WorldWideScience

Sample records for tyrosine kinase-positive tumor

  1. Tyrosine isomers mediate the classical phenomenon of concomitant tumor resistance.

    Science.gov (United States)

    Ruggiero, Raúl A; Bruzzo, Juan; Chiarella, Paula; di Gianni, Pedro; Isturiz, Martín A; Linskens, Susana; Speziale, Norma; Meiss, Roberto P; Bustuoabad, Oscar D; Pasqualini, Christiane D

    2011-11-15

    Concomitant tumor resistance (CR) is a phenomenon originally described in 1906 in which a tumor-bearing host is resistant to the growth of secondary tumor implants and metastasis. Although recent studies have indicated that T-cell-dependent processes mediate CR in hosts bearing immunogenic small tumors, manifestations of CR induced by immunogenic and nonimmunogenic large tumors have been associated with an elusive serum factor. In this study, we identify this serum factor as tyrosine in its meta and ortho isoforms. In three different murine models of cancer that generate CR, both meta-tyrosine and ortho-tyrosine inhibited tumor growth. In addition, we showed that both isoforms of tyrosine blocked metastasis in a fourth model that does not generate CR but is sensitive to CR induced by other tumors. Mechanistic studies showed that the antitumor effects of the tyrosine isoforms were mediated, in part, by early inhibition of mitogen-activated protein/extracellular signal-regulated kinase pathway and inactivation of STAT3, potentially driving tumor cells into a state of dormancy. By revealing a molecular basis for the classical phenomenon of CR, our findings may stimulate new generalized approaches to limit the development of metastases that arise after resection of primary tumors, an issue of pivotal importance to oncologists and their patients. ©2011 AACR

  2. Synthesis of Tc-99m labeled 1,2,3-triazole-4-yl c-met binding peptide as a potential c-met receptor kinase positive tumor imaging agent.

    Science.gov (United States)

    Kim, Eun-Mi; Joung, Min-Hee; Lee, Chang-Moon; Jeong, Hwan-Jeong; Lim, Seok Tae; Sohn, Myung-Hee; Kim, Dong Wook

    2010-07-15

    The mesenchymal-epithelial transition factor (c-Met), which is related to tumor cell growth, angiogenesis and metastases, is known to be overexpressed in several tumor types. In this study, we synthesized technetium-99m labeled 1,2,3-triazole-4-yl c-Met binding peptide (cMBP) derivatives, prepared by solid phase peptide synthesis and the 'click-to-chelate' protocol for the introduction of tricarbonyl technetium-99m, as a potential c-Met receptor kinase positive tumor imaging agent, and evaluated their in vitro c-Met binding affinity, cellular uptake, and stability. The (99m)Tc labeled cMBP derivatives ([(99m)Tc(CO)(3)]12, [(99m)Tc(CO)(3)]13, and [(99m)Tc(CO)(3)]14) were prepared in 85-90% radiochemical yields. The cold surrogate cMBP derivatives, [Re(CO)(3)]12, [Re(CO)(3)]13, and [Re(CO)(3)]14, were shown to have high binding affinities (0.13 microM, 0.06 microM, and 0.16 microM, respectively) to a purified cMet/Fc chimeric recombinant protein. In addition, the in vitro cellular uptake and inhibition studies demonstrated the high specific binding of these (99m)Tc labeled cMBP derivatives ([(99m)Tc(CO)(3)]12-14) to c-Met receptor positive U87MG cells. 2010 Elsevier Ltd. All rights reserved.

  3. Receptor Tyrosine Kinases as Targets for Treatment of Peripheral Nerve Sheath Tumors in NF 1 Patients

    National Research Council Canada - National Science Library

    Mautner, Victor-Felix

    2007-01-01

    .... The only available but unsatisfying therapy is surgical tumor resection. The purpose of this study is the preclinical testing of multiple available tyrosine kinase inhibitors for NF1-associated MPNST using in vitro and in vivo systems...

  4. Concomitant tumor resistance: the role of tyrosine isomers in the mechanisms of metastases control.

    Science.gov (United States)

    Ruggiero, Raúl A; Bruzzo, Juan; Chiarella, Paula; Bustuoabad, Oscar D; Meiss, Roberto P; Pasqualini, Christiane D

    2012-03-01

    Concomitant tumor resistance (CR) is a phenomenon in which a tumor-bearing host is resistant to the growth of secondary tumor implants and metastasis. Although previous studies indicated that T-cell-dependent processes mediate CR in hosts bearing immunogenic small tumors, manifestations of CR induced by immunogenic and nonimmunogenic large tumors have been associated with an elusive serum factor. In a recently published study, we identified this factor as meta-tyrosine and ortho-tyrosine, 2 isomers of tyrosine that would not be present in normal proteins. In 3 different murine models of cancer that generate CR, both meta- and ortho-tyrosine inhibited tumor growth. Additionally, we showed that both isoforms of tyrosine blocked metastasis in a fourth model that does not generate CR but is sensitive to CR induced by other tumors. Mechanistic studies showed that the antitumor effects of the tyrosine isomers were mediated in part by early inhibition of the MAP/ERK pathway and inactivation of STAT3, potentially driving tumor cells into a state of dormancy in G(0)-phase. Other mechanisms, putatively involving the activation of an intra-S-phase checkpoint, would also inhibit tumor proliferation by accumulating cells in S-phase. By revealing a molecular basis for the classical phenomenon of CR, our findings may stimulate new generalized approaches to limit the development of metastases that arise after resection of primary tumors or after other stressors that may promote the escape of metastases from dormancy, an issue that is of pivotal importance to oncologists and their patients.

  5. Brain tumors : L-[1-C-11]tyrosine PET for visualization and quantification of protein synthesis rate

    NARCIS (Netherlands)

    Pruim, J; Willemsen, A T; Molenaar, W M; Waarde, A van; Paans, A M; Heesters, M A; Go, K G; Visser, Gerben; Franssen, E J; Vaalburg, W

    1995-01-01

    PURPOSE: Positron emission tomography (PET) with the amino acid tracer L-[1-C-11]-tyrosine was evaluated in 27 patients with primary and recurrent brain tumors. MATERIALS AND METHODS: Patients underwent either static (n = 14) or dynamic PET (n = 13), with quantification of protein synthesis rate

  6. Evaluation of o-[11C]methyl-L-tyrosine and o-[18F]fluoromethyl-L-tyrosine as tumor imaging tracers by PET

    International Nuclear Information System (INIS)

    Ishiwata, Kiichi; Kawamura, Kazunori; Wang Weifang; Furumoto, Shozo; Kubota, Kazuo; Pascali, Claudio; Bogni, Anna; Iwata, Ren

    2004-01-01

    We investigated the potential of O-[ 11 C]methyl-L-tyrosine and O-[ 18 F]fluoromethyl-L-tyrosine as positron-emitting tracers for tumor imaging. The two tracers had similar distribution patterns in rats bearing AH109A hepatoma, with pancreas and, on a lesser extent, AH109A showing the highest uptake. Uptake of both tracers in the AH109A and uptake ratios of AH109A-to-tissues (with the exception of AH109A-to-bone) gradually increased for 60 min. O-[ 11 C]methyl-L-tyrosine was metabolically stable, whereas a negligible low amount of metabolites was observed for O-[ 18 F]fluoromethyl-L-tyrosine. Both tracers showed the potential for tumor imaging

  7. Preclinical and clinical evaluation of O-[11C]methyl-L-tyrosine for tumor imaging by positron emission tomography

    International Nuclear Information System (INIS)

    Ishiwata, Kiichi; Tsukada, Hideo; Kubota, Kazuo; Nariai, Tadashi; Harada, Norihiro; Kawamura, Kazunori; Kimura, Yuichi; Oda, Keiichi; Iwata, Ren; Ishii, Kenji

    2005-01-01

    We performed preclinical and clinical studies of O-[ 11 C]methyl-L-tyrosine, a potential tracer for imaging amino acid transport of tumors by positron emission tomography (PET). Examinations of the radiation-absorbed dose by O-[ 11 C]methyl-L-tyrosine and the acute toxicity and mutagenicity of O-methyl-L-tyrosine showed suitability of the tracer for clinical use. The whole-body imaging of monkeys and healthy humans by PET showed low uptake of O-[ 11 C]methyl-L-tyrosine in all normal organs except for the urinary track and bladder, suggesting that the O-[ 11 C]methyl-L-tyrosine PET has the potential for tumor imaging in the whole-body. Finally, the brain tumor imaging was preliminarily demonstrated

  8. Immune Consequences of Decreasing Tumor Vasculature with Antiangiogenic Tyrosine Kinase Inhibitors in Combination with Therapeutic Vaccines

    Science.gov (United States)

    Farsaci, Benedetto; Donahue, Renee N.; Coplin, Michael A.; Grenga, Italia; Lepone, Lauren M.; Molinolo, Alfredo A.; Hodge, James W.

    2014-01-01

    This study investigated the effects on the tumor microenvironment of combining antiangiogenic tyrosine kinase inhibitors (TKI) with therapeutic vaccines, and in particular, how vascular changes affect tumor-infiltrating immune cells. We conducted studies using a TKI (sunitinib or sorafenib) in combination with recombinant vaccines in 2 murine tumor models: colon carcinoma (MC38-CEA) and breast cancer (4T1). Tumor vasculature was measured by immunohistochemistry using 3 endothelial cell markers: CD31 (mature), CD105 (immature/proliferating), and CD11b (monocytic). We assessed oxygenation, tight junctions, compactness, and pressure within tumors, along with the frequency and phenotype of tumor-infiltrating T lymphocytes (TIL), myeloid-derived suppressor cells (MDSC), and tumor-associated macrophages (TAM) following treatment with antiangiogenic TKIs alone, vaccine alone, or the combination of a TKI with vaccine. The combined regimen decreased tumor vasculature, compactness, tight junctions, and pressure, leading to vascular normalization and increased tumor oxygenation. This combination therapy also increased TILs, including tumor antigen-specific CD8 T cells, and elevated the expression of activation markers FAS-L, CXCL-9, CD31, and CD105 in MDSCs and TAMs, leading to reduced tumor volumes and an increase in the number of tumor-free animals. The improved antitumor activity induced by combining antiangiogenic TKIs with vaccine may be the result of activated lymphoid and myeloid cells in the tumor microenvironment, resulting from vascular normalization, decreased tumor-cell density, and the consequent improvement in vascular perfusion and oxygenation. Therapies that alter tumor architecture can thus have a dramatic impact on the effectiveness of cancer immunotherapy. PMID:25092771

  9. Downsizing Treatment with Tyrosine Kinase Inhibitors in Patients with Advanced Gastrointestinal Stromal Tumors Improved Resectability

    Science.gov (United States)

    Sjölund, Katarina; Andersson, Anna; Nilsson, Erik; Nilsson, Ola; Ahlman, Håkan

    2010-01-01

    Background Gastrointestinal stromal tumors (GISTs) express the receptor tyrosine kinase KIT. Most GISTs have mutations in the KIT or PDGFRA gene, causing activation of tyrosine kinase. Imatinib, a tyrosine kinase inhibitor (TKI), is the first-line palliative treatment for advanced GISTs. Sunitinib was introduced for patients with mutations not responsive to imatinib. The aim was to compare the survival of patients with high-risk resected GISTs treated with TKI prior to surgery with historical controls and to determine if organ-preserving surgery was facilitated. Methods Ten high-risk GIST-patients had downsizing/adjuvant TKI treatment: nine with imatinib and one with sunitinib. The patients were matched with historical controls (n = 89) treated with surgery alone, from our population-based series (n = 259). Mutational analysis of KIT and PDGFRA was performed in all cases. The progression-free survival was calculated. Results The primary tumors decreased in mean diameter from 20.4 cm to 10.5 cm on downsizing imatinib. Four patients with R0 resection and a period of adjuvant imatinib had no recurrences versus 67% in the historical control group. Four patients with residual liver metastases have stable disease on continuous imatinib treatment after surgery. One patient has undergone reoperation with liver resection. The downsizing treatment led to organ-preserving surgery in nine patients and improved preoperative nutritional status in one patient. Conclusions Downsizing TKI is recommended for patients with bulky tumors with invasion of adjacent organs. Sunitinib can be used for patients in case of imatinib resistance (e.g., wild-type GISTs), underlining the importance of mutational analysis for optimal surgical planning. PMID:20512492

  10. Syk Tyrosine Kinase Acts as a Pancreatic Adenocarcinoma Tumor Suppressor by Regulating Cellular Growth and Invasion

    OpenAIRE

    Layton, Tracy; Stalens, Cristel; Gunderson, Felizza; Goodison, Steve; Silletti, Steve

    2009-01-01

    We have identified the nonreceptor tyrosine kinase syk as a marker of differentiation/tumor suppressor in pancreatic ductal adenocarcinoma (PDAC). Syk expression is lost in poorly differentiated PDAC cells in vitro and in situ, and stable reexpression of syk in endogenously syk-negative Panc1 (Panc1/syk) cells retarded their growth in vitro and in vivo and reduced anchorage-independent growth in vitro. Panc1/syk cells exhibited a more differentiated morphology and down-regulated cyclin D1, ak...

  11. Dialkoxyquinazolines: Screening Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors for Potential Tumor Imaging Probes

    International Nuclear Information System (INIS)

    VanBrocklin, Henry F.; Lim, John K.; Coffing, Stephanie L.; Hom, Darren L.; Negash, Kitaw; Ono, Michele Y.; Hanrahan, Stephen M.; Taylor, Scott E.; Vanderpoel, Jennifer L.; Slavik, Sarah M.; Morris, Andrew B.; Riese II, David J.

    2005-01-01

    The epidermal growth factor receptor (EGFR), a long-standing drug development target, is also a desirable target for imaging. Sixteen dialkoxyquinazoline analogs, suitable for labeling with positron-emitting isotopes, have been synthesized and evaluated in a battery of in vitro assays to ascertain their chemical and biological properties. These characteristics provided the basis for the adoption of a selection schema to identify lead molecules for labeling and in vivo evaluation. A newEGFR tyrosine kinase radiometric binding assay revealed that all of the compounds possessed suitable affinity (IC50 = 0.4 - 51 nM) for the EGFR tyrosine kinase. All of the analogs inhibited ligand-induced EGFR tyrosine phosphorylation (IC50 = 0.8 - 20 nM). The HPLC-estimated octanol/water partition coefficients ranged from 2.0-5.5. Four compounds,4-(2'-fluoroanilino)- and 4-(3'-fluoroanilino)-6,7-diethoxyquinazoline as well as 4-(3'-chloroanilino)- and4-(3'-bromoanilino)-6,7-dimethoxyquinazoline, possess the best combination of characteristics that warrant radioisotope labeling and further evaluation in tumor-bearing mice

  12. Interplay between TGF-β signaling and receptor tyrosine kinases in tumor development.

    Science.gov (United States)

    Shi, Qiaoni; Chen, Ye-Guang

    2017-10-01

    Transforming growth factor-β (TGF-β) signaling regulates cell proliferation, differentiation, migration and death, and plays a critical role in embryogenesis and tissue homeostasis. Its deregulation results in various diseases including tumor formation. Receptor tyrosine kinases (RTKs), such as epidermal growth factor receptor (EGFR), fibroblast growth factor receptor (FGFR), vascular endothelial growth factor receptor (VEGFR) and platelet-derived growth factor receptor (PDGFR), also play key roles in the development and progression of many types of tumors. It has been realized that TGF-β signaling and RTK pathways interact with each other and their interplay is important for cancer development. They are mutually regulated and cooperatively modulate cell survival and migration, epithelial-mesenchymal transition, and tumor microenvironment to accelerate tumorigenesis and tumor metastasis. RTKs can modulate Smad-dependent transcription or cooperate with TGF-β to potentiate its oncogenic activity, while TGF-β signaling can in turn control RTK signaling by regulating their activities or expression. This review summarizes current understandings of the interplay between TGF-β signaling and RTKs and its influence on tumor development.

  13. Protein tyrosine phosphatase receptor delta acts as a neuroblastoma tumor suppressor by destabilizing the aurora kinase a oncogene

    LENUS (Irish Health Repository)

    Meehan, Maria

    2012-02-05

    Abstract Background Protein tyrosine phosphatase receptor delta (PTPRD) is a member of a large family of protein tyrosine phosphatases which negatively regulate tyrosine phosphorylation. Neuroblastoma is a major childhood cancer arising from precursor cells of the sympathetic nervous system which is known to acquire deletions and alterations in the expression patterns of PTPRD, indicating a potential tumor suppressor function for this gene. The molecular mechanism, however, by which PTPRD renders a tumor suppressor effect in neuroblastoma is unknown. Results As a molecular mechanism, we demonstrate that PTPRD interacts with aurora kinase A (AURKA), an oncogenic protein that is over-expressed in multiple forms of cancer, including neuroblastoma. Ectopic up-regulation of PTPRD in neuroblastoma dephosphorylates tyrosine residues in AURKA resulting in a destabilization of this protein culminating in interfering with one of AURKA\\'s primary functions in neuroblastoma, the stabilization of MYCN protein, the gene of which is amplified in approximately 25 to 30% of high risk neuroblastoma. Conclusions PTPRD has a tumor suppressor function in neuroblastoma through AURKA dephosphorylation and destabilization and a downstream destabilization of MYCN protein, representing a novel mechanism for the function of PTPRD in neuroblastoma.

  14. Tumor-promoting phorbol ester amplifies the inductions of tyrosine aminotransferase and ornithine decarboxylase by glucocorticoid

    International Nuclear Information System (INIS)

    Kido, H.; Fukusen, N.; Katunuma, N.

    1987-01-01

    In adrenalectomized rats, the tumor-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) markedly enhanced the inductions of tyrosine aminotransferase (TAT) and ornithine decarboxylase by glucocorticoids, even with sufficient concentration of glucocorticoids to have a maximal effect, whereas it had no effect on TAT activity and increased ornithine decarboxylase activity only slightly in the absence of glucocorticoids. Phorbol derivatives and components of TPA such as 4β-phorbol, phorbol 12-tetradecanoate, phorbol 13-acetate, and 4-O-methylphorbol 12-tetradecanoate 13-acetate, which have no tumor-promoting activity or ability to activate protein kinase C, did not have any effect on TAT induction by glucocorticoid. TPA enhanced the induction of TAT by various glucocorticoids but had no effect on induction of TAT by glucagon or insulin and did not enhance the induction of glucose-6-phosphate dehydrogenase by 17β-estradiol. These results suggest that TPA specifically enhances the induction of TAT and ornithine decarboxylase by glucocorticoids. Similar effects of TPA on TAT induction by glucocorticoid were observed in primary cultures of adult rat hepatocytes. Another activator of protein kinase C, rac-1,2-dioctanoylglycerol, was also found to have similar effects on the cells

  15. Pharmacogenetics of tyrosine kinase inhibitors in gastrointestinal stromal tumor and chronic myeloid leukemia.

    Science.gov (United States)

    Ravegnini, Gloria; Sammarini, Giulia; Angelini, Sabrina; Hrelia, Patrizia

    2016-07-01

    Gastrointestinal stromal tumors (GIST) and chronic myeloid leukemia (CML) are two tumor types deeply different from each other. Despite the differences, these disorders share treatment with tyrosine kinase inhibitor imatinib. Despite the success of imatinib, the response rates vary among different individuals and pharmacogenetics may play an important role in the final clinical outcome. In this review, the authors provide an overview of the pharmacogenetic literature analyzing the role of polymorphisms in both GIST and CML treatment efficacy and toxicity. So far, several polymorphisms influencing the pharmacokinetic determinants of imatinib have been identified. However, the data are not yet conclusive enough to translate pharmacogenetic tests in clinical practice. In this context, the major obstacles to pharmacogenetic test validation are represented by the small sample size of most studies, ethnicity and population admixture as confounding source, and uncertainty related to genetic variants analyzed. In conclusion, a combination of different theoretical approaches, experimental model systems and statistical methods is clearly needed, in order to appreciate pharmacogenetics applied to clinical practice in the near future.

  16. Preclinical and clinical evaluation of O-[{sup 11}C]methyl-L-tyrosine for tumor imaging by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ishiwata, Kiichi [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0022 (Japan)]. E-mail: ishiwata@pet.tmig.or.jp; Tsukada, Hideo [Central Research Laboratory, Hamamatsu Photonics K.K., Hamakita 434-8601 (Japan); Kubota, Kazuo [Department of Radiology, Division of Nuclear Medicine, International Medical Center of Japan, Shinjuku-ku, Tokyo 162-8655 (Japan); Nariai, Tadashi [Department of Neurosurgery, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519 (Japan); Harada, Norihiro [Department of Radiology, Division of Nuclear Medicine, International Medical Center of Japan, Shinjuku-ku, Tokyo 162-8655 (Japan); Kawamura, Kazunori [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0022 (Japan); SHI Accelerator Service Ltd., Shinagawa-ku, Tokyo 141-8686 (Japan); Kimura, Yuichi [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0022 (Japan); Oda, Keiichi [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0022 (Japan); Iwata, Ren [CYRIC, Tohoku University, Aoba-ku, Sendai 980-8578 (Japan); Ishii, Kenji [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0022 (Japan)

    2005-04-01

    We performed preclinical and clinical studies of O-[{sup 11}C]methyl-L-tyrosine, a potential tracer for imaging amino acid transport of tumors by positron emission tomography (PET). Examinations of the radiation-absorbed dose by O-[{sup 11}C]methyl-L-tyrosine and the acute toxicity and mutagenicity of O-methyl-L-tyrosine showed suitability of the tracer for clinical use. The whole-body imaging of monkeys and healthy humans by PET showed low uptake of O-[{sup 11}C]methyl-L-tyrosine in all normal organs except for the urinary track and bladder, suggesting that the O-[{sup 11}C]methyl-L-tyrosine PET has the potential for tumor imaging in the whole-body. Finally, the brain tumor imaging was preliminarily demonstrated.

  17. Dialkoxyquinazolines: Screening Epidermal Growth Factor ReceptorTyrosine Kinase Inhibitors for Potential Tumor Imaging Probes

    Energy Technology Data Exchange (ETDEWEB)

    VanBrocklin, Henry F.; Lim, John K.; Coffing, Stephanie L.; Hom,Darren L.; Negash, Kitaw; Ono, Michele Y.; Hanrahan, Stephen M.; Taylor,Scott E.; Vanderpoel, Jennifer L.; Slavik, Sarah M.; Morris, Andrew B.; Riese II, David J.

    2005-09-01

    The epidermal growth factor receptor (EGFR), a long-standingdrug development target, is also a desirable target for imaging. Sixteendialkoxyquinazoline analogs, suitable for labeling with positron-emittingisotopes, have been synthesized and evaluated in a battery of in vitroassays to ascertain their chemical and biological properties. Thesecharacteristics provided the basis for the adoption of a selection schemato identify lead molecules for labeling and in vivo evaluation. A newEGFR tyrosine kinase radiometric binding assay revealed that all of thecompounds possessed suitable affinity (IC50 = 0.4 - 51 nM) for the EGFRtyrosine kinase. All of the analogs inhibited ligand-induced EGFRtyrosine phosphorylation (IC50 = 0.8 - 20 nM). The HPLC-estimatedoctanol/water partition coefficients ranged from 2.0-5.5. Four compounds,4-(2'-fluoroanilino)- and 4-(3'-fluoroanilino)-6,7-diethoxyquinazoline aswell as 4-(3'-chloroanilino)- and4-(3'-bromoanilino)-6,7-dimethoxyquinazoline, possess the bestcombination of characteristics that warrant radioisotope labeling andfurther evaluation in tumor-bearing mice.

  18. Levels of active tyrosine kinase receptor determine the tumor response to Zalypsis

    International Nuclear Information System (INIS)

    Moneo, Victoria; Serelde, Beatriz G; Blanco-Aparicio, Carmen; Diaz-Uriarte, Ramon; Avilés, Pablo; Santamaría, Gemma; Tercero, Juan C; Cuevas, Carmen; Carnero, Amancio

    2014-01-01

    Zalypsis® is a marine compound in phase II clinical trials for multiple myeloma, cervical and endometrial cancer, and Ewing’s sarcoma. However, the determinants of the response to Zalypsis are not well known. The identification of biomarkers for Zalypsis activity would also contribute to broaden the spectrum of tumors by selecting those patients more likely to respond to this therapy. Using in vitro drug sensitivity data coupled with a set of molecular data from a panel of sarcoma cell lines, we developed molecular signatures that predict sensitivity to Zalypsis. We verified these results in culture and in vivo xenograft studies. Zalypsis resistance was dependent on the expression levels of PDGFRα or constitutive phosphorylation of c-Kit, indicating that the activation of tyrosine kinase receptors (TKRs) may determine resistance to Zalypsis. To validate our observation, we measured the levels of total and active (phosphorylated) forms of the RTKs PDGFRα/β, c-Kit, and EGFR in a new panel of diverse solid tumor cell lines and found that the IC50 to the drug correlated with RTK activation in this new panel. We further tested our predictions about Zalypsis determinants for response in vivo in xenograft models. All cells lines expressing low levels of RTK signaling were sensitive to Zalypsis in vivo, whereas all cell lines except two with high levels of RTK signaling were resistant to the drug. RTK activation might provide important signals to overcome the cytotoxicity of Zalypsis and should be taken into consideration in current and future clinical trials

  19. Resistance to EGF receptor inhibitors in glioblastoma mediated by phosphorylation of the PTEN tumor suppressor at tyrosine 240.

    Science.gov (United States)

    Fenton, Tim R; Nathanson, David; Ponte de Albuquerque, Claudio; Kuga, Daisuke; Iwanami, Akio; Dang, Julie; Yang, Huijun; Tanaka, Kazuhiro; Oba-Shinjo, Sueli Mieko; Uno, Miyuki; Inda, Maria del Mar; Wykosky, Jill; Bachoo, Robert M; James, C David; DePinho, Ronald A; Vandenberg, Scott R; Zhou, Huilin; Marie, Suely K N; Mischel, Paul S; Cavenee, Webster K; Furnari, Frank B

    2012-08-28

    Glioblastoma multiforme (GBM) is the most aggressive of the astrocytic malignancies and the most common intracranial tumor in adults. Although the epidermal growth factor receptor (EGFR) is overexpressed and/or mutated in at least 50% of GBM cases and is required for tumor maintenance in animal models, EGFR inhibitors have thus far failed to deliver significant responses in GBM patients. One inherent resistance mechanism in GBM is the coactivation of multiple receptor tyrosine kinases, which generates redundancy in activation of phosphoinositide-3'-kinase (PI3K) signaling. Here we demonstrate that the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor is frequently phosphorylated at a conserved tyrosine residue, Y240, in GBM clinical samples. Phosphorylation of Y240 is associated with shortened overall survival and resistance to EGFR inhibitor therapy in GBM patients and plays an active role in mediating resistance to EGFR inhibition in vitro. Y240 phosphorylation can be mediated by both fibroblast growth factor receptors and SRC family kinases (SFKs) but does not affect the ability of PTEN to antagonize PI3K signaling. These findings show that, in addition to genetic loss and mutation of PTEN, its modulation by tyrosine phosphorylation has important implications for the development and treatment of GBM.

  20. Cost-Effectiveness Analysis of Tyrosine Kinase Inhibitors for Patients with Advanced Gastrointestinal Stromal Tumors.

    Science.gov (United States)

    Nerich, Virginie; Fleck, Camille; Chaigneau, Loïc; Isambert, Nicolas; Borg, Christophe; Kalbacher, Elsa; Jary, Marine; Simon, Pauline; Pivot, Xavier; Blay, Jean-Yves; Limat, Samuel

    2017-01-01

    The management of advanced gastrointestinal stromal tumors (GISTs) has been modified considerably by the availability of costly tyrosine kinase inhibitors (TKIs); however, the best therapeutic sequence in terms of cost and effectiveness remains unknown. The aim of this study was to compare four potential strategies (reflecting the potential daily practice), each including imatinib 400 mg/day, as first-line treatment: S1 (imatinib 400 /best supportive care [BSC]); S2 (imatinib 400 /imatinib 800 /BSC); S3 (imatinib 400 /sunitinib/BSC); and S4 (imatinib 400 /imatinib 800 /sunitinib/BSC). A Markov model was developed with a hypothetical cohort of patients and a lifetime horizon. Transition probabilities were estimated from the results of clinical trials. The analysis was performed from the French payer perspective, and only direct medical costs were included. Clinical and economic parameters were discounted, and the robustness of results was assessed. The least costly and effective strategy was S1, at a cost of €65,744 for 32.9 life months (reference). S3 was the most cost-effective strategy, with an incremental cost-effectiveness ratio (ICER) of €48,277/life-year saved (LYS). S2 was dominated, and S4 yielded an ICER of €363,320/LYS compared with S3. Sensitivity analyses confirmed the robustness of these results; however, when taking into account a price reduction of 80 % for imatinib, S2 and S4 become the most cost-effective strategies. Our approach is innovative to the extent that our analysis takes into account the sequential application of TKIs. The results suggest that the S1 strategy is the best cost-effective strategy, but a price reduction of imatinib impacts on the results. This approach must continue, including new drugs and their impact on the quality of life of patients with advanced GISTs.

  1. Regulation of tumor cell migration by protein tyrosine phosphatase (PTP)-proline-, glutamate-, serine-, and threonine-rich sequence (PEST)

    Science.gov (United States)

    Zheng, Yanhua; Lu, Zhimin

    2013-01-01

    Protein tyrosine phosphatase (PTP)–proline-, glutamate-, serine-, and threonine-rich sequence (PEST) is ubiquitously expressed and is a critical regulator of cell adhesion and migration. PTP-PEST activity can be regulated transcriptionally via gene deletion or mutation in several types of human cancers or via post-translational modifications, including phosphorylation, oxidation, and caspase-dependent cleavage. PTP-PEST interacts with and dephosphorylates cytoskeletal and focal adhesion-associated proteins. Dephosphorylation of PTP-PEST substrates regulates their enzymatic activities and/or their interaction with other proteins and plays an essential role in the tumor cell migration process. PMID:23237212

  2. Tumor suppressor function of Bruton tyrosine kinase is independent of its catalytic activity

    NARCIS (Netherlands)

    S. Middendorp; A.J.E. Zijlstra (Esther); R. Kersseboom (Rogier); G.M. Dingjan (Gemma); H. Jumaa; R.W. Hendriks (Rudi)

    2005-01-01

    textabstractDuring B-cell development in the mouse, Bruton tyrosine kinase (Btk) and the adaptor protein SLP-65 (Src homology 2 [SH2] domain-containing leukocyte protein of 65 kDa) limit the expansion and promote the differentiation of pre-B cells. Btk is thought to mainly function

  3. Expression and function of the protein tyrosine phosphatase receptor J (PTPRJ in normal mammary epithelial cells and breast tumors.

    Directory of Open Access Journals (Sweden)

    Chanel E Smart

    Full Text Available The protein tyrosine phosphatase receptor J, PTPRJ, is a tumor suppressor gene that has been implicated in a range of cancers, including breast cancer, yet little is known about its role in normal breast physiology or in mammary gland tumorigenesis. In this paper we show that PTPRJ mRNA is expressed in normal breast tissue and reduced in corresponding tumors. Meta-analysis revealed that the gene encoding PTPRJ is frequently lost in breast tumors and that low expression of the transcript associated with poorer overall survival at 20 years. Immunohistochemistry of PTPRJ protein in normal human breast tissue revealed a distinctive apical localisation in the luminal cells of alveoli and ducts. Qualitative analysis of a cohort of invasive ductal carcinomas revealed retention of normal apical PTPRJ localization where tubule formation was maintained but that tumors mostly exhibited diffuse cytoplasmic staining, indicating that dysregulation of localisation associated with loss of tissue architecture in tumorigenesis. The murine ortholog, Ptprj, exhibited a similar localisation in normal mammary gland, and was differentially regulated throughout lactational development, and in an in vitro model of mammary epithelial differentiation. Furthermore, ectopic expression of human PTPRJ in HC11 murine mammary epithelial cells inhibited dome formation. These data indicate that PTPRJ may regulate differentiation of normal mammary epithelia and that dysregulation of protein localisation may be associated with tumorigenesis.

