites in YBa 2 Cu 3-x M x O 6+y . The relationship between bond lengths obtained from neutron scattering and charge transfer is evaluated in terms of bond valence. In particular, it is concluded that removing an oxygen from the chains transfers one electron to the planes. 24 refs., 3 figs

  12. Studies of technetium chemistry. Pt.8. The regularities of the bond length and configuration of rhenium and technetium complexes in crystals

    International Nuclear Information System (INIS)

    Liu Guozheng; Liu Boli

    1995-01-01

    Some bond length regularities in MO 6 , MO-4, MX 5 α and MX 4 αβ moieties of technetium and rhenium compounds are summarized and rationalized by cavity model. The chemical properties of technetium and rhenium are so similar that their corresponding complexes have almost the same configuration and M-X bond lengths when they are in cavity-controlled state. Technetium and Rhenium combine preferably with N, O, F, S, Cl and Br when they are in higher oxidation states (>3), but preferably with P, Se etc. when they are in lower oxidation states ( 4 αβ is approximately constant; (2) the average M-X bond length of MX 6 varies moderately with the oxidation state of M; (3) the bond length of M-X trans to M-α in MX 5 α has a linear relationship with the angle

  13. 共价键长的变化规律及计算%Variation Rule of Covalent Bond Length and Its Calculation Method

    Institute of Scientific and Technical Information of China (English)

    徐永群; 陈年友

    2001-01-01

    研究了共价键长的变化规律,提出了两个影响键长的参数,即配位体的半径与中心原子半径之比Rratio和由中心原子组成的基团的拓扑指数F2,用BP神经网络法逼近了50个、预测了11个简单无机分子中非含氢原子键的键长,其计算误差基本上在2pm以内。%The variation rule of covalent bond lengths is investigated.Two parameters which influence covalent bond lengths are presented: the radius ratio of the ligand to the centre atom and the topological index of the group of centre atom.With BP neural networks, 50 bond lengths have been approached and other 11 bond lengths have been forecasted. Errors of calculated bond lengths is almost within 2pm.

  14. Insertion reactions into Pd[bond]O and Pd[bond]N bonds: preparation of alkoxycarbonyl, carbonato, carbamato, thiocarbamate, and thioureide complexes of palladium(II).

    Science.gov (United States)

    Ruiz, José; Martínez, M Teresa; Florenciano, Félix; Rodríguez, Venancio; López, Gregorio; Pérez, José; Chaloner, Penny A; Hitchcock, Peter B

    2003-06-02

    Mononuclear palladium hydroxo complexes of the type [Pd(N[bond]N)(C(6)F(5))(OH)] [(N[bond]N = 2,2'-bipyridine (bipy), 4,4'-dimethyl-2,2'-bipyridine (Me(2)bipy), 1,10-phenanthroline (phen), or N,N,N',N'-tetramethylethylenediamine (tmeda)] have been prepared by reaction of [Pd(N[bond]N)(C(6)F(5))(acetone)]ClO(4) with KOH in methanol. These hydroxo complexes react, in methanol, with CO (1 atm, room temperature) to yield the corresponding methoxycarbonyl complexes [Pd(N[bond]N)(C(6)F(5))(CO(2)Me)]. Similar alkoxycarbonyl complexes [Pd(N[bond]N)(C(6)F(5))(CO(2)R)] (N[bond]N = bis(3,5-dimethylpyrazol-1-yl)methane); R = Me, Et, or (i)Pr) are obtained when [Pd(N[bond]N)(C(6)F(5))Cl] is treated with KOH in the corresponding alcohol ROH and CO is bubbled through the solution. The reactions of [Pd(N[bond]N)(C(6)F(5))(OH)] (N[bond]N = bipy or Me(2)bipy) with CO(2), in tetrahydrofuran, lead to the formation of the binuclear carbonate complexes [(N[bond]N)(C(6)F(5))Pd(mu-eta(2)-CO(3))Pd(C(6)F(5))(N[bond]N)]. Complexes [Pd(N[bond]N)(C(6)F(5))(OH)] react in alcohol with PhNCS to yield the corresponding N-phenyl-O-alkylthiocarbamate complexes [Pd(N[bond]N)(C(6)F(5))[SC(OR)NPh

  15. The crystal structure of ianthinite, [U24+(UO2)4O6(OH)4(H2O)4](H2O)5: a possible phase for Pu4+ incorporation during the oxidation of spent nuclear fuel

    International Nuclear Information System (INIS)

    Burns, P.C.; Hawthorne, F.C.; Miller, M.L.; Ewing, R.C.

    1997-01-01

    Ianthinite, [U 4+ 2 (UO 2 ) 4 O 6 (OH) 4 (H 2 O) 4 ](H 2O) 5 , is the only known uranyl oxide hydrate mineral that contains U 4+ , and it has been proposed that ianthinite may be an important Pu 4+ -bearing phase during the oxidative dissolution of spent nuclear fuel. The crystal structure of ianthinite, orthorhombic, a=0.7178(2), b=1.1473(2), c=3.039(1) nm, V=2.5027 nm 3 , Z=4, space group P2 1 cn, has been solved by direct methods and refined by least-squares methods to an R index of 9.7% and a wR index of 12.6% using 888 unique observed [ vertical stroke F vertical stroke ≥5σ vertical stroke F vertical stroke ] reflections. The structure contains both U 6+ and U 4+ . The U 6+ cations are present as roughly linear (U 6+ O 2 ) 2+ uranyl ions (Ur) that are in turn coordinated by five O 2- and OH - located at the equatorial positions of pentagonal bipyramids. The U 4+ cations are coordinated by O 2- , OH - and H 2 O in a distorted octahedral arrangement. The Urφ 5 and U 4+ φ 6 (φ: O 2- , OH - , H 2 O) polyhedra link by sharing edges to form two symmetrically distinct sheets at z∼0.0 and z∼0.25 that are parallel to (001). The sheets have the β-U 3 O 8 sheet anion-topology. There are five symmetrically distinct H 2 O groups located at z∼0.125 between the sheets of Uφ n polyhedra, and the sheets of Uφ n polyhedra are linked together only by hydrogen bonding to the intersheet H 2 O groups. The crystal-chemical requirements of U 4+ and Pu 4+ are very similar, suggesting that extensive Pu 4+ U 4+ substitution may occur within the sheets of Uφ n polyhedra in the structure of ianthinite. (orig.)

  16. CaK2(AsO3OH)(H2O)2 cell length a | forthcoming | boms | Volumes ...

    Indian Academy of Sciences (India)

    Home; public; Volumes; boms; forthcoming; CaK2(AsO3OH)(H2O)2 cell length a. 404! error. The page your are looking for can not be found! Please check the link or use the navigation bar at the top. YouTube; Twitter; Facebook; Blog. Academy News. IAS Logo. 29th Mid-year meeting. Posted on 19 January 2018. The 29th ...

  17. Bond-length strain in buried Ga1-xInxAs thin-alloy films grown coherently on InP(001)

    International Nuclear Information System (INIS)

    Woicik, J.C.; Gupta, J.A.; Watkins, S.P.; Crozier, E.D.

    1998-01-01

    The bond lengths in a series of strained, buried Ga 1-x In x As thin-alloy films grown coherently on InP(001) have been determined by high-resolution extended x-ray absorption fine-structure measurements. Comparison with a random-cluster calculation demonstrates that the external in-plane epitaxial strain imposed by pseudomorphic growth opposes the natural bond-length distortions due to alloying.copyright 1998 American Institute of Physics

  18. 75 FR 15740 - Nittsu Shoji U.S.A., Inc. Troy, OH; Notice of Termination of Investigation

    Science.gov (United States)

    2010-03-30

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-72,598] Nittsu Shoji U.S.A., Inc. Troy, OH; Notice of Termination of Investigation Pursuant to Section 223 of the Trade Act of 1974, as... official on behalf of workers of Nittsu Shoji U.S.A., Inc., Troy, Ohio. The petitioner has requested that...

  19. Subtle differences in the hydrogen bonding of alcohol to divalent oxygen and sulfur

    DEFF Research Database (Denmark)

    Du, Lin; Tang, Shanshan; Hansen, Anne Schou

    2017-01-01

    complexes are more stable and form stronger hydrogen bonds compared to complexes with MeOH and EtOH, which are comparable, and only for the stronger hydrogen bond donor (TFE) are the small differences in acceptor molecules highlighted. The equilibrium constant for complex formation was determined from......The Osingle bondH⋯O and Osingle bondH⋯S hydrogen bonds were investigated by gas phase FTIR spectroscopy of alcohol–dimethylether and alcohol–dimethylsulfide complexes, with alcohols of increasing hydrogen bond donor strength; methanol (MeOH), ethanol (EtOH) and 2,2,2-trifluoroethanol (TFE). The TFE...

  20. Components inspection of Monju, a sodium bonded type control rod

    International Nuclear Information System (INIS)

    Harada, Kiyoshi; Matsushita, Yuichi; Lee, Chunchan; Abe, Hideaki; Watahiki, Naohisa

    2002-03-01

    This Report addresses a result of a sodium test conducted on components of a Double Poral Filter Sodium Bonded Type Control Rod that is expected to be a next generation, long life Control Rod. Upper and lower Poral Filter Sodium Bonded Type Control Rod components were mocked up to conduct a sodium test. During the test, sodium chargeability, formation of Gas Plenum at the upper part of the components, sodium drain-ability and NaOH clean-ability were recognized under actual plant condition. The following are results obtained: (1) Sodium Chargeability at Control Rod Insertion to EVST. Sodium was charged into the components when the mocked-up was inserted in sodium of 190degC, with insertion speed of 6 m/min which is an actual insertion speed to EVST. (2) Formation of Upper Gas Plenum by Helium Gas generated in Control Rod Components Gas Plenum formation within deviation of 9% was confirmed by releasing helium gas into the mocked-up which is immersed in sodium of 620degC and 190degC. Length of Gas Plenum is confirmed to be retained in certain length even if helium gas is further released into formed Gas Plenum. (3) Sodium Drain-ability of Control Rod Components when Drawing from EVST. Drain-ability was confirmed to be sufficient and no sodium residue was found in the mocked-up when the mocked-up was drawn out from sodium of 190degC, with drawing speed of 6 m/min which is an actual drawing speed from EVST. (4) Clean-ability of NaOH Solution against Sodium Residue in Control Rod Components. Sodium and NaOH solution reacted calmly, however, clean-ability was not sufficient. When Sodium fully remained in Control Rod Components, it made circulation of NaOH solution not enough. (author)

  1. Dependence of the length of the hydrogen bond on the covalent and cationic radii of hydrogen, and additivity of bonding distances

    Czech Academy of Sciences Publication Activity Database

    Heyrovská, Raji

    2006-01-01

    Roč. 432, č. 1-3 (2006), s. 348-351 ISSN 0009-2614 R&D Projects: GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507 Keywords : length of the hydrogen bond * ionic radius * Golden ratio Subject RIV: BO - Biophysics Impact factor: 2.462, year: 2006

  2. Doping and bond length contributions to Mn K-edge shift in La1 ...

    Indian Academy of Sciences (India)

    ... corresponds to the shift in the center of gravity of the unoccupied Mn 4-band contributing to the Mn K-absorption edge region. This correspondence is then used to separate the doping and size contributions to the edge shift due to variation in the number of electrons in valence band and Mn-O bond lengths, respectively, ...

  3. Mo-Mo Quintuple Bond is Highly Reactive in H-H, C-H, and O-H σ-Bond Cleavages Because of the Polarized Electronic Structure in Transition State.

    Science.gov (United States)

    Chen, Yue; Sakaki, Shigeyoshi

    2017-04-03

    The recently reported high reactivity of the Mo-Mo quintuple bond of Mo 2 (N ∧ N) 2 (1) {N ∧ N = μ-κ 2 -CH[N(2,6-iPr 2 C 6 H 3 )] 2 } in the H-H σ-bond cleavage was investigated. DFT calculations disclosed that the H-H σ-bond cleavage by 1 occurs with nearly no barrier to afford the cis-dihydride species followed by cis-trans isomerization to form the trans-dihydride product, which is consistent with the experimental result. The O-H and C-H bond cleavages by 1 were computationally predicted to occur with moderate (ΔG° ⧧ = 9.0 kcal/mol) and acceptable activation energies (ΔG° ⧧ = 22.5 kcal/mol), respectively, suggesting that the Mo-Mo quintuple bond can be applied to various σ-bond cleavages. In these σ-bond cleavage reactions, the charge-transfer (CT Mo→XH ) from the Mo-Mo quintuple bond to the X-H (X = H, C, or O) bond and that (CT XH→Mo ) from the X-H bond to the Mo-Mo bond play crucial roles. Though the HOMO (dδ-MO) of 1 is at lower energy and the LUMO + 2 (dδ*-MO) of 1 is at higher energy than those of RhCl(PMe 3 ) 2 (LUMO and LUMO + 1 of 1 are not frontier MO), the H-H σ-bond cleavage by 1 more easily occurs than that by the Rh complex. Hence, the frontier MO energies are not the reason for the high reactivity of 1. The high reactivity of 1 arises from the polarization of dδ-type MOs of the Mo-Mo quintuple bond in the transition state. Such a polarized electronic structure enhances the bonding overlap between the dδ-MO of the Mo-Mo bond and the σ*-antibonding MO of the X-H bond to facilitate the CT Mo→XH and reduce the exchange repulsion between the Mo-Mo bond and the X-H bond. This polarized electronic structure of the transition state is similar to that of a frustrated Lewis pair. The easy polarization of the dδ-type MOs is one of the advantages of the metal-metal multiple bond, because such polarization is impossible in the mononuclear metal complex.

  4. Hydrogen Bonding Interaction between Atmospheric Gaseous Amides and Methanol.

    Science.gov (United States)

    Zhao, Hailiang; Tang, Shanshan; Xu, Xiang; Du, Lin

    2016-12-30

    Amides are important atmospheric organic-nitrogen compounds. Hydrogen bonded complexes of methanol (MeOH) with amides (formamide, N -methylformamide, N , N -dimethylformamide, acetamide, N -methylacetamide and N , N -dimethylacetamide) have been investigated. The carbonyl oxygen of the amides behaves as a hydrogen bond acceptor and the NH group of the amides acts as a hydrogen bond donor. The dominant hydrogen bonding interaction occurs between the carbonyl oxygen and the OH group of methanol as well as the interaction between the NH group of amides and the oxygen of methanol. However, the hydrogen bonds between the CH group and the carbonyl oxygen or the oxygen of methanol are also important for the overall stability of the complexes. Comparable red shifts of the C=O, NH- and OH-stretching transitions were found in these MeOH-amide complexes with considerable intensity enhancement. Topological analysis shows that the electron density at the bond critical points of the complexes fall in the range of hydrogen bonding criteria, and the Laplacian of charge density of the O-H∙∙∙O hydrogen bond slightly exceeds the upper value of the Laplacian criteria. The energy decomposition analysis further suggests that the hydrogen bonding interaction energies can be mainly attributed to the electrostatic, exchange and dispersion components.

  5. Interplay of Electronic Cooperativity and Exchange Coupling in Regulating the Reactivity of Diiron(IV)-oxo Complexes towards C-H and O-H Bond Activation.

    Science.gov (United States)

    Ansari, Azaj; Ansari, Mursaleem; Singha, Asmita; Rajaraman, Gopalan

    2017-07-26

    Activation of inert C-H bonds such as those of methane are extremely challenging for chemists but in nature, the soluble methane monooxygenase (sMMO) enzyme readily oxidizes methane to methanol by using a diiron(IV) species. This has prompted chemists to look for similar model systems. Recently, a (μ-oxo)bis(μ-carboxamido)diiron(IV) ([Fe IV 2 O(L) 2 ] 2+ L=N,N-bis-(3',5'-dimethyl-4'-methoxypyridyl-2'-methyl)-N'-acetyl-1,2-diaminoethane) complex has been generated by bulk electrolysis and this species activates inert C-H bonds almost 1000 times faster than mononuclear Fe IV =O species and at the same time selectively activates O-H bonds of alcohols. The very high reactivity and selectivity of this species is puzzling and herein we use extensive DFT calculations to shed light on this aspect. We have studied the electronic and spectral features of diiron {Fe III -μ(O)-Fe III } +2 (complex I), {Fe III -μ(O)-Fe IV } +3 (II), and {Fe IV -μ(O)-Fe IV } +4 (III) complexes. Strong antiferromagnetic coupling between the Fe centers leads to spin-coupled S=0, S=3/2, and S=0 ground state for species I-III respectively. The mechanistic study of the C-H and O-H bond activation reveals a multistate reactivity scenario where C-H bond activation is found to occur through the S=4 spin-coupled state corresponding to the high-spin state of individual Fe IV centers. The O-H bond activation on the other hand, occurs through the S=2 spin-coupled state corresponding to an intermediate state of individual Fe IV centers. Molecular orbital analysis reveals σ-π/π-π channels for the reactivity. The nature of the magnetic exchange interaction is found to be switched during the course of the reaction and this offers lower energy pathways. Significant electronic cooperativity between two metal centers during the course of the reaction has been witnessed and this uncovers the reason behind the efficiency and selectivity observed. The catalyst is found to prudently choose the desired spin

  6. Lid opening and conformational stability of T1 Lipase is mediated by increasing chain length polar solvents

    Directory of Open Access Journals (Sweden)

    Jonathan Maiangwa

    2017-05-01

    Full Text Available The dynamics and conformational landscape of proteins in organic solvents are events of potential interest in nonaqueous process catalysis. Conformational changes, folding transitions, and stability often correspond to structural rearrangements that alter contacts between solvent molecules and amino acid residues. However, in nonaqueous enzymology, organic solvents limit stability and further application of proteins. In the present study, molecular dynamics (MD of a thermostable Geobacillus zalihae T1 lipase was performed in different chain length polar organic solvents (methanol, ethanol, propanol, butanol, and pentanol and water mixture systems to a concentration of 50%. On the basis of the MD results, the structural deviations of the backbone atoms elucidated the dynamic effects of water/organic solvent mixtures on the equilibrium state of the protein simulations in decreasing solvent polarity. The results show that the solvent mixture gives rise to deviations in enzyme structure from the native one simulated in water. The drop in the flexibility in H2O, MtOH, EtOH and PrOH simulation mixtures shows that greater motions of residues were influenced in BtOH and PtOH simulation mixtures. Comparing the root mean square fluctuations value with the accessible solvent area (SASA for every residue showed an almost correspondingly high SASA value of residues to high flexibility and low SASA value to low flexibility. The study further revealed that the organic solvents influenced the formation of more hydrogen bonds in MtOH, EtOH and PrOH and thus, it is assumed that increased intraprotein hydrogen bonding is ultimately correlated to the stability of the protein. However, the solvent accessibility analysis showed that in all solvent systems, hydrophobic residues were exposed and polar residues tended to be buried away from the solvent. Distance variation of the tetrahedral intermediate packing of the active pocket was not conserved in organic solvent

  7. Interactions between kaolinite Al−OH surface and sodium hexametaphosphate

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yonghua, E-mail: hyh19891102@163.com [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Liu, Wenli; Zhou, Jia [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Chen, Jianhua [College of Resources and Metallurgy, Guangxi University, Nanning 530004 (China)

    2016-11-30

    Highlights: • Sodium hexametaphosphate (NaHMP) can adsorb on kaolinite Al−OH terminated (001) surface easily. • The oxygen atoms of hexametaphosphate form strong hydrogen bonds with the hydrogen atoms of kaolinite Al−OH surface. • The electrostatic force is the main interaction between NaHMP and Al−OH surface. • The linear hexaphosphate −[PO{sub 3}]{sub m}− chains adsorb stably than −[HPO{sub 3}]{sub m}− chains. - Abstract: To investigate the dispersion mechanism of sodium hexametaphosphate on kaolinite particles, we simulated the interaction between linear polyphosphate chains and kaolinite Al−OH terminated surface by molecular dynamics, as well as the interaction between the [HPO{sub 4}]{sup 2−} anion and kaolinite Al−OH surface by density functional theory (DFT). The calculated results demonstrate that hexametaphosphate can be adsorbed by the kaolinite Al−OH surface. The oxygen atoms of hexametaphosphate anions may receive many electrons from the Al−OH surface and form hydrogen bonds with the hydrogen atoms of surface hydroxyl groups. Moreover, electrostatic force dominates the interactions between hexametaphosphate anions and kaolinite Al−OH surface. Therefore, after the adsorption of hexametaphosphate on kaolinite Al−OH surface, the kaolinite particles carry more negative charge and the electrostatic repulsion between particles increases. In addition, the adsorption of −[PO{sub 3}]{sub m}− species on the Al−OH surface should be more stable than the adsorption of −[HPO{sub 3}]{sub m}− species.

  8. Rectangular waveguide-to-coplanar waveguide transitions at U-band using e-plane probe and wire bonding

    DEFF Research Database (Denmark)

    Dong, Yunfeng; Johansen, Tom Keinicke; Zhurbenko, Vitaliy

    2016-01-01

    This paper presents rectangular waveguide-to-coplanar waveguide (CPW) transitions at U-band (40–60 GHz) using E-plane probe and wire bonding. The designs of CPWs based on quartz substrate with and without aluminum cover are explained. The single and double layer rectangular waveguide-to-CPW trans......This paper presents rectangular waveguide-to-coplanar waveguide (CPW) transitions at U-band (40–60 GHz) using E-plane probe and wire bonding. The designs of CPWs based on quartz substrate with and without aluminum cover are explained. The single and double layer rectangular waveguide......-to-CPW transitions using E-plane probe and wire bonding are designed. The proposed rectangular waveguide-to-CPW transition using wire bonding can provide 10 GHz bandwidth at U-band and does not require extra CPWs or connections between CPWs and chips. A single layer rectangular waveguide-to-CPW transition using E......-plane probe with aluminum package has been fabricated and measured to validate the proposed transitions. To the authors' best knowledge, this is the first time that a wire bonding is used as a probe for rectangular waveguide-to-CPW transition at U-band....

  9. Search for OH 18 cm Radio Emission from 1I/2017 U1 with the Green Bank Telescope

    Science.gov (United States)

    Park, Ryan S.; Pisano, D. J.; Lazio, T. Joseph W.; Chodas, Paul W.; Naidu, Shantanu P.

    2018-05-01

    This paper reports the first OH 18 cm line observation of the first detected interstellar object 1I/2017 U1 (‘Oumuamua) using the Green Bank Telescope. We have observed the OH lines at 1665.402, 1667.359, and 1720.53 MHz frequencies with a spectral resolution of 357 Hz (approximately 0.06 km s‑1). At the time of the observation, ‘Oumuamua was at topocentric distance and velocity of 1.07 au and 63.4 km s‑1, respectively, or at heliocentric distance and velocity of 1.8 au and 39 km s‑1, respectively. Based on a detailed data reduction and an analogy-based inversion, our final results confirm the asteroidal origin of ‘Oumuamua with an upper bound OH production of Q[OH] < 0.17 × 1028 s‑1.

  10. Comparative study on direct and indirect bracket bonding techniques regarding time length and bracket detachment

    Directory of Open Access Journals (Sweden)

    Jefferson Vinicius Bozelli

    2013-12-01

    Full Text Available OBJECTIVE: The aim of this study was to assess the time spent for direct (DBB - direct bracket bonding and indirect (IBB - indirect bracket bonding bracket bonding techniques. The time length of laboratorial (IBB and clinical steps (DBB and IBB as well as the prevalence of loose bracket after a 24-week follow-up were evaluated. METHODS: Seventeen patients (7 men and 10 women with a mean age of 21 years, requiring orthodontic treatment were selected for this study. A total of 304 brackets were used (151 DBB and 153 IBB. The same bracket type and bonding material were used in both groups. Data were submitted to statistical analysis by Wilcoxon non-parametric test at 5% level of significance. RESULTS: Considering the total time length, the IBB technique was more time-consuming than the DBB (p < 0.001. However, considering only the clinical phase, the IBB took less time than the DBB (p < 0.001. There was no significant difference (p = 0.910 for the time spent during laboratorial positioning of the brackets and clinical session for IBB in comparison to the clinical procedure for DBB. Additionally, no difference was found as for the prevalence of loose bracket between both groups. CONCLUSION: the IBB can be suggested as a valid clinical procedure since the clinical session was faster and the total time spent for laboratorial positioning of the brackets and clinical procedure was similar to that of DBB. In addition, both approaches resulted in similar frequency of loose bracket.

  11. First-principle study on bonding mechanism of ZnO by LDA+U method

    International Nuclear Information System (INIS)

    Zhou, G.C.; Sun, L.Z.; Zhong, X.L.; Chen Xiaoshuang; Wei Lu; Wang, J.B.

    2007-01-01

    The electronic structure and the bonding mechanism of ZnO have been studied by using the Full-Potential Linear Augmented Plane Wave (FP-LAPW) method within the density-functional theory (DFT) based on LDA+U exchange correlation potential. The valence and the bonding charge density are calculated and compared with those derived from LDA and GGA to describe the bonding mechanism. The charge transfer along with the bonding process is analyzed by using the theory of Atoms in Molecules (AIM). The bonding, the topological characteristics and the p-d coupling effects on the bonding mechanism of ZnO are shown quantitatively with the critical points (CPs) along the bonding trajectory and the charge in the atomic basins. Meanwhile, the bonding characteristics for wurtzite, zinc blende and rocksalt phase of ZnO are discussed systematically in the present paper

  12. Topologically identical, but geometrically isomeric layers in hydrous α-, β-Rb[UO2(AsO3OH)(AsO2(OH)2)]·H2O and anhydrous Rb[UO2(AsO3OH)(AsO2(OH)2)

    Science.gov (United States)

    Yu, Na; Klepov, Vladislav V.; Villa, Eric M.; Bosbach, Dirk; Suleimanov, Evgeny V.; Depmeier, Wulf; Albrecht-Schmitt, Thomas E.; Alekseev, Evgeny V.

    2014-07-01

    The hydrothermal reaction of uranyl nitrate with rubidium nitrate and arsenic (III) oxide results in the formation of polymorphic α- and β-Rb[UO2(AsO3OH)(AsO2(OH)2)]·H2O (α-, β-RbUAs) and the anhydrous phase Rb[UO2(AsO3OH)(AsO2(OH)2)] (RbUAs). These phases were structurally, chemically and spectroscopically characterized. The structures of all three compounds are based upon topologically identical, but geometrically isomeric layers. The layers are linked with each other by means of the Rb cations and hydrogen bonding. Dehydration experiments demonstrate that water deintercalation from hydrous α- and β-RbUAs yields anhydrous RbUAs via topotactic reactions.

  13. X-ray Absorption Spectroscopy and Density Functional Theory Studies of [(H3buea)FeIII-X]n1 (X= S2-, O2-,OH-): Comparison of Bonding and Hydrogen Bonding in Oxo and Sulfido Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Abhishek; Hocking, Rosalie K.; /Stanford U., Chem. Dept.; Larsen, Peter; Borovik, Andrew S.; /Kansas U.; Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.; /SLAC,

    2006-09-27

    Iron L-edge, iron K-edge, and sulfur K-edge X-ray absorption spectroscopy was performed on a series of compounds [Fe{sup III}H{sub 3}buea(X)]{sup n-} (X = S{sup 2-}, O{sup 2-}, OH{sup -}). The experimentally determined electronic structures were used to correlate to density functional theory calculations. Calculations supported by the data were then used to compare the metal-ligand bonding and to evaluate the effects of H-bonding in Fe{sup III}-O vs Fe{sup III-}S complexes. It was found that the Fe{sup III-}O bond, while less covalent, is stronger than the FeIII-S bond. This dominantly reflects the larger ionic contribution to the Fe{sup III-}O bond. The H-bonding energy (for three H-bonds) was estimated to be -25 kcal/mol for the oxo as compared to -12 kcal/mol for the sulfide ligand. This difference is attributed to the larger charge density on the oxo ligand resulting from the lower covalency of the Fe-O bond. These results were extended to consider an Fe{sup IV-}O complex with the same ligand environment. It was found that hydrogen bonding to Fe{sup IV-}O is less energetically favorable than that to Fe{sup III-}O, which reflects the highly covalent nature of the Fe{sup IV-}O bond.

  14. Detection of OH on photolysis of styrene oxide at 193 nm in gas phase

    Science.gov (United States)

    Kumar, Awadhesh; SenGupta, Sumana; Pushpa, K. K.; Naik, P. D.; Bajaj, P. N.

    2006-10-01

    Photodissociation of styrene oxide at 193 nm in gas phase generates OH, as detected by laser-induced fluorescence technique. Under similar conditions, OH was not observed from ethylene and propylene oxides, primarily because of their low absorption cross-sections at 193 nm. Mechanism of OH formation involves first opening of the three-membered ring from the ground electronic state via cleavage of either of two C sbnd O bonds, followed by isomerization to enolic forms of phenylacetaldehyde and acetophenone, and finally scission of the C sbnd OH bond of enols. Ab initio molecular orbital calculations support the proposed mechanism.

  15. Distinguishing the Effects of Bond-Length Alternation versus Bond-Order Alternation on the Nonlinear Optical Properties of π-Conjugated Chromophores

    KAUST Repository

    Gieseking, Rebecca L.; Risko, Chad; Bredas, Jean-Luc

    2015-01-01

    Understanding the relationships between the molecular nonlinear optical (NLO) properties and the bond-length alternation (BLA) or π-bond-order alternation (BOA) along the molecular backbone of linear π-conjugated systems has proven widely useful in the development of NLO organic chromophores and materials. Here, we examine model polymethines to elucidate the reliability of these relationships. While BLA is solely a measure of molecular geometric structure, BOA includes information pertaining to the electronic structure. As a result, BLA is found to be a good predictor of NLO properties only when optimized geometries are considered, whereas BOA is more broadly applicable. Proper understanding of the distinction between BLA and BOA is critical when designing computational studies of NLO properties, especially for molecules in complex environments or in nonequilibrium geometries. © 2015 American Chemical Society.

  16. Distinguishing the Effects of Bond-Length Alternation versus Bond-Order Alternation on the Nonlinear Optical Properties of π-Conjugated Chromophores

    KAUST Repository

    Gieseking, Rebecca L.

    2015-06-18

    Understanding the relationships between the molecular nonlinear optical (NLO) properties and the bond-length alternation (BLA) or π-bond-order alternation (BOA) along the molecular backbone of linear π-conjugated systems has proven widely useful in the development of NLO organic chromophores and materials. Here, we examine model polymethines to elucidate the reliability of these relationships. While BLA is solely a measure of molecular geometric structure, BOA includes information pertaining to the electronic structure. As a result, BLA is found to be a good predictor of NLO properties only when optimized geometries are considered, whereas BOA is more broadly applicable. Proper understanding of the distinction between BLA and BOA is critical when designing computational studies of NLO properties, especially for molecules in complex environments or in nonequilibrium geometries. © 2015 American Chemical Society.

  17. Raman spectroscopic determination of the length, strength, compressibility, Debye temperature, elasticity, and force constant of the C-C bond in graphene.

    Science.gov (United States)

    Yang, X X; Li, J W; Zhou, Z F; Wang, Y; Yang, L W; Zheng, W T; Sun, Chang Q

    2012-01-21

    From the perspective of bond relaxation and bond vibration, we have formulated the Raman phonon relaxation of graphene, under the stimuli of the number-of-layers, the uni-axial strain, the pressure, and the temperature, in terms of the response of the length and strength of the representative bond of the entire specimen to the applied stimuli. Theoretical unification of the measurements clarifies that: (i) the opposite trends of the Raman shifts, which are due to the number-of-layers reduction, of the G-peak shift and arises from the vibration of a pair of atoms, while the D- and the 2D-peak shifts involve the z-neighbor of a specific atom; (ii) the tensile strain-induced phonon softening and phonon-band splitting arise from the asymmetric response of the C(3v) bond geometry to the C(2v) uni-axial bond elongation; (iii) the thermal softening of the phonons originates from bond expansion and weakening; and (iv) the pressure stiffening of the phonons results from bond compression and work hardening. Reproduction of the measurements has led to quantitative information about the referential frequencies from which the Raman frequencies shift as well as the length, energy, force constant, Debye temperature, compressibility and elastic modulus of the C-C bond in graphene, which is of instrumental importance in the understanding of the unusual behavior of graphene.

  18. Hydrogen Bonding Interaction between Atmospheric Gaseous Amides and Methanol

    Directory of Open Access Journals (Sweden)

    Hailiang Zhao

    2016-12-01

    Full Text Available Amides are important atmospheric organic–nitrogen compounds. Hydrogen bonded complexes of methanol (MeOH with amides (formamide, N-methylformamide, N,N-dimethylformamide, acetamide, N-methylacetamide and N,N-dimethylacetamide have been investigated. The carbonyl oxygen of the amides behaves as a hydrogen bond acceptor and the NH group of the amides acts as a hydrogen bond donor. The dominant hydrogen bonding interaction occurs between the carbonyl oxygen and the OH group of methanol as well as the interaction between the NH group of amides and the oxygen of methanol. However, the hydrogen bonds between the CH group and the carbonyl oxygen or the oxygen of methanol are also important for the overall stability of the complexes. Comparable red shifts of the C=O, NH- and OH-stretching transitions were found in these MeOH–amide complexes with considerable intensity enhancement. Topological analysis shows that the electron density at the bond critical points of the complexes fall in the range of hydrogen bonding criteria, and the Laplacian of charge density of the O–H∙∙∙O hydrogen bond slightly exceeds the upper value of the Laplacian criteria. The energy decomposition analysis further suggests that the hydrogen bonding interaction energies can be mainly attributed to the electrostatic, exchange and dispersion components.

  19. Supramolecular Assembly of Gold Nanoparticles in PS-b-P2VP Diblock Copolymers via Hydrogen Bonding

    Science.gov (United States)

    Jang, Se Gyu; Hawker, Craig J.; Kramer, Edward J.

    2011-03-01

    We report a simple route to control the spatial distribution of Au nanoparticles (Au-NPs) in PS- b -P2VP diblock copolymers using hydrogen bonding between P2VP and the hydroxyl-containing (PI-OH) units in PS- b -PIOH thiol-terminated ligands on Au-NP. End-functional thiol ligands of poly(styrene- b -1,2&3,4-isoprene-SH) are synthesized by anionic polymerization. After synthesis of Au-NPs, the inner PI block is hydroxylated by hydroboration and the resulting micelle-like Au-NPs consist of a hydrophobic PS outer brush and a hydrophilic inner PI-OH block. The influence of the hydroxyl groups is significant with strong segregation being observed to the PS/P2VP interface and then to the P2VP domain of lamellar-forming PS-b-P2VP diblock copolymers as the length of the PI-OH block is increased. The strong hydrogen bonding between nanoparticle block copolymer ligands and the P2VP block allows the Au-NPs to be incorporated within the P2VP domain to high Au--NP volume fractions ϕp without macrophase separation, driving transitions from lamellar to bicontinuous morphologies as ϕp increases.

  20. Computational study of An-X bonding (An = Th, U; X = p-block-based ligands) in pyrrolic macrocycle-supported complexes from the quantum theory of atoms in molecules and bond energy decomposition analysis.

    Science.gov (United States)

    O'Brien, Kieran T P; Kaltsoyannis, Nikolas

    2017-01-17

    A systematic computational study of organoactinide complexes of the form [LAnX] n+ has been carried out using density functional theory, the quantum theory of atoms in molecules (QTAIM) and Ziegler-Rauk energy decomposition analysis (EDA) methods. The systems studied feature L = trans-calix[2]benzene[2]pyrrolide, An = Th(iv), Th(iii), U(iii) and X = BH 4 , BO 2 C 2 H 4 , Me, N(SiH 3 ) 2 , OPh, CH 3 , NH 2 , OH, F, SiH 3 , PH 2 , SH, Cl, CH 2 Ph, NHPh, OPh, SiH 2 Ph, PHPh 2 , SPh, CPh 3 , NPh 2 , OPh, SiPh 3 PPh 2 , SPh. The PBE0 hybrid functional proved most suitable for geometry optimisations based on comparisons with available experimental data. An-X bond critical point electron densities, energy densities and An-X delocalisation indices, calculated with the PBE functional at the PBE0 geometries, are correlated with An-X bond energies, enthalpies and with the terms in the EDA. Good correlations are found between energies and QTAIM metrics, particularly for the orbital interaction term, provided the X ligand is part of an isoelectronic series and the number of open shell electrons is low (i.e. for the present Th(iv) and Th(iii) systems).

  1. Hydration structures of U(III) and U(IV) ions from ab initio molecular dynamics simulations

    International Nuclear Information System (INIS)

    Leung, Kevin; Nenoff, Tina M.

    2012-01-01

    We apply DFT+U-based ab initio molecular dynamics simulations to study the hydration structures of U(III) and U(IV) ions, pertinent to redox reactions associated with uranium salts in aqueous media. U(III) is predicted to be coordinated to 8 water molecules, while U(IV) has a hydration number between 7 and 8. At least one of the innershell water molecules of the hydrated U(IV) complex becomes spontaneously deprotonated. As a result, the U(IV)–O pair correlation function exhibits a satellite peak at 2.15 Å associated with the shorter U(IV)–(OH − ) bond. This feature is not accounted for in analysis of extended x-ray absorption fine structure and x-ray adsorption near edge structure measurements, which yield higher estimates of U(IV) hydration numbers. This suggests that it may be useful to include the effect of possible hydrolysis in future interpretation of experiments, especially when the experimental pH is close to the reported hydrolysis equilibrium constant value.

  2. Structure and bonding in compounds containing the NpO2+ and NpO22+ ions

    International Nuclear Information System (INIS)

    Musikas, C.; Burns, J.H.

    1975-01-01

    Studies of oxo cations of Np(V) and Np(VI) were made on single crystals using X-ray diffraction and spectroscopic methods. Quantitative measurements of the geometry of the triatomic ion and its uranyl(VI) analog made it possible to assess the effects on bond lengths of the nature of equatorial secondary bonds, the change in valence from V to VI, and the actinide contraction. Absorption spectra showed marked changes in the solid state compared to the same ion in solution, especially anisotropy with crystal orientation (dichroism). The compounds analyzed were Na 4 NpO 2 (O 2 ) 3 .9H 2 O, Na 4 UO 2 (O 2 ) 3 .9H 2 O, K 4 NpO 2 (CO 3 ) 3 , and BaNpO 2 (H 3 C 2 O 2 ).2H 2 O. All actinyl ions were found to be linear. The largest difference in M=O bond lengths is between 1.776 in the compound having the relatively weak secondary linkage to carbonate, and 1.843 A in which the peroxide forms much stronger covalent bonds. Between compounds identical except for change of U to Np the M=O bond length contracts by only about 0.01 A. However an elongation of about 0.11A is observed when neptunium(VI) is reduced to neptunium(V) without change in the equatorial ligand. (U.S.)

  3. NMR and IR Investigations of Strong Intramolecular Hydrogen Bonds

    Directory of Open Access Journals (Sweden)

    Poul Erik Hansen

    2017-03-01

    Full Text Available For the purpose of this review, strong hydrogen bonds have been defined on the basis of experimental data, such as OH stretching wavenumbers, νOH, and OH chemical shifts, δOH (in the latter case, after correction for ring current effects. Limits for O–H···Y systems are taken as 2800 > νOH > 1800 cm−1, and 19 ppm > δOH > 15 ppm. Recent results as well as an account of theoretical advances are presented for a series of important classes of compounds such as β-diketone enols, β-thioxoketone enols, Mannich bases, proton sponges, quinoline N-oxides and diacid anions. The O···O distance has long been used as a parameter for hydrogen bond strength in O–H···O systems. On a broad scale, a correlation between OH stretching wavenumbers and O···O distances is observed, as demonstrated experimentally as well as theoretically, but for substituted β-diketone enols this correlation is relatively weak.

  4. A method of coupling the Paternò-Büchi reaction with direct infusion ESI-MS/MS for locating the C[double bond, length as m-dash]C bond in glycerophospholipids.

    Science.gov (United States)

    Stinson, Craig A; Xia, Yu

    2016-06-21

    Tandem mass spectrometry (MS/MS) coupled with soft ionization is established as an essential platform for lipid analysis; however, determining high order structural information, such as the carbon-carbon double bond (C[double bond, length as m-dash]C) location, remains challenging. Recently, our group demonstrated a method for sensitive and confident lipid C[double bond, length as m-dash]C location determination by coupling online the Paternò-Büchi (PB) reaction with nanoelectrospray ionization (nanoESI) and MS/MS. Herein, we aimed to expand the scope of the PB reaction for lipid analysis by enabling the reaction with infusion ESI-MS/MS at much higher flow rates than demonstrated in the nanoESI setup (∼20 nL min(-1)). In the new design, the PB reaction was effected in a fused silica capillary solution transfer line, which also served as a microflow UV reactor, prior to ESI. This setup allowed PB reaction optimization and kinetics studies. Under optimized conditions, a maximum of 50% PB reaction yield could be achieved for a standard glycerophosphocholine (PC) within 6 s of UV exposure over a wide flow rate range (0.1-10 μL min(-1)). A solvent composition of 7 : 3 acetone : H2O (with 1% acid or base modifier) allowed the highest PB yields and good lipid ionization, while lower yields were obtained with an addition of a variety of organic solvents. Radical induced lipid peroxidation was identified to induce undesirable side reactions, which could be effectively suppressed by eliminating trace oxygen in the solution via N2 purge. Finally, the utility of coupling the PB reaction with infusion ESI-MS/MS was demonstrated by analyzing a yeast polar lipid extract where C[double bond, length as m-dash]C bond locations were revealed for 35 glycerophospholipids (GPs).

  5. Sensitivity of hydrogen bonds of DNA and RNA to hydration, as gauged by 1JNH measurements in ethanol-water mixtures

    International Nuclear Information System (INIS)

    Manalo, Marlon N.; Kong Xiangming; LiWang, Andy

    2007-01-01

    Hydrogen-bond lengths of nucleic acids are (1) longer in DNA than in RNA, and (2) sequence dependent. The physicochemical basis for these variations in hydrogen-bond lengths is unknown, however. Here, the notion that hydration plays a significant role in nucleic acid hydrogen-bond lengths is tested. Watson-Crick N1...N3 hydrogen-bond lengths of several DNA and RNA duplexes are gauged using imino 1 J NH measurements, and ethanol is used as a cosolvent to lower water activity. We find that 1 J NH values of DNA and RNA become less negative with added ethanol, which suggests that mild dehydration reduces hydrogen-bond lengths even as the overall thermal stabilities of these duplexes decrease. The 1 J NH of DNA are increased in 8 mol% ethanol to those of RNA in water, which suggests that the greater hydration of DNA plays a significant role in its longer hydrogen bonds. The data also suggest that ethanol-induced dehydration is greater for the more hydrated G:C base pairs and thereby results in greater hydrogen-bond shortening than for the less hydrated A:T/U base pairs of DNA and RNA

  6. Density functional theory investigation of the geometric and electronic structures of [UO2(H2O)m(OH)n](2 - n) (n + m = 5).

    Science.gov (United States)

    Ingram, Kieran I M; Häller, L Jonas L; Kaltsoyannis, Nikolas

    2006-05-28

    Gradient corrected density functional theory has been used to calculate the geometric and electronic structures of the family of molecules [UO2(H2O)m(OH)n](2 - n) (n + m = 5). Comparisons are made with previous experimental and theoretical structural and spectroscopic data. r(U-O(yl)) is found to lengthen as water molecules are replaced by hydroxides in the equatorial plane, and the nu(sym) and nu(asym) uranyl vibrational wavenumbers decrease correspondingly. GGA functionals (BP86, PW91 and PBE) are generally found to perform better for the cationic complexes than for the anions. The inclusion of solvent effects using continuum models leads to spurious low frequency imaginary vibrational modes and overall poorer agreement with experimental data for nu(sym) and nu(asym). Analysis of the molecular orbital structure is performed in order to trace the origin of the lengthening and weakening of the U-O(yl) bond as waters are replaced by hydroxides. No evidence is found to support previous suggestions of a competition for U 6d atomic orbitals in U-O(yl) and U-O(hydroxide)pi bonding. Rather, the lengthening and weakening of U-O(yl) is attributed to reduced ionic bonding generated in part by the sigma-donating ability of the hydroxide ligands.

  7. Non-destructive testing of full-length bonded rock bolts based on HHT signal analysis

    Science.gov (United States)

    Shi, Z. M.; Liu, L.; Peng, M.; Liu, C. C.; Tao, F. J.; Liu, C. S.

    2018-04-01

    Full-length bonded rock bolts are commonly used in mining, tunneling and slope engineering because of their simple design and resistance to corrosion. However, the length of a rock bolt and grouting quality do not often meet the required design standards in practice because of the concealment and complexity of bolt construction. Non-destructive testing is preferred when testing a rock bolt's quality because of the convenience, low cost and wide detection range. In this paper, a signal analysis method for the non-destructive sound wave testing of full-length bonded rock bolts is presented, which is based on the Hilbert-Huang transform (HHT). First, we introduce the HHT analysis method to calculate the bolt length and identify defect locations based on sound wave reflection test signals, which includes decomposing the test signal via empirical mode decomposition (EMD), selecting the intrinsic mode functions (IMF) using the Pearson Correlation Index (PCI) and calculating the instantaneous phase and frequency via the Hilbert transform (HT). Second, six model tests are conducted using different grouting defects and bolt protruding lengths to verify the effectiveness of the HHT analysis method. Lastly, the influence of the bolt protruding length on the test signal, identification of multiple reflections from defects, bolt end and protruding end, and mode mixing from EMD are discussed. The HHT analysis method can identify the bolt length and grouting defect locations from signals that contain noise at multiple reflected interfaces. The reflection from the long protruding end creates an irregular test signal with many frequency peaks on the spectrum. The reflections from defects barely change the original signal because they are low energy, which cannot be adequately resolved using existing methods. The HHT analysis method can identify reflections from the long protruding end of the bolt and multiple reflections from grouting defects based on mutations in the instantaneous

  8. Redetermination of Ce[B5O8(OH(H2O]NO3·2H2O

    Directory of Open Access Journals (Sweden)

    Ya-Xi Huang

    2012-05-01

    Full Text Available The crystal structure of Ce[B5O8(OH(H2O]NO3·2H2O, cerium(III aquahydroxidooctaoxidopentaborate nitrate dihydrate, has been redetermined from single-crystal X-ray diffraction data. In contrast to the previous determination [Li et al. (2003. Chem. Mater. 15, 2253–2260], the present study reveals the location of all H atoms, slightly different fundamental building blocks (FBBs of the polyborate anions, more reasonable displacement ellipsoids for all non-H atoms, as well as a model without disorder of the nitrate anion. The crystal structure is built from corrugated polyborate layers parallel to (010. These layers, consisting of [B5O8(OH(H2O]2− anions as FBBs, stack along [010] and are linked by Ce3+ ions, which exhibit a distorted CeO10 coordination sphere. The layers are additionally stabilized via O—H...O hydrogen bonds between water molecules and nitrate anions, located at the interlayer space. The [BO3(H2O]-group shows a [3 + 1] coordination and is considerably distorted from a tetrahedral configuration. Bond-valence-sum calculation shows that the valence sum of boron is only 2.63 valence units (v.u. when the contribution of the water molecule (0.49 v.u. is neglected.

  9. Determination of Hydrogen Bond Structure in Water versus Aprotic Environments To Test the Relationship Between Length and Stability.

    Science.gov (United States)

    Sigala, Paul A; Ruben, Eliza A; Liu, Corey W; Piccoli, Paula M B; Hohenstein, Edward G; Martínez, Todd J; Schultz, Arthur J; Herschlag, Daniel

    2015-05-06

    Hydrogen bonds profoundly influence the architecture and activity of biological macromolecules. Deep appreciation of hydrogen bond contributions to biomolecular function thus requires a detailed understanding of hydrogen bond structure and energetics and the relationship between these properties. Hydrogen bond formation energies (ΔGf) are enormously more favorable in aprotic solvents than in water, and two classes of contributing factors have been proposed to explain this energetic difference, focusing respectively on the isolated and hydrogen-bonded species: (I) water stabilizes the dissociated donor and acceptor groups much better than aprotic solvents, thereby reducing the driving force for hydrogen bond formation; and (II) water lengthens hydrogen bonds compared to aprotic environments, thereby decreasing the potential energy within the hydrogen bond. Each model has been proposed to provide a dominant contribution to ΔGf, but incisive tests that distinguish the importance of these contributions are lacking. Here we directly test the structural basis of model II. Neutron crystallography, NMR spectroscopy, and quantum mechanical calculations demonstrate that O-H···O hydrogen bonds in crystals, chloroform, acetone, and water have nearly identical lengths and very similar potential energy surfaces despite ΔGf differences >8 kcal/mol across these solvents. These results rule out a substantial contribution from solvent-dependent differences in hydrogen bond structure and potential energy after association (model II) and thus support the conclusion that differences in hydrogen bond ΔGf are predominantly determined by solvent interactions with the dissociated groups (model I). These findings advance our understanding of universal hydrogen-bonding interactions and have important implications for biology and engineering.

  10. Bond-Slip Relationship for CFRP Sheets Externally Bonded to Concrete under Cyclic Loading.

    Science.gov (United States)

    Li, Ke; Cao, Shuangyin; Yang, Yue; Zhu, Juntao

    2018-02-26

    The objective of this paper was to explore the bond-slip relationship between carbon fiber-reinforced polymer (CFRP) sheets and concrete under cyclic loading through experimental and analytical approaches. Modified beam tests were performed in order to gain insight into the bond-slip relationship under static and cyclic loading. The test variables are the CFRP-to-concrete width ratio, and the bond length of the CFRP sheets. An analysis of the test results in this paper and existing test results indicated that the slope of the ascending segment of the bond-slip curve decreased with an increase in the number of load cycles, but the slip corresponding to the maximum shear stress was almost invariable as the number of load cycles increased. In addition, the rate of reduction in the slope of the ascending range of the bond-slip curve during cyclic loading decreased as the concrete strength increased, and increased as the load level or CFRP-to-concrete width ratio enhanced. However, these were not affected by variations in bond length if the residual bond length was longer than the effective bond length. A bilinear bond-slip model for CFRP sheets that are externally bonded to concrete under cyclic loading, which considered the effects of the cyclic load level, concrete strength, and CFRP-to-concrete ratio, was developed based on the existing static bond-slip model. The accuracy of this proposed model was verified by a comparison between this proposed model and test results.

  11. [Co(NH3)6]3[Cu4(OH)(CO3)8].2H2O--a new carbonato-copper(II) anion stabilized by extensive hydrogen bonding.

    Science.gov (United States)

    Abrahams, Brendan F; Haywood, Marissa G; Robson, Richard

    2004-04-21

    Addition of Co(NH3)6(3+) to aqueous solutions of Cu(II) in excess carbonate promotes the assembly of a new highly charged carbonato-copper(II) anion, [Cu4(OH)(CO3)8](9-), which contains an unusual mu4 hydroxo-bridged square Cu4 arrangement, stabilised in the crystal by no less than forty hydrogen bonds (< 3 Angstrom) to hexammine cations.

  12. Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel.

    Science.gov (United States)

    Sekhri, Sahil; Mittal, Sanjeev; Garg, Sandeep

    2016-01-01

    In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non-significant (p > 0.05). Surface treatment of enamel increases the bond strength of self adhesive resin cement.

  13. Topologically identical, but geometrically isomeric layers in hydrous α-, β-Rb[UO2(AsO3OH)(AsO2(OH)2)]·H2O and anhydrous Rb[UO2(AsO3OH)(AsO2(OH)2)

    International Nuclear Information System (INIS)

    Yu, Na; Klepov, Vladislav V.; Villa, Eric M.; Bosbach, Dirk; Suleimanov, Evgeny V.; Depmeier, Wulf; Albrecht-Schmitt, Thomas E.; Alekseev, Evgeny V.

    2014-01-01

    The hydrothermal reaction of uranyl nitrate with rubidium nitrate and arsenic (III) oxide results in the formation of polymorphic α- and β-Rb[UO 2 (AsO 3 OH)(AsO 2 (OH) 2 )]·H 2 O (α-, β-RbUAs) and the anhydrous phase Rb[UO 2 (AsO 3 OH)(AsO 2 (OH) 2 )] (RbUAs). These phases were structurally, chemically and spectroscopically characterized. The structures of all three compounds are based upon topologically identical, but geometrically isomeric layers. The layers are linked with each other by means of the Rb cations and hydrogen bonding. Dehydration experiments demonstrate that water deintercalation from hydrous α- and β-RbUAs yields anhydrous RbUAs via topotactic reactions. - Graphical abstract: Three different layer geometries observed in the structures of Rb[UO 2 (AsO 3 OH)(AsO 2 (OH) 2 )] and α- and β- Rb[UO 2 (AsO 3 OH)(AsO 2 (OH) 2 )]·H 2 O. Two different coordination environments of uranium polyhedra (types I and II) are shown schematically on the top of the figure. - Highlights: • Three new uranyl arsenates were synthesized from the hydrothermal reactions. • The phases consist of the topologically identical but geometrically different layers. • Topotactic transitions were observed in the processes of mono-hyrates dehydration

  14. Trimeric Hydrogen Bond in Geometrically Frustrated Hydroxyl Cobalt Halogenides

    International Nuclear Information System (INIS)

    Xiao-Dong, Liu; Masato, Hagihala; Xu-Guang, Zheng; Dong-Dong, Meng; Wan-Jun, Tao; Sen-Lin, Zhang; Qi-Xin, Guo

    2011-01-01

    The mid-infrared absorption spectra of geometrically frustrated hydroxyl cobalt halogenides Co 2 (OH) 3 Cl and Co 2 (OH) 3 Br are measured by FTIR spectrometers, and the stretching vibrational modes of hydroxyl groups are found to be 3549cm −1 and 3524cm −1 respectively. Through finding their true terminal O-H group stretching vibration frequencies, we obtain 107cm −1 and 99cm −1 red shift caused by the corresponding O-H···Cl and O-H···Br hydrogen bonds. Rarely reported trimeric hydrogen bonds (Co 3 ≡O-H) 3 ···Cl/Br are pointed out to demonstrate the relative weakness of this kind of hydrogen bond which may have a critical effect on the lattice symmetry and magnetic structures. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  15. Effect of Bonding Pressure and Bonding Time on the Tensile Properties of Cu-Foam / Cu-Plate Diffusion Bonded Joint

    International Nuclear Information System (INIS)

    Kim, Sang-Ho; Heo, Hoe-Jun; Kang, Chung-Yun; Yoon, Tae-Jin

    2016-01-01

    Open cell Cu foam, which has been widely utilized in various industries because of its high thermal conductivity, lightweight and large surface area, was successfully joined with Cu plate by diffusion bonding. To prevent excessive deformation of the Cu foam during bonding process, the bonding pressure should be lower than 500 kPa at 800 ℃ for 60 min and bonding pressure should be lowered with increasing holding time. The bonding strength was evaluated by tensile tests. The tensile load of joints increased with the bonding pressure and holding time. In the case of higher bonding pressure or time, the bonded length at the interface was usually longer than the cross-sectional length of the foam, so fracture occurred at the foam. For the same reason, base metal (foam) fracture mainly occurred at the node-plate junction rather than in the strut-plate junction because the bonded surface area of the node was relatively larger than that of the strut.

  16. The effect of symmetry on the U L3 NEXAFS of octahedral coordinated uranium(vi)

    Energy Technology Data Exchange (ETDEWEB)

    Bagus, Paul S. [Department of Chemistry, University of North Texas, Denton, Texas 76203-5017, USA; Nelin, Connie J. [Consultant, Austin, Texas 78730, USA; Ilton, Eugene S. [Pacific Northwest National Laboratory, Richland, Washington 99352, USA

    2017-03-21

    We describe a detailed theoretical analysis of how distortions from ideal cubic or Oh symmetry affect the shape, in particular the width, of the U L3-edge NEXAFS for U(VI) in octahedral coordination. The full-width-half-maximum (FWHM) of the L3-edge white line decreases with increasing distortion from Oh symmetry due to the mixing of symmetry broken t2g and eg components of the excited state U(6d) orbitals. The mixing is allowed because of spin-orbit splitting of the ligand field split 6d orbitals. Especially for higher distortions, it is possible to identify a mixing between one of the t2g and one of the eg components, allowed in the double group representation when the spin-orbit interaction is taken into account. This mixing strongly reduces the ligand field splitting, which, in turn, leads to a narrowing of the U L3 white line. However, the effect of this mixing is partially offset by an increase in the covalent anti-bonding character of the highest energy spin-orbit split eg orbital. At higher distortions, mixing overwhelms the increasing anti-bonding character of this orbital which leads to an accelerated decrease in the FWHM with increasing distortion. Additional evidence for the effect of mixing of t2g and eg components is that the FWHM of the white line narrows whether the two axial U-O bond distances shorten or lengthen. Our ab initio theory uses relativistic wavefunctions for cluster models of the structures; empirical or semi-empirical parameters were not used to adjust prediction to experiment. A major advantage is that it provides a transparent approach for determining how the character and extent of the covalent mixing of the relevant U and O orbitals affect the U L3-edge white line.

  17. Hydrogen Bonding With a Hydrogen Bond: The CH4•••H2O Dimer ...

    Indian Academy of Sciences (India)

    X-H•••C hydrogen bonds in n-alkane-HX (X = F, OH) complexes are stronger than C-H•••X hydrogen bonds. R Parajuli* and E Arunan**. *Department of Physics, Amrit Campus, Tribhuvan University, Kathmandu, Nepal. **Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru 560012, India.

  18. Raman spectroscopy of supported chromium oxide catalysts : determination of chromium-oxygen bond distances and bond orders

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Wachs, I.E.

    1996-01-01

    An empirical correlation is described for relating Raman stretching frequencies of chromium—oxygen (Cr—O) bonds to their bond lengths in chromium oxide reference compounds. An exponential fit of crystallographically determined Cr—O bond lengths to Cr—O Raman symmetric stretching frequencies

  19. Theoretical Characterization of Hydrogen Bonding Interactions ...

    Indian Academy of Sciences (India)

    The highest stabilization results in case of (H2N)CHO as hydrogen bond acceptor. The variation of the substituents at –OH functional group also influences the strength of hydrogen bond; nearly all the substituents increase the stabilization energy relative to HOH. The analysis of geometrical parameters; proton affinities, ...

  20. Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel

    Science.gov (United States)

    Sekhri, Sahil; Garg, Sandeep

    2016-01-01

    Introduction In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. Aim The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. Materials and Methods On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Results Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non–significant (p > 0.05). Conclusion Surface treatment of enamel increases the bond strength of self adhesive resin cement. PMID:26894165

  1. Unwilling U-U bonding in U-2@C-80: cage-driven metal-metal bonds in di-uranium fullerenes

    Czech Academy of Sciences Publication Activity Database

    Foroutan-Nejad, C.; Vícha, J.; Marek, R.; Patzschke, M.; Straka, Michal

    2015-01-01

    Roč. 17, č. 37 (2015), s. 24182-24192 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GA14-03564S Institutional support: RVO:61388963 Keywords : actinide-actinide bond * endohedral actinide fullerene * cage-driven bonding Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.449, year: 2015 http://pubs.rsc.org/en/content/articlepdf/2015/cp/c5cp04280a

  2. Theoretical investigation on hydrogen bond interaction of diketo/keto-enol form uracil and thymine tautomers with intercalators.

    Science.gov (United States)

    Anithaa, V S; Vijayakumar, S; Sudha, M; Shankar, R

    2017-11-06

    The interaction of diketo and keto-enol form of thymine and uracil tautomers with acridine (Acr), phenazine (Phen), benzo[c]cinnoline (Ben), 1,10-phenanthroline (1,10-Phe), and 4,7-phenenthroline (4,7-Phe) intercalating drug molecules was studied using density functional theory at B3LYP/6-311++G** and M05-2×/6-311++G** levels of theory. From the interaction energy, it is found that keto-enol form tautomers have stronger interaction with intercalators than diketone form tautomers. On complex formation of thymine and uracil tautomers with benzo[c]cinnoline the drug molecules have high interaction energy values of -20.14 (BenT3) and -20.55 (BenU3) kcal mol -1 , while phenazine has the least interaction energy values of -6.52 (PhenT2) and -6.67 (PhenU2) kcal mol -1 . The closed shell intermolecular type interaction between the molecules with minimum elliptical value of 0.018 and 0.019 a.u at both levels of theory has been found from topological analysis. The benzo[c]cinnoline drug molecule with thymine and uracil tautomers has short range intermolecular N-H…N, C-H…O, and O-H...N hydrogen bonds (H-bonds) resulting in higher stability than other drug molecules. The proper hydrogen bonds N-H..N and O-H..N have the frequency shifted toward the lower side (red shifted) with the elongation in their bond length while the improper hydrogen bond C-H...O has the frequency shifted toward the higher side (blue shifted) of the spectral region with the contraction in their bond length. Further, the charge transfer between proton acceptor and donor along with stability of the bond is studied using natural bond orbital (NBO) analysis. Graphical abstract Hydrogen bond interaction of diketo/keto-enol form uracil and thymine tautomers with intercalators.

  3. H+-type and OH- -type biological protonic semiconductors and complementary devices.

    Science.gov (United States)

    Deng, Yingxin; Josberger, Erik; Jin, Jungho; Roudsari, Anita Fadavi; Rousdari, Anita Fadavi; Helms, Brett A; Zhong, Chao; Anantram, M P; Rolandi, Marco

    2013-10-03

    Proton conduction is essential in biological systems. Oxidative phosphorylation in mitochondria, proton pumping in bacteriorhodopsin, and uncoupling membrane potentials by the antibiotic Gramicidin are examples. In these systems, H(+) hop along chains of hydrogen bonds between water molecules and hydrophilic residues - proton wires. These wires also support the transport of OH(-) as proton holes. Discriminating between H(+) and OH(-) transport has been elusive. Here, H(+) and OH(-) transport is achieved in polysaccharide- based proton wires and devices. A H(+)- OH(-) junction with rectifying behaviour and H(+)-type and OH(-)-type complementary field effect transistors are demonstrated. We describe these devices with a model that relates H(+) and OH(-) to electron and hole transport in semiconductors. In turn, the model developed for these devices may provide additional insights into proton conduction in biological systems.

  4. Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials

    International Nuclear Information System (INIS)

    Omar, M.S.

    2012-01-01

    Graphical abstract: Three models are derived to explain the nanoparticles size dependence of mean bonding length, melting temperature and lattice thermal expansion applied on Sn, Si and Au. The following figures are shown as an example for Sn nanoparticles indicates hilly applicable models for nanoparticles radius larger than 3 nm. Highlights: ► A model for a size dependent mean bonding length is derived. ► The size dependent melting point of nanoparticles is modified. ► The bulk model for lattice thermal expansion is successfully used on nanoparticles. -- Abstract: A model, based on the ratio number of surface atoms to that of its internal, is derived to calculate the size dependence of lattice volume of nanoscaled materials. The model is applied to Si, Sn and Au nanoparticles. For Si, that the lattice volume is increases from 20 Å 3 for bulk to 57 Å 3 for a 2 nm size nanocrystals. A model, for calculating melting point of nanoscaled materials, is modified by considering the effect of lattice volume. A good approach of calculating size-dependent melting point begins from the bulk state down to about 2 nm diameter nanoparticle. Both values of lattice volume and melting point obtained for nanosized materials are used to calculate lattice thermal expansion by using a formula applicable for tetrahedral semiconductors. Results for Si, change from 3.7 × 10 −6 K −1 for a bulk crystal down to a minimum value of 0.1 × 10 −6 K −1 for a 6 nm diameter nanoparticle.

  5. Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials

    Energy Technology Data Exchange (ETDEWEB)

    Omar, M.S., E-mail: dr_m_s_omar@yahoo.com [Department of Physics, College of Science, University of Salahaddin-Erbil, Arbil, Kurdistan (Iraq)

    2012-11-15

    Graphical abstract: Three models are derived to explain the nanoparticles size dependence of mean bonding length, melting temperature and lattice thermal expansion applied on Sn, Si and Au. The following figures are shown as an example for Sn nanoparticles indicates hilly applicable models for nanoparticles radius larger than 3 nm. Highlights: ► A model for a size dependent mean bonding length is derived. ► The size dependent melting point of nanoparticles is modified. ► The bulk model for lattice thermal expansion is successfully used on nanoparticles. -- Abstract: A model, based on the ratio number of surface atoms to that of its internal, is derived to calculate the size dependence of lattice volume of nanoscaled materials. The model is applied to Si, Sn and Au nanoparticles. For Si, that the lattice volume is increases from 20 Å{sup 3} for bulk to 57 Å{sup 3} for a 2 nm size nanocrystals. A model, for calculating melting point of nanoscaled materials, is modified by considering the effect of lattice volume. A good approach of calculating size-dependent melting point begins from the bulk state down to about 2 nm diameter nanoparticle. Both values of lattice volume and melting point obtained for nanosized materials are used to calculate lattice thermal expansion by using a formula applicable for tetrahedral semiconductors. Results for Si, change from 3.7 × 10{sup −6} K{sup −1} for a bulk crystal down to a minimum value of 0.1 × 10{sup −6} K{sup −1} for a 6 nm diameter nanoparticle.

  6. Actinide-pnictide (An-Pn) bonds spanning non-metal, metalloid, and metal combinations (An=U, Th; Pn=P, As, Sb, Bi)

    Energy Technology Data Exchange (ETDEWEB)

    Rookes, Thomas M.; Wildman, Elizabeth P.; Gardner, Benedict M.; Wooles, Ashley J.; Gregson, Matthew; Tuna, Floriana; Liddle, Stephen T. [School of Chemistry, The University of Manchester (United Kingdom); Balazs, Gabor; Scheer, Manfred [Institute of Inorganic Chemistry, University of Regensburg (Germany)

    2018-01-26

    The synthesis and characterisation is presented of the compounds [An(Tren{sup DMBS}){Pn(SiMe_3)_2}] and [An(Tren{sup TIPS}){Pn(SiMe_3)_2}] [Tren{sup DMBS}=N(CH{sub 2}CH{sub 2}NSiMe{sub 2}Bu{sup t}){sub 3}, An=U, Pn=P, As, Sb, Bi; An=Th, Pn=P, As; Tren{sup TIPS}=N(CH{sub 2}CH{sub 2}NSiPr{sup i}{sub 3}){sub 3}, An=U, Pn=P, As, Sb; An=Th, Pn=P, As, Sb]. The U-Sb and Th-Sb moieties are unprecedented examples of any kind of An-Sb molecular bond, and the U-Bi bond is the first two-centre-two-electron (2c-2e) one. The Th-Bi combination was too unstable to isolate, underscoring the fragility of these linkages. However, the U-Bi complex is the heaviest 2c-2e pairing of two elements involving an actinide on a macroscopic scale under ambient conditions, and this is exceeded only by An-An pairings prepared under cryogenic matrix isolation conditions. Thermolysis and photolysis experiments suggest that the U-Pn bonds degrade by homolytic bond cleavage, whereas the more redox-robust thorium compounds engage in an acid-base/dehydrocoupling route. (copyright 2018 The Authors. Published by Wiley-VCH Verlag GmbH and Co. KGaA.)

  7. Performance of quantum Monte Carlo for calculating molecular bond lengths

    Energy Technology Data Exchange (ETDEWEB)

    Cleland, Deidre M., E-mail: deidre.cleland@csiro.au; Per, Manolo C., E-mail: manolo.per@csiro.au [CSIRO Virtual Nanoscience Laboratory, 343 Royal Parade, Parkville, Victoria 3052 (Australia)

    2016-03-28

    This work investigates the accuracy of real-space quantum Monte Carlo (QMC) methods for calculating molecular geometries. We present the equilibrium bond lengths of a test set of 30 diatomic molecules calculated using variational Monte Carlo (VMC) and diffusion Monte Carlo (DMC) methods. The effect of different trial wavefunctions is investigated using single determinants constructed from Hartree-Fock (HF) and Density Functional Theory (DFT) orbitals with LDA, PBE, and B3LYP functionals, as well as small multi-configurational self-consistent field (MCSCF) multi-determinant expansions. When compared to experimental geometries, all DMC methods exhibit smaller mean-absolute deviations (MADs) than those given by HF, DFT, and MCSCF. The most accurate MAD of 3 ± 2 × 10{sup −3} Å is achieved using DMC with a small multi-determinant expansion. However, the more computationally efficient multi-determinant VMC method has a similar MAD of only 4.0 ± 0.9 × 10{sup −3} Å, suggesting that QMC forces calculated from the relatively simple VMC algorithm may often be sufficient for accurate molecular geometries.

  8. The Recovery of Uranium From The Rejected Fuel Plate Dispersion Type of U3O8-Al and U3Si2Al by NaOH

    International Nuclear Information System (INIS)

    Widodo, G; Aji, D

    1998-01-01

    The recovery of uranium from the rejected fuel plate dispersion type of U 3 O 8 -AI And U 3 Si 2 -AI with a dissolution has been performed.Each of 5 fragment of fuel plate dispersion of U 3 O 8 -AI or U 3 Si 2 Al of 1x4 cm size was put in the distilled glass content of 250 ml NaOH solution whit The concentration variation 10,15,20,25,and 30%,and than was heated at temperature of 102 o C and was stirred constantly by magnetic stirred.Uranium in the form of U 3 O 8 or U 3 Si 2 was separated by filtration and Either residu and filtrate was analyzed by potentiometry using modified Devies Gray method. From the experiment data it was found in the residu that presentation of uranium was 83.99-84.05% and 84.67-86.556% while in filtrate it was found 53.90 ppm and 69.3 ppm

  9. Control of chemical bonding of the ZnO surface grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Ogata, K.; Komuro, T.; Hama, K.; Koike, K.; Sasa, S.; Inoue, M.; Yano, M.

    2004-01-01

    Toward the fabrication of enzyme modified field effect transistors (EnFETs) as one of organic/inorganic hybridized structures, surface bonding of the ZnO grown by molecular beam epitaxy was controlled by ex situ treatments. Angle resolved X-ray photoelectron spectroscopy (XPS) measurement revealed that O-H bonds exist at the surface of ZnO. It was found that the number of O-H bond could be changed with reversibility using plasma and thermal treatments

  10. Side-by-Side Comparison of Hydroperoxide and Corresponding Alcohol as Hydrogen-Bond Donors

    DEFF Research Database (Denmark)

    Møller, Kristian Holten; Tram, Camilla Mia; Kjærgaard, Henrik Grum

    2017-01-01

    tert-butanol (t-BuOH), with dimethyl ether (DME) as the hydrogen-bond acceptor. Using a combination of Fourier-transform infrared spectroscopy and quantum chemical calculations, we compare the strength of the OH-O hydrogen bond and the total strength of complexation. We find that, both in terms...... results, we find that the hydroperoxide complex is stabilized by ∼4 kJ/mol (Gibbs free energy) more than the alcohol complex. Measured red shifts show the same trend in hydrogen-bond strength with trimethylamine (N acceptor atom) and dimethyl sulfide (S acceptor atom) as the hydrogen-bond acceptors....

  11. Characteristics of chemical binding to alpha 2u-globulin in vitro--evaluating structure-activity relationships

    International Nuclear Information System (INIS)

    Borghoff, S.J.; Miller, A.B.; Bowen, J.P.; Swenberg, J.A.

    1991-01-01

    alpha 2u-Globulin (alpha 2u) has been shown to accumulate in the kidneys of male rats treated with 2,2,4-trimethylpentane (TMP). 2,4,4-Trimethyl-2-pentanol (TMP-2-OH), a metabolite of TMP, is found reversibly bound to alpha 2u isolated from the kidneys of these treated rats. The objectives of the following study were to characterize the ability of [3H]TMP-2-OH to bind to alpha 2u in vitro and to determine whether other compounds that cause this protein to accumulate have the same binding characteristics. Although compounds that have been shown to cause the accumulation of alpha 2u in male rat kidneys compete in vitro with [3H]TMP-2-OH for binding to alpha 2u, they do so to varying degrees. The binding affinity (Kd) of the [3H]TMP-2-OH-alpha 2u complex was calculated to be on the order of 10(-7) M. The inhibition constant values (Ki) determined for d-limonene, 1,4-dichlorobenzene, and 2,5-dichlorophenol were all in the range 10(-4) M, whereas the Ki values for isophorone, 2,4,4- or 2,2,4-trimethyl-1-pentanol, and d-limonene oxide were determined to be in the range 10(-6) and 10(-7) M, respectively. TMP and 2,4,4- and 2,2,4-trimethylpentanoic acid did not compete for binding. This suggests that other factors, besides binding, are involved in the accumulation of alpha 2u. In this study the ability of a chemical to bind to alpha 2u was used as a measure of biological activity to assess structure-activity relationships among the chemicals tested and known to cause the accumulation of alpha 2u. The results so far suggest that binding is dependent on both hydrophobic interactions and hydrogen bonding

  12. Investigation on pseudosymmetry, twinning and disorder in crystal structure determinations: Ba(H2O)M2III[PO3(OH)]4 (M=Fe, V) as examples

    International Nuclear Information System (INIS)

    Sun Wei; Huang Yaxi; Pan Yuanming; Mi Jinxiao

    2012-01-01

    Twinning commonly occurs in monoclinic crystals with dimensionally similar a and c axes and results in pseudo-orthorhombic symmetries with overlapping diffractions. For example, twinning in the new synthetic compound Ba(H 2 O)Fe 2 [PO 3 (OH)] 4 , which varies in space group from P2 1 to P2 1 /c with approximately equal a and c axial lengths, gives rise to a pseudosymmetry of C222 1 . Similarly, the related compound Ba(H 2 O)V 2 [PO 3 (OH)] 4 is commonly twinned and varies in space groups as well, arising from ordered to disordered distributions of the barium cations and water molecules in the cavities. Moreover, analyses of these and other twinned structures show that the small average standard uncertainty of bond distances is a sensitive criterion for structure determinations, especially for those involving crystal twinning as well as order–disorder. A proper structure determination leads to small standard uncertainties of the atomic displacement parameters, which further result in the small standard uncertainties of bond distances. - Graphical abstract: Ba(H 2 O)M 2 III [PO 3 (OH)] 4 (M=Fe, V) varies in space group from P2 1 to P2 1 /c, arising from ordered to disordered distributions of Ba 2+ and H 2 O in the cavities. Highlights: ► Twinning commonly occurs in monoclinic crystals with a≈c. ► Overlapping diffractions from twin domains hamper with the determination of real space groups. ► Conventional criteria for evaluating the real space groups are not effective in this case. ► Small standard uncertainty of bond distances is proposed as a sensitive criterion. ► Using this criterion we determined the order–disorder structures of Ba(H 2 O)M 2 III [PO 3 (OH)] 4 (M=Fe, V) from twinned crystals.

  13. DFT study of uranyl peroxo complexes with H2O, F-, OH-, CO3(2-), and NO3(-).

    Science.gov (United States)

    Odoh, Samuel O; Schreckenbach, Georg

    2013-05-06

    The structural and electronic properties of monoperoxo and diperoxo uranyl complexes with aquo, fluoride, hydroxo, carbonate, and nitrate ligands have been studied using scalar relativistic density functional theory (DFT). Only the complexes in which the peroxo ligands are coordinated to the uranyl moiety in a bidentate mode were considered. The calculated binding energies confirm that the affinity of the peroxo ligand for the uranyl group far exceeds that of the F(-), OH(-), CO3(2-), NO3(-), and H2O ligands. The formation of the monoperoxo complexes from UO2(H2O)5(2+) and HO2(-) were found to be exothermic in solution. In contrast, the formation of the monouranyl-diperoxo, UO2(O2)2X2(4-) or UO2(O2)2X(4-/3-) (where X is any of F(-), OH(-), CO3(2-), or NO3(-)), complexes were all found to be endothermic in aqueous solution. This suggests that the monoperoxo species are the terminal monouranyl peroxo complexes in solution, in agreement with recent experimental work. Overall, we find that the properties of the uranyl-peroxo complexes conform to well-known trends: the coordination of the peroxo ligand weakens the U-O(yl) bonds, stabilizes the σ(d) orbitals and causes a mixing between the uranyl π- and peroxo σ- and π-orbitals. The weakening of the U-O(yl) bonds upon peroxide coordination results in uranyl stretching vibrational frequencies that are much lower than those obtained after the coordination of carbonato or hydroxo ligands.

  14. Studies of Hydrogen Bonding Between N, N-Dimethylacetamide and Primary Alcohols

    Directory of Open Access Journals (Sweden)

    M. S. Manjunath

    2009-01-01

    Full Text Available Hydrogen bonding between N, N-dimethylacetamide (DMA and alcohols has been studied in carbon tetrachloride solution by an X-band Microwave bench at 936GHz. The dielectric relaxation time (τ of the binary system are obtained by both Higasi's method and Gopalakrishna method. The most likely association complex between alcohol and DMA is 1:1 stoichiometric complex through the hydroxyl group of the alcohol and the carbonyl group of amide. The results show that the interaction between alcohols and amides is 1:1 complex through the free hydroxyl group of the alcohol and the carbonyl group of amide and the alkyl chain-length of both the alcohols and amide plays an important role in the determination of the strength of hydrogen bond (O-H: C=O formed and suggests that the proton donating ability of alcohols is in the order: 1-propanol < 1-butanol < 1-pentanol and the accepting ability of DMA.

  15. 1 mil gold bond wire study.

    Energy Technology Data Exchange (ETDEWEB)

    Huff, Johnathon; McLean, Michael B.; Jenkins, Mark W.; Rutherford, Brian Milne

    2013-05-01

    In microcircuit fabrication, the diameter and length of a bond wire have been shown to both affect the current versus fusing time ratio of a bond wire as well as the gap length of the fused wire. This study investigated the impact of current level on the time-to-open and gap length of 1 mil by 60 mil gold bond wires. During the experiments, constant current was provided for a control set of bond wires for 250ms, 410ms and until the wire fused; non-destructively pull-tested wires for 250ms; and notched wires. The key findings were that as the current increases, the gap length increases and 73% of the bond wires will fuse at 1.8A, and 100% of the wires fuse at 1.9A within 60ms. Due to the limited scope of experiments and limited data analyzed, further investigation is encouraged to confirm these observations.

  16. Structural evolution of a uranyl peroxide nano-cage fullerene: U60, at elevated pressures

    Science.gov (United States)

    Turner, K. M.; Lin, Y.; Zhang, F.; McGrail, B.; Burns, P. C.; Mao, W. L.; Ewing, R. C.

    2015-12-01

    U60 is a uranyl peroxide nano-cage that adopts a highly symmetric fullerene topology; it is topologically identical to C60. Several studies on the aqueous-phase of U60 clusters, [UO2(O2)(OH)]6060-, have shown its persistence in complex solutions and over lengthy time scales. Peroxide enhances corrosion of nuclear fuel in a reactor accident-uranyl peroxides often form near contaminated sites. U60 (Fm-3) crystallizes with approximate formula: Li68K12(OH)20[UO2(O2)(OH)]60(H2O)310. Here, we have used the diamond anvil cell (DAC) to examine U60 to understand the stability of this cluster at high pressures. We used a symmetric DAC with 300 μm culet diamonds and two different pressure-transmitting media: a mixture of methanol+ethanol and silicone oil. Using a combination of in situ Raman spectroscopy and synchrotron XRD, and electrospray ionization mass spectroscopy (ESI-MS) ex situ, we have determined the pressure-induced evolution of U60. Crystalline U60 undergoes an irreversible phase transition to a tetragonal structure at 4.1 GPa, and irreversibly amorphizes at 13 GPa. The amorphous phase likely consists of clusters of U60. Above 15 GPa, the U60 cluster is irreversibly destroyed. ESI-MS shows that this phase consists of species that likely have between 10-20 uranium atoms. Raman spectroscopy complements the diffraction measurements. U60 shows two dominant vibrational modes: a symmetric stretch of the uranyl U-O triple bond (810 cm-1), and a symmetric stretch of the U-O2-U peroxide bond (820 cm-1). As pressure is increased, these modes shift to higher wavenumbers, and overlap at 4 GPa. At 15 GPa, their intensity decreases below detection. These experiments reveal several novel behaviors including a new phase of U60. Notably, the amorphization of U60 occurs before the collapse of its cluster topology. This is different from the behavior of solvated C60 at high pressure, which maintains a hcp structure up to 30 GPa, while the clusters disorder. These results suggest

  17. Computational and Empirical Trans-hydrogen Bond Deuterium Isotope Shifts Suggest that N1-N3 A:U Hydrogen Bonds of RNA are Shorter than those of A:T Hydrogen Bonds of DNA

    International Nuclear Information System (INIS)

    Kim, Yong-Ick; Manalo, Marlon N.; Perez, Lisa M.; LiWang, Andy

    2006-01-01

    Density functional theory calculations of isolated Watson-Crick A:U and A:T base pairs predict that adenine 13 C2 trans-hydrogen bond deuterium isotope shifts due to isotopic substitution at the pyrimidine H3, 2h Δ 13 C2, are sensitive to the hydrogen-bond distance between the N1 of adenine and the N3 of uracil or thymine, which supports the notion that 2h Δ 13 C2 is sensitive to hydrogen-bond strength. Calculated 2h Δ 13 C2 values at a given N1-N3 distance are the same for isolated A:U and A:T base pairs. Replacing uridine residues in RNA with 5-methyl uridine and substituting deoxythymidines in DNA with deoxyuridines do not statistically shift empirical 2h Δ 13 C2 values. Thus, we show experimentally and computationally that the C7 methyl group of thymine has no measurable affect on 2h Δ 13 C2 values. Furthermore, 2h Δ 13 C2 values of modified and unmodified RNA are more negative than those of modified and unmodified DNA, which supports our hypothesis that RNA hydrogen bonds are stronger than those of DNA. It is also shown here that 2h Δ 13 C2 is context dependent and that this dependence is similar for RNA and DNA

  18. Neutron diffraction of α, β and γ cyclodextrins: hydrogen bonding patterns

    International Nuclear Information System (INIS)

    Hingerty, B.E.; Klar, B.; Hardgrove, G.; Betzel, C.; Saenger, W.

    1983-01-01

    Cyclodextrins (CD's) are torus-shaped molecules composed of six (α), seven (β) or eight (γ) (1 → 4) linked glucoses. α-CD has been shown to have two different structures with well-defined hydrogen bonds, one tense and the other relaxed. An induced-fit-like mechanism for α-CD complex formation has been proposed. Circular hydrogen bond networks have also been found for α-CD due to the energetically favored cooperative effect. β-CD with a disordered water structure possesses an unusual flip-flop hydrogen bonding system of the type O-H H-O representing an equilibrium between two states; O-H O reversible H-O. γ-CD with a disordered water structure similar to β-CD also possesses the flip-flop hydrogen bond. This study demonstrates that hydrogen bonds are operative in disordered systems and display dynamics even in the solid state

  19. Evidence for phosphorus bonding in phosphorus trichloride-methanol adduct: a matrix isolation infrared and ab initio computational study.

    Science.gov (United States)

    Joshi, Prasad Ramesh; Ramanathan, N; Sundararajan, K; Sankaran, K

    2015-04-09

    The weak interaction between PCl3 and CH3OH was investigated using matrix isolation infrared spectroscopy and ab initio computations. In a nitrogen matrix at low temperature, the noncovalent adduct was generated and characterized using Fourier transform infrared spectroscopy. Computations were performed at B3LYP/6-311++G(d,p), B3LYP/aug-cc-pVDZ, and MP2/6-311++G(d,p) levels of theory to optimize the possible geometries of PCl3-CH3OH adducts. Computations revealed two minima on the potential energy surface, of which, the global minimum is stabilized by a noncovalent P···O interaction, known as a pnictogen bonding (phosphorus bonding or P-bonding). The local minimum corresponded to a cyclic adduct, stabilized by the conventional hydrogen bonding (Cl···H-O and Cl···H-C interactions). Experimentally, 1:1 P-bonded PCl3-CH3OH adduct in nitrogen matrix was identified, where shifts in the P-Cl modes of PCl3, O-C, and O-H modes of CH3OH submolecules were observed. The observed vibrational frequencies of the P-bonded adduct in a nitrogen matrix agreed well with the computed frequencies. Furthermore, computations also predicted that the P-bonded adduct is stronger than H-bonded adduct by ∼1.56 kcal/mol. Atoms in molecules and natural bond orbital analyses were performed to understand the nature of interactions and effect of charge transfer interaction on the stability of the adducts.

  20. Inhibition of nuclear T3 binding by fatty acids: dependence on chain length, unsaturated bonds, cis-trans configuration and esterification

    NARCIS (Netherlands)

    Wiersinga, W. M.; Platvoet-ter Schiphorst, M.

    1990-01-01

    1. Fatty acids have the capacity for inhibition of nuclear T3 binding (INB). The present studies were undertaken to describe the INB-activity of fatty acids as a function of chain length, unsaturated bonds, cis-trans configuration, and esterification. 2. Isolated rat liver nuclei were incubated with

  1. Aqueous U(VI) interaction with magnetite nanoparticles in a mixed flow reactor system: HR-XANES study

    International Nuclear Information System (INIS)

    Pidchenko, I; Heberling, F; Finck, N; Schild, D; Bohnert, E; Schäfer, T; Rothe, J; Geckeis, H; Vitova, T; Kvashnina, KO

    2016-01-01

    The redox variations and changes in local atomic environment of uranium (U) interacted with the magnetite nanoparticles were studied in a proof of principle experiment by the U L 3 and M 4 edges high energy resolution X-ray absorption near edge structure (HR-XANES) technique. We designed and applied a mixed flow reactor (MFR) set-up to maintain dynamic flow conditions during U-magnetite interactions. Formation of hydrolyzed, bi- and poly-nuclear U species were excluded by slow continuous injection of U(VI) (10 -6 M) and pH control integrated in the MFR set-up. The applied U HR-XANES technique is more sensitive to minor changes in the U redox states and bonding compared to the conventional XANES method. Major U(VI) contribution in uranyl type of bonding is found in the magnetite nanoparticles after three days operation time of the MFR. Indications for shortening of the U-O axial bond length for the magnetite compared to the maghemite system are present too. (paper)

  2. Binding of ethanol on calcite: the role of the OH bond and its relevance to biomineralization

    DEFF Research Database (Denmark)

    Sand, K K; Yang, M; Makovicky, E

    2010-01-01

    The interaction of OH-containing compounds with calcite, CaCO(3), such as is required for the processes that control biomineralization, has been investigated in a low-water solution. We used ethanol (EtOH) as a simple, model, OH-containing organic compound, and observed the strength of its adsorp...

  3. Charge selective contact on ultra-thin In(OH)xS y/Pb(OH) xS y heterostructure prepared by SILAR

    International Nuclear Information System (INIS)

    Gavrilov, S.; Oja, I.; Lim, B.; Belaidi, A.; Bohne, W.; Strub, E.; Roehrich, J.; Lux-Steiner, M.-Ch.; Dittrich, Th.

    2006-01-01

    Ultra-thin In(OH) x S y /Pb(OH) x S y heterostructures were formed by the wet chemical SILAR (successive ion layer adsorption and reaction) technique. ERDA (elastic recoil detection analysis) was used for stoichiometry analysis. The heterocontacts were conditioned by joint annealing of the two layers at different low temperatures in air. The charge selectivity was demonstrated with various small area solar cell structures. The results are discussed on the base of formation of bonds between sulphide clusters and passivation of defects with hydrogen containing species in hydroxy-sulphides. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Electronic bond tuning with heterocyclic carbenes

    KAUST Repository

    Falivene, Laura

    2013-01-01

    We discuss the impact of the nature of the heterocyclic carbene ring, when used as a complex forming ligand, on the relative stability of key intermediates in three typical Ru, Pd and Au promoted reactions. Results show that P-heterocyclic carbenes have a propensity to increase the bonding of the labile ligand and of the substrate in Ru-promoted olefin metathesis, whereas negligible impact is expected on the stability of the ruthenacycle intermediate. In the case of Pd cross-coupling reactions, dissociation of a P-heterocyclic carbene is easier than dissociation of the N-heterocyclic analogue. In the case of the Au-OH synthon, the Au-OH bond is weakened with the P-heterocyclic carbene ligands. A detailed energy decomposition analysis is performed to rationalize these results. © 2013 The Royal Society of Chemistry.

  5. The influence of large-amplitude librational motion on the hydrogen bond energy for alcohol–water complexes

    DEFF Research Database (Denmark)

    Andersen, Jonas; Heimdal, J.; Larsen, René Wugt

    2015-01-01

    is a superior hydrogen bond acceptor. The class of large-amplitude donor OH librational motion is shown to account for up to 5.1 kJ mol-1 of the destabilizing change of vibrational zero-point energy upon intermolecular OH...O hydrogen bond formation. The experimental findings are supported by complementary...

  6. The chemical bond in inorganic chemistry the bond valence model

    CERN Document Server

    Brown, I David

    2016-01-01

    The bond valence model is a version of the ionic model in which the chemical constraints are expressed in terms of localized chemical bonds formed by the valence charge of the atoms. Theorems derived from the properties of the electrostatic flux predict the rules obeyed by both ionic and covalent bonds. They make quantitative predictions of coordination number, crystal structure, bond lengths and bond angles. Bond stability depends on the matching of the bonding strengths of the atoms, while the conflicting requirements of chemistry and space lead to the structural instabilities responsible for the unusual physical properties displayed by some materials. The model has applications in many fields ranging from mineralogy to molecular biology.

  7. Topologically identical, but geometrically isomeric layers in hydrous α-, β-Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})]·H{sub 2}O and anhydrous Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Na; Klepov, Vladislav V. [Forschungszentrum Jülich GmbH, Institute for Energy and Climate Research (IEK-6), 52428 Jülich (Germany); Villa, Eric M. [Department of Chemistry, Creighton University, 2500 California Plaza, Omaha NE 68178 (United States); Bosbach, Dirk [Forschungszentrum Jülich GmbH, Institute for Energy and Climate Research (IEK-6), 52428 Jülich (Germany); Suleimanov, Evgeny V. [Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod (Russian Federation); Depmeier, Wulf [Institut für Geowissenschaften, Universität zu Kiel, 24118 Kiel (Germany); Albrecht-Schmitt, Thomas E., E-mail: albrecht-schmitt@chem.fsu.edu [Department of Chemistry and Biochemistry, Florida State University, 102 Varsity Way, Tallahassee, FL 32306-4390 (United States); Alekseev, Evgeny V., E-mail: e.alekseev@fz-juelich.de [Forschungszentrum Jülich GmbH, Institute for Energy and Climate Research (IEK-6), 52428 Jülich (Germany); Institut für Kristallographie, RWTH Aachen University, 52066 Aachen (Germany)

    2014-07-01

    The hydrothermal reaction of uranyl nitrate with rubidium nitrate and arsenic (III) oxide results in the formation of polymorphic α- and β-Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})]·H{sub 2}O (α-, β-RbUAs) and the anhydrous phase Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})] (RbUAs). These phases were structurally, chemically and spectroscopically characterized. The structures of all three compounds are based upon topologically identical, but geometrically isomeric layers. The layers are linked with each other by means of the Rb cations and hydrogen bonding. Dehydration experiments demonstrate that water deintercalation from hydrous α- and β-RbUAs yields anhydrous RbUAs via topotactic reactions. - Graphical abstract: Three different layer geometries observed in the structures of Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})] and α- and β- Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})]·H{sub 2}O. Two different coordination environments of uranium polyhedra (types I and II) are shown schematically on the top of the figure. - Highlights: • Three new uranyl arsenates were synthesized from the hydrothermal reactions. • The phases consist of the topologically identical but geometrically different layers. • Topotactic transitions were observed in the processes of mono-hyrates dehydration.

  8. Reversible insertion of carbon dioxide into Pt(II)-hydroxo bonds.

    Science.gov (United States)

    Lohr, Tracy L; Piers, Warren E; Parvez, Masood

    2013-10-01

    The reactivity of three monomeric diimine Pt(II) hydroxo complexes, (NN)Pt(OH)R (NN = bulky diimine ligand; R = OH, ; R = C6H5, ; R = CH3, ) towards carbon dioxide has been investigated. Insertion into the Pt-OH bonds was found to be facile and reversible at low temperature for all compounds; the reaction with bis-hydroxide gives an isolable κ(2)-carbonato compound , with elimination of water.

  9. EnviroAtlas - Cleveland, OH - Block Groups

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset is the base layer for the Cleveland, OH EnviroAtlas community. The block groups are from the US Census Bureau and are included/excluded...

  10. Inversion of the OH 1720-MHz line

    International Nuclear Information System (INIS)

    Elitzur, M.

    1975-01-01

    It is shown that the OH 1720-MHz line can be strongly inverted by collisions which excite the rotation states. It is also argued that radiative pumps (of any wave length) can invert strongly only the 1612-MHz line. (author)

  11. Competition of hydrogen bonds and halogen bonds in complexes of hypohalous acids with nitrogenated bases.

    Science.gov (United States)

    Alkorta, Ibon; Blanco, Fernando; Solimannejad, Mohammad; Elguero, Jose

    2008-10-30

    A theoretical study of the complexes formed by hypohalous acids (HOX, X = F, Cl, Br, I, and At) with three nitrogenated bases (NH 3, N 2, and NCH) has been carried out by means of ab initio methods, up to MP2/aug-cc-pVTZ computational method. In general, two minima complexes are found, one with an OH...N hydrogen bond and the other one with a X...N halogen bond. While the first one is more stable for the smallest halogen derivatives, the two complexes present similar stabilities for the iodine case and the halogen-bonded structure is the most stable one for the hypoastatous acid complexes.

  12. UV photolysis of 4-iodo-, 4-bromo-, and 4-chlorophenol: Competition between C–Y (Y = halogen) and O–H bond fission

    International Nuclear Information System (INIS)

    Sage, Alan G.; Oliver, Thomas A. A.; King, Graeme A.; Murdock, Daniel; Harvey, Jeremy N.; Ashfold, Michael N. R.

    2013-01-01

    The wavelength dependences of C–Y and O–H bond fission following ultraviolet photoexcitation of 4-halophenols (4-YPhOH) have been investigated using a combination of velocity map imaging, H Rydberg atom photofragment translational spectroscopy, and high level spin-orbit resolved electronic structure calculations, revealing a systematic evolution in fragmentation behaviour across the series Y = I, Br, Cl (and F). All undergo O–H bond fission following excitation at wavelengths λ≲ 240 nm, on repulsive ((n/π)σ*) potential energy surfaces (PESs), yielding fast H atoms with mean kinetic energies ∼11 000 cm −1 . For Y = I and Br, this process occurs in competition with prompt C–I and C–Br bond cleavage on another (n/π)σ* PES, but no Cl/Cl* products unambiguously attributable to one photon induced C–Cl bond fission are observed from 4-ClPhOH. Differences in fragmentation behaviour at longer excitation wavelengths are more marked. Prompt C–I bond fission is observed following excitation of 4-IPhOH at all λ≤ 330 nm; the wavelength dependent trends in I/I* product branching ratio, kinetic energy release, and recoil anisotropy suggest that (with regard to C–I bond fission) 4-IPhOH behaves like a mildly perturbed iodobenzene. Br atoms are observed when exciting 4-BrPhOH at long wavelengths also, but their velocity distributions suggest that dissociation occurs after internal conversion to the ground state. O–H bond fission, by tunnelling (as in phenol), is observed only in the cases of 4-FPhOH and, more weakly, 4-ClPhOH. These observed differences in behaviour can be understood given due recognition of (i) the differences in the vertical excitation energies of the C–Y centred (n/π)σ* potentials across the series Y = I < Br < Cl and the concomitant reduction in C–Y bond strength, cf. that of the rival O–H bond, and (ii) the much increased spin-orbit coupling in, particularly, 4-IPhOH. The present results provide (another) reminder of the

  13. σ-Bond Electron Delocalization in Oligosilanes as Function of Substitution Pattern, Chain Length, and Spatial Orientation

    Directory of Open Access Journals (Sweden)

    Johann Hlina

    2016-08-01

    Full Text Available Polysilanes are known to exhibit the interesting property of σ-bond electron delocalization. By employing optical spectroscopy (UV-vis, it is possible to judge the degree of delocalization and also differentiate parts of the molecules which are conjugated or not. The current study compares oligosilanes of similar chain length but different substitution pattern. The size of the substituents determines the spatial orientation of the main chain and also controls the conformational flexibility. The chemical nature of the substituents affects the orbital energies of the molecules and thus the positions of the absorption bands.

  14. Rhenium-Promoted C-C Bond-Cleavage Reactions of Internal Propargyl Alcohols.

    Science.gov (United States)

    Lee, Kui Fun; Bai, Wei; Sung, Herman H Y; Williams, Ian D; Lin, Zhenyang; Jia, Guochen

    2018-06-07

    The first examples of C-C bond cleavage reactions of internal propargyl alcohols to give vinylidene complexes are described. Treatment of [Re(dppm) 3 ]I with RC≡CC(OH)R'R'' (R=aryl, alkyl; C(OH)R'R''=C(OH)Ph 2, C(OH)Me 2 , C(OH)HPh, C(OH)H 2 ) produced the vinylidene complexes ReI(=C=CHR)(dppm) 2 with the elimination of C(O)R'R''. Computational studies support that the reactions proceed through a β-alkynyl elimination of alkoxide intermediates Re{OC(R')(R'')C≡CR}(dppm) 2 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Structures and the Hydrogen Bonding Abilities of Estrogens Studied by Supersonic Jet/laser Spectroscopy

    Science.gov (United States)

    Morishima, Fumiya; Inokuchi, Yoshiya; Ebata, Takayuki

    2013-06-01

    Estrone, estradiol, estriol are known as endogenous estrogen which have the same steroidal frame with different substituent, leading to difference of physiological activity upon the formation of hydrogen bond with estrogen receptor. In the present study, structures of estrogens and their hydrated clusters in a supersonic jet have been studied by various laser spectroscopic techniques and density functional theory calculation to study how the difference of substituents affects their hydrogen bonding ability. Infrared spectra in the OH stretching region indicate a formation of intramolecular hydrogen-bond in estriol, which may lead to weaker physiological activity among the three estrogens. We also measured electronic and infrared spectra of 1:1 hydrated clusters of estrogen. The results show a switch of stable hydration site from the phenolic OH group to the five member ring by substituting one more OH group.

  16. The structure of mixed H2O-OH monolayer films on Ru(0001)

    Energy Technology Data Exchange (ETDEWEB)

    Tatarkhanov, M.; Fomin, E.; Salmeron, M.; Andersson, K.; Ogasawara, H.; Pettersson, L.G.M.; Nilsson, A.; Cerda, J.I.

    2008-10-20

    Scanning tunneling microscopy (STM) and x-ray absorption spectroscopy (XAS) have been used to study the structures produced by water on Ru(0001) at temperatures above 140 K. It was found that while undissociated water layers are metastable below 140 K, heating above this temperature produces drastic transformations whereby a fraction of the water molecules partially dissociate and form mixed H{sub 2}O-OH structures. XPS and XAS revealed the presence of hydroxyl groups with their O-H bond essentially parallel to the surface. STM images show that the mixed H{sub 2}O-OH structures consist of long narrow stripes aligned with the three crystallographic directions perpendicular to the close-packed atomic rows of the Ru(0001) substrate. The internal structure of the stripes is a honeycomb network of H-bonded water and hydroxyl species. We found that the metastable low temperature molecular phase can also be converted to a mixed H{sub 2}O-OH phase through excitation by the tunneling electrons when their energy is 0.5 eV or higher above the Fermi level. Structural models based on the STM images were used for Density Functional Theory optimizations of the stripe geometry. The optimized geometry was then utilized to calculate STM images for comparison with the experiment.

  17. The geometric structures, vibrational frequencies and redox properties of the actinyl coordination complexes ([AnO2(L)n](m); An = U, Pu, Np; L = H2O, Cl-, CO3(2-), CH3CO2(-), OH-) in aqueous solution, studied by density functional theory methods.

    Science.gov (United States)

    Austin, Jonathan P; Sundararajan, Mahesh; Vincent, Mark A; Hillier, Ian H

    2009-08-14

    The geometric and electronic structures of the aqua, chloro, acetato, hydroxo and carbonato complexes of U, Np and Pu in both their (VI) and (V) oxidation states, and in an aqueous environment, have been studied using density functional theory methods. We have obtained micro-solvated structures derived from molecular dynamics simulations and included the bulk solvent using a continuum model. We find that two different hydrogen bonding patterns involving the axial actinyl oxygen atoms are sometimes possible, and may give rise to different An-O bond lengths and vibrational frequencies. These alternative structures are reflected in the experimental An-O bond lengths of the aqua and carbonato complexes. The variation of the redox potential of the uranyl complexes with the different ligands has been studied using both BP86 and B3LYP functionals. The relative values for the four uranium complexes having anionic ligands are in surprisingly good agreement with experiment, although the absolute values are in error by approximately 1 eV. The absolute error for the aqua species is much less, leading to an incorrect order of the redox potentials of the aqua and chloro species.

  18. Assessing Many-Body Effects of Water Self-Ions. I: OH-(H2O) n Clusters.

    Science.gov (United States)

    Egan, Colin K; Paesani, Francesco

    2018-04-10

    The importance of many-body effects in the hydration of the hydroxide ion (OH - ) is investigated through a systematic analysis of the many-body expansion of the interaction energy carried out at the CCSD(T) level of theory, extrapolated to the complete basis set limit, for the low-lying isomers of OH - (H 2 O) n clusters, with n = 1-5. This is accomplished by partitioning individual fragments extracted from the whole clusters into "groups" that are classified by both the number of OH - and water molecules and the hydrogen bonding connectivity within each fragment. With the aid of the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA) method, this structure-based partitioning is found to largely correlate with the character of different many-body interactions, such as cooperative and anticooperative hydrogen bonding, within each fragment. This analysis emphasizes the importance of a many-body representation of inductive electrostatics and charge transfer in modeling OH - hydration. Furthermore, the rapid convergence of the many-body expansion of the interaction energy also suggests a rigorous path for the development of analytical potential energy functions capable of describing individual OH - -water many-body terms, with chemical accuracy. Finally, a comparison between the reference CCSD(T) many-body interaction terms with the corresponding values obtained with various exchange-correlation functionals demonstrates that range-separated, dispersion-corrected, hybrid functionals exhibit the highest accuracy, while GGA functionals, with or without dispersion corrections, are inadequate to describe OH - -water interactions.

  19. Effect of investment type and mold temperature on casting accuracy and titanium-ceramic bond.

    Science.gov (United States)

    Leal, Mônica Barbosa; Pagnano, Valéria Oliveira; Bezzon, Osvaldo Luiz

    2013-01-01

    This study evaluated the casting accuracy of crown margins and metal-ceramic shear bond strength (SBS) of pure titanium injected into casting molds made using 2 investment types at 3 mold temperatures. Sixty crown (30-degree beveled finish line) and 60 cylinder (5mm diameter × 8mm high) patterns were divided into 6 groups (n=10), and cast using a phosphate-bonded investment (P) and a magnesium oxide-bonded investment (U), at 400°C (groups P400 and U400), 550°C (groups P550 and U550) and 700°C (groups P700 and U700) mold temperatures. Crown margins were recorded in impression material, the degree of marginal rounding was measured and margin length deficiencies (µm) were calculated. Titanium-ceramic specimens were prepared using Triceram ceramic (2mm high) and SBS was tested. Failure modes were assessed by optical microscopy. Data were subjected to two-way ANOVA and Tukey's HSD test (α=0.05). For casting accuracy, expressed by marginal deficiency (µm), investment U provided more accurate results (64 ± 11) than P (81 ± 23) (pcasting accuracy for U700 (55 ± 7) and worse for P700 (109 ± 18). Casting accuracy at 700°C (82 ± 31) was significantly different from 400°C (69 ± 9) and 550°C (68 ± 9) (pcasting accuracy than investment P. The SBS was similar for all combinations of investments and temperatures.

  20. Fabrication and properties of highly luminescent materials from Tb(OH)3-SiO2 and Tb(OH)3-SiO2:Eu3+ nanotubes

    International Nuclear Information System (INIS)

    Tran Thu Huong; Tran Kim Anh; Le Quoc Minh

    2009-01-01

    Luminescent nanomaterials with one-dimensional (1D) structures have attracted much attention due to their unique properties and potential applications in nanophotonics and nanobiophotonics. In this paper, we report a synthesis of terbium - hydroxide - at - silica Tb(OH) 3 -SiO 2 and Tb(OH) 3 -SiO 2 :Eu 3+ nanotubes. Terbium - hydroxide tubes were synthesized by soft template method. The size of the tubes can be controlled precisely and have outer diameters ranging from 80 to 120 nm, wall thickness of about 30 nm, and lengths ranging from 300 to 800 nm. To fabricate core/shell materials, the seed growth method is used. FESEM, X-ray diffraction, Raman spectra of Tb(OH) 3 and Tb(OH) 3 -SiO 2 nanotubes were investigated. The photoluminescence (PL) spectrum of Tb(OH) 3 under 325 nm excitation consists of four main peaks at 488, 542, 582, and 618 nm. Furthermore, a preliminary suggestion for the mechanism of growth of the Tb(OH) 3 nanotubes using the soft - template synthesis technique has been proposed. The PL intensity from Tb(OH) 3 -SiO 2 or Tb(OH) 3 -SiO 2 :Eu 3+ nanotubes is much stronger than that of Tb(OH) 3 .

  1. Origin of the X-Hal (Hal ) Cl, Br) Bond-Length Change in the Halogen-Bonded Complexes

    Czech Academy of Sciences Publication Activity Database

    Wang, Weizhou; Hobza, Pavel

    2008-01-01

    Roč. 112, č. 17 (2008), s. 4114-4119 ISSN 1089-5639 R&D Projects: GA MŠk LC512; GA AV ČR IAA400550510 Institutional research plan: CEZ:AV0Z40550506 Keywords : hal ogen bonded complexes * MP2(full)/6-311++G(d,p) method * natural bond orbital analysis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.871, year: 2008

  2. Intramolecular hydrogen bonding in malonaldehyde and its radical analogues.

    Science.gov (United States)

    Lin, Chen; Kumar, Manoj; Finney, Brian A; Francisco, Joseph S

    2017-09-28

    High level Brueckner doubles with triples correction method-based ab initio calculations have been used to investigate the nature of intramolecular hydrogen bonding and intramolecular hydrogen atom transfer in cis-malonaldehyde (MA) and its radical analogues. The radicals considered here are the ones that correspond to the homolytic cleavage of C-H bonds in cis-MA. The results suggest that cis-MA and its radical analogues, cis-MA RS , and cis-MA RA , both exist in planar geometry. The calculated intramolecular O-H⋯O=C bond in cis-MA is shorter than that in the radical analogues. The intramolecular hydrogen bond in cis-MA is stronger than in its radicals by at least 3.0 kcal/mol. The stability of a cis-malonaldehyde radical correlates with the extent of electron spin delocalization; cis-MA RA , in which the radical spin is more delocalized, is the most stable MA radical, whereas cis-MA RS , in which the radical spin is strongly localized, is the least stable radical. The natural bond orbital analysis indicates that the intramolecular hydrogen bonding (O⋯H⋯O) in cis-malonaldehyde radicals is stabilized by the interaction between the lone pair orbitals of donor oxygen and the σ * orbital of acceptor O-H bond (n → σ * OH ). The calculated barriers indicate that the intramolecular proton transfer in cis-MA involves 2.2 kcal/mol lower barrier than that in cis-MA RS .

  3. Hydrolysis of U(VI) and sodium uranates

    International Nuclear Information System (INIS)

    Pongi, N.-K.; Double, Gerard; Hurwic, Jozef

    1980-01-01

    The potentiometric titration curves of UO 2 (NO 3 ) 2 aqueous solutions by NaOH have been interpreted. The results we have got verify and complete those published before. From isohydric species (UO 2 ) 3 (OH) 7 - , with pH = 7,8 and the experimental molar value of the relation xsub(i) = Na/U = 2.33, the following ionic and molecular species in acid medium have been deduced: (UO 2 ) 2 (OH) 2 2+ , (UO 2 ) 3 (OH) 2 2+ , (UO 2 ) 3 (OH) 5 + and (UO 2 ) 3 (OH) 6 . The composition of the precipitates corresponding to the particular points of the potentiometric titration curves, by chemical, thermal decomposition analysis and by X-rays diffraction, have been carried out: (UO 2 ) 6 (OH) 12 .6H 2 O, Na 2 U 8 O 25 , Na 2 U 6 O 19 , Na 2 U 4 O 13 and Na 2 U 2 O 7 for xsub(i) = 1,67 and 2.00, 2.23, 2.33, 2.52, 3.00 and over, respectively. The uranyl hydroxide was obtained for first time from an aqueous solution [fr

  4. Comparison of Degrees of Potential-Energy-Surface Anharmonicity for Complexes and Clusters with Hydrogen Bonds

    Science.gov (United States)

    Kozlovskaya, E. N.; Doroshenko, I. Yu.; Pogorelov, V. E.; Vaskivskyi, Ye. V.; Pitsevich, G. A.

    2018-01-01

    Previously calculated multidimensional potential-energy surfaces of the MeOH monomer and dimer, water dimer, malonaldehyde, formic acid dimer, free pyridine-N-oxide/trichloroacetic acid complex, and protonated water dimer were analyzed. The corresponding harmonic potential-energy surfaces near the global minima were constructed for series of clusters and complexes with hydrogen bonds of different strengths based on the behavior of the calculated multidimensional potential-energy surfaces. This enabled the introduction of an obvious anharmonicity parameter for the calculated potential-energy surfaces. The anharmonicity parameter was analyzed as functions of the size of the analyzed area near the energy minimum, the number of points over which energies were compared, and the dimensionality of the solved vibrational problem. Anharmonicity parameters for potential-energy surfaces in complexes with strong, medium, and weak H-bonds were calculated under identical conditions. The obtained anharmonicity parameters were compared with the corresponding diagonal anharmonicity constants for stretching vibrations of the bridging protons and the lengths of the hydrogen bridges.

  5. Spectroscopic identification of ethanol-water conformers by large-amplitude hydrogen bond librational modes

    DEFF Research Database (Denmark)

    Andersen, Jonas; Heimdal, J.; Larsen, René Wugt

    2015-01-01

    ⋯HO hydrogen bond acceptor in the two most stable conformations. In the most stable conformation, the water subunit forces the ethanol molecule into its less stable gauche configuration upon dimerization owing to a cooperative secondary weak O⋯HC hydrogen bondinteraction evidenced by a significantly blue......-shift of the low-frequency in-plane donor OH librational band origin. The strong correlation between the low-frequency in-plane donor OH librational motion and the secondary intermolecular O⋯HC hydrogen bond is demonstrated by electronic structure calculations. The experimental findings are further supported...... by CCSD(T)-F12/aug-cc-pVQZ calculations of the conformationalenergy differences together with second-order vibrational perturbation theory calculations of the large-amplitude donor OH librational band origins....

  6. A simple surface treatment and characterization of AA 6061 aluminum alloy surface for adhesive bonding applications

    International Nuclear Information System (INIS)

    Saleema, N.; Sarkar, D.K.; Paynter, R.W.; Gallant, D.; Eskandarian, M.

    2012-01-01

    Highlights: ► A very simple surface treatment method to achieve excellent and durable aluminum adhesive bonding. ► Our method involves simple immersion of aluminum in very dilute NaOH solution at room temperature with no involvement of strong acids or multiple procedures. ► Surface analysis via various surface characterization techniques showed morphological and chemical modifications favorable for obtaining highly durable bond strengths on the treated surface. ► Safe, economical, reproducible and simple method, easily applicable in industries. - Abstract: Structural adhesive bonding of aluminum is widely used in aircraft and automotive industries. It has been widely noted that surface preparation of aluminum surfaces prior to adhesive bonding plays a significant role in improving the strength of the adhesive bond. Surface cleanliness, surface roughness, surface wettability and surface chemistry are controlled primarily by proper surface treatment methods. In this study, we have employed a very simple technique influencing all these criteria by simply immersing aluminum substrates in a very dilute solution of sodium hydroxide (NaOH) and we have studied the effect of varying the treatment period on the adhesive bonding characteristics. A bi-component epoxy adhesive was used to join the treated surfaces and the bond strengths were evaluated via single lap shear (SLS) tests in pristine as well as degraded conditions. Surface morphology, chemistry, crystalline nature and wettability of the NaOH treated surfaces were characterized using various surface analytical tools such as scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDX), optical profilometry, infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and contact angle goniometry. Excellent adhesion characteristics with complete cohesive failure of the adhesive were encountered on the NaOH treated surfaces that are comparable to the benchmark

  7. Co-existence of long-range order and spin fluctuation in a new geometric frustration series M2(OH)3Cl

    International Nuclear Information System (INIS)

    Zheng, X.G.; Hagihala, Masato; Toriyi, Takato

    2007-01-01

    Recently, we observed the co-existence of a long-range magnetic order and spin fluctuation in a clean compound of clinoatacamite, Cu 2 (OH) 3 Cl (PRL95 (2005) 057201). The present work reports magnetic studies on other compounds of this transition metal series M 2 (OH) 3 Cl, where M represents three-dimensional (3D)-electron magnetic ions of Co 2+ , Fe 2+ , etc., respectively. The present study shows that this co-existence is a common feature of the M 2 Cl(OH) 3 series, no matter whether it is anti-ferromagnetic, as in the case of Fe 2 (OH) 3 Cl (T N =15 K), or ferromagnetic, as in the case of Co 2 (OH) 3 Cl (T C =10.5 K). These compounds show a 3D network of corner-sharing tetrahedrons for the magnetic ions. The tetrahedron is slightly tilted with roughly 10% longer distance between the M-M bonded by Cl than those bonded by O and this distortion is suspected to be responsible for the partial order. This research suggests that the transition metal hydroxyhalide M 2 Cl(OH) 3 series are new geometric frustration system on tetrahedral lattice for d-electron spins

  8. Atmospheric Chemistry of cis-CF3CH=CHF: Kinetics of reactions with OH radicals and O3 and products of OH radical initiated oxidation

    DEFF Research Database (Denmark)

    Nilsson, Elna Johanna Kristina; Nielsen, Ole John; Johnson, Matthew Stanley

    2009-01-01

    Long path length FTIR-smog chamber techniques were used to measure k(OH + cis-CF3CH@CHF) = (1.20 ± 0.14) 1012 and k(O3 + cis-CF3CH@CHF) = (1.65 ± 0.16) 1021 cm3 molecule 1 s1 in 700 Torr of N2/O2 diluent at 296 K. The OH initiated oxidation of cis-CF3CH@CHF gives CF3CHO and HCOF in molar yields w...

  9. Estimation of the thermodynamic parameters of hydrogen bonding in alcohol solutions by the method of infrared spectroscopy

    Science.gov (United States)

    Vedernikova, E. V.; Gafurov, M. M.; Ataev, M. B.

    2011-01-01

    Hydrogen bonding (H-bonding) is a specific type of intermolecular interaction being formed for favorable mutual orientations of the interacting molecules. One of the authors had developed a model concept relating the H-bonding energy with the change of stretching vibrations Δν = νOH - νOH-NC of the alcohol OH-group in acetonitrile and acetone solutions: Δ H = 89.24Δν/ν0. The calculated H-bond energy was 10.45 kJ/mole for acetonitrile and Δ H = 12.12 kJ/mole for acetone. The results obtained are compared with the data calculated using the equilibrium constant of H-bonding reaction; they can also be used to calculate all other thermodynamic H-bond parameters by measuring the equilibrium constant K c in a certain temperature interval. The equilibrium constant is calculated from the Lambert-Bouguer-Beer law: {K_c} = {{C_{{text{OH}} \\cdots {text{NC}}}}}/{{C_{text{OH}} \\cdot {C_{text{NC}}}}} , ∆ F = - RT ṡ ln K c , ∆ H = RT 2 ṡ d(ln K c )/ dT, and Δ S = {Δ H - Δ F}/T . For the methanol solution in acetonitrile, Δν = 115 cm-1, Δ H = 10.87 kJ/mole, and K c = 42 L/mole. For the ethanol solution in acetonitrile, Δν = 118 cm-1, Δ H = 10.01 kJ/mole, and K c = 34 L/mole. For the propanol solution in acetonitrile, Δν = 110 cm-1, Δ H = 8.36 kJ/mole, and K c = 13 L/mole. All calculations are performed using the developed programs. The spectra are recorded on Perkin-Elmer-180 and Specord-84 IR-spectrometers. The values of the thermodynamic parameters calculated and estimated from K c - f( T) are in good agreement with each other and with the available literature data.

  10. Maximally resolved anharmonic OH vibrational spectrum of the water/ZnO(101 \\xAF 0) interface from a high-dimensional neural network potential

    Science.gov (United States)

    Quaranta, Vanessa; Hellström, Matti; Behler, Jörg; Kullgren, Jolla; Mitev, Pavlin D.; Hermansson, Kersti

    2018-06-01

    Unraveling the atomistic details of solid/liquid interfaces, e.g., by means of vibrational spectroscopy, is of vital importance in numerous applications, from electrochemistry to heterogeneous catalysis. Water-oxide interfaces represent a formidable challenge because a large variety of molecular and dissociated water species are present at the surface. Here, we present a comprehensive theoretical analysis of the anharmonic OH stretching vibrations at the water/ZnO(101 ¯ 0) interface as a prototypical case. Molecular dynamics simulations employing a reactive high-dimensional neural network potential based on density functional theory calculations have been used to sample the interfacial structures. In the second step, one-dimensional potential energy curves have been generated for a large number of configurations to solve the nuclear Schrödinger equation. We find that (i) the ZnO surface gives rise to OH frequency shifts up to a distance of about 4 Å from the surface; (ii) the spectrum contains a number of overlapping signals arising from different chemical species, with the frequencies decreasing in the order ν(adsorbed hydroxide) > ν(non-adsorbed water) > ν(surface hydroxide) > ν(adsorbed water); (iii) stretching frequencies are strongly influenced by the hydrogen bond pattern of these interfacial species. Finally, we have been able to identify substantial correlations between the stretching frequencies and hydrogen bond lengths for all species.

  11. Crystallochemistry of rhenium compounds with metal-metal bonds

    International Nuclear Information System (INIS)

    Koz'min, P.A.; Surazhskaya, M.D.

    1980-01-01

    A review is presented including a brief description of atomic structure of 59 coordination rhenium compounds with metal-metal bond. The most important bond lengths and valent angles are presented for each compound. The dependence of rhenium-rhenium bond length on its multiplicity is discussed and possible causes of deviations from this dependence (namely, axial ligand presence, steric repulsion of ligands) are considered. On the basis of qualitative comparison of electronegativity of ligands in dimer compounds with quarternary bond of rhenium-rhenium a supposition is made on the influence of formal charge of atomic group and summary electro-negativity of ligands on the possibility of the metal-metal bond formation

  12. Intramolecular hydrogen bonding in N-salicylideneaniline: FT-IR spectrum and quantum chemical calculations

    Science.gov (United States)

    Moosavi-Tekyeh, Zainab; Dastani, Najmeh

    2015-12-01

    FT-IR and FT-Raman spectra of N-salicylideneaniline (SAn) and its deuterated analogue (D-SAn) are recorded, and the theoretical calculations are performed on their molecular structures and vibrational frequencies. The same calculations are performed for SAn in different solutions using the polarizable conductor continuum model (CPCM) method. Comparisons between the spectra obtained and the corresponding theoretical calculations are used to assign the vibrational frequencies for these compounds. The spectral behavior of SAn upon deuteration is also used to distinguish the positions of OH vibrational frequencies. The hydrogen bond strength of SAn is investigated by applying the atoms-in-molecules (AIM) theory, natural bond orbital (NBO) analysis, and geometry calculations. The harmonic vibrational frequencies of SAn are calculated at B3LYP and X3LYP levels of theory using 6-31G*, 6-311G**, and 6-311++G** basis sets. The AIM results support a medium hydrogen bonding in SAn. The observed νOH/νOD and γOH/γOD for SAn appear at 2940/2122 and 830/589 cm-1, respectively.

  13. A Heterobimetallic Complex With an Unsupported Uranium(III)-Aluminum(I) Bond: (CpSiMe3)3U-AlCp* (Cp* = C5Me5)

    Energy Technology Data Exchange (ETDEWEB)

    Minasian, Stefan; Krinsky Ph.D., Jamin; Williams, Valerie; Arnold Ph.D., John

    2008-07-23

    The discovery of molecular metal-metal bonds has been of fundamental importance to the understanding of chemical bonding. For the actinides, examples of unsupported metal-metal bonds are relatively uncommon, consisting of Cp{sub 3}U-SnPh{sub 3}, and several actinide-transition metal complexes. Traditionally, bonding in the f-elements has been described as electrostatic; however, elucidating the degree of covalency is a subject of recent research. In carbon monoxide complexes of the trivalent uranium metallocenes, decreased {nu}{sub CO} values relative to free CO suggest that the U(III) atom acts as a {pi}-donor. Ephritikhine and coworkers have demonstrated that {pi}-accepting ligands can differentiate trivalent lanthanide and actinide ions, an effect that renders this chemistry of interest in the context of nuclear waste separation technology.

  14. Utilisation of an eta(3)-allyl hydride complex, formed by UV irradiation, as a controlled source of 16-electron (eta(5)-C(5)Me(5))Rh(CH(2)[double bond, length as m-dash]CHMe).

    Science.gov (United States)

    Sexton, Catherine J; López-Serrano, Joaquín; Lledós, Agustí; Duckett, Simon B

    2008-10-21

    Low temperature UV irradiation of solutions of (eta(5)-C(5)Me(5))Rh(CH(2)[double bond, length as m-dash]CHMe)(2) yields (eta(5)-C(5)Me(5))Rh(eta(3)-CH(2)CHCH(2))(H), which provides controlled access to the 16-electron fragment (eta(5)-C(5)Me(5))Rh(CH(2)[double bond, length as m-dash]CHMe).

  15. Constraints on the OH-to-H Abundance Ratio in Infrared-bright Galaxies Derived from the Strength of the OH 35 μm Absorption Feature

    Science.gov (United States)

    Stone, Myra; Veilleux, Sylvain; González-Alfonso, Eduardo; Spoon, Henrik; Sturm, Eckhard

    2018-02-01

    We analyze Spitzer/InfraRed Spectrograph (IRS) observations of the OH 35 μm feature in 15 nearby (z ≲ 0.06) (ultra-)luminous infrared galaxies (U/LIRGs). All objects exhibit OH 35 μm purely in absorption, as expected. The small optical depth of this transition makes the strength of this feature a good indicator of the true OH column density. The measured OH 35 μm equivalent widths imply an average OH column density and a 1-σ standard deviation to the mean of {N}{OH}=1.31+/- 0.22× {10}17 cm‑2. This number is then compared with the hydrogen column density for a typical optical depth at 35 μm of ∼0.5 and gas-to-dust ratio of 125 to derive an OH-to-H abundance ratio of {X}{OH}=1.01+/- 0.15× {10}-6. This abundance ratio is formally a lower limit. It is consistent with the values generally assumed in the literature. The OH 35 μm line profiles predicted from published radiative transfer models constrained by observations of OH 65, 79, 84, and 119 μm in 5 objects (Mrk 231, Mrk 273, IRAS F05189-2524, IRAS F08572+3915, and IRAS F20551-4250) are also found to be consistent with the IRS OH 35 μm spectra.

  16. Crystal structure of vanuralite, Al[(UO{sub 2}){sub 2}(VO{sub 4}){sub 2}](OH) . 8.5H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Plasil, Jakub [Czech Academy of Sciences, Praha (Czech Republic). Inst. of Physics

    2017-07-01

    Vanuralite, Al[(UO{sub 2}){sub 2}(VO{sub 4}){sub 2}](OH) . 8.5H{sub 2}O, is a rare supergene uranyl vanadate that forms during hydration-oxidation weathering of uraninite in oxide zones of U deposits. On the basis of single-crystal X-ray diffraction data it is monoclinic, space group P2{sub 1}/n, with a = 10.4637(10), b = 8.4700(5), c = 20.527(2) Aa, β = 102.821(9) , V=1773.9(3) Aa{sup 3} and Z = 4, D{sub calc.} = 3.561 g cm{sup -3}. The structure of vanuralite (R = 0.058 for 2638 unique observed reflections) contains uranyl vanadate sheets of francevillite topology of the composition [(UO{sub 2}){sub 2}(VO{sub 4}){sub 2}]{sup 2-}. Sheets are stacked perpendicular to c, and an interstitial complex {sup [6]}Al(OH)(H{sub 2}O){sub 4}(H{sub 2}O){sub 4.5}; adjacent structural sheets are linked through an extensive network of hydrogen bonds. Vanuralite is the most complex mineral among uranyl vanadates, with 961 bits/cell. The scarcity of occurrences is probably caused by the less common combination of elements present in the structure, as well as the relatively high complexity of the structure (compared to related minerals), arising namely from the complicated network of H-bonds.

  17. π-Stacking and hydrogen bonding in catena-poly[[4,4 '-bipyridine-κN)-dioxouranium(VI)]-di-μ-hydroxo

    International Nuclear Information System (INIS)

    Thuery, P.

    2007-01-01

    The title compound, [UO 2 (OH) 2 (C 10 H 8 N 2 )] n , was obtained under hydrothermal conditions. The U atom is seven-coordinated and its environment is pentagonal bipyramidal, with the oxo atoms in axial positions, and one N atom and four hydroxide groups in the equatorial plane. The hydroxide ions are bridging, which results in the formation of infinite chains with the bipyridine molecules alternately located on either side. Neighbouring chains interpenetrate so that each bipyridine ligand is involved both in hydrogen bonds with two hydroxide ions and in π-stacking with its two neighbours from the next chain. (authors)

  18. Bond length and electric current oscillation of long linear carbon chains: Density functional theory, MpB model, and quantum spin transport studies

    International Nuclear Information System (INIS)

    Oeiras, R. Y.; Silva, E. Z. da

    2014-01-01

    Carbon linear atomic chains attached to graphene have experimentally been produced. Motivated by these results, we study the nature of the carbon bonds in these nanowires and how it affects their electrical properties. In the present study we investigate chains with different numbers of atoms and we observe that nanowires with odd number of atoms present a distinct behavior than the ones with even numbers. Using graphene nanoribbons as leads, we identify differences in the quantum transport of the chains with the consequence that even and odd numbered chains have low and high electrical conduction, respectively. We also noted a dependence of current with the wire size. We study this unexpected behavior using a combination of first principles calculations and simple models based on chemical bond theory. From our studies, the electrons of carbon nanowires present a quasi-free electron behavior and this explains qualitatively the high electrical conduction and the bond lengths with unexpected values for the case of odd nanowires. Our study also allows the understanding of the electric conduction dependence with the number of atoms and their parity in the chain. In the case of odd number chains a proposed π-bond (MpB) model describes unsaturated carbons that introduce a mobile π-bond that changes dramatically the structure and transport properties of these wires. Our results indicate that the nature of bonds plays the main role in the oscillation of quantum electrical conduction for chains with even and odd number of atoms and also that nanowires bonded to graphene nanoribbons behave as a quasi-free electron system, suggesting that this behavior is general and it could also remain if the chains are bonded to other materials

  19. What is a hydrogen bond?

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. What is a hydrogen bond? Precise definition of a hydrogen bond is still elusive!1. Several criteria are listed usually for X-H•••Y, X and Y initially thought to be F, O and N only1. Structural: The X-Y bond length is less than the sum of their van der Waals radii. X-H•••Y is ...

  20. Biodistribution and tumor uptake of C60(OH)x in mice

    International Nuclear Information System (INIS)

    Ji Zhiqiang; Sun Hongfang; Wang Haifang; Xie Qunying; Liu Yuangfang; Wang Zheng

    2006-01-01

    Radiolabeling of fullerol, 125 I-C 60 (OH) x , was performed by the traditional chloramine-T method. The C-I covalent bond in I-C 60 (OH) x was characterized by X-ray photoelectron spectroscopy (XPS) that was sufficiently stable for in vivo study. Laser light scattering spectroscopy clearly showed that C 60 (OH) x aggregated to large nanoparticle clumps with a wide range of distribution. The clumps formed were also visualized by transmission electron microscope (TEM). We examined the biodistribution and tumor uptake of C 60 (OH) x in five mouse bearing tumor models, including mouse H22 hepatocarcinoma, human lung giantcellcarcinoma PD, human colon cancer HCT-8, human gastric cancer MGC803, and human OS732 osteosarcoma. The accumulation ratios of 125 I-C 60 (OH) x in mouse H22 hepatocarcinoma to that in normal muscle tissue (T/N) and blood (T/B) at 1, 6, 24 and 72 h, reveal that 125 I-C 60 (OH) x gradually accumulates in H22 tumor, and retains for a quite long period (e.g., T/N 3.41, T/B 3.94 at 24 h). For the other four tumor models, the T/N ratio at 24 h ranges within 1.21-6.26, while the T/B ratio ranges between 1.23 and 4.73. The accumulation of C 60 (OH) x in tumor is mostly due to the enhanced permeability and retention effect (EPR) and the phagocytosis of mononuclear phagocytes. Hence, C 60 (OH) x might serve as a photosensitizer in the photodynamic therapy of some kinds of tumor

  1. Crystal structure details of La- and Bi-substituted hydroxyapatites: Evidence for LaO+ and BiO+ with a very short metal–oxygen bond

    International Nuclear Information System (INIS)

    Kazin, Pavel E.; Pogosova, Mariam A.; Trusov, Lev A.; Kolesnik, Irina V.; Magdysyuk, Oxana V.; Dinnebier, Robert E.

    2016-01-01

    Crystal structures of substituted apatites with general formula Ca 10−x M x (PO 4 ) 6 (OH 1−δ ) 2−x O x , where M=La, Bi, 0≤x<2, were refined using high-resolution X-ray powder diffraction patterns. Individual positions for Ca 2+ and M 3+ -ions localized near Ca2-site were determined. The M 3+ -ion was found shifted toward the hexagonal channel center with respect to the Ca 2+ -ion, forming very short bond with the intrachannel O 2− , while leaving considerably longer distances to other oxygen atoms, which suggested the existence of a MO + ion. Distinct bands of stretching M–O modes were observed in the Raman and FT-IR spectra of the compounds. The bond lengths for BiO + and LaO + were estimated to be 2.05(1) and 2.09(1) Å correspondingly. The latter was almost 0.3 Å lower than the shortest La–O bond in La 2 O 3 . The realization of such a strong lanthanide–oxygen bond in a crystal lattice could provide a very high axial ligand field and might be implemented to develop high-energy-barrier single-molecule magnets as well as to tune properties of lanthanide-based luminophores. - Graphical abstract: A fragment of the La-for-Ca substituted apatite crystal structure focusing on the La–O bond. - Highlights: • Individual positions in the apatite crystal lattice for a doping atom (La, Bi) and Ca. • The doping atom shifts toward the center of the hexagonal channel. • BiO + and LaO + with estimated short bond lengths of 2.05 and 2.09 Å respectively.

  2. Tuning the intermolecular proton bond in the H5O2+ `Zundel ion' scaffold

    DEFF Research Database (Denmark)

    Olesen, S. G.; Guasco, T. L.; Roscioli, J. R.

    2011-01-01

    a remarkably similar trend as the exterior OH groups are sequentially solvated or are replaced by methyl substituents. In effect, solvents H-bonding to exterior OH groups act to increase the proton affinity of the water to which they are bound in a roughly additive fashion. We discuss this behavior...

  3. Bis(μ-2-hydroxymethyl-2-methylpropane-1,3-diolatobis[dichloridotitanium(IV] diethyl ether disolvate

    Directory of Open Access Journals (Sweden)

    Joyce M. Waters

    2013-12-01

    Full Text Available The title complex, [Ti2Cl4{CH3C(CH2O2(CH2OH}2], lies across a centre of symmetry with a diethyl ether solvent molecule hydrogen bonded to the –CH2OH groups on either side of it. The TiIV atom is coordinated in a distorted octahedral geometry by a tripodal ligand and two terminal chloride atoms. There are three coordination modes for the tripodal ligand distinguishable on the basis of their very different Ti—O bond lengths. For the terminal alkoxo ligand, the Ti—O distance is 1.760 (1 Å, the asymmetric bridge system has Ti—O bond lengths of 1.911 (1 and 2.048 (1 Å. The Ti—O bond length for the alcohol O atom is the longest at 2.148 (1 Å.

  4. Photoinitiated reactions in weakly bonded complexes

    International Nuclear Information System (INIS)

    Wittig, C.

    1993-01-01

    This paper discusses photoinitiated reactions in weakly bonded binary complexes in which the constituents are only mildly perturbed by the intermolecular bond. Such complexes, with their large zero point excursions, set the stage for events that occur following electronic excitation of one of the constituents. This can take several forms, but in all cases, entrance channel specificity is imposed by the character of the complex as well as the nature of the photoinitiation process. This has enabled us to examine aspects of bimolecular processes: steric effects, chemical branching ratios, and inelastic scattering. Furthermore, monitoring reactions directly in the time domain can reveal mechanisms that cannot be inferred from measurements of nascent product excitations. Consequently, we examined several systems that had been studied previously by our group with product state resolution. With CO 2 /HI, in which reaction occurs via a HOCO intermediate, the rates agree with RRKM predictions. With N 2 O/HI, the gas phase single collision reaction yielding OH + N 2 has been shown to proceed mainly via an HNNO intermediate that undergoes a 1,3-hydrogen shift to the OH + N 2 channel. With complexes, ab initio calculations and high resolution spectroscopic studies of analogous systems suggest that the hydrogen, while highly delocalized, prefers the oxygen to the nitrogen. We observe that OH is produced with a fast risetime (< 250 fs) which can be attributed to either direct oxygen-side attack or rapid HNNO decomposition and/or a termolecular contribution involving the nearby iodine

  5. Exo-π-bonding to an ortho-carborane hypercarbon atom : systematic icosahedral cage distortions reflected in the structures of the fluoro-, hydroxy- and amino-carboranes, 1-X-2-Ph-1,2-C2B10H10 (X = F, OH or NH2) and related anions.

    OpenAIRE

    Boyd, L.A.; Clegg, W.; Copley, R.C.B.; Davidson, M.G.; Fox, M.A.; Hibbert, T.G.; Howard, J.A.K.; Mackinnon, A.; Peace, R.J.; Wade, K.

    2004-01-01

    The structures of derivatives of phenyl-ortho-carborane bearing on the second cage hypercarbon atom a pi-donor substituent (F, OH, O-, NH2, NH- and CH2-) were investigated by NMR, X-ray crystallography and computational studies. The molecular structures of these compounds, notably their cage C1-C2 distances and the orientations of their pi-donor substituents (OH, NH2, NH- and CH2-) show remarkable and systematic variations with the degree of exo pi-bonding, which varies as expected with the p...

  6. MERLIN observations of the OH/IR stars OH 53.6-0.2, OH 138.0+7.2 and OH 141.7+3.5

    International Nuclear Information System (INIS)

    Chapman, J.; Cohen, R.J.; Norris, R.P.; Diamond, P.J.; Booth, R.S.

    1984-01-01

    OH maser emission from the three OH/IR stars OH 53.6-0.2, OH 138.0+7.2 and OH 141.7+3.5 has been mapped with an angular resolution of 0.28 arcsec and a velocity resolution of 0.7 km s -1 using the Jodrell Bank MERLIN array. Maps are presented of the 1612-MHz OH emission over individual velocity ranges. The maps are consistent with a uniform expanding shell model, and by fitting such models to the data the angular diameters of the shells have been estimated to an accuracy of approx. 25 per cent. (author)

  7. Concerted effects in the reaction of ·OH radicals with aromatics: radiolytic oxidation of salicylic acid

    International Nuclear Information System (INIS)

    Albarran, G.; Schuler, R.H.

    2003-01-01

    Liquid chromatographic and capillary electrophoretic studies have been used to resolve the products produced in the radiolytic oxidation of salicylic acid in aqueous solution. These studies have shown that, as in the case of phenol, · OH radicals preferentially add to the positions ortho and para to the OH substituent. However, in contrast to its reaction with phenol, addition at the ortho position is favored over addition at the para position. Because · OH radical is a strong electrophile this difference suggests that the electron population at the ortho position in the salicylate anion is enhanced as a result of the hydrogen bonding in salicylic acid

  8. Suppression of interfacial voids formation during silane (SiH4)-based silicon oxide bonding with a thin silicon nitride capping layer

    Science.gov (United States)

    Lee, Kwang Hong; Bao, Shuyu; Wang, Yue; Fitzgerald, Eugene A.; Seng Tan, Chuan

    2018-01-01

    The material properties and bonding behavior of silane-based silicon oxide layers deposited by plasma-enhanced chemical vapor deposition were investigated. Fourier transform infrared spectroscopy was employed to determine the chemical composition of the silicon oxide films. The incorporation of hydroxyl (-OH) groups and moisture absorption demonstrates a strong correlation with the storage duration for both as-deposited and annealed silicon oxide films. It is observed that moisture absorption is prevalent in the silane-based silicon oxide film due to its porous nature. The incorporation of -OH groups and moisture absorption in the silicon oxide films increase with the storage time (even in clean-room environments) for both as-deposited and annealed silicon oxide films. Due to silanol condensation and silicon oxidation reactions that take place at the bonding interface and in the bulk silicon, hydrogen (a byproduct of these reactions) is released and diffused towards the bonding interface. The trapped hydrogen forms voids over time. Additionally, the absorbed moisture could evaporate during the post-bond annealing of the bonded wafer pair. As a consequence, defects, such as voids, form at the bonding interface. To address the problem, a thin silicon nitride capping film was deposited on the silicon oxide layer before bonding to serve as a diffusion barrier to prevent moisture absorption and incorporation of -OH groups from the ambient. This process results in defect-free bonded wafers.