  4. Therapeutic Targeting of AXL Receptor Tyrosine Kinase Inhibits Tumor Growth and Intraperitoneal Metastasis in Ovarian Cancer Models

    Directory of Open Access Journals (Sweden)

    Pinar Kanlikilicer

    2017-12-01

    Full Text Available Despite substantial improvements in the treatment strategies, ovarian cancer is still the most lethal gynecological malignancy. Identification of drug treatable therapeutic targets and their safe and effective targeting is critical to improve patient survival in ovarian cancer. AXL receptor tyrosine kinase (RTK has been proposed to be an important therapeutic target for metastatic and advanced-stage human ovarian cancer. We found that AXL-RTK expression is associated with significantly shorter patient survival based on the The Cancer Genome Atlas patient database. To target AXL-RTK, we developed a chemically modified serum nuclease-stable AXL aptamer (AXL-APTAMER, and we evaluated its in vitro and in vivo antitumor activity using in vitro assays as well as two intraperitoneal animal models. AXL-aptamer treatment inhibited the phosphorylation and the activity of AXL, impaired the migration and invasion ability of ovarian cancer cells, and led to the inhibition of tumor growth and number of intraperitoneal metastatic nodules, which was associated with the inhibition of AXL activity and angiogenesis in tumors. When combined with paclitaxel, in vivo systemic (intravenous [i.v.] administration of AXL-aptamer treatment markedly enhanced the antitumor efficacy of paclitaxel in mice. Taken together, our data indicate that AXL-aptamers successfully target in vivo AXL-RTK and inhibit its AXL activity and tumor growth and progression, representing a promising strategy for the treatment of ovarian cancer.

  5. Remote-controlled module-assisted synthesis of O-(2-[18F]fluoroethyl)-L-tyrosine as tumor PET tracer using two different radiochemical routes

    International Nuclear Information System (INIS)

    Wang Mingwei; Yin Duanzhi; Zhang Lan; Zhou Wei; Wang Yongxian

    2006-01-01

    The positron-emitter fluorine-18 labeled amino acid O-(2-[ 18 F]fluoroethyl)-L-tyrosine ([ 18 F]FET) has shown very promising perspectives for brain tumor diagnosis with positron emission tomography (PET). There have been two existing preparation routes of [ 18 F]FET named direct nucleophilic radiofiuorination of protected L-tyrosine and radiofiuoroallcylation of unprotected L-tyrosine, respectively. A general module was designed specifically for the routine synthesis of [ 18 F]FET, which could be suitable for the present two chemical methods with simple modifications. The fluorinated intermediates and the final product were separated and purified using solid phase extraction (SPE) on the Sep-Pak silica plus cartridge instead of the time-consuming high performance liquid chromatography (HPLC) procedures. The total synthesis time was about 50-60 rain with good radiochemical yield (about 20-40%, no-decay-corrected) and good radiochemical purity (more than 97%) for both the synthetic methods. (authors)

  6. Comparison of the uptake of [123/125I]-2-iodo-D-tyrosine and [123/125I]-2-iodo-L-tyrosine in R1M rhabdomyosarcoma cells in vitro and in R1M tumor-bearing Wag/Rij rats in vivo

    International Nuclear Information System (INIS)

    Bauwens, Matthias; Lahoutte, Tony; Kersemans, Ken; Gallez, Carol; Bossuyt, Axel; Mertens, John

    2006-01-01

    Introduction: Recently, promising results concerning uptake in vivo in tumors of D-amino acids have been published. Therefore, we decided to evaluate the tumor uptake of the D-analogue of [ 123 I]-2-iodo-L-tyrosine, a tracer recently introduced by our group into clinical trials. The uptake of 2-amino-3-(4-hydroxy-2-[ 123/125 I]iodophenyl)-D-propanoic acid (2-iodo-D-tyrosine) was studied in vitro in LAT1-expressing R1M rat rhabdomyosarcoma cells and in vivo in R1M tumor-bearing Wag/Rij rats. Methods: The uptake of [ 125 I]-2-iodo-L-tyrosine and [ 125 I]-2-iodo-D-tyrosine into R1M cells was determined in appropriate buffers, allowing the study of the involved transport systems. In vivo, the biodistribution in R1M-bearing rats of [ 123 I]-2-iodo-L-tyrosine and [ 123 I]-2-iodo-D-tyrosine was performed by both dynamic and static planar imaging with a gamma camera. Results: In in vitro conditions, the uptake of both [ 125 I]-2-iodo-L-tyrosine and [ 125 I]-2-iodo-D-tyrosine in the HEPES buffer was 25% higher in the presence of Na + ions. In the absence of Na + ions, [ 125 I]-2-iodo-D-tyrosine was taken up reversibly in the R1M cells, with an apparent accumulation, probably for the larger part by the LAT1 system. Dynamic planar imaging showed that the uptake in the tumors of [ 123 I]-2-iodo-D-tyrosine was somewhat lower than that of [ 123 I]-2-iodo-L-tyrosine. At 30 min postinjection, the mean differential uptake ratio values of the L- and D-enantiomers are 2.5±0.7 and 1.7±0.6, respectively. Although the uptake of the D-isomer is lower, probably due to a faster clearance from the blood, the tumor-background ratio is the same as that of the L-analogue. Conclusion: A large part (75%) of [ 125 I]-2-iodo-D-tyrosine in vitro and [ 123 I]-2-iodo-D-tyrosine in vivo is reversibly highly taken up in R1M tumor cells by Na + -independent LAT transport systems, more likely by the LAT1. The clearance from the blood of [ 123 I]-2-iodo-D-tyrosine in the rats is faster than that of the

  7. O-(2-[{sup 18}F]Fluorethyl)-L-tyrosine in the diagnostics of brain tumors; O-(2-[{sup 18}F]Fluorethyl)-L-Tyrosin (FET) in der Diagnostik von Hirntumoren

    Energy Technology Data Exchange (ETDEWEB)

    Langen, K.J.; Stoffels, G. [Forschungszentrum Juelich (Germany). Inst. fuer Neurowissenschaften und Biophysik - Medizin

    2009-06-15

    Positron emission tomography (PET) using radiolabeled amino acids has shown great potential for a more accurate diagnosis of cerebral gliomas. Magnetic resonance imaging (MRI) is the investigation of choice for diagnosing cerebral glioma, but its capacity to differentiate tumor tissue from non-specific tissue changes is limited. ([{sup 18}F] Fluorethyl)-L-tyrosine (FET) is a new tracer for PET that can be produced with high efficiency and distributed on a wide clinical scale like [{sup 18}F]-Fluorodeoxyglucose (FDG). The use of FET PET allows better delineation of tumor margins and improves targeting of biopsy and radiotherapy, and planning surgery. In addition, amino acid imaging appears useful in distinguishing tumor recurrence from non-specific post-therapeutic scar tissue, predicting prognosis in low grade gliomas, and monitoring metabolic response during treatment. (orig.)

  8. Pharmacogenetics of telatinib, a VEGFR-2 and VEGFR-3 tyrosine kinase inhibitor, used in patients with solid tumors

    NARCIS (Netherlands)

    N. Steeghs (Neeltje); A.J. Gelderblom (Hans); J.A.M. Wessels (Judith); F.A.L.M. Eskens (Ferry); N. de Bont (Natasja); J.W. Nortier (Johan); H.J. Guchelaar (Henk Jan)

    2011-01-01

    textabstractSummary: Purpose Telatinib is an orally active small-molecule tyrosine kinase inhibitor of kinase insert domain receptor (KDR; VEGFR-2) and fms-related tyrosine kinase 4 (FLT4; VEGFR-3). This study aims at the identification of relationships between single nucleotide polymorphisms (SNPs)

  9. Impact of adjuvant inhibition of vascular endothelial growth factor receptor tyrosine kinases on tumor growth delay and local tumor control after fractionated irradiation in human squamous cell carcinomas in nude mice

    International Nuclear Information System (INIS)

    Zips, Daniel; Hessel, Franziska; Krause, Mechthild; Schiefer, Yvonne; Hoinkis, Cordelia; Thames, Howard D.; Haberey, Martin; Baumann, Michael

    2005-01-01

    Purpose: Previous experiments have shown that adjuvant inhibition of the vascular endothelial growth factor receptor after fractionated irradiation prolonged tumor growth delay and may also improve local tumor control. To test the latter hypothesis, local tumor control experiments were performed. Methods and materials: Human FaDu and UT-SCC-14 squamous cell carcinomas were studied in nude mice. The vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584 (50 mg/kg body weight b.i.d.) was administered for 75 days after irradiation with 30 fractions within 6 weeks. Tumor growth time and tumor control dose 50% (TCD 50 ) were determined and compared to controls (carrier without PTK787/ZK222584). Results: Adjuvant administration of PTK787/ZK222584 significantly prolonged tumor growth time to reach 5 times the volume at start of drug treatment by an average of 11 days (95% confidence interval 0.06;22) in FaDu tumors and 29 days (0.6;58) in UT-SCC-14 tumors. In both tumor models, TCD 50 values were not statistically significantly different between the groups treated with PTK787/ZK222584 compared to controls. Conclusions: Long-term inhibition of angiogenesis after radiotherapy significantly reduced the growth rate of local recurrences but did not improve local tumor control. This indicates that recurrences after irradiation depend on vascular endothelial growth factor-driven angiogenesis, but surviving tumor cells retain their clonogenic potential during adjuvant antiangiogenic treatment with PTK787/ZK222584

  10. Reproducibility of O-(2-{sup 18}F-fluoroethyl)-L-tyrosine uptake kinetics in brain tumors and influence of corticoid therapy: an experimental study in rat gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Stegmayr, Carina; Schoeneck, Michael; Oliveira, Dennis; Willuweit, Antje [Institute of Neuroscience and Medicine, Research Center Juelich, Juelich (Germany); Filss, Christian; Coenen, Heinz H.; Langen, Karl-Josef [Institute of Neuroscience and Medicine, Research Center Juelich, Juelich (Germany); University of Aachen, Department of Nuclear Medicine and Neurology, Aachen (Germany); Galldiks, Norbert [Institute of Neuroscience and Medicine, Research Center Juelich, Juelich (Germany); University of Cologne, Department of Neurology, Cologne (Germany); Shah, N. Jon [Institute of Neuroscience and Medicine, Research Center Juelich, Juelich (Germany); University of Aachen, Department of Nuclear Medicine and Neurology, Aachen (Germany); Juelich-Aachen Research Alliance (JARA) - Section JARA-Brain, Juelich (Germany)

    2016-06-15

    Positron emission tomography (PET) using O-(2-{sup 18}F-fluoroethyl)-L-tyrosine ({sup 18}F-FET) is a well-established method for the diagnostics of brain tumors. This study investigates reproducibility of {sup 18}F-FET uptake kinetics in rat gliomas and the influence of the frequently used dexamethasone (Dex) therapy. F98 glioma or 9L gliosarcoma cells were implanted into the striatum of 31 Fischer rats. After 10-11 days of tumor growth, the animals underwent dynamic PET after injection of {sup 18}F-FET (baseline). Thereafter, animals were divided into a control group and a group receiving Dex injections, and all animals were reinvestigated 2 days later. Tumor-to-brain ratios (TBR) of {sup 18}F-FET uptake (18-61 min p.i.) and the slope of the time-activity-curves (TAC) (18-61 min p.i.) were evaluated using a Volume-of-Interest (VOI) analysis. Data were analyzed by two-way repeated measures ANOVA and reproducibility by the intraclass correlation coefficient (ICC). The slope of the tumor TACs showed high reproducibility with an ICC of 0.93. A systematic increase of the TBR in the repeated scans was noted (3.7 ± 2.8 %; p < 0.01), and appeared to be related to tumor growth as indicated by a significant correlation of TBR and tumor volume (r = 0.77; p < 0.0001). After correction for tumor growth TBR showed high longitudinal stability with an ICC of 0.84. Dex treatment induced a significant decrease of the TBR (-8.2 ± 6.1 %; p < 0.03), but did not influence the slope of the tumor TAC. TBR of {sup 18}F-FET uptake and tracer kinetics in brain tumors showed high longitudinal stability. Dex therapy may induce a minor decrease of the TBR; this needs further investigation. (orig.)

  11. The usefulness of dynamic O-(2-18F-fluoroethyl)-L-tyrosine PET in the clinical evaluation of brain tumors in children and adolescents

    DEFF Research Database (Denmark)

    Dunkl, Veronika; Cleff, Corvin; Stoffels, Gabriele

    2015-01-01

    UNLABELLED: Experience regarding O-(2-(18)F-fluoroethyl)-L-tyrosine ((18)F-FET) PET in children and adolescents with brain tumors is limited. METHODS: Sixty-nine (18)F-FET PET scans of 48 children and adolescents (median age, 13 y; range, 1-18 y) were analyzed retrospectively. Twenty-six scans...... to assess newly diagnosed cerebral lesions, 24 scans for diagnosing tumor progression or recurrence, 8 scans for monitoring of chemotherapy effects, and 11 scans for the detection of residual tumor after resection were obtained. Maximum and mean tumor-to-brain ratios (TBRs) were determined at 20-40 min...... after injection, and time-activity curves of (18)F-FET uptake were assigned to 3 different patterns: constant increase; peak at greater than 20-40 min after injection, followed by a plateau; and early peak (≤ 20 min), followed by a constant descent. The diagnostic accuracy of (18)F-FET PET was assessed...

  12. Rapid tyrosine phosphorylation of Lck following ligation of the tumor-associated cell surface molecule A6H

    DEFF Research Database (Denmark)

    Labuda, T; Gerwien, J; Ødum, Niels

    1999-01-01

    and the TCR-CD3 complex takes place and which signaling pathway might be involved. Here we show that ligation of the A6H antigen with mAb induces tyrosine phosphorylation of the Lck protein tyrosine kinase (PTK). Co-ligation of the A6H antigen with CD3 resulted in augmented Lck phosphorylation and mitogenesis....... In addition, A6H ligation induced an up-regulation of CD3-mediated phosphorylation of the 23 kDa high mol. wt form of TCR zeta and the zeta-associated protein, ZAP-70. Co-precipitation of Lck and ZAP-70 was only seen in T cells activated by combined A6H and anti-CD3 stimulation. In contrast, another Src...... family PTK, Fyn, was not affected by A6H ligation. In conclusion, we now demonstrate, for the first time, that A6H ligation triggers Lck phosphorylation, and that cross-talk between A6H and the TCR-CD3 complex involves Lck, ZAP-70 and the slow migrating isoform of TCR zeta. These results further suggests...

  13. Significant blockade of multiple receptor tyrosine kinases by MGCD516 (Sitravatinib), a novel small molecule inhibitor, shows potent anti-tumor activity in preclinical models of sarcoma.

    Science.gov (United States)

    Patwardhan, Parag P; Ivy, Kathryn S; Musi, Elgilda; de Stanchina, Elisa; Schwartz, Gary K

    2016-01-26

    Sarcomas are rare but highly aggressive mesenchymal tumors with a median survival of 10-18 months for metastatic disease. Mutation and/or overexpression of many receptor tyrosine kinases (RTKs) including c-Met, PDGFR, c-Kit and IGF1-R drive defective signaling pathways in sarcomas. MGCD516 (Sitravatinib) is a novel small molecule inhibitor targeting multiple RTKs involved in driving sarcoma cell growth. In the present study, we evaluated the efficacy of MGCD516 both in vitro and in mouse xenograft models in vivo. MGCD516 treatment resulted in significant blockade of phosphorylation of potential driver RTKs and induced potent anti-proliferative effects in vitro. Furthermore, MGCD516 treatment of tumor xenografts in vivo resulted in significant suppression of tumor growth. Efficacy of MGCD516 was superior to imatinib and crizotinib, two other well-studied multi-kinase inhibitors with overlapping target specificities, both in vitro and in vivo. This is the first report describing MGCD516 as a potent multi-kinase inhibitor in different models of sarcoma, superior to imatinib and crizotinib. Results from this study showing blockade of multiple driver signaling pathways provides a rationale for further clinical development of MGCD516 for the treatment of patients with soft-tissue sarcoma.

  14. Myeloid-derived suppressor cells express Bruton’s tyrosine kinase and can be depleted in tumor bearing hosts by ibrutinib treatment

    Science.gov (United States)

    Stiff, Andrew; Trikha, Prashant; Wesolowski, Robert; Kendra, Kari; Hsu, Vincent; Uppati, Sarvani; McMichael, Elizabeth; Duggan, Megan; Campbell, Amanda; Keller, Karen; Landi, Ian; Zhong, Yiming; Dubovsky, Jason; Howard, John Harrison; Yu, Lianbo; Harrington, Bonnie; Old, Matthew; Reiff, Sean; Mace, Thomas; Tridandapani, Susheela; Muthusamy, Natarajan; Caligiuri, Michael A.; Byrd, John C.; Carson, William E.

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of immature myeloid cells that expand in tumor bearing hosts in response to soluble factors produced by tumor and stromal cells. MDSC expansion has been linked to loss of immune effector cell function and reduced efficacy of immune-based cancer therapies, highlighting the MDSC population as an attractive therapeutic target. Ibrutinib, an irreversible inhibitor of Bruton’s tyrosine kinase (BTK) and IL2-inducible T-cell kinase (ITK), is in clinical use for the treatment of B cell malignancies. Here, we report that BTK is expressed by murine and human MDSCs, and that ibrutinib is able to inhibit BTK phosphorylation in these cells. Treatment of MDSCs with ibrutinib significantly impaired nitric oxide production and cell migration. In addition, ibrutinib inhibited in vitro generation of human MDSCs and reduced mRNA expression of indolamine 2,3-dioxygenase, an immunosuppressive factor. Treatment of mice bearing EMT6 mammary tumors with ibrutinib resulted in reduced frequency of MDSCs in both the spleen and tumor. Ibrutinib treatment also resulted in a significant reduction of MDSCs in wildtype mice bearing B16F10 melanoma tumors, but not in X-linked immunodeficiency mice (XID) harboring a BTK mutation, suggesting that BTK inhibition plays an important role in the observed reduction of MDSCs in vivo. Finally, ibrutinib significantly enhanced the efficacy of anti-PD-L1 (CD274) therapy in a murine breast cancer model. Together, these results demonstrate that ibrutinib modulates MDSC function and generation, revealing a potential strategy for enhancing immune-based therapies in solid malignancies. PMID:26880800

  15. Myeloid-Derived Suppressor Cells Express Bruton's Tyrosine Kinase and Can Be Depleted in Tumor-Bearing Hosts by Ibrutinib Treatment.

    Science.gov (United States)

    Stiff, Andrew; Trikha, Prashant; Wesolowski, Robert; Kendra, Kari; Hsu, Vincent; Uppati, Sarvani; McMichael, Elizabeth; Duggan, Megan; Campbell, Amanda; Keller, Karen; Landi, Ian; Zhong, Yiming; Dubovsky, Jason; Howard, John Harrison; Yu, Lianbo; Harrington, Bonnie; Old, Matthew; Reiff, Sean; Mace, Thomas; Tridandapani, Susheela; Muthusamy, Natarajan; Caligiuri, Michael A; Byrd, John C; Carson, William E

    2016-04-15

    Myeloid-derived suppressor cells (MDSC) are a heterogeneous group of immature myeloid cells that expand in tumor-bearing hosts in response to soluble factors produced by tumor and stromal cells. MDSC expansion has been linked to loss of immune effector cell function and reduced efficacy of immune-based cancer therapies, highlighting the MDSC population as an attractive therapeutic target. Ibrutinib, an irreversible inhibitor of Bruton's tyrosine kinase (BTK) and IL2-inducible T-cell kinase (ITK), is in clinical use for the treatment of B-cell malignancies. Here, we report that BTK is expressed by murine and human MDSCs, and that ibrutinib is able to inhibit BTK phosphorylation in these cells. Treatment of MDSCs with ibrutinib significantly impaired nitric oxide production and cell migration. In addition, ibrutinib inhibited in vitro generation of human MDSCs and reduced mRNA expression of indolamine 2,3-dioxygenase, an immunosuppressive factor. Treatment of mice bearing EMT6 mammary tumors with ibrutinib resulted in reduced frequency of MDSCs in both the spleen and tumor. Ibrutinib treatment also resulted in a significant reduction of MDSCs in wild-type mice bearing B16F10 melanoma tumors, but not in X-linked immunodeficiency mice (XID) harboring a BTK mutation, suggesting that BTK inhibition plays an important role in the observed reduction of MDSCs in vivo Finally, ibrutinib significantly enhanced the efficacy of anti-PD-L1 (CD274) therapy in a murine breast cancer model. Together, these results demonstrate that ibrutinib modulates MDSC function and generation, revealing a potential strategy for enhancing immune-based therapies in solid malignancies. Cancer Res; 76(8); 2125-36. ©2016 AACR. ©2016 American Association for Cancer Research.

  16. Specific Inhibition of the VEGFR-3 Tyrosine Kinase by SAR131675 Reduces Peripheral and Tumor Associated Immunosuppressive Myeloid Cells

    International Nuclear Information System (INIS)

    Espagnolle, Nicolas; Barron, Pauline; Mandron, Marie; Blanc, Isabelle; Bonnin, Jacques; Agnel, Magali; Kerbelec, Erwan; Herault, Jean Pascal; Savi, Pierre; Bono, Françoise; Alam, Antoine

    2014-01-01

    Myeloid derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) represent prominent components in cancer progression. We previously showed that inhibition of the VEGFR-3 pathway by SAR131675 leads to reduction of TAM infiltration and tumor growth. Here, we found that treatment with SAR131675 prevents the accumulation of immunosuppressive blood and splenic MDSCs which express VEGFR-3, in 4T1 tumor bearing mice. Moreover we showed that soluble factors secreted by tumor cells promote MDSCs proliferation and differentiation into M2 polarized F4/80+ macrophages. In addition, cell sorting and transcriptomic analysis of tumor infiltrating myeloid cells revealed the presence of a heterogeneous population that could be divided into 3 subpopulations: (i) immature cells with a MDSC phenotype (GR1+/CD11b+/F4/80 − ); (ii) “immuno-incompetent” macrophages (F4/80 high /CD86 neg /MHCII Low ) strongly expressing M2 markers such as Legumain, CD206 and Mgl1/2 and (iii) “immuno-competent”-M1 like macrophages (F4/80 Low /CD86 + /MHCII High ). SAR131675 treatment reduced MDSCs in lymphoid organs as well as F4/80 High populations in tumors. Interestingly, in the tumor SAR131675 was able to increase the immunocompetent M1 like population (F4/80 low ). Altogether these results demonstrate that the specific VEGFR-3 inhibitor SAR131675 exerts its anti tumoral activity by acting on different players that orchestrate immunosuppression and cancer progression in a tumoral context: MDSCs in peripheral lymphoid organs and TAMs infiltrating the tumor

  17. Specific Inhibition of the VEGFR-3 Tyrosine Kinase by SAR131675 Reduces Peripheral and Tumor Associated Immunosuppressive Myeloid Cells

    Energy Technology Data Exchange (ETDEWEB)

    Espagnolle, Nicolas [UMR5273 INSERM U1031/CNRS/EFS StromaLab, Toulouse 31432 (France); Barron, Pauline; Mandron, Marie; Blanc, Isabelle; Bonnin, Jacques [Sanofi Recherche et Développement, Early to Candidate DPU, Toulouse 31036 (France); Agnel, Magali; Kerbelec, Erwan [Molecular Biology Unit, Biologics Department, Sanofi, Vitry-sur-Seine 94400 (France); Herault, Jean Pascal; Savi, Pierre; Bono, Françoise; Alam, Antoine, E-mail: antoine.alam@sanofi.com [Sanofi Recherche et Développement, Early to Candidate DPU, Toulouse 31036 (France)

    2014-02-28

    Myeloid derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) represent prominent components in cancer progression. We previously showed that inhibition of the VEGFR-3 pathway by SAR131675 leads to reduction of TAM infiltration and tumor growth. Here, we found that treatment with SAR131675 prevents the accumulation of immunosuppressive blood and splenic MDSCs which express VEGFR-3, in 4T1 tumor bearing mice. Moreover we showed that soluble factors secreted by tumor cells promote MDSCs proliferation and differentiation into M2 polarized F4/80+ macrophages. In addition, cell sorting and transcriptomic analysis of tumor infiltrating myeloid cells revealed the presence of a heterogeneous population that could be divided into 3 subpopulations: (i) immature cells with a MDSC phenotype (GR1+/CD11b+/F4/80{sup −}); (ii) “immuno-incompetent” macrophages (F4/80{sup high}/CD86{sup neg}/MHCII{sup Low}) strongly expressing M2 markers such as Legumain, CD206 and Mgl1/2 and (iii) “immuno-competent”-M1 like macrophages (F4/80{sup Low}/CD86{sup +}/MHCII{sup High}). SAR131675 treatment reduced MDSCs in lymphoid organs as well as F4/80{sup High} populations in tumors. Interestingly, in the tumor SAR131675 was able to increase the immunocompetent M1 like population (F4/80{sup low}). Altogether these results demonstrate that the specific VEGFR-3 inhibitor SAR131675 exerts its anti tumoral activity by acting on different players that orchestrate immunosuppression and cancer progression in a tumoral context: MDSCs in peripheral lymphoid organs and TAMs infiltrating the tumor.

  18. Safety, pharmacokinetics, and antitumor properties of anlotinib, an oral multi-target tyrosine kinase inhibitor, in patients with advanced refractory solid tumors

    Directory of Open Access Journals (Sweden)

    Yongkun Sun

    2016-10-01

    Full Text Available Abstract Background Anlotinib is a novel multi-target tyrosine kinase inhibitor that is designed to primarily inhibit VEGFR2/3, FGFR1-4, PDGFR α/β, c-Kit, and Ret. We aimed to evaluate the safety, pharmacokinetics, and antitumor activity of anlotinib in patients with advanced refractory solid tumors. Methods Anlotinib (5–16 mg was orally administered in patients with solid tumor once a day on two schedules: (1 four consecutive weeks (4/0 or (2 2-week on/1-week off (2/1. Pharmacokinetic sampling was performed in all patients. Twenty-one patients were further enrolled in an expanded cohort study on the recommended dose and schedule. Preliminary tumor response was also assessed. Results On the 4/0 schedule, dose-limiting toxicity (DLT was grade 3 hypertension at 10 mg. On the 2/1 schedule, DLT was grade 3 hypertension and grade 3 fatigue at 16 mg. Pharmacokinetic assessment indicated that anlotinib had long elimination half-lives and significant accumulation during multiple oral doses. The 2/1 schedule was selected, with 12 mg once daily as the maximum tolerated dose for the expanding study. Twenty of the 21 patients (with colon adenocarcinoma, non-small cell lung cancer, renal clear cell cancer, medullary thyroid carcinoma, and soft tissue sarcoma were assessable for antitumor activity of anlotinib: 3 patients had partial response, 14 patients had stable disease including 12 tumor burden shrinkage, and 3 had disease progression. The main serious adverse effects were hypertension, triglyceride elevation, hand-foot skin reaction, and lipase elevation. Conclusions At the dose of 12 mg once daily at the 2/1 schedule, anlotinib displayed manageable toxicity, long circulation, and broad-spectrum antitumor potential, justifying the conduct of further studies.

  19. The receptor tyrosine kinase inhibitor amuvatinib (MP470) sensitizes tumor cells to radio- and chemo-therapies in part by inhibiting homologous recombination

    International Nuclear Information System (INIS)

    Zhao, Helen; Luoto, Kaisa R.; Meng, Alice X.; Bristow, Robert G.

    2011-01-01

    Background and purpose: RAD51 is a key protein involved in homologous recombination (HR) and a potential target for radiation- and chemotherapies. Amuvatinib (formerly known as MP470) is a novel receptor tyrosine kinase inhibitor that targets c-KIT and PDGFRα and can sensitize tumor cells to ionizing radiation (IR). Here, we studied amuvatinib mechanism on RAD51 and functional HR. Materials and methods: Protein and RNA analyses, direct repeat green fluorescent protein (DR-GFP) assay and polysomal fractioning were used to measure HR efficiency and global translation in amuvatinib-treated H1299 lung carcinoma cells. Synergy of amuvatinib with IR or mitomycin c (MMC) was assessed by clonogenic survival assay. Results: Amuvaninib inhibited RAD51 protein expression and HR. This was associated with reduced ribosomal protein S6 phosphorylation and inhibition of global translation. Amuvatinib sensitized cells to IR and MMC, agents that are selectively toxic to HR-deficient cells. Conclusions: Amuvatinib is a promising agent that may be used to decrease tumor cell resistance. Our work suggests that this is associated with decreased RAD51 expression and function and supports the further study of amuvatinib in combination with chemotherapy and radiotherapy.

  20. High-efficiency liposomal encapsulation of a tyrosine kinase inhibitor leads to improved in vivo toxicity and tumor response profile

    Directory of Open Access Journals (Sweden)

    Mukthavaram R

    2013-10-01

    Full Text Available Rajesh Mukthavaram,1 Pengfei Jiang,1 Rohit Saklecha,1 Dmitri Simberg,3,4 Ila Sri Bharati,1 Natsuko Nomura,1 Ying Chao,1 Sandra Pastorino,1 Sandeep C Pingle,1 Valentina Fogal,1 Wolf Wrasidlo,1,2 Milan Makale,1,2 Santosh Kesari1,21Translational Neuro-Oncology Laboratories, 2Department of Neurosciences, 3Solid Tumor Therapeutics Program, Moores Cancer Center, UC San Diego, La Jolla, CA, 4Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Denver, CO, USAAbstract: Staurosporine (STS is a potent pan-kinase inhibitor with marked activity against several chemotherapy-resistant tumor types in vitro. The translational progress of this compound has been hindered by poor pharmacokinetics and toxicity. We sought to determine whether liposomal encapsulation of STS would enhance antitumor efficacy and reduce toxicity, thereby supporting the feasibility of further preclinical development. We developed a novel reverse pH gradient liposomal loading method for STS, with an optimal buffer type and drug-to-lipid ratio. Our approach produced 70% loading efficiency with good retention, and we provide, for the first time, an assessment of the in vivo antitumor activity of STS. A low intravenous dose (0.8 mg/kg inhibited U87 tumors in a murine flank model. Biodistribution showed preferential tumor accumulation, and body weight data, a sensitive index of STS toxicity, was unaffected by liposomal STS, but did decline with the free compound. In vitro experiments revealed that liposomal STS blocked Akt phosphorylation, induced poly(ADP-ribose polymerase cleavage, and produced cell death via apoptosis. This study provides a basis to explore further the feasibility of liposomally encapsulated STS, and potentially related compounds for the management of resistant solid tumors.Keywords: liposomes, staurosporine, glioblastoma, biodistribution, efficacy

  1. Tyrosine phosphorylation of WW proteins

    Science.gov (United States)

    Reuven, Nina; Shanzer, Matan

    2015-01-01

    A number of key regulatory proteins contain one or two copies of the WW domain known to mediate protein–protein interaction via proline-rich motifs, such as PPxY. The Hippo pathway components take advantage of this module to transduce tumor suppressor signaling. It is becoming evident that tyrosine phosphorylation is a critical regulator of the WW proteins. Here, we review the current knowledge on the involved tyrosine kinases and their roles in regulating the WW proteins. PMID:25627656

  2. Clinical efficacy of second-generation tyrosine kinase inhibitors in imatinib-resistant gastrointestinal stromal tumors: a meta-analysis of recent clinical trials

    Directory of Open Access Journals (Sweden)

    Wu L

    2014-10-01

    Full Text Available Lile Wu, Zhongqiang Zhang, Hongliang Yao, Kuijie Liu, Yu Wen, Li Xiong Department of General Surgery, Second Xiangya Hospital of Central South University, Changsha, People's Republic of China Background: Primary and secondary resistance to imatinib, a selective receptor tyrosine kinase inhibitor (TKI, is a serious clinical problem in the control of advanced gastrointestinal stromal tumors (GIST. Here we report on a meta-analysis we performed to evaluate the efficacy of second-generation TKIs in the treatment of patients with imatinib-resistant GIST.Methods: Randomized controlled trials evaluating the clinical efficacy of second-generation TKIs were identified by searching PubMed and EMBASE from 2000 to February 2014. Outcomes subjected to analysis were progression-free survival and overall survival. Statistical analyses were performed using Review Manager version 5.1.0 (Cochrane Collaboration, Oxford, UK. Weighted hazard ratios (HR with 95% confidence intervals (CIs were calculated for the outcomes. Fixed-effects or random-effects models were used, depending on the degree of heterogeneity across the selected studies.Results: Three randomized controlled trials were selected for meta-analysis. Among imatinib-resistant or imatinib-intolerant patients, 541 received second-generation TKIs (sunitinib, nilotinib, or regorafenib and 267 controls received placebo or best supportive care. Progression-free survival was significantly improved in the TKI-treated group (HR 0.38; 95% CI 0.24–0.59; P<0.0001. No statistically significant difference was detected in overall survival between the treatment group and the control group (HR 0.85; 95% CI 0.71–1.03; P=0.09. In the subgroup of patients who were resistant or intolerant to both imatinib and sunitinib, TKI therapy (nilotinib or regorafenib improved progression-free survival (HR 0.40; 95% CI 0.19–0.84; P=0.02 but not overall survival (HR 0.83; 95% CI 0.63–1.08; P=0.17. Regorafenib was shown to be

  3. RESOLUTE PET/MRI Attenuation Correction for O-(2-18F-fluoroethyl-L-tyrosine (FET in Brain Tumor Patients with Metal Implants

    Directory of Open Access Journals (Sweden)

    Claes N. Ladefoged

    2017-08-01

    Full Text Available Aim: Positron emission tomography (PET imaging is a useful tool for assisting in correct differentiation of tumor progression from reactive changes, and the radiolabeled amino acid analog tracer O-(2-18F-fluoroethyl-L-tyrosine (FET-PET is amongst the most frequently used. The FET-PET images need to be quantitatively correct in order to be used clinically, which require accurate attenuation correction (AC in PET/MRI. The aim of this study was to evaluate the use of the subject-specific MR-derived AC method RESOLUTE in post-operative brain tumor patients.Methods: We analyzed 51 post-operative brain tumor patients (68 examinations, 200 MBq [18F]-FET investigated in a PET/MRI scanner. MR-AC maps were acquired using: (1 the Dixon water fat separation sequence, (2 the ultra short echo time (UTE sequences, (3 calculated using our new RESOLUTE methodology, and (4 a same day low-dose CT used as reference “gold standard.” For each subject and each AC method the tumor was delineated by isocontouring tracer uptake above a tumor(T-to-brain background (B activity ratio of 1.6. We measured B, tumor mean and maximal activity (TMEAN, TMAX, biological tumor volume (BTV, and calculated the clinical metrics TMEAN/B and TMAX/B.Results: When using RESOLUTE 5/68 studies did not meet our predefined acceptance criteria of TMAX/B difference to CT-AC < ±0.1 or 5%, TMEAN/B < ±0.05 or 5%, and BTV < ±2 mL or 10%. In total, 46/68 studies failed our acceptance criteria using Dixon, and 26/68 using UTE. The 95% limits of agreement for TMAX/B was for RESOLUTE (−3%; 4%, Dixon (−9%; 16%, and UTE (−7%; 10%. The absolute error when measuring BTV was 0.7 ± 1.9 mL (N.S with RESOLUTE, 5.3 ± 10 mL using Dixon, and 1.7 ± 3.7 mL using UTE. RESOLUTE performed best in the identification of the location of peak activity and in brain tumor follow-up monitoring using clinical FET PET metrics.Conclusions: Overall, we found RESOLUTE to be the AC method that most robustly

  4. Phase I study of icotinib hydrochloride (BPI-2009H), an oral EGFR tyrosine kinase inhibitor, in patients with advanced NSCLC and other solid tumors.

    Science.gov (United States)

    Zhao, Qiong; Shentu, Jianzhong; Xu, Nong; Zhou, Jianya; Yang, Guangdie; Yao, Yinan; Tan, Fenlai; Liu, Dongyang; Wang, Yingxiang; Zhou, Jianying

    2011-08-01

    The goal of this study was to assess the safety and tolerability of icotinib hydrochloride (BPI-2009H), a new selective epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI), and to explore its pharmacokinetics (PK) and clinical activity in patients with advanced solid tumors, mainly those with non-small-cell lung cancer (NSCLC) after the failure of the prior platinum-based chemotherapy. Different doses of oral icotinib were administered once every 8 h (Q8H) for a 28-continuous-day cycle until disease progression and or undue toxicity was observed. PK studies of subjects' blood were performed during cycle one (day 1 through 28). Patients aged ≥18 and ≤70 years with an Eastern Cooperative Oncology Group (ECOG) performance status (PS) of 0-1 and adequate organ functions eligible for the study. Tumor responses were assessed by Response Evaluation Criteria in Solid Tumors (RECIST). K-ras and EGFR mutations in the extracted DNA of fourteen specimens were examined using PCR-based direct sequencing assay. Thirty-six patients were enrolled in the study. PK analysis demonstrated that the mean elimination half-life of icotinib was 6 h, and the T(max) was around 2 h. The steady-state concentration of icotinib administered at a dose of 125 mg once every 8 h (Q8H) was significantly higher than that achieved by a dose of 100mg Q8H. The most frequent treatment-related adverse events (TRAEs) were an acne-like (folliculitis) rash (16/36, 44.4%), diarrhea (8/36, 22.2%) and a decrease in white blood cells (4/36, 11.1%). The maximum-tolerated dose (MTD) was not reached. Among 33 patients with NSCLC, 7 patients exhibited a partial response, 7 showed stable disease at the 24 weeks. Among 14 patients undergoing DNA sequence for K-ras and EGFR mutations, 3 with K-ras mutation presented 2 stable disease (SD) and 1 partial response (PR), 5 with EGFR exon 19 or 21 mutation 2 PR and 3 SD within 4 weeks. Oral icotinib was generally well tolerated, with manageable and

  5. Anti-tumor activity of high-dose EGFR tyrosine kinase inhibitor and sequential docetaxel in wild type EGFR non-small cell lung cancer cell nude mouse xenografts

    OpenAIRE

    Tang, Ning; Zhang, Qianqian; Fang, Shu; Han, Xiao; Wang, Zhehai

    2016-01-01

    Treatment of non-small-cell lung cancer (NSCLC) with wild-type epidermal growth factor receptor (EGFR) is still a challenge. This study explored antitumor activity of high-dose icotinib (an EGFR tyrosine kinase inhibitor) plus sequential docetaxel against wild-type EGFR NSCLC cells-generated nude mouse xenografts. Nude mice were subcutaneously injected with wild-type EGFR NSCLC A549 cells and divided into different groups for 3-week treatment. Tumor xenograft volumes were monitored and record...

  6. Thymidine plaque autoradiography of thymidine kinase-positive and thymidine kinase-negative herpesviruses

    International Nuclear Information System (INIS)

    Tenser, R.B.; Jones, J.C.; Ressel, S.J.; Fralish, F.A.

    1983-01-01

    Plaques formed by herpes simplex virus (HSV), pseudorabies virus, and varicella-zoster virus were studied by plaque autoradiography after [ 14 C]thymidine labeling. Standard thymidine kinase-positive (TK+) viruses and TK- mutants of HSV types 1 and 2 and pseudorabies virus were studied, including cell cultured viruses and viruses isolated from animals. Autoradiography was performed with X-ray film with an exposure time of 5 days. After development of films, TK+ plaques showed dark rims due to isotope incorporation, whereas TK- plaques were minimally labeled. Plaque autoradiography of stock TK- viruses showed reversion frequencies to the TK+ phenotype of less than 10(-3). Autoradiography indicated that TK- virus retained the TK- phenotype after replication in vivo. In addition, it was shown that TK- HSV could be isolated from mouse trigeminal ganglion tissue after corneal inoculation of TK- HSV together with TK+ HSV. The plaque autoradiographic procedure was very useful to evaluate proportions of TK+ and TK- virus present in TK+-TK- virus mixtures

  7. Expression Profiling of Tyrosine Kinase Genes

    National Research Council Canada - National Science Library

    Weier, Heinz

    2000-01-01

    ... of these genes parallels the progression of tumors to a more malignant phenotype. We developed a DNA micro-array based screening system to monitor the level of expression of tyrosine kinase (tk...

  8. NPM-ALK mediates phosphorylation of MSH2 at tyrosine 238, creating a functional deficiency in MSH2 and the loss of mismatch repair

    International Nuclear Information System (INIS)

    Bone, K M; Wang, P; Wu, F; Wu, C; Li, L; Bacani, J T; Andrew, S E; Lai, R

    2015-01-01

    The vast majority of anaplastic lymphoma kinase-positive anaplastic large cell lymphoma (ALK+ALCL) tumors express the characteristic oncogenic fusion protein NPM-ALK, which mediates tumorigenesis by exerting its constitutive tyrosine kinase activity on various substrates. We recently identified MSH2, a protein central to DNA mismatch repair (MMR), as a novel binding partner and phosphorylation substrate of NPM-ALK. Here, using liquid chromatography–mass spectrometry, we report for the first time that MSH2 is phosphorylated by NPM-ALK at a specific residue, tyrosine 238. Using GP293 cells transfected with NPM-ALK, we confirmed that the MSH2 Y238F mutant is not tyrosine phosphorylated. Furthermore, transfection of MSH2 Y238F into these cells substantially decreased the tyrosine phosphorylation of endogenous MSH2. Importantly, gene transfection of MSH2 Y238F abrogated the binding of NPM-ALK with endogenous MSH2, re-established the dimerization of MSH2:MSH6 and restored the sensitivity to DNA mismatch-inducing drugs, indicative of MMR return. Parallel findings were observed in two ALK+ALCL cell lines, Karpas 299 and SUP-M2. In addition, we found that enforced expression of MSH2 Y238F into ALK+ALCL cells alone was sufficient to induce spontaneous apoptosis. In conclusion, our findings have identified NPM-ALK-induced phosphorylation of MSH2 at Y238 as a crucial event in suppressing MMR. Our studies have provided novel insights into the mechanism by which oncogenic tyrosine kinases disrupt MMR

  9. The Value of 5-Aminolevulinic Acid in Low-grade Gliomas and High-grade Gliomas Lacking Glioblastoma Imaging Features: An Analysis Based on Fluorescence, Magnetic Resonance Imaging, 18F-Fluoroethyl Tyrosine Positron Emission Tomography, and Tumor Molecular Factors.

    Science.gov (United States)

    Jaber, Mohammed; Wölfer, Johannes; Ewelt, Christian; Holling, Markus; Hasselblatt, Martin; Niederstadt, Thomas; Zoubi, Tarek; Weckesser, Matthias; Stummer, Walter

    2016-03-01

    Approximately 20% of grade II and most grade III gliomas fluoresce after 5-aminolevulinic acid (5-ALA) application. Conversely, approximately 30% of nonenhancing gliomas are actually high grade. The aim of this study was to identify preoperative factors (ie, age, enhancement, 18F-fluoroethyl tyrosine positron emission tomography [F-FET PET] uptake ratios) for predicting fluorescence in gliomas without typical glioblastomas imaging features and to determine whether fluorescence will allow prediction of tumor grade or molecular characteristics. Patients harboring gliomas without typical glioblastoma imaging features were given 5-ALA. Fluorescence was recorded intraoperatively, and biopsy specimens collected from fluorescing tissue. World Health Organization (WHO) grade, Ki-67/MIB-1 index, IDH1 (R132H) mutation status, O-methylguanine DNA methyltransferase (MGMT) promoter methylation status, and 1p/19q co-deletion status were assessed. Predictive factors for fluorescence were derived from preoperative magnetic resonance imaging and F-FET PET. Classification and regression tree analysis and receiver-operating-characteristic curves were generated for defining predictors. Of 166 tumors, 82 were diagnosed as WHO grade II, 76 as grade III, and 8 as glioblastomas grade IV. Contrast enhancement, tumor volume, and F-FET PET uptake ratio >1.85 predicted fluorescence. Fluorescence correlated with WHO grade (P fluorescing grade III gliomas was higher than in nonfluorescing tumors, whereas in fluorescing and nonfluorescing grade II tumors, no differences were noted. Age, tumor volume, and F-FET PET uptake are factors predicting 5-ALA-induced fluorescence in gliomas without typical glioblastoma imaging features. Fluorescence was associated with an increased Ki-67/MIB-1 index and high-grade pathology. Whether fluorescence in grade II gliomas identifies a subtype with worse prognosis remains to be determined.

  10. Sequence, 'subtle' alternative splicing and expression of the CYYR1 (cysteine/tyrosine-rich 1) mRNA in human neuroendocrine tumors

    International Nuclear Information System (INIS)

    Vitale, Lorenza; Coppola, Domenico; Strippoli, Pierluigi; Frabetti, Flavia; Huntsman, Shane A; Canaider, Silvia; Casadei, Raffaella; Lenzi, Luca; Facchin, Federica; Carinci, Paolo; Zannotti, Maria

    2007-01-01

    CYYR1 is a recently identified gene located on human chromosome 21 whose product has no similarity to any known protein and is of unknown function. Analysis of expressed sequence tags (ESTs) have revealed high human CYYR1 expression in cells belonging to the diffuse neuroendocrine system (DNES). These cells may be the origin of neuroendocrine (NE) tumors. The aim of this study was to conduct an initial analysis of sequence, splicing and expression of the CYYR1 mRNA in human NE tumors. The CYYR1 mRNA coding sequence (CDS) was studied in 32 NE tumors by RT-PCR and sequence analysis. A subtle alternative splicing was identified generating two isoforms of CYYR1 mRNA differing in terms of the absence (CAG - isoform, the first described mRNA for CYYR1 locus) or the presence (CAG + isoform) of a CAG codon. When present, this specific codon determines the presence of an alanine residue, at the exon 3/exon 4 junction of the CYYR1 mRNA. The two mRNA isoform amounts were determined by quantitative relative RT-PCR in 29 NE tumors, 2 non-neuroendocrine tumors and 10 normal tissues. A bioinformatic analysis was performed to search for the existence of the two CYYR1 isoforms in other species. The CYYR1 CDS did not show differences compared to the reference sequence in any of the samples, with the exception of an NE tumor arising in the neck region. Sequence analysis of this tumor identified a change in the CDS 333 position (T instead of C), leading to the amino acid mutation P111S. NE tumor samples showed no significant difference in either CYYR1 CAG - or CAG + isoform expression compared to control tissues. CYYR1 CAG - isoform was significantly more expressed than CAG + isoform in NE tumors as well as in control samples investigated. Bioinformatic analysis revealed that only the genomic sequence of Pan troglodytes CYYR1 is consistent with the possible existence of the two described mRNA isoforms. A new 'subtle' splicing isoform (CAG + ) of CYYR1 mRNA, the sequence and

  11. Evaluation of D-isomers of 4-borono-2-18F-fluoro-phenylalanine and O-11C-methyl-tyrosine as brain tumor imaging agents: a comparative PET study with their L-isomers in rat brain glioma.

    Science.gov (United States)

    Kanazawa, Masakatsu; Nishiyama, Shingo; Hashimoto, Fumio; Kakiuchi, Takeharu; Tsukada, Hideo

    2018-06-13

    The potential of the D-isomerization of 4-borono-2- 18 F-fluoro-phenylalanine ( 18 F-FBPA) to improve its target tumor to non-target normal brain tissue ratio (TBR) was evaluated in rat brain glioma and compared with those of L- and D- 11 C-methyl-tyrosine ( 11 C-CMT). The L- or D-isomer of 18 F-FBPA was injected into rats through the tail vein, and their whole body kinetics and distributions were assessed using the tissue dissection method up to 90 min after the injection. The kinetics of L- and D- 18 F-FBPA or L- and D- 11 C-CMT in the C-6 glioma-inoculated rat brain were measured for 90 or 60 min, respectively, using high-resolution animal PET, and their TBRs were assessed. Tissue dissection analyses showed that D- 18 F-FBPA uptake was significantly lower than that of L- 18 F-FBPA in the brain and abdominal organs, except for the kidney and bladder, reflecting the faster elimination rate of D- 18 F-FBPA than L- 18 F-FBPA from the blood to the urinary tract. PET imaging using 18 F-FBPA revealed that although the brain uptake of D- 18 F-FBPA was significantly lower than that of L- 18 F-FBPA, the TBR of the D-isomer improved to 6.93 from 1.45 for the L-isomer. Similar results were obtained with PET imaging using 11 C-CMT with a smaller improvement in TBR to 1.75 for D- 11 C-CMT from 1.33 for L- 11 C-CMT. The present results indicate that D- 18 F-FBPA is a better brain tumor imaging agent with higher TBR than its original L-isomer and previously reported tyrosine-based PET imaging agents. This improved TBR of D- 18 F-FBPA without any pre-treatments, such as tentative blood-brain barrier disruption using hyperosmotic agents or sonication, suggests that the D-isomerization of BPA results in the more selective accumulation of 10 B in tumor cells that is more effective and less toxic than conventional L-BPA.

  12. Tyrosine Kinase Gene Expression Profiling in Prostate Cancer

    National Research Council Canada - National Science Library

    Weier, Heinz-Ulrich

    2001-01-01

    ... of these genes parallels the progression of tumors to a more malignant phenotype. We developed a DNA micro-array based screening system to monitor the level of expression of tyrosine kinase (tk...

  13. Tyrosine Kinase Gene Expression Profiling in Prostate Cancer

    National Research Council Canada - National Science Library

    Weier, Heinz-Ulrich

    2002-01-01

    ... of these genes parallels the progression of tumors to a more malignant phenotype. We developed a DNA micro-array based screening system to monitor the level of expression of tyrosine kinase (tk...

  14. Anti-tumor activity of high-dose EGFR tyrosine kinase inhibitor and sequential docetaxel in wild type EGFR non-small cell lung cancer cell nude mouse xenografts

    Science.gov (United States)

    Tang, Ning; Zhang, Qianqian; Fang, Shu; Han, Xiao; Wang, Zhehai

    2017-01-01

    Treatment of non-small-cell lung cancer (NSCLC) with wild-type epidermal growth factor receptor (EGFR) is still a challenge. This study explored antitumor activity of high-dose icotinib (an EGFR tyrosine kinase inhibitor) plus sequential docetaxel against wild-type EGFR NSCLC cells-generated nude mouse xenografts. Nude mice were subcutaneously injected with wild-type EGFR NSCLC A549 cells and divided into different groups for 3-week treatment. Tumor xenograft volumes were monitored and recorded, and at the end of experiments, tumor xenografts were removed for Western blot and immunohistochemical analyses. Compared to control groups (negative control, regular-dose icotinib [IcoR], high-dose icotinib [IcoH], and docetaxel [DTX]) and regular icotinib dose (60 mg/kg) with docetaxel, treatment of mice with a high-dose (1200 mg/kg) of icotinib plus sequential docetaxel for 3 weeks (IcoH-DTX) had an additive effect on suppression of tumor xenograft size and volume (P Icotinib-containing treatments markedly reduced phosphorylation of EGFR, mitogen activated protein kinase (MAPK), and protein kinase B (Akt), but only the high-dose icotinib-containing treatments showed an additive effect on CD34 inhibition (P icotinib plus docetaxel had a similar effect on mouse weight loss (a common way to measure adverse reactions in mice), compared to the other treatment combinations. The study indicate that the high dose of icotinib plus sequential docetaxel (IcoH-DTX) have an additive effect on suppressing the growth of wild-type EGFR NSCLC cell nude mouse xenografts, possibly through microvessel density reduction. Future clinical trials are needed to confirm the findings of this study. PMID:27852073

  15. Determination of HER2 phosphorylation at tyrosine 1221/1222 improves prediction of poor survival for breast cancer patients with hormone receptor-positive tumors

    DEFF Research Database (Denmark)

    Frogne, Thomas; Laenkholm, Anne-Vibeke; Lyng, Maria B

    2009-01-01

    INTRODUCTION: High expression of total HER2 protein confers poor prognosis for breast cancer patients. HER2 is a member of the HER family consisting of four receptors, HER1 to HER4. HER receptor activity is regulated by a variety of mechanisms, and phosphorylation of the C-terminal part of the HER...... metastases, by evaluating the expression of phosphorylated HER1, HER2, HER3, Erk, Akt and the total level of HER4 and HER2. METHODS: Immunohistochemical analysis was performed on 268 primary breast tumors and 30 paired metastatic lesions from postmenopausal women with hormone receptor-positive breast tumors...... of Akt and Erk were quite uniformly expressed in the categories; negative, moderate or strong. In univariate analysis, expression of total HER2, pHER1, pHER2 and pHER3 was significantly associated with poor disease-free survival. Strong HER4 expression was associated with prolonged disease-free as well...

  16. Tyrosine kinase inhibitors: Multi-targeted or single-targeted?

    Science.gov (United States)

    Broekman, Fleur; Giovannetti, Elisa; Peters, Godefridus J

    2011-02-10

    Since in most tumors multiple signaling pathways are involved, many of the inhibitors in clinical development are designed to affect a wide range of targeted kinases. The most important tyrosine kinase families in the development of tyrosine kinase inhibitors are the ABL, SCR, platelet derived growth factor, vascular endothelial growth factor receptor and epidermal growth factor receptor families. Both multi-kinase inhibitors and single-kinase inhibitors have advantages and disadvantages, which are related to potential resistance mechanisms, pharmacokinetics, selectivity and tumor environment. In different malignancies various tyrosine kinases are mutated or overexpressed and several resistance mechanisms exist. Pharmacokinetics is influenced by interindividual differences and differs for two single targeted inhibitors or between patients treated by the same tyrosine kinase inhibitor. Different tyrosine kinase inhibitors have various mechanisms to achieve selectivity, while differences in gene expression exist between tumor and stromal cells. Considering these aspects, one type of inhibitor can generally not be preferred above the other, but will depend on the specific genetic constitution of the patient and the tumor, allowing personalized therapy. The most effective way of cancer treatment by using tyrosine kinase inhibitors is to consider each patient/tumor individually and to determine the strategy that specifically targets the consequences of altered (epi)genetics of the tumor. This strategy might result in treatment by a single multi kinase inhibitor for one patient, but in treatment by a couple of single kinase inhibitors for other patients.

  17. Phosphorylation of the Mdm2 oncoprotein by the c-Abl tyrosine kinase regulates p53 tumor suppression and the radiosensitivity of mice.

    Science.gov (United States)

    Carr, Michael I; Roderick, Justine E; Zhang, Hong; Woda, Bruce A; Kelliher, Michelle A; Jones, Stephen N

    2016-12-27

    The p53 tumor suppressor acts as a guardian of the genome by preventing the propagation of DNA damage-induced breaks and mutations to subsequent generations of cells. We have previously shown that phosphorylation of the Mdm2 oncoprotein at Ser394 by the ATM kinase is required for robust p53 stabilization and activation in cells treated with ionizing radiation, and that loss of Mdm2 Ser394 phosphorylation leads to spontaneous tumorigenesis and radioresistance in Mdm2 S394A mice. Previous in vitro data indicate that the c-Abl kinase phosphorylates Mdm2 at the neighboring residue (Tyr393) in response to DNA damage to regulate p53-dependent apoptosis. In this present study, we have generated an Mdm2 mutant mouse (Mdm2 Y393F ) to determine whether c-Abl phosphorylation of Mdm2 regulates the p53-mediated DNA damage response or p53 tumor suppression in vivo. The Mdm2 Y393F mice develop accelerated spontaneous and oncogene-induced tumors, yet display no defects in p53 stabilization and activity following acute genotoxic stress. Although apoptosis is unaltered in these mice, they recover more rapidly from radiation-induced bone marrow ablation and are more resistant to whole-body radiation-induced lethality. These data reveal an in vivo role for c-Abl phosphorylation of Mdm2 in regulation of p53 tumor suppression and bone marrow failure. However, c-Abl phosphorylation of Mdm2 Tyr393 appears to play a lesser role in governing Mdm2-p53 signaling than ATM phosphorylation of Mdm2 Ser394. Furthermore, the effects of these phosphorylation events on p53 regulation are not additive, as Mdm2 Y393F/S394A mice and Mdm2 S394A mice display similar phenotypes.

  18. RESOLUTE PET/MRI Attenuation Correction for O-(2-F-fluoroethyl)-L-tyrosine (FET) in Brain Tumor Patients with Metal Implants

    DEFF Research Database (Denmark)

    Ladefoged, Claes N; Andersen, Flemming L; Kjær, Andreas

    2017-01-01

    of agreement for TMAX/B was for RESOLUTE (-3%; 4%), Dixon (-9%; 16%), and UTE (-7%; 10%). The absolute error when measuring BTV was 0.7 ± 1.9 mL (N.S) with RESOLUTE, 5.3 ± 10 mL using Dixon, and 1.7 ± 3.7 mL using UTE. RESOLUTE performed best in the identification of the location of peak activity and in brain...... to be quantitatively correct in order to be used clinically, which require accurate attenuation correction (AC) in PET/MRI. The aim of this study was to evaluate the use of the subject-specific MR-derived AC method RESOLUTE in post-operative brain tumor patients.Methods:We analyzed 51 post-operative brain tumor...... patients (68 examinations, 200 MBq [18F]-FET) investigated in a PET/MRI scanner. MR-AC maps were acquired using: (1) the Dixon water fat separation sequence, (2) the ultra short echo time (UTE) sequences, (3) calculated using our new RESOLUTE methodology, and (4) a same day low-dose CT used as reference...

  19. A phase I study with neratinib (HKI-272), an irreversible pan ErbB receptor tyrosine kinase inhibitor, in patients with solid tumors.

    Science.gov (United States)

    Wong, Kwok-K; Fracasso, Paula M; Bukowski, Ronald M; Lynch, Thomas J; Munster, Pamela N; Shapiro, Geoffrey I; Jänne, Pasi A; Eder, Joseph P; Naughton, Michael J; Ellis, Matthew J; Jones, Suzanne F; Mekhail, Tarek; Zacharchuk, Charles; Vermette, Jennifer; Abbas, Richat; Quinn, Susan; Powell, Christine; Burris, Howard A

    2009-04-01

    The dose-limiting toxicities, maximum tolerated dose, pharmacokinetic profile, and preliminary antitumor activity of neratinib (HKI-272), an irreversible pan ErbB inhibitor, were determined in patients with advanced solid tumors. Neratinib was administered orally as a single dose, followed by a 1-week observation period, and then once daily continuously. Planned dose escalation was 40, 80, 120, 180, 240, 320, 400, and 500 mg. For pharmacokinetic analysis, timed blood samples were collected after administration of the single dose and after the first 14 days of continuous daily administration. Dose-limiting toxicity was grade 3 diarrhea, which occurred in one patient treated with 180 mg and in four patients treated with 400 mg neratinib; hence, the maximum tolerated dose was determined to be 320 mg. Other common neratinib-related toxicities included nausea, vomiting, fatigue, and anorexia. Exposure to neratinib was dose dependent, and the pharmacokinetic profile of neratinib supports a once-a-day dosing regimen. Partial response was observed for 8 (32%) of the 25 evaluable patients with breast cancer. Stable disease >or=24 weeks was observed in one evaluable breast cancer patient and 6 (43%) of the 14 evaluable non-small cell lung cancer patients. The maximum tolerated dose of once-daily oral neratinib is 320 mg. The most common neratinib-related toxicity was diarrhea. Antitumor activity was observed in patients with breast cancer who had previous treatment with trastuzumab, anthracyclines, and taxanes, and tumors with a baseline ErbB-2 immunohistochemical staining intensity of 2+ or 3+. The antitumor activity, tolerable toxicity profile, and pharmacokinetic properties of neratinib warrant its further evaluation.

  20. Robotic synthesis of L-[1-11C]tyrosine

    International Nuclear Information System (INIS)

    Luurtsema, Gert; Medema, Jitze; Elsinga, P.H.; Visser, G.M.; Vaalburg, Willem

    1994-01-01

    L-[1- 11 C]tyrosine promises to become an important tracer for determination of the protein synthesis rate (PSR) in tumor tissue and brain. The commercially available Anatech RB-86 robotic system is utilized for the automation of the L-[1- 11 C]tyrosine production via the isocyanide method as reported by Bolster et al. (Eur. J. Nucl. Med. 12, 321-324, 1986). The total synthesis time, including HPLC-purification and enantiomeric separation is 60 min. With a practical yield of 20 mCi L-[1- 11 C]tyrosine at a specific activity > 1000 Ci/mmol. (author)

  1. Tyrosine supplementation for phenylketonuria.

    Science.gov (United States)

    Webster, Diana; Wildgoose, Joanne

    2013-06-05

    Phenylketonuria is an inherited disease for which the main treatment is the dietary restriction of the amino acid phenylalanine. The diet has to be initiated in the neonatal period to prevent or reduce mental handicap. However, the diet is very restrictive and unpalatable and can be difficult to follow. A deficiency of the amino acid tyrosine has been suggested as a cause of some of the neuropsychological problems exhibited in phenylketonuria. Therefore, this review aims to assess the efficacy of tyrosine supplementation for phenylketonuria. To assess the effects of tyrosine supplementation alongside or instead of a phenylalanine-restricted diet for people with phenylketonuria, who commenced on diet at diagnosis and either continued on the diet or relaxed the diet later in life. To assess the evidence that tyrosine supplementation alongside, or instead of a phenylalanine-restricted diet improves intelligence, neuropsychological performance, growth and nutritional status, mortality rate and quality of life. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Trials Register which is comprised of references identified from comprehensive electronic database searches, handsearches of relevant journals and abstract books of conference proceedings. Additional studies were identified from handsearches of the Journal of Inherited Metabolic Disease (from inception in 1978 to 1998). The manufacturers of prescribable dietary products used in the treatment of phenylketonuria were also contacted for further references.Date of the most recent search of the Group's Inborn Errors of Metabolism Trials Register: 28 June 2012. All randomised or quasi-randomised trials investigating the use of tyrosine supplementation versus placebo in people with phenylketonuria in addition to, or instead of, a phenylalanine-restricted diet. People treated for maternal phenylketonuria were excluded. Two authors independently assessed the trial eligibility, methodological quality

  2. Exploring oxidative modifications of tyrosine

    DEFF Research Database (Denmark)

    Houée-Lévin, C; Bobrowski, K; Horakova, L

    2015-01-01

    residues are oxidised in vivo with impact on cellular homeostasis and redox signalling pathways. A notable example is tyrosine, which can undergo a number of oxidative post-translational modifications to form 3-hydroxy-tyrosine, tyrosine crosslinks, 3-nitrotyrosine and halogenated tyrosine, with different...... effects on cellular functions. Tyrosine oxidation has been studied extensively in vitro, and this has generated detailed information about the molecular mechanisms that may occur in vivo. An important aspect of studying tyrosine oxidation both in vitro and in biological systems is the ability to monitor...... residues modified and the nature of the modification. These approaches have helped understanding of the consequences of tyrosine oxidation in biological systems, especially its effects on cell signalling and cell dysfunction, linking to roles in disease. There is mounting evidence that tyrosine oxidation...

  3. Stereotactic Radiation Therapy can Safely and Durably Control Sites of Extra-Central Nervous System Oligoprogressive Disease in Anaplastic Lymphoma Kinase-Positive Lung Cancer Patients Receiving Crizotinib

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Gregory N., E-mail: gregory.gan@ucdenver.edu [Department of Radiation Oncology, University of Colorado, Aurora, Colorado (United States); Weickhardt, Andrew J.; Scheier, Benjamin; Doebele, Robert C. [Department of Medical Oncology, University of Colorado, Aurora, Colorado (United States); Gaspar, Laurie E.; Kavanagh, Brian D. [Department of Radiation Oncology, University of Colorado, Aurora, Colorado (United States); Camidge, D. Ross [Department of Medical Oncology, University of Colorado, Aurora, Colorado (United States)

    2014-03-15

    Purpose: To analyze the durability and toxicity of radiotherapeutic local ablative therapy (LAT) applied to extra-central nervous system (eCNS) disease progression in anaplastic lymphoma kinase-positive non-small cell lung cancer (NSCLC) patients. Methods and Materials: Anaplastic lymphoma kinase-positive NSCLC patients receiving crizotinib and manifesting ≤4 discrete sites of eCNS progression were classified as having oligoprogressive disease (OPD). If subsequent progression met OPD criteria, additional courses of LAT were considered. Crizotinib was continued until eCNS progression was beyond OPD criteria or otherwise not suitable for further LAT. Results: Of 38 patients, 33 progressed while taking crizotinib. Of these, 14 had eCNS progression meeting OPD criteria suitable for radiotherapeutic LAT. Patients with eCNS OPD received 1-3 courses of LAT with radiation therapy. The 6- and 12-month actuarial local lesion control rates with radiation therapy were 100% and 86%, respectively. The 12-month local lesion control rate with single-fraction equivalent dose >25 Gy versus ≤25 Gy was 100% versus 60% (P=.01). No acute or late grade >2 radiation therapy-related toxicities were observed. Median overall time taking crizotinib among those treated with LAT versus those who progressed but were not suitable for LAT was 28 versus 10.1 months, respectively. Patients continuing to take crizotinib for >12 months versus ≤12 months had a 2-year overall survival rate of 72% versus 12%, respectively (P<.0001). Conclusions: Local ablative therapy safely and durably eradicated sites of individual lesion progression in anaplastic lymphoma kinase-positive NSCLC patients receiving crizotinib. A dose–response relationship for local lesion control was observed. The suppression of OPD by LAT in patients taking crizotinib allowed an extended duration of exposure to crizotinib, which was associated with longer overall survival.