  9. Red-shifting and blue-shifting OH groups on metal oxide surfaces - towards a unified picture.

    Science.gov (United States)

    Kebede, Getachew G; Mitev, Pavlin D; Briels, Wim J; Hermansson, Kersti

    2018-05-09

    We analyse the OH vibrational signatures of 56 structurally unique water molecules and 34 structurally unique hydroxide ions in thin water films on MgO(001) and CaO(001), using DFT-generated anharmonic potential energy surfaces. We find that the OH stretching frequencies of intact water molecules on the surface are always downshifted with respect to the gas-phase species while the OH- groups are either upshifted or downshifted. Despite these differences, the main characteristics of the frequency shifts for all three types of surface OH groups (OHw, OsH and OHf) can be accounted for by one unified expression involving the in situ electric field from the surrounding environment, and the gas-phase molecular properties of the vibrating species (H2O or OH-). The origin behind the different red- and blueshift behaviour can be traced back to the fact that the molecular dipole moment of a gas-phase water molecule increases when an OH bond is stretched, but the opposite is true for the hydroxide ion. We propose that familiarity with the relations presented here will help surface scientists in the interpretation of vibrational OH spectra for thin water films on ionic crystal surfaces.

  10. Safe-by-Design CuO Nanoparticles via Fe-Doping, Cu-O Bond Length Variation, and Biological Assessment in Cells and Zebrafish Embryos.

    Science.gov (United States)

    Naatz, Hendrik; Lin, Sijie; Li, Ruibin; Jiang, Wen; Ji, Zhaoxia; Chang, Chong Hyun; Köser, Jan; Thöming, Jorg; Xia, Tian; Nel, Andre E; Mädler, Lutz; Pokhrel, Suman

    2017-01-24

    The safe implementation of nanotechnology requires nanomaterial hazard assessment in accordance with the material physicochemical properties that trigger the injury response at the nano/bio interface. Since CuO nanoparticles (NPs) are widely used industrially and their dissolution properties play a major role in hazard potential, we hypothesized that tighter bonding of Cu to Fe by particle doping could constitute a safer-by-design approach through decreased dissolution. Accordingly, we designed a combinatorial library in which CuO was doped with 1-10% Fe in a flame spray pyrolysis reactor. The morphology and structural properties were determined by XRD, BET, Raman spectroscopy, HRTEM, EFTEM, and EELS, which demonstrated a significant reduction in the apical Cu-O bond length while simultaneously increasing the planar bond length (Jahn-Teller distortion). Hazard screening was performed in tissue culture cell lines and zebrafish embryos to discern the change in the hazardous effects of doped vs nondoped particles. This demonstrated that with increased levels of doping there was a progressive decrease in cytotoxicity in BEAS-2B and THP-1 cells, as well as an incremental decrease in the rate of hatching interference in zebrafish embryos. The dissolution profiles were determined and the surface reactions taking place in Holtfreter's solution were validated using cyclic voltammetry measurements to demonstrate that the Cu + /Cu 2+ and Fe 2+ /Fe 3+ redox species play a major role in the dissolution process of pure and Fe-doped CuO. Altogether, a safe-by-design strategy was implemented for the toxic CuO particles via Fe doping and has been demonstrated for their safe use in the environment.

  11. CF3CH(ONO)CF3: Synthesis, IR spectrum, and use as OH radical source for kinetic and mechanistic studies

    DEFF Research Database (Denmark)

    Andersen, Mads Peter Sulbæk; Hurley, MD; Ball, JC

    2003-01-01

    The synthesis, IR spectrum, and first-principles characterization of CF3CH(ONO)CF3 as well as its use as an OH radical source in kinetic and mechanistic studies are reported. CF3CH(ONO)CF3 exists in two conformers corresponding to rotation about the RCO-NO bond. The more prevalent trans conformer......C(O)CF3 and, by implication, OH radicals in 100% yield. CF3CH(ONO)CF3 photolysis is a convenient source of OH radicals in the studies of the yields of CO, CO2, HCHO, and HC(O)OH products which can be difficult to measure using more conventional OH radical sources (e.g., CH3ONO photolysis). CF3CH...

  12. Manifestation of hydrogen bonds of aqueous ethanol solutions in the Raman scattering spectra

    International Nuclear Information System (INIS)

    Dolenko, T A; Burikov, S A; Patsaeva, S V; Yuzhakov, V I

    2011-01-01

    Spectra of Raman scattering of light by aqueous ethanol solutions in the range of concentrations from pure water to 96% alcohol are studied. For water, 25%, and 40% solutions of ethanol in water, as well as for 96% alcohol the Raman spectra are measured at temperatures from the freezing point to nearly the boiling point. The changes in the shape of the stretching OH band are interpreted in terms of strengthening or weakening of hydrogen bonds between the molecules in the solution. The strongest hydrogen bonding of hydroxyl groups is observed at the ethanol content from 20 to 25 volume percent, which is explained by formation of ethanol hydrates of a definite type at the mentioned concentrations of alcohol. This is confirmed by means of the method of multivariate curve resolution, used to analyse the Raman spectra of aqueous ethanol solutions. With growing temperature the weakening of hydrogen bonding occurs in all studied systems, which consists in reducing the number of OH groups, linked by strong hydrogen bonds. (laser applications and other problems in quantum electronics)

  13. Bond rearrangement caused by sudden single and multiple ionization of water molecules

    International Nuclear Information System (INIS)

    Ben-Itzhak, I.; Sayler, A. Max; Leonard, M.; Maseberg, J.W.; Hathiramani, D.; Wells, E.; Smith, M.A.; Xia, Jiangfan; Wang, Pengqian; Carnes, K.D.; Esry, B.D.

    2005-01-01

    Bond rearrangement, namely the dissociation of water into H 2 + +O q+ following ionization by fast proton and highly charged ion impact, was investigated. Single ionization by fast proton impact exhibits a strong isotopic effect, the dissociation of H 2 O + ->H 2 + +O being about twice as likely as D 2 O + ->D 2 + +O, with HDO + ->HD + +O in between. This suggests that the bond rearrangement does not happen during the slow dissociation, but rather during the very fast ionization, and thus H 2 + should also be produced when the water molecule is multiply ionized. We observed that the H 2 + +O + and H 2 + +O 2+ production in 1MeV/amu F 7+ +H 2 O collisions are 0.209+/-0.006% and 0.0665+/-0.003%, respectively, of the main double-ionization dissociation product, H 2 O 2+ ->H + +OH + . This ratio is similar to the triple to double ionization ratio in similar collisions with atomic targets thus suggesting that the bond-rearrangement fraction out of each ionization level is approximately constant. Similar dissociation channels in the heavier water isotopes, which are expected to be smaller, are under study. Finally, the fragmentation of HDO exhibits very strong isotopic preference for breaking the OH bond over the OD bond

  14. A study on hydrogen bond in coal macerals with in situ diffuse reflectance FTIR by using a new experimental method

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.T.; Li, W.; Sun, Q.L.; Li, B.Q. [Chinese Academy of Science, Taiyuan (China). Inst. for Coal Chemistry

    2003-04-01

    A new method using the small porcelain as the reactor combined with increasing the flow rate of carrier gas was proposed, which has the advantage of excluding the condensation of volatile produced by heated solid samples on the windows during in situ diffuse reflectance FTIR experiment. Moreover, the feasibility of this method was also discussed. Using this method, the distribution and thermal stability of hydrogen bonds in coal macerals obtained from two coals were studied. The results show that the differences between the distribution of hydrogen bonds formed by hydroxyl group in the macerals of two coals were very similar. For the vitrinites the thermal stability of SH-N, carboxylic acid dimmers and self-associated OH is higher than those in inertinites but for OH-N and hydroxyl tetramers and OH-OR{sub 2} there are no obvious laws. For OH-{pi}, its content increased with increasing temperature to 350-380{sup o}C, and then decreased with further heating. The variation of hydrogen bonds in macerals reflects the difference in their structure.

  15. Hydrogen bond dynamics in bulk alcohols

    International Nuclear Information System (INIS)

    Shinokita, Keisuke; Cunha, Ana V.; Jansen, Thomas L. C.; Pshenichnikov, Maxim S.

    2015-01-01

    Hydrogen-bonded liquids play a significant role in numerous chemical and biological phenomena. In the past decade, impressive developments in multidimensional vibrational spectroscopy and combined molecular dynamics–quantum mechanical simulation have established many intriguing features of hydrogen bond dynamics in one of the fundamental solvents in nature, water. The next class of a hydrogen-bonded liquid—alcohols—has attracted much less attention. This is surprising given such important differences between water and alcohols as the imbalance between the number of hydrogen bonds, each molecule can accept (two) and donate (one) and the very presence of the hydrophobic group in alcohols. Here, we use polarization-resolved pump-probe and 2D infrared spectroscopy supported by extensive theoretical modeling to investigate hydrogen bond dynamics in methanol, ethanol, and isopropanol employing the OH stretching mode as a reporter. The sub-ps dynamics in alcohols are similar to those in water as they are determined by similar librational and hydrogen-bond stretch motions. However, lower density of hydrogen bond acceptors and donors in alcohols leads to the appearance of slow diffusion-controlled hydrogen bond exchange dynamics, which are essentially absent in water. We anticipate that the findings herein would have a potential impact on fundamental chemistry and biology as many processes in nature involve the interplay of hydrophobic and hydrophilic groups

  16. Hydrogen bond dynamics in bulk alcohols.

    Science.gov (United States)

    Shinokita, Keisuke; Cunha, Ana V; Jansen, Thomas L C; Pshenichnikov, Maxim S

    2015-06-07

    Hydrogen-bonded liquids play a significant role in numerous chemical and biological phenomena. In the past decade, impressive developments in multidimensional vibrational spectroscopy and combined molecular dynamics-quantum mechanical simulation have established many intriguing features of hydrogen bond dynamics in one of the fundamental solvents in nature, water. The next class of a hydrogen-bonded liquid--alcohols--has attracted much less attention. This is surprising given such important differences between water and alcohols as the imbalance between the number of hydrogen bonds, each molecule can accept (two) and donate (one) and the very presence of the hydrophobic group in alcohols. Here, we use polarization-resolved pump-probe and 2D infrared spectroscopy supported by extensive theoretical modeling to investigate hydrogen bond dynamics in methanol, ethanol, and isopropanol employing the OH stretching mode as a reporter. The sub-ps dynamics in alcohols are similar to those in water as they are determined by similar librational and hydrogen-bond stretch motions. However, lower density of hydrogen bond acceptors and donors in alcohols leads to the appearance of slow diffusion-controlled hydrogen bond exchange dynamics, which are essentially absent in water. We anticipate that the findings herein would have a potential impact on fundamental chemistry and biology as many processes in nature involve the interplay of hydrophobic and hydrophilic groups.

  17. Exo-pi-bonding to an ortho-carborane hypercarbon atom: systematic icosahedral cage distortions reflected in the structures of the fluoro-, hydroxy- and amino-carboranes, 1-X-2-Ph-1,2-C2B10H10 (X=F, OH or NH2) and related anions.

    Science.gov (United States)

    Boyd, Lynn A; Clegg, William; Copley, Royston C B; Davidson, Matthew G; Fox, Mark A; Hibbert, Thomas G; Howard, Judith A K; Mackinnon, Angus; Peace, Richard J; Wade, Kenneth

    2004-09-07

    The structures of derivatives of phenyl-ortho-carborane bearing on the second cage hypercarbon atom a pi-donor substituent (F, OH, O-, NH2, NH- and CH2-) were investigated by NMR, X-ray crystallography and computational studies. The molecular structures of these compounds, notably their cage C1-C2 distances and the orientations of their pi-donor substituents (OH, NH2, NH- and CH2-) show remarkable and systematic variations with the degree of exo pi-bonding, which varies as expected with the pi-donor characteristics of the substituent.

  18. Characterization of plasma-induced cell membrane permeabilization: focus on OH radical distribution

    International Nuclear Information System (INIS)

    Sasaki, Shota; Honda, Ryosuke; Hokari, Yutaro; Takashima, Keisuke; Kaneko, Toshiro; Kanzaki, Makoto

    2016-01-01

    Non-equilibrium atmospheric-pressure plasma (APP) is used medically for plasma-induced cell permeabilization. However, how plasma irradiation specifically triggers permeabilization remains unclear. In an attempt to identify the dominant factor( s ), the distribution of plasma-produced reactive species was investigated, primarily focusing on OH radicals. A stronger plasma discharge, which produced more OH radicals in the gas phase, also produced more OH radicals in the liquid phase (OH aq ), enhancing the cell membrane permeability. In addition, plasma irradiation-induced enhancement of cell membrane permeability decreased markedly with increased solution thickness (<1 mm), and the plasma-produced OH aq decayed in solution (diffusion length on the order of several hundred micrometers). Furthermore, the horizontally center-localized distribution of OH aq corresponded with the distribution of the permeabilized cells by plasma irradiation, while the overall plasma-produced oxidizing species in solution (detected by iodine-starch reaction) exhibited a doughnut-shaped horizontal distribution. These results suggest that OH aq, among the plasma-produced oxidizing species, represents the dominant factor in plasma-induced cell permeabilization. These results enhance the current understanding of the mechanism of APP as a cell-permeabilization tool. (paper)

  19. The donor OH stretching–libration dynamics of hydrogen-bonded methanol dimers in cryogenic matrices

    DEFF Research Database (Denmark)

    Heger, M.; Andersen, J.; Suhm, M. A.

    2016-01-01

    FTIR spectra of the methanol dimer trapped in neon matrices are presented. The fundamental, overtone and combination bands involving the donor OH libration and stretching motions were observed in order to extract relevant anharmonicity constants. We find a stretching–libration coupling constant...

  20. Application of Berlin's theorem to bond-length changes in isolated molecules and red- and blue-shifting H-bonded clusters

    Czech Academy of Sciences Publication Activity Database

    Wang, Weizhou; Hobza, Pavel

    2008-01-01

    Roč. 73, 6/7 (2008), s. 862-872 ISSN 0010-0765 R&D Projects: GA MŠk LC512; GA AV ČR IAA400550510 Institutional research plan: CEZ:AV0Z40550506 Keywords : Berlin's theorem * H-bonding * Blue -shifting H-bonding Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.784, year: 2008

  1. On the physical origin of blue-shifted hydrogen bonds.

    Science.gov (United States)

    Li, Xiaosong; Liu, Lei; Schlegel, H Bernhard

    2002-08-14

    For blue-shifted hydrogen-bonded systems, the hydrogen stretching frequency increases rather than decreases on complexation. In computations at various levels of theory, the blue-shift in the archetypical system, F(3)C-H.FH, is reproduced at the Hartree-Fock level, indicating that electron correlation is not the primary cause. Calculations also demonstrate that a blue-shift does not require either a carbon center or the absence of a lone pair on the proton donor, because F(3)Si-H.OH(2), F(2)NH.FH, F(2)PH.NH(3), and F(2)PH.OH(2) have substantial blue-shifts. Orbital interactions are shown to lengthen the X-H bond and lower its vibrational frequency, and thus cannot be the source of the blue-shift. In the F(3)CH.FH system, the charge redistribution in F(3)CH can be reproduced very well by replacing the FH with a simple dipole, which suggests that the interactions are predominantly electrostatic. When modeled with a point charge for the proton acceptor, attractive electrostatic interactions elongate the F(3)C-H, while repulsive interactions shorten it. At the equilibrium geometry of a hydrogen-bonded complex, the electrostatic attraction between the dipole moments of the proton donor and proton acceptor must be balanced by the Pauli repulsion between the two fragments. In the absence of orbital interactions that cause bond elongation, this repulsive interaction leads to compression of the X-H bond and a blue-shift in its vibrational frequency.

  2. Characterization of hydroxyapatite coatings deposited by hydrothermal electrochemical method on NaOH immersed Ti6Al4V

    International Nuclear Information System (INIS)

    He, Daihua; Liu, Ping; Liu, Xinkuan; Ma, Fengcang; Chen, Xiaohong; Li, Wei; Du, Jiandi; Wang, Pu; Zhao, Jun

    2016-01-01

    The hydrothermal electrochemical method was used to deposit hydroxyapatite coating on Ti6Al4V. In order to improve the bonding strength between the coating and substrate, the substrates were modified by 8 M NaOH solution before the deposition. The effects of immersing time on the substrate, on the hydroxyapatite coating, and on the bonding strength were studied. X-Ray Diffraction, Scanning Electron Microscope, Fourier Transform Infrared Spectroscopy and Drop Shape Analysis Method were applied. And the crystallinity of hydroxyapatite coating was calculated. The results show that immersing treatment effects the phase compositions, the microstructure and the wettability of the substrate surface. A porous, three-dimensional network structure is formed on the Ti6Al4V surface through the NaOH immersion. The pore size and depth increase with the increase of immersing time from 12 to 48 h. The surface microstructure of Ti6Al4V with 60 h′ immersion time was different from the others. The modification treatment can improve the bonding strength between hydroxyapatite coating and the substrate obviously. The value of the bonding strength with the substrate immersed for 48 h is larger than those of the others. A bone-like apatite layer forms on the coating after 3 days of soaking in SBF, implying with good bioactivity of the hydroxyapatite coatings deposited by the method. The surface characteristics of the sample immersed with 48 h are more conductive to the deposition of hydroxyapatite and to the improvement of the bonding strength. The formation mechanism of hydroxyapatite coating deposited by hydrothermal electrochemical method was discussed. - Highlights: • Immerse Ti6Al4V alloy with NaOH solution for different immersing time. • We deposit hydroxyapatite coating by hydrothermal electrochemical method. • We examine changes of composition, microstructure, bonding strength and bioactivity of the hydroxyapatite coating. • 48 h is the optimal immersing time. • We

  3. Comparison of hydrogen bonding in 1-octanol and 2-octanol as probed by spectroscopic techniques.

    Science.gov (United States)

    Palombo, Francesca; Sassi, Paola; Paolantoni, Marco; Morresi, Assunta; Cataliotti, Rosario Sergio

    2006-09-14

    Liquid 1-octanol and 2-octanol have been investigated by infrared (IR), Raman, and Brillouin experiments in the 10-90 degrees C temperature range. Self-association properties of the neat liquids are described in terms of a three-state model in which OH oscillators differently implicated in the formation of H-bonds are considered. The results are in quantitative agreement with recent computational studies for 1-octanol. The H-bond probability is obtained by Raman data, and a stochastic model of H-bonded chains gives a consistent picture of the self-association characteristics. Average values of hydrogen bond enthalpy and entropy are evaluated. The H-bond formation enthalpy is ca. -22 kJ/mol and is slightly dependent on the structural isomerism. The different degree of self-association for the two octanols is attributed to entropic factors. The more shielded 2-isomer forms larger fractions of smaller, less cooperative, and more ordered clusters, likely corresponding to cyclic structures. Signatures of a different cluster organization are also evidenced by comparing the H-bond energy dispersion (HBED) of OH stretching IR bands. A limiting cooperative H-bond enthalpy value of 27 kJ/mol is found. It is also proposed that the different H-bonding capabilities may modulate the extent of interaggregate hydrocarbon interactions, which is important in explaining the differences in molar volume, compressibility, and vaporization enthalpy for the two isomers.

  4. Investigation of field corrosion performance and bond/development length of galvanized reinforcing steel.

    Science.gov (United States)

    2014-12-01

    In reinforced concrete systems, ensuring that a good bond between the concrete and the embedded reinforcing steel is critical to : long-term structural performance. Without good bond between the two, the system simply cannot behave as intended. The b...

  5. Communication: Towards the binding energy and vibrational red shift of the simplest organic hydrogen bond: Harmonic constraints for methanol dimer

    International Nuclear Information System (INIS)

    Heger, Matthias; Suhm, Martin A.; Mata, Ricardo A.

    2014-01-01

    The discrepancy between experimental and harmonically predicted shifts of the OH stretching fundamental of methanol upon hydrogen bonding to a second methanol unit is too large to be blamed mostly on diagonal and off-diagonal anharmonicity corrections. It is shown that a decisive contribution comes from post-MP2 electron correlation effects, which appear not to be captured by any of the popular density functionals. We also identify that the major deficiency is in the description of the donor OH bond. Together with estimates for the electronic and harmonically zero-point corrected dimer binding energies, this work provides essential constraints for a quantitative description of this simple hydrogen bond. The spectroscopic dissociation energy is predicted to be larger than 18 kJ/mol and the harmonic OH-stretching fundamental shifts by about −121 cm −1 upon dimerization, somewhat more than in the anharmonic experiment (−111 cm −1 )

  6. Intrinsic self-healing thermoset through covalent and hydrogen bonding interactions

    NARCIS (Netherlands)

    Araya-Hermosilla, R.; Lima, G. M. R.; Raffa, P.; Fortunato, G.; Pucci, A.; Flores, Mario E.; Moreno-Villoslada, I.; Broekhuis, A. A.; Picchioni, F.

    The intrinsic self-healing ability of polyketone (PK) chemically modified into furan and/or OH groups containing derivatives is presented. Polymers bearing different ratios of both functional groups were cross-linked via furan/bis-maleimide (Diels-Alder adducts) and hydrogen bonding interactions

  7. Behaviour of OH radicals in an atmospheric-pressure streamer discharge studied by two-dimensional numerical simulation

    International Nuclear Information System (INIS)

    Komuro, Atsushi; Ono, Ryo; Oda, Tetsuji

    2013-01-01

    The production process of OH radicals in an atmospheric-pressure streamer discharge is studied. A streamer discharge model is developed to analyse the characteristics of a pulsed positive streamer discharge in point-to-plane electrodes filled with humid air at atmospheric pressure. The results indicate that the behaviour of OH radicals in and after the discharge pulse is characterized by three reaction processes: ‘OH-production’, ‘OH-cycle’ and ‘OH-recombination’. The first process of OH-production includes dissociation reactions of H 2 O with O( 1 D) and N 2 (a' 1 Σ u - ), which are the main production processes of OH in the discharge. Immediately after the OH-production process, the OH radicals are destroyed by a reaction with O( 3 P) to form O 2 and H. Then the subsequent reactions produce OH again through the reaction of H + HO 2 , which is the OH-cycle process. Finally, the OH radicals are consumed by the OH-recombination process. (paper)

  8. Theoretical study of the oxidation mechanisms of naphthalene initiated by hydroxyl radicals: the OH-addition pathway.

    Science.gov (United States)

    Shiroudi, Abolfazl; Deleuze, Michael S; Canneaux, Sébastien

    2014-07-03

    The oxidation mechanisms of naphthalene by OH radicals under inert (He) conditions have been studied using density functional theory along with various exchange-correlation functionals. Comparison has been made with benchmark CBS-QB3 theoretical results. Kinetic rate constants were correspondingly estimated by means of transition state theory and statistical Rice-Ramsperger-Kassel-Marcus (RRKM) theory. Comparison with experiment confirms that, on the OH-addition reaction pathway leading to 1-naphthol, the first bimolecular reaction step has an effective negative activation energy around -1.5 kcal mol(-1), whereas this step is characterized by an activation energy around 1 kcal mol(-1) on the OH-addition reaction pathway leading to 2-naphthol. Effective rate constants have been calculated according to a steady state analysis upon a two-step model reaction mechanism. In line with experiment, the correspondingly obtained branching ratios indicate that, at temperatures lower than 410 K, the most abundant product resulting from the oxidation of naphthalene by OH radicals must be 1-naphthol. The regioselectivity of the OH(•)-addition onto naphthalene decreases with increasing temperatures and decreasing pressures. Because of slightly positive or even negative activation energies, the RRKM calculations demonstrate that the transition state approximation breaks down at ambient pressure (1 bar) for the first bimolecular reaction steps. Overwhelmingly high pressures, larger than 10(5) bar, would be required for restoring to some extent (within ∼5% accuracy) the validity of this approximation for all the reaction channels that are involved in the OH-addition pathway. Analysis of the computed structures, bond orders, and free energy profiles demonstrate that all reaction steps involved in the oxidation of naphthalene by OH radicals satisfy Leffler-Hammond's principle. Nucleus independent chemical shift indices and natural bond orbital analysis also show that the computed

  9. Short Carboxylic Acid–Carboxylate Hydrogen Bonds Can Have Fully Localized Protons

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jiusheng; Pozharski, Edwin; Wilson, Mark A.

    2017-01-17

    Short hydrogen bonds (H-bonds) have been proposed to play key functional roles in several proteins. The location of the proton in short H-bonds is of central importance, as proton delocalization is a defining feature of low-barrier hydrogen bonds (LBHBs). Experimentally determining proton location in H-bonds is challenging. Here, bond length analysis of atomic (1.15–0.98 Å) resolution X-ray crystal structures of the human protein DJ-1 and its bacterial homologue, YajL, was used to determine the protonation states of H-bonded carboxylic acids. DJ-1 contains a buried, dimer-spanning 2.49 Å H-bond between Glu15 and Asp24 that satisfies standard donor–acceptor distance criteria for a LBHB. Bond length analysis indicates that the proton is localized on Asp24, excluding a LBHB at this location. However, similar analysis of the Escherichia coli homologue YajL shows both residues may be protonated at the H-bonded oxygen atoms, potentially consistent with a LBHB. A Protein Data Bank-wide screen identifies candidate carboxylic acid H-bonds in approximately 14% of proteins, which are typically short [O–O> = 2.542(2) Å]. Chemically similar H-bonds between hydroxylated residues (Ser/Thr/Tyr) and carboxylates show a trend of lengthening O–O distance with increasing H-bond donor pKa. This trend suggests that conventional electronic effects provide an adequate explanation for short, charge-assisted carboxylic acid–carboxylate H-bonds in proteins, without the need to invoke LBHBs in general. This study demonstrates that bond length analysis of atomic resolution X-ray crystal structures provides a useful experimental test of certain candidate LBHBs.

  10. Managing OHS

    DEFF Research Database (Denmark)

    Hull Kristensen, Peer

    2011-01-01

    Contrary to a widely held view, rather than seeing the certification of Occupational Health and Safety (OHS) as a barrier to increasing employee participation, this article views new ways of structuring participation as a necessary step towards making improvements in OHS management systems....... The article first considers how work organization has changed and then in a similar way traces how bargaining has shifted from being distributive to become integrative to create a fundamental change in the negotiation regime. Finally, by analyzing an OHS-certified firm in greater depth, the article shows how...... solutions for improvements in OHS management and notable bottom-up formulations of OHS benchmarks may help us discover how the organizational form of firms with high-performance work organization can be developed through new participatory structures....

  11. Crystal structure details of La- and Bi-substituted hydroxyapatites: Evidence for LaO{sup +} and BiO{sup +} with a very short metal–oxygen bond

    Energy Technology Data Exchange (ETDEWEB)

    Kazin, Pavel E., E-mail: kazin@inorg.chem.msu.ru [Department of Chemistry, Moscow State University, 119991 Moscow (Russian Federation); Pogosova, Mariam A.; Trusov, Lev A.; Kolesnik, Irina V. [Department of Chemistry, Moscow State University, 119991 Moscow (Russian Federation); Magdysyuk, Oxana V.; Dinnebier, Robert E. [Max-Planck-Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart (Germany)

    2016-05-15

    Crystal structures of substituted apatites with general formula Ca{sub 10−x}M{sub x}(PO{sub 4}){sub 6}(OH{sub 1−δ}){sub 2−x}O{sub x}, where M=La, Bi, 0≤x<2, were refined using high-resolution X-ray powder diffraction patterns. Individual positions for Ca{sup 2+} and M{sup 3+}-ions localized near Ca2-site were determined. The M{sup 3+}-ion was found shifted toward the hexagonal channel center with respect to the Ca{sup 2+}-ion, forming very short bond with the intrachannel O{sup 2−}, while leaving considerably longer distances to other oxygen atoms, which suggested the existence of a MO{sup +} ion. Distinct bands of stretching M–O modes were observed in the Raman and FT-IR spectra of the compounds. The bond lengths for BiO{sup +} and LaO{sup +} were estimated to be 2.05(1) and 2.09(1) Å correspondingly. The latter was almost 0.3 Å lower than the shortest La–O bond in La{sub 2}O{sub 3}. The realization of such a strong lanthanide–oxygen bond in a crystal lattice could provide a very high axial ligand field and might be implemented to develop high-energy-barrier single-molecule magnets as well as to tune properties of lanthanide-based luminophores. - Graphical abstract: A fragment of the La-for-Ca substituted apatite crystal structure focusing on the La–O bond. - Highlights: • Individual positions in the apatite crystal lattice for a doping atom (La, Bi) and Ca. • The doping atom shifts toward the center of the hexagonal channel. • BiO{sup +} and LaO{sup +} with estimated short bond lengths of 2.05 and 2.09 Å respectively.

  12. A Protein Data Bank survey reveals shortening of intermolecular hydrogen bonds in ligand-protein complexes when a halogenated ligand is an H-bond donor.

    Science.gov (United States)

    Poznański, Jarosław; Poznańska, Anna; Shugar, David

    2014-01-01

    Halogen bonding in ligand-protein complexes is currently widely exploited, e.g. in drug design or supramolecular chemistry. But little attention has been directed to other effects that may result from replacement of a hydrogen by a strongly electronegative halogen. Analysis of almost 30000 hydrogen bonds between protein and ligand demonstrates that the length of a hydrogen bond depends on the type of donor-acceptor pair. Interestingly, lengths of hydrogen bonds between a protein and a halogenated ligand are visibly shorter than those estimated for the same family of proteins in complexes with non-halogenated ligands. Taking into account the effect of halogenation on hydrogen bonding is thus important when evaluating structural and/or energetic parameters of ligand-protein complexes. All these observations are consistent with the concept that halogenation increases the acidity of the proximal amino/imino/hydroxyl groups and thus makes them better, i.e. stronger, H-bond donors.

  13. A charge-optimized many-body potential for the U-UO2-O2 system

    Science.gov (United States)

    Li, Yangzhong; Liang, Tao; Sinnott, Susan B.; Phillpot, Simon R.

    2013-12-01

    Building on previous charge-optimized many-body (COMB) potentials for metallic α-U and gaseous O2, we have developed a new potential for UO2, which also allows the simulation of U-UO2-O2 systems. The UO2 lattice parameter, elastic constants and formation energies of stoichiometric and non-stoichiometric intrinsic defects are well reproduced. Moreover, this is the first rigid-ion potential that produces the correct deviation of the Cauchy relation, as well as the first classical interatomic potential that is able to determine the defect energies of non-stoichiometric intrinsic point defects in UO2 with an appropriate reference state. The oxygen molecule interstitial in the α-U structure is shown to decompose, with some U-O bonds approaching the natural bond length of perfect UO2. Finally, we demonstrate the capability of this COMB potential to simulate a complex system by performing a simulation of the α-U + O2 → UO2 phase transformation. We also identify a possible mechanism for uranium oxidation and the orientation of the resulting fluorite UO2 structure relative to the coordinate system of orthorhombic α-U.

  14. Uranium dissolution in hyper-alkaline TMA-OH solutions: Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Cachoir, C.; Salah, S.; Mennecart, T.; Lemmens, K. [Belgian Research Nuclear Centre - SCK-CEN, Boeretang 200, 2400 Mol (Belgium)

    2016-07-01

    Leaching experiments were performed with depleted UO{sub 2} powders in tetramethylammonium solutions (TMA-OH) at pH 13.5 and 12.5, and at different UO{sub 2} surface area to volume of solution (SA/V) ratio's to determine the solubility and the dissolution kinetics of UO{sub 2} at high pH in absence of cations dominating cementitious waters (Ca, Na, K). The solubility of UO{sub 2} increased from pH 12.5 to 13.5 and by increasing the SA/V ratio up to 100 m{sup -1}. However, no known U secondary-phases were predicted by geochemical calculations to control the measured U-concentrations. We interpreted the UO{sub 2} dissolution process as a 2-step process. For all experiments, we observe a fast initial rate, hydroxo promoted and likely surface controlled. Afterwards the rate is apparently negative at low SA/V over time while it is positive at higher SA/V ratio's. The former is interpreted to be related to a sorption process, while the latter reveals a continuous residual dissolution process. No solubility enhancing effect of U-colloids was observed in the TMA-OH media. However, there is much less uranium colloid formation in TMA-OH tests with low Ca (Na, K) concentration than in previous tests with higher Ca (Na, K) concentrations. This suggests that the colloid formation is promoted by alkali and/or alkali-earth elements.

  15. Nonperfect synchronization of bond-forming and bond-rupturing processes in the reaction H + H2 → H2 + H

    International Nuclear Information System (INIS)

    Chandra, A.K.; Rao, V.S.

    1996-01-01

    The simplest prototypical hydrogen transfer reaction, i.e., H + H 2 → H 2 + H, is studied by the quantum-mechanical ab initio methods. Results reveal that during this reaction free valence which almost equals the square of the spin density develops on the migrating hydrogen atom. Bond orders are calculated using Mayer's formalism. Both the variations of bond orders and bond lengths along the reaction path are examined. This analysis reveals that the bond formation and bond cleavage processes in this reaction are not perfectly synchronous. The bond clevage process is slightly more advanced on the reaction path. 38 refs., 6 figs., 2 tabs

  16. Effect of anthropogenic organic complexants on the solubility of Ni, Th, U(IV) and U(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Felipe-Sotelo, M., E-mail: m.felipe-sotelo@lboro.ac.uk [Department of Chemistry, Loughborough University, LE11 3TU Loughborough, Leicestershire (United Kingdom); Edgar, M. [Department of Chemistry, Loughborough University, LE11 3TU Loughborough, Leicestershire (United Kingdom); Beattie, T. [MCM Consulting. Täfernstrasse 11, CH 5405 Baden-Dättwil (Switzerland); Warwick, P. [Enviras Ltd., LE11 3TU Loughborough, Leicestershire (United Kingdom); Evans, N.D.M.; Read, D. [Department of Chemistry, Loughborough University, LE11 3TU Loughborough, Leicestershire (United Kingdom)

    2015-12-30

    Highlights: • Citrate increases the solubility of Ni, Th and U between 3 and 4 orders of magnitude. • Theophrastite is the solubility controlling phase of Ni in 95%-saturated Ca(OH){sub 2}. • U(VI) and Ni may form Metal-citrate-OH complexes stabilised by the presence of Ca{sup 2+}. - Abstract: The influence of anthropogenic organic complexants (citrate, EDTA and DTPA from 0.005 to 0.1 M) on the solubility of nickel(II), thorium(IV) and uranium (U(IV) and U(VI)) has been studied. Experiments were carried out in 95%-saturated Ca(OH){sub 2} solutions, representing the high pH conditions anticipated in the near field of a cementitious intermediate level radioactive waste repository. Results showed that Ni(II) solubility increased by 2–4 orders of magnitude in the presence of EDTA and DTPA and from 3 to 4 orders of magnitude in the case of citrate. Citrate had the greatest effect on the solubility of Th(IV) and U(IV)/(VI). XRD and SEM analyses indicate that the precipitates are largely amorphous; only in the case of Ni(II), is there some evidence of incipient crystallinity, in the form of Ni(OH){sub 2} (theophrastite). A study of the effect of calcium suggests that U(VI) and Ni(II) may form metal-citrate-OH complexes stabilised by Ca{sup 2+}. Thermodynamic modelling underestimates the concentrations in solution in the presence of the ligands for all the elements considered here. Further investigation of the behaviour of organic ligands under hyperalkaline conditions is important because of the use of the thermodynamic constants in preparing the safety case for the geological disposal of radioactive wastes.

  17. Probing electron density of H-bonding between cation-anion of imidazolium-based ionic liquids with different anions by vibrational spectroscopy.

    Science.gov (United States)

    Gao, Yan; Zhang, Liqun; Wang, Yong; Li, Haoran

    2010-03-04

    Attenuated total reflection infrared spectroscopy and density functional theory calculation have been employed to study the spectral properties of imidazolium-based ionic liquids (ILs) with different anions. ILs based on 1-butyl-3-methylimidazolium cation with different anions, OH(-), CF(3)CO(2)(-), HSO(4)(-), H(2)PO(4)(-), Cl(-), PF(6)(-), and BF(4)(-), are investigated in the present work. It has been shown that the C(2)-H stretching vibration of the imidazolium ring is closely related to the electron density of H-bonding between the two closest cations and anions for pure ILs. The electron density of H-bonding between cation and anion with different anions decreases in the order [OH](-) > [H(2)PO(4)](-) > [HSO(4)](-) > [CF(3)CO(2)](-) > [Cl](-) > [BF(4)](-) > [PF(6)](-). For aqueous ILs, with increasing water content, the aromatic C-H stretching vibration of the imidazolium cation showed systematic blue-shifts. Especially for BmimOH, the nu(C(2))(-H) undergoes a drastic blue-shift by 58 cm(-1), suggesting that the formation of the strong hydrogen bonds O-H...O may greatly weaken the electron density of H-bonding between the cation and anion of ILs.

  18. Solid-State Synthesis and Structure of the Enigmatic Ammonium Octaborate: (NH4)2[B7O9(OH)5]·3/4B(OH)3·5/4H2O.

    Science.gov (United States)

    Neiner, Doinita; Sevryugina, Yulia V; Schubert, David M

    2016-09-06

    The compound known since the 19th century as ammonium octaborate was structurally characterized revealing the ammonium salt of the ribbon isomer of the heptaborate anion, [B7O9(OH)5](2-), with boric acid and water molecules. Of composition (NH4)2B7.75O12.63·4.88H2O, it approximates the classical ammonium octaborate composition (NH4)2B8O13·6H2O and has the structural formula {(NH4)2[B7O9(OH)5]}4·3B(OH)3·5H2O. It spontaneously forms at room temperature in solid-state mixtures of ammonium tetraborate and ammonium pentaborate. It crystallizes in the monoclinic space group P21/c with a = 11.4137(2) Å, b = 11.8877(2) Å, c = 23.4459(3) Å, β = 90.092(1)°, V = 3181.19(8) Å(3), and Z = 2 and contains well-ordered ammonium cations and [B7O9(OH)5](2-) anions and disordered B(OH)3 and H2O molecules linked by extensive H bonding. Expeditious solid-state formation of the heptaborate anion under ambient conditions has important implications for development of practical syntheses of industrially useful borates.

  19. Composite interlayer for diffusion bonding

    International Nuclear Information System (INIS)

    1976-01-01

    A ductile interlayer is described, which is useful for transient liquid phase diffusion bonding of metallic articles; the interlayer consisting of a melting point depressant and a plurality of ductile lamellae which are free from carbides, aluminides and borides. The composition and fabrication of the lamellae, and the process for bonding the metallic articles, depend on the composition of the metals to be bonded, and are exemplified in the specification. (U.K.)

  20. Research on the Bond Anchorage Properties of Alkali-Activated Slag Cementitious Material

    Science.gov (United States)

    Zhu, J.; Zheng, W. Z.; Leng, Y. F.; Qin, C. Z.; Xu, Z. Z.

    2017-12-01

    By bond-anchorage property tests at 20°C ∼500°C, the distribution of shear stress between carbon fiber sheets and concrete at all levels of loading and anchorage lengths were measured, which means the bond lengths during CFRP sheets are pulled off at the same time when the concrete is torn and stripped were gotten. The failure modes were obtained. In addition, the failure loads were measured, and the calculated formulas of anchorage lengths were identified by fitting at high temperature. It can be seen that the anchorage lengths of carbon fiber sheets increase with increasing temperature at 20°C ∼100°C, the anchorage lengths of carbon fiber sheets decrease with increasing temperature at 100°C ∼500°C. Tests prove that AASCM has favorable high-temperature resistant and bond anchorage properties.

  1. Pullout Performances of Grouted Rockbolt Systems with Bond Defects

    Science.gov (United States)

    Xu, Chang; Li, Zihan; Wang, Shanyong; Wang, Shuren; Fu, Lei; Tang, Chunan

    2018-03-01

    This paper presents a numerical study on the pullout behaviour of fully grouted rockbolts with bond defects. The cohesive zone model (CZM) is adopted to model the bond-slip behaviour between the rockbolt and grout material. Tensile tests were also conducted to validate the numerical model. The results indicate that the defect length can obviously influence the load and stress distributions along the rockbolt as well as the load-displacement response of the grouted system. Moreover, a plateau in the stress distribution forms due to the bond defect. The linear limit and peak load of the load-displacement response decrease as the defect length increases. A bond defect located closer to the loaded end leads to a longer nonlinear stage in the load-displacement response. However, the peak loads measured from the specimens made with various defect locations are almost approximately the same. The peak load for a specimen with the defects equally spaced along the bolt is higher than that for a specimen with defects concentrated in a certain zone, even with the same total defect length. Therefore, the dispersed pattern of bond defects would be much safer than the concentrated pattern. For the specimen with dispersed defects, the peak load increases with an increase in the defect spacing, even if the total defect length is the same. The peak load for a grouted rockbolt system with defects increases with an increases in the bolt diameter. This work leads to a better understanding of the load transfer mechanism for grouted rockbolt systems with bond defects, and paves the way towards developing a general evaluation method for damaged rockbolt grouted systems.

  2. THEORETICAL RESEARCH ON THE MULTI-CHANNEL REACTION MECHANISM AND KINETICS OF HNCS WITH OH-

    Directory of Open Access Journals (Sweden)

    Li-Jie Hou

    Full Text Available We presented a theoretical study on the detailed reaction mechanism and kinetics of the HNCS molecule with the OH-. The barrierless minimum energy path and the most favorable entrance channel have been determined by study the thermodynamic and kinetic characters of the channel with low energy barrier. The B3LYP/6-311++G** method was employed for all the geometrical optimizations and a multi-level extrapolation method based on the G3 energies was employed for further energy refinements. In addition, the analysis of the combining interaction between hydroxide ion and HNCS was performed by natural bond orbitals (NBO analysis. The calculation results indicated that the reaction of OH- with HNCS had four channels, and the channel of H-atom in HNCS direct extraction to OH- (OH-+HNCS→IM1→TS3→IM4→P2(SCN- +H2O in singlet state was the main channel with the low potential energy and high equilibrium constant and reaction rate constant. SCN- and H2O were main products.

  3. Enthalpy of formation of anisole: implications for the controversy on the O-H bond dissociation enthalpy in phenol.

    Science.gov (United States)

    Simões, Ricardo G; Agapito, Filipe; Diogo, Hermínio P; da Piedade, Manuel E Minas

    2014-11-20

    Significant discrepancies in the literature data for the enthalpy of formation of gaseous anisole, ΔfHmo(PhOCH3, g), have fueled an ongoing controversy regarding the most reliable enthalpy of formation of the phenoxy radical and of the gas phase O-H bond dissociation enthalpy, DHo(PhO-H), in phenol. In the present work ΔfHmo(PhOCH3, g) was reassessed using a combination of calorimetric determinations and high-level (W2-F12) ab initio calculations. Static-bomb combustion calorimetry led to the standard molar enthalpy of formation of liquid anisole at 298.15 K, ΔfHmo(PhOCH3, l) = −(117.1 ± 1.4) kJ·mol(-1). The corresponding enthalpy of vaporization was obtained as, ΔvapHmo(PhOCH3) = 46.41 ± 0.26 kJ·mol(-1), by Calvet-drop microcalorimetry. These results give ΔfHmo(PhOCH3, g) = −(70.7 ± 1.4) kJ·mol(-1), in excellent agreement with ΔfHmo(PhOCH3, g) = −(70.8 ± 3.2) kJ·mol(-1), obtained from the W2-F12 calculations. The ΔfHmo(PhOCH3, g) here recommended leads to ΔfHmo(PhO•, g) = 55.5 ± 2.4 kJ·mol(-)1 and DH°(PhO-H) = 368.1 ± 2.6 kJ·mol(-1).

  4. A Protein Data Bank survey reveals shortening of intermolecular hydrogen bonds in ligand-protein complexes when a halogenated ligand is an H-bond donor.

    Directory of Open Access Journals (Sweden)

    Jarosław Poznański

    Full Text Available Halogen bonding in ligand-protein complexes is currently widely exploited, e.g. in drug design or supramolecular chemistry. But little attention has been directed to other effects that may result from replacement of a hydrogen by a strongly electronegative halogen. Analysis of almost 30000 hydrogen bonds between protein and ligand demonstrates that the length of a hydrogen bond depends on the type of donor-acceptor pair. Interestingly, lengths of hydrogen bonds between a protein and a halogenated ligand are visibly shorter than those estimated for the same family of proteins in complexes with non-halogenated ligands. Taking into account the effect of halogenation on hydrogen bonding is thus important when evaluating structural and/or energetic parameters of ligand-protein complexes. All these observations are consistent with the concept that halogenation increases the acidity of the proximal amino/imino/hydroxyl groups and thus makes them better, i.e. stronger, H-bond donors.

  5. Identification of the formation of metal-vinylidene interfacial bonds of alkyne-capped platinum nanoparticles by isotopic labeling.

    Science.gov (United States)

    Hu, Peiguang; Chen, Limei; Deming, Christopher P; Bonny, Lewis W; Lee, Hsiau-Wei; Chen, Shaowei

    2016-10-07

    Stable platinum nanoparticles were prepared by the self-assembly of 1-dodecyne and dodec-1-deuteroyne onto bare platinum colloid surfaces. The nanoparticles exhibited consistent core size and optical properties. FTIR and NMR measurements confirmed the formation of Pt-vinylidene (Pt[double bond, length as m-dash]C[double bond, length as m-dash]CH-) interfacial linkages rather than Pt-acetylide (Pt-C[triple bond, length as m-dash]C-) and platinum-hydride (Pt-H) bonds.

  6. Formation of Mg(OH)2 nanowhiskers on LTA zeolite surfaces using a sol–gel method

    KAUST Repository

    Liu, Junqiang

    2011-09-20

    A facile three step sol-gel-precipitation process is used to synthesize Mg(OH)2 nanowhiskers on micron-sized zeolite 5A particle surfaces at room temperature. The putative amorphous gelation product, Mg(OH) n(OR)2-n, forms first by a controlled hydrolysis and condensation reaction involving magnesium isopropoxide and water, ultimately leading to precipitation to form Mg(OH)2 structures on the zeolite surface. The optimum conditions for one dimensional Mg(OH)2 whisker formation are found to be six times the stoichiometric amount of water using 1 M HCl as the catalyst for the sol-gel reaction. The one-dimensional Mg(OH) 2 whiskers have an average diameter of 5-10 nm and length of 50-100 nm. The zeolite micropores are not affected by the Mg(OH)2 whiskers formed on the surface. The surface roughened zeolite 5A, with a Mg(OH) 2 content of about 9 wt%, showed improved adhesion between the zeolite and the polymer in a mixed-matrix composite membrane. © 2011 Springer Science+Business Media, LLC.

  7. A Study of Bond of Structural Timber and Carbon Fiber Reinforced Polymer Plate

    Directory of Open Access Journals (Sweden)

    Yongtaeg LEE

    2015-11-01

    Full Text Available The increase of well-being culture of problem related to environmental depletion of resource is not the growing interest in timber the natural material of construction markets. Also, the perception for historic preservation has been increased in respond to heightened interest. However, it is fairly difficult for architectural properties to maintain their durability because it was made by timber construction. Preventing traditional structure from damage and structural performance reduction is paramount in maintenance problem. A number of studies of reinforced method have been conducted in order to solve such a problem. In this paper, external bonded reinforcement and near-surface mounted was used as a way to reinforce timber structure’s durability. Bond strength for specimens with different bond length was investigated. As a result showed, maximum bond strength in bond length 300 mm from all method, was found to be not increased of bond strength over the certain bond length.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9702

  8. Near-infrared analysis of hydrogen-bonding in glass- and rubber-state amorphous saccharide solids.

    Science.gov (United States)

    Izutsu, Ken-ichi; Hiyama, Yukio; Yomota, Chikako; Kawanishi, Toru

    2009-01-01

    Near-infrared (NIR) spectroscopic analysis of noncrystalline polyols and saccharides (e.g., glycerol, sorbitol, maltitol, glucose, sucrose, maltose) was performed at different temperatures (30-80 degrees C) to elucidate the effect of glass transition on molecular interaction. Transmission NIR spectra (4,000-12,000 cm(-1)) of the liquids and cooled-melt amorphous solids showed broad absorption bands that indicate random configuration of molecules. Heating of the samples decreased an intermolecular hydrogen-bonding OH vibration band intensity (6,200-6,500 cm(-1)) with a concomitant increase in a free and intramolecular hydrogen-bonding OH group band (6,600-7,100 cm(-1)). Large reduction of the intermolecular hydrogen-bonding band intensity at temperatures above the glass transition (T(g)) of the individual solids should explain the higher molecular mobility and lower viscosity in the rubber state. Mixing of the polyols with a high T(g) saccharide (maltose) or an inorganic salt (sodium tetraborate) shifted both the glass transition and the inflection point of the hydrogen-bonding band intensity to higher temperatures. The implications of these results for pharmaceutical formulation design and process monitoring (PAT) are discussed.

  9. Copper(II) perrhenate Cu(C{sub 3}H{sub 7}OH){sub 2}(ReO{sub 4}){sub 2}: Synthesis from isopropanol and CuReO{sub 4}, structure and properties

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailova, D., E-mail: d.mikhailova@ifw-dresden.de [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), Hermann-von-Helmholtz-Platz 1, D-76434 Eggenstein-Leopoldshafen (Germany); Institute for Complex Materials, IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden (Germany); Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, D-01187 Dresden (Germany); Engel, J.M. [Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, D-64287 Darmstadt (Germany); Schmidt, M. [Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, D-01187 Dresden (Germany); Tsirlin, A.A. [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Ehrenberg, H. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), Hermann-von-Helmholtz-Platz 1, D-76434 Eggenstein-Leopoldshafen (Germany); Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, D-64287 Darmstadt (Germany)

    2015-12-15

    The crystal structure of Cu{sup +}Re{sup 7+}O{sub 4} is capable of a quasi-reversible incorporation of C{sub 3}H{sub 7}OH molecules. A room-temperature reaction between CuReO{sub 4} and C{sub 3}H{sub 7}OH under oxidizing conditions leads to the formation of a novel metal-organic hybrid compound Cu{sup 2+}(C{sub 3}H{sub 7}OH){sub 2}(ReO{sub 4}){sub 2}. Upon heating under reducing conditions, this compound transforms back into CuReO{sub 4}, albeit with ReO{sub 2} and metallic Cu as by-products. The crystal structure of Cu(C{sub 3}H{sub 7}OH){sub 2}(ReO{sub 4}){sub 2} solved from single-crystal X-ray diffraction (Pbca, a=10.005(3) Å, b=7.833(2) Å, and c=19.180(5) Å) reveals layers of corner-sharing CuO{sub 6}-octahedra and ReO{sub 4}-tetrahedra, whereas isopropyl groups are attached to both sides of these layers, thus providing additional connections within the layers through hydrogen bonds. Cu(C{sub 3}H{sub 7}OH){sub 2}(ReO{sub 4}){sub 2} is paramagnetic down to 4 K because the spatial arrangement of the Cu{sup 2+} half-filled orbitals prevents magnetic superexchange. The paramagnetic effective moment of 2.0(1) μ{sub B} is slightly above the spin-only value and typical for Cu{sup 2+} ions. - Highlights: • Novel Cu(C{sub 3}H{sub 7}OH){sub 2}(ReO{sub 4}){sub 2} compound has a sequence of inorganic and organic layers. • Hydrogen bonds provide an additional bonding Isopropanol molecules serve as a reducing agent during decomposition. • No direct Cu-O-Re-O-Cu connections via d{sub x2-y2} orbital of Cu{sup 2+} explain paramagnetism. • Hydrogen bonds provide an additional bonding. • Isopropanol molecules serve as a reducing agent during decomposition.

  10. Controlling the bond scission sequence of oxygenates for energy applications

    Science.gov (United States)

    Stottlemyer, Alan L.

    The so called "Holy Grail" of heterogeneous catalysis is a fundamental understanding of catalyzed chemical transformations which span multidimensional scales of both length and time, enabling rational catalyst design. Such an undertaking is realizable only with an atomic level understanding of bond formation and destruction with respect to intrinsic properties of the metal catalyst. In this study, we investigate the bond scission sequence of small oxygenates (methanol, ethanol, ethylene glycol) on bimetallic transition metal catalysts and transition metal carbide catalysts. Oxygenates are of interest both as hydrogen carriers for reforming to H2 and CO and as fuels in direct alcohol fuel cells (DAFC). To address the so-called "materials gap" and "pressure gap" this work adopted three parallel research approaches: (1) ultra high vacuum (UHV) studies including temperature programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS) on polycrystalline surfaces; (2) DFT studies including thermodynamic and kinetic calculations; (3) electrochemical studies including cyclic voltammetry (CV) and chronoamperometry (CA). Recent studies have suggested that tungsten monocarbide (WC) may behave similarly to Pt for the electrooxidation of oxygenates. TPD was used to quantify the activity and selectivity of oxygenate decomposition for WC and Pt-modifiedWC (Pt/WC) as compared to Pt. While decomposition activity was generally higher on WC than on Pt, scission of the C-O bond resulted in alkane/alkene formation on WC, an undesired product for DAFC. When Pt was added to WC by physical vapor deposition C-O bond scission was limited, suggesting that Pt synergistically modifies WC to improve the selectivity toward C-H bond scission to produce H2 and CO. Additionally, TPD confirmed WC and Pt/WC to be more CO tolerant than Pt. HREELS results verified that surface intermediates were different on Pt/WC as compared to Pt or WC and evidence of aldehyde

  11. SFG study on potential-dependent structure of water at Pt electrode/electrolyte solution interface

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Hidenori; Okada, Tsubasa; Uosaki, Kohei [Physical Chemistry Laboratory, Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan)

    2008-10-01

    Structure of water at Pt/electrolyte solution interface was investigated by sum frequency generation (SFG) spectroscopy. Two broad peaks were observed in OH stretching region at ca. 3200 cm{sup -1} and ca. 3400 cm{sup -1}, which are known to be due to the symmetric OH stretching (U{sub 1}) of tetrahedrally coordinated, i.e., strongly hydrogen bonded 'ice-like' water, and the asymmetric OH stretching (U{sub 3}) of water molecules in a more random arrangement, i.e., weakly hydrogen bonded 'liquid-like' water, respectively. The SFG intensity strongly depended on electrode potential. Several possibilities are suggested for the potential dependence of the SFG intensity. (author)

  12. 75 FR 50772 - Agency Information Collection Activities: Importation Bond Structure

    Science.gov (United States)

    2010-08-17

    ... DEPARTMENT OF HOMELAND SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Importation Bond Structure AGENCY: U.S. Customs and Border Protection, Department of Homeland... information collection requirement concerning the: Importation Bond Structure. This request for comment is...

  13. NMR and IR investigations of strong intramolecular hydrogen bonds

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Spanget-Larsen, Jens

    2017-01-01

    been used as a parameter for hydrogen bond strength in O–H···O systems. On a broad scale, a correlation between OH stretching wavenumbers and O···O distances is observed, as demonstrated experimentally as well as theoretically, but for substituted beta-diketone enols this correlation is relatively weak.......–1, and 19 >  dOH > 15 ppm. Recent results as well as an account of theoretical advances are presented for a series of important classes of compounds such as beta-diketone enols, beta-thioxoketone enols, Mannich bases, proton sponges, quinoline N-oxides and diacid anions. The O···O distance has long...

  14. How Is the Enamel Affected by Different Orthodontic Bonding Agents and Polishing Techniques?

    Directory of Open Access Journals (Sweden)

    Farzin Heravi

    2015-10-01

    Full Text Available Objectives: The objective of this study was to assess the effect of new bonding techniques on enamel surface.Materials and Methods: Sixty upper central incisors were randomly divided into two equal groups. In the first group, metal brackets were bonded using Trans- bondXT and, in the second group, the same brackets were bonded with MaxcemElite. The shear bond strength (SBS of both agents to enamel was measured and the number and length of enamel cracks before bonding, after debonding and after polishing were compared. The number of visible cracks and the adhesive remnant index (ARI scores in each group were also measured.Results: There were significantly more enamel cracks in the Transbond XT group after debonding and polishing compared to the Maxcem Elite group. There was no significant difference in the length of enamel cracks between the two groups; but, in each group, a significant increase in the length of enamel cracks was noticeable after debonding. Polishing did not cause any statistically significant change in crack length. The SBS of Maxcem Elite was significantly lower than that of Transbond XT (95% confidence interval.Conclusion: Maxcem Elite offers clinically acceptable bond strength and can thus be used as a routine adhesive for orthodontic purposes since it is less likely todamage the enamel.

  15. How Is the Enamel Affected by Different Orthodontic Bonding Agents and Polishing Techniques?

    Science.gov (United States)

    Heravi, Farzin; Shafaee, Hooman; Abdollahi, Mojtaba; Rashed, Roozbeh

    2015-03-01

    The objective of this study was to assess the effect of new bonding techniques on enamel surface. Sixty upper central incisors were randomly divided into two equal groups. In the first group, metal brackets were bonded using TransbondXT and, in the second group, the same brackets were bonded with Maxcem Elite. The shear bond strength (SBS) of both agents to enamel was measured and the number and length of enamel cracks before bonding, after debonding and after polishing were compared. The number of visible cracks and the adhesive remnant index (ARI) scores in each group were also measured. There were significantly more enamel cracks in the Transbond XT group after debonding and polishing compared to the Maxcem Elite group. There was no significant difference in the length of enamel cracks between the two groups; but, in each group, a significant increase in the length of enamel cracks was noticeable after debonding. Polishing did not cause any statistically significant change in crack length. The SBS of Maxcem Elite was significantly lower than that of Transbond XT (95% confidence interval). Maxcem Elite offers clinically acceptable bond strength and can thus be used as a routine adhesive for orthodontic purposes since it is less likely to damage the enamel.

  16. Zn Coordination Chemistry:  Development of Benchmark Suites for Geometries, Dipole Moments, and Bond Dissociation Energies and Their Use To Test and Validate Density Functionals and Molecular Orbital Theory.

    Science.gov (United States)

    Amin, Elizabeth A; Truhlar, Donald G

    2008-01-01

    We present nonrelativistic and relativistic benchmark databases (obtained by coupled cluster calculations) of 10 Zn-ligand bond distances, 8 dipole moments, and 12 bond dissociation energies in Zn coordination compounds with O, S, NH3, H2O, OH, SCH3, and H ligands. These are used to test the predictions of 39 density functionals, Hartree-Fock theory, and seven more approximate molecular orbital theories. In the nonrelativisitic case, the M05-2X, B97-2, and mPW1PW functionals emerge as the most accurate ones for this test data, with unitless balanced mean unsigned errors (BMUEs) of 0.33, 0.38, and 0.43, respectively. The best local functionals (i.e., functionals with no Hartree-Fock exchange) are M06-L and τ-HCTH with BMUEs of 0.54 and 0.60, respectively. The popular B3LYP functional has a BMUE of 0.51, only slightly better than the value of 0.54 for the best local functional, which is less expensive. Hartree-Fock theory itself has a BMUE of 1.22. The M05-2X functional has a mean unsigned error of 0.008 Å for bond lengths, 0.19 D for dipole moments, and 4.30 kcal/mol for bond energies. The X3LYP functional has a smaller mean unsigned error (0.007 Å) for bond lengths but has mean unsigned errors of 0.43 D for dipole moments and 5.6 kcal/mol for bond energies. The M06-2X functional has a smaller mean unsigned error (3.3 kcal/mol) for bond energies but has mean unsigned errors of 0.017 Å for bond lengths and 0.37 D for dipole moments. The best of the semiempirical molecular orbital theories are PM3 and PM6, with BMUEs of 1.96 and 2.02, respectively. The ten most accurate functionals from the nonrelativistic benchmark analysis are then tested in relativistic calculations against new benchmarks obtained with coupled-cluster calculations and a relativistic effective core potential, resulting in M05-2X (BMUE = 0.895), PW6B95 (BMUE = 0.90), and B97-2 (BMUE = 0.93) as the top three functionals. We find significant relativistic effects (∼0.01 Å in bond lengths, ∼0

  17. Physical activity and telomere length in U.S. men and women: An NHANES investigation.

    Science.gov (United States)

    Tucker, Larry A

    2017-07-01

    The principal objective was to determine the extent to which physical activity (PA) accounts for differences in leukocyte telomere length (LTL) in a large random sample of U.S. adults. Another purpose was to assess the extent to which multiple demographic and lifestyle covariates affect the relationship between PA and LTL. A total of 5823 adults from the National Health and Nutrition Examination Survey (NHANES 1999-2002) were studied cross-sectionally. Employing the quantitative polymerase chain reaction method, LTL was compared to standard reference DNA. PA was indexed using MET-minutes using self-reported frequency, intensity, and duration of participation in 62 physical activities. Covariates were controlled statistically. Telomeres were 15.6 base pairs shorter for each year of chronological age (F=723.2, Pactivity and those in the Sedentary, Low, and Moderate groups were 140, 137, and 111, respectively. Adults with High activity were estimated to have a biologic aging advantage of 9years (140 base pairs÷15.6) over Sedentary adults. The difference in cell aging between those with High and Low activity was also significant, 8.8years, as was the difference between those with High and Moderate PA (7.1years). Overall, PA was significantly and meaningfully associated with telomere length in U.S. men and women. Evidently, adults who participate in high levels of PA tend to have longer telomeres, accounting for years of reduced cellular aging compared to their more sedentary counterparts. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Vibrational spectroscopic study of poldervaartite CaCa[SiO3(OH)(OH)

    Science.gov (United States)

    Frost, Ray L.; López, Andrés; Scholz, Ricardo; Lima, Rosa Malena Fernandes

    2015-02-01

    We have studied the mineral poldervaartite CaCa[SiO3(OH)(OH)] which forms a series with its manganese analogue olmiite CaMn[SiO3(OH)](OH) using a range of techniques including scanning electron microscopy, thermogravimetric analysis, Raman and infrared spectroscopy. Chemical analysis shows the mineral is reasonably pure and contains only calcium and manganese with low amounts of Al and F. Thermogravimetric analysis proves the mineral decomposes at 485 °C with a mass loss of 7.6% compared with the theoretical mass loss of 7.7%. A strong Raman band at 852 cm-1 is assigned to the SiO stretching vibration of the SiO3(OH) units. Two Raman bands at 914 and 953 cm-1 are attributed to the antisymmetric vibrations. Intense prominent peaks observed at 3487, 3502, 3509, 3521 and 3547 cm-1 are assigned to the OH stretching vibration of the SiO3(OH) units. The observation of multiple OH bands supports the concept of the non-equivalence of the OH units. Vibrational spectroscopy enables a detailed assessment of the molecular structure of poldervaartite.

  19. Biodistribution and tumor uptake of C{sub 60}(OH){sub x} in mice

    Energy Technology Data Exchange (ETDEWEB)

    Zhiqiang, Ji; Sun Hongfang, E-mail: shf@pku.edu.cn; Haifang, Wang; Qunying, Xie; Yuangfang, Liu [Peking University, Department of Chemical Biology, College of Chemistry and Molecular Engineering (China); Zheng, Wang [Chinese Academy of Medical Sciences, Cancer Institute (China)

    2006-02-15

    Radiolabeling of fullerol, {sup 125}I-C{sub 60}(OH){sub x}, was performed by the traditional chloramine-T method. The C-I covalent bond in I-C{sub 60}(OH){sub x} was characterized by X-ray photoelectron spectroscopy (XPS) that was sufficiently stable for in vivo study. Laser light scattering spectroscopy clearly showed that C{sub 60}(OH){sub x} aggregated to large nanoparticle clumps with a wide range of distribution. The clumps formed were also visualized by transmission electron microscope (TEM). We examined the biodistribution and tumor uptake of C{sub 60}(OH){sub x} in five mouse bearing tumor models, including mouse H22 hepatocarcinoma, human lung giantcellcarcinoma PD, human colon cancer HCT-8, human gastric cancer MGC803, and human OS732 osteosarcoma. The accumulation ratios of {sup 125}I-C{sub 60}(OH){sub x} in mouse H22 hepatocarcinoma to that in normal muscle tissue (T/N) and blood (T/B) at 1, 6, 24 and 72 h, reveal that {sup 125}I-C{sub 60}(OH){sub x} gradually accumulates in H22 tumor, and retains for a quite long period (e.g., T/N 3.41, T/B 3.94 at 24 h). For the other four tumor models, the T/N ratio at 24 h ranges within 1.21-6.26, while the T/B ratio ranges between 1.23 and 4.73. The accumulation of C{sub 60}(OH){sub x} in tumor is mostly due to the enhanced permeability and retention effect (EPR) and the phagocytosis of mononuclear phagocytes. Hence, C{sub 60}(OH){sub x} might serve as a photosensitizer in the photodynamic therapy of some kinds of tumor.

  20. Importance of interlayer H bonding structure to the stability of layered minerals

    Energy Technology Data Exchange (ETDEWEB)

    Conroy, Michele; Soltis, Jennifer A.; Wittman, Rick S.; Smith, Frances N.; Chatterjee, Sayandev; Zhang, Xin; Ilton, Eugene S.; Buck, Edgar C.

    2017-10-16

    The exact atomic structures of layered minerals have been difficult to characterize because the layers often possess out-of-plane hydrogen atoms that cannot be detected by many analytical techniques. However, the ordering of these bonds are thought to play a fundamental role in the structural stability and solubility of layered minerals. We report a new strategy of using the intense radiation field of a focused electron beam to probe the effect of differences in hydrogen bonding networks on mineral solubility while simultaneously imaging the dissolution behavior in real time via liquid cell electron microscopy. We show the loss in hydrogens from interlayers of boehmite (γ-AlOOH) resulted in 2D nanosheets exfoliating from the bulk that subsequently and rapidly dissolved. However gibbsite (γ-Al(OH)3), with its higher concentration of OH terminating groups, was more accommodating to the deprotonation and stable under the beam.

  1. Mixed quantum/classical approach to OH-stretch inelastic incoherent neutron scattering spectroscopy for ambient and supercooled liquid water and ice Ih

    Energy Technology Data Exchange (ETDEWEB)

    Shi, L.; Skinner, J. L. [Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2015-07-07

    OH-stretch inelastic incoherent neutron scattering (IINS) has been measured to determine the vibrational density of states (VDOS) in the OH-stretch region for liquid water, supercooled water, and ice Ih, providing complementary information to IR and Raman spectroscopies about hydrogen bonding in these phases. In this work, we extend the combined electronic-structure/molecular-dynamics (ES/MD) method, originally developed by Skinner and co-workers to simulate OH-stretch IR and Raman spectra, to the calculation of IINS spectra with small k values. The agreement between theory and experiment in the limit k → 0 is reasonable, further validating the reliability of the ES/MD method in simulating OH-stretch spectroscopy in condensed phases. The connections and differences between IINS and IR spectra are analyzed to illustrate the advantages of IINS over IR in estimating the OH-stretch VDOS.

  2. Mixed quantum/classical approach to OH-stretch inelastic incoherent neutron scattering spectroscopy for ambient and supercooled liquid water and ice Ih

    International Nuclear Information System (INIS)

    Shi, L.; Skinner, J. L.

    2015-01-01

    OH-stretch inelastic incoherent neutron scattering (IINS) has been measured to determine the vibrational density of states (VDOS) in the OH-stretch region for liquid water, supercooled water, and ice Ih, providing complementary information to IR and Raman spectroscopies about hydrogen bonding in these phases. In this work, we extend the combined electronic-structure/molecular-dynamics (ES/MD) method, originally developed by Skinner and co-workers to simulate OH-stretch IR and Raman spectra, to the calculation of IINS spectra with small k values. The agreement between theory and experiment in the limit k → 0 is reasonable, further validating the reliability of the ES/MD method in simulating OH-stretch spectroscopy in condensed phases. The connections and differences between IINS and IR spectra are analyzed to illustrate the advantages of IINS over IR in estimating the OH-stretch VDOS

  3. Determination of the hydrogen-bond network and the ferrimagnetic structure of a rockbridgeite-type compound, {Fe^{2+Fe^{3+}_{3.2}(Mn^{2+}, Zn)_{0.8}(PO_{4})_{3}(OH)_{4.2}(HOH)_{0.8}}}

    Science.gov (United States)

    Röska, B.; Park, S.-H.; Behal, D.; Hess, K.-U.; Günther, A.; Benka, G.; Pfleiderer, C.; Hoelzel, M.; Kimura, T.

    2018-06-01

    Applying neutron powder diffraction, four unique hydrogen positions were determined in a rockbridgeite-type compound, . Its honeycomb-like H-bond network running without interruption along the crystallographic axis resembles those in alkali sulphatic and arsenatic oxyhydroxides. They provide the so-called dynamically disordered H-bond network over which protons are superconducting in a vehicle mechanism. This is indicated by dramatic increases of dielectric constant and loss factor at room temperature. The relevance of static and dynamic disorder of OH and HOH groups are explained in terms of a high number of structural defects at octahedral chains alternatingly half-occupied by cations. The structure is built up by unusual octahedral doublet, triplet, and quartet clusters of aliovalent 3d transition metal cations, predicting complicate magnetic ordering and interaction. The ferrimagnetic structure below the Curie temperature –83 K could be determined from the structure analysis with neutron diffraction data at 25 K.