  4. Putative tyrosine kinases expressed in K-562 human leukemia cells

    International Nuclear Information System (INIS)

    Partanen, J.; Maekelae, T.P.; Lehvaeslaiho, H.; Alitalo, K.; Alitalo, R.

    1990-01-01

    Tyrosine phosphorylation is important in the transmission of growth and differentiation signals; known tyrosine kinases include several oncoproteins and growth factor receptors. Interestingly, some differentiated cell types, such as erythrocytes and platelets contain high amounts of phosphotyrosine. The authors analyzed tyrosine kinases expressed in the K-562 chronic myelogenous leukemia cell line, which has a bipotential erythroid and megakaryoblastoid differentiation capacity. Analysis of 359 polymerase chain reaction-amplified cDNA clones led to the identification of 14 different tyrosine kinase-related sequences (JTK1-14). Two of the clones (JTK2 and JTK4) represent unusual members of the fibroblast growth factor receptor gene family, and the clones JTK5, JTK11, and JTK14 may also belong to the family of receptor tyrosine kinases but lack a close relationship to any known tyrosine kinase. Each of these different genes has its own characteristic expression pattern in K-562 cells and several other human tumor cell lines. In addition, the JTK11 and JTK14 mRNAs are induced during the megakaryoblastoid differentiation of K-562 cells. These tyrosine kinases may have a role in the differentiation of megakaryoblasts or in the physiology of platelets

  5. Correlation of 18F-fluoroethyl tyrosine positron-emission tomography uptake values and histomorphological findings by stereotactic serial biopsy in newly diagnosed brain tumors using a refined software tool

    Directory of Open Access Journals (Sweden)

    Lopez WO

    2015-12-01

    Full Text Available William Omar Contreras Lopez,1,2 Joacir Graciolli Cordeiro,1 Ulrich Albicker,3 Soroush Doostkam,4 Guido Nikkhah,1,5 Robert D Kirch,6 Michael Trippel,1 Thomas Reithmeier1,7 1Department of Stereotactic and Functional Neurosurgery, University Medical Center Freiburg, Freiburg im Breisgau, Germany; 2Division of Functional Neurosurgery, Department of Neurology, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil; 3Inomed, Emmendingen, 4Department of Neuropathology, University Medical Center Freiburg, Freiburg im Breisgau, 5Department of Neurosurgery, University Clinic Erlangen, Erlangen, 6Neuroelectronic Systems, Department of Neurosurgery, University Medical Center Freiburg, Freiburg im Breisgau, 7Department of Neurosurgery, Schwabing Academic Teaching Hospital of Technical University and Ludwig Maximilian University of Munich, Munich, Germany Background: Magnetic resonance imaging (MRI is the standard neuroimaging method to diagnose neoplastic brain lesions, as well as to perform stereotactic biopsy surgical planning. MRI has the advantage of providing structural anatomical details with high sensitivity, though histological specificity is limited. Although combining MRI with other imaging modalities, such as positron-emission tomography (PET, has proven to increment specificity, exact correlation between PET threshold uptake ratios (URs and histological diagnosis and grading has not yet been described.Objectives: The aim of this study was to correlate exactly the histopathological criteria of the biopsy site to its PET uptake value with high spatial resolution (mm3, and to analyze the diagnostic value of PET using the amino acid O-(2-[18F]fluoroethyl-L-tyrosine (18F-FET PET in patients with newly diagnosed brain lesions in comparison to histological findings obtained from stereotactic serial biopsy.Patients and methods: A total of 23 adult patients with newly diagnosed brain tumors on MRI were enrolled in this study

  6. Roles of the tyrosine isomers meta-tyrosine and ortho-tyrosine in oxidative stress.

    Science.gov (United States)

    Ipson, Brett R; Fisher, Alfred L

    2016-05-01

    The damage to cellular components by reactive oxygen species, termed oxidative stress, both increases with age and likely contributes to age-related diseases including Alzheimer's disease, atherosclerosis, diabetes, and cataract formation. In the setting of oxidative stress, hydroxyl radicals can oxidize the benzyl ring of the amino acid phenylalanine, which then produces the abnormal tyrosine isomers meta-tyrosine or ortho-tyrosine. While elevations in m-tyrosine and o-tyrosine concentrations have been used as a biological marker of oxidative stress, there is emerging evidence from bacterial, plant, and mammalian studies demonstrating that these isomers, particularly m-tyrosine, directly produce adverse effects to cells and tissues. These new findings suggest that the abnormal tyrosine isomers could in fact represent mediators of the effects of oxidative stress. Consequently the accumulation of m- and o-tyrosine may disrupt cellular homeostasis and contribute to disease pathogenesis, and as result, effective defenses against oxidative stress can encompass not only the elimination of reactive oxygen species but also the metabolism and ultimately the removal of the abnormal tyrosine isomers from the cellular amino acid pool. Future research in this area is needed to clarify the biologic mechanisms by which the tyrosine isomers damage cells and disrupt the function of tissues and organs and to identify the metabolic pathways involved in removing the accumulated isomers after exposure to oxidative stress. Published by Elsevier B.V.

  7. Gastrointestinal Stromal Tumor: Diagnosis and Prognosis

    International Nuclear Information System (INIS)

    Martin, M. T.; Olmedilla, P.; Gonzalez, S.; Oliver, J. M.

    2003-01-01

    Gastrointestinal stromal tumors (GIST) are mesenquimal tumors derived from cell precursors. They have the capacity for myogenic and neurogenic differentiation and are characterized by expression of KIT protein /tyrosine kinase growth factor). Clinically, they exhibit various biological behaviors. We present 8 cases of GIST, describing both their radiological manifestation through computerized tomography (CT) and most accepted criteria for benignity and malignancy. We also describe the response of one meta statically diagnosed tumor to tyrosine kinase inhibitor. (Author) 9 refs

  8. Tyrosine kinases in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Kobayashi Akiko

    2011-08-01

    Full Text Available Abstract Rheumatoid arthritis (RA is an inflammatory, polyarticular joint disease. A number of cellular responses are involved in the pathogenesis of rheumatoid arthritis, including activation of inflammatory cells and cytokine expression. The cellular responses involved in each of these processes depends on the specific signaling pathways that are activated; many of which include protein tyrosine kinases. These pathways include the mitogen-activated protein kinase pathway, Janus kinases/signal transducers and activators transcription pathway, spleen tyrosine kinase signaling, and the nuclear factor κ-light-chain-enhancer of activated B cells pathway. Many drugs are in development to target tyrosine kinases for the treatment of RA. Based on the number of recently published studies, this manuscript reviews the role of tyrosine kinases in the pathogenesis of RA and the potential role of kinase inhibitors as new therapeutic strategies of RA.

  9. Protein tyrosine phosphatases: regulatory mechanisms.

    NARCIS (Netherlands)

    den Hertog, J.; Ostman, A.; Bohmer, F.D.

    2008-01-01

    Protein-tyrosine phosphatases are tightly controlled by various mechanisms, ranging from differential expression in specific cell types to restricted subcellular localization, limited proteolysis, post-translational modifications affecting intrinsic catalytic activity, ligand binding and

  10. Urokinase receptor expression involves tyrosine phosphorylation of phosphoglycerate kinase.

    Science.gov (United States)

    Shetty, Praveenkumar; Velusamy, Thirunavukkarasu; Bhandary, Yashodhar P; Liu, Ming C; Shetty, Sreerama

    2010-02-01

    The interaction of urokinase-type plasminogen activator (uPA) with its receptor, uPAR, plays a central role in several pathophysiological processes, including cancer. uPA induces its own cell surface receptor expression through stabilization of uPAR mRNA. The mechanism involves binding of a 51 nt uPAR mRNA coding sequence with phosphoglycerate kinase (PGK) to down regulate cell surface uPAR expression. Tyrosine phosphorylation of PGK mediated by uPA treatment enhances uPAR mRNA stabilization. In contrast, inhibition of tyrosine phosphorylation augments PGK binding to uPAR mRNA and attenuates uPA-induced uPAR expression. Mapping the specific peptide region of PGK indicated that its first quarter (amino acids 1-100) interacts with uPAR mRNA. To determine if uPAR expression by uPA is regulated through activation of tyrosine residues of PGK, we mutated the specific tyrosine residue and tested mutant PGK for its ability to interfere with uPAR expression. Inhibition of tyrosine phosphorylation by mutating Y76 residue abolished uPAR expression induced by uPA treatment. These findings collectively demonstrate that Y76 residue present in the first quarter of the PGK molecule is involved in lung epithelial cell surface uPAR expression. This region can effectively mimic the function of a whole PGK molecule in inhibiting tumor cell growth.

  11. Raman scattering tensors of tyrosine.

    Science.gov (United States)

    Tsuboi, M; Ezaki, Y; Aida, M; Suzuki, M; Yimit, A; Ushizawa, K; Ueda, T

    1998-01-01

    Polarized Raman scattering measurements have been made of a single crystal of L-tyrosine by the use of a Raman microscope with the 488.0-nm exciting beam from an argon ion laser. The L-tyrosine crystal belongs to the space group P2(1)2(1)2(1) (orthorhombic), and Raman scattering intensities corresponding to the aa, bb, cc, ab and ac components of the crystal Raman tensor have been determined for each prominent Raman band. A similar set of measurements has been made of L-tyrosine-d4, in which four hydrogen atoms on the benzene ring are replaced by deuterium atoms. The effects of NH3-->ND3 and OH-->OD on the Raman spectrum have also been examined. In addition, depolarization ratios of some bands of L-tyrosine in aqueous solutions of pH 13 and pH 1 were examined. For comparison with these experimental results, on the other hand, ab initio molecular orbital calculations have been made of the normal modes of vibration and their associated polarizability oscillations of the L-tyrosine molecule. On the basis of these experimental data and by referring to the results of the calculations, discussions have been presented on the Raman tensors associated to some Raman bands, including those at 829 cm-1 (benzene ring breathing), 642 cm-1 (benzene ring deformation), and 432 cm-1 (C alpha-C beta-C gamma bending).

  12. GASTROINTESTINAL STROMAL TUMOR (GIST

    Directory of Open Access Journals (Sweden)

    Luigi eTornillo

    2014-11-01

    Full Text Available Gastrointestinal stromal tumors are the most frequent mesenchymal tumors of the gastrointestinal tract. The discovery that these tumors, formerly thought of smooth muscle origin, are indeed better characterized by specific activating mutation in genes coding for the receptor tyrosine kinases CKIT and PDGFRA and that these mutations are strongly predictive for the response to targeted therapy with receptor tyrosine kinase inhibitors has made GISTs the typical example of the integration of basic molecular knowledge in the daily clinical activity. The information on the mutational status of these tumors is essential to predict (and subsequently to plan the therapy. As resistant cases are frequently wild-type, other possible oncogenic events, defining other entities, have been discovered (e.g. succinil dehydrogenase mutation/dysregulation, insuline growth factor expression, mutations in the RAS-RAF-MAPK pathway. The classification of disease must nowadays rely on the integration of the clinico-morphological characteristics with the molecular data.

  13. Gastrointestinal Stromal Tumor: Diagnosis and Prognosis; Tumor estromal gastrointestinal: diagnostico y pronostico

    Energy Technology Data Exchange (ETDEWEB)

    Martin, M. T.; Olmedilla, P.; Gonzalez, S.; Oliver, J. M. [Fundacion Hospital de Alcorcon. Madrid (Spain)

    2003-07-01

    Gastrointestinal stromal tumors (GIST) are mesenquimal tumors derived from cell precursors. They have the capacity for myogenic and neurogenic differentiation and are characterized by expression of KIT protein (tyrosine kinase growth factor). Clinically, they exhibit various biological behaviors. We present 8 cases of GIST, describing both their radiological manifestation through computerized tomography (CT) and most accepted criteria for benignity and malignancy. We also describe the response of one meta statically diagnosed tumor to tyrosine kinase inhibitor. (Author) 9 refs.

  14. 123I-Iodomethyl tyrosine radiochemical synthesis and quantification of residual impurities after SepPak purification

    International Nuclear Information System (INIS)

    Matte, G.; Abrams, D.; Kumar, P.; Mercer, J.

    2002-01-01

    [123-I]-Iodomethyl tyrosine, an analog of tyrosine, is used as a radiopharmaceutical to detect malignant tissue in vivo. Initial synthesis report removal of the starting material using HPLC reversed phase chromatography as well as a simple method using a C18-SepPak cartridge when an HPLC system is not available. Small amounts of residual starting material have not been reported to interfere with tumor uptake following biodistribution in vivo. However, in vitro tissue culture studies do require the final product to be free of un-reacted methyl tyrosine. Our goal was to quantify the amount of residual methyl tyrosine after C18-SepPak purification to confirm that 123 I methyl tyrosine purified in this manner would be suitable tissue culture studies. A preconditioned (rinsed with 2 ml Ethanol and 8 ml PBS) C18-SepPak cartridge is loaded with the 123 I-iodomethyl tyrosine reaction mixture and washed with 8 mL of PBS to remove the un-reacted methyl tyrosine and free 123 I-iodide. The cartridge is then eluted with a 20% alcohol/PBS mixture to recover the 123 I-iodomethyl tyrosine. Paper chromatography confirmed the removal of un-reacted 123 I-iodide. A parallel study with a methyl tyrosine standard was used to confirm the removal of the methyl tyrosine from the SepPak cartridge during the washing with 8 mL of PBS. Fractions were collected and UV absorbance was recorded. A standard curve was prepared using the UV absorbance of serial dilutions of methyl tyrosine. The detection limit was in the order of ng/mL. An elution profile of both 123 I methyl tyrosine and methyl tyrosine was obtained and shows that traces of methyl tyrosine can still be present after an 8 mL PBS wash

  15. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten

    2010-01-01

    in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by tyrosine......Bacteria and Eukarya share essentially the same family of protein-serine/threonine kinases, also known as the Hanks-type kinases. However, when it comes to protein-tyrosine phosphorylation, bacteria seem to have gone their own way. Bacterial protein-tyrosine kinases (BY-kinases) are bacterial...... and highlighted their importance in bacterial physiology. Having no orthologues in Eukarya, BY-kinases are receiving a growing attention from the biomedical field, since they represent a particularly promising target for anti-bacterial drug design....

  16. Radiolytic dimerization of tyrosine in alkaline solutions of poly-L-tyrosine, glycyl-L-tyrosine and tyrosine

    International Nuclear Information System (INIS)

    Boguta, G.; Dancewicz, A.M.

    1982-01-01

    Blue fluorescence characteristic of dityrosine appeared in γ-irradiated solutions of tyrosine, glycyl-L-tyrosine or polytyrosine (MW 110,000). The intensity of fluorescence was used for the determination of the dityrosine concentration in hydrolysed samples. The radiation-induced formation of dityrosine depended on pH and on the presence of oxygen during radiolysis carried out with a total dose of the order of 1000 Gy. The presence of oxygen in the system suppressed the formation of dityrosine in solution at low or neutral pH but had no effect on this process in alkaline solutions. Except for the radiolysis of air-saturated poly-L-tyrosine solutions, where G(Dityrosine) = 0.35, the yields of dityrosine at high pH were lower than the yields obtained during radiolysis at low pH and in the absence of oxygen. (author)

  17. Genetics Home Reference: tyrosine hydroxylase deficiency

    Science.gov (United States)

    ... Email Facebook Twitter Home Health Conditions TH deficiency Tyrosine hydroxylase deficiency Printable PDF Open All Close All ... Javascript to view the expand/collapse boxes. Description Tyrosine hydroxylase (TH) deficiency is a disorder that primarily ...

  18. Cost-effectiveness of ceritinib in patients previously treated with crizotinib in anaplastic lymphoma kinase positive (ALK+) non-small cell lung cancer in Canada.

    Science.gov (United States)

    Hurry, Manjusha; Zhou, Zheng-Yi; Zhang, Jie; Zhang, Chenxue; Fan, Liangyi; Rebeira, Mayvis; Xie, Jipan

    2016-10-01

    To assess the cost-effectiveness of ceritinib vs alternatives in patients who discontinue treatment with crizotinib in anaplastic lymphoma kinase-positive (ALK+) non-small cell lung cancer (NSCLC) from a Canadian public healthcare perspective. A partitioned survival model with three health states (stable, progressive, and death) was developed. Comparators were chosen based on reported utilization from a retrospective Canadian chart study; comparators were pemetrexed, best supportive care (BSC), and historical control (HC). HC comprised of all treatment alternatives reported. Progression-free survival and overall survival for ceritinib were estimated using data reported from single-arm clinical trials (ASCEND-1 [NCT01283516] and ASCEND-2 [NCT01685060]). Survival data for comparators were obtained from published clinical trials in a NSCLC population and from a Canadian retrospective chart study. Parametric models were used to extrapolate outcomes beyond the trial period. Drug acquisition, administration, resource use, and adverse event (AE) costs were obtained from databases. Utilities for health states and disutilities for AEs based on EQ-5D were derived from literature. Incremental costs per quality-adjusted life year (QALY) gained were estimated. Univariate and probabilistic sensitivity analyses were performed. Over 4 years, ceritinib was associated with 0.86 QALYs and total direct costs of $89,740 for the post-ALK population. The incremental cost-effectiveness ratio (ICER) was $149,117 comparing ceritinib vs BSC, $80,100 vs pemetrexed, and $104,436 vs HC. Additional scenarios included comparison to docetaxel with an ICER of $149,780 and using utility scores reported from PROFILE 1007, with a reported ICER ranging from $67,311 vs pemetrexed to $119,926 vs BSC. Due to limitations in clinical efficacy input, extensive sensitivity analyses were carried out whereby results remained consistent with the base-case findings. Based on the willingness-to-pay threshold for

  19. Synthesis of deuterium and tritium labelled tyrosine

    International Nuclear Information System (INIS)

    Kanska, M.; Drabarek, S.

    1980-01-01

    A new method of synthesis of tyrosine labelled with deuterium and tritium in the aromatic ring has been developed. Deuterated and tritiated tyrosine was obtained by isotope exchange between tyrosine and deuterated or tritiated water at elevated temperature in hydrochloric acid medium using K 2 PtCl 4 as a catalyst. For synthesis of tritiated tyrosine 1 Ci HTO was used; the specific activity of the product was 5 mCi/mMol. (author)

  20. Tyrosine phosphorylation in signal transduction

    International Nuclear Information System (INIS)

    Roberts, T.M.; Kaplan, D.; Morgan, W.; Keller, T.; Mamon, H.; Piwnica-Worms, H.; Druker, B.; Whitman, M.; Morrison, D.; Cohen, B.; Schaffhausen, B.; Cantley, L.; Rapp, U.

    1988-01-01

    Recent work has focused on the elucidation of the mechanisms by which membrane-bound tyrosine kinases transmit signals within the cell. To examine the role of tyrosine phosphorylation the authors have employed the following strategy. First, they have utilized antibodies to phosphotyrosine (anti-P.Tyr) to identify candidate substrates of various tyrosine kinases, such as pp60 c-src , the CSF- receptor, or the platelet-derived growth factor (PDGF) receptor. Second, they have attempted to characterize the biochemical properties of the putative substrates and to determine in what manner these properties are modified by phosphorylation on tyrosine residues. In this endeavor, they are recapitulating the classic biochemical analysis used to study the effect of kinases on metabolism. The final portion of our work consists of using modern molecular biological strategies to clone the genes or cDNAs for the substrates and overproduce the relevant proteins for studies in vitro in defined systems. This paper describes the first and second aspects of this strategy, the identification and characterization of novel substrate molecules

  1. Tyrosine phosphorylation in human lymphomas

    NARCIS (Netherlands)

    Haralambieva, E; Jones, M.; Roncador, GM; Cerroni, L; Lamant, L; Ott, G; Rosenwald, A; Sherman, C; Thorner, P; Kusec, R; Wood, KM; Campo, E; Falini, B; Ramsay, A; Marafioti, T; Stein, H; Kluin, PM; Pulford, K; Mason, DY

    2002-01-01

    In a previous study, we showed that the high level of protein tyrosine phosphorylation present in lymphomas containing an anaplastic lymphoma kinase (ALK) can be demonstrated in routinely processed paraffin tissue sections using immunolabelling techniques. In the present study we investigated

  2. 21 CFR 582.5920 - Tyrosine.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Tyrosine. 582.5920 Section 582.5920 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS... § 582.5920 Tyrosine. (a) Product. Tyrosine (L- and DL-forms). (b) Conditions of use. This substance is...

  3. Phase I dose-escalation study of the c-Met tyrosine kinase inhibitor SAR125844 in Asian patients with advanced solid tumors, including patients with MET-amplified gastric cancer

    OpenAIRE

    Shitara, Kohei; Kim, Tae Min; Yokota, Tomoya; Goto, Masahiro; Satoh, Taroh; Ahn, Jin-Hee; Kim, Hyo Song; Assadourian, Sylvie; Gomez, Corinne; Harnois, Marzia; Hamauchi, Satoshi; Kudo, Toshihiro; Doi, Toshihido; Bang, Yung-Jue

    2017-01-01

    SAR125844 is a potent and selective inhibitor of the c-Met kinase receptor. This was an open-label, phase I, multicenter, dose-escalation, and dose-expansion trial of SAR125844 in Asian patients with solid tumors, a subgroup of whom had gastric cancer and MET amplification (NCT01657214). SAR125844 was administered by intravenous infusion (260–570 mg/m2) on days 1, 8, 15, and 22 of each 28-day cycle. Objectives were to determine the maximum tolerated dose (MTD) and to evaluate SAR125844 safety...

  4. Receptor Tyrosine Kinases in Drosophila Development

    Science.gov (United States)

    Sopko, Richelle; Perrimon, Norbert

    2013-01-01

    Tyrosine phosphorylation plays a significant role in a wide range of cellular processes. The Drosophila genome encodes more than 20 receptor tyrosine kinases and extensive studies in the past 20 years have illustrated their diverse roles and complex signaling mechanisms. Although some receptor tyrosine kinases have highly specific functions, others strikingly are used in rather ubiquitous manners. Receptor tyrosine kinases regulate a broad expanse of processes, ranging from cell survival and proliferation to differentiation and patterning. Remarkably, different receptor tyrosine kinases share many of the same effectors and their hierarchical organization is retained in disparate biological contexts. In this comprehensive review, we summarize what is known regarding each receptor tyrosine kinase during Drosophila development. Astonishingly, very little is known for approximately half of all Drosophila receptor tyrosine kinases. PMID:23732470

  5. Crizotinib for Untreated Anaplastic Lymphoma Kinase-Positive Non-Small-Cell Lung Cancer: An Evidence Review Group Perspective of a NICE Single Technology Appraisal.

    Science.gov (United States)

    Morgan, Philip; Woolacott, Nerys; Biswas, Mousumi; Mebrahtu, Teumzghi; Harden, Melissa; Hodgson, Robert

    2017-09-01

    As part of the National Institute for Health and Care Excellence (NICE) single technology appraisal process, the manufacturer of crizotinib submitted evidence on the clinical and cost effectiveness of crizotinib in untreated anaplastic lymphoma kinase-positive (ALK-positive) non-small-cell lung cancer (NSCLC). Crizotinib has previously been assessed by NICE for patients with previously treated ALK-positive NSCLC (TA 296). It was not approved in this previous appraisal, but had been made available through the cancer drugs fund. As part of this new appraisal, the company included a price discount patient access scheme (PAS). The Centre for Reviews and Dissemination and Centre for Health Economics Technology Appraisal Group at the University of York was commissioned to act as the independent Evidence Review Group (ERG). This article provides a description of the company's submission and the ERG's review and summarises the resulting NICE guidance issued in August 2016. The main clinical-effectiveness data were derived from a multicentre randomised controlled trial-PROFILE 1014-that compared crizotinib with pemetrexed chemotherapy in combination with carboplatin or cisplatin in patients with untreated non-squamous ALK-positive NSCLC. In the trial, crizotinib demonstrated improvements in progression-free survival (PFS) and overall survival (OS). The company's economic model was a three-state 'area under the curve' Markov model. The base-case incremental cost-effectiveness ratio (ICER) was estimated to be greater than £50,000 per quality-adjusted life-year (QALY) gained (excluding the PAS discount). The ERG assessment of the evidence submitted by the company raised a number of concerns. In terms of the clinical evidence, the OS benefit was highly uncertain due to the cross-over permitted in the trial and the immaturity of the data; only 26% of events had occurred by the data cut-off point. In the economic modelling, the most significant concerns related to the analysis

  6. PET measurements of hyperthermia-induced suppression of protein synthesis in tumors in relation to effects on tumor growth

    International Nuclear Information System (INIS)

    Daemen, B.J.; Elsinga, P.H.; Mooibroek, J.; Paans, A.M.; Wieringa, A.R.; Konings, A.W.; Vaalburg, W.

    1991-01-01

    Hyperthermia-induced metabolic changes in tumor tissue have been monitored by PET. Uptake of L-[1-11C]tyrosine in rhabdomyosarcoma tissue of Wag/Rij rats was dose-dependently reduced after local hyperthermia treatment at 42, 45, or 47 degrees C. Tumor blood flow, as measured by PET with 13NH3, appeared to be unchanged. The L-[1-11C]tyrosine uptake data were compared to uptake data of L-[1-14C]tyrosine and with data on the incorporation of L-[1-14C]tyrosine into tumor proteins. After intravenous injection, the 14C data were obtained from dissected tumor tissue. Heat-induced inhibition of the incorporation of L-[1-14C]tyrosine into tumor proteins tallied with the L-[1-11C]tyrosine uptake data. Heat-induced inhibition of amino acid uptake in the tumor correlated well with regression of tumor growth. It is concluded that PET using L-[1-11C]tyrosine is eligible for monitoring the effect of hyperthermia on tumor growth

  7. Conformational Clusters of Phosphorylated Tyrosine.

    Science.gov (United States)

    Abdelrasoul, Maha; Ponniah, Komala; Mao, Alice; Warden, Meghan S; Elhefnawy, Wessam; Li, Yaohang; Pascal, Steven M

    2017-12-06

    Tyrosine phosphorylation plays an important role in many cellular and intercellular processes including signal transduction, subcellular localization, and regulation of enzymatic activity. In 1999, Blom et al., using the limited number of protein data bank (PDB) structures available at that time, reported that the side chain structures of phosphorylated tyrosine (pY) are partitioned into two conserved conformational clusters ( Blom, N.; Gammeltoft, S.; Brunak, S. J. Mol. Biol. 1999 , 294 , 1351 - 1362 ). We have used the spectral clustering algorithm to cluster the increasingly growing number of protein structures with pY sites, and have found that the pY residues cluster into three distinct side chain conformations. Two of these pY conformational clusters associate strongly with a narrow range of tyrosine backbone conformation. The novel cluster also highly correlates with the identity of the n + 1 residue, and is strongly associated with a sequential pYpY conformation which places two adjacent pY side chains in a specific relative orientation. Further analysis shows that the three pY clusters are associated with distinct distributions of cognate protein kinases.

  8. Phase I dose-escalation study of the c-Met tyrosine kinase inhibitor SAR125844 in Asian patients with advanced solid tumors, including patients with MET-amplified gastric cancer.

    Science.gov (United States)

    Shitara, Kohei; Kim, Tae Min; Yokota, Tomoya; Goto, Masahiro; Satoh, Taroh; Ahn, Jin-Hee; Kim, Hyo Song; Assadourian, Sylvie; Gomez, Corinne; Harnois, Marzia; Hamauchi, Satoshi; Kudo, Toshihiro; Doi, Toshihido; Bang, Yung-Jue

    2017-10-03

    SAR125844 is a potent and selective inhibitor of the c-Met kinase receptor. This was an open-label, phase I, multicenter, dose-escalation, and dose-expansion trial of SAR125844 in Asian patients with solid tumors, a subgroup of whom had gastric cancer and MET amplification (NCT01657214). SAR125844 was administered by intravenous infusion (260-570 mg/m 2 ) on days 1, 8, 15, and 22 of each 28-day cycle. Objectives were to determine the maximum tolerated dose (MTD) and to evaluate SAR125844 safety and pharmacokinetic profile. Antitumor activity was also assessed. Of 38 patients enrolled (median age 64.0 years), 22 had gastric cancer, including 14 with MET amplification. In the dose-escalation cohort ( N = 19; unselected population, including three patients with MET -amplification [two with gastric cancer and one with lung cancer]), the MTD was not reached, and the recommended dose was established at 570 mg/m 2 . Most frequent treatment-emergent adverse events (AEs) were nausea (36.8%), vomiting (34.2%), decreased appetite (28.9%), and fatigue or asthenia, constipation, and abdominal pains (each 21.1%); none appeared to be dose-dependent. Grade ≥ 3 AEs were observed in 39.5% of patients and considered drug-related in 7.9%. SAR125844 exposure increased slightly more than expected by dose proportionality; dose had no significant effect on clearance. No objective responses were observed in the dose-escalation cohort, with seven patients (three gastric cancer, two colorectal cancer, one breast cancer, and one with cancer of unknown primary origin) having stable disease. Modest antitumor activity was observed at 570 mg/m 2 in the dose-expansion cohort, comprising patients with MET -amplified tumors ( N = 19). Two gastric cancer patients had partial responses, seven patients had stable disease (six gastric cancer and one kidney cancer), and 10 patients had progressive disease. Single-agent SAR125844 administered up to 570 mg/m 2 has acceptable tolerability and modest

  9. Successful oral desensitization against skin rash induced by alectinib in a patient with anaplastic lymphoma kinase-positive lung adenocarcinoma: A case report.

    Science.gov (United States)

    Shirasawa, Masayuki; Kubotaa, Masaru; Harada, Shinya; Niwa, Hideyuki; Kusuhara, Seiichiro; Kasajima, Masashi; Hiyoshi, Yasuhiro; Ishihara, Mikiko; Igawa, Satoshi; Masuda, Noriyuki

    2016-09-01

    Alectinib has been approved for the treatment of patients with anaplastic lymphoma kinase (ALK) gene rearrangement-positive advanced non-small cell lung cancer. In terms of adverse effects, the occurrence of a severe skin rash induced by alectinib is reportedly rare, compared with the occurrence of skin rash induced by epithelial growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). In the present case report, a 76-year-old woman with ALK-positive lung adenocarcinoma experienced disease progression after undergoing first-line chemotherapy. Subsequently, alectinib was administered as a second-line therapy. However, she discontinued alectinib therapy after 11days because of the occurrence of an alectinib-induced skin rash. Since the skin rash improved within one week, we attempted to perform oral desensitization to alectinib. The patient has not shown any recurrence of the rash or disease progression for 7 months since the successful oral desensitization to alectinib. Here, we describe the first case of successful oral desensitization against a skin rash induced by alectinib in a patient with ALK-positive lung adenocarcinoma. Desensitization to overcome adverse effects and to enable sustained treatment with alectinib should be considered in patients who develop alectinib sensitivities. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. The Receptor Tyrosine Kinase AXL in Cancer Progression

    Directory of Open Access Journals (Sweden)

    Erinn B. Rankin

    2016-11-01

    Full Text Available The AXL receptor tyrosine kinase (AXL has emerged as a promising therapeutic target for cancer therapy. Recent studies have revealed a central role of AXL signaling in tumor proliferation, survival, stem cell phenotype, metastasis, and resistance to cancer therapy. Moreover, AXL is expressed within cellular components of the tumor microenvironment where AXL signaling contributes to the immunosuppressive and protumorigenic phenotypes. A variety of AXL inhibitors have been developed and are efficacious in preclinical studies. These agents offer new opportunities for therapeutic intervention in the prevention and treatment of advanced disease. Here we review the literature that has illuminated the cellular and molecular mechanisms by which AXL signaling promotes tumor progression and we will discuss the therapeutic potential of AXL inhibition for cancer therapy.

  11. Loss of SHP-1 tyrosine phosphatase expression correlates with the advanced stages of cutaneous T-cell lymphoma

    DEFF Research Database (Denmark)

    Witkiewicz, Agnieszka; Raghunath, Puthiyaveettil; Wasik, Agnieszka

    2007-01-01

    Cutaneous T-cell lymphoma (CTCL) comprises distinct and often progressive stages of skin involvement by patches, plaques, and tumors. We have previously demonstrated that CTCL-derived malignant T-cell lines display loss of a tumor suppressor SHP-1 tyrosine phosphatase because of epigenetic...

  12. Greater Sensitivity of Blood Pressure Than Renal Toxicity to Tyrosine Kinase Receptor Inhibition With Sunitinib

    DEFF Research Database (Denmark)

    Lankhorst, Stephanie; Baelde, Hans J; Kappers, Mariëtte H W

    2015-01-01

    Hypertension and renal injury are off-target effects of sunitinib, a tyrosine kinase receptor inhibitor used for the treatment of various tumor types. Importantly, these untoward effects are accompanied by activation of the endothelin system. Here, we set up a study to explore the dose dependency...

  13. Dose-dependent effects of oral tyrosine administration on plasma tyrosine levels and cognition in aging

    NARCIS (Netherlands)

    Rest, van de Ondine; Bloemendaal, Mirjam; Heus, De Rianne; Aarts, Esther

    2017-01-01

    The effects of tyrosine on plasma response and cognition in aging are unknown. We assessed the dose-dependent response to tyrosine administration in older adults in both plasma tyrosine concentrations and working memory performance. In this double blind randomized cross-over trial 17 older adults

  14. Dose-Dependent Effects of Oral Tyrosine Administration on Plasma Tyrosine Levels and Cognition in Aging

    NARCIS (Netherlands)

    Rest, O. van de; Bloemendaal, M.; Heus, R.A.A. de; Aarts, E.

    2017-01-01

    The effects of tyrosine on plasma response and cognition in aging are unknown. We assessed the dose-dependent response to tyrosine administration in older adults in both plasma tyrosine concentrations and working memory performance. In this double blind randomized cross-over trial 17 older adults

  15. The mechanism of the tyrosine transporter TyrP supports a proton motive tyrosine decarboxylation pathway in Lactobacillus brevis

    NARCIS (Netherlands)

    Wolken, WAM; Lucas, PM; Lonvaud-Funel, A; Lolkema, JS; Wolken, Wout A.M.; Lucas, Patrick M.

    The tyrosine decarboxylase operon of Lactobacillus brevis IOEB9809 contains, adjacent to the tyrosine decarboxylase gene, a gene for TyrP, a putative tyrosine transporter. The two genes potentially form a proton motive tyrosine decarboxylation pathway. The putative tyrosine transporter gene of L.

  16. Measurement of protein synthesis: in vitro comparison of (68)Ga-DOTA-puromycin, [ (3)H]tyrosine, and 2-fluoro-[ (3)H]tyrosine.

    Science.gov (United States)

    Eigner, Sebastian; Beckford Vera, Denis R; Fellner, Marco; Loktionova, Natalia S; Piel, Markus; Melichar, Frantisek; Rösch, Frank; Roß, Tobias L; Lebeda, Ondrej; Henke, Katerina Eigner

    2013-01-01

    Puromycin has played an important role in our understanding of the eukaryotic ribosome and protein synthesis. It has been known for more than 40 years that this antibiotic is a universal protein synthesis inhibitor that acts as a structural analog of an aminoacyl-transfer RNA (aa-tRNA) in eukaryotic ribosomes. Due to the role of enzymes and their synthesis in situations of need (DNA damage, e.g., after chemo- or radiation therapy), determination of protein synthesis is important for control of antitumor therapy, to enhance long-term survival of tumor patients, and to minimize side-effects of therapy. Multiple attempts to reach this goal have been made through the last decades, mostly using radiolabeled amino acids, with limited or unsatisfactory success. The aim of this study is to estimate the possibility of determining protein synthesis ratios by using (68)Ga-DOTA-puromycin ((68)Ga-DOTA-Pur), [(3)H]tyrosine, and 2-fluoro-[(3)H]tyrosine and to estimate the possibility of different pathways due to the fluorination of tyrosine. DOTA-puromycin was synthesized using a puromycin-tethered controlled-pore glass (CPG) support by the usual protocol for automated DNA and RNA synthesis following our design. (68)Ga was obtained from a (68)Ge/(68)Ga generator as described previously by Zhernosekov et al. (J Nucl Med 48:1741-1748, 2007). The purified eluate was used for labeling of DOTA-puromycin at 95°C for 20 min. [(3)H]Tyrosine and 2-fluoro-[(3)H]tyrosine of the highest purity available were purchased from Moravek (Bera, USA) or Amersham Biosciences (Hammersmith, UK). In vitro uptake and protein incorporation as well as in vitro inhibition experiments using cycloheximide to inhibit protein synthesis were carried out for all three substances in DU145 prostate carcinoma cells (ATCC, USA). (68)Ga-DOTA-Pur was additionally used for μPET imaging of Walker carcinomas and AT1 tumors in rats. Dynamic scans were performed for 45 min after IV application (tail vein) of 20-25 MBq (68

  17. Receptor-type Protein Tyrosine Phosphatase β Regulates Met Phosphorylation and Function in Head and Neck Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Yiru Xu

    2012-11-01

    Full Text Available Head and neck squamous cell carcinoma (HNSCC is the sixth most common cancer and has a high rate of mortality. Emerging evidence indicates that hepatocyte growth factor receptor (or Met pathway plays a pivotal role in HNSCC metastasis and resistance to chemotherapy. Met function is dependent on tyrosine phosphorylation that is under direct control by receptor-type protein tyrosine phosphatase β (RPTP-β. We report here that RPTP-β expression is significantly downregulated in HNSCC cells derived from metastatic tumors compared to subject-matched cells from primary tumors. Knockdown of endogenous RPTP-β in HNSCC cells from primary tumor potentiated Met tyrosine phosphorylation, downstream mitogen-activated protein (MAP kinase pathway activation, cell migration, and invasion. Conversely, restoration of RPTP-β expression in cells from matched metastatic tumor decreased Met tyrosine phosphorylation and downstream functions. Furthermore, we observed that six of eight HNSCC tumors had reduced levels of RPTP-β protein in comparison with normal oral tissues. Collectively, the results demonstrate the importance of RPTP-β in tumor biology of HNSCC through direct dephosphorylation of Met and regulation of downstream signal transduction pathways. Reduced RPTP-β levels, with or without Met overexpression, could promote Met activation in HNSCC tumors.

  18. Role of tyrosine phosphatase inhibitors in cancer treatment with emphasis on SH2 domain-containing tyrosine phosphatases (SHPs)

    NARCIS (Netherlands)

    Irandoust, Mahban; van den Berg, Timo K.; Kaspers, Gertjan J. L.; Cloos, Jacqueline

    2009-01-01

    Protein tyrosine phosphorylation is one of the key mechanisms involved in signal transduction pathways. This modification is regulated by concerted action of protein tyrosine phosphatases and protein tyrosine kinases. Deregulation of either of these key regulators lead to abnormal cellular

  19. Dietary Tyrosine Benefits Cognitive and Psychomotor Performance During Body Cooling

    National Research Council Canada - National Science Library

    O'Brien, Catherine; Mahoney, Caroline; Tharion, William J; Sils, Ingrid V; Castellani, John W

    2007-01-01

    Supplemental tyrosine is effective at limiting cold-induced decreases in working memory, presumably by augmenting brain catecholamine levels, since tyrosine is a precursor for catecholamine synthesis...

  20. TYROSINE KINASE INHIBITORS AND PREGNANCY

    Directory of Open Access Journals (Sweden)

    Elisabetta Abruzzese

    2014-04-01

    Full Text Available The management of patients with chronic myeloid leukemia (CML during pregnancy has became recently a matter of continuous debate.  The introduction of the Tyrosine Kinase Inhibitors (TKIs in clinical practice has dramatically changed the prognosis of CML patients.  Patients diagnosed in chronic phase can reasonably expect many years of excellent disease control and good quality of life, as well as a normal life expectancy.  This fact has come the necessity to address issues relating to fertility and pregnancy. Physicians are not infrequently being asked for advice regarding the need for, and or the appropriateness of, stopping treatment in order to conceive. In this report we will review the data published in terms of fertility, conception, pregnancy, pregnancy outcome and illness control for all the approved TKIs, as well as suggest how to manage a planned and/or unplanned pregnancy.

  1. A Novel Tyrosine Kinase Expressed in Breast Tumors

    National Research Council Canada - National Science Library

    Tyner, Angela

    1999-01-01

    .... Sik interacts with Sam68 through both its SH3 and SH2 domains. Transfected Sik and Sam68 colocalize to the nucleoplasm of nontransformed NMuMG mammary epithelial cells, while the human homologue of Sik (BRK...

  2. Engineering of kinase-based protein interacting devices: active expression of tyrosine kinase domains

    KAUST Repository

    Diaz Galicia, Miriam Escarlet

    2018-05-01

    Protein-protein interactions modulate cellular processes in health and disease. However, tracing weak or rare associations or dissociations of proteins is not a trivial task. Kinases are often regulated through interaction partners and, at the same time, themselves regulate cellular interaction networks. The use of kinase domains for creating a synthetic sensor device that reads low concentration protein-protein interactions and amplifies them to a higher concentration interaction which is then translated into a FRET (Fluorescence Resonance Energy Transfer) signal is here proposed. To this end, DNA constructs for interaction amplification (split kinases), positive controls (intact kinase domains), scaffolding proteins and phosphopeptide - SH2-domain modules for the reading of kinase activity were assembled and expression protocols for fusion proteins containing Lyn, Src, and Fak kinase domains in bacterial and in cell-free systems were optimized. Also, two non-overlapping methods for measuring the kinase activity of these proteins were stablished and, finally, a protein-fragment complementation assay with the split-kinase constructs was tested. In conclusion, it has been demonstrated that features such as codon optimization, vector design and expression conditions have an impact on the expression yield and activity of kinase-based proteins. Furthermore, it has been found that the defined PURE cell-free system is insufficient for the active expression of catalytic kinase domains. In contrast, the bacterial co-expression with phosphatases produced active kinase fusion proteins for two out of the three tested Tyrosine kinase domains.

  3. 21 CFR 862.1730 - Free tyrosine test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Free tyrosine test system. 862.1730 Section 862....1730 Free tyrosine test system. (a) Identification. A free tyrosine test system is a device intended to measure free tyrosine (an amono acid) in serum and urine. Measurements obtained by this device are used in...

  4. Rapid enzymatic analysis of plasma for tyrosine.

    Science.gov (United States)

    Shimizu, H; Taniguchi, K; Sugiyama, M; Kanno, T

    1990-01-01

    In this rapid, simple, and convenient enzymatic method for measurement of tyrosine in plasma, tyrosine is converted to tyramine by action of tyrosine decarboxylase (EC 4.1.1.25) and the tyramine produced is oxidized to p-hydroxybenzyl aldehyde and hydrogen peroxide by action of tyramine oxidase (EC 1.4.3.9). The hydrogen peroxide is reacted with 4-aminoantipyrine and N-ethyl-N-(2-hydroxy-3-sulfopropyl)-m-toluidine in the presence of peroxidase (EC 1.11.1.7) to obtain quinoneimine dye, the absorbance of which is measured at 570 nm. Thus tyrosine is measured in the visible range. The CV was 4.6% or less, and the measurement was unaffected by other amino acids, except for phenylalanine. The values obtained (y) correlated well with those obtained with an amino acid analyzer (x): y = 0.902x + 3.92 mumol/L (Syx = 12.3; r = 0.985; n = 54).

  5. The Tyrosine Aminomutase TAM1 Is Required for β-Tyrosine Biosynthesis in Rice

    Science.gov (United States)

    Yan, Jian; Aboshi, Takako; Teraishi, Masayoshi; Strickler, Susan R.; Spindel, Jennifer E.; Tung, Chih-Wei; Takata, Ryo; Matsumoto, Fuka; Maesaka, Yoshihiro; McCouch, Susan R.; Okumoto, Yutaka; Mori, Naoki; Jander, Georg

    2015-01-01

    Non-protein amino acids, often isomers of the standard 20 protein amino acids, have defense-related functions in many plant species. A targeted search for jasmonate-induced metabolites in cultivated rice (Oryza sativa) identified (R)-β-tyrosine, an isomer of the common amino acid (S)-α-tyrosine in the seeds, leaves, roots, and root exudates of the Nipponbare cultivar. Assays with 119 diverse cultivars showed a distinct presence/absence polymorphism, with β-tyrosine being most prevalent in temperate japonica cultivars. Genetic mapping identified a candidate gene on chromosome 12, which was confirmed to encode a tyrosine aminomutase (TAM1) by transient expression in Nicotiana benthamiana and in vitro enzyme assays. A point mutation in TAM1 eliminated β-tyrosine production in Nipponbare. Rice cultivars that do not produce β-tyrosine have a chromosome 12 deletion that encompasses TAM1. Although β-tyrosine accumulation was induced by the plant defense signaling molecule jasmonic acid, bioassays with hemipteran and lepidopteran herbivores showed no negative effects at physiologically relevant β-tyrosine concentrations. In contrast, root growth of Arabidopsis thaliana and other tested dicot plants was inhibited by concentrations as low as 1 μM. As β-tyrosine is exuded into hydroponic medium at higher concentrations, it may contribute to the allelopathic potential of rice. PMID:25901084

  6. Ror receptor tyrosine kinases: orphans no more

    OpenAIRE

    Green, Jennifer L.; Kuntz, Steven G.; Sternberg, Paul W.

    2008-01-01

    Receptor tyrosine kinase-like orphan receptor (Ror) proteins are a conserved family of tyrosine kinase receptors that function in developmental processes including skeletal and neuronal development, cell movement and cell polarity. Although Ror proteins were originally named because the associated ligand and signaling pathway were unknown, recent studies in multiple species have now established that Ror proteins are Wnt receptors. Depending on the cellular context, Ror proteins can either act...

  7. Protein tyrosine nitration in the cell cycle

    International Nuclear Information System (INIS)

    Jia, Min; Mateoiu, Claudia; Souchelnytskyi, Serhiy

    2011-01-01

    Highlights: → Enrichment of 3-nitrotyrosine containing proteins from cells synchronized in different phases of the cell cycle. → Identification of 76 tyrosine nitrated proteins that change expression during the cell cycle. → Nineteen identified proteins were previously described as regulators of cell proliferation. -- Abstract: Nitration of tyrosine residues in proteins is associated with cell response to oxidative/nitrosative stress. Tyrosine nitration is relatively low abundant post-translational modification that may affect protein functions. Little is known about the extent of protein tyrosine nitration in cells during progression through the cell cycle. Here we report identification of proteins enriched for tyrosine nitration in cells synchronized in G0/G1, S or G2/M phases of the cell cycle. We identified 27 proteins in cells synchronized in G0/G1 phase, 37 proteins in S phase synchronized cells, and 12 proteins related to G2/M phase. Nineteen of the identified proteins were previously described as regulators of cell proliferation. Thus, our data indicate which tyrosine nitrated proteins may affect regulation of the cell cycle.

  8. Functionalization of protected tyrosine via Sonogashira reaction: synthesis of 3-(1,2,3-triazolyl)-tyrosine.

    Science.gov (United States)

    Vasconcelos, Stanley N S; Shamim, Anwar; Ali, Bakhat; de Oliveira, Isadora M; Stefani, Hélio A

    2016-05-01

    1,2,3-Triazol tyrosines were synthesized from tyrosine alkynes that were in turn prepared via Sonogashira cross-coupling reaction. The tyrosine alkynes were subjected to click-chemistry reaction conditions leading to the corresponding 3-(1,2,3-triazolyl)-tyrosines in yields ranging from moderate to good.

  9. Tyrosine-sensitized photodimerization of thymine in aqueous solution

    International Nuclear Information System (INIS)

    Kaneko, M.; Matsuyama, A.; Nagata, C.

    1978-01-01

    Photodimerization of thymine in aqueous solution in the presence of tyrosine was studied with monochromatic UV irradiation. The total dimer formation was sensitized in the presence of tyrosine. The action spectrum of sensitized total dimer formation has a peak near 280 nm corresponding to the absorption maximum of tyrosine. Triplet quenchers reduced the sensitization substantially. It seems probable that tyrosine-sensitized photodimerization of thymine occurred via triplet-triplet energy transfer from tyrosine to thymine. (author)

  10. A novel spleen tyrosine kinase inhibitor blocks c-Jun N-terminal kinase-mediated gene expression in synoviocytes

    NARCIS (Netherlands)

    Cha, Hoon-Suk; Boyle, David L.; Inoue, Tomoyuki; Schoot, Reineke; Tak, Paul P.; Pine, Polly; Firestein, Gary S.

    2006-01-01

    Spleen tyrosine kinase (Syk) is a key regulator of cell signaling induced by cytokines or Fc receptor engagement. However, the role of Syk in rheumatoid arthritis (RA) is not known yet. We investigated the pathways activated by Syk in tumor necrosis factor-alpha (TNFalpha)-stimulated fibroblast-like

  11. Standardized uptake value and quantification of metabolism for breast cancer imaging with FDG and L-[1-C-11]tyrosine PET

    NARCIS (Netherlands)

    Kole, AC; Nieweg, OE; Pruim, J; Paans, AMJ; Plukker, JTM; Hoekstra, HJ; Vaalburg, W; Schraffordt Koops, H.

    The aims of the study were to compare the value of L-[1-C-11]tyrosine (TYR) and [F-18]fluoro-2-deoxy-D-glucose (FDG) as tumor tracers in patients with breast cancer, to investigate the correlation between quantitative values and standardized uptake values (SUVs) and to estimate the value of SUVs for

  12.   A rationally designed tyrosine hydroxylase DNA vaccine induces specific antineuroblastoma immunity

    DEFF Research Database (Denmark)

    Huebener, Nicole; Fest, Stefan; Strandsby, Anne Bystrup

    2008-01-01

    Therapeutic vaccination against tumor antigens without induction of autoimmunity remains a major challenge in cancer immunotherapy. Here, we show for the first time effective therapeutic vaccination followed by suppression of established spontaneous neuroblastoma metastases using a tyrosine...... show effective therapeutic vaccination against neuroblastoma with a novel rationally designed TH minigene vaccine without induction of autoimmunity providing an important baseline for future clinical application of this strategy....

  13. Tyrosine kinase receptor status in endometrial stromal sarcoma: an immunohistochemical and genetic-molecular analysis.

    Science.gov (United States)

    Cossu-Rocca, Paolo; Contini, Marcella; Uras, Maria Gabriela; Muroni, Maria Rosaria; Pili, Francesca; Carru, Ciriaco; Bosincu, Luisanna; Massarelli, Giovannino; Nogales, Francisco F; De Miglio, Maria Rosaria

    2012-11-01

    Endometrial stromal sarcomas (ESS) are rare uterine malignant mesenchymal neoplasms, which are currently treated by surgery, as effective adjuvant therapies have not yet been established. Tyrosine kinase inhibitors have rarely been applied in ESS therapy, with few reports describing imatinib responsivity. The aim of this study was to analyze the status of different tyrosine kinase receptors in an ESS series, in order to evaluate their potential role as molecular targets. Immunohistochemistry was performed for EGFR, c-KIT, PDGFR-α, PDGFR-β, and ABL on 28 ESS. EGFR, PDGFR-α, and PDGFR-β gene expression was investigated by real-time polymerase chain reaction (qRT-PCR) on selected cases. "Hot-spot" mutations were screened for on EGFR, c-KIT, PDGFR-α, and PDGFR-β genes, by sequencing. All analysis was executed from formalin-fixed, paraffin-embedded specimens. Immunohistochemical overexpression of 2 or more tyrosine kinase receptors was observed in 18 of 28 tumors (64%), whereas only 5 tumors were consistently negative. Gene expression profiles were concordant with immunohistochemical overexpression in only 1 tumor, which displayed both high mRNA levels and specific immunoreactivity for PDGFR-α, and PDGFR-β. No activating mutations were found on the tumors included in the study. This study confirms that TKRs expression is frequently observed in ESS. Considering that the responsiveness to tyrosine kinase inhibitors is known to be related to the presence of specific activating mutations or gene over-expression, which are not detectable in ESS, TKRs immunohistochemical over-expression alone should not be considered as a reliable marker for targeted therapies in ESS. Specific post-translational abnormalities, responsible for activation of TKRs, should be further investigated.

  14. Characterizing tyrosine phosphorylation signaling in lung cancer using SH2 profiling.

    Directory of Open Access Journals (Sweden)

    Kazuya Machida

    2010-10-01

    Full Text Available Tyrosine kinases drive the proliferation and survival of many human cancers. Thus profiling the global state of tyrosine phosphorylation of a tumor is likely to provide a wealth of information that can be used to classify tumors for prognosis and prediction. However, the comprehensive analysis of tyrosine phosphorylation of large numbers of human cancer specimens is technically challenging using current methods.We used a phosphoproteomic method termed SH2 profiling to characterize the global state of phosphotyrosine (pTyr signaling in human lung cancer cell lines. This method quantifies the phosphorylated binding sites for SH2 domains, which are used by cells to respond to changes in pTyr during signaling. Cells could be grouped based on SH2 binding patterns, with some clusters correlated with EGF receptor (EGFR or K-RAS mutation status. Binding of specific SH2 domains, most prominently RAS pathway activators Grb2 and ShcA, correlated with EGFR mutation and sensitivity to the EGFR inhibitor erlotinib. SH2 binding patterns also reflected MET activation and could identify cells driven by multiple kinases. The pTyr responses of cells treated with kinase inhibitors provided evidence of distinct mechanisms of inhibition.This study illustrates the potential of modular protein domains and their proteomic binding profiles as powerful molecular diagnostic tools for tumor classification and biomarker identification.

  15. HD-PTP is a catalytically inactive tyrosine phosphatase due to a conserved divergence in its phosphatase domain.

    Directory of Open Access Journals (Sweden)

    Marie-Claude Gingras

    Full Text Available The HD-PTP protein has been described as a tumor suppressor candidate and based on its amino acid sequence, categorized as a classical non-transmembrane protein tyrosine phosphatase (PTP. To date, no HD-PTP phosphorylated substrate has been identified and controversial results concerning its catalytic activity have been recently reported.Here we report a rigorous enzymatic analysis demonstrating that the HD-PTP protein does not harbor tyrosine phosphatase or lipid phosphatase activity using the highly sensitive DiFMUP substrate and a panel of different phosphatidylinositol phosphates. We found that HD-PTP tyrosine phosphatase inactivity is caused by an evolutionary conserved amino acid divergence of a key residue located in the HD-PTP phosphatase domain since its back mutation is sufficient to restore the HD-PTP tyrosine phosphatase activity. Moreover, in agreement with a tumor suppressor activity, HD-PTP expression leads to colony growth reduction in human cancer cell lines, independently of its catalytic PTP activity status.In summary, we demonstrate that HD-PTP is a catalytically inactive protein tyrosine phosphatase. As such, we identify one residue involved in its inactivation and show that its colony growth reduction activity is independent of its PTP activity status in human cancer cell lines.

  16. Tyrosine and carboxyl protonation changes in the bacteriorhodopsin photocycle. 2. Tyrosine-26 and -64

    International Nuclear Information System (INIS)

    Roepe, P.; Scherrer, P.; Ahl, P.L.; Gupta, S.K.D.; Bogomolni, R.A.; Herzfeld, J.; Rothschild, K.J.

    1987-01-01

    Low-temperature Fourier transform infrared (FTIR) and UV difference spectroscopies combined with selective tyrosine nitration and tyrosine isotopic labeling have been used to investigate the participation of tyrosines-26 and -64 in the bacteriorhodopsin (bR) photocycle. Nitration of Tyr-26 has no detectable effect on the FTIR or UV difference spectra of the BR 570 → K 630 or BR 570 → M 412 transitions. In contrast, nitration of Tyr-64 causes changes in both the FTIR and UV spectra of these transitions. However, this nitration does not alter tyrosine peaks in the FTIR difference spectra which have previously been associated with the protonation of a tyrosinate by K 630 and the deprotonation of a tyrosine by M 412 . Instead, Tyr-64 nitration appears to affect other tyrosine peaks. These results and changes in UV difference spectra upon Tyr-64 nitration are consistent with the deprotonation of Tyr-64 by M 412 as concluded previously. Effects on chromophore vibrations caused by Tyr-64 nitration are unaltered upon reducing the nitrotyrosine to aminotyrosine with sodium dithionite. Finally, nitro-Tyr-64 causes a shift in the frequency of a positive peak at 1739 cm -1 in the BR 570 → M 412 FTIR difference spectrum which reflects the protonation of a carboxyl-containing residue. The shift does not occur for samples containing amino-Tyr-64. These data suggest that Tyr-64 may interact with this carboxyl group

  17. Chlorinated tyrosine derivatives in insect cuticle

    DEFF Research Database (Denmark)

    Andersen, Svend Olav

    2004-01-01

    A method for quantitative measurement of 3-monochlorotyrosine and 3,5-dichlorotyrosine in insect cuticles is described, and it is used for determination of their distribution in various cuticular regions in nymphs and adults of the desert locust, Schistocerca gregaria. The two chlorinated tyrosine......, not-yet sclerotized cuticle of adult femur and tibia, the amounts increased rapidly during the first 24 h after ecdysis and more slowly during the next two weeks. Control analyses using stable isotope dilution mass spectrometry have confirmed that the chlorinated tyrosines are not artifacts formed...

  18. Protein-Tyrosine Phosphorylation in Bacillus subtilis

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Bottini, N.

    2005-01-01

    phosphorylation, indicating that this post-translational modifi cation could regulate physiological processes ranging from stress response and exopolysaccharide synthesis to DNA metabolism. Some interesting work in this fi eld was done in Bacillus subtilis , and we here present the current state of knowledge...... on protein-tyrosine phosphorylation in this gram-positive model organism. With its two kinases, two kinase modulators, three phosphatases and at least four different tyrosine-phosphorylated substrates, B. subtilis is the bacterium with the highest number of presently known participants in the global network...

  19. Bone tumor

    Science.gov (United States)

    Tumor - bone; Bone cancer; Primary bone tumor; Secondary bone tumor; Bone tumor - benign ... The cause of bone tumors is unknown. They often occur in areas of the bone that grow rapidly. Possible causes include: Genetic defects ...

  20. Phenylketonuria : tyrosine supplementation in phenylalanine-restricted diets

    NARCIS (Netherlands)

    van Spronsen, FJ; van Rijn, M; Bekhof, J; Koch, R; Smit, PGA

    Treatment of phenylketonuria (PKU) consists of restriction of natural protein and provision of a protein substitute that lacks phenylalanine but is enriched in tyrosine. Large and unexplained differences exist, however, in the tyrosine enrichment of the protein substitutes. Furthermore, some

  1. Receptor tyrosine kinase signaling: a view from quantitative proteomics

    DEFF Research Database (Denmark)

    Dengjel, Joern; Kratchmarova, Irina; Blagoev, Blagoy

    2009-01-01

    Growth factor receptor signaling via receptor tyrosine kinases (RTKs) is one of the basic cellular communication principals found in all metazoans. Extracellular signals are transferred via membrane spanning receptors into the cytoplasm, reversible tyrosine phosphorylation being the hallmark of all...

  2. Evolution: Weevils Get Tough on Symbiotic Tyrosine.

    Science.gov (United States)

    Dale, Colin

    2017-12-04

    Weevils, which represent one of the most diverse groups of terrestrial insects in nature, obtain a tough exoskeleton through the activity of an ancient bacterial symbiont with a tiny genome that serves as a factory for the production of tyrosine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Morphological Features of Tyrosine Hydroxylase Immunoreactive ...

    African Journals Online (AJOL)

    The current immunohistochemical study used the antibody against tyrosine hydroxylase (TH) to observe the immunoreactive elements in the mouse pancreas. The results indicated the presence of immunoreactive nerve fibers and endocrine cells. The immunopositive nerve fibers appeared as thick and thin bundles; thick ...

  4. Enzyme kinetic characterization of protein tyrosine phosphatases

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Branner, S.; Møller, K. B.

    2003-01-01

    Protein tyrosine phosphatases (PTPs) play a central role in cellular signaling processes, resulting in an increased interest in modulating the activities of PTPs. We therefore decided to undertake a detailed enzyme kinetic evaluation of various transmembrane and cytosolic PTPs (PTPalpha, PTPbeta...

  5. [Development and Application of Catalytic Tyrosine Modification].

    Science.gov (United States)

    Sato, Shinichi; Tsushima, Michihiko; Nakamura, Kosuke; Nakamura, Hiroyuki

    2018-01-01

     The chemical labeling of proteins with synthetic probes is a key technique used in chemical biology, protein-based therapy, and material science. Much of the chemical labeling of native proteins, however, depends on the labeling of lysine and cysteine residues. While those methods have significantly contributed to native protein labeling, alternative methods that can modify different amino acid residues are still required. Herein we report the development of a novel methodology of tyrosine labeling, inspired by the luminol chemiluminescence reaction. Tyrosine residues are often exposed on a protein's surface and are thus expected to be good targets for protein functionalization. In our studies so far, we have found that 1) hemin oxidatively activates luminol derivatives as a catalyst, 2) N-methyl luminol derivative specifically forms a covalent bond with a tyrosine residue among the 20 kinds of natural amino acid residues, and 3) the efficiency of tyrosine labeling with N-methyl luminol derivative is markedly improved by using horseradish peroxidase (HRP) as a catalyst. We were able to use molecular oxygen as an oxidant under HRP/NADH conditions. By using these methods, the functionalization of purified proteins was carried out. Because N-methyl luminol derivative is an excellent protein labeling reagent that responds to the activation of peroxidase, this new method is expected to open doors to such biological applications as the signal amplification of HRP-conjugated antibodies and the detection of protein association in combination with peroxidase-tag technology.

  6. Phenylketonuria : Tyrosine beyond the phenylalanine-restricted diet

    NARCIS (Netherlands)

    van Spronsen, FJ; Smit, PGA; Koch, R

    Controversies exist on the role of tyrosine in the pathogenesis of phenylketonuria (PKU) and, consequently, on the therapeutic role of tyrosine. This review examines data and theoretical considerations on the role of tyrosine in the pathogenesis and treatment of PKU. It is concluded that treatment

  7. Tumor Suppressor Activity of the EphB2 Receptor in Prostate Cancer

    National Research Council Canada - National Science Library

    Pasquale, Elena B

    2007-01-01

    Mutations have been recently identified in the EphB2 receptor gene in prostate cancer suggesting that EphB2, a member of the large Eph receptor tyrosine kinase family, is a tumor suppressor in prostate cancer...

  8. Tumor Suppressor Activity of the EphB2 Receptor in Prostate Cancer

    National Research Council Canada - National Science Library

    Pasquale, Elena B

    2006-01-01

    Mutations have been recently identified in the EphB2 receptor gene in prostate cancer suggesting that EphB2, a member of the large Eph receptor tyrosine kinase family, is a tumor suppressor in prostate cancer...