  4. OH vibrational activation and decay dynamics of CH4-OH entrance channel complexes

    International Nuclear Information System (INIS)

    Wheeler, Martyn D.; Tsiouris, Maria; Lester, Marsha I.; Lendvay, Gyoergy

    2000-01-01

    Infrared spectroscopy has been utilized to examine the structure and vibrational decay dynamics of CH 4 -OH complexes that have been stabilized in the entrance channel to the CH 4 +OH hydrogen abstraction reaction. Rotationally resolved infrared spectra of the CH 4 -OH complexes have been obtained in the OH fundamental and overtone regions using an IR-UV (infrared-ultraviolet) double-resonance technique. Pure OH stretching bands have been identified at 3563.45(5) and 6961.98(4) cm-1 (origins), along with combination bands involving the simultaneous excitation of OH stretching and intermolecular bending motions. The infrared spectra exhibit extensive homogeneous broadening arising from the rapid decay of vibrationally activated CH 4 -OH complexes due to vibrational relaxation and/or reaction. Lifetimes of 38(5) and 25(3) ps for CH 4 -OH prepared with one and two quanta of OH excitation, respectively, have been extracted from the infrared spectra. The nascent distribution of the OH products from vibrational predissociation has been evaluated by ultraviolet probe laser-induced fluorescence measurements. The dominant inelastic decay channel involves the transfer of one quantum of OH stretch to the pentad of CH 4 vibrational states with energies near 3000 cm-1. The experimental findings are compared with full collision studies of vibrationally excited OH with CH 4 . In addition, ab initio electronic structure calculations have been carried out to elucidate the minimum energy configuration of the CH 4 -OH complex. The calculations predict a C 3v geometry with the hydrogen of OH pointing toward one of four equivalent faces of the CH 4 tetrahedron, consistent with the analysis of the experimental infrared spectra. (c) 2000 American Institute of Physics

  5. Refinement of the crystal structure of malachite, Cu2(OH)2CO3, by neutron diffraction

    International Nuclear Information System (INIS)

    Zigan, F.; Joswig, W.; Schuster, H.D.; Mason, S.A.

    1977-01-01

    The crystal structure of malachite is refined (R = 0,021) with the intensity values of 635 independent neutron reflexions from a single crystal, rather free from absorption and extinction. Concerning the structural geometry, no essential deviations occur from the known results of x-ray diffraction. The thermal elongations are generally largest about the normal to the (201) layers, between which the bonding is relatively weak. In both of the (medium, bent) OH...O hydrogen bonds, the anisotropic thermal parameters, converted according to the riding model, are - with certain restrictions - in agreement with the measured infrared spectrum as well as with frequencies and directions of the proton vibration calculated from the bonding geometry on the basis of a theoretical model. (orig.) [de

  6. SEM, EDS and vibrational spectroscopic study of dawsonite NaAl(CO3)(OH)2

    Science.gov (United States)

    Frost, Ray L.; López, Andrés; Scholz, Ricardo; Sampaio, Ney Pinheiro; de Oliveira, Fernando A. N.

    2015-02-01

    In this work we have studied the mineral dawsonite by using a combination of scanning electron microscopy with EDS and vibrational spectroscopy. Single crystals show an acicular habitus forming aggregates with a rosette shape. The chemical analysis shows a phase composed of C, Al, and Na. Two distinct Raman bands at 1091 and 1068 cm-1 are assigned to the CO32- ν1 symmetric stretching mode. Multiple bands are observed in both the Raman and infrared spectra in the antisymmetric stretching and bending regions showing that the symmetry of the carbonate anion is reduced and in all probability the carbonate anions are not equivalent in the dawsonite structure. Multiple OH deformation vibrations centred upon 950 cm-1 in both the Raman and infrared spectra show that the OH units in the dawsonite structure are non-equivalent. Raman bands observed at 3250, 3283 and 3295 cm-1 are assigned to OH stretching vibrations. The position of these bands indicates strong hydrogen bonding of the OH units in the dawsonite structure. The formation of the mineral dawsonite has the potential to offer a mechanism for the geosequestration of greenhouse gases.

  7. Seasonal variations of U.S. mortality rates: Roles of solar ultraviolet-B doses, vitamin D, gene exp ression, and infections.

    Science.gov (United States)

    Grant, William B; Bhattoa, Harjit Pal; Boucher, Barbara J

    2017-10-01

    Death rates in the U.S. show a pronounced seasonality. The broad seasonal variation shows about 25% higher death rates in winter than in summer with an additional few percent increase associated with the Christmas and New Year's holidays. A pronounced increase in death rates also starts in mid-September, shortly after the school year begins. The causes of death with large contributions to the observed seasonality include diseases of the circulatory system; the respiratory system; the digestive system; and endocrine, nutritional, and metabolic diseases. Researchers have identified several factors showing seasonal variation that could possibly explain the seasonal variations in mortality rate. These factors include seasonal variations in solar ultraviolet-B(UVB) doses and serum 25-hydroxyvitamin D [25(OH)D] concentrations, gene expression, ambient temperature and humidity, UVB effects on environmental pathogen load, environmental pollutants and allergens, and photoperiod (or length of day). The factors with the strongest support in this analysis are seasonal variations in solar UVB doses and 25(OH)D concentrations. In the U.S., population mean 25(OH)D concentrations range from 21ng/mL in March to 28ng/mL in August. Measures to ensure that all people had 25(OH)D concentrations >36ng/mL year round would probably reduce death rates significantly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Hydrothermal Formation of the Head-to-Head Coalesced Szaibelyite MgBO2(OH Nanowires

    Directory of Open Access Journals (Sweden)

    Zhu Wancheng

    2009-01-01

    Full Text Available Abstract The significant effect of the feeding mode on the morphology and size distribution of the hydrothermal synthesized MgBO2(OH is investigated, which indicates that, slow dropping rate (0.5 drop s−1 and small droplet size (0.02 mL d−1 of the dropwise added NaOH solution are favorable for promoting the one-dimensional (1D preferential growth and thus enlarging the aspect ratio of the 1D MgBO2(OH nanostructures. The joint effect of the low concentration of the reactants and feeding mode on the hydrothermal product results in the head-to-head coalesced MgBO2(OH nanowires with a length of 0.5–9.0 μm, a diameter of 20–70 nm, and an aspect ratio of 20–300 in absence of any capping reagents/surfactants or seeds.

  9. FTIR study of hydrogen bonding interaction between fluorinated alcohol and unsaturated esters

    Science.gov (United States)

    Sheng, Xia; Jiang, Xiaotong; Zhao, Hailiang; Wan, Dongjin; Liu, Yongde; Ngwenya, Cleopatra Ashley; Du, Lin

    2018-06-01

    The 1:1 complexes of two unsaturated esters with 2,2,2-trifluoroethanol (TFE) were investigated experimentally and computationally. The experimental observations of the spectral shifts of the OH-stretching vibrational transitions were obtained at 113 cm-1 for TFE-methyl acrylate (MA) and 92 cm-1 for TFE-vinyl acetate (VA). There are three docking sites in the two unsaturated esters for the incoming TFE. The predicted red shifts of the OH-stretching vibrational transitions were found to be larger for the Osbnd H⋯Odbnd C hydrogen bonded conformer than those for the Osbnd H⋯π and Osbnd H⋯O ones. The binding energies further prove that the Osbnd H⋯Odbnd C hydrogen bonded conformers are the most stable ones. On the basis of the DFT calculations as well as previous works, the carbonyl group is the best docking site for TFE. Furthermore, the thermodynamic equilibrium constants of TFE-MA and TFE-VA were obtained at 0.28 and 0.15 by combining the experimental spectra data and the DFT calculations. Consequently, the Gibbs free energies of formation were determined to be 3.2 and 4.8 kJ mol-1 for TFE-MA and TFE-VA, respectively. The quantum theory of atoms in molecules (AIM) and generalized Kohn-Sham energy decomposition analysis (GKS-EDA) were carried out for further characterization of the hydrogen bonding interactions. GKS-EDA shows an "electrostatic" dominated hydrogen bonding character for the Osbnd H⋯Odbnd C hydrogen bonds.

  10. Effect of the Alkyl Chain Length on the Adsorption Properties of Malonamide Chelating Resins

    International Nuclear Information System (INIS)

    Ismail, I.M.; Nogami, M.; Suzuki, K.

    2004-01-01

    In order to investigate the effect of the alkyl chain length of malonamide chelating resins on the rate of uptake of U(VI) ions and Ce(III) Ions, lV,N,N',N'-tetraethyl malonamide (TEMA), N,N,N',N'-tetra-n-propyl malonamide (TPrMA), lV,lV,N',N'-tetra-n-butyl malonamide (TBMA) and N,l V,N',N'-tetra-n-pentyl malonamide (Tamp) chelating resins were synthesized by chemically bonding these function groups to CMS-DVB co-polymer beads. N,lV,N',N'-tetraphenyl malonamide (TPhMA) chelating resin was also investigated and the results of these resins were compared with those of N,lY,N',N-tetra methylmalonamide (TMMA) previously reported. The batch technique was used to study the thermodynamic equilibrium, in terms of distribution coefficient, and the kinetics of the adsorption U(VI) and Ce(III) ions from 3 M HNO 3 , Acid, and 3 M NaNO 3 + 0.05 M HNO 3 , Salt, media. The introduction ratio of the function group into the polymer base and the uptake of U(VI) ions and C(III) ions were found to decrease with the increase in the alkyl chain length. The uptake was found to diminish in case of TPhMA resin due to the decrease of the function group ratio and the steric-hinder effect

  11. Mechanisms of Bond Cleavage during Manganese Oxide and UV Degradation of Glyphosate: Results from Phosphate Oxygen Isotopes and Molecular Simulations.

    Science.gov (United States)

    Jaisi, Deb P; Li, Hui; Wallace, Adam F; Paudel, Prajwal; Sun, Mingjing; Balakrishna, Avula; Lerch, Robert N

    2016-11-16

    Degradation of glyphosate in the presence of manganese oxide and UV light was analyzed using phosphate oxygen isotope ratios and density function theory (DFT). The preference of C-P or C-N bond cleavage was found to vary with changing glyphosate/manganese oxide ratios, indicating the potential role of sorption-induced conformational changes on the composition of intermediate degradation products. Isotope data confirmed that one oxygen atom derived solely from water was incorporated into the released phosphate during glyphosate degradation, and this might suggest similar nucleophilic substitution at P centers and C-P bond cleavage both in manganese oxide- and UV light-mediated degradation. The DFT results reveal that the C-P bond could be cleaved by water, OH - or • OH, with the energy barrier opposing bond dissociation being lowest in the presence of the radical species, and that C-N bond cleavage is favored by the formation of both nitrogen- and carbon-centered radicals. Overall, these results highlight the factors controlling the dominance of C-P or C-N bond cleavage that determines the composition of intermediate/final products and ultimately the degradation pathway.

  12. Preparation, optical properties of ZnO, ZnO:Al nanorods and Y(OH)3:Eu nanotube

    International Nuclear Information System (INIS)

    Tran Kim Anh; Dinh Xuan Loc; Lam thi Kieu Giang; Le Quoc Minh; Strek, Wieslaw

    2009-01-01

    ZnO, ZnO:Al nanorods and Y(OH) 3 nanotubes have been prepared by the chemical vapor deposition and liquid phase synthesis. ZnO nanorods with diameter of 50 - 100 nm and length of 5 μm have been obtained by the CVD method. ZnO:Al nanorods were synthesized by the hydrothermal method from ZnSO 4. and Al 2 (SO 4 ) 3 . Nanorods and nanotubes of Y(OH) 3 with diameter of 200 nm and length of several micrometers were prepared by the soft template method. The crystal structure and morphology of rods and tubes were analyzed by the X-Ray diffraction and FE-SEM. The influence of fabrication conditions and Al, Eu concentration have been discussed.

  13. The elasticity anisotropy in the basal atomic planes of Mg(OH)2 and Ca(OH)2 associated with auxetic elastic properties of the hydrogen sub-lattice

    International Nuclear Information System (INIS)

    Harutyunyan, Valeri S.; Abrahamyan, Aren A.; Aivazyan, Ashot P.

    2013-01-01

    Graphical abstract: To the out-of-plane strain ε x induced in the (0 0 0 1) atomic planes of Mg(OH) 2 , the contributions of constituent octahedral layers ε x (1) and interlayers ε x (2) are of opposite sign. Highlights: ► Elasticity anisotropy of rare earth metal hydroxides is theoretically analyzed. ► Elastic anisotropy within (0 0 0 1) atomic planes is studied from energy consideration. ► The out-of-plane Poisson’s ratios of octahedral layers and interlayers are of opposite sign. ► Auxeticity of the hydrogen sublattice (interlayers) results from weak interlayer bonding. ► The obtained expression for the in-plane Young’s modulus results in useful conclusions. - Abstract: Within the framework of the Hook’s generalized law and using the experimental data for characteristic crystallographic parameters and stiffness constants available from literature, the individual elastic properties of constituent octahedral layers and interlayers of the (0 0 0 1) atomic planes in the Mg(OH) 2 and Ca(OH) 2 crystal lattices are theoretically quantified from intermolecular interaction energy. It is shown that, under uniaxial type of deformation applied along the (0 0 0 1) basal planes, in the “load-deformation response” the octahedral layers and interlayers exhibit the positive and negative Poisson’s ratio, respectively. Manifestation of such a type strong elastic anisotropy in the basal atomic planes and auxetic elastic behavior of the hydrogen sub-lattice (interlayers) upon applied uniaxial load result from a large difference in the strength of bonding within octahedral layers and interlayers. The intermolecular binding energy is contributed both by “hydroxyl–hydroxyl” and “metal atom–hydroxyl” dispersion interactions, whereas the Young’s modulus in the direction parallel to a (0 0 0 1) plane is practically contributed only by the former interaction. For this Young’s modulus, an approximate analytical expression is derived, which is

  14. Interaction between OHS regulation and OHS certification in Denmark

    DEFF Research Database (Denmark)

    Hendriksen, Kåre; Jørgensen, Kirsten; Jørgensen, Ulrik

    2010-01-01

    In 2001, the Danish Parliament approved a law on OHS certification that provided economic support to enterprises/organizations that were certified according to one of the two national OHS standards. These certified enterprises/organizations were also exempt from the initial inspection by the Danish...... Working Environment Authority, which they would otherwise be required to pay for. In practice, this meant that inspection of the certified enterprises was transferred to the certification bodies unless a work accident or work-caused ailment or the like was reported. In 2005, the law was revised so...... certification has existed as a form of substitute inspection for almost 10 years, no systematic evaluation of the effects of OHS certification on the OHS, and thereby the validity of the certificate, has been made. In several cases, however, certified enterprises/organizations have received injunctions...

  15. Structure and bonding of transition metal-boryl compounds. Theoretical study of [(PH3)2(CO)ClOs-BR2] and [(PH3)2(CO)2ClOs-BR2] (BR2 = BH2, BF2, B(OH)2, B(OCH=CHO), Bcat).

    Science.gov (United States)

    Giju, K T; Bickelhaupt, F M; Frenking, G

    2000-10-16

    Quantum chemical DFT calculations using the B3LYP functionals have been carried out for the electronically unsaturated 16 VE five-coordinate osmium boryl-complexes [(PH3)2(CO)ClOs-BR2] and the 18 VE six-coordinate complexes [(PH3)2(CO)2ClOs-BR2] with BR2 = BH2, BF2, B(OH)2, B(OHC=CHO), and Bcat (cat = catecholate O2C6H4). The bonding situation of the Os-BR2 bond was analyzed with the help of the NBO partitioning scheme. The Os-B bond dissociation energies of the 16 VE complexes are very high, and they do not change very much for the different boryl ligands. The 18 VE complexes have only slightly lower bond energies than the 16 VE species. The Os-B bond in both classes of compounds is provided by a covalent sigma-bond which is polarized toward osmium and by strong charge attraction. Os-->B pi-donation is not important for the Os-B binding interactions, except for the Os-BH2 complexes. The stability of the boryl complexes [Os]-BR2 comes mainly from BB pi-donation. The intraligand charge distribution of the BR2 group changes little when the Os-B bond is formed, except for BH2. The CO ligand in [(PH3)2(CO)2ClOs-BR2] which is trans to BR2 has a relatively weak bond to the osmium atom.

  16. Spectroscopic investigation and computational analysis of charge transfer hydrogen bonded reaction between 3-aminoquinoline with chloranilic acid in 1:1 stoichiometric ratio

    Science.gov (United States)

    Al-Ahmary, Khairia M.; Alenezi, Maha S.; Habeeb, Moustafa M.

    2015-10-01

    Charge transfer hydrogen bonded reaction between the electron donor (proton acceptor) 3-aminoquinoline with the electron acceptor (proton donor) chloranilic acid (H2CA) has been investigated experimentally and theoretically. The experimental work included the application of UV-vis spectroscopy to identify the charge transfer band of the formed complex, its molecular composition as well as estimating its formation constants in different solvent included acetonitrile (AN), methanol (MeOH), ethanol (EtOH) and chloroform (CHL). It has been recorded the presence of new absorption bands in the range 500-550 nm attributing to the formed complex. The molecular composition of the HBCT complex was found to be 1:1 (donor:acceptor) in all studied solvents based on continuous variation and photometric titration methods. In addition, the calculated formation constants from Benesi-Hildebrand equation recorded high values, especially in chloroform referring to the formation of stable HBCT complex. Infrared spectroscopy has been applied for the solid complex where formation of charge and proton transfer was proven in it. Moreover, 1H and 13C NMR spectroscopies were used to characterize the formed complex where charge and proton transfers were reconfirmed. Computational analysis included the use of GAMESS computations as a package of ChemBio3D Ultr12 program were applied for energy minimization and estimation of the stabilization energy for the produced complex. Also, geometrical parameters (bond lengths and bond angles) of the formed HBCT complex were computed and analyzed. Furthermore, Mullikan atomic charges, molecular potential energy surface, HOMO and LUMO molecular orbitals as well as assignment of the electronic spectra of the formed complex were presented. A full agreement between experimental and computational analysis has been found especially in the existence of the charge and proton transfers and the assignment of HOMO and LUMO molecular orbitals in the formed complex as

  17. Some transition metal complexes derived from mono- and di-ethynyl perfluorobenzenes.

    Science.gov (United States)

    Armitt, David J; Bruce, Michael I; Gaudio, Maryka; Zaitseva, Natasha N; Skelton, Brian W; White, Allan H; Le Guennic, Boris; Halet, Jean-François; Fox, Mark A; Roberts, Rachel L; Hartl, Frantisek; Low, Paul J

    2008-12-21

    Transition metal alkynyl complexes containing perfluoroaryl groups have been prepared directly from trimethylsilyl-protected mono- and di-ethynyl perfluoroarenes by simple desilylation/metallation reaction sequences. Reactions between Me(3)SiC[triple bond, length as m-dash]CC(6)F(5) and RuCl(dppe)Cp' [Cp' = Cp, Cp*] in the presence of KF in MeOH give the monoruthenium complexes Ru(C[triple bond, length as m-dash]CC(6)F(5))(dppe)Cp' [Cp' = Cp (); Cp* ()], which are related to the known compound Ru(C[triple bond, length as m-dash]CC(6)F(5))(PPh(3))(2)Cp (). Treatment of Me(3)SiC[triple bond, length as m-dash]CC(6)F(5) with Pt(2)(mu-dppm)(2)Cl(2) in the presence of NaOMe in MeOH gave the bis(alkynyl) complex Pt(2)(mu-dppm)(2)(C[triple bond, length as m-dash]CC(6)F(5))(2) (). The Pd(0)/Cu(i)-catalysed reactions between Au(C[triple bond, length as m-dash]CC(6)F(5))(PPh(3)) and Mo( identical withCBr)(CO)(2)Tp* [Tp* = hydridotris(3.5-dimethylpyrazoyl)borate], Co(3)(mu(3)-CBr)(mu-dppm)(CO)(7) or IC[triple bond, length as m-dash]CFc [Fc = (eta(5)-C(5)H(4))FeCp] afford Mo( identical withCC[triple bond, length as m-dash]CC(6)F(5))(CO)(2)Tp* (), Co(3)(mu(3)-CC[triple bond, length as m-dash]CC(6)F(5))(mu-dppm)(CO)(7) () and FcC[triple bond, length as m-dash]CC[triple bond, length as m-dash]CC(6)F(5) (), respectively. The diruthenium complexes 1,4-{Cp'(PP)RuC[triple bond, length as m-dash]C}(2)C(6)F(4) [(PP)Cp' = (PPh(3))(2)Cp (); (dppe)Cp (); (dppe)Cp* ()] are prepared from 1,4-(Me(3)SiC[triple bond, length as m-dash]C)(2)C(6)F(4) in a manner similar to that described for the monoruthenium complexes -. The non-fluorinated complexes 1,4-{Cp'(PP)RuC[triple bond, length as m-dash]C}(2)C(6)H(4) [(PP)Cp' = (PPh(3))(2)Cp (); (dppe)Cp (); (dppe)Cp* ()], prepared for comparison, are obtained from 1,4-(Me(3)SiC[triple bond, length as m-dash]C)(2)C(6)H(4). Spectro-electrochemical studies of the ruthenium aryl and arylene alkynyl complexes - and -, together with DFT-based computational

  18. Di-ureasil hybrids doped with LiBF{sub 4}: Spectroscopic study of the ionic interactions and hydrogen bonding

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Mariana [Departamento de Quimica/CQ-VR, Universidade de Tras-os-Montes e Alto Douro, 5001-801 Vila Real (Portugal); Barbosa, Paula C.; Manuela Silva, M.; Smith, Michael J. [Departamento de Quimica/Centro de Quimica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Zea Bermudez, Veronica de, E-mail: vbermude@utad.pt [Departamento de Quimica/CQ-VR, Universidade de Tras-os-Montes e Alto Douro, 5001-801 Vila Real (Portugal)

    2011-09-15

    Highlights: {yields} FT-IR and FT-Raman spectroscopy were used to characterize cation interactions in two LiBF{sub 4}-doped di-ureasil networks incorporating POE chains with different length. {yields} Over the range of salt content analyzed the cations bond to amorphous POE chains and form ion contact pairs with BF{sub 4}{sup -}. {yields} A crystalline POE/LiBF{sub 4} complex of unknown stoichiometry emerges at high salt concentration. - Abstract: In the present work Fourier transform infrared and Raman spectroscopy were used to characterize the cation/polymer, cation/cross-link, cation/anion and hydrogen bonding interactions in hybrid electrolytes composed of lithium tetrafluoroborate (LiBF{sub 4}) and di-urea cross-linked poly(oxyethylene) (POE)/siloxane hybrid networks (di-ureasils) designated as d-U(2000) and d-U(600) and incorporating polyether chains with ca. 40.5 and 8.5 oxyethylene repeat units, respectively. Samples with {infinity} > n {>=} 2.5 (where n, composition, is the molar ratio of CH{sub 2}CH{sub 2}O units per Li{sup +} ion) were analyzed. In both di-ureasil systems over the whole range of salt content examined the Li{sup +} ions bond to the ether oxygen atoms of amorphous POE chains and to BF{sub 4}{sup -} ions forming ion contact pairs. Spectroscopic evidences and SEM images confirm the presence of a crystalline POE/LiBF{sub 4} complex of unknown stoichiometry at n < 20 and 25, respectively. Ionic association is particularly important in the case of the d-U(600)-based materials, as a result of the presence of strong hydrogen-bonded aggregates that prevent the establishment of Li{sup +}/urea carbonyl oxygen atom interactions.

  19. Pressure-induced localisation of the hydrogen-bond network in KOH-VI

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, Andreas, E-mail: a.hermann@ed.ac.uk; Nelmes, Richard J.; Loveday, John S. [Centre for Science at Extreme Conditions and SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Guthrie, Malcolm [Centre for Science at Extreme Conditions and SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); European Spallation Source AB, P.O. Box 176, SE-22100 Lund (Sweden)

    2015-12-28

    Using a combination of ab initio crystal structure prediction and neutron diffraction techniques, we have solved the full structure of KOH-VI at 7 GPa. Rather than being orthorhombic and proton-ordered as had previously be proposed, we find that this high-pressure phase of potassium hydroxide is tetragonal (space group I4/mmm) and proton disordered. It has an unusual hydrogen bond topology, where the hydroxyl groups form isolated hydrogen-bonded square planar (OH){sub 4} units. This structure is stable above 6.5 GPa and, despite being macroscopically proton-disordered, local ice rules enforce microscopic order of the hydrogen bonds. We suggest the use of this novel type of structure to study concerted proton tunneling in the solid state, while the topology of the hydrogen bond network could conceivably be exploited in data storage applications based solely on the manipulations of hydrogen bonds. The unusual localisation of the hydrogen bond network under applied pressure is found to be favored by a more compact packing of the constituents in a distorted cesium chloride structure.

  20. Dual hydrogen-bonding motifs in complexes formed between tropolone and formic acid

    Science.gov (United States)

    Nemchick, Deacon J.; Cohen, Michael K.; Vaccaro, Patrick H.

    2016-11-01

    The near-ultraviolet π*←π absorption system of weakly bound complexes formed between tropolone (TrOH) and formic acid (FA) under cryogenic free-jet expansion conditions has been interrogated by exploiting a variety of fluorescence-based laser-spectroscopic probes, with synergistic quantum-chemical calculations built upon diverse model chemistries being enlisted to unravel the structural and dynamical properties of the pertinent ground [X˜ 1A'] and excited [A˜ 1A'(" separators="π*π )] electronic states. For binary TrOH ṡ FA adducts, the presence of dual hydrogen-bond linkages gives rise to three low-lying isomers designated (in relative energy order) as INT, EXT1, and EXT2 depending on whether docking of the FA ligand to the TrOH substrate takes place internal or external to the five-membered reaction cleft of tropolone. While the symmetric double-minimum topography predicted for the INT potential surface mediates an intermolecular double proton-transfer event, the EXT1 and EXT2 structures are interconverted by an asymmetric single proton-transfer process that is TrOH-centric in nature. The A ˜ -X ˜ origin of TrOH ṡ FA at ν˜ 00=27 484 .45 cm-1 is displaced by δ ν˜ 00=+466 .76 cm-1 with respect to the analogous feature for bare tropolone and displays a hybrid type - a/b rotational contour that reflects the configuration of binding. A comprehensive analysis of vibrational landscapes supported by the optically connected X˜ 1A' and A˜ 1A'(" separators="π*π ) manifolds, including the characteristic isotopic shifts incurred by partial deuteration of the labile TrOH and FA protons, has been performed leading to the uniform assignment of numerous intermolecular (viz., modulating hydrogen-bond linkages) and intramolecular (viz., localized on monomer subunits) degrees of freedom. The holistic interpretation of all experimental and computational findings affords compelling evidence that an external-binding motif (attributed to EXT1), rather than the

  1. A first-principles study of structure, orbital interactions and atomic oxygen and OH adsorption on Mo-, Sc- and Y-doped nickel bimetallic clusters

    International Nuclear Information System (INIS)

    Das, Nishith Kumar; Shoji, Tetsuo

    2013-01-01

    Highlights: •Mo-doped nickel clusters are energetically more stable than the Sc and Y-doped clusters (n ⩾ 10). •Mo atom exhibits center at the cluster rather than edge, while Sc and Y atom sit at the edge. •The metallic s, d orbitals are mainly dominated on the stability of nanoclusters. •The oxygen and OH adsorption energy of Mo-doped cluster are higher than those of other nanoclusters. •2p Orbitals are strongly bonds with Mo 4d, and a weakly interacts with Ni 3d, 4s and Mo 5s orbitals. -- Abstract: Density functional theory (DFT) has been used to study the stability, orbitals interactions and oxygen and hydroxyl chemisorption properties of Ni n M (1 ⩽ n ⩽ 12) clusters. A single atom doped-nickel clusters increase the stability, and icosahedral Ni 12 Mo cluster is the most stable structure. Molybdenum atom prefers to exhibit center at the cluster (n ⩾ 10) rather than edge, while Sc and Y atom remain at the edge. The Ni–Mo bond lengths are smaller than the Ni–Sc and Ni–Y. The pDOS results show that the d–d orbitals interactions are mainly dominating on the stability of clusters, while p orbitals have a small effect on the stability. The Mo-doped nanoclusters have the highest oxygen and OH chemisorption energy, and the most favorable adsorption site is on the top Mo site. The larger cluster distortion is found for the Sc- and Y-doped structures compared to other clusters. The oxygen 2p orbitals are strongly hybridizing with the Mo 4d orbitals (n < 9) and a little interaction between oxygen 2p and Ni 3d, 4s and Mo 5s orbitals. The Mo-doped clusters are significantly increased the chemisorption energies that might improve the passive film adherence of nanoalloys

  2. Kondo length in bosonic lattices

    Science.gov (United States)

    Giuliano, Domenico; Sodano, Pasquale; Trombettoni, Andrea

    2017-09-01

    Motivated by the fact that the low-energy properties of the Kondo model can be effectively simulated in spin chains, we study the realization of the effect with bond impurities in ultracold bosonic lattices at half filling. After presenting a discussion of the effective theory and of the mapping of the bosonic chain onto a lattice spin Hamiltonian, we provide estimates for the Kondo length as a function of the parameters of the bosonic model. We point out that the Kondo length can be extracted from the integrated real-space correlation functions, which are experimentally accessible quantities in experiments with cold atoms.

  3. Experimental Assessment on the Flexural Bonding Performance of Concrete Beam with GFRP Reinforcing Bar under Repeated Loading

    Directory of Open Access Journals (Sweden)

    Minkwan Ju

    2015-01-01

    Full Text Available This study intends to investigate the flexural bond performance of glass fiber-reinforced polymer (GFRP reinforcing bar under repeated loading. The flexural bond tests reinforced with GFRP reinforcing bars were carried out according to the BS EN 12269-1 (2000 specification. The bond test consisted of three loading schemes: static, monotonic, and variable-amplitude loading to simulate ambient loading conditions. The empirical bond length based on the static test was 225 mm, whereas it was 317 mm according to ACI 440 1R-03. Each bond stress on the rib is released and bonding force is enhanced as the bond length is increased. Appropriate level of bond length may be recommended with this energy-based analysis. For the monotonic loading test, the bond strengths at pullout failure after 2,000,000 cycles were 10.4 MPa and 6.5 MPa, respectively: 63–70% of the values from the static loading test. The variable loading test indicated that the linear cumulative damage theory on GFRP bonding may not be appropriate for estimating the fatigue limit when subjected to variable-amplitude loading.

  4. Preparation, optical properties of ZnO, ZnO:Al nanorods and Y(OH){sub 3}:Eu nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Tran Kim Anh; Dinh Xuan Loc; Lam thi Kieu Giang; Le Quoc Minh [Institute of Materials Science, Vietnamese Academy of Science and Technology 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Hanoi (Viet Nam); Strek, Wieslaw [Institute of Low Temperature and Structure Research, PAN, 2 Okolna, Wroclaw (Poland)], E-mail: kimanh1949@gmail.com

    2009-01-01

    ZnO, ZnO:Al nanorods and Y(OH){sub 3} nanotubes have been prepared by the chemical vapor deposition and liquid phase synthesis. ZnO nanorods with diameter of 50 - 100 nm and length of 5 {mu}m have been obtained by the CVD method. ZnO:Al nanorods were synthesized by the hydrothermal method from ZnSO{sub 4.} and Al{sub 2}(SO{sub 4}){sub 3}. Nanorods and nanotubes of Y(OH){sub 3} with diameter of 200 nm and length of several micrometers were prepared by the soft template method. The crystal structure and morphology of rods and tubes were analyzed by the X-Ray diffraction and FE-SEM. The influence of fabrication conditions and Al, Eu concentration have been discussed.

  5. OH+ IN DIFFUSE MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Porras, A. J.; Federman, S. R.; Welty, D. E.; Ritchey, A. M.

    2014-01-01

    Near ultraviolet observations of OH + and OH in diffuse molecular clouds reveal a preference for different environments. The dominant absorption feature in OH + arises from a main component seen in CH + (that with the highest CH + /CH column density ratio), while OH follows CN absorption. This distinction provides new constraints on OH chemistry in these clouds. Since CH + detections favor low-density gas with small fractions of molecular hydrogen, this must be true for OH + as well, confirming OH + and H 2 O + observations with the Herschel Space Telescope. Our observed correspondence indicates that the cosmic ray ionization rate derived from these measurements pertains to mainly atomic gas. The association of OH absorption with gas rich in CN is attributed to the need for a high enough density and molecular fraction before detectable amounts are seen. Thus, while OH + leads to OH production, chemical arguments suggest that their abundances are controlled by different sets of conditions and that they coexist with different sets of observed species. Of particular note is that non-thermal chemistry appears to play a limited role in the synthesis of OH in diffuse molecular clouds

  6. Elucidating bonding preferences in tetrakis(imido)uranate(VI) dianions

    Science.gov (United States)

    Anderson, Nickolas H.; Xie, Jing; Ray, Debmalya; Zeller, Matthias; Gagliardi, Laura; Bart, Suzanne C.

    2017-09-01

    Actinyl species, [AnO2]2+, are well-known derivatives of the f-block because of their natural occurrence and essential roles in the nuclear fuel cycle. Along with their nitrogen analogues, [An(NR)2]2+, actinyls are characterized by their two strong trans-An-element multiple bonds, a consequence of the inverse trans influence. We report that these robust bonds can be weakened significantly by increasing the number of multiple bonds to uranium, as demonstrated by a family of uranium(VI) dianions bearing four U-N multiple bonds, [M]2[U(NR)4] (M = Li, Na, K, Rb, Cs). Their geometry is dictated by cation coordination and sterics rather than by electronic factors. Multiple bond weakening by the addition of strong π donors has the potential for applications in the processing of high-valent actinyls, commonly found in environmental pollutants and spent nuclear fuels.

  7. Shock tube measurements of the rate constants for seven large alkanes+OH

    KAUST Repository

    Badra, Jihad

    2015-01-01

    Reaction rate constants for seven large alkanes + hydroxyl (OH) radicals were measured behind reflected shock waves using OH laser absorption. The alkanes, n-hexane, 2-methyl-pentane, 3-methyl-pentane, 2,2-dimethyl-butane, 2,3-dimethyl-butane, 2-methyl-heptane, and 4-methyl-heptane, were selected to investigate the rates of site-specific H-abstraction by OH at secondary and tertiary carbons. Hydroxyl radicals were monitored using narrow-line-width ring-dye laser absorption of the R1(5) transition of the OH spectrum near 306.7 nm. The high sensitivity of the diagnostic enabled the use of low reactant concentrations and pseudo-first-order kinetics. Rate constants were measured at temperatures ranging from 880 K to 1440 K and pressures near 1.5 atm. High-temperature measurements of the rate constants for OH + n-hexane and OH + 2,2-dimethyl-butane are in agreement with earlier studies, and the rate constants of the five other alkanes with OH, we believe, are the first direct measurements at combustion temperatures. Using these measurements and the site-specific H-abstraction measurements of Sivaramakrishnan and Michael (2009) [1,2], general expressions for three secondary and two tertiary abstraction rates were determined as follows (the subscripts indicate the number of carbon atoms bonded to the next-nearest-neighbor carbon): S20=1.58×10-11exp(-1550K/T)cm3molecule-1s-1(887-1327K)S30=2.37×10-11exp(-1850K/T)cm3molecule-1s-1(887-1327K)S21=4.5×10-12exp(-793.7K/T)cm3molecule-1s-1(833-1440K)T100=2.85×10-11exp(-1138.3K/T)cm3molecule-1s-1(878-1375K)T101=7.16×10-12exp(-993K/T)cm3molecule-1s-1(883-1362K) © 2014 The Combustion Institute.

  8. Study on the Connecting Length of CFRP

    Science.gov (United States)

    Liu, Xiongfei; Li, Yue; Li, Zhanguo

    2018-05-01

    The paper studied the varying mode of shear stress in the connecting zone of CFRP. Using epoxy resin (EP) as bond material, performance of specimens with different connecting length of CFRP was tested to obtain the conclusion. CFRP-confined concrete column was tested subsequently to verify the conclusion. The results show that: (1) The binding properties of modified epoxy resin with CFRP is good; (2) As the connecting length increased, the ultimate tensile strength of CFRP increased as well in the range of the experiment parameters; (3) Tensile strength of CFRP can reach the ultimate strength when the connecting length is 90mm;(4) The connecting length of 90mm of CFRP meet the reinforcement requirements.

  9. Secondary organic aerosol formation from in situ OH, O3, and NO3 oxidation of ambient forest air in an oxidation flow reactor

    Science.gov (United States)

    Palm, Brett B.; Campuzano-Jost, Pedro; Day, Douglas A.; Ortega, Amber M.; Fry, Juliane L.; Brown, Steven S.; Zarzana, Kyle J.; Dube, William; Wagner, Nicholas L.; Draper, Danielle C.; Kaser, Lisa; Jud, Werner; Karl, Thomas; Hansel, Armin; Gutiérrez-Montes, Cándido; Jimenez, Jose L.

    2017-04-01

    Ambient pine forest air was oxidized by OH, O3, or NO3 radicals using an oxidation flow reactor (OFR) during the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen - Rocky Mountain Biogenic Aerosol Study) campaign to study biogenic secondary organic aerosol (SOA) formation and organic aerosol (OA) aging. A wide range of equivalent atmospheric photochemical ages was sampled, from hours up to days (for O3 and NO3) or weeks (for OH). Ambient air processed by the OFR was typically sampled every 20-30 min, in order to determine how the availability of SOA precursor gases in ambient air changed with diurnal and synoptic conditions, for each of the three oxidants. More SOA was formed during nighttime than daytime for all three oxidants, indicating that SOA precursor concentrations were higher at night. At all times of day, OH oxidation led to approximately 4 times more SOA formation than either O3 or NO3 oxidation. This is likely because O3 and NO3 will only react with gases containing C = C bonds (e.g., terpenes) to form SOA but will not react appreciably with many of their oxidation products or any species in the gas phase that lacks a C = C bond (e.g., pinonic acid, alkanes). In contrast, OH can continue to react with compounds that lack C = C bonds to produce SOA. Closure was achieved between the amount of SOA formed from O3 and NO3 oxidation in the OFR and the SOA predicted to form from measured concentrations of ambient monoterpenes and sesquiterpenes using published chamber yields. This is in contrast to previous work at this site (Palm et al., 2016), which has shown that a source of SOA from semi- and intermediate-volatility organic compounds (S/IVOCs) 3.4 times larger than the source from measured VOCs is needed to explain the measured SOA formation from OH oxidation. This work suggests that those S/IVOCs typically do not contain C = C bonds. O3 and NO3 oxidation produced SOA with elemental O : C and H : C

  10. Monazite processing of tin mining waste : rare earth separation from U and Th

    International Nuclear Information System (INIS)

    Hafni, L.N.; Faizal, R.; Sugeng, W.; Budi, S.; Arif, S.; Susilaningtyas

    2000-01-01

    Separation of Rare Earths from U and Th of Bangka monazite digestion solution, by using NaOH reagent and precipitation system has been carried out. The aim of the experiment is to find a condition of RE(OH) sub.3 precipitation to produce maximal RE recovery and high purity of RE that are free from radioelements U and Th. Parameters studied were pH, NaOH normality and precipitation time. The optimal conditions obtained were pH 9.8, 1N NaOH and 3 hours precipitation time. At this condition recovery of the RE(OH) sub.3 is 99.79 % and Th 4.52 %. However uranium and phosphate were not detected. Purity of the products are RE(OH) sub.3 98.868 %, Th(OH) sub.4 0.009 % and the others 1.123 %. (author)

  11. Laser spectroscopic visualization of hydrogen bond motions in liquid water

    Science.gov (United States)

    Bratos, S.; Leicknam, J.-Cl.; Pommeret, S.; Gallot, G.

    2004-12-01

    Ultrafast pump-probe experiments are described permitting a visualization of molecular motions in diluted HDO/D 2O solutions. The experiments were realized in the mid-infrared spectral region with a time resolution of 150 fs. They were interpreted by a careful theoretical analysis, based on the correlation function approach of statistical mechanics. Combining experiment and theory, stretching motions of the OH⋯O bonds as well as HDO rotations were 'filmed' in real time. It was found that molecular rotations are the principal agent of hydrogen bond breaking and making in water. Recent literatures covering the subject, including molecular dynamics simulations, are reviewed in detail.

  12. Effects of intermolecular interactions on absorption intensities of the fundamental and the first, second, and third overtones of OH stretching vibrations of methanol and t-butanol‑d9 in n-hexane studied by visible/near-infrared/infrared spectroscopy

    Science.gov (United States)

    Morisawa, Yusuke; Suga, Arisa

    2018-05-01

    Visible (Vis), near-infrared (NIR) and IR spectra in the 15,600-2500 cm- 1 region were measured for methanol, methanol-d3, and t-butanol-d9 in n-hexane to investigate effects of intermolecular interaction on absorption intensities of the fundamental and the first, second, and third overtones of their OH stretching vibrations. The relative area intensities of OH stretching bands of free and hydrogen-bonded species were plotted versus the vibrational quantum number using logarithm plots (V = 1-4) for 0.5 M methanol, 0.5 M methanol‑d3, and 0.5 M t-butanol-d9 in n-hexane. In the logarithm plots the relative intensities of free species yield a linear dependence irrespective of the solutes while those of hydrogen-bonded species deviate significantly from the linearity. The observed results suggest that the modifications in dipole moment functions of the OH bond induced by the formation of the hydrogen bondings change transient dipole moment, leading to the deviations of the dependences of relative absorption intensities on the vibrational quantum number from the linearity.

  13. "Vibrational bonding": a new type of chemical bond is discovered.

    Science.gov (United States)

    Rhodes, Christopher J; Macrae, Roderick M

    2015-01-01

    A long-sought but elusive new type of chemical bond, occurring on a minimum-free, purely repulsive potential energy surface, has recently been convincingly shown to be possible on the basis of high-level quantum-chemical calculations. This type of bond, termed a vibrational bond, forms because the total energy, including the dynamical energy of the nuclei, is lower than the total energy of the dissociated products, including their vibrational zero-point energy. For this to be the case, the ZPE of the product molecule must be very high, which is ensured by replacing a conventional hydrogen atom with its light isotope muonium (Mu, mass = 1/9 u) in the system Br-H-Br, a natural transition state in the reaction between Br and HBr. A paramagnetic species observed in the reaction Mu +Br2 has been proposed as a first experimental sighting of this species, but definitive identification remains challenging.

  14. Amide proton temperature coefficients as hydrogen bond indicators in proteins

    International Nuclear Information System (INIS)

    Cierpicki, Tomasz; Otlewski, Jacek

    2001-01-01

    Correlations between amide proton temperature coefficients (Δσ HN /ΔT) and hydrogen bonds were investigated for a data set of 793 amides derived from 14 proteins. For amide protons showing temperature gradients more positive than -4.6 ppb/K there is a hydrogen bond predictivity value exceeding 85%. It increases to over 93% for amides within the range between -4 and -1 ppb/K. Detailed analysis shows an inverse proportionality between amide proton temperature coefficients and hydrogen bond lengths. Furthermore, for hydrogen bonds of similar bond lengths, values of temperature gradients in α-helices are on average 1 ppb/K more negative than in β-sheets. In consequence, a number of amide protons in α-helices involved in hydrogen bonds shorter than 2 A show Δσ HN /ΔT 10 helices and 98% in β-turns have temperature coefficients more positive than -4.6ppb/K. Ring current effect also significantly influences temperature coefficients of amide protons. In seven out of eight cases non-hydrogen bonded amides strongly deshielded by neighboring aromatic rings show temperature coefficients more positive than -2 ppb/K. In general, amide proton temperature gradients do not change with pH unless they correspond to conformational changes. Three examples of pH dependent equilibrium showing hydrogen bond formation at higher pH were found. In conclusion, amide proton temperature coefficients offer an attractive and simple way to confirm existence of hydrogen bonds in NMR determined structures

  15. Proposal of new bonding technique 'Instantaneous Liquid Phase (ILP) Bonding'

    International Nuclear Information System (INIS)

    Zhang, Yue-Chang; Nakagawa, Hiroji; Matsuda, Fukuhisa.

    1987-01-01

    A new bonding technique named ''Instantaneous Liquid Phase (ILP) bonding'' suitable mainly for welding dissimilar materials was proposed by which instantaneous melting of one or two of the faying surfaces is utilized. The processes of ILP bonding are mainly consisted of three stages, namely the first stage forming thin liquid layer by rapid heating, the second stage joining both specimens by thin liquid layer, and the third stage cooling the specimens rapidly to avoid the formation of brittle layer. The welding temperatures of the specimens to be welded in ILP bonding are generally differentiated from each other. ILP bonding was applied for a variety of combinations of dissimilar materials of aluminum, aluminum alloys, titanium, titanium alloy, carbon steel, austenitic stainless steel, copper and tungsten, and for similar materials of stainless steel and nickel-base alloy. There were no microvoids in these welding joints, and the formation of brittle layer at the bonding interface was suppressed. The welded joints of Al + Ti, Cu + carbon steel and Cu + austenitic stainless steel showed the fracture in base metal having lower tensile strength. Further, the welded joints of Al + carbon steel, Al alloy + Ti, Al alloy + carbon steel or + austenitic stainless steel, Ti + carbon steel or + austenitic stainless steel showed better tensile properties in the comparison with diffusion welding. Furthermore, ILP bonding was available for welding same materials susceptible to hot cracking. Because of the existence of liquid layer, the welding pressure required was extremely low, and preparation of faying surface by simple tooling or polishing by no.80 emery paper was enough. The change in specimen length before and after welding was relatively little, only depending on the thickness of liquid layer. The welding time was very short, and thus high welding efficiency was obtained. (author)

  16. Refinement of the crystal structure of malachite, Cu/sub 2/(OH)/sub 2/CO/sub 3/, by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Zigan, F; Joswig, W; Schuster, H D [Frankfurt Univ. (Germany, F.R.); Mason, S A [Institut Max von Laue - Paul Langevin, 38 - Grenoble (France)

    1977-01-01

    The crystal structure of malachite is refined (R = 0,021) with the intensity values of 635 independent neutron reflexions from a single crystal, rather free from absorption and extinction. Concerning the structural geometry, no essential deviations occur from the known results of x-ray diffraction. The thermal elongations are generally largest about the normal to the (201) layers, between which the bonding is relatively weak. In both of the (medium, bent) OH...O hydrogen bonds, the anisotropic thermal parameters, converted according to the riding model, are - with certain restrictions - in agreement with the measured infrared spectrum as well as with frequencies and directions of the proton vibration calculated from the bonding geometry on the basis of a theoretical model.

  17. Biomaterial based novel polyurethane adhesives for wood to wood and metal to metal bonding

    Directory of Open Access Journals (Sweden)

    Mitesh Ramanlal Patel

    2009-01-01

    Full Text Available Polyurethane adhesives made from synthetic chemicals are non-biodegradable, costly and difficult to find raw materials from local market. To avoid solid pollution problem, cost effectiveness and easy availability of raw materials, biomaterials based polyurethane adhesives are used in current industrial interest. Direct use of castor oil in polyurethane adhesive gives limited hardness. Modification on active sites of castor oil to utilize double bond of unsaturated fatty acid and carboxyl group yields new modified or activated polyols, which can be utilized for polyurethane adhesive formulation. In view of this, we have synthesized polyurethane adhesives from polyester polyols, castor oil based polyols and epoxy based polyols with Isocyanate adducts based on castor oil and trimethylolpropane. To study the effects of polyurethane adhesive strength (i.e. lap shear strength on wood-to-wood and metal-to-metal bonding through various types of polyols, cross-linking density, isocyanate adducts and also to compare adhesive strength between wood to wood and metal to metal surface. These polyols and polyurethanes were characterized through GPC, NMR and IR-spectroscopy, gel and surface drying time. Thermal stability of PU adhesives was determined under the effect of cross-linking density (NCO/OH ratio. The NCO/OH ratio (1.5 was optimized for adhesives as the higher NCO/OH ratio (2.0 increasing cross-linking density and decreases adhesion. Lower NCO/OH ratio (1.0 provideslow cross-linking density and low strength of adhesives.

  18. Measurements of the microwave spectrum, Re-H bond length, and Re quadrupole coupling for HRe(CO)5

    Science.gov (United States)

    Kukolich, Stephen G.; Sickafoose, Shane M.

    1993-11-01

    Rotational transition frequencies for rhenium pentacarbonyl hydride were measured in the 4-10 GHz range using a Flygare-Balle type microwave spectrometer. The rotational constants and Re nuclear quadrupole coupling constants for the four isotopomers, (1) H187Re(CO)5, (2) H185Re(CO)5, (3) D187Re(CO)5, and (4) D185Re(CO)5, were obtained from the spectra. For the most common isotopomer, B(1)=818.5464(2) MHz and eq Q(187Re)=-900.13(3) MHz. The Re-H bond length (r0) determined by fitting the rotational constants is 1.80(1) Å. Although the Re atom is located at a site of near-octahedral symmetry, the quadrupole coupling is large due to the large Re nuclear moments. A 2.7% increase in Re quadrupole coupling was observed for D-substituted isotopomers, giving a rather large isotope effect on the quadrupole coupling. The Cax-Re-Ceq angle is 96(1)°, when all Re-C-O angles are constrained to 180°.

  19. 4-Mercaptophenylboronic acid: conformation, FT-IR, Raman, OH stretching and theoretical studies.

    Science.gov (United States)

    Parlak, Cemal; Ramasami, Ponnadurai; Tursun, Mahir; Rhyman, Lydia; Kaya, Mehmet Fatih; Atar, Necip; Alver, Özgür; Şenyel, Mustafa

    2015-06-05

    4-Mercaptophenylboronic acid (4-mpba, C6H7BO2S) was investigated experimentally by vibrational spectroscopy. The molecular structure and spectroscopic parameters were studied by computational methods. The molecular dimer was investigated for intermolecular hydrogen bonding. Potential energy distribution analysis of normal modes was performed to identify characteristic frequencies. The present work provides a simple physical picture of the OH stretch vibrational spectra of 4-mpba and analogues of the compound studied. When the different computational methods are compared, there is a strong evidence of the better performance of the BLYP functional than the popular B3LYP functional to describe hydrogen bonding in the dimer. The findings of this research work should be useful to experimentalists in their quests for functionalised 4-mpba derivatives. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Synthesis and structure of a 2D → 3D framework with coexistence of hydrogen bonds and polythreading character

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ming-Dao, E-mail: matchlessjimmy@163.com; Zhuang, Qi-Fan; Xu, Jing; Cao, Hui, E-mail: yccaoh@hotmail.com [Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center for Atmospheric Environment & Equipment Technology, School of Environmental Science and Engineering (China)

    2015-12-15

    The title complex, ([Co(BPPA)(5-OH-bdc)] · (H{sub 2}O)){sub n} was prepared under hydrothermal conditions based on two ligands, namely, bis(4-(pyridin-4-yl)phenyl)amine (BPPA) and 5-hydroxyisophthalic acid (5-OH-H{sub 2}bdc). 5-OH-bdc{sup 2–} anions coordinated to Co atoms to give layers in crystal. BPPA ligands coordinate to Co atoms and thread into the adjacent layers. There are hydrogen bonds between adjacent layers, giving rise to a 2D → 3D framework.

  1. Investigation of the interfacial bonding in composite propellants. 1,3,5-Trisubstituted isocyanurates as universal bonding agents

    Directory of Open Access Journals (Sweden)

    GORDANA S. USCUMLIC

    2006-05-01

    Full Text Available A series of 1,3,5-trisubstituted isocyanurates (substituents: CH2CH2OH, CH2CH=CH2 and CH2CH2COOH was synthesized according to a modified literature procedure. Experimental investigations included modification of the synthetic procedure in terms of the starting materials, solvents, temperature, isolation techniques, as well as purification and identification of the products. All the synthesized isocyanurates were identified by their melting point and FTIR, 1H NMR and UV spectroscopic data. Fourier transform infrared spectrophotometry was also used to study the interaction between ammonium perchlorate, hydroxyl terminated poly(butadiene, carboxyl terminated poly(butadiene, poly(butadiene-co-acrylonitrile, poly(propylene ether, cyclotrimethylenetrinitramine and the compounds synthesized in this work, which can serve as bonding agents. The results show that tris(2-hydroxyethylisocyanurate is a universal bonding agent for the ammonium perchlorate/carboxyl terminated poly(butadiene/cyclotrimethylenetrinitramine composite propellant system.

  2. Photodissociation thresholds of OH produced from CH sub 3 OH in solid neon and argon

    CERN Document Server

    Cheng, B M; Lo, W J; Lee, Y P

    2001-01-01

    Photodissociation thresholds of OH from CH sub 3 OH in solid Ne and Ar were determined via photolysis of CH sub 3 OH/Ne and CH sub 3 OH/Ar (1/200) samples in situ at 4 K. The samples were irradiated with VUV synchrotron radiation after dispersion by a Seya-Namioka monochromator. The OH photo-product was detected by means of laser-induced fluorescence technique. The increase of fluorescent intensity of OH was monitored and recorded after the matrix sample was irradiated at different wavelengths for 3-5 min. Photodissociation threshold energies of 7.13+-0.02 eV (174.0+-0.5 nm) and 7.08+-0.04 eV (175.0+-1.0 nm) were measured for OH production of CH sub 3 OH in solid Ne and Ar, respectively.

  3. Synthesis of Al(OH3 Nanostructures from Al(OH3 Microagglomerates via Dissolution-Precipitation Route

    Directory of Open Access Journals (Sweden)

    Bo Yu

    2013-01-01

    Full Text Available A facile method was developed to synthesize Al(OH3 nanostructures from Al(OH3 microagglomerates by dissolution in 9.0 mol·L−1 NaOH at 115°C followed by dilution and aging of the solution at room temperature. The influence of Al(OH3 nanoseed and surfactants as sodium dodecyl sulfate (SDS, polyethylene glycol 6000 (PEG6000, and cetyltrimethylammonium bromide (CTAB on the formation of the Al(OH3 nano-structures was investigated. The experimental results indicated that the Al(OH3 microspheres composed of nanoparticles were prepared in the blank experiment, while dispersive Al(OH3 nano-particles with a diameter of 80–100 nm were produced in the presence of Al(OH3 nano-seed and CTAB.

  4. Characteristics of the wood adhesion bonding mechanism using hydroxymethyl resorcinol

    Science.gov (United States)

    Douglas J. Gardner; Charles E. Frazier; Alfred W. Christiansen

    2006-01-01

    A recent collaborative effort among the U.S. Forest Products Laboratory, Virginia Tech, and the University of Maine has explored the possible bonding mechanisms contributing to durable wood adhesive bonding using hydroxymethyl resorcinol (HMR) surface treatment. Current adhesive bonding mechanisms include: mechanical interlocking, electronic or electrostatic theory,...

  5. Improved stability of a metallic state in benzothienobenzothiophene-based molecular conductors: an effective increase of dimensionality with hydrogen bonds.

    Science.gov (United States)

    Higashino, Toshiki; Ueda, Akira; Yoshida, Junya; Mori, Hatsumi

    2017-03-25

    A dihydroxy-substituted benzothienobenzothiophene, BTBT(OH) 2 , was synthesized, and its charge-transfer (CT) salt, β-[BTBT(OH) 2 ] 2 ClO 4 , was successfully obtained. Thanks to the introduced hydroxy groups, a hydrogen-bonded chain structure connecting the BTBT molecules and counter anions was formed in the CT salt, which effectively increases the dimensionality of the electronic structure and consequently leads to a stable metallic state.

  6. Enhanced Enzymatic Hydrolysis and Structural Features of Corn Stover by NaOH and Ozone Combined Pretreatment

    Directory of Open Access Journals (Sweden)

    Wenhui Wang

    2018-05-01

    Full Text Available A two-step pretreatment using NaOH and ozone was performed to improve the enzymatic hydrolysis, compositions and structural characteristics of corn stover. Comparison between the unpretreated and pretreated corn stover was also made to illustrate the mechanism of the combined pretreatment. A pretreatment with 2% (w/w NaOH at 80 °C for 2 h followed by ozone treatment for 25 min with an initial pH 9 was found to be the optimal procedure and the maximum efficiency (91.73% of cellulose enzymatic hydrolysis was achieved. Furthermore, microscopic observation of changes in the surface structure of the samples showed that holes were formed and lignin and hemicellulose were partially dissolved and removed. X-ray Diffraction (XRD, Fourier Transform Infrared Spectroscopy (FTIR and Cross-Polarization Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance (CP/MAS 13C-NMR were also used to characterize the chemical structural changes after the combined pretreatment. The results were as follows: part of the cellulose I structure was destroyed and then reformed into cellulose III, the cellulose crystal indices were also changed; a wider space between the crystal layer was observed; disruption of hydrogen bonds in cellulose and disruption of ester bonds in hemicellulose; cleavage of bonds linkage in lignin-carbohydrate complexes; removal of methoxy in lignin and hemicellulose. As a result, all these changes effectively reduced recalcitrance of corn stover and promoted subsequent enzymatic hydrolysis of cellulose.

  7. Isolation and characterization of a uranium(VI)-nitride triple bond

    Science.gov (United States)

    King, David M.; Tuna, Floriana; McInnes, Eric J. L.; McMaster, Jonathan; Lewis, William; Blake, Alexander J.; Liddle, Stephen T.

    2013-06-01

    The nature and extent of covalency in uranium bonding is still unclear compared with that of transition metals, and there is great interest in studying uranium-ligand multiple bonds. Although U=O and U=NR double bonds (where R is an alkyl group) are well-known analogues to transition-metal oxo and imido complexes, the uranium(VI)-nitride triple bond has long remained a synthetic target in actinide chemistry. Here, we report the preparation of a uranium(VI)-nitride triple bond. We highlight the importance of (1) ancillary ligand design, (2) employing mild redox reactions instead of harsh photochemical methods that decompose transiently formed uranium(VI) nitrides, (3) an electrostatically stabilizing sodium ion during nitride installation, (4) selecting the right sodium sequestering reagent, (5) inner versus outer sphere oxidation and (6) stability with respect to the uranium oxidation state. Computational analyses suggest covalent contributions to U≡N triple bonds that are surprisingly comparable to those of their group 6 transition-metal nitride counterparts.

  8. Are Negative Option Prices Possible? The Callable U.S. Treasury-Bond Puzzle.

    OpenAIRE

    Longstaff, Francis A

    1992-01-01

    Market prices for callable Treasury bonds often imply negative values for the implicit call option. The author considers a variety of possible explanations for these negative values including the Treasury's track record in calling bonds optimally, tax-related effects, tax-timing options, and bond liquidity. None of these factors accounts for the negative values. Although the costs of short selling may explain why these apparent arbitrage opportunities persist over time, why these implicit cal...

  9. EnviroAtlas - Cleveland, OH - Meter-Scale Urban Land Cover (MULC) Data (2011 and 2013)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Cleveland, OH EnviroAtlas Meter-scale Urban Land Cover (MULC) dataset comprises 2,737 km2 around the city of Cleveland and portions of surrounding counties. The...

  10. Length of Residence and Vehicle Ownership in Relation to Physical Activity Among U.S. Immigrants.

    Science.gov (United States)

    Terasaki, Dale; Ornelas, India; Saelens, Brian

    2017-04-01

    Physical activity among U.S. immigrants over time is not well understood. Transportation may affect this trajectory. Using a survey of documented immigrants (N = 7240), we performed simple, then multivariable logistic regression to calculate ORs and 95 % CIs between length of residence (LOR) and both light-to-moderate (LPA) and vigorous (VPA) activity. We adjusted for demographic variables, then vehicle ownership to assess changes in ORs. Compared to new arrivals, all four LOR time-intervals were associated with lower odds of LPA and higher odds of VPA in simple analysis. All ORs for LPA remained significant after including demographics, but only one remained significant after adding vehicle ownership. Two ORs for VPA remained significant after including demographics and after adding vehicle ownership. Immigrants lower their light-to-moderate activity the longer they reside in the U.S., partly from substituting driving for walking. Efforts to maintain walking for transportation among immigrants are warranted.

  11. Stokes polarimetry of main-line OH emission from stellar masers

    International Nuclear Information System (INIS)

    Claussen, M.J.; Fix, J.D.

    1982-01-01

    Main-line OH emission has been measured in all four Stokes parameters from seven late-type variable stars and the F8 supergiant IRC+10420. Linearly polarized features were detected in UX Cyg, U Ori, and IRC+10420 at 1665 MHz. The linearly polarized features in UX Cyg and IRC +10420, when combined with adjacent circularly polarized features suggest Zeeman patterns. A polarization pattern in IRC+10420 is probably the best example of a complete Zeeman pattern yet observed in stellar masers, although it appears to lack the shifted linear (sigma) components. This study, combined with other recent work, shows that linearly polarized features in stellar sources are uncommon. Only about 10% of the stellar OH sources show linearly polarized features. As an aid in accounting for the observed polarization properties of stellar OH masers, model mass flows were calculated using magnetic field structures similar to that of the solar wind. Conclusions drawn from this model were: (1) unpolarized or weakly circularly polarized emission from sources can arise from the entire circumstellar shell; (2) circular polarization without linear polarization can be produced either by emission from the entire shell or by enhanced OH densities in small regions of the shell provided there are sufficient free electrons present to depolarize the linear components; and (3) Zeeman patterns which include both circular and linear polarizations can be produced in OH density enhancements if electron densities are low. The electron densities required for effective Faraday depolarization yield emission measures of the order of 10 9 pc cm -6 . Given the large distances of stellar OH masers, the thermal continuum emission from such depolarizing electrons would probably be undetectable

  12. Ternary Ni–Cu–OH and Ni–Co–OH electrodes for electrochemical energy storage

    KAUST Repository

    Alhebshi, Nuha; Alshareef, Husam N.

    2015-01-01

    In this project, Ni–Cu–OH and Ni–Co–OH ternary electrodes have been prepared. Different Ni:Cu and Ni:Co ratios were deposited by chemical bath deposition (CBD) at room temperature on carbon microfibers. Since Ni(OH)2 is notorious for poor cycling

  13. Evaluation of enamel damages following orthodontic bracket debonding in fluorosed teeth bonded with adhesion promoter.

    Science.gov (United States)

    Baherimoghadam, Tahreh; Akbarian, Sahar; Rasouli, Reza; Naseri, Navid

    2016-01-01

    To evaluate shear bond strength (SBS) of the orthodontic brackets bonded to fluorosed and nonfluorosed teeth using Light Bond with and without adhesion promoters and compare their enamel damages following debonding. In this study, 30 fluorosed (Thylstrup and Fejerskov Index = 4-5) and 30 nonfluorosed teeth were randomly distributed between two subgroups according to the bonding materials: Group 1, fluorosed teeth bonded with Light Bond; Group 2, fluorosed teeth bonded with adhesion promoters and Light Bond; Group 3, nonfluorosed teeth bonded with Light Bond; Group 4, nonfluorosed bonded with adhesion promoters and Light Bond. After bonding, the SBS of the brackets was tested with a universal testing machine. Stereomicroscopic evaluation was performed by unbiased stereology in all teeth to determine the amount of adhesive remnants and the number and length of enamel cracks before bonding and after debonding. The data were analyzed using two-way analysis of variance, Kruskal-Wallis, Wilcoxon Signed Rank, and Mann-Whitney test. While fluorosis reduced the SBS of orthodontic bracket (P = 0.017), Enhance Locus Ceruleus LC significantly increased the SBS of the orthodontic bracket in fluorosed and nonfluorosed teeth (P = 0.039). Significant increasing in the number and length of enamel crack after debonding was found in all four groups. There were no significant differences in the length of enamel crack increased after debonding among four groups (P = 0.768) while increasing in the number of enamel cracks after debonding was significantly different among the four groups (P = 0.023). Teeth in Group 2 showed the highest enamel damages among four groups following debonding. Adhesion promoters could improve the bond strength of orthodontic brackets, but conservative debonding methods for decreasing enamel damages would be necessary.

  14. Combined effects of π-π stacking and hydrogen bonding on the (N1) acidity of uracil and hydrolysis of 2'-deoxyuridine.

    Science.gov (United States)

    Kellie, Jennifer L; Navarro-Whyte, Lex; Carvey, Matthew T; Wetmore, Stacey D

    2012-03-01

    M06-2X/6-31+G(d,p) is used to study the simultaneous effects of π-π stacking interactions with phenylalanine (modeled as benzene) and hydrogen bonding with small molecules (HF, H(2)O, and NH(3)) on the N1 acidity of uracil and the hydrolytic deglycosylation of 2'-deoxyuridine (dU) (facilitated by fully (OH(-)) or partially (HCOO(-)···H(2)O) activated water). When phenylalanine is complexed with isolated uracil, the proton affinity of all acceptor sites significantly increases (by up to 28 kJ mol(-1)), while the N1 acidity slightly decreases (by ~6 kJ mol(-1)). When small molecules are hydrogen bound to uracil, addition of the phenylalanine ring can increase or decrease the acidity of uracil depending on the number and nature (acidity) of the molecules bound. Furthermore, a strong correlation between the effects of π-π stacking on the acidity of U and the dU deglycosylation reaction energetics is found, where the hydrolysis barrier can increase or decrease depending on the nature and number of small molecules bound, the nucleophile considered (which dictates the negative charge on U in the transition state), and the polarity of the (bulk) environment. These findings emphasize that the catalytic (or anticatalytic) role of the active-site aromatic amino acid residues is highly dependent on the situation under consideration. In the case of uracil-DNA glycosylase (UNG), which catalyzes the hydrolytic excision of uracil from DNA, the type of discrete hydrogen-bonding interactions with U, the nature of the nucleophile, and the anticipated weak, nonpolar environment in the active site suggest that phenylalanine will be slightly anticatalytic in the chemical step, and therefore experimentally observed contributions to catalysis may entirely result from associated structural changes that occur prior to deglycosylation.

  15. A modification of the Schomaker—Stevenson rule for prediction of single bond distances

    Science.gov (United States)

    Blom, Richard; Haaland, Arne

    1985-04-01

    A modification of the Schomaker—Stevenson rule: ?c = 8.5 pm, n = 1.4, significantly reduces the discrepancy between experimental calculated bond lengths for every polar bonds between main group elements.

  16. Rotational Isomers, Intramolecular Hydrogen Bond, and IR Spectra of o-Vinylphenol Homologs

    Science.gov (United States)

    Glazunov, V. P.; Berdyshev, D. V.; Balaneva, N. N.; Radchenko, O. S.; Novikov, V. L.

    2018-03-01

    The ν(OH) stretching-mode bands in solution IR spectra of five o-vinylphenol (o-VPh) homologs in the slightly polar solvents CCl4 and n-hexane were studied. Several rotamers with free OH groups were found in solutions of o-VPh and its methyl-substituted derivatives in n-hexane. The proportion of rotamers in o-VPh homologs with intramolecular hydrogen bonds (IHBs) O-H...π varied from 22 to 97% in the gas and cyclohexane according to B3LYP/cc-pVTZ calculations. The theoretically estimated effective enthalpies -ΔH of their IHBs varied in the range 0.20-2.24 kcal/mol.

  17. Investigation of field corrosion performance and bond/development length of galvanized reinforcing steel : [tech transfer summary].

    Science.gov (United States)

    2014-12-01

    In reinforced concrete systems, ensuring that a good bond between the : concrete and the embedded reinforcing steel is critical to long-term structural : performance. Without good bond between the two, the system simply cannot : behave as intended. :...

  18. The Influence of Disorder in Multifilament Yarns on the Bond Performance in Textile Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    M. Konrad

    2004-01-01

    Full Text Available In this paper we analyze the performance of a bond layer between the multi-filament yarn and the cementitious matrix. The performance of the bond layer is a central issue in the development of textile-reinforced concrete. The changes in the microstructure during the loading result in distinguished failure mechanisms on the micro, meso and macro scales. The paper provides a brief review of these effects and describes a modeling strategy capable of reflecting the failure process. Using the model of the bond layer we illuminate the correspondence between the disorder in the microstructure of the yarn and the bonding behavior at the meso- and macro level. Particular interest is paid to the influence of irregularities in the micro-structure (relative differences in filament lengths, varying bond quality, bond-free length for different levels of local bond quality between the filament surface and the matrix. 

  19. Boron-Based Catalysts for C-C Bond-Formation Reactions.

    Science.gov (United States)

    Rao, Bin; Kinjo, Rei

    2018-05-02

    Because the construction of the C-C bond is one of the most significant reactions in organic chemistry, the development of an efficient strategy has attracted much attention throughout the synthetic community. Among various protocols to form C-C bonds, organoboron compounds are not just limited to stoichiometric reagents, but have also made great achievements as catalysts because of the easy modification of the electronic and steric impacts on the boron center. This review presents recent developments of boron-based catalysts applied in the field of C-C bond-formation reactions, which are classified into four kinds on the basis of the type of boron catalyst: 1) highly Lewis acidic borane, B(C 6 F 5 ) 3 ; 2) organoboron acids, RB(OH) 2 , and their ester derivatives; 3) borenium ions, (R 2 BL)X; and 4) other miscellaneous kinds. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Study on the bonding strength between calcium phosphate/chitosan composite coatings and a Mg alloy substrate

    Science.gov (United States)

    Zhang, Jie; Dai, Chang-Song; Wei, Jie; Wen, Zhao-Hui

    2012-11-01

    In order to improve the bonding strength between calcium phosphate/chitosan composite coatings and a micro-arc oxidized (MAO)-AZ91D Mg alloy, different influencing parameters were investigated in the process of electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). Surface morphology and phase constituents of the as-prepared materials were investigated by using X-ray diffractometer (XRD), Fourier-transformed infrared spectrophotometer (FTIR), Raman spectrometer, scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS), and a thermo gravimetric and differential thermal analyzer (TG-DTA). Scratch tests were carried out to study the bonding properties between the coatings and the substrates. In vitro immersion tests were conducted to determine the corrosion behaviors of samples with and without deposit layers through electrochemical experiments. In the EPD process, the acetic acid content in the electrophoresis suspension and the electrophoretic voltage played important roles in improving the bonding properties, while the contents of chitosan (CS) and nano-hydroxyapatite (nHA, Ca10(PO4)6(OH)2) in the suspension had less significant influences on the mechanical bonding strength. It was observed that the coatings showed the excellent bonding property when an electrophoretic voltage was in a range of 40-110 V with other reagent amounts as follows: acetic acid: 4.5 vol.%, CS ≤ 0.25 g, nHA ≤ 2.0 g in 200 ml of a CS-acetic acid aqueous solution and nHA ≤ 2.5 g in 300 ml of absolute ethanol. The morphology of the composite coating obtained under the above optimal condition had a flake-like crystal structure. The EPD in the nHA/CS-acetic acid/ethanol suspension resulted in hydroxyapatite, chitosan, brushite (DCPD, CaHPO4·2H2O) and Ca(OH)2 in the coatings. After the as-prepared coating materials were immersed into PBS, Ca(OH)2 could be converted into HA and DCPD. The results of the electrochemical tests

  1. The nature of the U=C double bond: pushing the stability of high-oxidation-state uranium carbenes to the limit

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Oliver J.; Mills, David P.; McMaster, Jonathan; Lewis, William; Blake, Alexander J.; Liddle, Stephen T. [School of Chemistry, University of Nottingham (United Kingdom); Tuna, Floriana; McInnes, Eric J.L. [EPSRC National UK EPR Facility, School of Chemistry and Photon Science Institute, The University of Manchester (United Kingdom)

    2013-05-27

    Treatment of [K(BIPM{sup Mes}H)] (BIPM{sup Mes}={C(PPh_2NMes)_2}{sup 2-}; Mes=C{sub 6}H{sub 2}-2,4,6-Me{sub 3}) with [UCl{sub 4}(thf){sub 3}] (1 equiv) afforded [U(BIPM{sup Mes}H)(Cl){sub 3}(thf)] (1), which generated [U(BIPM{sup Mes})(Cl){sub 2}(thf){sub 2}] (2), following treatment with benzyl potassium. Attempts to oxidise 2 resulted in intractable mixtures, ligand scrambling to give [U(BIPM{sup Mes}){sub 2}] or the formation of [U(BIPM{sup Mes}H)(O){sub 2}(Cl)(thf)] (3). The complex [U(BIPM{sup Dipp})(μ-Cl){sub 4}(Li){sub 2}(OEt{sub 2})(tmeda)] (4) (BIPM{sup Dipp}={C(PPh_2NDipp)_2}{sup 2-}; Dipp=C{sub 6}H{sub 3}-2,6-iPr{sub 2}; tmeda=N,N,N',N'-tetramethylethylenediamine) was prepared from [Li{sub 2}(BIPM{sup Dipp})(tmeda)] and [UCl{sub 4}(thf){sub 3}] and, following reflux in toluene, could be isolated as [U(BIPM{sup Dipp})(Cl){sub 2}(thf){sub 2}] (5). Treatment of 4 with iodine (0.5 equiv) afforded [U(BIPM{sup Dipp})(Cl){sub 2}(μ-Cl){sub 2}(Li)(thf){sub 2}] (6). Complex 6 resists oxidation, and treating 4 or 5 with N-oxides gives [U(BIPM {sup Dipp}H)(O){sub 2}-(μ-Cl){sub 2}Li(tmeda)] (7) and [{U(BIPM"D"i"p"pH)(O)_2(μ-Cl)}{sub 2}] (8). Treatment of 4 with tBuOLi (3 equiv) and I{sub 2} (1 equiv) gives [U(BIPM{sup Dipp})(OtBu){sub 3}(I)] (9), which represents an exceptionally rare example of a crystallographically authenticated uranium(VI)-carbon σ bond. Although 9 appears sterically saturated, it decomposes over time to give [U(BIPM{sup Dipp})(OtBu){sub 3}]. Complex 4 reacts with PhCOtBu and Ph{sub 2}CO to form [U(BIPM{sup Dipp})(μ-Cl){sub 4}(Li){sub 2}(tmeda)(OCPhtBu)] (10) and [U(BIPM{sup Dipp})(Cl)(μ-Cl){sub 2}(Li)(tmeda)(OCPh{sub 2})] (11). In contrast, complex 5 does not react with PhCOtBu and Ph{sub 2}CO, which we attribute to steric blocking. However, complexes 5 and 6 react with PhCHO to afford (DippNPPh{sub 2}){sub 2}C=C(H)Ph (12). Complex 9 does not react with PhCOtBu, Ph{sub 2}CO or PhCHO; this is attributed to steric blocking

  2. Bond–Slip Relationship for CFRP Sheets Externally Bonded to Concrete under Cyclic Loading

    Science.gov (United States)

    Li, Ke; Cao, Shuangyin; Yang, Yue; Zhu, Juntao

    2018-01-01

    The objective of this paper was to explore the bond–slip relationship between carbon fiber-reinforced polymer (CFRP) sheets and concrete under cyclic loading through experimental and analytical approaches. Modified beam tests were performed in order to gain insight into the bond–slip relationship under static and cyclic loading. The test variables are the CFRP-to-concrete width ratio, and the bond length of the CFRP sheets. An analysis of the test results in this paper and existing test results indicated that the slope of the ascending segment of the bond–slip curve decreased with an increase in the number of load cycles, but the slip corresponding to the maximum shear stress was almost invariable as the number of load cycles increased. In addition, the rate of reduction in the slope of the ascending range of the bond–slip curve during cyclic loading decreased as the concrete strength increased, and increased as the load level or CFRP-to-concrete width ratio enhanced. However, these were not affected by variations in bond length if the residual bond length was longer than the effective bond length. A bilinear bond–slip model for CFRP sheets that are externally bonded to concrete under cyclic loading, which considered the effects of the cyclic load level, concrete strength, and CFRP-to-concrete ratio, was developed based on the existing static bond–slip model. The accuracy of this proposed model was verified by a comparison between this proposed model and test results. PMID:29495383

  3. Stereoelectronic control in peptide bond formation. Ab initio calculations and speculations on the mechanism of action of serine proteases.

    Science.gov (United States)

    Gorenstein, D G; Taira, K

    1984-01-01

    Ab initio molecular orbital calculations have been performed on the reaction profile for the addition/elimination reaction between ammonia and formic acid, proceeding via a tetrahedral intermediate: NH3 + HCO2H----H2NCH(OH)2----NH2CHO + H2O. Calculated transition state energies for the first addition step of the reaction revealed that a lone pair on the oxygen of the OH group, which is antiperiplanar to the attacking nitrogen, stabilized the transition state by 3.9 kcal/mol, thus supporting the hypothesis of stereoelectronic control for this reaction. In addition, a secondary, counterbalancing stereoelectronic effect stabilizes the second step, water elimination, transition state by 3.1 kcal/mol if the lone pair on the leaving water oxygen is not antiperiplanar to the C-N bond. The best conformation for the transition states was thus one with a lone pair antiperiplanar to the adjacent scissile bond and also one without a lone-pair orbital on the scissile bond oxygen or nitrogen antiperiplanar to the adjacent polar bond. The significance of these stereoelectronic effects for the mechanism of action of serine proteases is discussed. PMID:6394065

  4. The hydrogen bond in ice probed by soft x-ray spectroscopy and density functional theory

    International Nuclear Information System (INIS)

    Nilsson, A.; Ogasawara, H.; Cavalleri, M.; Nordlund, D.; Nyberg, M.; Wernet, Ph.; Pettersson, L.G.M.

    2005-01-01

    We combine photoelectron and x-ray absorption spectroscopy with density functional theory to derive a molecular orbital picture of the hydrogen bond in ice. We find that the hydrogen bond involves donation and back-donation of charge between the oxygen lone pair and the O-H antibonding orbitals on neighboring molecules. Together with internal s-p rehybridization this minimizes the repulsive charge overlap of the connecting oxygen and hydrogen atoms, which is essential for a strong attractive electrostatic interaction. Our joint experimental and theoretical results demonstrate that an electrostatic model based on only charge induction from the surrounding medium fails to properly describe the internal charge redistributions upon hydrogen bonding

  5. Experimental and theoretical studies of the reaction of the OH radical with alkyl sulfides: 3. Kinetics and mechanism of the OH initiated oxidation of dimethyl, dipropyl, and dibutyl sulfides: reactivity trends in the alkyl sulfides and development of a predictive expression for the reaction of OH with DMS.

    Science.gov (United States)

    Williams, M B; Campuzano-Jost, P; Hynes, A J; Pounds, A J

    2009-06-18

    A pulsed laser photolysis-pulsed laser-induced fluorescence technique has been employed to measure rate coefficients for the OH-initiated oxidation of dimethyl sulfide (DMS), its deuterated analog (DMS-d(6)), dipropyl sulfide (DPS), and dibutyl sulfide (DBS). Effective rate coefficients have been measured as a function of the partial pressure of O(2) over the temperature range of 240-295 K and at 200 and 600 Torr total pressure. We report the first observations of an O(2) enhancement in the effective rate coefficients for the reactions of OH with DPS and DBS. All observations are consistent with oxidation proceeding via a two-channel oxidation mechanism involving abstraction and addition channels. Structures and thermochemistry of the DPSOH and DBSOH adducts were calculated. Calculated bond strengths of adducts increase with alkyl substitution but are comparable to that of the DMSOH adduct and are consistent with experimental observations. Reactivity trends across the series of alkyl sulfide (C(2)-C(8)) reactions are analyzed. All reactions proceed via a two-channel mechanism involving either an H-atom abstraction or the formation of an OH adduct that can then react with O(2). Measurements presented in this work, in conjunction with previous measurements, have been used to develop a predictive expression for the OH-initiated oxidation of DMS. This expression is based on the elementary rate coefficients in the two-channel mechanism. The expression can calculate the effective rate coefficient for the reaction of OH with DMS over the range of 200-300 K, 0-760 Torr, and 0-100% partial pressure of O(2). This expression expands on previously published work but is applicable to DMS oxidation throughout the troposphere.

  6. EXPERIMENTAL INVESTIGATION ON THE EFFECT OF NATURAL TROPICAL WEATHER ON INTERFACIAL BONDING PERFORMANCE OF CFRP-CONCRETE BONDING SYSTEM

    Directory of Open Access Journals (Sweden)

    MOHD H. MOHD HASHIM

    2016-04-01

    Full Text Available The existing reinforced concrete structures may require rehabilitation and strengthening to overcome deficiencies due to defect and environmental deterioration. Fibre Reinforced Polymer (FRP-concrete bonding systems can provide solution for the deficiencies, but the durability of the bonded joint needs to be investigated for reliable structural performance. In this research the interfacial bonding behaviour of CFRP-concrete system under tropical climate exposure is main interest. A 300 mm concrete prism was bonded with CFRP plate on its two sides and exposed for 3, 6, and 9 months to laboratory environment, continuous natural weather, and wet-dry exposure in 3.5% saltwater solution at room and 40 °C temperature. The prisms were subjected to tension and compression load under bonding test to measure the strain and determine stress distribution and shear stress transfer behaviour. The results of the bonding test showed that load transfer was fairly linear and uniform at lower load level and changed to non-linear and non- uniform at higher load level. The force transfers causes the shear stress distribution being shifted along the bonded length. The combination of climate effects may have provided better curing of the bonded joints, but longer duration of exposure may be required to weaken the bond strength. Nevertheless, CFRP-concrete bonding system was only minimally affected under the tropical climate and salt solution.

  7. X-ray diffraction and chemical bonding

    International Nuclear Information System (INIS)

    Bats, J.W.

    1976-01-01

    Chemical bonds are investigated in sulfamic acid (H 3 N-SO 3 ), sodium sulfonlate dihydrate (H 2 NC 6 H 4 SO 3 Na.2H 2 O), 2,5-dimercaptothiadiazole (HS-C 2 N 2 S-SH), sodium cyanide dihydrate (NaCN.2H 2 O), sodium thiocyanate (NaSCN) and ammonium thiocyanate (NH 4 SCN) by X-ray diffraction, and if necessary completed with neutron diffraction. Crystal structures and electron densities are determined together with bond length and angles. Also the effects of thermal motion are discussed

  8. Control of O-H bonds at a-IGZO/SiO2 interface by long time thermal annealing for highly stable oxide TFT

    Directory of Open Access Journals (Sweden)

    Jae Kwon Jeon

    2017-12-01

    Full Text Available We report two-step annealing, high temperature and sequent low temperature, for amorphous indium-gallium-zinc-oxide (a-IGZO thin-film transistor (TFT to improve its stability and device performance. The annealing is carried out at 300 oC in N2 ambient for 1 h (1st step annealing and then at 250 oC in vacuum for 10 h (2nd step annealing. It is found that the threshold voltage (VTH changes from 0.4 V to -2.0 V by the 1st step annealing and to +0.6 V by 2nd step annealing. The mobility changes from 18 cm2V-1s-1 to 25 cm2V-1s-1 by 1st step and decreases to 20 cm2V-1s-1 by 2nd step annealing. The VTH shift by positive bias temperature stress (PBTS is 3.7 V for the as-prepared TFT, and 1.7 V for the 1st step annealed TFT, and 1.3 V for the 2nd step annealed TFT. The XPS (X-ray photoelectron spectroscopy depth analysis indicates that the reduction in O-H bonds at the top interface (SiO2/a-IGZO by 2nd step annealing appears, which is related to the positive VTH shift and smaller VTH shift by PBTS.

  9. Control of O-H bonds at a-IGZO/SiO2 interface by long time thermal annealing for highly stable oxide TFT

    Science.gov (United States)

    Jeon, Jae Kwon; Um, Jae Gwang; Lee, Suhui; Jang, Jin

    2017-12-01

    We report two-step annealing, high temperature and sequent low temperature, for amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) to improve its stability and device performance. The annealing is carried out at 300 oC in N2 ambient for 1 h (1st step annealing) and then at 250 oC in vacuum for 10 h (2nd step annealing). It is found that the threshold voltage (VTH) changes from 0.4 V to -2.0 V by the 1st step annealing and to +0.6 V by 2nd step annealing. The mobility changes from 18 cm2V-1s-1 to 25 cm2V-1s-1 by 1st step and decreases to 20 cm2V-1s-1 by 2nd step annealing. The VTH shift by positive bias temperature stress (PBTS) is 3.7 V for the as-prepared TFT, and 1.7 V for the 1st step annealed TFT, and 1.3 V for the 2nd step annealed TFT. The XPS (X-ray photoelectron spectroscopy) depth analysis indicates that the reduction in O-H bonds at the top interface (SiO2/a-IGZO) by 2nd step annealing appears, which is related to the positive VTH shift and smaller VTH shift by PBTS.

  10. Effect of solvent on proton location and dynamic behavior in short intramolecular hydrogen bonds studied by molecular dynamics simulations and NMR experiments

    International Nuclear Information System (INIS)

    Mori, Yukie; Masuda, Yuichi

    2015-01-01

    Highlights: • MD simulations were performed to study dynamics of strong hydrogen bonds. • Nuclear magnetic relaxation times of proton were measured in solution. • The hydrogen bond of dibenzoylmethane enol is asymmetric in methanol solution. • Formation or breakage of intermolecular hydrogen bonds can trigger proton transfer. • Dimethylsulfoxide may form a bifurcated hydrogen bond with a hydrogen-bonded system. - Abstract: Hydrogen phthalate anion has a short strong O–H–O hydrogen bond (H-bond). According to previous experimental studies, the H-bond is asymmetric and two tautomers are interconverted in aqueous solutions. In the present study, the effects of polar solvents on the H-bond in a zwitterionic hydrogen phthalate derivative 1 were investigated by quantum mechanics/molecular mechanics molecular dynamics (MD) simulations. The analyses of the trajectories for the methanol solution showed that the H-bonding proton tends to be located closer to the carboxylate group that forms fewer intermolecular H-bonds, than to the other carboxylate group and that the intramolecular proton transfer in 1 is triggered by the breakage and/or formation of an intermolecular H-bond. The enol form of dibenzoylmethane (2) also has a short H-bond, and the OH bond is reported to be rather long (>1.1 Å) in the crystal. In the present study, the effects of the solvent on the H-bond in 2 were investigated by molecular orbital (MO) calculations, MD simulations and nuclear magnetic resonance (NMR) spectroscopy. Density functional theory (DFT) calculations for 2 in vacuum indicated that the barrier height for the intramolecular proton transfer is almost the same as the zero-point energy of the vibrational ground state, resulting in broad distribution of the proton density along the H-bond, owing to the nuclear quantum effect. The OH distances were determined in CCl 4 , acetonitrile, and dimethylsulfoxide solutions from the magnetic dipolar interactions between the 17 O and 1

  11. Effect of solvent on proton location and dynamic behavior in short intramolecular hydrogen bonds studied by molecular dynamics simulations and NMR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Yukie, E-mail: mori.yukie@ocha.ac.jp; Masuda, Yuichi

    2015-09-08

    Highlights: • MD simulations were performed to study dynamics of strong hydrogen bonds. • Nuclear magnetic relaxation times of proton were measured in solution. • The hydrogen bond of dibenzoylmethane enol is asymmetric in methanol solution. • Formation or breakage of intermolecular hydrogen bonds can trigger proton transfer. • Dimethylsulfoxide may form a bifurcated hydrogen bond with a hydrogen-bonded system. - Abstract: Hydrogen phthalate anion has a short strong O–H–O hydrogen bond (H-bond). According to previous experimental studies, the H-bond is asymmetric and two tautomers are interconverted in aqueous solutions. In the present study, the effects of polar solvents on the H-bond in a zwitterionic hydrogen phthalate derivative 1 were investigated by quantum mechanics/molecular mechanics molecular dynamics (MD) simulations. The analyses of the trajectories for the methanol solution showed that the H-bonding proton tends to be located closer to the carboxylate group that forms fewer intermolecular H-bonds, than to the other carboxylate group and that the intramolecular proton transfer in 1 is triggered by the breakage and/or formation of an intermolecular H-bond. The enol form of dibenzoylmethane (2) also has a short H-bond, and the OH bond is reported to be rather long (>1.1 Å) in the crystal. In the present study, the effects of the solvent on the H-bond in 2 were investigated by molecular orbital (MO) calculations, MD simulations and nuclear magnetic resonance (NMR) spectroscopy. Density functional theory (DFT) calculations for 2 in vacuum indicated that the barrier height for the intramolecular proton transfer is almost the same as the zero-point energy of the vibrational ground state, resulting in broad distribution of the proton density along the H-bond, owing to the nuclear quantum effect. The OH distances were determined in CCl{sub 4}, acetonitrile, and dimethylsulfoxide solutions from the magnetic dipolar interactions between the {sup 17

  12. Mechanism of C-C and C-H bond cleavage in ethanol oxidation reaction on Cu2O(111): a DFT-D and DFT+U study.

    Science.gov (United States)

    Xu, Han; Miao, Bei; Zhang, Minhua; Chen, Yifei; Wang, Lichang

    2017-10-04

    The performance of transition metal catalysts for ethanol oxidation reaction (EOR) in direct ethanol fuel cells (DEFCs) may be greatly affected by their oxidation. However, the specific effect and catalytic mechanism for EOR of transition metal oxides are still unclear and deserve in-depth exploitation. Copper as a potential anode catalyst can be easily oxidized in air. Thus, in this study, we investigated C-C and C-H bond cleavage reactions of CH x CO (x = 1, 2, 3) species in EOR on Cu 2 O(111) using PBE+U calculations, as well as the specific effect of +U correction on the process of adsorption and reaction on Cu 2 O(111). It was revealed that the catalytic performance of Cu 2 O(111) for EOR was restrained compared with that of Cu(100). Except for the C-H cleavage of CH 2 CO, all the reaction barriers for C-C and C-H cleavage were higher than those on Cu(100). The most probable pathway for CH 3 CO to CHCO on Cu 2 O(111) was the continuous dehydrogenation reaction. Besides, the barrier for C-C bond cleavage increased due to the loss of H atoms in the intermediate. Moreover, by the comparison of the traditional GGA/PBE method and the PBE+U method, it could be concluded that C-C cleavage barriers would be underestimated without +U correction, while C-H cleavage barriers would be overestimated. +U correction was proved to be necessary, and the reaction barriers and the values of the Hubbard U parameter had a proper linear relationship.

  13. An asset pricing approach to liquidity effects in corporate bond markets

    NARCIS (Netherlands)

    Bongaerts, Dion; de Jong, Frank; Driessen, Joost

    We use an asset pricing approach to compare the effects of expected liquidity and liquidity risk on expected U.S. corporate bond returns. Liquidity measures are constructed for bond portfolios using a Bayesian approach to estimate Roll’s measure. The results show that expected bond liquidity and

  14. The Use of Mg(OH2 in the Final Peroxide Bleaching Stage of Wheat Straw Pulp

    Directory of Open Access Journals (Sweden)

    Yan-Lan Liu

    2013-11-01

    Full Text Available Magnesium-based alkali is an attractive alkaline source for the peroxide bleaching of high-yield pulp. However, little information is available on Mg(OH2 application in the final peroxide bleaching stage of wheat straw pulp. The use of Mg(OH2 was demonstrated as a partial replacement for NaOH in the peroxide bleaching of a chelated oxygen-delignified wheat straw pulp. The yield, viscosity, and strength properties of bleached pulp significantly increased with increasing replacement ratio of Mg(OH2, while the chemical oxygen demand load (COD of filtrate was decreased. For similar brightness of bleached pulp at a 24% replacement ratio of Mg(OH2, the tensile and tear indices were higher, by 2.1 Nm.g-1 and 1.75 mN*m2.g-1, respectively, than that of control pulp bleached with NaOH as the sole alkaline source. When the MgSO4 was eliminated and the dosage of Na2SiO3 was decreased in the bleaching process, the tear and burst indices of the bleached pulp were also enhanced, with the brightness maintained. Scanning electron microscopy (SEM showed that more swelling occurred in the fibers of bleached pulp from the Mg(OH2-based bleaching process. Fiber analysis indicated that peroxide bleaching with Mg(OH2 increased the proportion of fiber lengths between 0.20 to 1.20 mm and 1.20 to 7.60 mm.

  15. Relining effects on the push-out shear bond strength of glass fiber posts

    Directory of Open Access Journals (Sweden)

    Adriana Rosado Valente ANDRIOLI

    Full Text Available Abstract Introduction The correct use of glass fiber posts in endodontically treated teeth is essential for the clinical success of restorative treatment. Objective This study evaluated the push-out shear bond strength of relined (R or non-relined (NR glass fiber posts, cemented with self-adhesive resin cement [RelyXTM U100 (U100] and conventional resin cement [RelyXTM ARC (ARC]. Material and method Sixty human single-rooted teeth were endodontically treated and divided into ARC-NR; U100-NR; ARC-R; U100-R groups. The teeth were sectioned into cervical, middle and apical thirds, and subjected to the push-out test. Bond strength was analyzed by the Friedman test; cement and post types were compared by the Mann Whitney test. The pattern of failures was evaluated with digital camera through images at 200x magnification, and was classified as adhesive (at the cement/dentin or cement/post interface, cohesive (cement or post, and mixed failures. Result In ARC-NR, bond strength values were higher in the cervical third; in U100-NR and ARC-R they were similar between the thirds. In U100-R, in the cervical and middle thirds the bond strength values were similar, and there was lower value in the apical third. For non-relined glass fiber posts, the highest mean bond strength values were observed with self-adhesive resin cement. Whereas, relined posts cemented with conventional resin cement had stronger cement layer in comparison with non-relined fiber posts. Conclusion The post relining technique was efficient in ARC-R. ARC-NR and U100-R showed improved bond strength in the cervical region of canal walls. The main failures were adhesive at the cement-post interface.

  16. Role of the H bond network in the radiation chemistry of hydrated systems

    International Nuclear Information System (INIS)

    Pommeret, S.; Renault, J.P.; Le Caer, S.; Vigneron, G.; Palmer, J.; Lima, M.; Righini, R.

    2006-01-01

    Introduction: In the present contribution, we want to address the influence of the H bond network on the observed reactivity of hydrated system. In radiation chemistry the primary species appear extremely simple and at the same time are very reactive. The comprehension of their dynamics is rather difficult since their reactivity involves the solvent molecules as reactant. Some of those species like the hydrated electron and the proton are highly hydrophilic, while others like the hydroxide radical and the H atom are rather hydrophobic. Both the hydrated electron and the H atom locate near a defect of the H bond network i.e. a cavity. As an example of the role of the environment in radical chemistry, when studying the radiation chemistry of porous media we noticed that the interface play a crucial role in the outcome of that chemistry. More particularly we observed that the silanol band of the silica/water interface was strongly affected by the irradiation even so no energy is directly absorbed by an interface. In this contribution, we will first review the recent work on the H bond dynamics, in absence of any reactant. We will then present recent results on the radiation chemistry of nanoporous media and its influence on the H bond network of an interface and will also present recent results obtained on the H bond dynamics at an alumina-water interface. All those results will be discussed in light of the H bonded nature of neat water. Radiation chemistry of an H bonded interface: A Fourier transformed infrared detection associated to an electron accelerator was developed so as to characterise in situ the effects of irradiation on various systems. The FT-IR spectrometer and the detector were moved out of the accelerator room to be protected against radiation. The infrared beam was guided on a distance of 6 meters by optical conduits and mirrors. The spectra were obtained from 100 scans accumulated with a Bruker Vertex 70 equipment operating with a 4 cm -1 resolution

  17. Facile synthesis of Co(OH)2/Al(OH)3 nanosheets with improved electrochemical properties for asymmetric supercapacitor

    Science.gov (United States)

    Zhao, Cuimei; Ren, Fang; Cao, Yang; Xue, Xiangxin; Duan, Xiaoyue; Wang, Hairui; Chang, Limin

    2018-01-01

    Sheet-like Co(OH)2/Al(OH)3 or Co(OH)2 nanomaterial has been synthesized on conducting carbon fiber paper (CFP) by a facile one-step electrochemical deposition. The binder-free Co(OH)2/Al(OH)3/CFP displays an improved electrical conductivity, electrochemical activity and material utilization than solitary Co(OH)2, therefore Co(OH)2/Al(OH)3 nanomaterial exhibits improved electrochemical properties (a maximum capacitance of 1006 Fg-1 at 2 Ag-1, with 77% retention even at a high current density of 32 Ag-1, and more than 87% of the capacitance retention after 10000 cycles at 32 Ag-1) in comparison to that of the Co(OH)2/CFP (709 Fg-1, 65%, 79%). In addition, an asymmetric supercapacitor (ASC) fabricated with Co(OH)2/Al(OH)3/CFP positive electrode and AC/CFP negative electrode demonstrates ultrahigh specific capacitance (75.8 Fg-1) and potential window (1.7 V). These encouraging results make these low-cost and eco-friendly materials promising for high-performance energy storage application.

  18. Synthesis and crystal structures of new complexes of Np(V) glycolate with 2,2'-bipyridine, [NpO2(C10H8N2)(OOC2H2OH)].1.5H2O and [NpO2(C10H8N2)(OOC2H2OH)].2.5H2O

    International Nuclear Information System (INIS)

    Charushnikova, I.A.; Krot, N.N.; Starikova, Z.A.

    2009-01-01

    Single crystals were prepared, and the structures of two complexes of Np(V) glycolate with 2,2'-bipyridine of the compositions [NpO 2 (C 10 H 8 N 2 )(OOC 2 H 2 OH)].1.5H 2 O (I) and [NpO 2 (C 10 H 8 N 2 )(OOC 2 H 2 OH)]2.5H 2 O (II) were studied. The structures of the compounds are based on neptunyl-glycolate chains in which the glycolate anion manifests its complexation ability in different manner. In structure I, the bidentate-bridging anion links the adjacent NpO 2 - cations through the oxygen atoms of the carboxylate group. The neptunyl-glycolate chains of I exhibits the mutual coordination of the NpO 2 - cations acting toward each other simultaneously as ligands and coordinating centers. In compound II, the glycolate anion is bidentately coordinated to one neptunium atom to form a planar five-membered metallocycle [NpOCCO]. The O atom external with respect to the metallocycle is in the coordination environment of the adjacent neptunyl. The nitrogen-containing molecular ligand Bipy is included into the coordination environment of Np. The coordination polyhedron of the Np atoms in both structures is a pentagonal bipyramid in which the average Np-N bond length is 2.666 Aa (I) and 2.596 Aa (II). (orig.)

  19. Lamellar-crossing-structured Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} nanocomposite for electrochemical supercapacitor materials

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qingnan [Department of Chemistry, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Wen, Ming, E-mail: m_wen@tongji.edu.cn [Department of Chemistry, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092 (China); Chen, Shipei [Department of Chemistry, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Wu, Qingsheng [Department of Chemistry, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092 (China)

    2015-10-15

    Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} lamellar-crossing-nanostructure with a single lamellar spacing of ∼5 nm was effectively constructed through two-phase-interface reaction process followed by the CNTs crossed among the lamellar-nanostructured Ni(OH){sub 2}. The resultant nanocomposite can offer large active surface areas and short diffusion paths for electrons and ions, and is investigated as a potential pseudocapacitor electrode material for electrochemical energy storage applications. Electrochemical data demonstrate that the as-prepared nanocomposite exhibits a high specific capacitance of ∼1600 F g{sup −1} at the scan rate of 1 mV s{sup −1} in 6 M KOH solution at normal pressure and temperature, which is great higher than Ni(OH){sub 2} (∼1200 F g{sup −1}). Furthermore, Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} nanocomposite shows a higher energy density (∼125 Wh kg{sup −1}, 2 A g{sup −1}) and has a slightly decrease of 5% in specific capacitance after 1000 continuous charge/discharge cycles. - Graphical abstract: As-constructed Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} lamellar-crossing-nanostructure exhibits remarkable enhancement in electrochemical stability and high specific capacity of ∼1600 F g{sup −1} at a scan rate of 1 mV s{sup −1}, suggesting promising potential for supercapacitor applications. - Highlights: • New designed lamellar-crossing-structured Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} nanocomposites have been firstly reported in this work. • Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} lamellar-crossing-nanostructures show firm nanostructure and excellent electrochemical stability. • Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} nanocomposites exhibit excellent specific capacitance. • Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} nanocomposites have the potential application in electrochemical energy storage applications.

  20. IR-UV double resonance spectroscopic investigation of phenylacetylene-alcohol complexes. Alkyl group induced hydrogen bond switching.

    Science.gov (United States)

    Singh, Prashant Chandra; Patwari, G Naresh

    2008-06-12

    The electronic transitions of phenylacetylene complexes with water and trifluoroethanol are shifted to the blue, while the corresponding transitions for methanol and ethanol complexes are shifted to the red relative to the phenylacetylene monomer. Fluorescence dip infrared (FDIR) spectra in the O-H stretching region indicate that, in all the cases, phenylacetylene is acting as a hydrogen bond acceptor to the alcohols. The FDIR spectrum in the acetylenic C-H stretching region shows Fermi resonance bands for the bare phenylacetylene, which act as a sensitive tool to probe the intermolecular structures. The FDIR spectra reveal that water and trifluoroethanol interact with the pi electron density of the acetylene C-C triple bond, while methanol and ethanol interact with the pi electron density of the benzene ring. It can be inferred that the hydrogen bonding acceptor site on phenylacetylene switches from the acetylene pi to the benzene pi with lowering in the partial charge on the hydrogen atom of the OH group. The most significant finding is that the intermolecular structures of water and methanol complexes are notably distinct, which, to the best of our knowledge, this is first such observation in the case of complexes of substituted benzenes.

  1. 19 CFR 141.41 - Surety on Customs bonds.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Surety on Customs bonds. 141.41 Section 141.41 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY (CONTINUED) ENTRY OF MERCHANDISE Powers of Attorney § 141.41 Surety on Customs bonds. Powers of...

  2. TDDFT study on intramolecular hydrogen bond of photoexcited methyl salicylate.

    Science.gov (United States)

    Qu, Peng; Tian, Dongxu

    2014-01-01

    The equilibrium geometries, IR-spectra and transition mechanism of intramolecular hydrogen-bonded methyl salicylate in excited state were studied using DFT and TDDFT with 6-31++G (d, p) basis set. The length of hydrogen bond OH⋯OC is decreased from 1.73 Å in the ground state to 1.41 and 1.69 Å in the excited S1 and S3 states. The increase of bond length for HO and CO group also indicates that in excited state the hydrogen bond OH⋯OC is strengthened. IR spectra show HO and CO stretching bands are strongly redshifted by 1387 and 67 cm(-1) in the excited S1 and S3 states comparing to the ground state. The excitation energy and the absorption spectrum show the S3 state is the main excited state of the low-lying excited states. By analyzing the frontier molecular orbitals, the transition from the ground state to the excited S1 and S3 states was predicted to be the π→π∗ mode. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Binding of the respiratory chain inhibitor antimycin to the mitochondrial bc1 complex: a new crystal structure reveals an altered intramolecular hydrogen-bonding pattern.

    Science.gov (United States)

    Huang, Li-Shar; Cobessi, David; Tung, Eric Y; Berry, Edward A

    2005-08-19

    Antimycin A (antimycin), one of the first known and most potent inhibitors of the mitochondrial respiratory chain, binds to the quinone reduction site of the cytochrome bc1 complex. Structure-activity relationship studies have shown that the N-formylamino-salicyl-amide group is responsible for most of the binding specificity, and suggested that a low pKa for the phenolic OH group and an intramolecular H-bond between that OH and the carbonyl O of the salicylamide linkage are important. Two previous X-ray structures of antimycin bound to vertebrate bc1 complex gave conflicting results. A new structure reported here of the bovine mitochondrial bc1 complex at 2.28 A resolution with antimycin bound, allows us for the first time to reliably describe the binding of antimycin and shows that the intramolecular hydrogen bond described in solution and in the small-molecule structure is replaced by one involving the NH rather than carbonyl O of the amide linkage, with rotation of the amide group relative to the aromatic ring. The phenolic OH and formylamino N form H-bonds with conserved Asp228 of cytochrome b, and the formylamino O H-bonds via a water molecule to Lys227. A strong density, the right size and shape for a diatomic molecule is found between the other side of the dilactone ring and the alphaA helix.

  4. Binding of the Respiratory Chain Inhibitor Antimycin to theMitochondrial bc1 Complex: A New Crystal Structure Reveals an AlteredIntramolecular Hydrogen-Bonding Pattern

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li-shar; Cobessi, David; Tung, Eric Y.; Berry, Edward A.

    2005-05-10

    Antimycin A (antimycin), one of the first known and most potent inhibitors of the mitochondrial respiratory chain, binds to the quinone reduction site of the cytochrome bc1 complex.Structure-activity-relationship studies have shown that the N-formylamino-salicyl-amide group is responsible for most of the binding specificity, and suggested that a low pKa for the phenolic OH group and an intramolecular H-bond between that OH and the carbonyl O of the salicylamide linkage are important. Two previous X-ray structures of antimycin bound to vertebrate bc1 complex gave conflicting results. A new structure reported here of the bovine mitochondrial bc1 complex at 2.28Angstrom resolution with antimycin bound, allows us for the first time to reliably describe the binding of antimycin and shows that the intramolecular hydrogen bond described in solution and in the small-molecule structure is replaced by one involving the NH rather than carbonyl O of the amide linkage, with rotation of the amide group relative to the aromatic ring. The phenolic OH and formylamino N form H-bonds with conserved Asp228 of cyt b, and the formylamino O H-bonds via a water molecule to Lys227. A strong density the right size and shape for a diatomic molecule is found between the other side of the dilactone ring and the alpha-A helix.

  5. Alkyl Radicals as Hydrogen Bond Acceptors: Computational Evidence

    DEFF Research Database (Denmark)

    Hammerum, Steen

    2009-01-01

    Spectroscopic, energetic and structural information obtained by DFT and G3-type computational studies demonstrates that charged proton donors can form moderately strong hydrogen bonds to simple alkyl radicals. The presence of these bonds stabilizes the adducts and modifies their structure......, and gives rise to pronounced shifts of IR stretching frequencies and to increased absorption intensities. The hydrogen bond acceptor properties of alkyl radicals equal those of many conventional acceptors, e.g., the bond length changes and IR red-shifts suggest that tert-butyl radicals are slightly better...... acceptors than formaldehyde molecules, while propyl radicals are as good as H2O. The hydrogen bond strength appears to depend on the proton affinity of the proton donor and on the ionization energy of the acceptor alkyl radical, not on the donor-acceptor proton affinity difference, reflecting...

  6. Activation of the Hg-C Bond of Methylmercury by [S2]-Donor Ligands.

    Science.gov (United States)

    Karri, Ramesh; Banerjee, Mainak; Chalana, Ashish; Jha, Kunal Kumar; Roy, Gouriprasanna

    2017-10-16

    Here we report that [S 2 ]-donor ligands Bmm OH , Bmm Me , and Bme Me bind rapidly and reversibly to the mercury centers of organomercurials, RHgX, and facilitate the cleavage of Hg-C bonds of RHgX to produce stable tetracoordinated Hg(II) complexes and R 2 Hg. Significantly, the rate of cleavage of Hg-C bonds depends critically on the X group of RHgX (X = BF 4 - , Cl - , I - ) and the [S 2 ]-donor ligands used to induce the Hg-C bonds. For instance, the initial rate of cleavage of the Hg-C bond of MeHgI induced by Bme Me is almost 2-fold higher than the initial rate obtained by Bmm OH or Bmm Me , indicating that the spacer between the two imidazole rings of [S 2 ]-donor ligands plays a significant role here in the cleavage of Hg-C bonds. Surprisingly, we noticed that the initial rate of cleavage of the Hg-C bond of MeHgI induced by Bme Me (or Bmm Me ) is almost 10-fold and 100-fold faster than the cleavage of Hg-C bonds of MeHgCl and [MeHg]BF 4 respectively, under identical reaction conditions, suggesting that the Hg-C bond of [MeHg]BF 4 is highly inert at room temperature (21 °C). We also show here that the nature of the final stable cleaved products, i.e. Hg(II) complexes, depends on the X group of RHgX and the [S 2 ]-donor ligands. For instance, the reaction of Bmm Me with MeHgCl (1:1 molar ratio) afforded the formation of the 16-membered metallacyclic dinuclear mercury compound (Bmm Me ) 2 Hg 2 Cl 4 , in which the two Cl atoms are located inside the ring, whereas due to the large size of the I atom, a similar reaction with MeHgI yielded polymeric [(Bmm Me ) 2 HgI 2 ] m ·(MeHgI) n . However, the treatment of Bmm Me with ionic [RHg]BF 4 led to the formation of the tetrathione-coordinated mononuclear mercury compound [(Bmm Me ) 2 Hg](BF 4 ) 2 , where BF 4 - serves as a counteranion.

  7. Atomistic spectrometrics of local bond-electron-energy pertaining to Na and K clusters

    Energy Technology Data Exchange (ETDEWEB)

    Bo, Maolin [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Hunan 411105 (China); Wang, Yan, E-mail: YWang8@hnust.edu.cn [School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); Huang, Yongli; Liu, Yonghui [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Hunan 411105 (China); Li, Can [Center for Coordination Bond Engineering, School of Materials Science and Engineering, China Jiliang University, Hangzhou 330018 (China); Sun, Chang Q., E-mail: ecqsun@ntu.edu.sg [NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2015-01-15

    Graphical abstract: - Highlights: • Coordination environment resolves electron binding-energy shift of Na and K clusters. • Cohesive energy of the representative bond determines the core-level shift. • XPS derives the energy level of an isolated atom and its bulk shift. • XPS derives the local bond length, bond energy, binding energy density. - Abstract: Consistency between density functional theory calculations and photoelectron spectroscopy measurements confirmed our predications on the undercoordination-induced local bond relaxation and core level shift of Na and K clusters. It is clarified that the shorter and stronger bonds between under-coordinated atoms cause local densification and local potential well depression and shift the electron binding-energy accordingly. Numerical consistency turns out the energy levels for an isolated Na (E{sub 2p} = 31.167 eV) and K (E{sub 3p} = 18.034 eV) atoms and their respective bulk shifts of 2.401 eV and 2.754 eV, which is beyond the scope of conventional approaches. This strategy has also resulted in quantification of the local bond length, bond energy, binding energy density, and atomic cohesive energy associated with the undercoordinated atoms.

  8. Atmospheric chemistry of perfluorinated carboxylic acids: Reaction with OH radicals and atmospheric lifetimes

    DEFF Research Database (Denmark)

    Hurley, MD; Andersen, Mads Peter Sulbæk; Wallington, TJ

    2004-01-01

    Relative rate techniques were used to study the kinetics of the reactions of OH radicals with a homologous series of perfluorinated acids, F(CF2)(n)COOH (n = 1, 2, 3, 4), in 700 Torr of air at 296 +/- 2 K. For n > 1, the length of the F(CF2)(n) group had no discernible impact on the reactivity of...

  9. Microstructural characteristics of HIP-bonded monolithic nuclear fuels with a diffusion barrier

    Science.gov (United States)

    Jue, Jan-Fong; Keiser, Dennis D.; Breckenridge, Cynthia R.; Moore, Glenn A.; Meyer, Mitchell K.

    2014-05-01

    Due to the limitation of maximum uranium load achievable by dispersion fuel type, the Global Threat Reduction Initiative is developing an advanced monolithic fuel to convert US high-performance research reactors to low-enriched uranium. Hot-isostatic-press (HIP) bonding was the single process down-selected to bond monolithic U-Mo fuel meat to aluminum alloy cladding. A diffusion barrier was applied to the U-Mo fuel meat by roll-bonding process to prevent extensive interaction between fuel meat and aluminum-alloy cladding. Microstructural characterization was performed on fresh fuel plates fabricated at Idaho National Laboratory. Interfaces between the fuel meat, the cladding, and the diffusion barrier, as well as between the U-10Mo fuel meat and the Al-6061 cladding, were characterized by scanning electron microscopy. Preliminary results indicate that the interfaces contain many different phases while decomposition, second phases, and chemical banding were also observed in the fuel meat. The important attributes of the HIP-bonded monolithic fuel are: line. Some of these attributes might be critical to the irradiation performance of monolithic U-10Mo nuclear fuel. There are several issues or concerns that warrant more detailed study, such as precipitation along the cladding-to-cladding bond line, chemical banding, uncovered fuel-zone edge, and the interaction layer between the U-Mo fuel meat and zirconium. Future post-irradiation examination results will focus, among other things, on identifying in-reactor failure mechanisms and, eventually, directing further fresh fuel characterization efforts.

  10. Influence of matrix metalloproteinase synthetic inhibitors on dentin microtensile bond strength of resin cements.

    Science.gov (United States)

    Stape, T H S; Menezes, M S; Barreto, B C F; Aguiar, F H B; Martins, L R; Quagliatto, P S

    2012-01-01

    This study evaluated the effect of dentin pretreatment with 2% chlorhexidine (CHX) or 24% ethylenediamine tetra-acetic acid gel (EDTA) on the dentin microtensile bond strength (μTBS) of resin cements. Composite blocks were luted to superficial noncarious human dentin (n=10) using two resin cements (RelyX ARC [ARC] and RelyX U100 [U100]) and three dentin pretreatments (without pretreatment-control, CHX, and EDTA). CHX was applied for 60 seconds on the acid-etched dentin in the ARC/CHX group, and for the same time on smear layer-covered dentin in the U100/CHX group. EDTA was applied for 45 seconds on smear-covered dentin in the U100/EDTA group, and it replaced phosphoric acid conditioning in the ARC/EDTA group for 60 seconds. After storage in water for 24 hours, specimens were prepared for microtensile bond strength testing. The results were submitted to two-way analysis of variance (ANOVA) followed by Tukey test. ARC produced significantly higher μTBS (pEDTA was used. For ARC, no pretreatment and CHX produced higher μTBS than EDTA. For U100, EDTA produced higher μTBS; no statistical difference occurred between CHX pretreatment and when no pretreatment was performed. While CHX did not affect immediate dentin bond strength of both cements, EDTA improved bond strength of U100, but it reduced dentin bond strength of ARC.

  11. A density functional theory and quantum theory of atoms-in-molecules analysis of the stability of Ni(II) complexes of some amino alcohol ligands.

    Science.gov (United States)

    Varadwaj, Pradeep R; Cukrowski, Ignacy; Perry, Christopher B; Marques, Helder M

    2011-06-23

    The structure of the complexes of the type [Ni(L)(H(2)O)(2)](2+), where L is an amino alcohol ligand, L = N,N'-bis(2-hydroxyethyl)-ethane-1,2-diamine (BHEEN), N,N'-bis(2-hydroxycyclohexyl)-ethane-1,2-diamine (Cy(2)EN), and N,N'-bis(2-hydroxycyclopentyl)-ethane-1,2-diamine, (Cyp(2)EN) were investigated at the X3LYP/6-31+G(d,p) level of theory both in the gas phase and in solvent (CPCM model) to gain insight into factors that control the experimental log K(1) values. We find that (i) analyses based on Bader's quantum theory of atoms in molecules (QTAIM) are useful in providing significant insight into the nature of metal-ligand bonding and in clarifying the nature of weak "nonbonded" interactions in these complexes and (ii) the conventional explanation of complex stability in these sorts of complexes (based on considerations of bond lengths, bite angles and H-clashes) could be inadequate and indeed might be misleading. The strength of metal-ligand bonds follows the order Ni-N > Ni-OH ≥ Ni-OH(2); the bonds are predominantly ionic with some covalent character decreasing in the order Ni-N > Ni-OH > Ni-OH(2), with Ni-OH(2) being close to purely ionic. We predict that the cis complexes are preferred over the trans complexes because of (i) stronger bonding to the alcoholic O-donor atoms and (ii) more favorable intramolecular interactions, which appear to be important in determining the conformation of a metal-ligand complex. We show that (i) the flexibility of the ligand, which controls the Ni-OH bond length, and (ii) the ability of the ligand to donate electron density to the metal are likely to be important factors in determining values of log K(1). We find that the electron density at the ring critical point of the cyclopentyl moieties in Cyp(2)EN is much higher than that in the cyclohexyl moieties of Cy(2)EN and interpret this to mean that Cyp(2)EN is a poorer donor of electron density to a Lewis acid than Cy(2)EN.

  12. Ternary Ni–Cu–OH and Ni–Co–OH electrodes for electrochemical energy storage

    KAUST Repository

    Alhebshi, Nuha

    2015-10-01

    In this project, Ni–Cu–OH and Ni–Co–OH ternary electrodes have been prepared. Different Ni:Cu and Ni:Co ratios were deposited by chemical bath deposition (CBD) at room temperature on carbon microfibers. Since Ni(OH)2 is notorious for poor cycling stability, the goal of the work was to determine if doping with Cu or Co could improve Ni(OH)2 cycling stability performance and conductivity against reaction with electrolyte. It is observed that the electrodes with Ni:Cu and Ni:Co composition ratio of 100:10 result in the optimum capacitance and cycling stability in both Ni–Cu–OH and Ni–Co–OH electrodes. This improvement in cycling stability can be attributed to the higher redox reversibility as indicated by the smaller CV redox peak separation. In addition, it is found that decreasing Cu and Co ratios, with fixed CBD time, enhances nanoflakes formation, and hence increases electrode capacitance. For the optimum composition (Ni:Co = 100:10), composites of the ternary electrodes with graphene and carbon nanofibers were also tested, with resultant improvement in potential window, equivalent series resistance, areal capacitance and cycling stability.

  13. Comprehensive Theoretical Studies on the Reaction of 1-Bromo-3,3,3-trifluoropropene with OH Free Radicals

    Directory of Open Access Journals (Sweden)

    Yan Tian

    2013-07-01

    Full Text Available The potential energy surfaces (PES for the reaction of 1-bromo-3,3,3-trifluoropropene (CF3CHCBrH with hydroxyl (OH free radicals is probed theoretically at the CCSD/aug-cc-pVDZ//B3LYP/6-311++G(d,p level of theory. All the possible stationary and first-order saddle points along the reaction paths were verified by the vibrational analysis. The calculations account for all the product channels. Based on the calculated CCSD/aug-cc-pVDZ potential energy surface, the possible reaction mechanism is discussed. Six distinct reaction pathways of 1-bromo-3,3,3-trifluoropropene (BTP with OH are investigated. The geometries, reaction enthalpies and energy barriers are determined. Canonical transition-state theory with Wigner tunneling correction was used to predict the rate constants for the temperature range of 290–3,000 K without any artificial adjustment, and the computed rate constants for elementary channels can be accurately fitted with three-parameter Arrhenius expressions. OH addition reaction channel and the H atom abstraction channels related to the carbon-carbon double bond are found to be the main reaction channels for the reaction of 1-bromo-3,3,3-trifluoropropene (CF3CHCBrH with hydroxyl (OH free radicals while the products leading to CF3CHCH + BrOH and COHF2CHCBrH + F play a negligible role.

  14. Irradiation performance of helium-bonded uranium--plutonium carbide fuel elements

    International Nuclear Information System (INIS)

    Latimer, T.W.; Petty, R.L.; Kerrisk, J.F.; DeMuth, N.S.; Levine, P.J.; Boltax, A.

    1979-01-01

    The current irradiation program of helium-bonded uranium--plutonium carbide elements is achieving its original goals. By August 1978, 15 of the original 171 helium-bonded elements had reached their goal burnups including one that had reached the highest burnup of any uranium--plutonium carbide element in the U.S.--12.4 at.%. A total of 66 elements had attained burnups over 8 at.%. Only one cladding breach had been identified at that time. In addition, the systematic and coordinated approach to the current steady-state irradiation tests is yielding much needed information on the behavior of helium-bonded carbide fuel elements that was not available from the screening tests (1965 to 1974). The use of hyperstoichiometric (U,Pu)C containing approx. 10 vol% (U,Pu) 2 C 3 appears to combine lower swelling with only a slightly greater tendency to carburize the cladding than single-phase (U,Pu)C. The selected designs are providing data on the relationship between the experimental parameters of fuel density, fuel-cladding gap size, and cladding type and various fuel-cladding mechanical interaction mechanisms

  15. Similarities between intra- and intermolecular hydrogen bonds in RNA kissing complexes found by means of cross-correlated relaxation

    International Nuclear Information System (INIS)

    Dittmer, Jens; Kim, Chul-Hyun; Bodenhausen, Geoffrey

    2003-01-01

    The bond lengths and dynamics of intra- and intermolecular hydrogen bonds in an RNA kissing complex have been characterized by determining the NMR relaxation rates of various double- and triple-quantum coherences that involve an imino proton and two neighboring nitrogen-15 nuclei belonging to opposite bases. New experiments allow one to determine the chemical shift anisotropy of the imino protons. The bond lengths derived from dipolar relaxation and the lack of modulations of the nitrogen chemical shifts indicate that the intermolecular hydrogen bonds which hold the kissing complex together are very similar to the intramolecular hydrogen bonds in the double-stranded stem of the RNA

  16. The hydrogen bond between N-H or O-H and organic fluorine: favourable yes, competitive no.

    Science.gov (United States)

    Taylor, Robin

    2017-06-01

    A study was made of X-H...F-C interactions (X = N or O) in small-molecule crystal structures. It was primarily based on 6728 structures containing X-H and C-F and no atom heavier than chlorine. Of the 28 451 C-F moieties in these structures, 1051 interact with X-H groups. However, over three-quarters of these interactions are either the weaker components of bifurcated hydrogen bonds (so likely to be incidental contacts) or occur in structures where there is a clear insufficiency of good hydrogen-bond acceptors such as oxygen, nitrogen or halide. In structures where good acceptors are entirely absent, there is about a 2 in 3 chance that a given X-H group will donate to fluorine. Viable alternatives are X-H...π hydrogen bonds (especially to electron-rich aromatics) and dihydrogen bonds. The average H...F distances of X-H...F-C interactions are significantly shorter for CR 3 F (R = C or H) and Csp 2 -F acceptors than for CRF 3 . The X-H...F angle distribution is consistent with a weak energetic preference for linearity, but that of H...F-C suggests a flat energy profile in the range 100-180°. X-H...F-C interactions are more likely when the acceptor is Csp 2 -F or CR 3 F, and when the donor is C-NH 2 . They also occur significantly more often in structures containing tertiary alcohols or solvent molecules, or with Z' > 1, i.e. when there may be unusual packing problems. It is extremely rare to find X-H...F-C interactions in structures where there are several unused good acceptors. When it does happen, there is often a clear reason, e.g. awkwardly shaped molecules whose packing isolates a donor group from the good acceptors.

  17. FFTF metal fuel pin sodium bond quality verification

    International Nuclear Information System (INIS)

    Pitner, A.L.; Dittmer, J.O.

    1988-12-01

    The Fast Flux Test Facility (FFTF) Series III driver fuel design consists of U-10Zr fuel slugs contained in a ferritic alloy cladding. A liquid metal, sodium bond between the fuel and cladding is required to prevent unacceptable temperatures during operation. Excessive voiding or porosity in the sodium thermal bond could result in localized fuel melting during irradiation. It is therefore imperative that bond quality be verified during fabrication of these metal fuel pins prior to irradiation. This document discusses this verification

  18. 75 FR 68809 - Agency Information Collection Activities: Importation Bond Structure

    Science.gov (United States)

    2010-11-09

    ... DEPARTMENT OF HOMELAND SECURITY U.S. Customs And Border Protection Agency Information Collection Activities: Importation Bond Structure AGENCY: U.S. Customs and Border Protection, Department of Homeland... collection: 1651-0050. SUMMARY: U.S. Customs and Border Protection (CBP) of the Department of Homeland...

  19. Effect OF NaOH Treatment on Bending Strength Of The Polyester Composite Reinforce By Sugar Palm Fibers

    Science.gov (United States)

    Arif Irfai, Mochamad; Wulandari, Diah; Sutriyono; Marsyahyo, Eko

    2018-04-01

    The objective of this research is to investigate the effect of NaOH treatment on bending strength of lamina composite reinforced by sugar palm fiber. To know of mechanism fracture can be done with visual inspection of the fracture surface. The Materials used are random sugar palm fibers that have been in the treatment of NaOH, polyester resin and hardener. Sugar palm fibers after washed and dried then soaked NaOH with a long time soaking 0, 2, 4, 6 and 8 hours. The bending test specimens were produced according to ASTM D 790. All specimens were post cured at 62°C for 4 hours. The Bending test was carried out on a universal testing machine. The SEM analysis has conducted to provide the analysis on interface adhesion between the surfaces of fiber with the matrix. The result shows that polyester composite reinforced by sugar palm fiber has highest bending stress 176.77 N/mm2 for 2 hours of a long time soaking NaOH, the highest flexural strain 0.27 mm for 2 hours of a long time soaking NaOH, elongation 24.05% for 2 hours of a long time soaking NaOH and the highest bending modulus 1.267 GPa for 2 hours of a long time soaking NaOH. Based on the results, it can be concluded that the polyester composite reinforced by sugar palm fiber has the optimum bending properties for a long time soaking 2 hours. The fracture surface shows that the polyester composite reinforced by sugar palm fiber pull out that indicate weakens the bond between fiber and matrix.

  20. Physico-chemical properties of (U,Ce)O2

    International Nuclear Information System (INIS)

    Yamada, K.; Yamanaka, S.; Katsura, M.

    1998-01-01

    The high-temperature X-ray diffraction analysis of (U,Ce)O 2 with CeO 2 contents ranging from 0 to 20 mol.% CeO 2 was performed to obtain the variation of the linear thermal expansion coefficient with the CeO 2 content. Ultrasonic pulse-echo measurements were also carried out from room temperature to 673 K to estimate the change in the mechanical properties of (U,Ce)O 2 with the CeO 2 content. The variation in the linear thermal expansion coefficient at the low CeO 2 content region is more steep than that expected from the linear thermal expansion coefficient of UO 2 and CeO 2 . The Young's and shear moduli of all (U,Ce)O 2 were found to decrease with rising temperature. This was due to the increase of the bond length accompanied by the thermal expansion. Although the lattice parameter decreased with CeO 2 content, the moduli of (U,Ce)O 2 were found to decrease with increasing CeO 2 content at room temperature. These results show that in the range from 0 to 20 mol.% of CeO 2 , as CeO 2 content increases, the bottom of the potential energy in (U,Ce)O 2 is shallower and broader. (orig.)

  1. Atmospheric chemistry of CF3COOH. Kinetics of the reaction with OH radicals

    DEFF Research Database (Denmark)

    Møgelberg, T.E.; Nielsen, O.J.; Sehested, J.

    1994-01-01

    Two different experimental techniques were used to study the kinetics of the reaction of OH radicals with trifluoroacetic acid, CF3COOH. Using a pulse radiolysis absolute rate technique, rate constants at 315 and 348 K were determined to be (1.6 +/- 0.4) x 10(-13) and (1.5 +/- 0.2) x 10(-13) cm3...... molecule-1 s-1, respectively. Using a long path-length FTIR relative rate technique a rate constant of (1.7 +/- 0.5) x 10(-13) cm3 molecule-1 s-1 was obtained at 296 K. In the atmosphere, reaction with OH radicals in the gas phase is estimated to account for 10%-20% of the loss of CF3COOH. The major fate...

  2. Layered Ni(OH)2-Co(OH)2 films prepared by electrodeposition as charge storage electrodes for hybrid supercapacitors.

    Science.gov (United States)

    Nguyen, Tuyen; Boudard, Michel; Carmezim, M João; Montemor, M Fátima

    2017-01-04

    Consecutive layers of Ni(OH) 2 and Co(OH) 2 were electrodeposited on stainless steel current collectors for preparing charge storage electrodes of high specific capacity with potential application in hybrid supercapacitors. Different electrodes were prepared consisting on films of Ni(OH) 2 , Co(OH) 2 , Ni 1/2 Co 1/2 (OH) 2 and layered films of Ni(OH) 2 on Co(OH) 2 and Co(OH) 2 on Ni(OH) 2 to highlight the advantages of the new architecture. The microscopy studies revealed the formation of nanosheets in the Co(OH) 2 films and of particles agglomerates in the Ni(OH) 2 films. Important morphological changes were observed in the double hydroxides films and layered films. Film growth by electrodeposition was governed by instantaneous nucleation mechanism. The new architecture composed of Ni(OH) 2 on Co(OH) 2 displayed a redox response characterized by the presence of two peaks in the cyclic voltammograms, arising from redox reactions of the metallic species present in the layered film. These electrodes revealed a specific capacity of 762 C g -1 at the specific current of 1 A g -1 . The hybrid cell using Ni(OH) 2 on Co(OH) 2 as positive electrode and carbon nanofoam paper as negative electrode display specific energies of 101.3 W h g -1 and 37.8 W h g -1 at specific powers of 0.2 W g -1 and 2.45 W g -1 , respectively.

  3. 13C, 18O, and D Fractionation Effects in the Reactions of CH3OH Isotopologues with Cl andOH Radicals

    DEFF Research Database (Denmark)

    Feilberg, Karen; Gruber-Stadler, Margaret; Johnson, Matthew Stanley

    2008-01-01

    A relative rate experiment is carried out for six isotopologues of methanol and their reactions with OH and Cl radicals. The reaction rates of CH2DOH, CHD2OH, CD3OH, 13CH3OH, and CH3 18OH with Cl and OH radicals are measured by long-path FTIR spectroscopy relative to CH3OH at 298 ( 2 K and 1013...... with measured high-resolution infrared spectra as references. The relative reaction rates defined as R ) klight/kheavy are determined to be: kOH + CH3OH/kOH + 13CH3OH ) 1.031 ( 0.020, kOH + CH3OH/kOH + CH3 18OH ) 1.017 ( 0.012, kOH + CH3OH/kOH + CH2DOH ) 1.119 ( 0.045, kOH + CH3OH/kOH + CHD2OH ) 1.326 ( 0...... reactions with CH3OH were further investigated using canonical variational transition state theory with small curvature tunneling and compared to experimental measurements as well as to those observed in CH4 and several other substituted methane species. Udgivelsesdato: 16 August 2008...

  4. Charge-Shift Corrected Electronegativities and the Effect of Bond Polarity and Substituents on Covalent-Ionic Resonance Energy.

    Science.gov (United States)

    James, Andrew M; Laconsay, Croix J; Galbraith, John Morrison

    2017-07-13

    Bond dissociation energies and resonance energies for H n A-BH m molecules (A, B = H, C, N, O, F, Cl, Li, and Na) have been determined in order to re-evaluate the concept of electronegativity in the context of modern valence bond theory. Following Pauling's original scheme and using the rigorous definition of the covalent-ionic resonance energy provided by the breathing orbital valence bond method, we have derived a charge-shift corrected electronegativity scale for H, C, N, O, F, Cl, Li, and Na. Atomic charge shift character is defined using a similar approach resulting in values of 0.42, 1.06, 1.43, 1.62, 1.64, 1.44, 0.46, and 0.34 for H, C, N, O, F, Cl, Li, and Na, respectively. The charge-shift corrected electronegativity values presented herein follow the same general trends as Pauling's original values with the exception of Li having a smaller value than Na (1.57 and 1.91 for Li and Na respectively). The resonance energy is then broken down into components derived from the atomic charge shift character and polarization effects. It is then shown that most of the resonance energy in the charge-shift bonds H-F, H 3 C-F, and Li-CH 3 and borderline charge-shift H-OH is associated with polarity rather than the intrinsic atomic charge-shift character of the bonding species. This suggests a rebranding of these bonds as "polar charge-shift" rather than simply "charge-shift". Lastly, using a similar breakdown method, it is shown that the small effect the substituents -CH 3 , -NH 2 , -OH, and -F have on the resonance energy (<10%) is mostly due to changes in the charge-shift character of the bonding atom.

  5. Hydrogen bonding in (substituted benzene)·(water)n clusters with n≤4

    International Nuclear Information System (INIS)

    Barth, H.-D.; Buchhold, K.; Djafari, S.; Reimann, B.; Lommatzsch, U.; Brutschy, B.

    1998-01-01

    Infrared ion-depletion spectroscopy, a double resonance method combining vibrational predissociation with resonant two-photon ionization (R2PI) spectroscopy, has been applied to study mixed clusters of the type (substituted benzene)·(H 2 O) n with n≤4. The UV chromophores were p-difluorobenzene, fluorobenzene, benzene, toluene, p-xylene and anisole. From the IR depletion spectra in the region of the OH stretching vibrations it could be shown that the water molecules are attached as subclusters to the chromophores. Size and configuration of the subclusters could be deduced from the IR depletion spectra. In the anisole·(H 2 O) 1 a nd 2 complexes the water clusters form an ordinary hydrogen bond to the oxygen atom of the methoxy group. In all other mixed complexes a π-hydrogen bond is formed between one of the free OH groups of a water subcluster and the π-system of the chromophore. According to the strength of this interaction the frequency of the respective absorption band exhibits a characteristic red-shift which could be related to the total atomic charges in the aromatic ring. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  6. Probing the Watson-Crick, wobble, and sugar-edge hydrogen bond sites of uracil and thymine.

    Science.gov (United States)

    Müller, Andreas; Frey, Jann A; Leutwyler, Samuel

    2005-06-16

    The nucleobases uracil (U) and thymine (T) offer three hydrogen-bonding sites for double H-bond formation via neighboring N-H and C=O groups, giving rise to the Watson-Crick, wobble and sugar-edge hydrogen bond isomers. We probe the hydrogen bond properties of all three sites by forming hydrogen bonded dimers of U, 1-methyluracil (1MU), 3-methyluracil (3MU), and T with 2-pyridone (2PY). The mass- and isomer-specific S1 origins exhibit large spectral blue shifts relative to the 2PY monomer. Ab initio CIS calculations of the spectral shifts of the different hydrogen-bonded dimers show a linear correlation with experiment. This correlation allows us to identify the R2PI spectra of the weakly populated Watson-Crick and wobble isomers of both 2PY.U and 2PY.T. (3) PW91 density functional calculation of the ground-state binding and dissociation energies De and D0 are in agreement with the assignment of the dominant hydrogen bond isomers of 2PY.U, 2PY.3MU and 2PY.T as the sugar-edge form. For 2PY.U, 2PY.T and 2PY.1MU the measured wobble:Watson-Crick:sugar-edge isomer ratios are in good agreement with the calculated ratios, based on the ab initio dissociation energies and gas-phase statistical mechanics. The Watson-Crick and wobble isomers are thereby determined to be several kcal/mol less strongly bound than the sugar-edge isomers. The 36 observed intermolecular frequencies of the nine different H-bonded isomers give detailed insight into the intermolecular force field.

  7. Anharmonicity and hydrogen bonding in electrooptic sucrose crystal

    Science.gov (United States)

    Szostak, M. M.; Giermańska, J.

    1990-03-01

    The polarized absorption spectra of the sucrose crystal in the 5300 - 7300 cm -1 region have been measured. The assignments of all the eight OH stretching overtones are proposed and their mechanical anharmonicities are estimated. The discrepancies from the oriented gas model (OGM) in the observed relative band intensities, especially of the -CH vibrations, are assumed to be connected with vibronic couplings enhanced by the helical arrangement of molecules joined by hydrogen bondings. It seems that this kind of interactions might be important for the second harmonic generation (SHG) by the sucrose crystal.

  8. Solvation pressure as real pressure: I. Ethanol and starch under negative pressure

    CERN Document Server

    Uden, N W A V; Faux, D A; Tanczos, A C; Howlin, B; Dunstan, D J

    2003-01-01

    The reality of the solvation pressure generated by the cohesive energy density of liquids is demonstrated by three methods. Firstly, the Raman spectrum of ethanol as a function of cohesive energy density (solvation pressure) in ethanol-water and ethanol-chloroform mixtures is compared with the Raman spectrum of pure ethanol under external hydrostatic pressure and the solvation pressure and hydrostatic pressure are found to be equivalent for some transitions. Secondly, the bond lengths of ethanol are calculated by molecular dynamics modelling for liquid ethanol under pressure and for ethanol vapour. The difference in bond lengths between vapour and liquid are found to be equivalent to the solvation pressure for the C-H sub 3 , C-H sub 2 and O-H bond lengths, with discrepancies for the C-C and C-O bond lengths. Thirdly, the pressure-induced gelation of potato starch is measured in pure water and in mixtures of water and ethanol. The phase transition pressure varies in accordance with the change in solvation pre...

  9. Mechanistic Insights on C-O and C-C Bond Activation and Hydrogen Insertion during Acetic Acid Hydrogenation Catalyzed by Ruthenium Clusters in Aqueous Medium

    Energy Technology Data Exchange (ETDEWEB)

    Shangguan, Junnan; Olarte, Mariefel V.; Chin, Ya-Huei [Cathy

    2016-06-07

    Catalytic pathways for acetic acid (CH3COOH) and hydrogen (H2) reactions on dispersed Ru clusters in the aqueous medium and the associated kinetic requirements for C-O and C-C bond cleavages and hydrogen insertion are established from rate and isotopic assessments. CH3COOH reacts with H2 in steps that either retain its carbon backbone and lead to ethanol, ethyl acetate, and ethane (47-95 %, 1-23 %, and 2-17 % carbon selectivities, respectively) or break its C-C bond and form methane (1-43 % carbon selectivities) at moderate temperatures (413-523 K) and H2 pressures (10-60 bar, 298 K). Initial CH3COOH activation is the kinetically relevant step, during which CH3C(O)-OH bond cleaves on a metal site pair at Ru cluster surfaces nearly saturated with adsorbed hydroxyl (OH*) and acetate (CH3COO*) intermediates, forming an adsorbed acetyl (CH3CO*) and hydroxyl (OH*) species. Acetic acid turnover rates increase proportionally with both H2 (10-60 bar) and CH3COOH concentrations at low CH3COOH concentrations (<0.83 M), but decrease from first to zero order as the CH3COOH concentration and the CH3COO* coverages increase and the vacant Ru sites concomitantly decrease. Beyond the initial CH3C(O)-OH bond activation, sequential H-insertions on the surface acetyl species (CH3CO*) lead to C2 products and their derivative (ethanol, ethane, and ethyl acetate) and the competitive C-C bond cleavage of CH3CO* causes the eventual methane formation. The instantaneous carbon selectivities towards C2 species (ethanol, ethane, and ethyl acetate) increase linearly with the concentration of proton-type Hδ+ (derived from carboxylic acid dissociation) and chemisorbed H*. The selectivities towards C2 products decrease with increasing temperature, because of higher observed barriers for C-C bond cleavage than H-insertion. This study offers an interpretation of mechanism and energetics and provides kinetic evidence of carboxylic acid assisted proton-type hydrogen (Hδ+) shuffling during H

  10. Obesity hypoventilation syndrome (OHS)

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000085.htm Obesity hypoventilation syndrome (OHS) To use the sharing features on this page, please enable JavaScript. Obesity hypoventilation syndrome (OHS) is a condition in some ...