  9. Erkitinib, a novel EGFR tyrosine kinase inhibitor screened using a ProteoChip system from a phytochemical library

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eung-Yoon; Choi, Young-Jin [Biochip Research Center, Hoseo University, Asan 336-795 (Korea, Republic of); Innopharmascreen, Inc., Asan 336-795 (Korea, Republic of); Park, Chan-Won [Biochip Research Center, Hoseo University, Asan 336-795 (Korea, Republic of); Dept. of Biological Science, Hoseo University, Asan 336-795 (Korea, Republic of); Kang, In-Cheol, E-mail: ickang@hoseo.edu [Biochip Research Center, Hoseo University, Asan 336-795 (Korea, Republic of); Dept. of Biological Science, Hoseo University, Asan 336-795 (Korea, Republic of); Innopharmascreen, Inc., Asan 336-795 (Korea, Republic of)

    2009-11-20

    Receptor tyrosine kinases (PTKs) play key roles in the pathogenesis of numerous human diseases, including cancer. Therefore PTK inhibitors are currently under intensive investigation as potential drug candidates. Herein, we report on a ProteoChip-based screening of an epidermal growth factor receptor (EGFR) tyrosine kinase (TK) inhibitor, Erkitinibs, from phytochemical libraries. PLC-{gamma}-1 was used as a substrate immobilized on a ProteoChip and incubated with an EGFR kinase to phosphorylate tyrosine residues of the substrate, followed by a fluorescence detection of the substrate recognized by a phospho-specific monoclonal antibody. Erkitinibs inhibited HeLa cell proliferation in a dose-dependent manner. In conclusion, these data suggest that Erkitinibs can be a specific inhibitor of an EGFR kinase and can be further developed as a potent anti-tumor agent.

  10. Erkitinib, a novel EGFR tyrosine kinase inhibitor screened using a ProteoChip system from a phytochemical library

    International Nuclear Information System (INIS)

    Kim, Eung-Yoon; Choi, Young-Jin; Park, Chan-Won; Kang, In-Cheol

    2009-01-01

    Receptor tyrosine kinases (PTKs) play key roles in the pathogenesis of numerous human diseases, including cancer. Therefore PTK inhibitors are currently under intensive investigation as potential drug candidates. Herein, we report on a ProteoChip-based screening of an epidermal growth factor receptor (EGFR) tyrosine kinase (TK) inhibitor, Erkitinibs, from phytochemical libraries. PLC-γ-1 was used as a substrate immobilized on a ProteoChip and incubated with an EGFR kinase to phosphorylate tyrosine residues of the substrate, followed by a fluorescence detection of the substrate recognized by a phospho-specific monoclonal antibody. Erkitinibs inhibited HeLa cell proliferation in a dose-dependent manner. In conclusion, these data suggest that Erkitinibs can be a specific inhibitor of an EGFR kinase and can be further developed as a potent anti-tumor agent.

  11. Bone tumors

    International Nuclear Information System (INIS)

    Unni, K.K.

    1988-01-01

    This book contains the proceedings on bone tumors. Topics covered include: Bone tumor imaging: Contribution of CT and MRI, staging of bone tumors, perind cell tumors of bone, and metastatic bone disease

  12. Ethyl p-methoxycinnamate from Kaempferia galanga inhibits angiogenesis through tyrosine kinase

    Directory of Open Access Journals (Sweden)

    Juni Ekowati

    2015-04-01

    Full Text Available Background Many tumors express on their receptor tyrosine kinases vascular endothelial growth factor activity associated with angiogenesis. Inhibition of angiogenesis through reduction of tyrosine kinase activity is a promising strategy for cancer therapy. The present study aimed to determine the mechanism and potency of ethyl p-methoxycinnamate (EPMC isolated from Kaempferia galanga as angiogenesis inhibitor. Methods A laboratory experimental study was conducted using chorio-allantoic membranes (CAMs of nine-day old chicken eggs induced by 60ng basic fibroblast growth factor (bFGF. Ethyl p-methoxycinnamate (EPMC potency was determined at dosages of 30, 60, 90 and 120 mg and compared with celecoxib 60 mg as reference drug and one negative bFGF-induced control group. Neovascularization and endothelial cell count in CAM blood vessels were evaluated. To predict the antiangiogenic mechanism of EPMC, a docking study was performed with the Molegro Virtual Docker program on tyrosine kinase as receptor (PDB 1XKK. Results Angiogenesis stimulation by bFGF was prevented significantly (p<0.05 by EPMC at dosages of 30, 60, 90 and 120 mg and this activity was dose dependent. Molecular docking showed interaction between EPMC functional groups and tyrosine kinase amino acids at Met766, Met793, Thr854, Thr790, Gln791 and Ala743. There was an association between EPMC antiangiogenic activity and docking study results. Conclusions Ethyl p-methoxycinnamate is a potential new angiogenesis inhibitor through interaction with tyrosine kinase. EPMC could be a promising therapeutic agent for treatment of angiogenesis-related diseases.

  13. Alteration of radiation response by two tyrosine kinase inhibitors: STI571 (Glivec) and BIBW 2992

    International Nuclear Information System (INIS)

    Huguet, F.

    2010-01-01

    Concurrent chemo-radiation is one of the main weapon in the treatment of cancer. The targeted therapies may act on the mechanisms of tumor resistance to radiation and are therefore very promising in combination with radiotherapy. The STI571 (imatinib or Gleevec) inhibits specifically the Bcr-Abl tyrosine kinase. It leads to radiosensitization in K562 chronic myeloid leukemia cell line by alterations of the cell cycle. The BIBW2992 is a selective inhibitor of EGFR and HER2. The BIBW 2992 shows cytotoxic and radiosensitizing effects on pancreatic adenocarcinoma cells BxPC3 and Capan-2, regardless of KRAS status. The mechanism underlying this radiosensitization is not unequivocal, involving both changes in the cell cycle and induction of mitotic death. Our results show that the combination of an inhibitor of tyrosine kinase with ionizing radiation may lead to a radiosensitization in vitro with mechanisms depending on the type of cell line. (author)

  14. Identification of membrane-type 1 matrix metalloproteinase tyrosine phosphorylation in association with neuroblastoma progression

    International Nuclear Information System (INIS)

    Nyalendo, Carine; Sartelet, Hervé; Barrette, Stéphane; Ohta, Shigeru; Gingras, Denis; Béliveau, Richard

    2009-01-01

    Neuroblastoma is a pediatric tumor of neural crest cells that is clinically characterized by its variable evolution, from spontaneous regression to malignancy. Despite many advances in neuroblastoma research, 60% of neuroblastoma, which are essentially metastatic cases, are associated with poor clinical outcome due to the lack of effectiveness of current therapeutic strategies. Membrane-type 1 matrix metalloproteinase (MT1-MMP, MMP-14), an enzyme involved in several steps in tumor progression, has previously been shown to be associated with poor clinical outcome for neuroblastoma. Based on our recent demonstration that MT1-MMP phosphorylation is involved in the growth of fibrosarcoma tumors, we examined the potential role of phosphorylated MT1-MMP in neuroblastoma progression. Tyrosine phosphorylated MT1-MMP was immunostained on tissue microarray samples from 55 patients with neuroblastoma detected by mass screening (known to be predominantly associated with favourable outcome), and from 234 patients with standard diagnosed neuroblastoma. In addition, the effects of a non phosphorylable version of MT1-MMP on neuroblastoma cell migration and proliferation were investigated within three-dimensional collagen matrices. Although there is no correlation between the extent of tyrosine phosphorylation of MT1-MMP (pMT1-MMP) and MYCN amplification or clinical stage, we observed greater phosphorylation of pMT1-MMP in standard neuroblastoma, while it is less evident in neuroblastoma from mass screening samples (P = 0.0006) or in neuroblastoma samples from patients younger than one year (P = 0.0002). In vitro experiments showed that overexpression of a non-phosphorylable version of MT1-MMP reduced MT1-MMP-mediated neuroblastoma cell migration and proliferation within a three-dimensional type I collagen matrix, suggesting a role for the phosphorylated enzyme in the invasive properties of neuroblastoma cells. Overall, these results suggest that tyrosine phosphorylated MT1-MMP

  15. Tyrosine 842 in the activation loop is required for full transformation by the oncogenic mutant FLT3-ITD.

    Science.gov (United States)

    Kazi, Julhash U; Chougule, Rohit A; Li, Tianfeng; Su, Xianwei; Moharram, Sausan A; Rupar, Kaja; Marhäll, Alissa; Gazi, Mohiuddin; Sun, Jianmin; Zhao, Hui; Rönnstrand, Lars

    2017-07-01

    The type III receptor tyrosine kinase FLT3 is frequently mutated in acute myeloid leukemia. Oncogenic FLT3 mutants display constitutive activity leading to aberrant cell proliferation and survival. Phosphorylation on several critical tyrosine residues is known to be essential for FLT3 signaling. Among these tyrosine residues, Y842 is located in the so-called activation loop. The position of this tyrosine residue is well conserved in all receptor tyrosine kinases. It has been reported that phosphorylation of the activation loop tyrosine is critical for catalytic activity for some but not all receptor tyrosine kinases. The role of Y842 residue in FLT3 signaling has not yet been studied. In this report, we show that Y842 is not important for FLT3 activation or ubiquitination but plays a critical role in regulating signaling downstream of the receptor as well as controlling receptor stability. We found that mutation of Y842 in the FLT3-ITD oncogenic mutant background reduced cell viability and increased apoptosis. Furthermore, the introduction of the Y842 mutation in the FLT3-ITD background led to a dramatic reduction in in vitro colony forming capacity. Additionally, mice injected with cells expressing FLT3-ITD/Y842F displayed a significant delay in tumor formation, compared to FLT3-ITD expressing cells. Microarray analysis comparing gene expression regulated by FLT3-ITD versus FLT3-ITD/Y842F demonstrated that mutation of Y842 causes suppression of anti-apoptotic genes. Furthermore, we showed that cells expressing FLT3-ITD/Y842F display impaired activity of the RAS/ERK pathway due to reduced interaction between FLT3 and SHP2 leading to reduced SHP2 activation. Thus, we suggest that Y842 is critical for FLT3-mediated RAS/ERK signaling and cellular transformation.

  16. Analysis of tyrosine-O-sulfation

    DEFF Research Database (Denmark)

    Bundgaard, J.R.; Sen, J.W.; Johnsen, A.H.

    2008-01-01

    Tyrosine O-sulfation was first described about 50 years ago as a post-translational modification of fibrinogen. In the following 30 years it was considered to be a rare modification affecting only a few proteins and peptides. However, in the beginning of the 1980s tyrosine (Tyr) sulfation was shown...... to be a common modification and since then an increasing number of proteins have been identified as sulfated. The target proteins belong to the classes of secretory, plasma membrane, and lysosomal proteins, which reflects the intracellular localization of the enzymes catalyzing Tyr sulfation, the tyrosylprotein...... sulfotransferases (TPSTs).Traditionally, Tyr sulfation has been analyzed by incorporation of radiolabeled sulfate into target cells followed by purification of the target protein. Subsequently, the protein is degraded enzymatically or by alkaline hydrolysis followed by thin-layer electrophoresis to demonstrate...

  17. Tyrosine kinase signalling in breast cancer

    International Nuclear Information System (INIS)

    Hynes, Nancy E

    2000-01-01

    Cells are continuously exposed to diverse stimuli ranging from soluble endocrine and paracrine factors to signalling molecules on neighbouring cells. Receptors of the tyrosine kinase family play an important role in the integration and interpretation of these external stimuli, allowing a cell to respond appropriately to its environment. The activation of receptor tyrosine kinases (RTKs) is tightly controlled, allowing a normal cell to correctly integrate its external environment with internal signal transduction pathways. In contrast, due to numerous molecular alterations arising during the course of malignancy, a tumour is characterized by an abnormal response to its environment, which allows cancer cells to evade the normal mechanisms controlling cellular proliferation. Alterations in the expression of various RTKs, in their activation, and in the signalling molecules lying downstream of the receptors play important roles in the development of cancer. This topic is the major focus of the thematic review section of this issue of Breast Cancer Research

  18. Ror receptor tyrosine kinases: orphans no more.

    Science.gov (United States)

    Green, Jennifer L; Kuntz, Steven G; Sternberg, Paul W

    2008-11-01

    Receptor tyrosine kinase-like orphan receptor (Ror) proteins are a conserved family of tyrosine kinase receptors that function in developmental processes including skeletal and neuronal development, cell movement and cell polarity. Although Ror proteins were originally named because the associated ligand and signaling pathway were unknown, recent studies in multiple species have now established that Ror proteins are Wnt receptors. Depending on the cellular context, Ror proteins can either activate or repress transcription of Wnt target genes and can modulate Wnt signaling by sequestering Wnt ligands. New evidence implicates Ror proteins in planar cell polarity, an alternative Wnt pathway. Here, we review the progress made in understanding these mysterious proteins and, in particular, we focus on their function as Wnt receptors.

  19. Tumor Cells Express FcγRl Which Contributes to Tumor Cell Growth and a Metastatic Phenotype

    Directory of Open Access Journals (Sweden)

    M. Bud Nelson

    2001-01-01

    Full Text Available High levels of circulating immune complexes containing tumor-associated antigens are associated with a poor prognosis for individuals with cancer. The ability of B cells, previously exposed to tumor-associated antigens, to promote both in vitro and in vivo tumor growth formed the rationale to evaluate the mechanism by which immune complexes may promote tumor growth. In elucidating this mechanism, FcγRl expression by tumor cells was characterized by flow cytometry, polymerase chain reaction, and sequence analysis. Immune complexes containing shed tumor antigen and anti-shed tumor antigen Ab cross-linked FcγRl-expressing tumor cells, which resulted in an induction of tumor cell proliferation and of shed tumor antigen production. Use of selective tyrosine kinase inhibitors demonstrated that tumor cell proliferation induced by immune complex cross-linking of FcγRl is dependent on the tyrosine kinase signal transduction pathway. A selective inhibitor of phosphatidylinositol-3 kinase also inhibited this induction of tumor cell proliferation. These findings support a role for immune complexes and FcγRl expression by tumor cells in augmentation of tumor growth and a metastatic phenotype.

  20. Tyrosine Kinase Inhibition in HPV-related Squamous Cell Carcinoma Reveals Beneficial Expression of cKIT and Src.

    Science.gov (United States)

    Kramer, Benedikt; Kneissle, Marcel; Birk, Richard; Rotter, Nicole; Aderhold, Christoph

    2018-05-01

    Therapeutic options of locally advanced or metastatic head and neck squamous cell carcinoma (HNSCC) are limited. Src and cKIT are key protein regulators for local tumor progression. The aim of the study was to investigate the therapeutic potential of targeted therapies in human squamous cell carcinoma (HNSCC) in vitro. Therefore, the influence of the selective tyrosine kinase inhibitors niotinib, dasatinib, erlotinib, gefitinib and afatinib on Src and cKIT expression in Human papilloma virus (HPV)-positive and HPV-negative squamous cancer cells (SCC) was analyzed in vitro. ELISA was performed to evaluate the expression of Src and cKIT under the influence of nilotinib, dasatinib, erlotinib, gefitinib and afatinib (10 μmol/l) in HPV-negative and HPV-positive SCC (24-96 h of incubation). Gefitinib significantly increased cKIT expression in HPV-positive and HPV-negative cells whereas nilotinib and afatinib decreased cKIT expression in HPV-positive SCC. The influence of tyrosine kinase inhibitors in HPV-negative SCC was marginal. Surprisingly, Src expression was significantly increased by all tested tyrosine kinase inhibitors in HPV-positive SCC. The results revealed beneficial and unexpected information concerning the interaction of selective tyrosine kinase inhibitors and the tumor biology of HNSCC. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  1. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    Science.gov (United States)

    Li, Bin; Eyer, Peter; Eddleston, Michael; Jiang, Wei; Schopfer, Lawrence M.; Lockridge, Oksana

    2013-01-01

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. PMID:23566956

  2. Tyrosine phosphorylation in T cells is regulated by phosphatase activity: studies with phenylarsine oxide.

    OpenAIRE

    Garcia-Morales, P; Minami, Y; Luong, E; Klausner, R D; Samelson, L E

    1990-01-01

    Activation of T cells induces rapid tyrosine phosphorylation on the T-cell receptor zeta chain and other substrates. These phosphorylations can be regulated by a number of protein-tyrosine kinases (ATP: protein-tyrosine O-phosphotransferase, EC 2.7.1.112) and protein-tyrosine-phosphatases (protein-tyrosine-phosphate phosphohydrolase, EC 3.1.3.48). In this study, we demonstrate that phenylarsine oxide can inhibit tyrosine phosphatases while leaving tyrosine kinase function intact. We use this ...

  3. Negative Regulation of Receptor Tyrosine Kinase (RTK Signaling: A Developing Field

    Directory of Open Access Journals (Sweden)

    Fernanda Ledda

    2007-01-01

    Full Text Available ophic factors control cellular physiology by activating specific receptor tyrosine kinases (RTKs. While the over activation of RTK signaling pathways is associated with cell growth and cancer, recent findings support the concept that impaired down-regulation or deactivation of RTKs may also be a mechanism involved in tumor formation. Under this perspective, the molecular determinants of RTK signaling inhibition may act as tumor-suppressor genes and have a potential role as tumor markers to monitor and predict disease progression. Here, we review the current understanding of the physiological mechanisms that attenuate RTK signaling and discuss evidence that implicates deregulation of these events in cancer.Abbreviations: BDP1: Brain-derived phosphatase 1; Cbl: Casitas B-lineage lymphoma; CIN-85: Cbl-interacting protein of 85 kDa; DER: Drosophila EGFR; EGFR: Epidermal growth factor receptor; ERK 1/2: Extracellular signal-regulated kinase 1/2; Grb2: Growth factor receptor-bound protein 2; HER2: Human epidermal growth factor receptor 2; LRIG: Leucine-rich repeats and immunoglobulin-like domain 1; MAPK: Mitogen-activated protein kinase; Mig 6: Mitogen-inducible gene 6; PTEN: Phosphatase and tensin homologue; RET: Rearranged in transformation; RTK: Receptor tyrosine kinase. SH2 domain: Src-homology 2 domain; SH3 domain: Src-homology 3 domain; Spry: Sprouty.

  4. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    International Nuclear Information System (INIS)

    Li, Bin; Eyer, Peter; Eddleston, Michael; Jiang, Wei; Schopfer, Lawrence M.; Lockridge, Oksana

    2013-01-01

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. - Highlights: • Chlorpyrifos-poisoned patients have adducts on protein tyrosine. • Diethoxyphosphate-tyrosine does not lose an alkyl group. • Proteins in addition to AChE and BChE are modified by organophosphates

  5. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin, E-mail: binli@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States); Eyer, Peter, E-mail: peter.eyer@lrz.uni-muenchen.de [Walther-Straub-Institut Für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, 80336 München (Germany); Eddleston, Michael, E-mail: M.Eddleston@ed.ac.uk [Clinical Pharmacology Unit, University of Edinburgh, Edinburgh (United Kingdom); Jiang, Wei, E-mail: wjiang@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States); Schopfer, Lawrence M., E-mail: lmschopf@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States); Lockridge, Oksana, E-mail: olockrid@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States)

    2013-06-15

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. - Highlights: • Chlorpyrifos-poisoned patients have adducts on protein tyrosine. • Diethoxyphosphate-tyrosine does not lose an alkyl group. • Proteins in addition to AChE and BChE are modified by organophosphates.

  6. Euglena mitochondria and chloroplasts form tyrosine-O-sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Saidha, T.; Hanfstingl, U.; Schiff, J.A. (Brandeis Univ., Waltham, MA (USA))

    1989-04-01

    Mitochondria from light-grown wild-type Euglena gracilis var. bacillaris Cori or dark-grown mutant W{sub 10}BSmL incubated with {sup 35}SO{sub 4}{sup 2{minus}} and ATP, or with {sup 14}C-tyrosine, non-radioactive sulfate and ATP accumulate a labeled compound in the medium. Since this compound shows exact coelectrophoresis with tyrosine-O-sulfate (TOS) at pH 2.0, 5.8 or 8.0., yields sulfate and tyrosine on acid hydrolysis, and treatment with aryl sulfatase from Aerobacter aerogenes yields sulfate and tyrosine but no tyrosine methyl ester, it is identified as TOS. No TOS is found outside purified developing chloroplasts incubated with {sup 35}SO{sub 4}{sup 2{minus}} and ATP, but both chloroplasts and mitochondria form to {sup 35}S externally when incubated with adenosine 3{prime} phosphate 5{prime}phospho({sup 35}S) sulfate (PAP{sup 35}S). Since no tyrosine need be added, tyrosine is provided from endogenous sources. Although TOS is found in the free pool of Euglena cells it cannot be detected in proteins of cells or mucus ruling our sulfation of tyrosine of protein or incorporation of TOS into proteins. The system forming TOS is membrane-bound and may be involved in tyrosine transport.

  7. SH3 domain tyrosine phosphorylation--sites, role and evolution.

    Directory of Open Access Journals (Sweden)

    Zuzana Tatárová

    Full Text Available BACKGROUND: SH3 domains are eukaryotic protein domains that participate in a plethora of cellular processes including signal transduction, proliferation, and cellular movement. Several studies indicate that tyrosine phosphorylation could play a significant role in the regulation of SH3 domains. RESULTS: To explore the incidence of the tyrosine phosphorylation within SH3 domains we queried the PhosphoSite Plus database of phosphorylation sites. Over 100 tyrosine phosphorylations occurring on 20 different SH3 domain positions were identified. The tyrosine corresponding to c-Src Tyr-90 was by far the most frequently identified SH3 domain phosphorylation site. A comparison of sequences around this tyrosine led to delineation of a preferred sequence motif ALYD(Y/F. This motif is present in about 15% of human SH3 domains and is structurally well conserved. We further observed that tyrosine phosphorylation is more abundant than serine or threonine phosphorylation within SH3 domains and other adaptor domains, such as SH2 or WW domains. Tyrosine phosphorylation could represent an important regulatory mechanism of adaptor domains. CONCLUSIONS: While tyrosine phosphorylation typically promotes signaling protein interactions via SH2 or PTB domains, its role in SH3 domains is the opposite - it blocks or prevents interactions. The regulatory function of tyrosine phosphorylation is most likely achieved by the phosphate moiety and its charge interfering with binding of polyproline helices of SH3 domain interacting partners.

  8. Dietary Tyrosine Benefits Cognitive and Psychomotor Performance During Body Cooling

    National Research Council Canada - National Science Library

    O'Brien, Catherine; Mahoney, Caroline; Tharion, William J; Sils, Ingrid V; Castellani, John W

    2007-01-01

    ... examined. This study evaluated the effect of tyrosine supplementation on cognitive, psychomotor, and physical performance following a cold water immersion protocol that lowered body core temperature...

  9. Tyrosine metabolic enzymes from insects and mammals: a comparative perspective.

    Science.gov (United States)

    Vavricka, Christopher John; Han, Qian; Mehere, Prajwalini; Ding, Haizhen; Christensen, Bruce M; Li, Jianyong

    2014-02-01

    Differences in the metabolism of tyrosine between insects and mammals present an interesting example of molecular evolution. Both insects and mammals possess fine-tuned systems of enzymes to meet their specific demands for tyrosine metabolites; however, more homologous enzymes involved in tyrosine metabolism have emerged in many insect species. Without knowledge of modern genomics, one might suppose that mammals, which are generally more complex than insects and require tyrosine as a precursor for important catecholamine neurotransmitters and for melanin, should possess more enzymes to control tyrosine metabolism. Therefore, the question of why insects actually possess more tyrosine metabolic enzymes is quite interesting. It has long been known that insects rely heavily on tyrosine metabolism for cuticle hardening and for innate immune responses, and these evolutionary constraints are likely the key answers to this question. In terms of melanogenesis, mammals also possess a high level of regulation; yet mammalian systems possess more mechanisms for detoxification whereas insects accelerate pathways like melanogenesis and therefore must bear increased oxidative pressure. Our research group has had the opportunity to characterize the structure and function of many key proteins involved in tyrosine metabolism from both insects and mammals. In this mini review we will give a brief overview of our research on tyrosine metabolic enzymes in the scope of an evolutionary perspective of mammals in comparison to insects. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  10. Tyrosine Residues Regulate Multiple Nuclear Functions of P54nrb.

    Science.gov (United States)

    Lee, Ahn R; Hung, Wayne; Xie, Ning; Liu, Liangliang; He, Leye; Dong, Xuesen

    2017-04-01

    The non-POU-domain-containing octamer binding protein (NONO; also known as p54nrb) has various nuclear functions ranging from transcription, RNA splicing, DNA synthesis and repair. Although tyrosine phosphorylation has been proposed to account for the multi-functional properties of p54nrb, direct evidence on p54nrb as a phosphotyrosine protein remains unclear. To investigate the tyrosine phosphorylation status of p54nrb, we performed site-directed mutagenesis on the five tyrosine residues of p54nrb, replacing the tyrosine residues with phenylalanine or alanine, and immunoblotted for tyrosine phosphorylation. We then preceded with luciferase reporter assays, RNA splicing minigene assays, co-immunoprecipitation, and confocal microscopy to study the function of p54nrb tyrosine residues on transcription, RNA splicing, protein-protein interaction, and cellular localization. We found that p54nrb was not phosphorylated at tyrosine residues. Rather, it has non-specific binding affinity to anti-phosphotyrosine antibodies. However, replacement of tyrosine with phenylalanine altered p54nrb activities in transcription co-repression and RNA splicing in gene context-dependent fashions by means of differential regulation of p54nrb protein association with its interacting partners and co-regulators of transcription and splicing. These results demonstrate that tyrosine residues, regardless of phosphorylation status, are important for p54nrb function. J. Cell. Physiol. 232: 852-861, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Tyrosine phosphorylation of Grb14 by Tie2

    Directory of Open Access Journals (Sweden)

    Dumont Daniel J

    2010-10-01

    Full Text Available Abstract Background Growth factor receptor bound (Grb proteins 7, 10 and 14 are a family of structurally related multi-domain adaptor proteins involved in a variety of biological processes. Grb7, 10 and 14 are known to become serine and/or threonine phosphorylated in response to growth factor (GF stimulation. Grb7 and 10 have also been shown to become tyrosine phosphorylated under certain conditions. Under experimental conditions Grb7 is tyrosine phosphorylated by the Tie2/Tie-2/Tek angiogenic receptor tyrosine kinase (RTK. Furthermore, Grb14 has also been shown to interact with Tie2, however tyrosine phosphorylation of this Grb family member has yet to be reported. Results Here we report for the first time tyrosine phosphorylation of Grb14. This phosphorylation requires a kinase competent Tie2 as well as intact tyrosines 1100 and 1106 (Y1100 and Y1106 on the receptor. Furthermore, a complete SH2 domain on Grb14 is required for Grb14 tyrosine phosphorylation by Tie2. Grb14 was also able to become tyrosine phosphorylated in primary endothelial cells when treated with a soluble and potent variant of the Tie2 ligand, cartilage oligomeric matrix protein (COMP Ang1. Conclusion Our results show that Grb14, like its family members Grb7 and Grb10, is able to be tyrosine phosphorylated. Furthermore, our data indicate a role for Grb14 in endothelial signaling downstream of the Tie2 receptor.

  12. Engineering of kinase-based protein interacting devices: active expression of tyrosine kinase domains

    KAUST Repository

    Diaz Galicia, Miriam Escarlet

    2018-01-01

    is then translated into a FRET (Fluorescence Resonance Energy Transfer) signal is here proposed. To this end, DNA constructs for interaction amplification (split kinases), positive controls (intact kinase domains), scaffolding proteins and phosphopeptide - SH2-domain

  13. Large daily fluctuations in plasma tyrosine in treated patients with phenylketonuria

    NARCIS (Netherlands)

    vanSpronsen, FJ; vanDijk, T; Smit, GPA; vanRijn, M; Reijngoud, DJ; Berger, Ruud; Heymans, HSA

    1996-01-01

    In patients with phenylketonuria (PKU), extra tyrosine supplementation is advocated in addition to tyrosine-enriched amino acid mixtures. PKU patients have low fasting plasma tyrosine concentrations, but little is known about tyrosine fluctuations during the day. Plasma tyrosine concentrations were

  14. PET imaging of early response to the tyrosine kinase inhibitor ZD4190

    International Nuclear Information System (INIS)

    Yang, Min; Gao, Haokao; Yan, Yongjun; Sun, Xilin; Chen, Kai; Quan, Qimeng; Lang, Lixin; Kiesewetter, Dale; Niu, Gang; Chen, Xiaoyuan

    2011-01-01

    We evaluated noninvasive positron emission tomography (PET) imaging for monitoring tumor response to the VEGFR-2 tyrosine kinase (TK) inhibitor ZD4190 during cancer therapy. Orthotopic MDA-MB-435 tumor-bearing mice were treated with ZD4190 (100 mg/kg orally per day for three consecutive days). Tumor growth was monitored by caliper measurement. During the therapeutic period, longitudinal PET scans were acquired using 18 F-FDG, 18 F-FLT and 18 F-FPPRGD2 as imaging tracers to evaluate tumor glucose metabolism, tumor cell proliferation, and angiogenesis, respectively. Imaging metrics were validated by immunohistochemical analysis of Ki67, GLUT-1, F4/80, CD31, murine integrin β3, and human integrin αvβ3. Three consecutive daily oral administrations of 100 mg/kg of ZD4190 were effective in delaying MDA-MB-435 tumor growth. A significant difference in tumor volume was observed on day 7 between the treatment group and the control group (p 18 F-FPPRGD2 uptake was stable between days 0 and 7. In ZD4190-treated tumors, 18 F-FPPRGD2 uptake had decreased significantly relative to baseline by 26.74±8.12% (p 18 F-FLT had also decreased on both day 1 and day 3 after initiation of ZD4190 treatment. No significant change in 18 F-FDG uptake in ZD4190-treated tumors was observed, however, compared with the control group. All of the imaging findings were supported by ex vivo analysis of related biomarkers. The longitudinal imaging results demonstrated the usefulness of quantitative 18 F-FLT and 18 F-FPPRGD2 PET imaging in evaluating the early antiproliferative and antiangiogenic effects of ZD4190. The quantification data from the PET imaging were consistent with the pattern of initial growth inhibition with treatment, followed by tumor relapse after treatment cessation. (orig.)

  15. Structural stability of human protein tyrosine phosphatase ρ catalytic domain: effect of point mutations.

    Directory of Open Access Journals (Sweden)

    Alessandra Pasquo

    Full Text Available Protein tyrosine phosphatase ρ (PTPρ belongs to the classical receptor type IIB family of protein tyrosine phosphatase, the most frequently mutated tyrosine phosphatase in human cancer. There are evidences to suggest that PTPρ may act as a tumor suppressor gene and dysregulation of Tyr phosphorylation can be observed in diverse diseases, such as diabetes, immune deficiencies and cancer. PTPρ variants in the catalytic domain have been identified in cancer tissues. These natural variants are nonsynonymous single nucleotide polymorphisms, variations of a single nucleotide occurring in the coding region and leading to amino acid substitutions. In this study we investigated the effect of amino acid substitution on the structural stability and on the activity of the membrane-proximal catalytic domain of PTPρ. We expressed and purified as soluble recombinant proteins some of the mutants of the membrane-proximal catalytic domain of PTPρ identified in colorectal cancer and in the single nucleotide polymorphisms database. The mutants show a decreased thermal and thermodynamic stability and decreased activation energy relative to phosphatase activity, when compared to wild- type. All the variants show three-state equilibrium unfolding transitions similar to that of the wild- type, with the accumulation of a folding intermediate populated at ~4.0 M urea.

  16. Tyrosine Kinase Inhibitors Induced Thyroid Dysfunction: A Review of Its Incidence, Pathophysiology, Clinical Relevance, and Treatment

    Directory of Open Access Journals (Sweden)

    Hala Ahmadieh

    2013-01-01

    Full Text Available Tyrosine kinase inhibitors (TKI belong to a new class of molecular multitargeted anticancer therapy which targets different growth factor receptors and hence attenuates cancer cell survival and growth. Since their introduction as adjunct treatment for renal cell carcinoma and gastrointestinal stromal tumors (GIST, a number of reports have demonstrated that TKI can induce thyroid dysfunction which was especially more common with sunitinib maleate. Many mechanisms with respect to this adverse effect of tyrosine kinase inhibitors have been proposed including their induction of thyroiditis, capillary regression in the thyroid gland, antithyroid peroxidase antibody production, and their ability to decrease iodine uptake by the thyroid gland. Of interest is the observation that TKI-induced thyroid dysfunction may actually be protective as it was shown to improve overall survival, and it was suggested that it may have a prognostic value. Followup on thyroid function tests while patients are maintained on tyrosine kinase inhibitor is strongly recommended. When thyroid dysfunction occurs, appropriate treatment should be individualized depending on patients symptoms and thyroid stimulating hormone level.