  11. Effect of Silica fume and superplasticizer on steel-concrete bond

    International Nuclear Information System (INIS)

    Esfahani, M. R.

    2001-01-01

    This paper presents a study on the influence of silica fume and super plasticizer on bond strength. The study included tests of fifty short length pull-out specimens in five series. The effect of silica fume and super plasticizer on bond strength was evaluated separately by tests of specimens made of concretes with similar strengths but different admixtures. Test results showed that the addition of silica fume in the concrete mixture had not a negative effect on bond strength. Also, there was not a considerable decrease in bond strength of specimens made of concrete with super plasticizer. Comparing the measured bond strengths normalized with respect to the square root of the concrete compressive strength, it was seen that the normalized bond strength increased with the concrete strength. this result agrees with the model previously proposed by the author for local bond strength. For the specimens made of high strength concrete including silica fume and super plasticizer, the normalized bond strength did not increase with the concrete strength

  12. Knudsen cell--mass spectrometer studies of cesium--urania interactions. [Cs/sub 2/CO/sub 3/ or CsOH

    Energy Technology Data Exchange (ETDEWEB)

    Collins, J.L.; Osborne, M.F.; Malinauskas, A.P.; Lorenz, R.A.; Manning, S.R.

    1976-06-01

    Limited Knudsen cell--mass spectrometer studies were made of the partial pressures of cesium-containing species (assumed to be primarily Cs(g)) over Cs/sub 2/CO/sub 3/ and over phase equilibria involving UO/sub 2/ and probable Cs-U-O compounds formed from mixtures that initially contained either Cs/sub 2/CO/sub 3/-UO/sub 2/ or CsOH-UO/sub 2/. Although additional work is required to further define the equilibria involved, the data demonstrate unambiguously a significant reduction in cesium partial pressures due to probable Cs-U-O compound formation and indicate essentially identical behavior with either CsOH or Cs/sub 2/CO/sub 3/ as the starting material with UO/sub 2/.

  13. OH, HO2 and RO2 Radical and OH Reactivity Observations during the Summertime in Beijing: High In-Situ Ozone Production and Evidence of a Missing OH Source.

    Science.gov (United States)

    Whalley, L.; Ye, C.; Slater, E.; Woodward-Massey, R.; Lee, J. D.; Squires, F. A.; Hopkins, J. R.; Dunmore, R.; Shaw, M.; Hamilton, J.; Lewis, A. C.; Crilley, L.; Kramer, L. J.; Bloss, W.; Heard, D. E.

    2017-12-01

    Despite substantial reductions in primary emissions of pollutants in China over the past decade, concentrations of the secondary pollutant, ozone, still frequently exceed air quality threshold limits in urban areas during the summertime. We will present measurements of OH, HO2 and RO2 radicals and OH reactivity made in central Beijing at the Institute of Atmospheric Physics of the Chinese Academy of Sciences, close to the North 4th ring road in May and June 2017 which formed the summer phase of `An Integrated Study of AIR Pollution PROcesses'. Elevated levels of O3 (>100 ppbv) were regularly observed. NO concentrations were elevated during the morning but often decreased to below the instrument limit of detection during the afternoon hours when the ozone concentrations peaked. Biogenic emissions influenced the chemistry at the site, with several ppbv of isoprene measured during the afternoons. The OH measurements were made using the FAGE technique, equipped with an inlet pre injector (IPI) which provides an alternative method to determine the instrument background signal by injecting a scavenger to remove ambient OH and ensures an artefact-free OH measurement. Elevated levels of OH were observed, with a mean peak OH concentration of 1.2×107 molecule cm-3 at noon; but with OH concentrations reaching up to 2.5×107 molecule cm-3 on some days. Mean peak HO2 concentrations of 3×108 molecule cm-3 and total RO2 of 1.2×109 molecule cm-3 were recorded, with maximum concentrations of 1.0×109 molecule cm-3 and 4×109 molecule cm-3 observed for HO2 and RO2 respectively, suggesting significant in situ ozone production. A comparison of the artefact-free OH observations with steady state calculations, constrained to the total OH reactivity measurement and known OH precursors that were measured alongside OH, highlights a significant missing daytime OH source under low [NO], with the steady state OH concentrations approximately a factor of two lower than the OH concentrations

  14. Experimental study of the reactions of limonene with OH and OD radicals: kinetics and products.

    Science.gov (United States)

    Braure, Tristan; Bedjanian, Yuri; Romanias, Manolis N; Morin, Julien; Riffault, Véronique; Tomas, Alexandre; Coddeville, Patrice

    2014-10-09

    The kinetics of the reactions of limonene with OH and OD radicals has been studied using a low-pressure flow tube reactor coupled with a quadrupole mass spectrometer: OH + C10H16 → products (1), OD + C10H16 → products (2). The rate constants of the title reactions were determined using four different approaches: either monitoring the kinetics of OH (OD) radicals or limonene consumption in excess of limonene or of the radicals, respectively (absolute method), and by the relative rate method using either the reaction OH (OD) + Br2 or OH (OD) + DMDS (dimethyl disulfide) as the reference one and following HOBr (DOBr) formation or DMDS and limonene consumption, respectively. As a result of the absolute and relative measurements, the overall rate coefficients, k1 = (3.0 ± 0.5) × 10(-11) exp((515 ± 50)/T) and k2 = (2.5 ± 0.6) × 10(-11) exp((575 ± 60)/T) cm(3) molecule(-1) s(-1), were determined at a pressure of 1 Torr of helium over the temperature ranges 220-360 and 233-353 K, respectively. k1 was found to be pressure independent over the range 0.5-5 Torr. There are two possible pathways for the reaction between OH (OD) and limonene: addition of the radical to one of the limonene double bonds (reactions 1a and 2a ) and abstraction of a hydrogen atom (reactions 1b and 2b ), resulting in the formation of H2O (HOD). Measurements of the HOD yield as a function of temperature led to the following branching ratio of the H atom abstraction channel: k2b/k2 = (0.07 ± 0.03) × exp((460 ± 140)/T) for T = (253-355) K.

  15. Thermal decomposition of ammonium perchlorate in the presence of Al(OH){sub 3}·Cr(OH){sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, WenJing [Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Ping, E-mail: lipinggnipil@home.ipe.ac.cn [Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Xu, HongBin; Sun, Randi; Qing, Penghui; Zhang, Yi [Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-03-01

    Highlights: • The amorphous Al(OH){sub 3}·Cr(OH){sub 3} nanoparticles containing surface hydroxyls were prepared by a hydrolytic co-precipitation method. • The Al(OH){sub 3}·Cr(OH){sub 3} nanoparticles show excellent catalytic ability for AP decomposition. • The surface hydroxyls and amorphous form of Al(OH){sub 3}·Cr(OH){sub 3} nanoparticles promote ammonia oxidation of AP. - Abstract: An Al(OH){sub 3}·Cr(OH){sub 3} nanoparticle preparation procedure and its catalytic effect and mechanism on thermal decomposition of ammonium perchlorate (AP) were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis and differential scanning calorimetry (TG-DSC), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis and mass spectroscopy (TG-MS). In the preparation procedure, TEM, SAED, and FT-IR showed that the Al(OH){sub 3}·Cr(OH){sub 3} particles were amorphous particles with dimensions in the nanometer size regime containing a large amount of surface hydroxyl under the controllable preparation conditions. When the Al(OH){sub 3}·Cr(OH){sub 3} nanoparticles were used as additives for the thermal decomposition of AP, the TG-DSC results showed that the addition of Al(OH){sub 3}·Cr(OH){sub 3} nanoparticles to AP remarkably decreased the onset temperature of AP decomposition from approximately 450 °C to 245 °C. The FT-IR, RS and XPS results confirmed that the surface hydroxyl content of the Al(OH){sub 3}·Cr(OH){sub 3} nanoparticles decreased from 67.94% to 63.65%, and Al(OH){sub 3}·Cr(OH){sub 3} nanoparticles were limitedly transformed from amorphous to crystalline after used as additives for the thermal decomposition of AP. Such behavior of Al(OH){sub 3}·Cr(OH){sub 3} nanoparticles promoted the oxidation of NH{sub 3} of AP to decompose to N{sub 2}O first, as indicated by the TG-MS results, accelerating the AP thermal decomposition.

  16. Repeated bonding of fixed retainer increases the risk of enamel fracture.

    Science.gov (United States)

    Chinvipas, Netrporn; Hasegawa, Yuh; Terada, Kazuto

    2014-01-01

    The aim of this study was to investigate the influences of repeated bonding, using 2 different orthodontic adhesive systems, on the shear bond strength (SBS) and the enamel surface morphology. Sixty premolars were divided into 2 groups (n = 30), and either Transbond XT (T group) or Fuji Ortho LC (F group) adhesives were used. SBS was measured 24 h after bonding, using a universal testing machine. Then, the enamel surfaces were investigated and the mode of failure was described using adhesive remnant index (ARI) scores. After each debonding, 10 teeth from each group were examined by scanning electron microscopy to determine the penetration of adhesives, the length of resin tags, and the state of the enamel surface. The other teeth were subjected to two more bonding/debonding procedures. In T group, the second debonding sequences had significantly higher bond strengths than the other sequences. The length of resin tags was greatest in the second debonding sequence, although there was no significant difference. In F group, the SBS increased with further rebonding and the failure mode tended towards cohesive failure. In both groups, the ARI scores increased with rebonding. Enamel loss could have occurred with both adhesives, although the surfaces appeared unchanged to the naked eye. From this study, we suggest that enamel damage caused by repeated bonding is of concern. To prevent bond failure, we should pay attention to the adhesion method used for bondable retainers.

  17. Raman and Mid-IR Spectral Analysis of the Atacamite-Structure Hydroxyl/Deuteroxyl Nickel Chlorides Ni2(OH/D)3Cl

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-Dong; Hagihala Masato; ZHENG Xu-Guang; MENG Dong-Doug; GUO Qi-Xin

    2011-01-01

    @@ Vibrational spectra(Raman 4000-95cm-1 and mid-IR 4000-400cm-1) of the atacamite-structure Ni2(OH)3Cl,including a rarely reported kind of asymmetric trimetric hydrogen bond, as a member of the geometrically frustrated material series and its deuteride Ni2(OD)3Cl are, to the best of our knowledge, reported for the first time and analyzed at room temperature.Through a comparative study of four spectra according to their crystal structural parameters, we assign OH stretching modes v(OH) in a functional group region(3700-3400 cm-1) and their deformation modes δ(NiOH/D) in the correlation peak region(900-600 cm-1)with the corresponding mode frequency ratios ωv(OD)/ωv(OH)≈73% and ωδ(NiOD)/ωδ(NiOH)≈75%, and further self-consistently suggest NiO and Ni-Cl related modes in the fingerprint region(500-200cm-1 and 200-Ocm-1, respectively) by use of the unified six-ligand NiO5Cl and NiO4Cl2 frames.This report may contribute to the spectral analysis of other hydroxyl transition-metal halides and to the understanding of the fundamental physics of their exotic magnetic geometrical frustration property from the spectral changes around the corresponding low transition temperatures.

  18. The complex of PAMAM-OH dendrimer with Angiotensin (1-7) prevented the disuse-induced skeletal muscle atrophy in mice.

    Science.gov (United States)

    Márquez-Miranda, Valeria; Abrigo, Johanna; Rivera, Juan Carlos; Araya-Durán, Ingrid; Aravena, Javier; Simon, Felipe; Pacheco, Nicolás; González-Nilo, Fernando Danilo; Cabello-Verrugio, Claudio

    2017-01-01

    Angiotensin (1-7) (Ang-(1-7)) is a bioactive heptapeptide with a short half-life and has beneficial effects in several tissues - among them, skeletal muscle - by preventing muscle atrophy. Dendrimers are promising vehicles for the protection and transport of numerous bioactive molecules. This work explored the use of a neutral, non-cytotoxic hydroxyl-terminated poly(amidoamine) (PAMAM-OH) dendrimer as an Ang-(1-7) carrier. Bioinformatics analysis showed that the Ang-(1-7)-binding capacity of the dendrimer presented a 2:1 molar ratio. Molecular dynamics simulation analysis revealed the capacity of neutral PAMAM-OH to protect Ang-(1-7) and form stable complexes. The peptide coverage ability of the dendrimer was between ~50% and 65%. Furthermore, an electrophoretic mobility shift assay demonstrated that neutral PAMAM-OH effectively bonded peptides. Experimental results showed that the Ang-(1-7)/PAMAM-OH complex, but not Ang-(1-7) alone, had an anti-atrophic effect when administered intraperitoneally, as evaluated by muscle strength, fiber diameter, myofibrillar protein levels, and atrogin-1 and MuRF-1 expressions. The results of the Ang-(1-7)/PAMAM-OH complex being intraperitoneally injected were similar to the results obtained when Ang-(1-7) was systemically administered through mini-osmotic pumps. Together, the results suggest that Ang-(1-7) can be protected for PAMAM-OH when this complex is intraperitoneally injected. Therefore, the Ang-(1-7)/PAMAM-OH complex is an efficient delivery method for Ang-(1-7), since it improves the anti-atrophic activity of this peptide in skeletal muscle.

  19. Study on the bonding strength between calcium phosphate/chitosan composite coatings and a Mg alloy substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jie [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Pharmacy College, Jiamusi University, Jiamusi 154007 (China); Dai Changsong, E-mail: changsd@hit.edu.cn [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Wei Jie [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); School of Chemistry and Bioengineering, Suzhou Science Technology University, Suzhou 215009 (China); Wen Zhaohui, E-mail: wenzhaohui1968@163.com [Department of Neuro intern, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Calcium phosphate/chitosan composite coatings on the MAO-AZ91D alloy were prepared. Black-Right-Pointing-Pointer The bonding force between the coating and the magnesium alloy was optimized. Black-Right-Pointing-Pointer The composite coating slowed down the corrosion rate of magnesium alloy in m-SBF. - Abstract: In order to improve the bonding strength between calcium phosphate/chitosan composite coatings and a micro-arc oxidized (MAO)-AZ91D Mg alloy, different influencing parameters were investigated in the process of electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). Surface morphology and phase constituents of the as-prepared materials were investigated by using X-ray diffractometer (XRD), Fourier-transformed infrared spectrophotometer (FTIR), Raman spectrometer, scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS), and a thermo gravimetric and differential thermal analyzer (TG-DTA). Scratch tests were carried out to study the bonding properties between the coatings and the substrates. In vitro immersion tests were conducted to determine the corrosion behaviors of samples with and without deposit layers through electrochemical experiments. In the EPD process, the acetic acid content in the electrophoresis suspension and the electrophoretic voltage played important roles in improving the bonding properties, while the contents of chitosan (CS) and nano-hydroxyapatite (nHA, Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}) in the suspension had less significant influences on the mechanical bonding strength. It was observed that the coatings showed the excellent bonding property when an electrophoretic voltage was in a range of 40-110 V with other reagent amounts as follows: acetic acid: 4.5 vol.%, CS {<=} 0.25 g, nHA {<=} 2.0 g in 200 ml of a CS-acetic acid aqueous solution and nHA {<=} 2.5 g in 300 ml of absolute ethanol. The morphology of the composite coating

  20. Study on the bonding strength between calcium phosphate/chitosan composite coatings and a Mg alloy substrate

    International Nuclear Information System (INIS)

    Zhang Jie; Dai Changsong; Wei Jie; Wen Zhaohui

    2012-01-01

    Highlights: ► Calcium phosphate/chitosan composite coatings on the MAO-AZ91D alloy were prepared. ► The bonding force between the coating and the magnesium alloy was optimized. ► The composite coating slowed down the corrosion rate of magnesium alloy in m-SBF. - Abstract: In order to improve the bonding strength between calcium phosphate/chitosan composite coatings and a micro-arc oxidized (MAO)-AZ91D Mg alloy, different influencing parameters were investigated in the process of electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). Surface morphology and phase constituents of the as-prepared materials were investigated by using X-ray diffractometer (XRD), Fourier-transformed infrared spectrophotometer (FTIR), Raman spectrometer, scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS), and a thermo gravimetric and differential thermal analyzer (TG–DTA). Scratch tests were carried out to study the bonding properties between the coatings and the substrates. In vitro immersion tests were conducted to determine the corrosion behaviors of samples with and without deposit layers through electrochemical experiments. In the EPD process, the acetic acid content in the electrophoresis suspension and the electrophoretic voltage played important roles in improving the bonding properties, while the contents of chitosan (CS) and nano-hydroxyapatite (nHA, Ca 10 (PO 4 ) 6 (OH) 2 ) in the suspension had less significant influences on the mechanical bonding strength. It was observed that the coatings showed the excellent bonding property when an electrophoretic voltage was in a range of 40–110 V with other reagent amounts as follows: acetic acid: 4.5 vol.%, CS ≤ 0.25 g, nHA ≤ 2.0 g in 200 ml of a CS–acetic acid aqueous solution and nHA ≤ 2.5 g in 300 ml of absolute ethanol. The morphology of the composite coating obtained under the above optimal condition had a flake-like crystal structure. The EPD in

  1. Healthy lifestyle and leukocyte telomere length in U.S. women.

    Directory of Open Access Journals (Sweden)

    Qi Sun

    Full Text Available Whether a healthy lifestyle may be associated with longer telomere length is largely unknown.To examine healthy lifestyle practices, which are primary prevention measures against major age-related chronic diseases, in relation to leukocyte telomere length.Cross-sectional analysis in the Nurses' Health Study (NHS.The population consisted of 5,862 women who participated in multiple prospective case-control studies within the NHS cohort. Z scores of leukocyte telomere length were derived within each case-control study. Based on prior work, we defined low-risk or healthy categories for five major modifiable factors assessed in 1988 or 1990: non-current smoking, maintaining a healthy body weight (body mass index in 18.5-24.9 kg/m(2, engaging in regular moderate or vigorous physical activities (≥150 minutes/week, drinking alcohol in moderation (1 drink/week to <2 drinks/day, and eating a healthy diet (Alternate Healthy Eating Index score in top 50%. We calculated difference (% of the z scores contrasting low-risk groups with reference groups to evaluate the association of interest.Although none of the individual low-risk factors was significantly associated with larger leukocyte telomere length z scores, we observed a significant, positive relationship between the number of low-risk factors and the z scores. In comparison with women who had zero low-risk factors (1.9% of the total population and were, therefore, considered the least healthy group, the leukocyte telomere length z scores were 16.4%, 22.1%, 28.7%, 22.6%, and 31.2% (P for trend = 0.015 higher for women who had 1 to 5 low-risk factors, respectively.Adherence to a healthy lifestyle, defined by major modifiable risk factors, was associated with longer telomere length in leukocytes.

  2. Thermal analysis and vibrational spectroscopic characterization of the boro silicate mineral datolite - CaBSiO4(OH)

    Science.gov (United States)

    Frost, Ray L.; Xi, Yunfei; Scholz, Ricardo; Lima, Rosa Malena Fernandes; Horta, Laura Frota Campos; Lopez, Andres

    2013-11-01

    The objective of this work is to determine the thermal stability and vibrational spectra of datolite CaBSiO4(OH) and relate these properties to the structure of the mineral. The thermal analysis of datolite shows a mass loss of 5.83% over a 700-775 °C temperature range. This mass loss corresponds to 1 water (H2O) molecules pfu. A quantitative chemical analysis using electron probe was undertaken. The Raman spectrum of datolite is characterized by bands at 917 and 1077 cm-1 assigned to the symmetric stretching modes of BO and SiO tetrahedra. A very intense Raman band is observed at 3498 cm-1 assigned to the stretching vibration of the OH units in the structure of datolite. BOH out-of-plane vibrations are characterized by the infrared band at 782 cm-1. The vibrational spectra are based upon the structure of datolite based on sheets of four- and eight-membered rings of alternating SiO4 and BO3(OH) tetrahedra with the sheets bonded together by calcium atoms.

  3. A roadmap for OH reactivity research

    Science.gov (United States)

    Williams, Jonathan; Brune, William

    2015-04-01

    A fundamental property of the atmosphere is the frequency of gas-phase reactions with the OH radical, the atmosphere's primary oxidizing agent. This reaction frequency is called the OH reactivity and is the inverse the lifetime of the OH radical itself, which varies from a few seconds in the clean upper troposphere to below 10 ms in forests and polluted city environments. Ever since the discovery of the OH radical's importance to tropospheric chemistry, the characterization of its overall loss rate (OH reactivity) has remained a key question. At first, this property was assessed by summing the reactivity contributions of individually measured compounds; however, as improving analytical technology revealed ever more reactive species in ambient air, it became clear that this approach could provide only a lower limit. Approximately 15 years ago, the direct measurement of total OH reactivity was conceived independently by two groups. The first publications demonstrated direct OH reactivity measurements in the laboratory (Calpini et al., 1999) based on LIDAR and in the ambient air (Kovacs and Brune, 2001) based on in situ laser induced fluorescence detection of OH.

  4. Oh No, Henrietta Got Out!

    Science.gov (United States)

    Lottero-Perdue, Pamela; Grabia, Kathryn; Sandifer, Cody

    2017-01-01

    In a kindergarten classroom, exclamations like "Oh no!" may be causes for concern. However, when the students in Mrs. Grabia's classroom shouted "Oh no!" and "Uh oh!" during an engineering-infused 5E lesson, it meant that a persistent little robot had pushed its way out of the fences they had created. It also meant…

  5. Microshear bond strength of a flowable resin to enamel according to the different adhesive systems

    Directory of Open Access Journals (Sweden)

    Jeong-Ho Kim

    2011-01-01

    Full Text Available Objectives The purpose of this study was to compare the microshear bond strength (uSBS of two total-etch and four self-etch adhesive systems and a flowable resin to enamel. Materials and Methods Enamels of sixty human molars were used. They were divided into one of six equal groups (n = 10 by adhesives used; OS group (One-Step Plus, SB group (Single Bond, CE group (Clearfil SE Bond, TY group (Tyrian SPE/One-Step Plus, AP group (Adper Prompt L-Pop and GB group (G-Bond. After enamel surfaces were treated with six adhesive systems, a flowable composite resin (Filek Z 350 was bonded to enamel surface using Tygon tubes. the bonded specimens were subjected to uSBS testing and the failure modes of each group were observed under FE-SEM. Results 1. The uSBS of SB group was statistically higher than that of all other groups, and the uSBS of OS, SE and AP group was statistically higher than that of TY and GB group (p < 0.05. 2. The uSBS for TY group was statistically higher than that for GB group (p < 0.05. 3. Adhesive failures in TY and GB group and mixed failures in SB group and SE group were often analysed. One cohesive failure was observed in OS, SB, SE and AP group, respectively. Conclusions Although adhesives using the same step were applied the enamel sur

  6. Reaction rate constants of H-abstraction by OH from large ketones: measurements and site-specific rate rules.

    Science.gov (United States)

    Badra, Jihad; Elwardany, Ahmed E; Farooq, Aamir

    2014-06-28

    Reaction rate constants of the reaction of four large ketones with hydroxyl (OH) are investigated behind reflected shock waves using OH laser absorption. The studied ketones are isomers of hexanone and include 2-hexanone, 3-hexanone, 3-methyl-2-pentanone, and 4-methl-2-pentanone. Rate constants are measured under pseudo-first-order kinetics at temperatures ranging from 866 K to 1375 K and pressures near 1.5 atm. The reported high-temperature rate constant measurements are the first direct measurements for these ketones under combustion-relevant conditions. The effects of the position of the carbonyl group (C=O) and methyl (CH3) branching on the overall rate constant with OH are examined. Using previously published data, rate constant expressions covering, low-to-high temperatures, are developed for acetone, 2-butanone, 3-pentanone, and the hexanone isomers studied here. These Arrhenius expressions are used to devise rate rules for H-abstraction from various sites. Specifically, the current scheme is applied with good success to H-abstraction by OH from a series of n-ketones. Finally, general expressions for primary and secondary site-specific H-abstraction by OH from ketones are proposed as follows (the subscript numbers indicate the number of carbon atoms bonded to the next-nearest-neighbor carbon atom, the subscript CO indicates that the abstraction is from a site next to the carbonyl group (C=O), and the prime is used to differentiate different neighboring environments of a methylene group):

  7. Reaction of Pentanol isomers with OH radical – A theoretical perspective

    Science.gov (United States)

    Aazaad, Basheer; Lakshmipathi, Senthilkumar

    2018-05-01

    The stability of all the three isomeric forms of Pentanol has been examined with relative energy analysis. Even though 2-Pentanol is predicted to be most stable isomeric form, all the three isomeric forms undergo hydrogen atom abstraction reaction with OH radical. Among the proposed 18 different hydrogen atom abstraction reaction, the abstraction from CH2 and CH functional group is found to be a favourable reactive site with low energy barrier in M06-2X/6-311+G(d,p) level of theory. Wiberg bond order analysis shows all the abstraction reactions are concreted but not synchronic in nature. Using force analysis, the calculated work done of individual reaction regions illustrates that structural rearrangements drive the reaction with higher contribution to the energy barrier. The rate constant calculated at M06-2X method for the most favourable reaction is well matched with available experimental data. Using the reported atmospheric OH concentration (1 × 106 molecules/cm3), the life time of 1-Pentanol, 2-Pentanol and 3-Pentanol has calculated to be 18.66, 0.36 and 2.86 days, respectively.

  8. Noble gas bond and the behaviour of XeO3 under pressure.

    Science.gov (United States)

    Hou, Chunju; Wang, Xianlong; Botana, Jorge; Miao, Maosheng

    2017-10-18

    Over the past few decades, the concept of hydrogen bonds, in which hydrogen is electrophilic, has been extended to halogen bonds, chalcogen bonds and pnicogen bonds. Herein, we show that such a non-covalent bonding also exists in noble gas compounds. Using first principles calculations, we illustrate the OXe-O bond in molecular crystal XeO 3 and its effect on the behavior of this compound under pressure. Our calculations show that the covalent Xe-O bond lengths were elongated with increasing pressure and correspondingly the Xe-O stretching vibration frequencies were red shifted, which is similar to the change of H-bonds under pressure. The OXe-O bond and related hopping of O between neighboring Xe sites also correspond to the structural changes in the XeO 3 compounds at about 2 GPa. Our study extends the concept of hydrogen bonding to include all p-block elements and show a new bonding type for Noble gas elements in which it acts as an electrophilic species.

  9. Cation incorporation into zirconium oxide in LiOH, NaOH, and KOH solutions

    International Nuclear Information System (INIS)

    Jeong, Y.H.; Kim, K.H.; Baek, J.H.

    1999-01-01

    To investigate the cation incorporation into zirconium oxide, SIMS analysis was performed on the specimens prepared to have an equal oxide thickness in LiOH, NaOH, and KOH solutions. Even though they have an equal oxide thickness in LiOH, NaOH, and KOH solutions, the penetration depth of cation into the oxide decreased with an increase in the ionic radius of cation. The cation is considered to control the corrosion in alkali hydroxide solutions and its effect is dependent on the concentration of alkali and the oxide thickness. The slight enhancement of the corrosion rate at a low concentration is thought to be caused by cation incorporation into oxide, while the significant acceleration at a high concentration is due to the transformation of oxide microstructures that would be also induced by cation incorporation into oxide. (orig.)

  10. Calcioferrite with composition (Ca3.94Sr0.06Mg1.01(Fe2.93Al1.07(PO46(OH4·12H2O

    Directory of Open Access Journals (Sweden)

    Barbara Lafuente

    2014-03-01

    Full Text Available Calcioferrite, ideally Ca4MgFe3+4(PO46(OH4·12H2O (tetracalcium magnesium tetrairon(III hexakis-phosphate tetrahydroxide dodecahydrate, is a member of the calcioferrite group of hydrated calcium phosphate minerals with the general formula Ca4AB4(PO46(OH4·12H2O, where A = Mg, Fe2+, Mn2+ and B = Al, Fe3+. Calcioferrite and the other three known members of the group, montgomeryite (A = Mg, B = Al, kingsmountite (A = Fe2+, B = Al, and zodacite (A = Mn2+, B = Fe3+, usually occur as very small crystals, making their structure refinements by conventional single-crystal X-ray diffraction challenging. This study presents the first structure determination of calcioferrite with composition (Ca3.94Sr0.06Mg1.01(Fe2.93Al1.07(PO46(OH4·12H2O based on single-crystal X-ray diffraction data collected from a natural sample from the Moculta quarry in Angaston, Australia. Calcioferrite is isostructural with montgomeryite, the only member of the group with a reported structure. The calcioferrite structure is characterized by (Fe/AlO6 octahedra (site symmetries 2 and -1 sharing corners (OH to form chains running parallel to [101]. These chains are linked together by PO4 tetrahedra (site symmetries 2 and 1, forming [(Fe/Al3(PO43(OH2] layers stacking along [010], which are connected by (Ca/Sr2+ cations (site symmetry 2 and Mg2+ cations (site symmetry 2; half-occupation. Hydrogen-bonding interactions involving the water molecules (one of which is equally disordered over two positions and OH function are also present between these layers. The relatively weaker bonds between the layers account for the cleavage of the mineral parallel to (010.

  11. Ab initio computational study of –N-C and –O-C bonding formation : functional group modification reaction based chitosan

    Science.gov (United States)

    Siahaan, P.; Salimah, S. N. M.; Sipangkar, M. J.; Hudiyanti, D.; Djunaidi, M. C.; Laksitorini, M. D.

    2018-04-01

    Chitosan application in pharmaceutics and cosmeceutics industries is limited by its solubility issue. Modification of -NH2 and -OH fuctional groups of chitosan by adding carboxyl group has been shown to improve its solubility and application. Attempt to synthesize carboxymethyl chitosan (CMC) from monocloroacetic acid (MCAA) has been done prior this report. However no information is available wether –OH (-O-C bonding formation) or -NH2 (-N-C bonding formation) is the preference for - CH2COOH to attach. In the current study, the reaction mechanism between chitosan and MCAA reactants into carboxymethyl chitosan (CMC) was examined by computational approach. Dimer from of chitosan used as a molecular model in calculation All the molecular structure involved in the reaction mechanism was optimized by ab initio computational on the theory and basis set HF/6-31G(d,p). The results showed that the - N-C bonding formation via SN2 than the -O-C bonding formation via SN2 which have activation energy 469.437 kJ/mol and 533.219 kJ/mol respectively. However, the -O-C bonding formation more spontaneous than the -N-C bonding formation because ΔG the formation of O-CMC-2 reaction is more negative than ΔG of formation N-CMC-2 reaction is -4.353 kJ/mol and -1.095 kJ/mol respectively. The synthesis of N,O-CMC first forms -O-CH2COOH, then continues to form -NH-CH2COOH. This information is valuable to further optimize the reaction codition for CMC synthesis.

  12. Exposure to a PBDE/OH-BDE mixture alters juvenile zebrafish (Danio rerio) development.

    Science.gov (United States)

    Macaulay, Laura J; Chernick, Melissa; Chen, Albert; Hinton, David E; Bailey, Jordan M; Kullman, Seth W; Levin, Edward D; Stapleton, Heather M

    2017-01-01

    Polybrominated diphenyl ethers (PBDEs) and their metabolites (e.g., hydroxylated BDEs [OH-BDEs]) are contaminants frequently detected together in human tissues and are structurally similar to thyroid hormones. Thyroid hormones partially mediate metamorphic transitions between life stages in zebrafish, making this a critical developmental window that may be vulnerable to chemicals disrupting thyroid signaling. In the present study, zebrafish were exposed to 6-OH-BDE-47 (30 nM; 15 μg/L) alone, or to a low-dose (30 μg/L) or high-dose (600 μg/L) mixture of PentaBDEs, 6-OH-BDE-47 (0.5-6 μg/L), and 2,4,6-tribromophenol (5-100 μg/L) during juvenile development (9-23 d postfertilization) and evaluated for developmental endpoints mediated by thyroid hormone signaling. Fish were sampled at 3 time points and examined for developmental and skeletal morphology, apical thyroid and skeletal gene markers, and modifications in swimming behavior (as adults). Exposure to the high-dose mixture resulted in >85% mortality within 1 wk of exposure, despite being below reported acute toxicity thresholds for individual congeners. The low-dose mixture and 6-OH-BDE-47 groups exhibited reductions in body length and delayed maturation, specifically relating to swim bladder, fin, and pigmentation development. Reduced skeletal ossification was also observed in 6-OH-BDE-47-treated fish. Assessment of thyroid and osteochondral gene regulatory networks demonstrated significantly increased expression of genes that regulate skeletal development and thyroid hormones. Overall, these results indicate that exposures to PBDE/OH-BDE mixtures adversely impact zebrafish maturation during metamorphosis. Environ Toxicol Chem 2017;36:36-48. © 2016 SETAC. © 2016 SETAC.

  13. Hydrothermal synthesis of β-Ni(OH)2 and its supercapacitor properties

    Science.gov (United States)

    Waghmare, Suraj S.; Patil, Prashant B.; Baruva, Shiva K.; Rajput, Madhuri S.; Deokate, Ramesh J.; Mujawar, Sarfraj H.

    2018-04-01

    In present manuscript, we synthesized the Nickel hydroxide as an electrode material or supercapacitor application, using hydrothermal method with nickel nitrate as nickel source and hexamethylenetetramine as a directing agent. The reaction was carried out at 160°C temperature for 18 hrs. The structural, morphological and electrochemical characterizations were studied by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Cyclic Voltammetry (CV) and Galvanostatic Charge Discharge (GCD) respectively. Phase purity and crystalline nature of as prepared nickel hydroxide β-Ni(OH)2 was reveled from X-ray study. Using Debye Scherer's formula crystallite size of ˜15 nm was estimated for Nickel hydroxide. SEM reveals β-platelets like morphology of Ni(OH)2 average of platelets length of the order of 1 µm. Electrochemical studies (CV and GCD) were carried out in 2M KOH electrolyte solution. The maximum capacitance of 225 Fg-1 was observed for scan rate 5 mV within the potential window of 0.1 to 0.4 V.

  14. Ballast Water Treatment, U.S. Great Lakes Bulk Carrier Engineering and Cost Study. Volume 1: Present Conditions

    Science.gov (United States)

    2013-11-01

    There are two U.S. cement plants (Charlevoix and Alpena ) that supply all U.S. ports on the lakes. Ballast Water Treatment, U.S. Great Lakes...Marquette, MI Brevort, MI Buffington, IN Alpena , MI Bay City, MI Cleveland, OH Ashtabula, OH Duluth, MN Munising, MI Charlevoix, MI Burns Harbor, IN...Manitowoc Pathfinder Calumet Alpena Total shown: 40,699,415 mt Total, all U.S. Vsls: 42,508,108 mt % ballast moved by top 5 vsls

  15. Making a robust carbon-cobalt(III) bond

    DEFF Research Database (Denmark)

    Larsen, Erik; Madsen, Anders Østergaard; Kofod, Pauli

    2009-01-01

    The coordination ion with a well-characterized carbon-cobalt(III) bond, the (1,4,7-triazacyclononane)(1,6-diamino-3-thia-4-hexanido)cobalt(III) dication, [Co(tacn)(C-aeaps)](2+) (aeaps, for aminoethylaminopropylsulfide), has been reacted with iodomethane, and the S-methyl thionium derivative has...... been isolated. The crystal structure of the resulting [Co(tacn)(C-aeaps-SCH(3))]Br(3) x 3 H(2)O at 122 K has been determined by X-ray diffraction techniques to verify the structure. The crystal structure determination shows that the carbon-cobalt bond length is even shorter (2.001(4) A) than in [Co......(tacn)(C-aeaps)](2+) participates in bonding to cobalt(III), having implications for the transformation between the carbon- and sulfur-bound forms of the aeaps ligand....

  16. A theoretical perspective of the nature of hydrogen-bond types - the atoms in molecules approach

    Science.gov (United States)

    Vijaya Pandiyan, B.; Kolandaivel, P.; Deepa, P.

    2014-06-01

    Hydrogen bonds and their strength were analysed based on their X-H proton-donor bond properties and the parameters of the H-Y distance (Y proton acceptor). Strong, moderate and weak interactions in hydrogen-bond types were verified through the proton affinities of bases (PA), deprotanation enthalpies of acids (DPE) and the chemical shift (σ). The aromaticity and anti-aromaticity were analysed by means of the NICS (0) (nucleus-independent chemical shift), NICS (1) and ΔNICS (0), ΔNICS (1) of hydrogen-bonded molecules. The strength of a hydrogen bond depends on the capacity of hydrogen atom engrossing into the electronegative acceptor atom. The correlation between the above parameters and their relations were discussed through curve fitting. Bader's theory of atoms in molecules has been applied to estimate the occurrence of hydrogen bonds through eight criteria reported by Popelier et al. The lengths and potential energy shifts have been found to have a strong negative linear correlation, whereas the lengths and Laplacian shifts have a strong positive linear correlation. This study illustrates the common factors responsible for strong, moderate and weak interactions in hydrogen-bond types.

  17. Inflation, Index-Linked Bonds, and Asset Allocation

    OpenAIRE

    Zvi Bodie

    1988-01-01

    The recent introduction of CPI-linked bonds by several financial institutions is a milestone in the history of the U.S. financial system. It has potentially far-reaching effects on individual and institutional asset allocation decisions because these securities represent the only true long-run hedge against inflation risk. CPI-linked bonds make possible the creation of additional financial innovations that would use them as the asset base. One such innovation that seems likely is inflation-pr...

  18. Ultrastructural Analysis and Long-term Evaluation of Composite-Zirconia Bond Strength.

    Science.gov (United States)

    Aboushelib, Moustafa N; Ragab, Hala; Arnaot, Mohamed

    2018-01-01

    To evaluate the influence of different aging techniques on zirconia-composite microtensile bond strength using different surface treatments over a 5-year follow-up period. Zirconia disks received three surface treatments: airborne-particle abrasion with 50-μm aluminum oxide particles, selective infiltration etching (SIE), or fusion sputtering (FS). The specimens were bonded to pre-aged composite disks using a composite cement containing phosphate monomers (Panavia F2.0). Bonded specimens were sectioned into microbars (1 x 1 x 6 mm) using a precision cutting machine, and all microbars received thermocycling (15,000 cycles between 5°C and 55°C). Initial microtensile bond strength was evaluated, and the test was repeated after storage in the following media for five years (artificial saliva, 20% ethanol, 5% NaOH, 4% acetic acid, and 5% phosphoric acid). The test was repeated every 12 months for 5 years. Scanning electron microscopic images were used to analyze the zirconia-composite interface. A repeated measures ANOVA and Bonferroni post-hoc tests were used to analyze the data (n = 20, α = 0.05). Significantly higher microtensile bond strength was observed for SIE compared to fusion sputtering and airborne particle abrasion. Five years of artificial aging resulted in significant reduction of zirconia-composite bond strength for all tested specimens. Zirconia-composite bond strength was more sensitive to storage in sodium hydroxide and phosphoric acid, while it was least affected when stored under saliva. These changes were related to the mechanism of ultra-structural interaction between surface treatment and adhesive, as deterioration of the hybrid layer (composite-infiltrated ceramic) was responsible for bond degeneration. Zirconia-composite bond strength was influenced by 5 years of artificial aging.

  19. The Atom-Bond Connectivity Index of Catacondensed Polyomino Graphs

    OpenAIRE

    Chen, Jinsong; Liu, Jianping; Li, Qiaoliang

    2013-01-01

    Let G=(V,E) be a graph. The atom-bond connectivity (ABC) index is defined as the sum of weights ((du+dv−2)/dudv)1/2 over all edges uv of G, where du denotes the degree of a vertex u of G. In this paper, we give the atom-bond connectivity index of the zigzag chain polyomino graphs. Meanwhile, we obtain the sharp upper bound on the atom-bond connectivity index of catacondensed polyomino graphs with h squares and determine the corresponding extremal graphs.

  20. Photodissociation Spectroscopy of Cold Protonated Synephrine: Surprising Differences between IR-UV Hole-Burning and IR Photodissociation Spectroscopy of the O-H and N-H Modes.

    Science.gov (United States)

    Nieuwjaer, N; Desfrançois, C; Lecomte, F; Manil, B; Soorkia, S; Broquier, M; Grégoire, G

    2018-04-19

    We report the UV and IR photofragmentation spectroscopies of protonated synephrine in a cryogenically cooled Paul trap. Single (UV or IR) and double (UV-UV and IR-UV) resonance spectroscopies have been performed and compared to quantum chemistry calculations, allowing the assignment of the lowest-energy conformer with two rotamers depending on the orientation of the phenol hydroxyl (OH) group. The IR-UV hole burning spectrum exhibits the four expected vibrational modes in the 3 μm region, i.e., the phenol OH, C β -OH, and two NH 2 + stretches. The striking difference is that, among these modes, only the free phenol OH mode is active through IRPD. The protonated amino group acts as a proton donor in the internal hydrogen bond and displays large frequency shifts upon isomerization expected during the multiphoton absorption process, leading to the so-called IRMPD transparency. More interestingly, while the C β -OH is a proton acceptor group with moderate frequency shift for the different conformations, this mode is still inactive through IRPD.

  1. Radiation-induced glycoside bond breaking in cellulose methyl ethers

    International Nuclear Information System (INIS)

    Petryaev, E.P.; Boltromeyuk, V.V.; Kovalenko, N.I.; Shadyro, O.I.

    1988-01-01

    Radiation-induced destruction of cellulose methyl ethers of different degree of esterification in aqueous solutions with and without acceptors: (N 2 O, O 2 , H 2 O + , Co(2), Cu(2)) is investigated. It is established that OH radicals make main contribution into radiolytic transformations of cellulose ethers in aqueous solutions. Reactions of radicals with free valency on carbon atoms containing secondary nonsubstituted hydroxyl groups lead also to glycoside bond breaking besides the reaction of β-fragmentation and hydrolysis of radicals with an unpaired electron localized near C 1 , C 4 , C 5 aroms

  2. Physical mechanisms of copper-copper wafer bonding

    International Nuclear Information System (INIS)

    Rebhan, B.; Hingerl, K.

    2015-01-01

    The study of the physical mechanisms driving Cu-Cu wafer bonding allowed for reducing the bonding temperatures below 200 °C. Metal thermo-compression Cu-Cu wafer bonding results obtained at such low temperatures are very encouraging and suggest that the process is possible even at room temperature if some boundary conditions are fulfilled. Sputtered (PVD) and electroplated Cu thin layers were investigated, and the analysis of both metallization techniques demonstrated the importance of decreasing Cu surface roughness. For an equal surface roughness, the bonding temperature of PVD Cu wafers could be even further reduced due to the favorable microstructure. Their smaller grain size enhances the length of the grain boundaries (observed on the surface prior bonding), acting as efficient mass transfer channels across the interface, and hence the grains are able to grow over the initial bonding interface. Due to the higher concentration of random high-angle grain boundaries, this effect is intensified. The model presented is explaining the microstructural changes based on atomic migration, taking into account that the reduction of the grain boundary area is the major driving force to reduce the Gibbs free energy, and predicts the subsequent microstructure evolution (grain growth) during thermal annealing

  3. Driving force for hydrophobic interaction at different length scales.

    Science.gov (United States)

    Zangi, Ronen

    2011-03-17

    We study by molecular dynamics simulations the driving force for the hydrophobic interaction between graphene sheets of different sizes down to the atomic scale. Similar to the prediction by Lum, Chandler, and Weeks for hard-sphere solvation [J. Phys. Chem. B 1999, 103, 4570-4577], we find the driving force to be length-scale dependent, despite the fact that our model systems do not exhibit dewetting. For small hydrophobic solutes, the association is purely entropic, while enthalpy favors dissociation. The latter is demonstrated to arise from the enhancement of hydrogen bonding between the water molecules around small hydrophobes. On the other hand, the attraction between large graphene sheets is dominated by enthalpy which mainly originates from direct solute-solute interactions. The crossover length is found to be inside the range of 0.3-1.5 nm(2) of the surface area of the hydrophobe that is eliminated in the association process. In the large-scale regime, different thermodynamic properties are scalable with this change of surface area. In particular, upon dimerization, a total and a water-induced stabilization of approximately 65 and 12 kJ/mol/nm(2) are obtained, respectively, and on average around one hydrogen bond is gained per 1 nm(2) of graphene sheet association. Furthermore, the potential of mean force between the sheets is also scalable except for interplate distances smaller than 0.64 nm which corresponds to the region around the barrier for removing the last layer of water. It turns out that, as the surface area increases, the relative height of the barrier for association decreases and the range of attraction increases. It is also shown that, around small hydrophobic solutes, the lifetime of the hydrogen bonds is longer than in the bulk, while around large hydrophobes it is the same. Nevertheless, the rearrangement of the hydrogen-bond network for both length-scale regimes is slower than in bulk water. © 2011 American Chemical Society

  4. Photoionization of the OH radical

    International Nuclear Information System (INIS)

    Dehmer, P.M.

    1985-01-01

    The hydroxyl radical (OH) is one of the most thoroughly studied free radicals because of its importance in atmospheric chemistry, combustion processes, and the interstellar medium. Detailed experimental and theoretical studies have been performed on the ground electronic state (X 2 PI/sub i/) and on the four lowest bound excited electronic states (A 2 Σ + , B 2 Σ + , D 2 Σ - , and C 2 Σ + ). However, because it is difficult to distinguish the spectrum of OH from the spectra of the various radical precursors, the absorption spectrum in the wavelength region below 1200 A has not been well characterized. In the present work, the spectrum of OH has been determined in the wavelength region from 750 to 950 A using the technique of photoionization mass spectrometry. This technique allows complete separation of the spectrum of OH from that of the other components of the discharge and permits the unambiguous determination of the spectrum of OH

  5. Real-Time Price Discovery in Global Stock, Bond and Foreign Exchange Markets

    DEFF Research Database (Denmark)

    Andersen, Torben G.; Bollerslev, Tim; Diebold, Francis X.

    Using a unique high-frequency futures dataset, we characterize the response of U.S., German and British stock, bond and foreign exchange markets to real-time U.S. macroeconomic news. We find that news produces conditional mean jumps; hence high-frequency stock, bond and exchange rate dynamics...... are linked to fundamentals. Equity markets, moreover, react differently to news depending on the stage of the business cycle, which explains the low correlation between stock and bond returns when averaged over the cycle. Hence our results qualify earlier work suggesting that bond markets react most strongly...... to macroeconomic news; in particular, when conditioning on the state of the economy, the equity and foreign exchange markets appear equally responsive. Finally, we also document important contemporaneous links across all markets and countries, even after controlling for the effects of macroeconomic news....

  6. Enhanced corrosion resistance of magnesium alloy by a silane-based solution treatment after an in-situ formation of the Mg(OH)2 layer

    Science.gov (United States)

    Gong, Fubao; Shen, Jun; Gao, Runhua; Xie, Xiong; Luo, Xiong

    2016-03-01

    A novel organic-inorganic Mg(OH)2/silane surface layer has been developed for corrosion protection of AZ31 magnesium alloy. The results of electrochemical impedance spectroscopy (EIS), the immersion tests, Fourier-transform infrared spectroscopy (FTIR) and sellotape tests showed that the Mg(OH)2/silane-based composite surface layer possessed excellent corrosion resistance and very good adhesion due to the formation of Si-O-Mg bond between Mg(OH)2 layer and silane layer. Electrochemical impedance spectroscopy tests results indicated that for the long-term corrosion protection of AZ31 the increase of the curing temperature improved the impedance of the composited layer when the curing temperature was lower than 130 °С. However, the impedance of the composited layer deceased when the curing temperature was more than 130 °С due to the carbonization of the silane layer.

  7. Chemical Speciation and Bond Lengths of Organic Solutes by Core-Level Spectroscopy: pH and Solvent Influence on p-Aminobenzoic Acid.

    Science.gov (United States)

    Stevens, Joanna S; Gainar, Adrian; Suljoti, Edlira; Xiao, Jie; Golnak, Ronny; Aziz, Emad F; Schroeder, Sven L M

    2015-05-04

    Through X-ray absorption and emission spectroscopies, the chemical, electronic and structural properties of organic species in solution can be observed. Near-edge X-ray absorption fine structure (NEXAFS) and resonant inelastic X-ray scattering (RIXS) measurements at the nitrogen K-edge of para-aminobenzoic acid reveal both pH- and solvent-dependent variations in the ionisation potential (IP), 1s→π* resonances and HOMO-LUMO gap. These changes unequivocally identify the chemical species (neutral, cationic or anionic) present in solution. It is shown how this incisive chemical state sensitivity is further enhanced by the possibility of quantitative bond length determination, based on the analysis of chemical shifts in IPs and σ* shape resonances in the NEXAFS spectra. This provides experimental access to detecting even minor variations in the molecular structure of solutes in solution, thereby providing an avenue to examining computational predictions of solute properties and solute-solvent interactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Polarized IR spectra of resonance assisted hydrogen bond (RAHB) in 2-hydroxyazobenzenes

    International Nuclear Information System (INIS)

    Rospenk, Maria; Majewska, Paulina; Czarnik-Matusewicz, Boguslawa; Sobczyk, Lucjan

    2006-01-01

    The polarized IR spectra in the region 4000-400 cm -1 over the temperature range 298-370 K of liquid crystalline (LC) 4-chloro-2'-hydroxy-4'-pentyloxyazobenzene (CHPAB) containing strong O-H...N RAHBs were studied. It has been established that molecules of this compound undergoes a spontaneous ordering in thin layers (10-20 μm) between the KRS-5 plates. The order degree expressed by the S parameter exceeds 0.6 for the Smectic A and crystalline phases. The best indicator of orientation is the mode at 1084 cm -1 as its transition dipole moment is oriented parallel to the long axis of the molecule. A good marker is also the γ(OH) band with the transition dipole moment nearly perpendicular to the long axis. The intramolecular O-H...N hydrogen bonding shows features characteristic of RAHB. The transition dipole moment of the ν(OH) vibrations forms with the long axis of the molecule the angle equal to 43 ± 3 deg. (the OH bond is oriented to this axis at the angle of 9 deg.) that convincingly speaks in favour of a coupling between the proton and π-electron motions. Similar behaviour is manifested by a broad absorption in the finger print region that can be interpreted in terms of the modification of the potential energy shape due to the plane-to-plane intermolecular interaction and appearance of the second minimum. A marked ordering of molecules in the isotropic phase is also observed evidencing some alignment of molecules extended far beyond the monomolecular layers on the surfaces of the KRS-5 windows

  9. In vitro marginal adaptation of high-viscosity resin composite restorations bonded to dentin cavities.

    Science.gov (United States)

    Rahiotis, Christos; Tzoutzas, John; Kakaboura, Afrodite

    2004-01-01

    The aim of this study was to evaluate the marginal adaptation of high-viscosity resin composite restoratives bonded to dentin in a cylindrical cavity model. The buccal enamel of 64 human premolars was removed and cylindrical cavities 3 mm in diameter and 1.3 mm in depth were prepared on each dentin surface. The cavities were divided into 8 groups of 8 cavities each and restored according to the manufacturers' instructions with the following adhesive/composite systems: Bond 1/Alert, Stae/Glacier, OptiBond Solo/Prodigy Condensable, One-Step/Pyramid, Solidbond/Solitaire, Prime&Bond NT/Surefil, One Coat Bond/Synergy, and Scotchbond 1/Z250. The composite surfaces were pressed against mylar strips, covered with cover slips, and photopolymerized in a single increment for 40 s. The restorations were polished with wet SiC papers of 320 to 1000 grit size to expose dentin margins. The marginal adaptation was evaluated immediately after photopolymerization and again after 1 week of storage in water at 37 +/- 1 degrees C. Evaluation was performed under a metallographic microscope at 200X magnification by recording the frequency of gap-free restorations (GF), the percentage length of the debonded margins relative to the cavity periphery (DM), the width of the maximum marginal gap (MG), and the marginal index (MI = MG x DM / 100). The results were statistically analyzed with one-way ANOVA and the Mann-Whitney U-test at alpha = 0.05. No incidence of gaps was found in 62.5% of One Coat Bond/Synergy and 37.5% of OptiBond Solo/Prodigy Condensable restorations. All the other restorative systems exhibited restorations with gaps. One Coat Bond/Synergy, Scotchbond 1/Z250, and OptiBond Solo/Prodigy Condensable were the groups with the lowest DM values, while Stae/Glacier showed the highest DM values. One Coat Bond/Synergy and OptiBond Solo/Prodigy Condensable revealed the lowest MI values and Stae/Glacier the highest. No statistically significant differences were recorded between

  10. Quasirelativistic pseudopotential study of species isoelectronic to uranyl and the equatorial coordination of uranyl

    International Nuclear Information System (INIS)

    Pyykkoe, P.; Li, J.; Runeberg, N.

    1994-01-01

    The calculated trends of geometries and vibrational frequencies of several uranyl isoelectronic species, like the known NUN and CUO, and the unknown CUN - , NUO + , and NUF 2+ , are reported. The NUN and CUO results support the matrix spectroscopic assignments. The simplest example of equatorial coordination to uranyl is the C 2d species UO 3 . Its calculated vibrational frequencies also support matrix spectroscopic ones. We earlier suggested that the large range of uranyl bond lengths in UO 6 6- -type systems could be interpreted in terms of a open-quotes frozen, soft e g vibrational modeclose quotes. Further studies on UF 6 , U(OH) 6 , [(OUO)(F eq ) n ] (n-2) -, [(OUO)(NO 3 ) 3 ] - , and [(OUO)(CO 3 ) 3 ] 4- show only small variation of R ax as function of R eq . Thus, the all-oxide case is a special one, where all ligands are capable of single and multiple bonding. 44 refs., 10 figs., 7 tabs

  11. Analyses of Non-bonding Length, Partial Atomics Charge and Electrostatic Energy from Molecular Dynamics Simulation of Phospholipase A2 – Substrate

    Directory of Open Access Journals (Sweden)

    Nirwan Syarif

    2016-11-01

    Full Text Available This paper reports molecular dynamics simulation of phospholipase A2 (PLA2– substrate that has been done. Non-bonding length, partial atomic charge and electrostatic energy were used to evaluation the interaction between PLA2 and substrate. The research was subjected for three types of PLA2 of different sources, i.e, homo sapien, bovinus and porcinus, by using computer files of their molecular structures. The files with code 3elo, 1bp2, dan 1y6o were downloaded from protein data bank. Substrate structure can be found in 1y60 and was separated from its enzyme structure and docked into two other PLA2 structures for simulation purpose. Molecular dynamics simulations were done for 30000 steps with constant in number of molecules, volume and temperature (NVT. The results showed the existing of flip-flop mechanism as basic feature of PLA2 – substrate reactions. Interaction length analysis results indicated the presence of water molecules on the structures of 1bp2 and 3elo at the time of the simulation was completed. The existence of aspagine at the reaction site confirmed the theory that this amino acid is responsible for the survival of the reaction. the electrostatic energy increased substantially in the interaction after homo sapien PLA2 (3elo and Bovinus (1bp2 with the substrate. Inverse effect took place in the PLA porcinus (1y6o.

  12. Global modelling of the total OH reactivity: investigations on the “missing” OH sink and its atmospheric implications

    Directory of Open Access Journals (Sweden)

    V. Ferracci

    2018-05-01

    Full Text Available The hydroxyl radical (OH plays a crucial role in the chemistry of the atmosphere as it initiates the removal of most trace gases. A number of field campaigns have observed the presence of a missing OH sink in a variety of regions across the planet. A comparison of direct measurements of the OH loss frequency, also known as total OH reactivity (kOH, with the sum of individual known OH sinks (obtained via the simultaneous detection of species such as volatile organic compounds and nitrogen oxides indicates that, in some cases, up to 80 % of kOH is unaccounted for. In this work, the UM-UKCA chemistry-climate model was used to investigate the wider implications of the missing reactivity on the oxidising capacity of the atmosphere. Simulations of the present-day atmosphere were performed and the model was evaluated against an array of field measurements to verify that the known OH sinks were reproduced well, with a resulting good agreement found for most species. Following this, an additional sink was introduced to simulate the missing OH reactivity as an emission of a hypothetical molecule, X, which undergoes rapid reaction with OH. The magnitude and spatial distribution of this sink were underpinned by observations of the missing reactivity. Model runs showed that the missing reactivity accounted for on average 6 % of the total OH loss flux at the surface and up to 50 % in regions where emissions of the additional sink were high. The lifetime of the hydroxyl radical was reduced by 3 % in the boundary layer, whilst tropospheric methane lifetime increased by 2 % when the additional OH sink was included. As no OH recycling was introduced following the initial oxidation of X, these results can be interpreted as an upper limit of the effects of the missing reactivity on the oxidising capacity of the troposphere. The UM-UKCA simulations also allowed us to establish the atmospheric implications of the newly characterised reactions of peroxy

  13. Occurrence of protein disulfide bonds in different domains of life: a comparison of proteins from the Protein Data Bank.

    Science.gov (United States)

    Bošnjak, I; Bojović, V; Šegvić-Bubić, T; Bielen, A

    2014-03-01

    Disulfide bonds (SS bonds) are important post-translational modifications of proteins. They stabilize a three-dimensional (3D) structure (structural SS bonds) and also have the catalytic or regulatory functions (redox-active SS bonds). Although SS bonds are present in all groups of organisms, no comparative analyses of their frequency in proteins from different domains of life have been made to date. Using the Protein Data Bank, the number and subcellular locations of SS bonds in Archaea, Bacteria and Eukarya have been compared. Approximately three times higher frequency of proteins with SS bonds in eukaryotic secretory organelles (e.g. endoplasmic reticulum) than in bacterial periplasmic/secretory pathways was calculated. Protein length also affects the SS bond frequency: the average number of SS bonds is positively correlated with the length for longer proteins (>200 amino acids), while for the shorter and less stable proteins (proteins (250-350 amino acids) indicated a high number of SS bonds only in Archaea which could be explained by the need for additional protein stabilization in hyperthermophiles. The results emphasize higher capacity for the SS bond formation and isomerization in Eukarya when compared with Archaea and Bacteria.

  14. Chloroacetone photodissociation at 193 nm and the subsequent dynamics of the CH3C(O)CH2 radical—an intermediate formed in the OH + allene reaction en route to CH3 + ketene

    Science.gov (United States)

    Alligood, Bridget W.; FitzPatrick, Benjamin L.; Szpunar, David E.; Butler, Laurie J.

    2011-02-01

    We use a combination of crossed laser-molecular beam experiments and velocity map imaging experiments to investigate the primary photofission channels of chloroacetone at 193 nm; we also probe the dissociation dynamics of the nascent CH3C(O)CH2 radicals formed from C-Cl bond fission. In addition to the C-Cl bond fission primary photodissociation channel, the data evidence another photodissociation channel of the precursor, C-C bond fission to produce CH3CO and CH2Cl. The CH3C(O)CH2 radical formed from C-Cl bond fission is one of the intermediates in the OH + allene reaction en route to CH3 + ketene. The 193 nm photodissociation laser allows us to produce these CH3C(O)CH2 radicals with enough internal energy to span the dissociation barrier leading to the CH3 + ketene asymptote. Therefore, some of the vibrationally excited CH3C(O)CH2 radicals undergo subsequent dissociation to CH3 + ketene products; we are able to measure the velocities of these products using both the imaging and scattering apparatuses. The results rule out the presence of a significant contribution from a C-C bond photofission channel that produces CH3 and COCH2Cl fragments. The CH3C(O)CH2 radicals are formed with a considerable amount of energy partitioned into rotation; we use an impulsive model to explicitly characterize the internal energy distribution. The data are better fit by using the C-Cl bond fission transition state on the S1 surface of chloroacetone as the geometry at which the impulsive force acts, not the Franck-Condon geometry. Our data suggest that, even under atmospheric conditions, the reaction of OH with allene could produce a small branching to CH3 + ketene products, rather than solely producing inelastically stabilized adducts. This additional channel offers a different pathway for the OH-initiated oxidation of such unsaturated volatile organic compounds, those containing a C=C=C moiety, than is currently included in atmospheric models.

  15. Synthesis and SMM behaviour of trinuclear versus dinuclear 3d-5f uranyl(v)-cobalt(ii) cation-cation complexes.

    Science.gov (United States)

    Chatelain, Lucile; Tuna, Floriana; Pécaut, Jacques; Mazzanti, Marinella

    2017-05-02

    Trinuclear versus dinuclear heterodimetallic U V O 2 + Co 2+ complexes were selectively assembled via a cation-cation interaction by tuning the ligand. The trimeric complex 2, with a linear [Co-O[double bond, length as m-dash]U[double bond, length as m-dash]O-Co] core, exhibits magnetic exchange and slow relaxation with a reversal barrier of 30.5 ± 0.9 K providing the first example of a U-Co exchange-coupled SMM.

  16. Photochemistry and reactions of OH- defects and F centers in alkali halides

    International Nuclear Information System (INIS)

    Morato, S.P.; Luety, F.

    1978-01-01

    Aditively colored KCl:OH - crystals showed under a combined UV and VIS irradiation, a nearly complete and irreversible destruction of all F centers and visible absorption in the crystal. Only upon heating the crystal above 650 0 C the F center coloration becomes partially restored. The photodissociation of the OH - (under UV light) together with the photoionization of the F center (under VIS light) produces a not effects where all the F centers are converted into U centers. These photoreactions produces high contrast visible images that are completely stable under light at RT. Besides the optical information storage aspect of this effect these photoreaction s can also be used for controlled production of Usub(A) centers if the crystal also contains a foreign metallic impurity such a Na + ion [pt

  17. Vibrational Spectroscopy of Intramolecular Hydrogen Bonds in the Infrared and Near-Infrared Regions

    DEFF Research Database (Denmark)

    Schrøder, Sidsel Dahl

    and 1,4-diaminobutane). Experimentally, the hydrogen bonds have been studied with vibrational spectroscopy in the infrared and near-infrared regions. The focus is primarily on spectra recorded in the near-infrared regions, which in these studies are dominated by O-H and N-H stretching overtones....... Overtone spectra have been recorded with intracavity laser photoacoustic laser spectroscopy and conventional long path absorption spectroscopy. Theoretically, a combination of electronic structure calculations and local mode models have been employed to guide the assignment of bands in the vibrational......,4-diaminobutane, no sign of intramolecular N-H···N hydrogen bonds were identified in the overtone spectra. However, theoretical analyzes indicate that intramolecular N-H···N hydrogen bonds are present in all three diamines if two hydrogen atoms on one of the methylene groups are substituted with triuoromethyl...

  18. Performance of various density functionals for the hydrogen bonds in DNA base pairs

    NARCIS (Netherlands)

    van der Wijst, T.; Fonseca Guerra, C.; Swart, M.; Bickelhaupt, F.M.

    2006-01-01

    We have investigated the performance of seven popular density functionals (B3LYP, BLYP, BP86, mPW, OPBE, PBE, PW91) for describing the geometry and stability of the hydrogen bonds in DNA base pairs. For the gas-phase situation, the hydrogen-bond lengths and strengths in the DNA pairs have been

  19. Peculiarities of structure of rare earth β-diketonates and carboxylates with mostly ionic type of bond

    International Nuclear Information System (INIS)

    Kuz'mina, N.P.; Martynenko, L.I.

    1996-01-01

    X-ray diffraction data on β-diketonates and carboxylates of rare earths (3) have been analyzed. Essential features of the compounds structure have been formulated. It is shown that in the compounds mentioned irregular distortions of chelate cycles over the length and angles of bonds are observed, there is no regularity in the ratios of metal-ligand bridge and chelate bond lengths both in the series of compounds of different composition and inside one compound. 2 refs

  20. Linkages among U.S. Treasury Bond Yields, Commodity Futures and Stock Market Implied Volatility: New Nonparametric Evidence

    Directory of Open Access Journals (Sweden)

    Vychytilova Jana

    2015-09-01

    Full Text Available This paper aims to explore specific cross-asset market correlations over the past fifteen- yearperiod-from January 04, 1999 till April 01, 2015, and within four sub-phases covering both the crisis and the non-crisis periods. On the basis of multivariate statistical methods, we focus on investigating relations between selected well-known market indices- U.S. treasury bond yields- the 30-year treasury yield index (TYX and the 10-year treasury yield (TNX; commodity futures the TR/J CRB; and implied volatility of S&P 500 index- the VIX. We estimate relative logarithmic returns by using monthly close prices adjusted for dividends and splits and run normality and correlation analyses. This paper indicates that the TR/J CRB can be adequately modeled by a normal distribution, whereas the rest of benchmarks do not come from a normal distribution. This paper, inter alia, points out some evidence of a statistically significant negative relationship between bond yields and the VIX in the past fifteen years and a statistically significant negative linkage between the TR/J CRB and the VIX since 2009. In rather general terms, this paper thereafter supports the a priori idea- financial markets are interconnected. Such knowledge can be beneficial for building and testing accurate financial market models, and particularly for the understanding and recognizing market cycles.

  1. Synthesis of Hydroxysodalite From Paper Sludge Ash Using NaOH-LiOH Mixtures

    Directory of Open Access Journals (Sweden)

    Takaaki Wajima

    2017-06-01

    Full Text Available Hydroxysodalite zeolite was synthesized at 90 oC from paper sludge ash, which is industrial wastes in paper manufacturing, using NaOH-LiOH mixed solution. Paper sludge ash was discharged from paper making plant as industrial wastes, and the amount is increasing annually. The new utilization of paper sludge ash is desired. Hydroxysodalite can be used to remove HCl gas at high temperature, and there are papers for hydroxysodalite synthesis from various ashes, for example, coal fly ash. In my previous study, hydroxysodalite can be synthesized from paper sludge ash. However, little information can be available on the synthesis of hydroxysodalite from paper sludge ash. Therefore, we attempted to examine the synthesis of hydroxysodalite from paper sludge ash using NaOH-LiOH mixtures. Hydroxysodalite [Na6Al6Si6O24‧8H2O] was obtained in the mixed solution with Li / (Li + Na ratios smaller than 0.25, while katoite [Ca3Al2(SiO4(OH8] was formed in the mixed solutions with the other molar ratios, due to the dissolution of gehlenite [Ca2Al2SiO7]. The observed concentrations of Si and Al in the solution during the reaction explain the synthesis of reaction products, which depends on alkali species.

  2. In(OH){sub 3} and In{sub 2}O{sub 3} nanorice and microflowers: morphology transformation and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ren Weian; Liu Ying; Mei Zongwei; Wen Xiaogang, E-mail: wenxg2001@163.com [Sichuan University, School of Materials Science and Engineering (China); Wang Suhua [Chinese Academy of Sciences, Institute of Intelligent Machines (China)

    2013-02-15

    In this work, In(OH){sub 3} and In{sub 2}O{sub 3} nanostructures with controllable complex morphologies were successfully synthesized through a simple hydrothermal process followed by annealing. The In(OH){sub 3} nanostructures were synthesized using urea as the alkaline source at a relatively low temperature without any templates or surfactants. The morphology transformation of In(OH){sub 3} from nanorice to microflowers was observed. The In(OH){sub 3} nanorice are 180 nm in diameter and 550 nm in length, the microflowers are about 3 {mu}m in diameter and composed of thin nanoflakes with 4-nm thickness. In{sub 2}O{sub 3} with similar morphology was formed by annealing In(OH){sub 3} precursors. The nanostructures were characterized using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Our results suggest that a new nucleation-growth-etching-regrowth mechanism can explain the morphology transformation from nanorice to flower-like frameworks. Raman spectrum and photoluminescence (PL) properties of In{sub 2}O{sub 3} were also measured, and a 3-nm blue-shift of PL spectrum was observed due to the thinness of the nanostructures.

  3. Using an electrostatic accelerator to determine the stereochemical structures of molecular ions

    International Nuclear Information System (INIS)

    Gemmell, D.S.

    1980-01-01

    Recent high-resolution measurements on the energy and angle distributions of the fragments produced when fast (MeV) molecular-ion beams from an electrostatic accelerator dissociate (Coulomb explode) in thin foils and in gases, offer promising possibilities for deducing the stereochemical structures of the molecular ions constituting the incident beams. Bond lengths have been determined in this way for several diatomic projectiles (H 2 + , HeH + , CH + , NH + , OH + , N 2 + , O 2 + , etc.) with an accuracy of approx. 0.01 A. H 3 + has been demonstrated (for the first time) to be equilateral triangular and the interproton distance measured. Measurements on single fragments from CO 2 + , N 2 O + , C 3 H 3 + , and CH/sub n/ + have revealed the gross structures of the projectiles. An apparatus has recently been constructed at Argonne to permit precise measurements on fragments in coincidence. The apparatus has been tested on a known structure (OH 2 + ). The O-H bond length was found to be 1.0 +- 0.04 A and the H-O-H bond angle was measured as 110 +- 2 0 . These values are in excellent agreement with those found in optical experiments (0.999 A and 110.5 0 ). This Coulomb explosion technique can be expected to be refined in accuracy and to be extended to a wide range of molecular ions whose structures are inaccessible by other means

  4. The complex of PAMAM-OH dendrimer with Angiotensin (1–7) prevented the disuse-induced skeletal muscle atrophy in mice

    Science.gov (United States)

    Márquez-Miranda, Valeria; Abrigo, Johanna; Rivera, Juan Carlos; Araya-Durán, Ingrid; Aravena, Javier; Simon, Felipe; Pacheco, Nicolás; González-Nilo, Fernando Danilo; Cabello-Verrugio, Claudio

    2017-01-01

    Angiotensin (1–7) (Ang-(1–7)) is a bioactive heptapeptide with a short half-life and has beneficial effects in several tissues – among them, skeletal muscle – by preventing muscle atrophy. Dendrimers are promising vehicles for the protection and transport of numerous bioactive molecules. This work explored the use of a neutral, non-cytotoxic hydroxyl-terminated poly(amidoamine) (PAMAM-OH) dendrimer as an Ang-(1–7) carrier. Bioinformatics analysis showed that the Ang-(1–7)-binding capacity of the dendrimer presented a 2:1 molar ratio. Molecular dynamics simulation analysis revealed the capacity of neutral PAMAM-OH to protect Ang-(1–7) and form stable complexes. The peptide coverage ability of the dendrimer was between ~50% and 65%. Furthermore, an electrophoretic mobility shift assay demonstrated that neutral PAMAM-OH effectively bonded peptides. Experimental results showed that the Ang-(1–7)/PAMAM-OH complex, but not Ang-(1–7) alone, had an anti-atrophic effect when administered intraperitoneally, as evaluated by muscle strength, fiber diameter, myofibrillar protein levels, and atrogin-1 and MuRF-1 expressions. The results of the Ang-(1–7)/PAMAM-OH complex being intraperitoneally injected were similar to the results obtained when Ang-(1–7) was systemically administered through mini-osmotic pumps. Together, the results suggest that Ang-(1–7) can be protected for PAMAM-OH when this complex is intraperitoneally injected. Therefore, the Ang-(1–7)/PAMAM-OH complex is an efficient delivery method for Ang-(1–7), since it improves the anti-atrophic activity of this peptide in skeletal muscle. PMID:28331320

  5. Rationalization of the Hubbard U parameter in CeOx from first principles: Unveiling the role of local structure in screening

    International Nuclear Information System (INIS)

    Lu, Deyu; Liu, Ping

    2014-01-01

    The density functional theory (DFT)+U method has been widely employed in theoretical studies on various ceria systems to correct the delocalization bias in local and semi-local DFT functionals with moderate computational cost. We present a systematic and quantitative study, aiming to gain better understanding of the dependence of Hubbard U on the local atomic arrangement. To rationalize the Hubbard U of Ce 4f, we employed the first principles linear response method to compute Hubbard U for Ce in ceria clusters, bulks, and surfaces. We found that the Hubbard U varies in a wide range from 4.3 eV to 6.7 eV, and exhibits a strong correlation with the Ce coordination number and Ce–O bond lengths, rather than the Ce 4f valence state. The variation of the Hubbard U can be explained by the changes in the strength of local screening due to O → Ce intersite transitions

  6. Generation of OH Radical by Ultrasonic Irradiation in Batch and Circulatory Reactor

    Science.gov (United States)

    Fang, Yu; Shimizu, Sayaka; Yamamoto, Takuya; Komarov, Sergey

    2018-03-01

    Ultrasonic technology has been widely investigated in the past as one of the advance oxidation processes to treat wastewater, in this process acoustic cavitation causes generation of OH radical, which play a vital role in improving the treatment efficiency. In this study, OH radical formation rate was measured in batch and circulatory reactor by using Weissler reaction at various ultrasound output power. It is found that the generation rate in batch reactor is higher than that in circulatory reactor at the same output power. The generation rate tended to be slower when output power exceeds 137W. The optimum condition for circulatory reactor was found to be 137W output and 4L/min flow rate. Results of aluminum foil erosion test revealed a strong dependence of cavitation zone length on the ultrasound output power. This is assumed to be one of the reasons why the generation rate of HO radicals becomes slower at higher output power in circulatory reactor.

  7. Variability of OH(3-1) and OH(6-2) emission altitude and volume emission rate from 2003 to 2011

    Science.gov (United States)

    Teiser, Georg; von Savigny, Christian

    2017-08-01

    In this study we report on variability in emission rate and centroid emission altitude of the OH(3-1) and OH(6-2) Meinel bands in the terrestrial nightglow based on spaceborne nightglow measurements with the SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) instrument on the Envisat satellite. The SCIAMACHY observations cover the time period from August 2002 to April 2012 and the nighttime observations used in this study are performed at 10:00 p.m. local solar time. Characterizing variability in OH emission altitude - particularly potential long-term variations - is important for an appropriate interpretation of ground-based OH rotational temperature measurements, because simultaneous observations of the vertical OH volume emission rate profile are usually not available for these measurements. OH emission altitude and vertically integrated emission rate time series with daily resolution for the OH(3-1) band and monthly resolution for the OH(6-2) band were analyzed using a standard multilinear regression approach allowing for seasonal variations, QBO-effects (Quasi-Biennial Oscillation), solar cycle (SC) variability and a linear long-term trend. The analysis focuses on low latitudes, where SCIAMACHY nighttime observations are available all year. The dominant sources of variability for both OH emission rate and altitude are the semi-annual and annual variations, with emission rate and altitude being highly anti-correlated. There is some evidence for a 11-year solar cycle signature in the vertically integrated emission rate and in the centroid emission altitude of both the OH(3-1) and OH(6-2) bands.

  8. Theoretical study of the changes in the vibrational characteristics arising from the hydrogen bonding between Vitamin C ( L-ascorbic acid) and H 2O

    Science.gov (United States)

    Dimitrova, Yordanka

    2006-02-01

    The vibrational characteristics (vibrational frequencies, infrared intensities and Raman activities) for the hydrogen-bonded system of Vitamin C ( L-ascorbic acid) with five water molecules have been predicted using ab initio SCF/6-31G(d, p) calculations and DFT (BLYP) calculations with 6-31G(d, p) and 6-31++G(d, p) basis sets. The changes in the vibrational characteristics from free monomers to a complex have been calculated. The ab initio and BLYP calculations show that the complexation between Vitamin C and five water molecules leads to large red shifts of the stretching vibrations for the monomer bonds involved in the hydrogen bonding and very strong increase in their IR intensity. The predicted frequency shifts for the stretching vibrations from Vitamin C taking part in the hydrogen bonding are up to -508 cm -1. The magnitude of the wavenumber shifts is indicative of relatively strong OH···H hydrogen-bonded interactions. In the same time the IR intensity and Raman activity of these vibrations increase upon complexation. The IR intensity increases dramatically (up to 12 times) and Raman activity increases up to three times. The ab initio and BLYP calculations show, that the symmetric OH vibrations of water molecules are more sensitive to the complexation. The hydrogen bonding leads to very large red shifts of these vibrations and very strong increase in their IR intensity. The asymmetric OH stretching vibrations of water, free from hydrogen bonding are less sensitive to the complexation than the hydrogen-bonded symmetric O sbnd H stretching vibrations. The increases of the IR intensities for these vibrations are lower and red shifts are negligible.

  9. Hydrogen bonding analysis of hydroxyl groups in glucose aqueous solutions by a molecular dynamics simulation study

    International Nuclear Information System (INIS)

    Chen, Cong; Li, Wei Zhong; Song, Yong Chen; Weng, Lin Dong; Zhang, Ning

    2012-01-01

    Molecular dynamics simulations have been performed to investigate hydrogen bonding characteristics of hydroxyl groups in glucose aqueous solutions with different concentrations. The hydrogen bonding abilities and strength of different O and H atom types have been calculated and compared. The acceptor/donor efficiencies have been predicted and it has been found that: (1) O2-HO2 and O3-HO3 are more efficient intramolecular hydrogen bonding acceptors than donors; (2) O1-HO1, O4-HO4 and O6-HO6 are more efficient intramolecular hydrogen bonding donors than acceptors; (5) O1-HO1 and O6-HO6 are more efficient intermolecular hydrogen bonding acceptors than donors while hydroxyl groups O2-HO2 and O4-HO4 are more efficient intermolecular hydrogen bonding donors than acceptors. The hydrogen bonding abilities of hydroxyl groups revealed that: (1) the hydrogen bonding ability of OH2-H w is larger than that of hydroxyl groups in glucose; (2) among the hydroxyl groups in glucose, the hydrogen bonding ability of O6-HO6 is the largest and the hydrogen bonding ability of O4-HO4 is the smallest; (3) the intermolecular hydrogen bonding ability of O6-HO6 is the largest; (4) the order for intramolecular hydrogen bonding abilities (from large to small) is O2-HO2, O1-HO1, O3-HO3, O6-HO6 and O4-HO4

  10. Flame structure of methane/oxygen shear coaxial jet with velocity ratio using high-speed imaging and OH*, CH* chemiluminescence

    Science.gov (United States)

    Shim, Myungbo; Noh, Kwanyoung; Yoon, Woongsup

    2018-06-01

    In this study, the effects of gaseous methane/oxygen injection velocity ratio on the shear coaxial jet flame structure are analyzed using high-speed imaging along with OH* and CH* chemiluminescence. The images show that, as the velocity ratio is increased, the visual flame length increases and wrinkles of the flame front are developed further downstream. The region near the equivalence ratio 1 condition in the flame could be identified by the maximum OH* position, and this region is located further downstream as the velocity ratio is increased. The dominant CH* chemiluminescence is found in the near-injector region. As the velocity ratio is decreased, the signal intensity is higher at the same downstream distance in each flame. From the results, as the velocity ratio is decreased, there is increased entrainment of the external jet, the mixing of the two jets is enhanced, the region near the stoichiometric mixture condition is located further upstream, and consequently, the flame length decreases.

  11. Synthesis, characterization and flocculation activity of novel Fe(OH)3-polyacrylamide hybrid polymer

    International Nuclear Information System (INIS)

    Wang Huilong; Cui Jinyan; Jiang Wenfeng

    2011-01-01

    Highlights: → The preparation of a novel Fe(OH) 3 -PAM hybrid polymer flocculant is achieved via free radical solution polymerization. → Flocculation of kaolin suspensions using this novel Fe(OH) 3 -PAM hybrid polymer flocculant is revealed in this study. → The statistical model was first applied for calculating the thermodynamic parameters for the kaolin flocculating process. - Abstract: A novel Fe(OH) 3 -polyacrylamide inorganic-organic hybrid polymer (FHPAM) was synthesized via free radical solution polymerization initiated by a redox initiation system ((NH 4 ) 2 S 2 O 8 -NaHSO 3 ) in an aqueous medium. Reaction parameters influencing the intrinsic viscosity and the yield of the hybrid polymer, such as initiator concentration, monomer mass fraction, temperature and reaction time were investigated and optimized. The results show that the maximum intrinsic viscosity and up to 94% yields of the hybrid polymer can be achieved using initiator concentration of 0.3% with acrylamide monomer mass fraction of 20% under solution polymerization at 40 deg. C for 7 h. The physicochemical properties of this hybrid flocculant were characterized with TEM, FTIR spectra, TGA, and conductivity. It was found that a chemical bond exists between Fe(OH) 3 colloid and polyacrylamide chains in the FHPAM. The application of the hybrid polymer for the treatment of 2.5 g L -1 kaolin suspension indicates that it had an excellent flocculation capacity and its flocculation efficiency was much better than that of commercial available polyacrylamide (PAM) and polymeric ferric sulfate (PFS). The optimal conditions for the flocculation treatment of kaolin suspension were the FHPAM dosage of 40 mg L -1 at pH 7.0. The thermodynamic parameters for the flocculation process were calculated based on a statistical model. Interpretation of the results was given.

  12. Adsorption and surface reaction of bis-diethylaminosilane as a Si precursor on an OH-terminated Si (0 0 1) surface

    International Nuclear Information System (INIS)

    Baek, Seung-Bin; Kim, Dae-Hee; Kim, Yeong-Cheol

    2012-01-01

    The adsorption and the surface reaction of bis-diethylaminosilane (SiH 2 [N(C 2 H 5 ) 2 ] 2 , BDEAS) as a Si precursor on an OH-terminated Si (0 0 1) surface were investigated to understand the initial reaction mechanism of the atomic layer deposition (ALD) process using density functional theory. The bond dissociation energies between two atoms in BDEAS increased in the order of Si-H, Si-N, and the rest of the bonds. Therefore, the relatively weak Si-H and Si-N bonds were considered for bond breaking during the surface reaction. Optimum locations of BDEAS for the Si-H and Si-N bond breaking were determined on the surface, and adsorption energies of 0.43 and 0.60 eV, respectively, were obtained. The Si-H bond dissociation energy of the adsorbed BDEAS on the surface did not decrease, so that a high reaction energy barrier of 1.60 eV was required. On the other hand, the Si-N bond dissociation energy did decrease, so that a relatively low reaction energy barrier of 0.52 eV was required. When the surface reaction energy barrier was higher than the adsorption energy, BDEAS would be desorbed from the surface instead of being reacted. Therefore, the Si-N bond breaking would be dominantly involved during the surface reaction, and the result is in good agreement with the experimental data in the literature.

  13. Thermodynamic Mixing Behavior Of F-OH Apatite Crystalline Solutions

    Science.gov (United States)

    Hovis, G. L.

    2011-12-01

    intermediate series members, as doubled peaks merged into single diffraction maxima, the latter changing position systematically with bulk composition. All of the resulting F-OH apatite series members have hexagonal symmetry. The "a" unit-cell dimension behaves linearly with composition, and "c" is nearly constant across the series. Unit-cell volume also is linear with F:OH ratio, thus behaving in a thermodynamically ideal manner. Solution calorimetric experiments have been conducted in 20.0 wt % HCl at 50 °C on all series members. Enthalpies of F-OH mixing are nonexistent at F-rich compositions but have small negative values toward the hydroxylapatite end member. There is no enthalpy barrier, therefore, to complete F-OH mixing across the series, indicated as well by the ease of chemical homogenization for intermediate F:OH series members. In addition to the synthetic specimens described above, natural samples of hydroxylapatite, fluorapatite, and chlorapatite have been obtained for study from the U.S. National Museum of Natural History, as well as the American Museum of Natural History (our sincere appreciation to both museums for providing samples). Solution calorimetric results for these samples will be compared with data for the synthetic OH, F, and Cl apatite analogs noted above.

  14. OH-initiated transformation and hydrolysis of aspirin in AOPs system: DFT and experimental studies.

    Science.gov (United States)

    He, Lin; Sun, Xiaomin; Zhu, Fanping; Ren, Shaojie; Wang, Shuguang

    2017-08-15

    Advanced oxidation processes (AOPs) are widely used in wastewater treatment of pharmaceutical and personal care products (PPCPs). In this work, the OH-initiated transformation as well as the hydrolysis of a typical PPCPs, aspirin, was investigated using density functional theory (DFT) calculations and laboratory experiments. For DFT calculations, the frontier electron densities and bond dissociation energies were analyzed. Profiles of the potential energy surface were constructed, and all the possible pathways were discussed. Additionally, rate constants for each pathway were calculated with transition state theory (TST) method. UV/H 2 O 2 experiments of aspirin were performed and degradation intermediates were identified by UPLC-MS-MS analysis. Different findings from previous experimental works were reported that the H-abstraction pathways at methyl position were dominated and OH-addition pathways on benzene ring were also favored. Meantime, hydroxyl ASA was confirmed as the main stable intermediate. Moreover, it was the first time to use DFT method to investigate the hydrolysis mechanisms of organic ester compound. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Hyperfine excitation of OH+ by H

    Science.gov (United States)

    Lique, François; Bulut, Niyazi; Roncero, Octavio

    2016-10-01

    The OH+ ions are widespread in the interstellar medium and play an important role in the interstellar chemistry as they act as precursors to the H2O molecule. Accurate determination of their abundance rely on their collisional rate coefficients with atomic hydrogen and electrons. In this paper, we derive OH+-H fine and hyperfine-resolved rate coefficients by extrapolating recent quantum wave packet calculations for the OH+ + H collisions, including inelastic and exchange processes. The extrapolation method used is based on the infinite order sudden approach. State-to-state rate coefficients between the first 22 fine levels and 43 hyperfine levels of OH+ were obtained for temperatures ranging from 10 to 1000 K. Fine structure-resolved rate coefficients present a strong propensity rule in favour of Δj = ΔN transitions. The Δj = ΔF propensity rule is observed for the hyperfine transitions. The new rate coefficients will help significantly in the interpretation of OH+ spectra from photon-dominated region (PDR), and enable the OH+ molecule to become a powerful astrophysical tool for studying the oxygen chemistry.

  16. {sup 2}H NMR study of phase transition and hydrogen dynamics in hydrogen bonded organic antiferroelectric 55DMBP-H{sub 2}ca

    Energy Technology Data Exchange (ETDEWEB)

    Asaji, Tetsuo, E-mail: asaji@chs.nihon-u.ac.jp; Hara, Masamichi; Fujimori, Hiroki [Nihon University, Department of Chemistry, College of Humanities and Sciences (Japan); Hagiwara, Shoko [Nihon University, Department of Chemistry, Graduate School of Integrated Basic Sciences (Japan)

    2016-12-15

    Hydrogen dynamics in one-dimensional hydrogen bonded organic antiferroelectric, co-crystal of 5,5’-dimethyl-2,2’-bipyridine (55DMBP) and chloranilic acid (H{sub 2}ca), was investigated by use of {sup 2}H high resolution solid-state NMR. The two types of hydrogen bonds O-H …N and N{sup +}-H …O{sup −} in the antiferroelectric phase were clearly observed as the splitting of the side band of the {sup 2}H MAS NMR spectra of the acid-proton deuterated compound 55DMBP-D {sub 2}ca. The temperature dependence of the spin-lattice relaxation time was measured of the N{sup +}-H and O-H deuterons, respectively. It was suggested that the motion of the O-H deuteron is already in the antiferroelectric phase in the fast-motion regime in the NMR time scale, while that of the N{sup +}-H deuteron is a slow motion. In the high-temperature paraelectric phase, the both deuterons become equivalent and the fast motion of the deuterons in the NMR time scale is taking place with the activation energy of 7.9 kJ mol{sup −1}.

  17. Raman and FTIR spectroscopic studies on two hydroxylated tung oils (HTO) bearing conjugated double bonds

    Science.gov (United States)

    Zhuang, Yuwei; Ren, Zhiyong; Jiang, Lei; Zhang, Jiaxiang; Wang, Huafen; Zhang, Guobao

    2018-06-01

    Tung oil (TO) was used as a model compound to study two hydroxylated tung oils (HTO), prepared from TO by either aminolysis (HTO-am) or alcoholysis (HTO-al). Main bands in Raman and FTIR spectra were initially assigned based on the detailed analysis of the compound spectra before and after exposure to elevated temperature (200 °C). The effect of heat treatment in air on spectral bands, and especially on the changes associated with double bonds, were then investigated. In the present work, changes in spectral bands due to heat treatment were compared with those revealed in the previous work of others. The results show that the conjugated triene structure of TO has been retained during alcoholysis and aminolysis, to yield the HTOs studied; yet the change of the triene structure caused by heating is different among the three samples; the H-bonding strength between OH and Cdbnd O in HTO-am is higher than that in HTO-al; the changes in HTO vOH and vCdbnd O bands in FTIR caused by the present heat treatment were significant; for TO, there is a big difference between changes in spectra as caused by thermal exposure, compared to those caused by ageing under UV light or exposure to a catalyst. The present work has laid additional groundwork for further study of the reactions of such triply conjugated double bond structures under different ageing conditions.

  18. Formation of reactive oxygen by N2O decomposition over binuclear cationic sites of Fe-ferrierite zeolite: Periodic DFT + U study

    Science.gov (United States)

    Avdeev, Vasilii I.; Bedilo, Alexander F.

    2018-03-01

    The electronic nature of sites over Fe-ferrierite zeolite stabilizing active α-oxygen is analyzed by the periodic DFT + U approach. It is shown that two antiferromagnetically coupled Fe2+ cations with bridging OH-bonds form a stable bi-nuclear site of the [Fe2+Fe2+] doped FER complex. Frontier orbitals of this complex populated by two electrons with minority spins are localized in the bandgap. As a result, [Fe2+Fe2+] unit acquires the properties of a binuclear Lewis acid dipolarophile for 1,3-dipole N2O. First reaction step of N2O decomposition follows the Huisgen‧s concept of the 1,3-dipolar cycloaddition concept followed by the formation of reactive oxygen species Fesbnd O.

  19. OH/IR stars in the Galaxy

    International Nuclear Information System (INIS)

    Baud, B.

    1978-01-01

    Radio astronomical observations leading to the discovery of 71 OH/IR sources are described in this thesis. These OH/IR sources are characterized by their double peaked OH emission profile at a wavelength of 18 cm and by their strong IR infrared emission. An analysis of the distribution and radial velocities of a number of previously known and new OH/IR sources was performed. The parameter ΔV (the velocity separation between two emission peaks of the 18 cm line profile) was found to be a good criterion for a population classification with respect to stellar age

  20. Bonding techniques for flexural strengthening of R.C. beams using CFRP laminates

    Directory of Open Access Journals (Sweden)

    Alaa Morsy

    2013-09-01

    Full Text Available This paper presents an experimental study of an alternative method of attaching FRP laminates to reinforced concrete beams by the way of fasting steel rivets through the FRP laminate and concrete substrate. Five full scale R.C. beams were casted and strengthened in flexural using FRP laminate bonded with conventional epoxy and compared with other beams strengthened with FRP laminate and bonded with fastener “steel rivets” of 50 mm length and 10 mm diameter. Based on experimental evidence the beam strengthened with conventional bonding methods failed due to de-bonding with about 13% increase over the un-strengthened beam. On the other hand, the beams strengthened with FRP laminate and bonded by four steel fastener rivets only failed by de-bonding also but at higher flexural capacity with increase 19% over the un-strengthened beam.

  1. Redetermination of the cubic struvite analogue Cs[Mg(OH26](AsO4

    Directory of Open Access Journals (Sweden)

    Matthias Weil

    2009-01-01

    Full Text Available In contrast to the previous refinement from photographic data [Ferrari et al. (1955. Gazz. Chim. Ital. 84, 169–174], the present redetermination of the title compound, caesium hexaaquamagnesium arsenate(V, revealed the Cs atom to be on Wyckoff position 4d instead of Wyckoff position 4b of space group Foverline{4}3m. The structure can be derived from the halite structure. The centres of the complex [Mg(OH26] octahedra and the AsO4 tetrahedra (both with overline{4}3m symmetry are on the respective Na and Cl positions. The building units are connected to each other by O—H...O hydrogen bonds. The Cs+ cations (overline{4}3m symmetry are located in the voids of this arrangement and exhibit a regular cuboctahedral 12-coordination to the O atoms of the water molecules. The O atom bonded to As has 2mm site symmetry (Wyckoff position 24f and the water-molecule O atom has m site symmetry (Wyckoff position 48h.

  2. Physical mechanisms of Cu-Cu wafer bonding

    International Nuclear Information System (INIS)

    Rebhan, B.

    2014-01-01

    Modern manufacturing processes of complex integrated semiconductor devices are based on wafer-level manufacturing of components which are subsequently interconnected. When compared with classical monolithic bi-dimensional integrated circuits (2D ICs), the new approach of three-dimensional integrated circuits (3D ICs) exhibits significant benefits in terms of signal propagation delay and power consumption due to the reduced metal interconnection length and allows high integration levels with reduced form factor. Metal thermo-compression bonding is a process suitable for 3D interconnects applications at wafer level, which facilitates the electrical and mechanical connection of two wafers even processed in different technologies, such as complementary metal oxide semiconductor (CMOS) and microelectromechanical systems (MEMS). Due to its high electrical conductivity, copper is a very attractive material for electrical interconnects. For Cu-Cu wafer bonding the process requires typically bonding for around 1 h at 400°C and high contact pressure applied during bonding. Temperature reduction below such values is required in order to solve issues regarding (i) throughput in the wafer bonder, (ii) wafer-to-wafer misalignment after bonding and (iii) to minimise thermo-mechanical stresses or device degradation. The aim of this work was to study the physical mechanisms of Cu-Cu bonding and based on this study to further optimise the bonding process for low temperatures. The critical sample parameters (roughness, oxide, crystallinity) were identified using selected analytical techniques and correlated with the characteristics of the bonded Cu-Cu interfaces. Based on the results of this study the impact of several materials and process specifications on the bonding result were theoretically defined and experimentally proven. These fundamental findings subsequently facilitated low temperature (LT) metal thermo-compression Cu-Cu wafer bonding and even room temperature direct

  3. Room temperature synthesis and characterization of ultralong Cd(OH)2 nanowires: a simple and template-free chemical route

    International Nuclear Information System (INIS)

    Sahraei, R.; Daneshfar, A.; Roushani, M.; Mihandoost, A.; Nabiyouni, G.; Majles Ara, M.H.

    2012-01-01

    Ultralong Cd(OH) 2 nanowires were fabricated in high yield by a convenient chemical method using alkali medium at room temperature without using any templates. The preparation conditions induce a unilateral growth of nanowires, despite the absence of any template. The length of the nanowires reached several hundreds of micrometers, giving an aspect ratio of a few thousands. The X-ray diffraction shows that the Cd(OH) 2 nanostructures crystallized in the wurtzite structure without any special orientation. The photoluminescence spectrum of Cd(OH) 2 nanostructures appears as two emission bands: one related to green emission at 475-510 nm, and the other related to deep level emission at 510-540 nm. Also the formation mechanisms of the nanowires are presented. The growth mechanism involves the irreversible and specifically oriented self-assembly of primary nanocrystals and results in the formation of the nanowires. (orig.)

  4. Oral Conditioned Cues Can Enhance or Inhibit Ethanol (EtOH)-Seeking and EtOH-Relapse Drinking by Alcohol-Preferring (P) Rats.

    Science.gov (United States)

    Knight, Christopher P; Hauser, Sheketha R; Deehan, Gerald A; Toalston, Jamie E; McBride, William J; Rodd, Zachary A

    2016-04-01

    Conditioned cues can elicit drug-seeking in both humans and rodents. The majority of preclinical research has employed excitatory conditioned cues (stimuli present throughout the availability of a reinforcer), but oral consumption of alcohol is similar to a conditional stimuli (presence of stimuli is paired with the delivery of the reinforcer) approach. The current experiments attempted to determine the effects of conditional stimuli (both excitatory and inhibitory) on the expression of context-induced ethanol (EtOH)-seeking. Alcohol-preferring (P) rats self-administered EtOH and water in standard 2-lever operant chambers. A flavor was added to the EtOH solution (CS+) during the EtOH self-administration sessions. After 10 weeks, rats underwent extinction training (7 sessions), followed by a 2-week home cage period. Another flavor was present during extinction (CS-). Rats were exposed to a third flavor in a non-drug-paired environment (CS(0)). EtOH-seeking was assessed in the presence of no cue, CS+, CS-, or CS(0) in the dipper previously associated with EtOH self-administration (no EtOH available). Rats were maintained a week in their home cage before being returned to the operant chambers with access to EtOH (flavored with no cue, CS+, CS-, or CS(0)). The results indicated that the presence of the CS+ enhanced EtOH-seeking, while the presence of the CS- suppressed EtOH-seeking. Similarly, adding the CS- flavor to 15% EtOH reduced responding for EtOH while the CS+ enhanced responding for EtOH during relapse testing. Overall, the data indicate that conditional stimuli are effective at altering both EtOH-seeking behavior and EtOH-relapse drinking. Copyright © 2016 by the Research Society on Alcoholism.

  5. The role of hydrogen bonding in the fluorescence quenching of 2,6-bis((E)-2-(benzoxazol-2-yl)vinyl)naphthalene (BBVN) in methanol

    Science.gov (United States)

    Hammam, Essam; Basahi, Jalal; Ismail, Iqbal; Hassan, Ibrahim; Almeelbi, Talal

    2017-02-01

    The excited state hydrogen bonding dynamics of BBVN in hydrogen donating methanol solvent was explored at the TD-BMK/cc-pVDZ level of theory with accounting for the bulk environment effects at the polarizable continuum model (PCM). The heteroatoms of the BBVN laser dye form hydrogen bonds with four methanol molecules. In the formed BBVN-(MeOH)4 complex, the A-type hydrogen bond (N…HO), of an average strength of 25 kJ mol- 1, is twofold stronger than the B-type (O…HO) one. Upon photon absorption, the total HB binding energy increases from 78.5 kJ mol- 1 in the ground state to 82.6 kJ mol- 1 in the first singlet (S1) excited state. In consequence of the hydrogen bonding interaction, the absorption band maximum of the BBVN-(MeOH)4 complex, which was anticipated at 398 nm (exp. 397), is redshifted by 5 nm relative to that of the free dye in methanol. The spectral shift of the stretching vibrational mode for the hydrogen bonded hydroxyl groups (with a maximum shift of 285 cm- 1) from that of the free methanol indicated the elevated strengthening of hydrogen bonds in the excited state. The vibrational modes associated with hydrogen bonding provide effective accepting modes for the dissipation of the excitation energy, thus, decreasing the fluorescence quantum yield of BBVN in alcohols as compared to that in the polar aprotic solvents. Since there is no sign of photochemistry or phosphorescence, it seems reasonable in view of the outcomes of this study to assign the major decay process of the excited singlet (S1) of BBVN in alcohols to vibronically induced internal conversion (IC) facilitated by hydrogen bonding.

  6. Molecular Dynamics Investigation of the Effects of Concentration on Hydrogen Bonding in Aqueous Solutions of Methanol, Ethylene Glycol and Glycerol

    International Nuclear Information System (INIS)

    Zhang, Ning; Li, Weizhong; Chen, Cong; Zuo, Jianguo; Weng, Lindong

    2013-01-01

    Hydrogen bonding interaction between alcohols and water molecules is an important characteristic in the aqueous solutions of alcohols. In this paper, a series of molecular dynamics simulations have been performed to investigate the aqueous solutions of low molecular weight alcohols (methanol, ethylene glycol and glycerol) at the concentrations covering a broad range from 1 to 90 mol %. The work focuses on studying the effect of the alcohols molecules on the hydrogen bonding of water molecules in binary mixtures. By analyzing the hydrogen bonding ability of the hydroxyl (-OH) groups for the three alcohols, it is found that the hydroxyl group of methanol prefers to form more hydrogen bonds than that of ethylene glycol and glycerol due to the intra-and intermolecular effects. It is also shown that concentration has significant effect on the ability of alcohol molecule to hydrogen bond water molecules. Understanding the hydrogen bonding characteristics of the aqueous solutions is helpful to reveal the cryoprotective mechanisms of methanol, ethylene glycol and glycerol in aqueous solutions

  7. Structural studies on Mannich bases of 2-Hydroxy-3,4,5,6-tetrachlorobenzene. An UV, IR, NMR and DFT study. A mini-review

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Spanget-Larsen, Jens

    2016-01-01

    Mannich bases of 2-Hydroxy-3,4,5,6-tetrachlorobenzene are chosen as an exemplary case for tautomeric Mannich bases. Molecular structures are calculated. OH stretching frequencies are rationalized based on DFT calculations. Intrinsic deuterium isotope effects on 13C chemical shifts in the M-form a......-form are estimated based on OH bond lengths. The observed deuterium isotope effects on 13C chemical shifts are demonstrated to be largely of equilibrium type except at ambient temperatures....

  8. Mesospheric OH layer altitude at midlatitudes: variability over the Sierra Nevada Observatory in Granada, Spain (37° N, 3° W)

    Science.gov (United States)

    García-Comas, Maya; José López-González, María; González-Galindo, Francisco; de la Rosa, José Luis; López-Puertas, Manuel; Shepherd, Marianna G.; Shepherd, Gordon G.

    2017-10-01

    The mesospheric OH layer varies on several timescales, primarily driven by variations in atomic oxygen, temperature, density and transport (advection). Vibrationally excited OH airglow intensity, rotational temperature and altitude are closely interrelated and thus accompany each other through these changes. A correct interpretation of the OH layer variability from airglow measurements requires the study of the three variables simultaneously. Ground-based instruments measure excited OH intensities and temperatures with high temporal resolution, but they do not generally observe altitude directly. Information on the layer height is crucial in order to identify the sources of its variability and the causes of discrepancies in measurements and models. We have used SABER space-based 2002-2015 data to infer an empirical function for predicting the altitude of the layer at midlatitudes from ground-based measurements of OH intensity and rotational temperature. In the course of the analysis, we found that the SABER altitude (weighted by the OH volume emission rate) at midlatitudes decreases at a rate of 40 m decade-1, accompanying an increase of 0.7 % decade-1 in OH intensity and a decrease of 0.6 K decade-1 in OH equivalent temperature. SABER OH altitude barely changes with the solar cycle, whereas OH intensity and temperature vary by 7.8 % per 100 s.f.u. and 3.9 K per 100 s.f.u., respectively. For application of the empirical function to Sierra Nevada Observatory SATI data, we have calculated OH intensity and temperature SATI-to-SABER transfer functions, which point to relative instrumental drifts of -1.3 % yr-1 and 0.8 K yr-1, respectively, and a temperature bias of 5.6 K. The SATI predicted altitude using the empirical function shows significant short-term variability caused by overlapping waves, which often produce changes of more than 3-4 km in a few hours, going along with 100 % and 40 K changes in intensity and temperature, respectively. SATI OH layer wave effects

  9. Hydrogen activation, diffusion, and clustering on CeO{sub 2}(111): A DFT+U study

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Torre, Delia [Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Instituto de Estructura de la Materia, CSIC, C/ Serrano 121, E-28006 Madrid (Spain); Carrasco, Javier [CIC Energigune, Albert Einstein 48, 01510 Miñano, Álava (Spain); Instituto de Catálisis y Petroleoquímica, CSIC, C/ Marie Curie 2, E-28049 Madrid (Spain); Ganduglia-Pirovano, M. Verónica [Instituto de Catálisis y Petroleoquímica, CSIC, C/ Marie Curie 2, E-28049 Madrid (Spain); Pérez, Rubén, E-mail: ruben.perez@uam.es [Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid (Spain)

    2014-07-07

    We present a comprehensive density functional theory+U study of the mechanisms underlying the dissociation of molecular hydrogen, and diffusion and clustering of the resulting atomic species on the CeO{sub 2}(111) surface. Contrary to a widely held view based solely on a previous theoretical prediction, our results show conclusively that H{sub 2} dissociation is an activated process with a large energy barrier ∼1.0 eV that is not significantly affected by coverage or the presence of surface oxygen vacancies. The reaction proceeds through a local energy minimum – where the molecule is located close to one of the surface oxygen atoms and the H–H bond has been substantially weaken by the interaction with the substrate –, and a transition state where one H atom is attached to a surface O atom and the other H atom sits on-top of a Ce{sup 4+} ion. In addition, we have explored how several factors, including H coverage, the location of Ce{sup 3+} ions as well as the U value, may affect the chemisorption energy and the relative stability of isolated OH groups versus pair and trimer structures. The trimer stability at low H coverages and the larger upward relaxation of the surface O atoms within the OH groups are consistent with the assignment of the frequent experimental observation by non-contact atomic force and scanning tunneling microscopies of bright protrusions on three neighboring surface O atoms to a triple OH group. The diffusion path of isolated H atoms on the surface goes through the adsorption on-top of an oxygen in the third atomic layer with a large energy barrier of ∼1.8 eV. Overall, the large energy barriers for both, molecular dissociation and atomic diffusion, are consistent with the high activity and selectivity found recently in the partial hydrogenation of acetylene catalyzed by ceria at high H{sub 2}/C{sub 2}H{sub 2} ratios.

  10. First-principles analysis of MoS2/Ti2C and MoS2/Ti2CY2 (Y=F and OH) all-2D semiconductor/metal contacts

    KAUST Repository

    Gan, Liyong

    2013-06-13

    First-principles calculations are used to explore the geometry, bonding, and electronic properties of MoS2/Ti2C and MoS2/Ti2CY2 (Y = F and OH) semiconductor/metal contacts. The structure of the interfaces is determined. Strong chemical bonds formed at the MoS2/Ti2C interface result in additional states next to the Fermi level, which extend over the three atomic layers of MoS2 and induce a metallic character. The interaction in MoS2/Ti2CY2, on the other hand, is weak and not sensitive to the specific geometry, and the semiconducting nature thus is preserved. The energy level alignment implies weak and strong n-type doping of MoS2 in MoS2/Ti2CF2 and MoS2/Ti2C(OH)2, respectively. The corresponding n-type Schottky barrier heights are 0.85 and 0.26 eV. We show that the MoS2/Ti2CF2 interface is close to the Schottky limit. At the MoS2/Ti2C(OH)2 interface, we find that a strong dipole due to charge rearrangement induces the Schottky barrier. The present interfaces are well suited for application in all-two-dimensional devices.

  11. First-principles analysis of MoS2/Ti2C and MoS2/Ti2CY2 (Y=F and OH) all-2D semiconductor/metal contacts

    KAUST Repository

    Gan, Liyong; Huang, Dan; Schwingenschlö gl, Udo; Zhao, Yu-Jun

    2013-01-01

    First-principles calculations are used to explore the geometry, bonding, and electronic properties of MoS2/Ti2C and MoS2/Ti2CY2 (Y = F and OH) semiconductor/metal contacts. The structure of the interfaces is determined. Strong chemical bonds formed at the MoS2/Ti2C interface result in additional states next to the Fermi level, which extend over the three atomic layers of MoS2 and induce a metallic character. The interaction in MoS2/Ti2CY2, on the other hand, is weak and not sensitive to the specific geometry, and the semiconducting nature thus is preserved. The energy level alignment implies weak and strong n-type doping of MoS2 in MoS2/Ti2CF2 and MoS2/Ti2C(OH)2, respectively. The corresponding n-type Schottky barrier heights are 0.85 and 0.26 eV. We show that the MoS2/Ti2CF2 interface is close to the Schottky limit. At the MoS2/Ti2C(OH)2 interface, we find that a strong dipole due to charge rearrangement induces the Schottky barrier. The present interfaces are well suited for application in all-two-dimensional devices.

  12. Pharmacokinetics of 1,25(OH)(2)D(3) and 1alpha(OH)D(3) in normal and uraemic men

    DEFF Research Database (Denmark)

    Brandi, Lisbet; Egfjord, Martin; Olgaard, Klaus

    2002-01-01

    ,25(OH)(2)D(3) (n=6) protocol. RESULTS: After oral administration of 1,25(OH)(2)D(3) the bioavailability of 1,25(OH)(2)D(3) was 70.6+/-5.8/72.2+/-4.8% in healthy volunteers/uraemic patients (n.s.). After i.v. administration the volume of distribution of 1,25(OH)(2)D(3) was similar, 0.49+/-0.14 vs 0...

  13. Durability of adhesive bonds to uranium alloys, tungsten, tantalum, and thorium

    International Nuclear Information System (INIS)

    Childress, F.G.

    1975-01-01

    Long-term durability of epoxy bonds to alloys of uranium (U-Nb and Mulberry), nickel-plated uranium, thorium, tungsten, tantalum, tantalum--10 percent tungsten, and aluminum was evaluated. Significant strengths remain after ten years of aging; however, there is some evidence of bond deterioration with uranium alloys and thorium stored in ambient laboratory air

  14. Substituent Effects on the Stability of Thallium and Phosphorus Triple Bonds: A Density Functional Study.

    Science.gov (United States)

    Lu, Jia-Syun; Yang, Ming-Chung; Su, Ming-Der

    2017-07-05

    Three computational methods (M06-2X/Def2-TZVP, B3PW91/Def2-TZVP and B3LYP/LANL2DZ+dp) were used to study the effect of substitution on the potential energy surfaces of RTl≡PR (R = F, OH, H, CH₃, SiH₃, SiMe(Si t Bu₃)₂, Si i PrDis₂, Tbt (=C₆H₂-2,4,6-(CH(SiMe₃)₂)₃), and Ar* (=C₆H₃-2,6-(C₆H₂-2, 4,6- i -Pr₃)₂)). The theoretical results show that these triply bonded RTl≡PR compounds have a preference for a bent geometry (i.e., ∠R⎼Tl⎼P ≈ 180° and ∠Tl⎼P⎼R ≈ 120°). Two valence bond models are used to interpret the bonding character of the Tl≡P triple bond. One is model [I], which is best described as TlP. This interprets the bonding conditions for RTl≡PR molecules that feature small ligands. The other is model [II], which is best represented as TlP. This explains the bonding character of RTl≡PR molecules that feature large substituents. Irrespective of the types of substituents used for the RTl≡PR species, the theoretical investigations (based on the natural bond orbital, the natural resonance theory, and the charge decomposition analysis) demonstrate that their Tl≡P triple bonds are very weak. However, the theoretical results predict that only bulkier substituents greatly stabilize the triply bonded RTl≡PR species, from the kinetic viewpoint.

  15. In situ fabrication of Ni(OH){sub 2} nanofibers on polypyrrole-based carbon nanotubes for high-capacitance supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Jianzhang [School of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046 (China); Mi, Hongyu, E-mail: mmihongyu@163.com [School of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046 (China); Xu, Youlong, E-mail: ylxuxjtu@mail.xjtu.edu.cn [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Gao, Bo [Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011 (China)

    2013-03-15

    Highlights: ► Facile surface decoration approach to highly porous Ni(OH){sub 2}/CNT composites. ► Polypyrrole-based CNTs form three-dimensional electron-transport channels. ► A high capacitance of 1118 F g{sup −1} at 50 mA cm{sup −2} is delivered. ► Ni(OH){sub 2}/CNT composites exhibit high discharge capability. - Abstract: Large-scale nickel hydroxide–carbon [Ni(OH){sub 2}/CNT] networks with three-dimensional electron-transport channels are synthesized via a facile and general surface-decoration approach, using polypyrrole-derived CNTs as the support. Flexible Ni(OH){sub 2} nanofibers with a diameter of 5–10 nm and a length of 50–120 nm are intertwined and wrapped homogenously on carbon networks, leading to the formation of more complex networks. When used as supercapacitor electrodes, this designed architecture with large surface area, abundant pores and good electrical conductivity is very important in technology. It can promote the bulk accessibility of electrolyte OH{sup −} and diffusion rate within the redox phase. Consequently, an unusual specific capacitance of 1745 F g{sup −1} can be obtained for Ni(OH){sub 2}/CNT composite at 30 mA cm{sup −2}. Even at a high rate (50 mA cm{sup −2}), the composite can also deliver a specific capacitance as high as 1118 F g{sup −1}, exhibiting the potential application for supercapacitors.

  16. The chemical bond as an emergent phenomenon.

    Science.gov (United States)

    Golden, Jon C; Ho, Vinh; Lubchenko, Vassiliy

    2017-05-07

    We first argue that the covalent bond and the various closed-shell interactions can be thought of as symmetry broken versions of one and the same interaction, viz., the multi-center bond. We use specially chosen molecular units to show that the symmetry breaking is controlled by density and electronegativity variation. We show that the bond order changes with bond deformation but in a step-like fashion, regions of near constancy separated by electronic localization transitions. These will often cause displacive transitions as well so that the bond strength, order, and length are established self-consistently. We further argue on the inherent relation of the covalent, closed-shell, and multi-center interactions with ionic and metallic bonding. All of these interactions can be viewed as distinct sectors on a phase diagram with density and electronegativity variation as control variables; the ionic and covalent/secondary sectors are associated with on-site and bond-order charge density wave, respectively, the metallic sector with an electronic fluid. While displaying a contiguity at low densities, the metallic and ionic interactions represent distinct phases separated by discontinuous transitions at sufficiently high densities. Multi-center interactions emerge as a hybrid of the metallic and ionic bond that results from spatial coexistence of delocalized and localized electrons. In the present description, the issue of the stability of a compound is that of the mutual miscibility of electronic fluids with distinct degrees of electron localization, supra-atomic ordering in complex inorganic compounds coming about naturally. The notions of electronic localization advanced hereby suggest a high throughput, automated procedure for screening candidate compounds and structures with regard to stability, without the need for computationally costly geometric optimization.

  17. Crystallographic and infrared spectroscopic study of bond distances in Ln[Fe(CN)6].4H2O (Ln=lanthanide)

    International Nuclear Information System (INIS)

    Zhou Xianju; Wong, W.-T.; Faucher, Michele D.; Tanner, Peter A.

    2008-01-01

    Along with crystallographic data of Ln[Fe(CN) 6 ].4H 2 O (Ln=lanthanide), the infrared spectra are reassigned to examine bond length trends across the series of Ln. The changes in mean Ln-O, Ln-N, C≡N and Fe-C distances are discussed and the bond natures of Ln-N and Ln-O are studied by bond length linear or quadratic fitting and comparisons with relevant ionic radii. The two different C≡N bond distances have been simulated by the covalo-electrostatic model. - Graphical abstract: Crystallographic and FTIR data for Ln[Fe(CN) 6 ].4H 2 O enable the changes in Ln-O, Ln-N, C≡N and Fe-C distances to be determined and modeled across the lanthanide series

  18. Extended model of bond charges and its application in calculation of optical properties of crystals with different types of chemical bonds

    International Nuclear Information System (INIS)

    Tsirelson, V.G.; Korolkova, O.V.; Rez, I.S.; Ozerov, R.P.

    1984-01-01

    A method for calculating the optical characteristics of crystals with different types of chemical bonds within the framework of the dielectric theory of chemical bond put forward by Philips and Van Vechten is suggested. The calculating scheme which does not contain adjustable parameters is based on the bond charge model designed by Levine, which is generalized for the case of multiple bonds and modified involving the density functional method data on the spatial distribution of electrons in atoms. The structural elements of the method are: the screened Coulomb potentials and radii of the atomic core, bond lengths and charges, and the distances from the nuclei to the centers of gravity of the latter. The calculated characteristics of the crystals (dielectric permittivity, quadratic and cubic non-linear susceptibilities, electrooptical constants) are in good accordance with experimental findings. An attempt is made to predict the non-linear optical characteristics according to precision X-ray diffraction data on the electron structure of its only representative, lithium formate deuterate LiHCO 2 xD 2 O, whereby a fairly good fit with the experimental data is achieved. (author)

  19. Corrosion resistance and development length of steel reinforcement with cementitious coatings

    Science.gov (United States)

    Pei, Xiaofei

    This research program focused on the corrosion resistance and development length of reinforcing steel coated with Cementitious Capillary Crystalline Waterproofing (CCCW) materials. The first part of this research program involved using the half-cell potential method to evaluate the corrosion resistance of CCCW coating materials. One hundred and two steel bars were embedded in concrete cylinders and monitored. In total, 64 steel reinforcing bars were coated with CCCW prior to embedment, 16 mortar cylinders were externally coated with CCCW, and 22 control (uncoated) samples were tested. All the samples were immersed in a 3.5% concentration chloride solution for a period of one year. Three coating types were studied: CCCW-B, CCCW-B+ C and CCCW-C+D. The test results showed that the CCCW coating materials delayed the corrosion activity to varying degrees. In particular, CCCW-C+D applied on the reinforcing steel surface dramatically delayed the corrosion activity when compared to the control samples. After being exposed to the chloride solution for a period of one year, no sign of corrosion was observed for the cylinders where the concrete surface was coated. The second part of this research evaluated the bond strength and development length of reinforcing steel coated with two types of CCCW coating materials (CCCW-B+C and CCCW-C+D) using a modified pull-out test method. A self-reacting inverted T-shaped beam was designed to avoid compression in the concrete surrounding the reinforcing steel. Steel reinforcing bars were embedded along the web portion of the T-beam with various embedded lengths and were staggered side by side. In total, six T-beams were fabricated and each beam contained 8 samples. Both short-term (7 days) and long-term (3 months) effects of water curing were evaluated. The reinforcing steel bars coated with CCCW-B+C demonstrated a higher bond strength than did samples coated with CCCW-C+D. However, the bond strengths of samples with coating materials

  20. Halogen-bonded network of trinuclear copper(II 4-iodopyrazolate complexes formed by mutual breakdown of chloroform and nanojars

    Directory of Open Access Journals (Sweden)

    Stuart A. Surmann

    2016-11-01

    Full Text Available Crystals of bis(tetrabutylammonium di-μ3-chlorido-tris(μ2-4-iodopyrazolato-κ2N:N′tris[chloridocuprate(II] 1,4-dioxane hemisolvate, (C16H36N2[Cu3(C3H2IN23Cl5]·0.5C4H8O or (Bu4N2[CuII3(μ3-Cl2(μ-4-I-pz3Cl3]·0.5C4H8O, were obtained by evaporating a solution of (Bu4N2[{CuII(μ-OH(μ-4-I-pz}nCO3] (n = 27–31 nanojars in chloroform/1,4-dioxane. The decomposition of chloroform in the presence of oxygen and moisture provides HCl, which leads to the breakdown of nanojars to the title trinuclear copper(II pyrazolate complex, and possibly CuII ions and free 4-iodopyrazole. CuII ions, in turn, act as catalyst for the accelerated decomposition of chloroform, ultimately leading to the complete breakdown of nanojars. The crystal structure presented here provides the first structural description of a trinuclear copper(II pyrazolate complex with iodine-substituted pyrazoles. In contrast to related trinuclear complexes based on differently substituted 4-R-pyrazoles (R = H, Cl, Br, Me, the [Cu3(μ-4-I-pz3Cl3] core in the title complex is nearly planar. This difference is likely a result of the presence of the iodine substituent, which provides a unique, novel feature in copper pyrazolate chemistry. Thus, the iodine atoms form halogen bonds with the terminal chlorido ligands of the surrounding complexes [mean length of I...Cl contacts = 3.48 (1 Å], leading to an extended two-dimensional, halogen-bonded network along (-110. The cavities within this framework are filled by centrosymmetric 1,4-dioxane solvent molecules, which create further bridges via C—H...Cl hydrogen bonds with terminal chlorido ligands of the trinuclear complex not involved in halogen bonding.

  1. Rationalization of the Hubbard U parameter in CeO{sub x} from first principles: Unveiling the role of local structure in screening

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Deyu, E-mail: dlu@bnl.gov, E-mail: pingliu3@bnl.gov; Liu, Ping, E-mail: dlu@bnl.gov, E-mail: pingliu3@bnl.gov [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2014-02-28

    The density functional theory (DFT)+U method has been widely employed in theoretical studies on various ceria systems to correct the delocalization bias in local and semi-local DFT functionals with moderate computational cost. We present a systematic and quantitative study, aiming to gain better understanding of the dependence of Hubbard U on the local atomic arrangement. To rationalize the Hubbard U of Ce 4f, we employed the first principles linear response method to compute Hubbard U for Ce in ceria clusters, bulks, and surfaces. We found that the Hubbard U varies in a wide range from 4.3 eV to 6.7 eV, and exhibits a strong correlation with the Ce coordination number and Ce–O bond lengths, rather than the Ce 4f valence state. The variation of the Hubbard U can be explained by the changes in the strength of local screening due to O → Ce intersite transitions.

  2. Nb2OsB2, with a new twofold superstructure of the U3Si2 type: Synthesis, crystal chemistry and chemical bonding

    International Nuclear Information System (INIS)

    Mbarki, Mohammed; Touzani, Rachid St.; Fokwa, Boniface P.T.

    2013-01-01

    The new ternary metal-rich boride, Nb 2 OsB 2 , was synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. The compound was characterized from single-crystal X-ray data and EDX measurements. It crystallizes as a new superstructure (space group P4/mnc, no. 128) of the tetragonal U 3 Si 2 -structure type with lattice parameters a=5.922(1) Å and c=6.879(2) Å. All of the B atoms are involved in B 2 dumbbells with B–B distances of 1.89(4) Å. Structure relaxation using VASP (Vienna ab intio Simulation Package) has confirmed the space group and the lattice parameters. According to electronic structure calculations (TB–LMTO–ASA), the homoatomic B–B interactions are optimized and very strong, but relatively strong heteroatomic Os–B, Nb–B and Nb–Os bonds are also found: These interactions, which together build a three-dimensional network, are mainly responsible for the structural stability of this new phase. The density of state at the Fermi level predicts metallic behavior, as expected, from this metal-rich boride. - Graphical abstract: Nb 2 OsB 2 is, to the best of our knowledge, the first fully characterized phase in the ternary Nb–Os–B system. It crystallizes (space group P4/mnc, 128) with a new twofold superstructure of the U 3 Si 2 structure type (space group P4/mbm, 127), and is therefore the first boride in this structure family crystallizing with a superstructure of the U 3 Si 2 structure type. We show that the distortions leading to this superstructure occurs mainly in the Nb-layer, which tries to accommodate the large osmium atoms. The consequence of this puckering is the building osmium dumbbells instead of chains along [001]. - Highlights: • First compound in the Nb–Os–B system. • New twofold superstructure of U 3 Si 2 structure type. • Puckering of Nb-layer responsible for superstructure occurrence. • Chemical bonding studied by density functional theory

  3. 19 CFR 122.135 - When airline has in-bond liquor storeroom.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false When airline has in-bond liquor storeroom. 122.135 Section 122.135 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Aircraft Liquor Kits § 122.135 When airline has in-bond liquor storeroom. (a) Restocking. Liquor...

  4. Ozone decomposition in water studied by pulse radiolysis. 2. OH and HO4 as chain intermediates

    International Nuclear Information System (INIS)

    Staehelin, J.; Buehler, R.E.; Hoigne, J.

    1984-01-01

    Ozone decomposition in pure water involves a chain mechanism, initiated by the reaction OH - +O 3 and propogated by O 2 - and OH. In the present studies this chain is initiated by pulse radiolysis of aqueous solutions of ozone. The chain propogation steps were studied in two parts. By computer simulation of the rate curves, it is shown that from OH + O 3 and intermediate HO 4 must be formed, most likely a charge-transfer complex (HO.O 3 ), which eventually decays into HO 2 . The derived rate constants for the formation of the various species are included. The spectrum of HO 4 is derived. It is similar to the one of ozone, but the absorption coefficients are about 50% larger. In the presence of high ozone concentration, the dominant chain termination reactions are HO 4 + HO 4 and HO 4 + HO 3 . The effect on chain length, dose, overall rate, and pH and of added scavengers is described. The implications for the natural ozone decay mechanism are discussed

  5. Macroeconomic Stability in a Model with Bond Transaction Services

    Directory of Open Access Journals (Sweden)

    Massimiliano Marzo

    2018-02-01

    Full Text Available Cochrane (2014 shows that high-powered money balances and short-term government bonds can be considered as perfect substitutes for the U.S economy during the past twenty years. We build on this claim and consider a variant of the standard cashless new-Keynesian model with two types of government bonds, which can be thought of as short- and long-term bonds. The first one has a macroeconomic role in the sense that it provides transaction services in addition to generating a yield. The other type of government bond pays only an interest rate. Consistent with previous findings, the Taylor principle is not a panacea for equilibrium determinacy in a model without money. When the government bond market matters beyond the need for fiscal solvency, monetary policy rules do not need to comply with the Taylor principle for unique equilibria to exist.

  6. 19 CFR 4.75 - Incomplete manifest; incomplete export declarations; bond.

    Science.gov (United States)

    2010-04-01

    ... 1302-A (see § 4.63) in accordance with 46 U.S.C. 91, or all required shipper's export declarations (see... declarations; bond. 4.75 Section 4.75 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND... export declarations have been filed with the port director: Albania Bulgaria Cambodia China, People's...

  7. Effect of hydration on the organo-noble gas molecule HKrCCH: role of krypton in the stabilization of hydrated HKrCCH complexes.

    Science.gov (United States)

    Biswas, Biswajit; Singh, Prashant Chandra

    2015-11-11

    The effect of hydration on the fluorine free organo-noble gas compound HKrCCH and the role of krypton in the stabilization of the hydrated HKrCCH complexes have been investigated using the quantum chemical calculations on the HKrCCH-(H2O)n=1-6 clusters. Structure and energetics calculations show that water stabilizes HKrCCH through the π hydrogen bond in which the OH group of water interacts with the C[triple bond, length as m-dash]C group of HKrCCH. A maximum of four water molecules can directly interact with the C[triple bond, length as m-dash]C of HKrCCH and after that only inter-hydrogen bonding takes place between the water molecules indicating that the primary hydration shell contains four water molecules. Atom in molecule analysis depicts that π hydrogen bonded complexes of the hydrated HKrCCH are cyclic structures in which the OKr interaction cooperates in the formation of strong O-HC[triple bond, length as m-dash]C interaction. Structure, energetics and charge analysis clearly established that krypton plays an important role in the stabilization as well as the formation of the primary hydration shell of hydrated HKrCCH complexes.

  8. OH megamasers: dense gas & the infrared radiation field

    Science.gov (United States)

    Huang, Yong; Zhang, JiangShui; Liu, Wei; Xu, Jie

    2018-06-01

    To investigate possible factors related to OH megamaser formation (OH MM, L_{H2O}>10L_{⊙}), we compiled a large HCN sample from all well-sampled HCN measurements so far in local galaxies and identified with the OH MM, OH kilomasers (L_{H2O}gas and the dense gas, respectively), we found that OH MM galaxies tend to have stronger HCN emission and no obvious difference on CO luminosity exists between OH MM and non-OH MM. This implies that OH MM formation should be related to the dense molecular gas, instead of the low-density molecular gas. It can be also supported by other facts: (1) OH MMs are confirmed to have higher mean molecular gas density and higher dense gas fraction (L_{HCN}/L_{CO}) than non-OH MMs. (2) After taking the distance effect into account, the apparent maser luminosity is still correlated with the HCN luminosity, while no significant correlation can be found at all between the maser luminosity and the CO luminosity. (3) The OH kMs tend to have lower values than those of OH MMs, including the dense gas luminosity and the dense gas fraction. (4) From analysis of known data of another dense gas tracer HCO^+, similar results can also be obtained. However, from our analysis, the infrared radiation field can not be ruled out for the OH MM trigger, which was proposed by previous works on one small sample (Darling in ApJ 669:L9, 2007). On the contrary, the infrared radiation field should play one more important role. The dense gas (good tracers of the star formation) and its surrounding dust are heated by the ultra-violet (UV) radiation generated by the star formation and the heating of the high-density gas raises the emission of the molecules. The infrared radiation field produced by the re-radiation of the heated dust in turn serves for the pumping of the OH MM.

  9. Protective Effects of Dihydromyricetin against •OH-Induced Mesenchymal Stem Cells Damage and Mechanistic Chemistry

    Directory of Open Access Journals (Sweden)

    Xican Li

    2016-05-01

    Full Text Available As a natural flavonoid in Ampelopsis grossedentata, dihydromyricetin (DHM, 2R,3R-3,5,7,3′,4′,5′-hexahydroxy-2,3-dihydroflavonol was observed to increase the viability of •OH-treated mesenchymal stem cells using a MTT [3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl] assay and flow cytometry analysis. This protective effect indicates DHM may be a beneficial agent for cell transplantation therapy. Mechanistic chemistry studies indicated that compared with myricetin, DHM was less effective at ABTS+• (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid radical scavenging and reducing Cu2+, and had higher •O2− and DPPH• (1,1-diphenyl-2-picrylhydrazyl radical scavenging activities. Additionally, DHM could also chelate Fe2+ to give an absorption maximum at 589 nm. Hence, such protective effect of DHM may arise from its antioxidant activities which are thought to occur via direct radical-scavenging and Fe2+-chelation. Direct radical-scavenging involves an electron transfer (ET pathway. The hydrogenation of the 2,3-double bond is hypothesized to reduce the ET process by blocking the formation of a larger π-π conjugative system. The glycosidation of the 3–OH in myricitrin is assumed to sterically hinder atom transfer in the •O2− and DPPH• radical-scavenging processes. In DHM, the Fe2+-chelating effect can actually be attributed to the 5,3′,4′,5′–OH and 4–C=O groups, and the 3–OH group itself can neither scavenge radicals nor chelate metal.

  10. Material size effects on crack growth along patterned wafer-level Cu–Cu bonds

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Niordson, Christian Frithiof; Hutchinson, John W.

    2013-01-01

    together. Crack growth along the bond interface is here studied numerically using finite element analyses. The experiments have shown that plasticity in the Cu films makes a major contribution to the macroscopic interface toughness. To account for the size dependence of the plastic flow a strain gradient...... plasticity model is applied here for the metal. A cohesive zone model is applied to represent the crack growth along the bond between the two Cu films. This cohesive zone model incorporates the effect of higher order stresses in the continuum, such that the higher order tractions on the crack faces decay...... the toughness peak and the subsequent plateau level are highly sensitive to the value of the characteristic material length. A small material length, relative to the thickness of the Cu film, gives high toughness whereas a length comparable to the film thickness gives much reduced crack growth resistance...

  11. The nature of OH/IR stars

    International Nuclear Information System (INIS)

    Herman, J.

    1983-01-01

    In this work masers in evolved stars are studied, in particular the emission from the OH radical. The time variability of the OH masers was measured over a period of five years with the Dwingeloo Radio Telescope. These single-dish observations proved that most of the underlying stars are very long period variables, apparently a kind of extension of the well-known long period Mira variables. The mean OH fluxes and epochs were obtained as well as a confirmation of the radiative coupling between the maser and the star (by comparison with infrared data provided by other observers), the degree of saturation, and, most important of all, a determination of the linear dimensions of the circumstellar shells. Multi-element interferometer observations were made in order to study the spatial structure of OH masers. By combining the phase lag measurements and the spatial extent distances to individual stars could be determined with a high, unprecedented accuracy. Infrared broad-band photometry was done in the wavelength region from 3 μm to 20 μm, where most of the energy of these objects is radiated. The space density and galactic distribution of OH/IR stars are discussed and compared with the appearance of OH masers in the solar neighbourhood. (Auth.)

  12. Laponite Na+0.7[(Si8Mg5.5Li0.3)O20(OH)4]–0.7

    Indian Academy of Sciences (India)

    Si8Mg5.5Li0.3)O20(OH)4]–0.7. Negative charges are counterbalanced by Na+ ions present in the interlayer. Electrostatic screening length at pH 10 ≈30 nm. Effective maximum volume increases by a factor of 60. Thus, for less than 1 volume ...

  13. Synthesis, characterization and flocculation activity of novel Fe(OH){sub 3}-polyacrylamide hybrid polymer

    Energy Technology Data Exchange (ETDEWEB)

    Wang Huilong; Cui Jinyan [Department of Chemistry, Dalian University of Technology, Dalian 116023 (China); Jiang Wenfeng, E-mail: dlutjiangwf@yahoo.com.cn [Department of Chemistry, Dalian University of Technology, Dalian 116023 (China)

    2011-11-01

    Highlights: {yields} The preparation of a novel Fe(OH){sub 3}-PAM hybrid polymer flocculant is achieved via free radical solution polymerization. {yields} Flocculation of kaolin suspensions using this novel Fe(OH){sub 3}-PAM hybrid polymer flocculant is revealed in this study. {yields} The statistical model was first applied for calculating the thermodynamic parameters for the kaolin flocculating process. - Abstract: A novel Fe(OH){sub 3}-polyacrylamide inorganic-organic hybrid polymer (FHPAM) was synthesized via free radical solution polymerization initiated by a redox initiation system ((NH{sub 4}){sub 2}S{sub 2}O{sub 8}-NaHSO{sub 3}) in an aqueous medium. Reaction parameters influencing the intrinsic viscosity and the yield of the hybrid polymer, such as initiator concentration, monomer mass fraction, temperature and reaction time were investigated and optimized. The results show that the maximum intrinsic viscosity and up to 94% yields of the hybrid polymer can be achieved using initiator concentration of 0.3% with acrylamide monomer mass fraction of 20% under solution polymerization at 40 deg. C for 7 h. The physicochemical properties of this hybrid flocculant were characterized with TEM, FTIR spectra, TGA, and conductivity. It was found that a chemical bond exists between Fe(OH){sub 3} colloid and polyacrylamide chains in the FHPAM. The application of the hybrid polymer for the treatment of 2.5 g L{sup -1} kaolin suspension indicates that it had an excellent flocculation capacity and its flocculation efficiency was much better than that of commercial available polyacrylamide (PAM) and polymeric ferric sulfate (PFS). The optimal conditions for the flocculation treatment of kaolin suspension were the FHPAM dosage of 40 mg L{sup -1} at pH 7.0. The thermodynamic parameters for the flocculation process were calculated based on a statistical model. Interpretation of the results was given.

  14. BINDING OF THE RESPIRATORY CHAIN INHIBITOR ANTIMYCIN TO THE MITOCHONDRIAL bc1 COMPLEX: A NEW CRYSTAL STRUCTURE REVEALS AN ALTERED INTRAMOLECULAR HYDROGEN-BONDING PATTERN.

    OpenAIRE

    Huang, Li-shar; Cobessi, David; Tung, Eric Y.; Berry, Edward A.

    2005-01-01

    Antimycin A (antimycin), one of the first known and most potent inhibitors of the mitochondrial respiratory chain, binds to the quinone reduction site of the cytochrome bc1 complex. Structure-activity-relationship studies have shown that the N-formylamino-salicyl-amide group is responsible for most of the binding specificity, and suggested that a low pKa for the phenolic OH group and an intramolecular H-bond between that OH and the carbonyl O of the salicylamide linkage are important. Tw...

  15. Intercomparison of OH and OH reactivity measurements in a high isoprene and low NO environment during the Southern Oxidant and Aerosol Study (SOAS)

    Science.gov (United States)

    Sanchez, Dianne; Jeong, Daun; Seco, Roger; Wrangham, Ian; Park, Jeong-Hoo; Brune, William H.; Koss, Abigail; Gilman, Jessica; de Gouw, Joost; Misztal, Pawel; Goldstein, Allen; Baumann, Karsten; Wennberg, Paul O.; Keutsch, Frank N.; Guenther, Alex; Kim, Saewung

    2018-02-01

    We intercompare OH and OH reactivity datasets from two different techniques, chemical ionization mass spectrometry (CIMS) and laser-induced fluorescence (LIF) in a high isoprene and low NO environment in a southeastern US forest during the Southern Oxidant and Aerosol Study (SOAS). An LIF instrument measured OH and OH reactivity at the top of a tower, a CIMS instrument measured OH at the top of the tower, and a CIMS based comparative reactivity method (CRM-CIMS) instrument deployed at the base of the tower measured OH reactivity. Averaged diel variations of OH and OH reactivity from these datasets agree within analytical uncertainty and correlations of LIF versus CIMS for OH and OH reactivity have slopes of 0.65 and 0.97, respectively. However, there are systematic differences between the measurement datasets. The CRM-CIMS measurements of OH reactivity were ∼16% lower than those by the LIF technique in the late afternoon. We speculate that it is caused by losses in the sampling line down to the CRM-CIMS instrument. On the other hand, we could not come up with a reasonable explanation for the difference in the LIF and CIMS OH datasets for early morning and late afternoon when OH is below 1 × 106 molecules cm-3. Nonetheless, results of this intercomparison exercise strengthen previous publications from the field site on OH concentrations and atmospheric reactivity.

  16. Redetermination of eveite, Mn2AsO4(OH, based on single-crystal X-ray diffraction data

    Directory of Open Access Journals (Sweden)

    Yongbo W. Yang

    2011-12-01

    Full Text Available The crystal structure of eveite, ideally Mn2(AsO4(OH [dimanganese(II arsenate(V hydroxide], was refined from a single crystal selected from a co-type sample from Långban, Filipstad, Varmland, Sweden. Eveite, dimorphic with sarkinite, is structurally analogous with the important rock-forming mineral andalusite, Al2OSiO4, and belongs to the libethenite group. Its structure consists of chains of edge-sharing distorted [MnO4(OH2] octahedra (..2 symmetry extending parallel to [001]. These chains are cross-linked by isolated AsO4 tetrahedra (..m symmetry through corner-sharing, forming channels in which dimers of edge-sharing [MnO4(OH] trigonal bipyramids (..m symmetry are located. In contrast to the previous refinement from Weissenberg photographic data [Moore & Smyth (1968. Am. Mineral. 53, 1841–1845], all non-H atoms were refined with anisotropic displacement parameters and the H atom was located. The distance of the donor and acceptor O atoms involved in hydrogen bonding is in agreement with Raman spectroscopic data. Examination of the Raman spectra for arsenate minerals in the libethenite group reveals that the position of the peak originating from the O—H stretching vibration shifts to lower wavenumbers from eveite, to adamite, zincolivenite, and olivenite.