  17. Inhibition of biofilm formation by D-tyrosine: Effect of bacterial type and D-tyrosine concentration.

    Science.gov (United States)

    Yu, Cong; Li, Xuening; Zhang, Nan; Wen, Donghui; Liu, Charles; Li, Qilin

    2016-04-01

    D-Tyrosine inhibits formation and triggers disassembly of bacterial biofilm and has been proposed for biofouling control applications. This study probes the impact of D-tyrosine in different biofilm formation stages in both G+ and G- bacteria, and reveals a non-monotonic correlation between D-tyrosine concentration and biofilm inhibition effect. In the attachment stage, cell adhesion was studied in a flow chamber, where D-tyrosine caused significant reduction in cell attachment. Biofilms formed by Pseudomonas aeruginosa and Bacillus subtilis were characterized by confocal laser scanning microscopy as well as quantitative analysis of cellular biomass and extracellular polymeric substances. D-Tyrosine exhibited strong inhibitive effects on both biofilms with an effective concentration as low as 5 nM; the biofilms responded to D-tyrosine concentration change in a non-monotonic, bi-modal pattern. In addition, D-tyrosine showed notable and different impact on EPS production by G+ and G- bacteria. Extracellular protein was decreased in P. aeruginosa biofilms, but increased in those of B. subtilis. Exopolysaccharides production by P. aeruginosa was increased at low concentrations and reduced at high concentrations while no impact was found in B. subtilis. These results suggest that distinct mechanisms are at play at different D-tyrosine concentrations and they may be species specific. Dosage of D-tyrosine must be carefully controlled for biofouling control applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A Novel Molecular Diagnostic of Glioblastomas: Detection of an Extracellular Fragment of Protein Tyrosine Phosphatase μ

    Directory of Open Access Journals (Sweden)

    Susan M. Burden-Gulley

    2010-04-01

    Full Text Available We recently found that normal human brain and low-grade astrocytomas express the receptor protein tyrosine phosphatase mu (PTPμ and that the more invasive astrocytomas, glioblastoma multiforme (GBM, downregulate full-length PTPμ expression. Loss of PTPμ expression in GBMs is due to proteolytic cleavage that generates an intracellular and potentially a cleaved and released extracellular fragment of PTPμ. Here, we identify that a cleaved extracellular fragment containing the domains required for PTPμ-mediated adhesion remains associated with GBM tumor tissue. We hypothesized that detection of this fragment would make an excellent diagnostic tool for the localization of tumor tissue within the brain. To this end, we generated a series of fluorescently tagged peptide probes that bind the PTPμ fragment. The peptide probes specifically recognize GBM cells in tissue sections of surgically resected human tumors. To test whether the peptide probes are able to detect GBM tumors in vivo, the PTPμ peptide probes were tested in both mouse flank and intracranial xenograft human glioblastoma tumor model systems. The glial tumors were molecularly labeled with the PTPμ peptide probes within minutes of tail vein injection using the Maestro FLEX In Vivo Imaging System. The label was stable for at least 3 hours. Together, these results indicate that peptide recognition of the PTPμ extracellular fragment provides a novel molecular diagnostic tool for detection of human glioblastomas. Such a tool has clear translational applications and may lead to improved surgical resections and prognosis for patients with this devastating disease.

  19. Expression and clinical significance of tyrosine phosphatase SHP-2 in colon cancer.

    Science.gov (United States)

    Cai, Peifen; Guo, Wenjie; Yuan, Huaqin; Li, Qian; Wang, Weicheng; Sun, Yang; Li, Xiaomin; Gu, Yanhong

    2014-04-01

    Protein-tyrosine phosphatase SHP-2, encoded by gene PTPN11, has been identified as a tumor-promoting factor in several types of leukemia and is hyper-activated by other mechanisms in some solid tumors including gastric cancer, breast cancer, non-small cell lung cancer (NSCLC), etc. But few were reported on the expression and significances of SHP-2 in colon cancer. Here, we detect SHP-2 expression in colon cancer cells, colon cancer-induced by AOM+DSS in mice and 232 human colon cancer specimens, including 58 groups of self-matched adjacent peritumor tissues and normal tissues. We found that compared to the normal colon tissues, SHP-2 significantly decreased in tumor tissues (Pcolon tumor cells as well as mice colon tumors. And in humans samples, low SHP-2 expression showed a significantly correlation with poor tumor differentiation (P<0.05), late TNM stage (P=0.1666) and lymph node metastasis (P<0.05). Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  20. Tyrosine kinase inhibitor SU6668 represses chondrosarcoma growth via antiangiogenesis in vivo

    International Nuclear Information System (INIS)

    Klenke, Frank M; Abdollahi, Amir; Bertl, Elisabeth; Gebhard, Martha-Maria; Ewerbeck, Volker; Huber, Peter E; Sckell, Axel

    2007-01-01

    As chondrosarcomas are resistant to chemotherapy and ionizing radiation, therapeutic options are limited. Radical surgery often cannot be performed. Therefore, additional therapies such as antiangiogenesis represent a promising strategy for overcoming limitations in chondrosarcoma therapy. There is strong experimental evidence that SU6668, an inhibitor of the angiogenic tyrosine kinases Flk-1/KDR, PDGFRbeta and FGFR1 can induce growth inhibition of various primary tumors. However, the effectiveness of SU6668 on malignant primary bone tumors such as chondrosarcomas has been rarely investigated. Therefore, the aim of this study was to investigate the effects of SU6668 on chondrosarcoma growth, angiogenesis and microcirculation in vivo. In 10 male severe combined immunodeficient (SCID) mice, pieces of SW1353 chondrosarcomas were implanted into a cranial window preparation where the calvaria serves as the site for the orthotopic implantation of bone tumors. From day 7 after tumor implantation, five animals were treated with SU6668 (250 mg/kg body weight, s.c.) at intervals of 48 hours (SU6668), and five animals with the equivalent amount of the CMC-based vehicle (Control). Angiogenesis, microcirculation, and growth of SW 1353 tumors were analyzed by means of intravital microscopy. SU6668 induced a growth arrest of chondrosarcomas within 7 days after the initiation of the treatment. Compared to Controls, SU6668 decreased functional vessel density and tumor size, respectively, by 37% and 53% on day 28 after tumor implantation. The time course of the experiments demonstrated that the impact on angiogenesis preceded the anti-tumor effect. Histological and immunohistochemical results confirmed the intravital microscopy findings. SU6668 is a potent inhibitor of chondrosarcoma tumor growth in vivo. This effect appears to be induced by the antiangiogenic effects of SU6668, which are mediated by the inhibition of the key angiogenic receptor tyrosine kinases Flk-1/KDR, PDGFRbeta

  1. Behavioral and cognitive effects of tyrosine intake in healthy human adults

    NARCIS (Netherlands)

    Hase, Adrian; Jung, Sophie E.; aan het Rot, Marije

    2015-01-01

    The amino acid tyrosine is the precursor to the catecholamine neurotransmitters dopamine and norepinephrine. Increasing tyrosine uptake may positively influence catecholamine-related psychological functioning. We conducted a systematic review to examine the effects of tyrosine on behavior and

  2. Determination of o-tyrosine in irradiated chicken

    International Nuclear Information System (INIS)

    Zoller, O.; Schoeni, D.; Zimmerli, B.

    1991-01-01

    The author explains his method to determine O-Tyrosine in irradiated chickens with a high-performance liquid chromatography. The method is simple and fast, but a proper chromatographic separation is difficult. The detection limit with a high sensitive detector is about 0.05-0.1 mg O-Tyrosine/kg meat (9 refs)

  3. Importance of tyrosine phosphorylation in receptor kinase complexes.

    Science.gov (United States)

    Macho, Alberto P; Lozano-Durán, Rosa; Zipfel, Cyril

    2015-05-01

    Tyrosine phosphorylation is an important post-translational modification that is known to regulate receptor kinase (RK)-mediated signaling in animals. Plant RKs are annotated as serine/threonine kinases, but recent work has revealed that tyrosine phosphorylation is also crucial for the activation of RK-mediated signaling in plants. These initial observations have paved the way for subsequent detailed studies on the mechanism of activation of plant RKs and the biological relevance of tyrosine phosphorylation for plant growth and immunity. In this Opinion article we review recent reports on the contribution of RK tyrosine phosphorylation in plant growth and immunity; we propose that tyrosine phosphorylation plays a major regulatory role in the initiation and transduction of RK-mediated signaling in plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Requirements for superoxide-dependent tyrosine hydroperoxide formation in peptides

    DEFF Research Database (Denmark)

    Winterbourn, Christine C; Parsons-Mair, Helena N; Gebicki, Silvia

    2004-01-01

    Superoxide reacts rapidly with other radicals, but these reactions have received little attention in the context of oxidative stress. For tyrosyl radicals, reaction with superoxide is 3-fold faster than dimerization, and forms the addition product tyrosine hydroperoxide. We have explored structural...... requirements for hydroperoxide formation using tyrosine analogues and di- and tri-peptides. Superoxide and phenoxyl radicals were generated using xanthine oxidase, peroxidase and the respective tyrosine derivative, or by gamma-radiation. Peroxides were measured using FeSO4/Xylenol Orange. Tyrosine and tyramine...... formed stable hydroperoxides, but N-acetyltyrosine and p-hydroxyphenylacetic acid did not, demonstrating a requirement for a free amino group. Using [14C]tyrosine, the hydroperoxide and dityrosine were formed at a molar ratio of 1.8:1. Studies with pre-formed hydroperoxides, and measurements of substrate...

  5. Decreased decorin expression in the tumor microenvironment

    International Nuclear Information System (INIS)

    Bozoky, Benedek; Savchenko, Andrii; Guven, Hayrettin; Ponten, Fredrik; Klein, George; Szekely, Laszlo

    2014-01-01

    Decorin is a small leucine-rich proteoglycan, synthesized and deposited by fibroblasts in the stroma where it binds to collagen I. It sequesters several growth factors and antagonizes numerous members of the receptor tyrosine kinase family. In experimental murine systems, it acted as a potent tumor suppressor. Examining the Human Protein Atlas online database of immunostained tissue samples we have surveyed decorin expression in silico in several different tumor types, comparing them with corresponding normal tissues. We found that decorin is abundantly secreted and deposited in normal connective tissue but its expression is consistently decreased in the tumor microenvironment. We developed a software to quantitate the difference in expression. The presence of two closely related proteoglycans in the newly formed tumor stroma indicated that the decreased decorin expression was not caused by the delay in proteoglycan deposition in the newly formed connective tissue surrounding the tumor

  6. Abundance of Flt3 and its ligand in astrocytic tumors

    Directory of Open Access Journals (Sweden)

    Eßbach C

    2013-05-01

    Full Text Available C Eßbach,1 N Andrae,1 D Pachow,1 J-P Warnke,2 A Wilisch-Neumann,1 E Kirches,1 C Mawrin11Department of Neuropathology, Otto-von-Guericke University, Magdeburg, 2Department of Neurosurgery, Paracelsus Hospital, Zwickau, GermanyBackground: Molecular targeted therapies for astrocytic tumors are the subject of growing research interest, due to the limited response of these tumors, especially glioblastoma multiforme, to conventional chemotherapeutic regimens. Several of these approaches exploit the inhibition of receptor tyrosine kinases. To date, it has not been elucidated if fms-like tyrosine kinase-3 (Flt3 and its natural ligand (Flt3L are expressed in astrocytic tumors, although some of the clinically intended small-molecule receptor tyrosine kinase inhibitors affect Flt3, while others do not. More importantly, the recent proof of principle for successful stimulation of the immune system against gliomas in preclinical models via local Flt3L application requires elucidation of this receptor tyrosine kinase pathway in these tumors in more detail. This therapy is based on recruitment of Flt3-positive dendritic cells, but may be corroborated by activity of this signaling pathway in glioma cells.Methods: Receptor and ligand expression was analyzed by real-time polymerase chain reaction in 31 astrocytic tumors (six diffuse and 11 anaplastic astrocytomas, 14 glioblastomas derived from patients of both genders and in glioblastoma cell lines. The two most common activating mutations of the Flt3 gene, ie, internal tandem duplication and D835 point mutation, were assessed by specific polymerase chain reaction.Results: A relatively high abundance of Flt3L mRNA (4%–6% of the reference, β2 microglobulin could be demonstrated in all tumor samples. Flt3 expression could generally be demonstrated by 40 specific polymerase chain reaction cycles and gel electrophoresis in 87% of the tumors, including all grades, although the small quantities of the receptor did

  7. Band 3 tyrosine kinase in avian erythrocyte plasma membrane is immunologically related to pp60c-src

    International Nuclear Information System (INIS)

    Hillsgrove, D.; Shores, C.G.; Parker, J.C.; Maness, P.F.

    1987-01-01

    The authors have identified in the plasma membrane of the chicken erythrocyte a 60-kDa tyrosine-specific protein kinase immunologically related to the transforming protein pp60 v-src of Rous sarcoma virus. The erythrocyte protein kinase phosphorylated heavy chains of tumor-bearing rabbit (TBR) antibodies reactive with pp60 c-src at tyrosine in immune complex protein kinase assays. The kinase was identified as a 60-kDa protein by [ 35 S]methionine labeling of erythrocytes and by autophosphorylation in immune complexes. The kinase migrated on two-dimensional gel electrophoresis with an apparent pI and molecular mass similar to pp60 c-src . A plasma membrane-enriched fraction isolated from chicken red cells contained the majority of the kinase activity. Incubation of the plasma membrane fraction with [ 32 P]ATP resulted in tyrosine phosphorylation of the anion transport protein band 3. Band 3 phosphorylation was blocked by TBR antibodies, indicting that the kinase recognized by pp60 c-src antibodies was responsible for band 3 phosphorylation. These results demonstrate that the avian erythrocyte plasma membrane contains a tightly bound tyrosine-specific protein kinase identical or closely related to pp60 c-src and that this kinase is responsible for band 3 phosphorylation in vitro

  8. Protein Tyrosine Nitration : Selectivity, Physicochemical and Biological Consequences, Denitration, and Proteomics Methods for the Identification of Tyrosine-Nitrated Proteins

    NARCIS (Netherlands)

    Abello, Nicolas; Kerstjens, Huib A. M.; Postma, Dirkje S.; Bischoff, Rainer

    Protein tyrosine nitration (PTN) is a post-translational modification occurring under the action of a nitrating agent. Tyrosine is modified in the 3-position of the phenolic ring through the addition of a nitro group (NO(2)). In the present article, we review the main nitration reactions and

  9. Spectroscopic studies of fluorescent complexes of tyrosine 8-hydroxyquinoline and tyrosine-8-hydroxyquinaldine in aqueous phase

    International Nuclear Information System (INIS)

    Jakhrani, M.A.; Kazi, T.G.

    2002-01-01

    A new method has been developed by preparing complexes involving condensation of tyrosine with 8-hydroxyquinoline (Oxine) and 8-hydroxyquinaldine (Quinaldine) respectively, producing fluorescent products. The products obtained have been investigated for identification and quantitative estimation using different spectroscopic techniques including fluorescence activity of newly synthesized products. 8-hydroxyquinaldine and 8-hydroxyquinoline (Oxine) condensed with tyrosine separately produced water soluble fluorescent complexes. The complexes have been investigated for identification and quantitative estimation of amino acids. Identification of amino acids in nano mole or below than nano mole has become possible by present fluorometric activity of these complexes involving different excitation and emission wavelengths. The fluorometric activity of complexes has been observed to be 100 to 1000 times higher than assay method involving ninhydrin and amino acid analyzer. The method adopted in our laboratory is rapid, versatile with good reproducibility and provides excellent results for adoption by analytical, agricultural and biomedical laboratories to estimate amino acids and metals in composite matrix. (author)

  10. Icotinib (BPI-2009H), a novel EGFR tyrosine kinase inhibitor, displays potent efficacy in preclinical studies.

    Science.gov (United States)

    Tan, Fenlai; Shen, Xiaoyan; Wang, Dechang; Xie, Guojian; Zhang, Xiaodong; Ding, Lieming; Hu, Yunyan; He, Wei; Wang, Yanping; Wang, Yinxiang

    2012-05-01

    Icotinib, one of the leading compounds selected from our compound library, was found to be a potent and specific epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) with an IC(50) of 5 nM. When profiled with 88 kinases, Icotinib only showed meaningful inhibitory activity to EGFR and its mutants. Icotinib blocked EGFR-mediated intracellular tyrosine phosphorylation (IC(50)=45 nM) in the human epidermoid carcinoma A431 cell line and inhibits tumor cell proliferation. In vivo studies demonstrated that Icotinib exhibited potent dose-dependent antitumor effects in nude mice carrying a variety of human tumor-derived xenografts. The drug was well tolerated at doses up to 120 mg/kg/day in mice without mortality or significant body weight loss during the treatment. A head to head randomized, double blind phase III trial using Gefitinib as an active control for patients with advanced non-small cell lung cancer (NSCLC) was finished recently (Trial registration ID: NCT01040780). The data shows that Icotinib was non-inferior to Gefitinib in terms of median progression free survival (PFS) and safety superior favor to Icotinib compared to Gefitinib. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Tyrosine kinases, drugs, and Shigella flexneri dissemination.

    Science.gov (United States)

    Dragoi, Ana-Maria; Agaisse, Hervé

    2014-01-01

    Shigella flexneri is an enteropathogenic bacterium responsible for approximately 100 million cases of severe dysentery each year. S. flexneri colonization of the human colonic epithelium is supported by direct spread from cell to cell, which relies on actin-based motility. We have recently uncovered that, in intestinal epithelial cells, S. flexneri actin-based motility is regulated by the Bruton's tyrosine kinase (Btk). Consequently, treatment with Ibrutinib, a specific Btk inhibitor currently used in the treatment of B-cell malignancies, effectively impaired S. flexneri spread from cell to cell. Thus, therapeutic intervention capitalizing on drugs interfering with host factors supporting the infection process may represent an effective alternative to treatments with antimicrobial compounds.

  12. Receptor tyrosine phosphatase R-PTP-alpha is tyrosine-phosphorylated and associated with the adaptor protein Grb2

    DEFF Research Database (Denmark)

    Su, J; Batzer, A; Sap, J

    1994-01-01

    Receptor tyrosine phosphatases (R-PTPases) have generated interest because of their suspected involvement in cellular signal transduction. The adaptor protein Grb2 has been implicated in coupling receptor tyrosine kinases to Ras. We report that a ubiquitous R-PTPase, R-PTP-alpha, is tyrosine......-phosphorylated and associated in vivo with the Grb2 protein. This association can be reproduced in stably and transiently transfected cells, as well as in vitro using recombinant Grb2 protein. Association requires the presence of an intact SH2 domain in Grb2, as well as tyrosine phosphorylation of R-PTP-alpha. This observation...... links a receptor tyrosine phosphatase with a key component of a central cellular signalling pathway and provides a basis for addressing R-PTP-alpha function....

  13. Phenotypic stability of B16-BL6 melanoma exposed to low levels of tyrosine and phenylalanine.

    Science.gov (United States)

    Elstad, C A; Meadows, G G

    1990-01-01

    We previously demonstrated that tyrosine (Tyr) and phenylalanine (Phe) restriction suppresses metastatic heterogeneity of B16-BL6 (BL6) melanoma and selects for tumor variants with decreased metastatic potential. In this study, we investigate stability of this Tyr- and Phe-modulated tumor phenotype by sequentially transplanting BL6 in vivo into mice fed Low Tyr and Phe Diet. Metastatic potential of BL6 is suppressed after one subcutaneous passage. Suppression is unlikely to result from inhibition of tumor growth, since growth in vitro is significantly increased. The metastatic potential of the Tyr- and Phe-modulated tumor is unstable after in vivo passage, and lung colonizing ability is regenerated after ten in vivo passages. Conversely, the antimetastatic effect of Tyr and Phe restriction is stable after prolonged in vitro passage. The metastatic potential of tumors from mice fed Normal Diet is unstable after long-term in vitro culture. Sensitivity to adriamycin of BL6 from mice fed Low Tyr and Phe Diet is increased and is not altered by change in metastatic potential.

  14. CCR 20th anniversary commentary: a chimeric antibody, C225, inhibits EGFR activation and tumor growth.

    Science.gov (United States)

    Mendelsohn, John; Prewett, Marie; Rockwell, Patricia; Goldstein, Neil I

    2015-01-15

    Murine mAb 225 was effective against the EGFR tyrosine kinase and inhibited tumor growth in preclinical studies. A phase I trial showed safety, tumor localization, and satisfactory pharmacokinetics. Human:murine chimeric C225 retained biologic activity, which was essential for the conduct of subsequent combination therapy trials and eventual regulatory approval. ©2015 American Association for Cancer Research.

  15. Sinus Tumors

    Science.gov (United States)

    ... RESOURCES Medical Societies Patient Education About this Website Font Size + - Home > CONDITIONS > Sinus Tumors Adult Sinusitis Pediatric ... and they vary greatly in location, size and type. Care for these tumors is individualized to each ...

  16. Tumors markers

    International Nuclear Information System (INIS)

    Yamaguchi-Mizumoto, N.H.

    1989-01-01

    In order to study blood and cell components alterations (named tumor markers) that may indicate the presence of a tumor, several methods are presented. Aspects as diagnostic, prognostic, therapeutic value and clinical evaluation are discussed. (M.A.C.)

  17. Wilms tumor

    Science.gov (United States)

    ... suggested. Alternative Names Nephroblastoma; Kidney tumor - Wilms Images Kidney anatomy Wilms tumor References Babaian KN, Delacroix SE, Wood CG, Jonasch E. Kidney cancer. In: Skorecki K, Chertow GM, Marsden PA, ...

  18. PTPRZ1 regulates calmodulin phosphorylation and tumor progression in small-cell lung carcinoma

    International Nuclear Information System (INIS)

    Makinoshima, Hideki; Ishii, Genichiro; Kojima, Motohiro; Fujii, Satoshi; Higuchi, Youichi; Kuwata, Takeshi; Ochiai, Atsushi

    2012-01-01

    Small-cell lung carcinoma (SCLC) is a neuroendocrine tumor subtype and comprises approximately 15% of lung cancers. Because SCLC is still a disease with a poor prognosis and limited treatment options, there is an urgent need to develop targeted molecular agents for this disease. We screened 20 cell lines from a variety of pathological phenotypes established from different organs by RT-PCR. Paraffin-embedded tissue from 252 primary tumors was examined for PTPRZ1 expression using immunohistochemistry. shRNA mediated PTPRZ1 down-regulation was used to study impact on tyrosine phosphorylation and in vivo tumor progression in SCLC cell lines. Here we show that PTPRZ1, a member of the protein tyrosine- phosphatase receptor (PTPR) family, is highly expressed in SCLC cell lines and specifically exists in human neuroendocrine tumor (NET) tissues. We also demonstrate that binding of the ligand of PTPRZ1, pleiotrophin (PTN), activates the PTN/PTPRZ1 signaling pathway to induce tyrosine phosphorylation of calmodulin (CaM) in SCLC cells, suggesting that PTPRZ1 is a regulator of tyrosine phosphorylation in SCLC cells. Furthermore, we found that PTPRZ1 actually has an important oncogenic role in tumor progression in the murine xenograft model. PTPRZ1 was highly expressed in human NET tissues and PTPRZ1 is an oncogenic tyrosine phosphatase in SCLCs. These results imply that a new signaling pathway involving PTPRZ1 could be a feasible target for treatment of NETs

  19. Spinal tumors

    International Nuclear Information System (INIS)

    Goethem, J.W.M. van; Hauwe, L. van den; Oezsarlak, Oe.; Schepper, A.M.A. de; Parizel, P.M.

    2004-01-01

    Spinal tumors are uncommon lesions but may cause significant morbidity in terms of limb dysfunction. In establishing the differential diagnosis for a spinal lesion, location is the most important feature, but the clinical presentation and the patient's age and gender are also important. Magnetic resonance (MR) imaging plays a central role in the imaging of spinal tumors, easily allowing tumors to be classified as extradural, intradural-extramedullary or intramedullary, which is very useful in tumor characterization. In the evaluation of lesions of the osseous spine both computed tomography (CT) and MR are important. We describe the most common spinal tumors in detail. In general, extradural lesions are the most common with metastasis being the most frequent. Intradural tumors are rare, and the majority is extramedullary, with meningiomas and nerve sheath tumors being the most frequent. Intramedullary tumors are uncommon spinal tumors. Astrocytomas and ependymomas comprise the majority of the intramedullary tumors. The most important tumors are documented with appropriate high quality CT or MR images and the characteristics of these tumors are also summarized in a comprehensive table. Finally we illustrate the use of the new World Health Organization (WHO) classification of neoplasms affecting the central nervous system

  20. Brain Tumors

    Science.gov (United States)

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  1. Urogenital tumors

    Energy Technology Data Exchange (ETDEWEB)

    Weller, R.E.

    1994-03-01

    An overview is provided for veterinary care of urogenital tumors in companion animals, especially the dog. Neoplasms discussed include tumors of the kidney, urinary bladder, prostate, testis, ovary, vagina, vulva and the canine transmissible venereal tumor. Topics addressed include description, diagnosis and treatment.

  2. Simple automated preparation of O-[{sup 11}C]methyl-L-tyrosine for routine clinical use

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Yoichi [CYRIC Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578 (Japan); Iwata, Ren [CYRIC Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578 (Japan)]. E-mail: rencyric@cyric.tohoku.ac.jp; Furumoto, Shozo [TUBERO, Tohoku University, Sendai 980-8575 (Japan); Pascali, Claudio [National Cancer Institute, 20133 Milan (Italy); Bogni, Anna [National Cancer Institute, 20133 Milan (Italy); Kubota, Kazuo [International Medical Center, Tokyo 162-8655 (Japan); Ishiwata, Kiichi [Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0022 (Japan)

    2005-07-01

    The previously reported preparation of O-[{sup 11}C]methyl-L-tyrosine ([{sup 11}C]MT), a promising tumor imaging agent, has been now considerably simplified and automated. Main changes were the use of [{sup 11}C]methyl iodide ([{sup 11}C]MeI) in the reaction with L-tyrosine disodium and the use of solid phase extraction on commercially available cartridges instead of HPLC for the final purification. An injectable saline solution of [{sup 11}C]MT was obtained within 30 min after EOB with radiochemical yield of ca. 60% (decay-corrected, based on [{sup 11}C]MeI). Radiochemical purity was over 97%. The automated preparation was carried out using a miniature module employing manifold valves.

  3. Eating to stop: Tyrosine supplementation enhances inhibitory control but not response execution

    NARCIS (Netherlands)

    Colzato, L.S.; Jongkees, B.J.; Sellaro, R.; van den Wildenberg, W.P.M.; Hommel, B.

    2014-01-01

    Animal studies and research in humans have shown that the supplementation of tyrosine, or tyrosine-containing diets, increase the plasma tyrosine and enhance brain dopamine (DA). However, the strategy of administering tyrosine (and the role of DA therein) to enhance cognition is unclear and heavily

  4. Cytochrome c Is Tyrosine 97 Phosphorylated by Neuroprotective Insulin Treatment

    Czech Academy of Sciences Publication Activity Database

    Sanderson, T. H.; Mahapatra, G.; Pecina, Petr; Ji, Q.; Yu, K.; Sinkler, Ch.; Varughese, A.; Kumar, R.; Bukowski, M. J.; Tousignant, R. N.; Salomon, A. R.; Lee, I.; Hüttemann, M.

    2013-01-01

    Roč. 8, č. 11 (2013), e78627 E-ISSN 1932-6203 Institutional support: RVO:67985823 Keywords : cytochrome c * tyrosine phosphorylation * brain ischemia * insulin Subject RIV: ED - Physiology Impact factor: 3.534, year: 2013

  5. Electrode Potentials of l-Tryptophan, l-Tyrosine, 3-Nitro-l-tyrosine, 2,3-Difluoro-l-tyrosine, and 2,3,5-Trifluoro-l-tyrosine.

    Science.gov (United States)

    Mahmoudi, Leila; Kissner, Reinhard; Nauser, Thomas; Koppenol, Willem H

    2016-05-24

    Electrode potentials for aromatic amino acid radical/amino acid couples were deduced from cyclic voltammograms and pulse radiolysis experiments. The amino acids investigated were l-tryptophan, l-tyrosine, N-acetyl-l-tyrosine methyl ester, N-acetyl-3-nitro-l-tyrosine ethyl ester, N-acetyl-2,3-difluoro-l-tyrosine methyl ester, and N-acetyl-2,3,5-trifluoro-l-tyrosine methyl ester. Conditional potentials were determined at pH 7.4 for all compounds listed; furthermore, Pourbaix diagrams for l-tryptophan, l-tyrosine, and N-acetyl-3-nitro-l-tyrosine ethyl ester were obtained. Electron transfer accompanied by proton transfer is reversible, as confirmed by detailed analysis of the current waves, and because the slopes of the Pourbaix diagrams obey Nernst's law. E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH) at pH 7 are 0.99 ± 0.01 and 0.97 ± 0.01 V, respectively. Pulse radiolysis studies of two dipeptides that contain both amino acids indicate a difference in E°' of approximately 0.06 V. Thus, in small peptides, we recommend values of 1.00 and 0.96 V for E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH), respectively. The electrode potential of N-acetyl-3-nitro-l-tyrosine ethyl ester is higher, while because of mesomeric stabilization of the radical, those of N-acetyl-2,3-difluoro-l-tyrosine methyl ester and N-acetyl-2,3,5-trifluoro-l-tyrosine methyl ester are lower than that of tyrosine. Given that the electrode potentials at pH 7 of E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH) are nearly equal, they would be, in principle, interchangeable. Proton-coupled electron transfer pathways in proteins that use TrpH and TyrOH are thus nearly thermoneutral.

  6. Tyrosine phosphorylation switching of a G protein.

    Science.gov (United States)

    Li, Bo; Tunc-Ozdemir, Meral; Urano, Daisuke; Jia, Haiyan; Werth, Emily G; Mowrey, David D; Hicks, Leslie M; Dokholyan, Nikolay V; Torres, Matthew P; Jones, Alan M

    2018-03-30

    Heterotrimeric G protein complexes are molecular switches relaying extracellular signals sensed by G protein-coupled receptors (GPCRs) to downstream targets in the cytoplasm, which effect cellular responses. In the plant heterotrimeric GTPase cycle, GTP hydrolysis, rather than nucleotide exchange, is the rate-limiting reaction and is accelerated by a receptor-like regulator of G signaling (RGS) protein. We hypothesized that posttranslational modification of the Gα subunit in the G protein complex regulates the RGS-dependent GTPase cycle. Our structural analyses identified an invariant phosphorylated tyrosine residue (Tyr 166 in the Arabidopsis Gα subunit AtGPA1) located in the intramolecular domain interface where nucleotide binding and hydrolysis occur. We also identified a receptor-like kinase that phosphorylates AtGPA1 in a Tyr 166 -dependent manner. Discrete molecular dynamics simulations predicted that phosphorylated Tyr 166 forms a salt bridge in this interface and potentially affects the RGS protein-accelerated GTPase cycle. Using a Tyr 166 phosphomimetic substitution, we found that the cognate RGS protein binds more tightly to the GDP-bound Gα substrate, consequently reducing its ability to accelerate GTPase activity. In conclusion, we propose that phosphorylation of Tyr 166 in AtGPA1 changes the binding pattern with AtRGS1 and thereby attenuates the steady-state rate of the GTPase cycle. We coin this newly identified mechanism "substrate phosphoswitching." © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Tyrosine biosynthesis, metabolism, and catabolism in plants.

    Science.gov (United States)

    Schenck, Craig A; Maeda, Hiroshi A

    2018-05-01

    L-Tyrosine (Tyr) is an aromatic amino acid (AAA) required for protein synthesis in all organisms, but synthesized de novo only in plants and microorganisms. In plants, Tyr also serves as a precursor of numerous specialized metabolites that have diverse physiological roles as electron carriers, antioxidants, attractants, and defense compounds. Some of these Tyr-derived plant natural products are also used in human medicine and nutrition (e.g. morphine and vitamin E). While the Tyr biosynthesis and catabolic pathways have been extensively studied in microbes and animals, respectively, those of plants have received much less attention until recently. Accumulating evidence suggest that the Tyr biosynthetic pathways differ between microbes and plants and even within the plant kingdom, likely to support the production of lineage-specific plant specialized metabolites derived from Tyr. The interspecies variations of plant Tyr pathway enzymes can now be used to enhance the production of Tyr and Tyr-derived compounds in plants and other synthetic biology platforms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Inhibition of the Receptor Tyrosine Kinase AXL Restores Paclitaxel Chemosensitivity in Uterine Serous Cancer.