  17. From covalent bonding to coalescence of metallic nanorods

    Directory of Open Access Journals (Sweden)

    Lee Soohwan

    2011-01-01

    Full Text Available Abstract Growth of metallic nanorods by physical vapor deposition is a common practice, and the origin of their dimensions is a characteristic length scale that depends on the three-dimensional Ehrlich-Schwoebel (3D ES barrier. For most metals, the 3D ES barrier is large so the characteristic length scale is on the order of 200 nm. Using density functional theory-based ab initio calculations, this paper reports that the 3D ES barrier of Al is small, making it infeasible to grow Al nanorods. By analyzing electron density distributions, this paper shows that the small barrier is the result of covalent bonding in Al. Beyond the infeasibility of growing Al nanorods by physical vapor deposition, the results of this paper suggest a new mechanism of controlling the 3D ES barrier and thereby nanorod growth. The modification of local degree of covalent bonding, for example, via the introduction of surfactants, can increase the 3D ES barrier and promote nanorod growth, or decrease the 3D ES barrier and promote thin film growth.

  18. Antidepressants differentially related to 1,25-(OH)₂ vitamin D₃ and 25-(OH) vitamin D₃ in late-life depression.

    Science.gov (United States)

    Oude Voshaar, R C; Derks, W J; Comijs, H C; Schoevers, R A; de Borst, M H; Marijnissen, R M

    2014-04-15

    A low plasma 25-OH vitamin D3 level is a universal risk factor for a wide range of diseases and has also been implicated in late-life depression. It is currently unknown whether the biologically active form of vitamin D, that is, 1,25-(OH)2 vitamin D3, is also decreased in late-life depression, or whether vitamin D levels correlate with specific depression characteristics. We determined plasma 25-OH vitamin D3, 1,25-(OH)2 vitamin D3 and parathormone levels in 355 depressed older persons and 124 non-depressed comparison subjects (age 60 years). Psychopathology was established with the Composite International Diagnostic Interview 2.1, together with potential confounders and depression characteristics (severity, symptom profile, age of onset, recurrence, chronicity and antidepressant drug use). Adjusted for confounders, depressed patients had significantly lower levels of 25-OH vitamin D33 (Cohen's d =0.28 (95% confidence interval: 0.07-0.49), P=0.033) as well as 1,25-(OH)2 vitamin D3 (Cohen's d =0.48 (95% confidence interval: 0.27-0.70), Pdepression characteristics tested, only the use of tricyclic antidepressants (TCAs) was significantly correlated with lower 1,25-(OH)2 vitamin D3 levels (Cohen's d =0.86 (95% confidence interval: 0.53-1.19), Pprecursor 25-OH vitamin D3. As vitamin D levels were significantly lower after adjustment for confounders, vitamin D might have an aetiological role in late-life depression. Differences between depressed and non-depressed subjects were largest for the biologically active form of vitamin D. The differential impact of TCAs on 25-OH vitamin D3 and 1,25-(OH)2 vitamin D3 levels suggests modulation of 1-α-hydroxylase and/or 24-hydroxylase, which may in turn have clinical implications for biological ageing mechanisms in late-life depression.

  19. 19 CFR 113.1 - Authority to require security or execution of bond.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Authority to require security or execution of bond. 113.1 Section 113.1 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY CUSTOMS BONDS General Provisions § 113.1 Authority to require security or...

  20. Depressive Symptoms and Length of U.S. Residency Are Associated with Obesity among Low-Income Latina Mothers: A Cross-Sectional Analysis

    Directory of Open Access Journals (Sweden)

    Ana Cristina Lindsay

    2017-08-01

    Full Text Available Latinos are the largest minority population group in the United States (U.S., and low-income Latina women are at elevated risk of depression and obesity. Thus, the prevention of these two problems is a pressing public health concern in this population. Both depressive symptoms and obesity are modifiable factors that can be addressed by culturally relevant interventions. However, the association between depressive symptoms and obesity in Latina immigrant women is not well understood. Therefore, this cross-sectional study examined the association between depressive symptoms and obesity among Latina women of childbearing age (15–44. Participants (n = 147 were low-income, predominantly immigrant Latina mothers enrolled in the Latina Mothers′ Child Feeding Practices and Style Study. Women were eligible to participate if they self-identified as Latina; were enrolled in or eligible for the Special Supplemental Nutrition Program for Women, Infants and Children program; had a child between ages two and five years; and were living in the U.S. for at least one year, and residing in Rhode Island. Enrolled participants completed a survey in their language of preference (English or Spanish administered by bilingual interviewers. About one-third (34% of participants were classified as having obesity (BMI ≥ 30 kg/m2, 28.3% had elevated depressive symptoms (CES-D ≥ 16, and 70.1% were immigrants. Women with elevated depressive symptoms had increased odds of having obesity (odds ratio (OR = 2.80, 95% confidence interval (CI: 1.24–6.33. Additionally, among immigrants, length of U.S. residency was associated with increased odds of obesity (OR = 1.05, 95% CI: 1.02–1.09. Findings underscore the need for screening and culturally relevant interventions designed to address both depressive symptoms and obesity among low-income Latina women of childbearing age. Furthermore, findings highlight the importance of taking into account the length of residency in

  1. Depressive Symptoms and Length of U.S. Residency Are Associated with Obesity among Low-Income Latina Mothers: A Cross-Sectional Analysis.

    Science.gov (United States)

    Lindsay, Ana Cristina; Greaney, Mary L; Wallington, Sherrie F; Wright, Julie A; Hunt, Anne T

    2017-08-02

    Latinos are the largest minority population group in the United States (U.S.), and low-income Latina women are at elevated risk of depression and obesity. Thus, the prevention of these two problems is a pressing public health concern in this population. Both depressive symptoms and obesity are modifiable factors that can be addressed by culturally relevant interventions. However, the association between depressive symptoms and obesity in Latina immigrant women is not well understood. Therefore, this cross-sectional study examined the association between depressive symptoms and obesity among Latina women of childbearing age (15-44). Participants ( n = 147) were low-income, predominantly immigrant Latina mothers enrolled in the Latina Mothers' Child Feeding Practices and Style Study. Women were eligible to participate if they self-identified as Latina; were enrolled in or eligible for the Special Supplemental Nutrition Program for Women, Infants and Children program; had a child between ages two and five years; and were living in the U.S. for at least one year, and residing in Rhode Island. Enrolled participants completed a survey in their language of preference (English or Spanish) administered by bilingual interviewers. About one-third (34%) of participants were classified as having obesity (BMI ≥ 30 kg/m²), 28.3% had elevated depressive symptoms (CES-D ≥ 16), and 70.1% were immigrants. Women with elevated depressive symptoms had increased odds of having obesity (odds ratio (OR) = 2.80, 95% confidence interval (CI): 1.24-6.33). Additionally, among immigrants, length of U.S. residency was associated with increased odds of obesity (OR = 1.05, 95% CI: 1.02-1.09). Findings underscore the need for screening and culturally relevant interventions designed to address both depressive symptoms and obesity among low-income Latina women of childbearing age. Furthermore, findings highlight the importance of taking into account the length of residency in the U.S. when

  2. OH 83: A new early modern human fossil cranium from the Ndutu beds of Olduvai Gorge, Tanzania.

    Science.gov (United States)

    Reiner, Whitney B; Masao, Fidelis; Sholts, Sabrina B; Songita, Agustino Venance; Stanistreet, Ian; Stollhofen, Harald; Taylor, R E; Hlusko, Leslea J

    2017-11-01

    Herein we introduce a newly recovered partial calvaria, OH 83, from the upper Ndutu Beds of Olduvai Gorge, Tanzania. We present the geological context of its discovery and a comparative analysis of its morphology, placing OH 83 within the context of our current understanding of the origins and evolution of Homo sapiens. We comparatively assessed the morphology of OH 83 using quantitative and qualitative data from penecontemporaneous fossils and the W.W. Howells modern human craniometric dataset. OH 83 is geologically dated to ca. 60-32 ka. Its morphology is indicative of an early modern human, falling at the low end of the range of variation for post-orbital cranial breadth, the high end of the range for bifrontal breadth, and near average in frontal length. There have been numerous attempts to use cranial anatomy to define the species Homo sapiens and identify it in the fossil record. These efforts have not met wide agreement by the scientific community due, in part, to the mosaic patterns of cranial variation represented by the fossils. The variable, mosaic pattern of trait expression in the crania of Middle and Late Pleistocene fossils implies that morphological modernity did not occur at once. However, OH 83 demonstrates that by ca. 60-32 ka modern humans in Africa included individuals that are at the fairly small and gracile range of modern human cranial variation. © 2017 Wiley Periodicals, Inc.

  3. High-pressure Raman investigations of phase transformations in pentaerythritol (C(CH sub 2 OH) sub 4)

    CERN Document Server

    Bhattacharya, T

    2002-01-01

    Our high-pressure Raman scattering experiments on pentaerythritol (C(CH sub 2 OH) sub 4) show that this compound undergoes at least three phase transformations up to 25 GPa. Splitting of various modes at approx 6.3, approx 8.2 and 10 GPa suggests that these phase transformations result in lowering of crystalline symmetry. A very small discontinuous change in slope of most of the Raman-active modes is observed at 0.3 GPa. However, no other signature of a phase transition was observed at this pressure. The observed correlation of the pressures for the onset of the two phase transformations with the limiting values of the distances between various non-bonded atoms in the parent phase suggests that the molecular rearrangements across the phase transformations are not very drastic. In addition, our earlier Fourier transform infrared and present Raman investigations indicate that high-pressure compression leads to increase in strength of the hydrogen bond present in this compound.

  4. Influence of chain topology and bond potential on the glass transition of polymer chains simulated with the bond fluctuation model

    International Nuclear Information System (INIS)

    Freire, J J

    2008-01-01

    The bond fluctuation model with a bond potential has been applied to investigation of the glass transition of linear chains and chains with a regular disposition of small branches. Cooling and subsequent heating curves are obtained for the chain energies and also for the mean acceptance probability of a bead jump. In order to mimic different trends to vitrification, a factor B gauging the strength of the bond potential with respect to the long-range potential (i.e. the intramolecular or intermolecular potential between indirectly bonded beads) has been introduced. (A higher value of B leads to a preference for the highest bond lengths and a higher total energy, implying a greater tendency to vitrify.) Different cases have been considered for linear chains: no long-range potential, no bond potential and several choices for B. Furthermore, two distinct values of B have been considered for alternate bonds in linear chains. In the case of the branched chains, mixed models with different values of B for bonds in the main chain and in the branches have also been investigated. The possible presence of ordering or crystallization has been characterized by calculating the collective light scattering function of the different samples after annealing at a convenient temperature below the onset of the abrupt change in the curves associated with a thermodynamic transition. It is concluded that ordering is inherited more efficiently in the systems with branched chains and also for higher values of B. The branched molecules with the highest B values in the main chain bonds exhibit two distinct transitions in the heating curves, which may be associated with two glass transitions. This behavior has been detected experimentally for chains with relatively long flexible branches

  5. Influence of chain topology and bond potential on the glass transition of polymer chains simulated with the bond fluctuation model

    Energy Technology Data Exchange (ETDEWEB)

    Freire, J J [Departamento de Ciencias y Tecnicas FisicoquImicas, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), Senda del Rey 9, 28040 Madrid (Spain)], E-mail: jfreire@invi.uned.es

    2008-07-16

    The bond fluctuation model with a bond potential has been applied to investigation of the glass transition of linear chains and chains with a regular disposition of small branches. Cooling and subsequent heating curves are obtained for the chain energies and also for the mean acceptance probability of a bead jump. In order to mimic different trends to vitrification, a factor B gauging the strength of the bond potential with respect to the long-range potential (i.e. the intramolecular or intermolecular potential between indirectly bonded beads) has been introduced. (A higher value of B leads to a preference for the highest bond lengths and a higher total energy, implying a greater tendency to vitrify.) Different cases have been considered for linear chains: no long-range potential, no bond potential and several choices for B. Furthermore, two distinct values of B have been considered for alternate bonds in linear chains. In the case of the branched chains, mixed models with different values of B for bonds in the main chain and in the branches have also been investigated. The possible presence of ordering or crystallization has been characterized by calculating the collective light scattering function of the different samples after annealing at a convenient temperature below the onset of the abrupt change in the curves associated with a thermodynamic transition. It is concluded that ordering is inherited more efficiently in the systems with branched chains and also for higher values of B. The branched molecules with the highest B values in the main chain bonds exhibit two distinct transitions in the heating curves, which may be associated with two glass transitions. This behavior has been detected experimentally for chains with relatively long flexible branches.

  6. OH radiation from the interstellar cloud medium

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen-Q-Rieu,; Winnberg, A [Max-Planck-Institut fuer Radioastronomie, Bonn (F.R. Germany); Guibert, J [Observatoire de Paris, Section de Meudon, 92 (France); Lepine, J R.D. [Universidade Mackenzie, Sao Paulo (Brazil). Centro de Radio-Astronomia et Astrofisica; Johansson, L E.B. [Rymdobservatoriet, Onsala (Sweden); Goss, W M [Commonwealth Scientific and Industrial Research Organization, Epping (Australia). Div. of Radiophysics

    1976-02-01

    We have detected OH in the direction of about 50% of the continuum sources investigated. The OH abundance is one order of magnitude less than usually found in dust clouds. Most of the OH features have HI counterparts. This suggests that the OH radiation arises from the HI interstellar cold clouds. Our observations allowed in some cases the determination of the excitation temperatures in all four lines. A pumping model involving far-infrared radiation and collisions with neutral and charged particles has been proposed. It explains the observed excitation temperatures.

  7. Geometry and electronic structure of an impurity-trapped exciton in the Cs2GeF6 crystal doped with U4+. The 5f17s1 manifold

    International Nuclear Information System (INIS)

    Ordejon, B.; Seijo, L.; Barandiaran, Z.

    2007-01-01

    Complete text of publication follows: Excitons trapped at impurity centres in highly ionic crystals were first described by McClure and Pedrini [Phys. Rev. B 32, 8465 (1985)] as excited states consisting of a bound electron-hole pair with the hole localized on the impurity and the electron on nearby lattice sites, and a very short impurity-ligand bond length. In this work we present a detailed microscopic characterization of an impurity - trapped exciton in Cs 2 GeF 6 doped with U 4+ . Its electronic structure has been studied by means of CASSCF/CASPT2/SOCI relativistic ab initio model potential (AIMP) embedded-cluster calculations on (UF 6 ) 2- and (UF 6 Cs 8 ) 6+ clusters embedded in Cs 2 GeF 6 . The local geometry of the impurity-trapped exciton, the potential energy curves, and the multi electronic wavefunctions, have been obtained as direct, non-empirical results of the methods. The calculated excited states appear to be significantly delocalized outside the UF 6 volume and their U-F bond length turns out to be very short, closer to that of a pentavalent uranium defect than to that of a tetravalent uranium defect. The wavefunctions of these excited states show a dominant U 5f 1 7s 1 configuration character. This result has never been anticipated by simpler models and reveals the unprecedented ability of diffuse orbitals of f-element impurities to act as electron traps in ionic crystals

  8. Fragility and cooperativity concepts in hydrogen-bonded organic glasses

    International Nuclear Information System (INIS)

    Delpouve, N.; Vuillequez, A.; Saiter, A.; Youssef, B.; Saiter, J.M.

    2012-01-01

    Molecular dynamics at the glass transition of three lactose/oil glassy systems have been investigated according to the cooperativity and fragility approaches. From Donth's approach, the cooperativity length is estimated by modulated temperature calorimetric measurements. Results reveal that modification of the disaccharide by oil leads to increase the disorder degree in the lactose, the size of the cooperative domains and the fragility index. These particular hydrogen-bonded organic glasses follow the general tendency observed on organic and inorganic polymers: the higher the cooperativity length, the higher the value of the fragility index at T g .

  9. Synthesis, Anti-HCV, Antioxidant and Reduction of Intracellular Reactive Oxygen Species Generation of a Chlorogenic Acid Analogue with an Amide Bond Replacing the Ester Bond.

    Science.gov (United States)

    Wang, Ling-Na; Wang, Wei; Hattori, Masao; Daneshtalab, Mohsen; Ma, Chao-Mei

    2016-06-08

    Chlorogenic acid is a well known natural product with important bioactivities. It contains an ester bond formed between the COOH of caffeic acid and the 3-OH of quinic acid. We synthesized a chlorogenic acid analogue, 3α-caffeoylquinic acid amide, using caffeic and quinic acids as starting materials. The caffeoylquinc acid amide was found to be much more stable than chlorogenic acid and showed anti-Hepatitis C virus (anti-HCV) activity with a potency similar to chlorogenic acid. The caffeoylquinc acid amide potently protected HepG2 cells against oxidative stress induced by tert-butyl hydroperoxide.

  10. Information resources and material selection in bonded restorations among Korean dentists.

    Science.gov (United States)

    Chang, Juhea; Kim, Hae-Young; Cho, Byeong Hoon; Lee, In Bog; Son, Ho Hyun

    2009-12-01

    To elucidate how dentists access knowledge sources when choosing adhesive agents for bonded restoration and whether these resources influenced the selection of materials. A national survey was carried out involving dentists in South Korea. The questionnaire included the status of the operator, clinical techniques, and materials. A total of 12,193 e-mails were distributed, 2632 were opened by recipients, and 840 responses were collected. For primary information resources in material selection, 55.8% (n = 469) of the responders mentioned continuing education. This selection criteria varied according to the working status of the clinician (p choice of bonding system was influenced by of the length of the career (p < 0.0001), and the preferred bonding systems differed according to the source of the information (p = 0.035). The popular bonding systems were not ranked according to the bonding strategy, but a preference was found for specific brands or manufacturers. To decrease the confusion of clinicians related to the selection of bonding materials, evidence-based guidelines need to be comprehensibly organized and efficiently approached in clinics.

  11. Shear bond strength of two 2-step etch-and-rinse adhesives when bonding ceramic brackets to bovine enamel.

    Science.gov (United States)

    Godard, Marion; Deuve, Benjamin; Lopez, Isabelle; Hippolyte, Marie-Pascale; Barthélemi, Stéphane

    2017-09-01

    The present study assessed a fracture analysis and compared the shear bond strength (SBS) of two 2-step etch-and-rinse (E&R) adhesives when bonding ceramic orthodontic brackets to bovine enamel. Thirty healthy bovine mandibular incisors were selected and were equally and randomly assigned to 2 experimental groups. Ceramic brackets (FLI Signature Clear ® , RMO) were bonded onto bovine enamel using an adhesive system. In group 1 (n=15), the conventional E&R adhesive (OrthoSolo ® +Enlight ® , Ormco) was used, and in group 2 (n=15), the new E&R adhesive limited to ceramic bracket bonding (FLI ceramic adhesive ® : FLI sealant resin ® +FLI adhesive paste ® , RMO) was used. In order to obtain appropriate enamel surfaces, the vestibular surfaces of mandibular bovine incisors were flat ground. After bonding, all the samples were stored in distilled water at room temperature for 21 days and subsequently tested for SBS, using the Instron ® universal testing machine. The Adhesive Remnant Index (ARI) scores were evaluated. Failure modes were assessed using optical microscopy at magnification ×40. A statistic data analysis was performed using the Mann-Whitney U-test (Penamel/adhesive interface. A statistically significant difference was found for the ARI scores between the two groups (P=0.00996). Only two fractured brackets, which remained bonded onto the bovine enamel, were reported. Both occurred in group 1. When bonded to ceramic brackets, FLI ceramic adhesive ® (RMO) was demonstrated to be very predictable and safe for clinical application in enamel bonding, whereas the results obtained with the conventional adhesive system (OrthoSolo ® +Enlight ® , Ormco) were less reproducible and revealed slightly excessive shear bond strength values. Copyright © 2017 CEO. Published by Elsevier Masson SAS. All rights reserved.

  12. Facile CO cleavage by a multimetallic CsU2 nitride complex

    International Nuclear Information System (INIS)

    Falcone, Marta; Scopelliti, Rosario; Mazzanti, Marinella; Kefalidis, Christos E.; Maron, Laurent

    2016-01-01

    Uranium nitrides are important materials with potential for application as fuels for nuclear power generation, and as highly active catalysts. Molecular nitride compounds could provide important insight into the nature of the uranium-nitride bond, but currently little is known about their reactivity. In this study, we found that a complex containing a nitride bridging two uranium centers and a cesium cation readily cleaved the C≡O bond (one of the strongest bonds in nature) under ambient conditions. The product formed has a [CsU 2 (μ-CN)(μ-O)] core, thus indicating that the three cations cooperate to cleave CO. Moreover, the addition of MeOTf to the nitride complex led to an exceptional valence disproportionation of the CsU IV -N-U IV core to yield CsU III (OTf) and [MeN=U V ] fragments. The important role of multimetallic cooperativity in both reactions is illustrated by the computed reaction mechanisms.

  13. Facile CO Cleavage by a Multimetallic CsU2 Nitride Complex.

    Science.gov (United States)

    Falcone, Marta; Kefalidis, Christos E; Scopelliti, Rosario; Maron, Laurent; Mazzanti, Marinella

    2016-09-26

    Uranium nitrides are important materials with potential for application as fuels for nuclear power generation, and as highly active catalysts. Molecular nitride compounds could provide important insight into the nature of the uranium-nitride bond, but currently little is known about their reactivity. In this study, we found that a complex containing a nitride bridging two uranium centers and a cesium cation readily cleaved the C≡O bond (one of the strongest bonds in nature) under ambient conditions. The product formed has a [CsU2 (μ-CN)(μ-O)] core, thus indicating that the three cations cooperate to cleave CO. Moreover, the addition of MeOTf to the nitride complex led to an exceptional valence disproportionation of the CsU(IV) -N-U(IV) core to yield CsU(III) (OTf) and [MeN=U(V) ] fragments. The important role of multimetallic cooperativity in both reactions is illustrated by the computed reaction mechanisms. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Structure determination of the Si(001)-(2 x 1)-H reconstruction by surface X-ray diffraction: Weakening of the dimer bond by the addition of hydrogen

    DEFF Research Database (Denmark)

    Lauridsen, E.M.; Baker, J.; Nielsen, M.

    2000-01-01

    The atomic structure of the monohydride Si(001)-(2 x 1)-H reconstruction has been investigated by surface X-ray diffraction. Atomic relaxations down to the eighth layer have been determined. The bond length of the hydrogenated silicon dimers was found to be 2.47 +/- 0.02 Angstrom. which is longer...... than the dimer bond of the clean (2 x 1)-reconstructed Si(001) surface and also 5% longer than the bulk bond length of 2.35 Angstrom. The differences to the (2 x 1) structure of the clean surface are discussed in terms of the elimination of the weak pi-bond character of the dimer bond by the addition...

  15. The key role of U{sub 28} in the aqueous self-assembly of uranyl peroxide nanocages

    Energy Technology Data Exchange (ETDEWEB)

    Falaise, Clement; Nyman, May [Energy Frontier Research Center, Materials Science of Actinides, Department of Chemistry, Oregon State University, Corvallis, OR (United States)

    2016-10-04

    For 11 years now, the structural diversity and aesthetic beauty of uranyl-peroxide capsules have fascinated researchers from the diverse fields of mineralogy, polyoxometalate chemistry, and nuclear fuel technologies. There is still much to be learned about the mechanisms of the self-assembly process, and the role of solution parameters including pH, alkali template, temperature, time, and others. Here we have exploited the high solubility of the UO{sub 2}{sup 2+}/H{sub 2}O{sub 2}/LiOH aqueous system to address the effect of the hydroxide concentration. Important techniques of this study are single-crystal X-ray diffraction, small-angle X-ray scattering, and Raman spectroscopy. Three key phases dominate the solution speciation as a function of time and the LiOH/UO{sub 2}{sup 2+} ratio: the uranyl-triperoxide monomer [UO{sub 2}(O{sub 2}){sub 3}]{sup 4-}and the two capsules [(UO{sub 2})(O{sub 2})(OH)]{sub 24}{sup 24-}(U{sub 24}) and [(UO{sub 2})(O{sub 2}){sub 1.5}]{sub 28}{sup 28-}(U{sub 28}). When the LiOH/U ratio is around three, U{sub 28} forms rapidly and this cluster can be isolated in high yield and purity. This result was most surprising and challenges the hypothesis that alkali templating is the most important determinant in the cluster geometry. Moreover, analogous experiments with KOH, NH{sub 4}OH, and TEAOH (TEA=tetraethylammonium) also rapidly yield U{sub 28}, which suggests that U{sub 28} is the kinetically favored species. Complete mapping of the pH-time phase space reveals only a narrow window of the U{sub 28} dominance, which is why it was previously overlooked as an important kinetic species in this chemical system, as well as others with different counterions. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Enhancing anaerobic digestion of waste activated sludge by the combined use of NaOH and Mg(OH)2: Performance evaluation and mechanism study.

    Science.gov (United States)

    Huang, Cheng; Lai, Jia; Sun, Xiuyun; Li, Jiansheng; Shen, Jinyou; Han, Weiqing; Wang, Lianjun

    2016-11-01

    In this study, the combination treatment of NaOH and Mg(OH)2 was applied to anaerobic digestion of waste activated sludge (WAS) for simultaneously enhancement of volatile fatty acids (VFAs) production, nutrients removal and sludge dewaterability. The maximum VFAs production (461mg COD/g VSS) was obtained at the NaOH/Mg(OH)2 ratio of 75:25, which was much higher than that of the blank or sole NaOH. Moreover, nutrients removal and sludge dewaterability were improved by the combined using of NaOH and Mg(OH)2. Mechanism investigations revealed that the presence of Mg(OH)2 could maintain alkaline environment, which contributed to inhibit the activity of methanogens. Also, the bridging between Mg(2+) and extracellular polymeric substances (EPS) plays an important role in the solubilization and dewatering of sludge. High-throughput sequencing analysis demonstrated that the abundance of bacteria involved in sludge hydrolysis and VFAs accumulation was greatly enriched with the mixtures of NaOH and Mg(OH)2. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Measuring Treasury Bond Portfolio Risk and Portfolio Optimization with a Non-Gaussian Multivariate Model

    Science.gov (United States)

    Dong, Yijun

    The research about measuring the risk of a bond portfolio and the portfolio optimization was relatively rare previously, because the risk factors of bond portfolios are not very volatile. However, this condition has changed recently. The 2008 financial crisis brought high volatility to the risk factors and the related bond securities, even if the highly rated U.S. treasury bonds. Moreover, the risk factors of bond portfolios show properties of fat-tailness and asymmetry like risk factors of equity portfolios. Therefore, we need to use advanced techniques to measure and manage risk of bond portfolios. In our paper, we first apply autoregressive moving average generalized autoregressive conditional heteroscedasticity (ARMA-GARCH) model with multivariate normal tempered stable (MNTS) distribution innovations to predict risk factors of U.S. treasury bonds and statistically demonstrate that MNTS distribution has the ability to capture the properties of risk factors based on the goodness-of-fit tests. Then based on empirical evidence, we find that the VaR and AVaR estimated by assuming normal tempered stable distribution are more realistic and reliable than those estimated by assuming normal distribution, especially for the financial crisis period. Finally, we use the mean-risk portfolio optimization to minimize portfolios' potential risks. The empirical study indicates that the optimized bond portfolios have better risk-adjusted performances than the benchmark portfolios for some periods. Moreover, the optimized bond portfolios obtained by assuming normal tempered stable distribution have improved performances in comparison to the optimized bond portfolios obtained by assuming normal distribution.

  18. Photofragment imaging study of the CH2CCH2OH radical intermediate of the OH+allene reaction

    International Nuclear Information System (INIS)

    Raman, Arjun S.; Justine Bell, M.; Lau, K.-C.; Butler, Laurie J.

    2007-01-01

    These velocity map imaging experiments characterize the photolytic generation of one of the two radical intermediates formed when OH reacts via an addition mechanism with allene. The CH 2 CCH 2 OH radical intermediate is generated photolytically from the photodissociation of 2-chloro-2-propen-1-ol at 193 nm. Detecting the Cl atoms using [2+1] resonance-enhanced multiphoton ionization evidences an isotropic angular distribution for the Cl+CH 2 CCH 2 OH photofragments, a spin-orbit branching ratio for Cl( 2 P 1/2 ):Cl( 2 P 3/2 ) of 0.28, and a bimodal recoil kinetic energy distribution. Conservation of momentum and energy allows us to determine from this data the internal energy distribution of the nascent CH 2 CCH 2 OH radical cofragment. To assess the possible subsequent decomposition pathways of this highly vibrationally excited radical intermediate, we include electronic structure calculations at the G3//B3LYP level of theory. They predict the isomerization and dissociation transition states en route from the initial CH 2 CCH 2 OH radical intermediate to the three most important product channels for the OH+allene reaction expected from this radical intermediate: formaldehyde+C 2 H 3 , H+acrolein, and ethene+CHO. We also calculate the intermediates and transition states en route from the other radical adduct, formed by addition of the OH to the center carbon of allene, to the ketene+CH 3 product channel. We compare our results to a previous theoretical study of the O+allyl reaction conducted at the CBS-QB3 level of theory, as the two reactions include several common intermediates

  19. Photofragment imaging study of the CH2CCH2OH radical intermediate of the OH +allene reaction

    Science.gov (United States)

    Raman, Arjun S.; Justine Bell, M.; Lau, Kai-Chung; Butler, Laurie J.

    2007-10-01

    These velocity map imaging experiments characterize the photolytic generation of one of the two radical intermediates formed when OH reacts via an addition mechanism with allene. The CH2CCH2OH radical intermediate is generated photolytically from the photodissociation of 2-chloro-2-propen-1-ol at 193nm. Detecting the Cl atoms using [2+1] resonance-enhanced multiphoton ionization evidences an isotropic angular distribution for the Cl +CH2CCH2OH photofragments, a spin-orbit branching ratio for Cl(P1/22):Cl(P3/22) of 0.28, and a bimodal recoil kinetic energy distribution. Conservation of momentum and energy allows us to determine from this data the internal energy distribution of the nascent CH2CCH2OH radical cofragment. To assess the possible subsequent decomposition pathways of this highly vibrationally excited radical intermediate, we include electronic structure calculations at the G3//B3LYP level of theory. They predict the isomerization and dissociation transition states en route from the initial CH2CCH2OH radical intermediate to the three most important product channels for the OH +allene reaction expected from this radical intermediate: formaldehyde+C2H3, H +acrolein, and ethene+CHO. We also calculate the intermediates and transition states en route from the other radical adduct, formed by addition of the OH to the center carbon of allene, to the ketene+CH3 product channel. We compare our results to a previous theoretical study of the O +allyl reaction conducted at the CBS-QB3 level of theory, as the two reactions include several common intermediates.

  20. Strand breaks and alkali-labile bonds induced by ultraviolet light in DNA with 5-bromouracil in vivo.

    Science.gov (United States)

    Krasin, F; Hutchinson, F

    1978-01-01

    Supercircular gamma phage DNA with 10 bromouracils/100 thymine bases, irradiated with 313 nm light in Tris buffer and sedimented on alkaline and neutral gradients, showed 4.6 alkali-labile bonds per true single-strand break, in agreement with Hewitt and Marburger (1975 Photochem. Photobiol. 21:413). The same DNA irradiated in Escherichia coli host cells showed about the same number of breaks in alkaline gradients for equal fluence, but only 0.5 alkali-labile bond per true break. Similarly, E. coli DNA with bromouracil irradiated in the cells showed only 10--20% more breaks when denatured with 0.1 M NaOH than under neutral conditions with 9 M sodium perchlorate at 50 degrees C. These results show that true single-strand breaks occur more frequently than alkali-labile bonds after ultraviolet irradiation of DNA containing bromouracil in cells. PMID:367462

  1. Superconducting-Magnet-Based Faraday Rotation Spectrometer for Real Time in Situ Measurement of OH Radicals at 106 Molecule/cm3 Level in an Atmospheric Simulation Chamber.

    Science.gov (United States)

    Zhao, Weixiong; Fang, Bo; Lin, Xiaoxiao; Gai, Yanbo; Zhang, Weijun; Chen, Wenge; Chen, Zhiyou; Zhang, Haifeng; Chen, Weidong

    2018-03-20

    Atmospheric simulation chambers play vital roles in the validation of chemical mechanisms and act as a bridge between field measurements and modeling. Chambers operating at atmospheric levels of OH radicals (10 6 -10 7 molecule/cm 3 ) can significantly enhance the possibility for investigating the discrepancies between the observation and model predications. However, few chambers can directly detect chamber OH radicals at ambient levels. In this paper, we report on the first combination of a superconducting magnet with midinfrared Faraday rotation spectroscopy (FRS) for real time in situ measurement of the OH concentration in an atmospheric simulation chamber. With the use of a multipass enhanced FRS, a detection limit of 3.2 × 10 6 OH/cm 3 (2σ, 4 s) was achieved with an absorption path length of 108 m. The developed FRS system provided a unique, self-calibrated analytical instrument for in situ direct measurement of chamber OH concentration.

  2. Methanol oxidation in a flow reactor: Implications for the branching ratio of the CH3OH+OH reaction

    DEFF Research Database (Denmark)

    Rasmussen, Christian Lund; Wassard, K.H.; Dam-Johansen, Kim

    2008-01-01

    The oxidation of methanol in a flow reactor has been studied experimentally under diluted, fuel-lean conditions at 650-1350 K, over a wide range of O-2 concentrations (1%-16%), and with and without the presence of nitric oxide. The reaction is initiated above 900 K, with the oxidation rate...... decreasing slightly with the increasing O-2 concentration. Addition of NO results in a mutually promoted oxidation of CH3OH and NO in the 750-1100 K range. The experimental results are interpreted in terms of a revised chemical kinetic model. Owing to the high sensitivity of the mutual sensitization of CH3OH...... and NO oxidation to the partitioning of CH3O and CH2OH, the CH3OH + OH branching fraction could be estimated as alpha = 0.10 +/- 0.05 at 990 K. Combined with low-temperature measurements, this value implies a branching fraction that is largely independent of temperature. It is in good agreement with recent...

  3. Measurements of total OH reactivity during PROPHET-AMOS 2016

    Science.gov (United States)

    Rickly, P.; Sakowski, J.; Bottorff, B.; Lew, M.; Stevens, P. S.; Sklaveniti, S.; Locoge, N.; Dusanter, S.

    2017-12-01

    As one of the main oxidant in the atmosphere, the hydroxyl radical (OH) initiates the oxidation of volatile organic compounds that can lead to the formation of ozone and secondary organic aerosols. Understanding both the sources and sinks of OH is therefore important to address issues related to air quality and climate change. Measurements of total OH reactivity can provide an important test of our understanding of the OH radical budget. Recent measurements of total reactivity in many environments have been greater than calculated based on the measured concentration of VOCs, suggesting that important OH sinks in these environments are not well characterized. Measurements of total OH reactivity were performed in a forested environment during the PROPHET - AMOS field campaign (Program for Research on Oxidants: PHotochemisty, Emissions, and Transport - Atmospheric Measurements of Oxidants in Summer) using the Comparative Reactivity Method (CRM) and the Total OH Loss Rate Method (TOHLM). The site is characterized by large emissions of isoprene and monoterpenes and low anthropogenic influence. Measurements of total OH reactivity using these two techniques agree to within their respective uncertainties, giving confidence in the measured OH reactivity. In addition, measurements of trace gases (VOCs, NOx, O3) were used to perform a comprehensive apportionment of OH sinks. These measurements are used in a chemical model using the Master Chemical Mechanism to calculate the expected OH reactivity. The results will be compared to previous measurements of total OH reactivity at this site.

  4. Umbilical Cord Serum 25-Hydroxyvitamin D Concentrations and Relation to Birthweight, Head Circumference and Infant Length at Age 14 Days

    DEFF Research Database (Denmark)

    Dalgård, Christine; Petersen, Maria Skaalum; Steuerwald, Ulrike

    2016-01-01

    infants. In the third trimester, the pregnant women completed questionnaires, and clinical examination included birthweight, head circumference, and infant length at age 14 days. RESULTS: Fifty-three percent of the newborn population had UC 25(OH)D ... linear regression models with adjustment for pre-pregnancy BMI, sex, parity, gestational age, or infant age at examination, season of birth, smoking, gestational diabetes, examiner, and cohort identity, we found no relationship between birthweight or head circumference and UC 25(OH)D. However, infants...

  5. Infrared study of the nature of the copper ion--alkyne bond in Y zeolite

    International Nuclear Information System (INIS)

    Pichat, P.

    1975-01-01

    The infrared spectra of acetylene, deuterated acetylene, propyne, and but-2-yne, chemisorbed in Cu, Na--Y zeolites, which have undergone various treatments, were studied. It is concluded that the OH groups interact only with the weakly absorbed molecules, the Cu + ions are not involved, the acetylenic hydrogen atoms do not take part in the bonding, the Cu 2+ ion--alkyne bone results mainly from π donation from the unsaturated hydrocarbon to the metallic ion. (auth)

  6. Relaxation of the chemical bond skin chemisorption size matter ZTP mechanics H2O myths

    CERN Document Server

    Sun, Chang Q

    2014-01-01

    The aim of this book is to explore the detectable properties of a material to the parameters of bond and non-bond involved and to clarify the interdependence of various properties. This book is composed of four parts; Part I deals with the formation and relaxation dynamics of bond and non-bond during chemisorptions with uncovering of the correlation among the chemical bond, energy band, and surface potential barrier (3B) during reactions; Part II is focused on the relaxation of bonds between atoms with fewer neighbors than the ideal in bulk with unraveling of the bond order-length-strength (BOLS) correlation mechanism, which clarifies the nature difference between nanostructures and bulk of the same substance; Part III deals with the relaxation dynamics of bond under heating and compressing with revealing of rules on the temperature-resolved elastic and plastic properties of low-dimensional materials; Part IV is focused on the asymmetric relaxation dynamics of the hydrogen bond (O:H-O) and the anomalous behav...

  7. Highly selective adsorption of organic dyes containing sulphonic groups using Cu{sub 2}(OH){sub 3}NO{sub 3} nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Jincan; Wang, Honghong; Niu, Helin, E-mail: niuhelin@ahu.edu.cn; Chen, Jingshuai; Song, Jiming; Mao, Changjie; Zhang, Shengyi [Anhui University, College of Chemistry and Chemical Engineering (China); Gao, Yuanhao [Xuchang University, Institute of Surface Micro and Nano Materials (China); Chen, Changle [University of Science and Technology of China, CAS Key Laboratory of Soft Matter Chemistry (China)

    2016-09-15

    In this study, we report a facile approach to synthesize Cu{sub 2}(OH){sub 3}NO{sub 3} nanosheets via simply sonochemical method, which showed high efficiency and selectivity towards the adsorption of organic dyes containing sulphonic groups. The structure and morphology of the nanosheets were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, N{sub 2} adsorption–desorption isotherms, particle size and zeta potential analysis. The adsorption results indicated that the equilibrium data coincide very well with Langmuir isotherm, and the maximum adsorption capacities for Congo red, methyl blue and methyl orange were 1864, 1270 and 959 mg g{sup −1}, respectively. The kinetic data can be explained by pseudo-second-order model. The Cu{sub 2}(OH){sub 3}NO{sub 3} nanosheets also demonstrated high selectivity towards the adsorption of dyes containing sulphonic groups from mixed dye solutions. The rational mechanism of adsorption was attributed to hydrogen bonding, electrostatic attractions and ion exchanges between the dye molecules and Cu{sub 2}(OH){sub 3}NO{sub 3} in the adsorption process.

  8. Static magnetic Faraday rotation spectroscopy combined with a differential scheme for OH detection

    Science.gov (United States)

    Zhao, Weixiong; Deng, Lunhua; Qian, Xiaodong; Fang, Bo; Gai, Yanbo; Chen, Weidong; Gao, Xiaoming; Zhang, Weijun

    2015-04-01

    The hydroxyl (OH) radical plays a critical role in atmospheric chemistry due to its high reactivity with volatile organic compounds (VOCs) and other trace gaseous species. Because of its very short life time and very low concentration in the atmosphere, interference-free high sensitivity in-situ OH monitoring by laser spectroscopy represents a real challenge. Faraday rotation spectroscopy (FRS) relies on the particular magneto-optic effect observed for paramagnetic species, which makes it capable of enhancing the detection sensitivity and mitigation of spectral interferences from diamagnetic species in the atmosphere. When an AC magnetic field is used, the Zeeman splitting of the molecular absorption line (and thus the magnetic circular birefringence) is modulated. This provides an 'internal modulation' of the sample, which permits to suppress the external noise like interference fringes. An alternative FRS detection scheme is to use a static magnetic field (DC-field) associated with laser wavelength modulation to effectively modulate the Zeeman splitting of the absorption lines. In the DC field case, wavelength modulation of the laser frequency can provide excellent performance compared to most of the sensing systems based on direct absorption and wavelength modulation spectroscopy. The dimension of the DC solenoid is not limited by the resonant frequency of the RLC circuit, which makes large dimension solenoid coil achievable and the absorption base length could be further increased. By employing a combination of the environmental photochemical reactor or smog chamber with multipass absorption cell, one can lower the minimum detection limit for high accuracy atmospheric chemistry studies. In this paper, we report on the development of a DC field based FRS in conjunction with a balanced detection scheme for OH radical detection at 2.8 μm and the construction of OH chemistry research platform which combined a large dimension superconducting magnetic coil with the

  9. Bond strength of cementitious borehole plugs in welded tuff

    International Nuclear Information System (INIS)

    Akgun, H.; Daemen, J.J.K.

    1991-02-01

    Axial loads on plugs or seals in an underground repository due to gas, water pressures and temperature changes induced subsequent to waste and plug emplacement lead to shear stresses at the plug/rock contact. Therefore, the bond between the plug and rock is a critical element for the design and effectiveness of plugs in boreholes, shafts or tunnels. This study includes a systematic investigation of the bond strength of cementitious borehole plugs in welded tuff. Analytical and numerical analysis of borehole plug-rock stress transfer mechanics is performed. The interface strength and deformation are studied as a function of Young's modulus ratio of plug and rock, plug length and rock cylinder outside-to-inside radius ratio. The tensile stresses in and near an axially loaded plug are analyzed. The frictional interface strength of an axially loaded borehole plug, the effect of axial stress and lateral external stress, and thermal effects are also analyzed. Implications for plug design are discussed. The main conclusion is a strong recommendation to design friction plugs in shafts, drifts, tunnels or boreholes with a minimum length to diameter ratio of four. Such a geometrical design will reduce tensile stresses in the plug and in the host rock to a level which should minimize the risk of long-term deterioration caused by excessive tensile stresses. Push-out tests have been used to determine the bond strength by applying an axial load to cement plugs emplaced in boreholes in welded tuff cylinders. A total of 130 push-out tests have been performed as a function of borehole size, plug length, temperature, and degree of saturation of the host tuff. The use of four different borehole radii enables evaluation of size effects. 119 refs., 42 figs., 20 tabs

  10. Brief Exposures to the Taste of Ethanol (EtOH) and Quinine Promote Subsequent Acceptance of EtOH in a Paradigm that Minimizes Postingestive Consequences.

    Science.gov (United States)

    Loney, Gregory C; Meyer, Paul J

    2018-03-01

    Aversion to the orosensory properties of concentrated ethanol (EtOH) solutions is often cited as a primary barrier to initiation of drinking and may contribute to abstention. These aversive properties include gustatory processes which encompass both bitter-like taste qualities and trigeminal-mediated irritation. Chronic intermittent EtOH access (CIA) results in substantial and persistent increases in EtOH consumption, but the degree to which this facilitation involves sensory responding to EtOH and other bitter stimuli is currently undetermined. Long-Evans rats were given brief-access licking tests designed to examine the immediate, taste-guided assessment of the palatability of EtOH and quinine solutions. Rats were assessed once in a naïve state and again following previous brief-access exposure, or following 4 weeks of CIA. The relationship between the sensitivity to the aversive orosensory properties of EtOH and quinine following EtOH access and the impact of antecedent quinine exposure on the acceptance of EtOH were determined in 2 parallel studies. Both brief access to EtOH and 4-week CIA resulted in substantial rightward shifts in the concentration-response function of brief-access EtOH licking, indicating that EtOH exposure increased acceptance of the taste of EtOH. The initial sensitivity to the aversive orosensory properties of EtOH and quinine was positively correlated in naïve rats, such that rats that were initially more accepting of quinine were also more accepting of EtOH. Rats that sampled quinine immediately prior to tasting EtOH exhibited successive positive contrast in that they were more accepting of highly concentrated EtOH, relative to a water-control group. Increased EtOH acceptance following exposure is, at least in part, facilitated by a decrease in its aversive sensory properties. Both long- and short-term access increase the palatability of the taste of EtOH in brief-access licking tests. Moreover, the sensitivity to the bitterness of

  11. Ambient Mechanochemical Solid-State Reactions of Carbon Nanotubes and Their Reactions via Covalent Coordinate Bond in Solution

    Science.gov (United States)

    Kabbani, Mohamad A.

    In its first part, this thesis deals with ambient mechanochemical solid-state reactions of differently functionalized multiple walled carbon nanotubes (MWCNTs) while in its second part it investigates the cross-linking reactions of CNTs in solution via covalent coordinate bonds with transitions metals and carboxylate groups decorating their surfaces. In the first part a series of mechanochemical reactions involving different reactive functionalities on the CNTs such as COOH/OH, COOH/NH2 and COCl/OH were performed. The solid-state unzipping of CNTs leading to graphene formation was confirmed using spectroscopic, thermal and electron microscopy techniques. The non-grapheme products were established using in-situ quadruple mass spectroscopy. The experimental results were confirmed by theoretical simulation calculations using the 'hot spots' protocol. The kinetics of the reaction between MWCNT-COOH and MWCNT-OH was monitored using variable temperature Raman spectroscopy. The low activation energy was discussed in terms of hydrogen bond mediated proton transfer mechanism. The second part involves the reaction of MWCNTII COOH with Zn (II) and Cu (II) to form CNT metal-organic frame (MOFs) products that were tested for their effective use as counter-electrodes in dyes sensitized solar cells (DSSC). The thesis concludes by the study of the room temperature reaction between the functionalized graphenes, GOH and G'-COOH followed by the application of compressive loads. The 3D solid graphene pellet product ( 0.6gm/cc) is conductive and reflective with a 35MPa ultimate strength as compared to 10MPa strength of graphite electrode ( 2.2gm/cc).

  12. Tetrel, Chalcogen, and Charge-Assisted Hydrogen Bonds in 2-((2-Carboxy-1-(substituted-2-hydroxyethylthio Pyridin-1-ium Chlorides

    Directory of Open Access Journals (Sweden)

    Firudin I. Guseinov

    2017-10-01

    Full Text Available Reaction of 2-chloro-2-(diethoxymethyl-3-substitutedoxirane or 1-chloro-1-(substituted -3,3-diethoxypropan-2-one with pyridine-2-thiol in EtOH at 25 °C yields 3-(diethoxymethyl-3-hydroxy-2-substituted-2,3-dihydrothiazolo[3,2-a]pyridin-4-ium chlorides, which subsequently, in MeCN at 85°C, transforms into ring-opening products, 2-((2-carboxy-1-(substituted -2-hydroxyethylthiopyridin-1-ium chlorides. The tetrel (C···O and chalcogen (S···O bonds are found in the structures of 5 and 6, respectively. Compound 6 is also present in halogen bonding with a short O···Cl distance (3.067 Å. Both molecules are stabilized in crystal by tetrel, chalcogen, and multiple charge-assisted hydrogen bonds.

  13. [Maternal bonding and infant attachment in women with and without social phobia].

    Science.gov (United States)

    Kraft, Ariane; Knappe, Susanne; Petrowski, Katja; Petzoldt, Johanna; Martini, Julia

    2017-01-01

    To examine the association of maternal social phobia with maternal bonding and infant attachment in a prospective-longitudinal study (MARI study, N = 306). A subsample of 46 women with and without lifetime social phobia (Composite International Diagnostic Interview for Women, CIDI-V) and their infants was investigated. Mothers reported antenatal and postnatal bonding (MAAS, MPAS). Infants’ attachment classifications/behavior were observed in the strange situation test at 16 months after delivery. The rate of insecure attachment was higher in infants of mothers with social phobia (45.4 % vs. 33.3 %), and infants needed significantly more time to reconnect with their mothers during reunion in the strange situation (U = 160.0, p = .019). There were no group differences with regard to maternal bonding during pregnancy (t = -.151, p = .881) and after delivery (t = .408, p = .685) and resistant (U = 262.5, p = .969), avoidant (U = 311.5, p = .258) as well as contact-keeping behaviors (U = 224.0, p = .373) of the infant in the strange situation. Mothers with social phobia may transmit their inhibited behavioral disposition to their infants or fail to encourage their infants to interact with other people. Mothers with social phobia should be informed about the possible link of maternal avoidance behavior with adverse infant development and should be provided with information on treatment options.

  14. VP1u phospholipase activity is critical for infectivity of full-length parvovirus B19 genomic clones.

    Science.gov (United States)

    Filippone, Claudia; Zhi, Ning; Wong, Susan; Lu, Jun; Kajigaya, Sachiko; Gallinella, Giorgio; Kakkola, Laura; Söderlund-Venermo, Maria; Young, Neal S; Brown, Kevin E

    2008-05-10

    Three full-length genomic clones (pB19-M20, pB19-FL and pB19-HG1) of parvovirus B19 were produced in different laboratories. pB19-M20 was shown to produce infectious virus. To determine the differences in infectivity, all three plasmids were tested by transfection and infection assays. All three clones were similar in viral DNA replication, RNA transcription, and viral capsid protein production. However, only pB19-M20 and pB19-HG1 produced infectious virus. Comparison of viral sequences showed no significant differences in ITR or NS regions. In the capsid region, there was a nucleotide sequence difference conferring an amino acid substitution (E176K) in the phospholipase A2-like motif of the VP1-unique (VP1u) region. The recombinant VP1u with the E176K mutation had no catalytic activity as compared with the wild-type. When this mutation was introduced into pB19-M20, infectivity was significantly attenuated, confirming the critical role of this motif. Investigation of the original serum from which pB19-FL was cloned confirmed that the phospholipase mutation was present in the native B19 virus.

  15. VP1u phospholipase activity is critical for infectivity of full-length parvovirus B19 genomic clones✰

    Science.gov (United States)

    Filippone, Claudia; Zhi, Ning; Wong, Susan; Lu, Jun; Kajigaya, Sachiko; Gallinella, Giorgio; Kakkola, Laura; Venermo, Maria S Söderlund; Young, Neal S.; Brown, Kevin E.

    2008-01-01

    Three full-length genomic clones (pB19-M20, pB19-FL and pB19-HG1) of parvovirus B19 were produced in different laboratories. pB19-M20 was shown to produce infectious virus. To determine the differences in infectivity, all three plasmids were tested by transfection and infection assays. All three clones were similar in viral DNA replication, RNA transcription, and viral capsid protein production. However, only pB19-M20 and pB19-HG1 produced infectious virus. Comparison of viral sequences showed no significant differences in ITR or NS regions. In the capsid region, there was a nucleotide sequence difference conferring an amino acid substitution (E176K) in the phospholipase A2-like motif of the VP1-unique (VP1u) region. The recombinant VP1u with the E176K mutation had no catalytic activity as compared with the wild-type. When this mutation was introduced into pB19-M20, infectivity was significantly attenuated, confirming the critical role of this motif. Investigation of the original serum from which pB19-FL was cloned confirmed that the phospholipase mutation was present in the native B19 virus. PMID:18252260

  16. Infrared and Raman spectroscopic characterization of the silicate mineral olmiite CaMn2+[SiO3(OH)](OH) - implications for the molecular structure

    Science.gov (United States)

    Frost, Ray L.; Scholz, Ricardo; López, Andrés; Xi, Yunfei; Granja, Amanda; Žigovečki Gobac, Željka; Lima, Rosa Malena Fernandes

    2013-12-01

    We have studied the mineral olmiite CaMn[SiO3(OH)](OH) which forms a series with its calcium analogue poldervaartite CaCa[SiO3(OH)](OH) using a range of techniques including scanning electron microscopy, thermogravimetric analysis, Raman and infrared spectroscopy. Chemical analysis shows the mineral is pure and contains only calcium and manganese in the formula. Thermogravimetric analysis proves the mineral decomposes at 502 °C with a mass loss of 8.8% compared with the theoretical mass loss of 8.737%. A strong Raman band at 853 cm-1 is assigned to the SiO stretching vibration of the SiO3(OH) units. Two Raman bands at 914 and 953 cm-1 are attributed to the antisymmetric vibrations. Two intense Raman bands observed at 3511 and 3550 cm-1 are assigned to the OH stretching vibration of the SiO3(OH) units. The observation of multiple OH bands supports the concept of the non-equivalence of the OH units. Vibrational spectroscopy enables a detailed assessment of the molecular structure of olmiite.

  17. Enhanced photocatalytic degradation of Amaranth dye on mesoporous anatase TiO2: evidence of C-N, N[double bond, length as m-dash]N bond cleavage and identification of new intermediates.

    Science.gov (United States)

    Naik, Amarja P; Salkar, Akshay V; Majik, Mahesh S; Morajkar, Pranay P

    2017-07-01

    The photocatalytic degradation mechanism of Amaranth, a recalcitrant carcinogenic azo dye, was investigated using mesoporous anatase TiO 2 under sunlight. Mesoporous anatase TiO 2 of a high photocatalytic activity has been synthesized using a sol-gel method and its photocatalytic activity for the degradation of Amaranth dye has been evaluated with respect to Degussa P25. The effect of bi-dentate complexing agents like oxalic acid, ethylene glycol and urea on the surface properties of TiO 2 catalyst has been investigated using TG-DTA, FTIR, HR-TEM, SAED, PXRD, EDS, UV-DRS, PL, BET N 2 adsorption-desorption isotherm studies and BJH analysis. The influence of catalyst properties such as the mesoporous network, pore volume and surface area on the kinetics of degradation of Amaranth as a function of irradiation time under natural sunlight has been monitored using UV-Vis spectroscopy. The highest rate constant value of 0.069 min -1 was obtained for the photocatalytic degradation of Amaranth using TiO 2 synthesized via a urea assisted sol-gel synthesis method. The effect of the reaction conditions such as pH, TiO 2 concentration and Amaranth concentration on the photodegradation rate has been investigated. The enhanced photocatalytic activity of synthesized TiO 2 in comparison with P25 is attributed to the mesoporous nature of the catalyst leading to increased pore diameter, pore volume, surface area and enhanced charge carrier separation efficiency. New intermediates of photocatalytic degradation of Amaranth, namely, sodium-3-hydroxynaphthalene-2,7-disulphonate, 3-hydroxynaphthalene, sodium-4-aminonaphthalenesulphonate and sodium-4-aminobenzenesulphonate have been identified using LC-ESI-MS for the very first time, providing direct evidence for simultaneous bond cleavage pathways (-C-N-) and (-N[double bond, length as m-dash]N-). A new plausible mechanism of TiO 2 catalysed photodegradation of Amaranth along with the comparison of its toxicity to that of its degradation

  18. A metallization and bonding approach for high performance carbon nanotube thermal interface materials

    International Nuclear Information System (INIS)

    Cross, Robert; Graham, Samuel; Cola, Baratunde A; Fisher, Timothy; Xu Xianfan; Gall, Ken

    2010-01-01

    A method has been developed to create vertically aligned carbon nanotube (VACNT) thermal interface materials that can be attached to a variety of metallized surfaces. VACNT films were grown on Si substrates using standard CVD processing followed by metallization using Ti/Au. The coated CNTs were then bonded to metallized substrates at 220 deg. C. By reducing the adhesion of the VACNTs to the growth substrate during synthesis, the CNTs can be completely transferred from the Si growth substrate and used as a die attachment material for electronic components. Thermal resistance measurements using a photoacoustic technique showed thermal resistances as low as 1.7 mm 2 K W -1 for bonded VACNT films 25-30 μm in length and 10 mm 2 K W -1 for CNTs up to 130 μm in length. Tensile testing demonstrated a die attachment strength of 40 N cm -2 at room temperature. Overall, these metallized and bonded VACNT films demonstrate properties which are promising for next-generation thermal interface material applications.

  19. Dispersibility and chemical bonds between multi-walled carbon nanotubes and poly(ether ether ketone) in nanocomposite fibers

    International Nuclear Information System (INIS)

    Yanmei, Jin; Haihui, Liu; Ning, Wang; Lichen, Hou; Xing-Xiang, Zhang

    2012-01-01

    A series of multi-walled carbon nanotubes (MWNTs)/poly(ether ether ketone)(PEEK) nanocomposite fibers were fabricated by mixing, melt extruding PEEK with different loadings and species of MWNTs, and melt-spun the blended chips. Nanocomposite fibers were heat-stretched and heat-treated. The morphology and dispersibility of MWNTs in nanocomposite fibers were observed using a field emission environmental scanning electron microscope (FESEM) and a transmission electron microscope (TEM). The thermal and crystallization behavior of nanocomposite fibers were characterized using differential scanning calorimetry (DSC) and an X-ray diffractometer (XRD). Mechanical properties were tested using a tensile strength tester. MWNTs tend to aggregate when the loading exceeds 0.8 wt%. Functional groups on MWNTs improve the hydrophobicity and the dispersibility of MWNTs in PEEK matrix. The enhancement of mechanical properties depends on the loading and species of functional groups. The most effectively reinforced effect is in the sequence, carboxylic MWNTs (MWNT–COOH) > hydroxyl MWNTs (MWNT–OH) > MWNTs, which can be explained by the strong hydrogen bonding and the affinity between MWNT–COOH and PEEK, MWNT–OH and PEEK, and possible formation of a chemical bond between MWNT–COOH and PEEK. A nanocomposite fiber with excellent mechanical property was fabricated using 0.8 wt% MWNT–COOH as filler. The Young's modulus is 1.7 GPa; and the stress is 648 MPa. -- Highlights: ► Functional groups on MWNTs improve their hydrophobility and dispersability. ► Mechanical properties depend on the content and species of the functional groups. ► The reinforced effect is in the sequence, carboxylic MWNTs > hydroxyl MWNTs > MWNTs. ► The strength behavior was result of hydrogen bond, affinity and chemical bond. ► Dispersability of MWNTs in matrix was analyzed by calculating solubility parameter.

  20. An Ab Initio MP2 Study of HCN-HX Hydrogen Bonded Complexes

    Directory of Open Access Journals (Sweden)

    Araújo Regiane C.M.U.

    1998-01-01

    Full Text Available An ab initio MP2/6-311++G** study has been performed to obtain geometries, binding energies and vibrational properties of HCN-HX H-bonded complexes with X = F, Cl, NC, CN and CCH. These MP2/6-311++G** results have revealed that: (i the calculated H-bond lengths are in very good agreement with the experimental ones; (ii the H-bond strength is associated with the intermolecular charge transfer and follows the order: HCN-HNC ~ HCN-HF > HCN-HCl ~ HCN-HCN > HCN-HCCH; (iii BSSE correction introduces an average reduction of 2.4 kJ/mol on the MP2/6-311++G** binding energies, i.e. 11% of the uncorrected binding energy; (iv the calculated zero-point energies reduce the stability of these complexes and show a good agreement with the available experimental values; (v the H-X stretching frequency is shifted downward upon H-bond formation. This displacement is associated with the H-bond length; (vi The more pronounced effect on the infrared intensities occurs with the H-X stretching intensity. It is much enhanced after complexation due to the charge-flux term; (vii the calculated intermolecular stretching frequencies are in very good agreement with the experimental ones; and, finally, (viii the results obtained for the HCN-HX complexes follow the same profile as those found for the acetylene-HX series but, in the latter case, the effects on the properties of the free molecules due to complexation are less pronounced than those in HCN-HX.

  1. Spectroscopic studies of the intramolecular hydrogen bonding in o-hydroxy Schiff bases, derived from diaminomaleonitrile, and their deprotonation reaction products

    Science.gov (United States)

    Szady-Chełmieniecka, Anna; Kołodziej, Beata; Morawiak, Maja; Kamieński, Bohdan; Schilf, Wojciech

    2018-01-01

    The structural study of five Schiff bases derived from diaminomaleonitrile (DAMN) and 2-hydroxy carbonyl compounds was performed using 1H, 13C and 15N NMR methods in solution and in the solid state as well. ATR-FTIR and X-Ray spectroscopies were used for confirmation of the results obtained by NMR method. The imine obtained from DAMN and benzaldehyde was synthesized as a model compound which lacks intramolecular hydrogen bond. Deprotonation of all synthesized compounds was done by treating with tetramethylguanidine (TMG). NMR data revealed that salicylidene Schiff bases in DMSO solution exist as OH forms without intramolecular hydrogen bonds and independent on the substituents in aromatic ring. In the case of 2-hydroxy naphthyl derivative, the OH proton is engaged into weak intramolecular hydrogen bond. Two of imines (salDAMN and 5-BrsalDAMN) exist in DMSO solution as equilibrium mixtures of two isomers (A and B). The structures of equilibrium mixture in the solid state have been studied by NMR, ATR-FTIR and X-Ray methods. The deprotonation of three studied compounds (salDAMN, 5-BrsalDAMN, and 5-CH3salDAMN) proceeded in two different ways: deprotonation of oxygen atom (X form) or of nitrogen atom of free primary amine group of DAMN moiety (Y form). For 5-NO2salDAMN and naphDAMN only one form (X) was observed.

  2. OH Solar Radiometer

    Data.gov (United States)

    National Aeronautics and Space Administration — The abundance of the hydroxyl radical, OH, determines the lifetime of methane and its global warming potential. Despite the growing importance of methane and the...

  3. Advantages and Disadvantages of Exempting Municipal Bonds from the Federal Income Tax: The U.S. Experience

    Directory of Open Access Journals (Sweden)

    Esteban G. DALEHITE

    2007-02-01

    Full Text Available Romania and other Eastern European countries have undergone dramatic reforms as they have sought to democratize political institutions, develop their economies, rely on private markets for the provision of goods and services, and pursue a course of economic integration with Western European nations (Lazar, 2005. Of course, these reforms have included the complete overhaul of tax and revenue systems (Lazar, 2005. As these tax reforms mature and are adapted to the differing realities of each country, it might be useful to reflect on the experiences and mistakes of countries whose tax systems they have used as blueprint for their own reforms. This is the spirit in which this analysis is written. The article presents a synthesis of the American experience with tax-exempt municipal bonds, and the advantages and disadvantages associated with this tax exemption. The exemption represents a subsidy from the federal government to states and local governments, and as such, it has powerful incentives with implications from the economic and redistributive standpoints. This article explains these implications and how they have been addressed in the U.S.

  4. Electronic structure and chemical bond in technetium dimer

    International Nuclear Information System (INIS)

    Klyagina, A.P.; Fursova, V.D.; Levin, A.A.; Gutsev, G.L.

    1987-01-01

    DV-X α method is used to study electron structure and peculiarities of chemical bond in Tc 2 and Tc 2 2+ dimers. Electron state characteristics are calculated in the basis of numerical Hartree-Fock functions for d 6 s 1 - and d 5 s 2 -configurations of Tc atom and for Tc 2 2+ ion d 5 s 1 -configuration. Disposition order for valence MO in Tc and Tc 2 2+ calculated for the given configurations is presented. It is shown that quinary bond with π u 4 dσ g 2 σ g 4 sσ g 2 δ u 2 configuration corresponds to the ground state of Tc 2 molecule. In Tc 2 some weakening of binding for π- and δ-orbitals and strengthening of total σ-binding in comparison with Mo 2 takes place. In Tc + and Tc 2+ MO composition is slightly changed, but a shift of 2σ-MO relatively MO consisting of d-AO is occured

  5. A search for OH emission from symbiotic stars

    International Nuclear Information System (INIS)

    Norris, R.P.; Haynes, R.F.; Wright, A.E.

    1984-01-01

    A search was made for OH maser emission from a sample of 16 symbiotic stars. This sample was selected on the basis of infrared optical depth and variability, so that the stars within it have circumstellar shells similar to those seen in OH/IR and OH/Mira stars. There were no significant detections, except for one unassociated background source, and it is concluded that the presence of a hot binary companion inhibits any possible OH maser action

  6. A tensegrity model for hydrogen bond networks in proteins.

    Science.gov (United States)

    Bywater, Robert P

    2017-05-01

    Hydrogen-bonding networks in proteins considered as structural tensile elements are in balance separately from any other stabilising interactions that may be in operation. The hydrogen bond arrangement in the network is reminiscent of tensegrity structures in architecture and sculpture. Tensegrity has been discussed before in cells and tissues and in proteins. In contrast to previous work only hydrogen bonds are studied here. The other interactions within proteins are either much stronger - covalent bonds connecting the atoms in the molecular skeleton or weaker forces like the so-called hydrophobic interactions. It has been demonstrated that the latter operate independently from hydrogen bonds. Each category of interaction must, if the protein is to have a stable structure, balance out. The hypothesis here is that the entire hydrogen bond network is in balance without any compensating contributions from other types of interaction. For sidechain-sidechain, sidechain-backbone and backbone-backbone hydrogen bonds in proteins, tensegrity balance ("closure") is required over the entire length of the polypeptide chain that defines individually folding units in globular proteins ("domains") as well as within the repeating elements in fibrous proteins that consist of extended chain structures. There is no closure to be found in extended structures that do not have repeating elements. This suggests an explanation as to why globular domains, as well as the repeat units in fibrous proteins, have to have a defined number of residues. Apart from networks of sidechain-sidechain hydrogen bonds there are certain key points at which this closure is achieved in the sidechain-backbone hydrogen bonds and these are associated with demarcation points at the start or end of stretches of secondary structure. Together, these three categories of hydrogen bond achieve the closure that is necessary for the stability of globular protein domains as well as repeating elements in fibrous proteins.

  7. Facile CO cleavage by a multimetallic CsU{sub 2} nitride complex

    Energy Technology Data Exchange (ETDEWEB)

    Falcone, Marta; Scopelliti, Rosario; Mazzanti, Marinella [Ecole Polytechnique de Federale de Lausanne (EPFL) (Switzerland). Inst. des Sciences et Ingenierie Chimiques; Kefalidis, Christos E.; Maron, Laurent [Toulouse Univ. (France). LPCNO, CNRS et INSA, UPS

    2016-09-26

    Uranium nitrides are important materials with potential for application as fuels for nuclear power generation, and as highly active catalysts. Molecular nitride compounds could provide important insight into the nature of the uranium-nitride bond, but currently little is known about their reactivity. In this study, we found that a complex containing a nitride bridging two uranium centers and a cesium cation readily cleaved the C≡O bond (one of the strongest bonds in nature) under ambient conditions. The product formed has a [CsU{sub 2}(μ-CN)(μ-O)] core, thus indicating that the three cations cooperate to cleave CO. Moreover, the addition of MeOTf to the nitride complex led to an exceptional valence disproportionation of the CsU{sup IV}-N-U{sup IV} core to yield CsU{sup III}(OTf) and [MeN=U{sup V}] fragments. The important role of multimetallic cooperativity in both reactions is illustrated by the computed reaction mechanisms.

  8. Interfacial bonding stabilizes rhodium and rhodium oxide nanoparticles on layered Nb oxide and Ta oxide supports.

    Science.gov (United States)

    Strayer, Megan E; Binz, Jason M; Tanase, Mihaela; Shahri, Seyed Mehdi Kamali; Sharma, Renu; Rioux, Robert M; Mallouk, Thomas E

    2014-04-16

    Metal nanoparticles are commonly supported on metal oxides, but their utility as catalysts is limited by coarsening at high temperatures. Rhodium oxide and rhodium metal nanoparticles on niobate and tantalate supports are anomalously stable. To understand this, the nanoparticle-support interaction was studied by isothermal titration calorimetry (ITC), environmental transmission electron microscopy (ETEM), and synchrotron X-ray absorption and scattering techniques. Nanosheets derived from the layered oxides KCa2Nb3O10, K4Nb6O17, and RbTaO3 were compared as supports to nanosheets of Na-TSM, a synthetic fluoromica (Na0.66Mg2.68(Si3.98Al0.02)O10.02F1.96), and α-Zr(HPO4)2·H2O. High surface area SiO2 and γ-Al2O3 supports were also used for comparison in the ITC experiments. A Born-Haber cycle analysis of ITC data revealed an exothermic interaction between Rh(OH)3 nanoparticles and the layered niobate and tantalate supports, with ΔH values in the range -32 kJ·mol(-1) Rh to -37 kJ·mol(-1) Rh. In contrast, the interaction enthalpy was positive with SiO2 and γ-Al2O3 supports. The strong interfacial bonding in the former case led to "reverse" ripening of micrometer-size Rh(OH)3, which dispersed as 0.5 to 2 nm particles on the niobate and tantalate supports. In contrast, particles grown on Na-TSM and α-Zr(HPO4)2·H2O nanosheets were larger and had a broad size distribution. ETEM, X-ray absorption spectroscopy, and pair distribution function analyses were used to study the growth of supported nanoparticles under oxidizing and reducing conditions, as well as the transformation from Rh(OH)3 to Rh nanoparticles. Interfacial covalent bonding, possibly strengthened by d-electron acid/base interactions, appear to stabilize Rh(OH)3, Rh2O3, and Rh nanoparticles on niobate and tantalate supports.

  9. Bonding characteristics in NiAl intermetallics with