    Science.gov (United States)

    Palisoul, Marguerite L; Quinn, Jeanne M; Schepers, Emily; Hagemann, Ian S; Guo, Lei; Reger, Kelsey; Hagemann, Andrea R; McCourt, Carolyn K; Thaker, Premal H; Powell, Matthew A; Mutch, David G; Fuh, Katherine C

    2017-12-01

    Uterine serous cancer (USC) is aggressive, and the majority of recurrent cases are chemoresistant. Because the receptor tyrosine kinase AXL promotes invasion and metastasis of USC and is implicated in chemoresistance in other cancers, we assessed the role of AXL in paclitaxel resistance in USC, determined the mechanism of action, and sought to restore chemosensitivity by inhibiting AXL in vitro and in vivo We used short hairpin RNAs and BGB324 to knock down and inhibit AXL. We assessed sensitivity of USC cell lines to paclitaxel and measured paclitaxel intracellular accumulation in vitro in the presence or absence of AXL. We also examined the role of the epithelial-mesenchymal transition (EMT) in AXL-mediated paclitaxel resistance. Finally, we treated USC xenografts with paclitaxel, BGB324, or paclitaxel plus BGB324 and monitored tumor burden. AXL expression was higher in chemoresistant USC patient tumors and cell lines than in chemosensitive tumors and cell lines. Knockdown or inhibition of AXL increased sensitivity of USC cell lines to paclitaxel in vitro and increased cellular accumulation of paclitaxel. AXL promoted chemoresistance even in cells that underwent the EMT in vitro Finally, in vivo studies of combination treatment with BGB324 and paclitaxel showed a greater than 51% decrease in tumor volume after 2 weeks of treatment when compared with no treatment or single-agent treatments ( P USC. Mol Cancer Ther; 16(12); 2881-91. ©2017 AACR . ©2017 American Association for Cancer Research.

  9. Tumor immunology

    International Nuclear Information System (INIS)

    Otter, W. den

    1987-01-01

    Tumor immunology, the use of immunological techniques for tumor diagnosis and approaches to immunotherapy of cancer are topics covered in this multi-author volume. Part A, 'Tumor Immunology', deals with present views on tumor-associated antigens, the initiation of immune reactions of tumor cells, effector cell killing, tumor cells and suppression of antitumor immunity, and one chapter dealing with the application of mathematical models in tumor immunology. Part B, 'Tumor Diagnosis and Imaging', concerns the use of markers to locate the tumor in vivo, for the histological diagnosis, and for the monitoring of tumor growth. In Part C, 'Immunotherapy', various experimental approaches to immunotherapy are described, such as the use of monoclonal antibodies to target drugs, the use of interleukin-2 and the use of drugs inhibiting suppression. In the final section, the evaluation, a pathologist and a clinician evaluate the possibilities and limitations of tumor immunology and the extent to which it is useful for diagnosis and therapy. refs.; figs.; tabs

  10. Autophosphorylation of JAK2 on tyrosines 221 and 570 regulates its activity

    DEFF Research Database (Denmark)

    Argetsinger, Lawrence S; Kouadio, Jean-Louis K; Steen, Hanno

    2004-01-01

    or which of the 49 tyrosines in JAK2 are autophosphorylated. In this study, mass spectrometry and two-dimensional peptide mapping were used to determine that tyrosines 221, 570, and 1007 in JAK2 are autophosphorylated. Phosphorylation of tyrosine 570 is particularly robust. In response to growth hormone......, JAK2 was rapidly and transiently phosphorylated at tyrosines 221 and 570, returning to basal levels by 60 min. Analysis of the sequences surrounding tyrosines 221 and 570 in JAK2 and tyrosines in other proteins that are phosphorylated in response to ligands that activate JAK2 suggests that the YXX......[L/I/V] motif is one of the motifs recognized by JAK2. Experiments using JAK2 with tyrosines 221 and 570 mutated to phenylalanine suggest that tyrosines 221 and 570 in JAK2 may serve as regulatory sites in JAK2, with phosphorylation of tyrosine 221 increasing kinase activity and phosphorylation of tyrosine 570...

  11. Protein tyrosine phosphatases in glioma biology.

    NARCIS (Netherlands)

    Navis, A.C.; Eijnden, M. van den; Schepens, J.T.G.; Hooft van Huijsduijnen, R.; Wesseling, P.; Hendriks, W.J.A.J.

    2010-01-01

    Gliomas are a diverse group of brain tumors of glial origin. Most are characterized by diffuse infiltrative growth in the surrounding brain. In combination with their refractive nature to chemotherapy this makes it almost impossible to cure patients using combinations of conventional therapeutic

  12. Synthesis of 14C-labelled α-methyl tyrosine

    International Nuclear Information System (INIS)

    Rajagopal, S.; Venkatachalam, T.K.; Conway, T.; Diksic, M.

    1992-01-01

    A new route for the preparation of radioactively labelled α-methyl L-tyrosine is described. The labelling at the α position has been successfully achieved with 14 C-, 11 C- (very preliminary, unpublished), and 3 H-labelled methyl iodide. A detailed report on 14 C-labelling at the α position and the hydrolysis of 4-methoxy α-methyl phenylalanine is presented. The alkylation proceeds via the methylation of the carbanion of N-benzylidene 4-methoxy phenylalanine methyl ester 2. Hydrolysis of 4-O methyl tyrosine to tyrosine by HBr and HI were analysed and used in the optimization of the hydrolysis conditions of 4. Enantiomeric purity of the isolated L-isomer has been found to be 99% as judged by HPLC. Pseudo first-order rate constant for the hydrolysis of 14 C-labelled α-methyl 4-methoxy phenyl alanine methyl ester was determined. Preliminary findings of the 3 H- and 11 C-radiolabelled α-methyl tyrosine (methyl labelled) are also mentioned. For the first time it was shown that α-methyl D,L-tyrosine can be separated into enantiomerically pure α-methyl D- and L-tyrosine using a CHIRALPAK WH column. (author)

  13. Tyrosine kinase receptor inhibitor-targeted combined chemotherapy for metastatic bladder cancer

    Directory of Open Access Journals (Sweden)

    Chia-Lun Wu

    2012-04-01

    Full Text Available Overexpression of hypoxia-inducible factor-1 alpha is noted during the invasive and metastatic process of transitional cell carcinoma. It will upregulate vascular endothelial growth factor (VEGF and drive proliferation, invasiveness, metastasis, and antiapoptotic ability of cancer cells. We proposed that tyrosine kinase receptor inhibitor, sunitinib malate—(Sutent; Pfizer Inc., Taiwan, combined with chemotherapeutic drug may present synergistic cytotoxic enhancement to transitional cell carcinoma cells with subsequent inhibition of their cellular behaviors, including proliferation, invasiveness, and metastatic activity. The contents of VEGF-A in mouse bladder tumor cells (MBT-2 and culture medium were detected by quantification-polymerase chain reaction and Western blot individually. The inhibitory concentrations of various chemotherapeutic drugs, sunitinib, and their combination treatment in MBT-2 were determined by 3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide (MTT assay. Microchamber transmembrane migration assay was applied in evaluation of the inhibitory effects of different dosages of sunitinib and combination treatment on tumor cells. The cell cycle and apoptosis were analyzed after combination therapy by flow cytometry. Variation in apoptotic pathway was elucidated by Western blot using specific antibodies with cleaved PARP and caspase-3. Metastatic animal model mimicked by tail vein injection of MBT-2 cells was used to evaluate the treatment efficiency in tumor weight and survival rate. The mRNA and protein level of VEGF-A in MBT-2 cells increased by 70% at 48 hours interval under hypoxia stress condition. In MTT assay, MBT-2 cells had shown the highest sensitivity to epirubicin. Sunitinib combined with epirubicin had shown a synergistic cytotoxic effect to MBT-2 cells. Sunitinib and its combination with epirubicin showed significant inhibition on MBT-2 cells migration in microchambers. G2/M phase arrest and

  14. Metformin as a prevention and treatment for preeclampsia: effects on soluble fms-like tyrosine kinase 1 and soluble endoglin secretion and endothelial dysfunction.

    Science.gov (United States)

    Brownfoot, Fiona C; Hastie, Roxanne; Hannan, Natalie J; Cannon, Ping; Tuohey, Laura; Parry, Laura J; Senadheera, Sevvandi; Illanes, Sebastian E; Kaitu'u-Lino, Tu'uhevaha J; Tong, Stephen

    2016-03-01

    Preeclampsia is associated with placental ischemia/hypoxia and secretion of soluble fms-like tyrosine kinase 1 and soluble endoglin into the maternal circulation. This causes widespread endothelial dysfunction that manifests clinically as hypertension and multisystem organ injury. Recently, small molecule inhibitors of hypoxic inducible factor 1α have been found to reduce soluble fms-like tyrosine kinase 1 and soluble endoglin secretion. However, their safety profile in pregnancy is unknown. Metformin is safe in pregnancy and is also reported to inhibit hypoxic inducible factor 1α by reducing mitochondrial electron transport chain activity. The purposes of this study were to determine (1) the effects of metformin on placental soluble fms-like tyrosine kinase 1 and soluble endoglin secretion, (2) to investigate whether the effects of metformin on soluble fms-like tyrosine kinase 1 and soluble endoglin secretion are regulated through the mitochondrial electron transport chain, and (3) to examine its effects on endothelial dysfunction, maternal blood vessel vasodilation, and angiogenesis. We performed functional (in vitro and ex vivo) experiments using primary human tissues to examine the effects of metformin on soluble fms-like tyrosine kinase 1 and soluble endoglin secretion from placenta, endothelial cells, and placental villous explants. We used succinate, mitochondrial complex II substrate, to examine whether the effects of metformin on soluble fms-like tyrosine kinase 1 and soluble endoglin secretion were mediated through the mitochondria. We also isolated mitochondria from preterm preeclamptic placentas and gestationally matched control subjects and measured mitochondrial electron transport chain activity using kinetic spectrophotometric assays. Endothelial cells or whole maternal vessels were incubated with metformin to determine whether it rescued endothelial dysfunction induced by either tumor necrosis factor-α (to endothelial cells) or placenta villous

  15. Novel Mutations in the Tyrosine Hydroxylase Gene in the First Czech Patient with Tyrosine Hydroxylase Deficiency

    Directory of Open Access Journals (Sweden)

    K. Szentiványi

    2012-01-01

    Full Text Available Tyrosine hydroxylase deficiency manifests mainly in early childhood and includes two clinical phenotypes: an infantile progressive hypokinetic-rigid syndrome with dystonia (type A and a neonatal complex encephalopathy (type B. The biochemical diagnostics is exclusively based on the quantitative determination of the neurotransmitters or their metabolites in cerebrospinal fluid (CSF. The implementation of neurotransmitter analysis in clinical praxis is necessary for early diagnosis and adequate treatment. Neurotransmitter metabolites in CSF were analyzed in 82 children (at the age 1 month to 17 years with clinical suspicion for neurometabolic disorders using high performance liquid chromatography (HPLC with electrochemical detection. The CSF level of homovanillic acid (HVA was markedly decreased in three children (64, 79 and 94 nmol/l in comparison to age related controls (lower limit 218–450 nmol/l. Neurological findings including severe psychomotor retardation, quadruspasticity and microcephaly accompanied with marked dystonia, excessive sweating in the first patient was compatible with the diagnosis of tyrosine hydroxylase (TH deficiency (type B and subsequent molecular analysis revealed two novel heterozygous mutations c.636A>C and c.1124G>C in the TH gene. The treatment with L-DOPA/carbidopa resulted in the improvement of dystonia. Magnetic resonance imaging studies in two other patients with microcephaly revealed postischaemic brain damage, therefore secondary HVA deficit was considered in these children. Diagnostic work-up in patients with neurometabolic disorders should include analysis of neurotransmitter metabolites in CSF.

  16. Salivary peptide tyrosine-tyrosine 3-36 modulates ingestive behavior without inducing taste aversion.

    Science.gov (United States)

    Hurtado, Maria D; Sergeyev, Valeriy G; Acosta, Andres; Spegele, Michael; La Sala, Michael; Waler, Nickolas J; Chiriboga-Hurtado, Juan; Currlin, Seth W; Herzog, Herbert; Dotson, Cedrick D; Gorbatyuk, Oleg S; Zolotukhin, Sergei

    2013-11-20

    Hormone peptide tyrosine-tyrosine (PYY) is secreted into circulation from the gut L-endocrine cells in response to food intake, thus inducing satiation during interaction with its preferred receptor, Y2R. Clinical applications of systemically administered PYY for the purpose of reducing body weight were compromised as a result of the common side effect of visceral sickness. We describe here a novel approach of elevating PYY in saliva in mice, which, although reliably inducing strong anorexic responses, does not cause aversive reactions. The augmentation of salivary PYY activated forebrain areas known to mediate feeding, hunger, and satiation while minimally affecting brainstem chemoreceptor zones triggering nausea. By comparing neuronal pathways activated by systemic versus salivary PYY, we identified a metabolic circuit associated with Y2R-positive cells in the oral cavity and extending through brainstem nuclei into hypothalamic satiety centers. The discovery of this alternative circuit that regulates ingestive behavior without inducing taste aversion may open the possibility of a therapeutic application of PYY for the treatment of obesity via direct oral application.

  17. Gastrointestinal stromal tumor: a case report and review of the literature

    International Nuclear Information System (INIS)

    Macedo, Leonardo Lopes de; Torres, Lucas Rios; Faucz, Rafael Artigas; Tornin, Olger de Souza; Souza, Ricardo Pires de; Fonseca, Carlos Alberto Marcovechio

    2006-01-01

    Gastrointestinal stromal tumors are the most common mesenchymal tumors and are characterized by expression of KIT (CD117), a tyrosine-kinase growth factor receptor. They occur in individuals over 50 years of age and commonly arise in stomach or in the small intestine. To emphasize our paper we report a case of gastrointestinal stromal tumor that showed the typical image and pathologic findings of the primary lesion and its metastases. (author)

  18. Implications of tyrosine phosphoproteomics in cervical carcinogenesis

    Directory of Open Access Journals (Sweden)

    DeFord James

    2008-01-01

    Full Text Available Abstract Background Worldwide cervical cancer remains a leading cause of mortality from gynecologic malignancies. The link between cervical cancer and persistent infection with HPV has been established. At a molecular level little is known about the transition from the precancerous state to invasive cancer. To elucidate this process, cervical biopsies from human specimens were obtained from precancerous state to stage III disease. Methods Cervical biopsies were obtained from patients with a diagnosis of cervical cancer undergoing definitive surgery or staging operation. Biopsies were obtained from patients with precancerous lesions at the time of their excisional procedure. Control samples were obtained from patients undergoing hysterectomy for benign conditions such as fibroids. Samples were subjected to proteomic profiling using two dimensional gel electrophoresis with subsequent trypsin digestion followed by MALDI-TOF protein identification. Candidate proteins were then further studied using western blotting, immunoprecipitation and immunohistochemistry. Results Annexin A1 and DNA-PKcs were found to be differentially expressed. Phosphorylated annexin A1 was up regulated in diseased states in comparison to control and its level was strongly detected in the serum of cervical cancer patients compared to controls. DNA-PKcs was noted to be hyperphosphorylated and fragmented in cancer when compared to controls. By immunohistochemistry annexin A1 was noted in the vascular environment in cancer and certain precancerous samples. Conclusion This study suggests a probable role for protein tyrosine phosphorylation in cervical carcinogenesis. Annexin A1 and DNA-PK cs may have synergistic effects with HPV infection. Precancerous lesions that may progress to cervical cancer may be differentiated from lesions that will not base on similar immunohistochemical profile to invasive squamous cell carcinoma.

  19. Ibrutinib: a first in class covalent inhibitor of Bruton's tyrosine kinase.

    Science.gov (United States)

    Davids, Matthew S; Brown, Jennifer R

    2014-05-01

    Ibrutinib (formerly PCI-32765) is a potent, covalent inhibitor of Bruton's tyrosine kinase, a kinase downstream of the B-cell receptor that is critical for B-cell survival and proliferation. In preclinical studies, ibrutinib bound to Bruton's tyrosine kinase with high affinity, leading to inhibition of B-cell receptor signaling, decreased B-cell activation and induction of apoptosis. In clinical studies, ibrutinib has been well-tolerated and has demonstrated profound anti-tumor activity in a variety of hematologic malignancies, most notably chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL), leading to US FDA approval for relapsed CLL and MCL. Ongoing studies are evaluating ibrutinib in other types of non-Hodgkin's lymphoma, such as diffuse large B-cell lymphoma and Waldenström's macrogobulinemia, in larger Phase III studies in CLL and MCL, and in combination studies with monoclonal antibodies and chemotherapy. Future studies will combine ibrutinib with other promising novel agents currently in development in hematologic malignancies.

  20. Ibrutinib: a first in class covalent inhibitor of Bruton’s tyrosine kinase

    Science.gov (United States)

    Davids, Matthew S; Brown, Jennifer R

    2015-01-01

    Ibrutinib (formerly PCI-32765) is a potent, covalent inhibitor of Bruton’s tyrosine kinase, a kinase downstream of the B-cell receptor that is critical for B-cell survival and proliferation. In preclinical studies, ibrutinib bound to Bruton’s tyrosine kinase with high affinity, leading to inhibition of B-cell receptor signaling, decreased B-cell activation and induction of apoptosis. In clinical studies, ibrutinib has been well-tolerated and has demonstrated profound anti-tumor activity in a variety of hematologic malignancies, most notably chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL), leading to US FDA approval for relapsed CLL and MCL. Ongoing studies are evaluating ibrutinib in other types of non-Hodgkin’s lymphoma, such as diffuse large B-cell lymphoma and Waldenström’s macrogobulinemia, in larger Phase III studies in CLL and MCL, and in combination studies with monoclonal antibodies and chemotherapy. Future studies will combine ibrutinib with other promising novel agents currently in development in hematologic malignancies. PMID:24941982

  1. Suppressor of cytokine signaling 1 interacts with oncogenic lymphocyte-specific protein tyrosine kinase.

    Science.gov (United States)

    Venkitachalam, Srividya; Chueh, Fu-Yu; Leong, King-Fu; Pabich, Samantha; Yu, Chao-Lan

    2011-03-01

    Lymphocyte-specific protein tyrosine kinase (Lck) plays a key role in T cell signal transduction and is tightly regulated by phosphorylation and dephosphorylation. Lck can function as an oncoprotein when overexpressed or constantly activated by mutations. Our previous studies showed that Lck-induced cellular transformation could be suppressed by enforced expression of suppressor of cytokine signaling 1 (SOCS1), a SOCS family member involved in the negative feedback control of cytokine signaling. We observed attenuated Lck kinase activity in SOCS1-expressing cells, suggesting an important role of SOCS in regulating Lck functions. It remains largely unknown whether and how SOCS proteins interact with the oncogenic Lck kinase. Here, we report that among four SOCS family proteins, SOCS1, SOCS2, SOCS3 and CIS (cytokine-inducible SH2 domain containing protein), SOCS1 has the highest affinity in binding to the oncogenic Lck kinase. We identified the positive regulatory phosphotyrosine 394 residue in the kinase domain as the key interacting determinant in Lck. Additionally, the Lck kinase domain alone is sufficient to bind SOCS1. While the SH2 domain in SOCS1 is important in its association with the oncogenic Lck kinase, other functional domains may also contribute to overall binding affinity. These findings provide important mechanistic insights into the role of SOCS proteins as tumor suppressors in cells transformed by oncogenic protein tyrosine kinases.

  2. Lemur Tyrosine Kinase-3 Suppresses Growth of Prostate Cancer Via the AKT and MAPK Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Pengcheng Sun

    2017-08-01

    Full Text Available Background/Aims: Lemur tyrosine kinase (LMTK-3 is a member of the receptor tyrosine kinase (RTK family. Abnormal expression of LMTK-3 exists in various types of cancers, especially in endocrine-resistant breast cancers; however, the precise level of expression and the biological function in prostate cancer are poorly understood. Methods: In the present study, we determined the expression of LMTK-3 in prostate cancer using immunohistochemistry and Western blotting. We infected PC3 and LNCaP cells with lentivirus-LMTK-3 and observed the biologic characteristics of the PC3 and LNCaP cells in vitro with TUNEL, and migration and invasion assays, respectively. We also established a transplant tumor model of human prostate cancer with infected cells in 15 BALB/c-nu/nu nude mice. Results: LMTK-3 was expressed in prostate epithelial cells. There was a significant decline in the level of LMTK-3 expression in prostate cancers compared to normal tissues. LMTK-3 inhibited PC3 and LNCaP cell growth, migration, and invasion, and induced cell apoptosis in vitro. We also observed that LMTK-3 induced PC3 cell apoptosis in vivo. Further study showed that LMTK-3 inhibited phosphorylation of AKT and ERK, and promoted phosphorylation and activation of p38 kinase and Jun kinase (JNK. Conclusion: Recombinant lentivirus with enhanced expression of LMTK-3 inhibited prostate cancer cell growth and induced apoptosis in vitro and in vivo. AKT and MAPK signaling pathways may contribute to the process.

  3. Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration

    Directory of Open Access Journals (Sweden)

    Silvina Bartesaghi

    2018-04-01

    Full Text Available In this review we provide an analysis of the biochemistry of peroxynitrite and tyrosine nitration. Peroxynitrite is the product of the diffusion-controlled reaction between superoxide (O2•- and nitric oxide (•NO. This process is in competition with the enzymatic dismutation of O2•- and the diffusion of •NO across cells and tissues and its reaction with molecular targets (e.g. guanylate cyclase. Understanding the kinetics and compartmentalization of the O2•- / •NO interplay is critical to rationalize the shift of •NO from a physiological mediator to a cytotoxic intermediate. Once formed, peroxynitrite (ONOO- and ONOOH; pKa = 6,8 behaves as a strong one and two-electron oxidant towards a series of biomolecules including transition metal centers and thiols. In addition, peroxynitrite anion can secondarily evolve to secondary radicals either via its fast reaction with CO2 or through proton-catalyzed homolysis. Thus, peroxynitrite can participate in direct (bimolecular and indirect (through secondary radical intermediates oxidation reactions; through these processes peroxynitrite can participate as cytotoxic effector molecule against invading pathogens and/or as an endogenous pathogenic mediator. Peroxynitrite can cause protein tyrosine nitration in vitro and in vivo. Indeed, tyrosine nitration is a hallmark of the reactions of •NO-derived oxidants in cells and tissues and serves as a biomarker of oxidative damage. Protein tyrosine nitration can mediate changes in protein structure and function that affect cell homeostasis. Tyrosine nitration in biological systems is a free radical process that can be promoted either by peroxynitrite-derived radicals or by other related •NO-dependent oxidative processes. Recently, mechanisms responsible of tyrosine nitration in hydrophobic biostructures such as membranes and lipoproteins have been assessed and involve the parallel occurrence and connection with lipid

  4. Receptor tyrosine kinase EphA5 is a functional molecular target in human lung cancer.

    Science.gov (United States)

    Staquicini, Fernanda I; Qian, Ming D; Salameh, Ahmad; Dobroff, Andrey S; Edwards, Julianna K; Cimino, Daniel F; Moeller, Benjamin J; Kelly, Patrick; Nunez, Maria I; Tang, Ximing; Liu, Diane D; Lee, J Jack; Hong, Waun Ki; Ferrara, Fortunato; Bradbury, Andrew R M; Lobb, Roy R; Edelman, Martin J; Sidman, Richard L; Wistuba, Ignacio I; Arap, Wadih; Pasqualini, Renata

    2015-03-20

    Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. Finally, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lung cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Tumoral tracers

    International Nuclear Information System (INIS)

    Camargo, E.E.

    1979-01-01

    Direct tumor tracers are subdivided in the following categories:metabolite tracers, antitumoral tracers, radioactive proteins and cations. Use of 67 Ga-citrate as a clinically important tumoral tracer is emphasized and gallium-67 whole-body scintigraphy is discussed in detail. (M.A.) [pt

  6. Tyrosine sulfation modulates activity of tick-derived thrombin inhibitors

    Science.gov (United States)

    Thompson, Robert E.; Liu, Xuyu; Ripoll-Rozada, Jorge; Alonso-García, Noelia; Parker, Benjamin L.; Pereira, Pedro José Barbosa; Payne, Richard J.

    2017-09-01

    Madanin-1 and chimadanin are two small cysteine-free thrombin inhibitors that facilitate blood feeding in the tick Haemaphysalis longicornis. Here, we report a post-translational modification—tyrosine sulfation—of these two proteins that is critical for potent anti-thrombotic and anticoagulant activity. Inhibitors produced in baculovirus-infected insect cells displayed heterogeneous sulfation of two tyrosine residues within each of the proteins. One-pot ligation-desulfurization chemistry enabled access to homogeneous samples of all possible sulfated variants of the proteins. Tyrosine sulfation of madanin-1 and chimadanin proved crucial for thrombin inhibitory activity, with the doubly sulfated variants three orders of magnitude more potent than the unmodified inhibitors. The three-dimensional structure of madanin-1 in complex with thrombin revealed a unique mode of inhibition, with the sulfated tyrosine residues binding to the basic exosite II of the protease. The importance of tyrosine sulfation within this family of thrombin inhibitors, together with their unique binding mode, paves the way for the development of anti-thrombotic drug leads based on these privileged scaffolds.

  7. Lapatinib Plasma and Tumor Concentrations and Effects on HER Receptor Phosphorylation in Tumor.

    Directory of Open Access Journals (Sweden)

    Neil L Spector

    Full Text Available The paradigm shift in cancer treatment from cytotoxic drugs to tumor targeted therapies poses new challenges, including optimization of dose and schedule based on a biologically effective dose, rather than the historical maximum tolerated dose. Optimal dosing is currently determined using concentrations of tyrosine kinase inhibitors in plasma as a surrogate for tumor concentrations. To examine this plasma-tumor relationship, we explored the association between lapatinib levels in tumor and plasma in mice and humans, and those effects on phosphorylation of human epidermal growth factor receptors (HER in human tumors.Mice bearing BT474 HER2+ human breast cancer xenografts were dosed once or twice daily (BID with lapatinib. Drug concentrations were measured in blood, tumor, liver, and kidney. In a randomized phase I clinical trial, 28 treatment-naïve female patients with early stage HER2+ breast cancer received lapatinib 1000 or 1500 mg once daily (QD or 500 mg BID before evaluating steady-state lapatinib levels in plasma and tumor.In mice, lapatinib levels were 4-fold higher in tumor than blood with a 4-fold longer half-life. Tumor concentrations exceeded the in vitro IC90 (~ 900 nM or 500 ng/mL for inhibition of HER2 phosphorylation throughout the 12-hour dosing interval. In patients, tumor levels were 6- and 10-fold higher with QD and BID dosing, respectively, compared to plasma trough levels. The relationship between tumor and plasma concentration was complex, indicating multiple determinants. HER receptor phosphorylation varied depending upon lapatinib tumor concentrations, suggestive of changes in the repertoire of HER homo- and heterodimers.Plasma lapatinib concentrations underestimated tumor drug levels, suggesting that optimal dosing should be focused on the site of action to avoid to inappropriate dose escalation. Larger clinical trials are required to determine optimal dose and schedule to achieve tumor concentrations that maximally

  8. Animal tumors

    International Nuclear Information System (INIS)

    Gillette, E.L.

    1983-01-01

    There are few trained veterinary radiation oncologists and the expense of facilities has limited the extent to which this modality is used. In recent years, a few cobalt teletherapy units and megavoltage x-ray units have been employed in larger veterinary institutions. In addition, some radiation oncologists of human medical institutions are interested and willing to cooperate with veterinarians in the treatment of animal tumors. Carefully designed studies of the response of animal tumors to new modalities serve two valuable purposes. First, these studies may lead to improved tumor control in companion animals. Second, these studies may have important implications to the improvement of therapy of human tumors. Much remains to be learned of animal tumor biology so that appropriate model systems can be described for such studies. Many of the latter studies can be sponsored by agencies interested in the improvement of cancer management

  9. TAM receptor tyrosine kinases as emerging targets of innate immune checkpoint blockade for cancer therapy.

    Science.gov (United States)

    Akalu, Yemsratch T; Rothlin, Carla V; Ghosh, Sourav

    2017-03-01

    Cancer immunotherapy utilizing T-cell checkpoint inhibitors has shown tremendous clinical success. Yet, this mode of treatment is effective in only a subset of patients. Unresponsive patients tend to have non-T-cell-inflamed tumors that lack markers associated with the activation of adaptive anti-tumor immune responses. Notably, elimination of cancer cells by T cells is critically dependent on the optimal activity of innate immune cells. Therefore, identifying new targets that regulate innate immune cell function and promote the engagement of adaptive tumoricidal responses is likely to lead to the development of improved therapies against cancer. Here, we review the TAM receptor tyrosine kinases-TYRO3, AXL, and MERTK-as an emerging class of innate immune checkpoints that participate in key steps of anti-tumoral immunity. Namely, TAM-mediated efferocytosis, negative regulation of dendritic cell activity, and dysregulated production of chemokines collectively favor the escape of malignant cells. Hence, disabling TAM signaling may promote engagement of adaptive immunity and complement T-cell checkpoint blockade. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Tyrosine-like condensed derivatives as tyrosinase inhibitors.

    Science.gov (United States)

    Matos, Maria João; Santana, Lourdes; Uriarte, Eugenio; Serra, Silvia; Corda, Marcella; Fadda, Maria Benedetta; Era, Benedetta; Fais, Antonella

    2012-05-01

    We report the pharmacological evaluation of a new series of 3-aminocoumarins differently substituted with hydroxyl groups, which have been synthesized because they include in their structures the tyrosine fragment (tyrosine-like compounds), with the aim of discovering structural features necessary for tyrosinase inhibitory activity. The synthesized compounds 4 and 7-9 were evaluated in vitro as mushroom tyrosinase inhibitors. Two of the described compounds showed lower IC50 (concentration giving 50% inhibition of tyrosinase activity) than umbelliferone, used as a reference compound. Compound 7 (IC50=53µm) was the best tyrosinase inhibitor of this small series, having an IC50 value 10-fold lower than umbelliferone. Compound 7 (3-amino-7-hydroxycoumarin) had amino and hydroxyl groups precisely mimicking the same positions that both groups occupy on the tyrosine molecule. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  11. Tyrosine residues modification studied by MALDI-TOF mass spectrometry

    International Nuclear Information System (INIS)

    Santrucek, Jiri; Strohalm, Martin; Kadlcik, Vojtech; Hynek, Radovan; Kodicek, Milan

    2004-01-01

    Amino acid residue-specific reactivity in proteins is of great current interest in structural biology as it provides information about solvent accessibility and reactivity of the residue and, consequently, about protein structure and possible interactions. In the work presented tyrosine residues of three model proteins with known spatial structure are modified with two tyrosine-specific reagents: tetranitromethane and iodine. Modified proteins were specifically digested by proteases and the mass of resulting peptide fragments was determined using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Our results show that there are only small differences in the extent of tyrosine residues modification by tetranitromethane and iodine. However, data dealing with accessibility of reactive residues obtained by chemical modifications are not completely identical with those obtained by nuclear magnetic resonance and X-ray crystallography. These interesting discrepancies can be caused by local molecular dynamics and/or by specific chemical structure of the residues surrounding

  12. Evaluation of Brachypodium distachyon L-Tyrosine Decarboxylase Using L-Tyrosine Over-Producing Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Shuhei Noda

    Full Text Available To demonstrate that herbaceous biomass is a versatile gene resource, we focused on the model plant Brachypodium distachyon, and screened the B. distachyon for homologs of tyrosine decarboxylase (TDC, which is involved in the modification of aromatic compounds. A total of 5 candidate genes were identified in cDNA libraries of B. distachyon and were introduced into Saccharomyces cerevisiae to evaluate TDC expression and tyramine production. It is suggested that two TDCs encoded in the transcripts Bradi2g51120.1 and Bradi2g51170.1 have L-tyrosine decarboxylation activity. Bradi2g51170.1 was introduced into the L-tyrosine over-producing strain of S. cerevisiae that was constructed by the introduction of mutant genes that promote deregulated feedback inhibition. The amount of tyramine produced by the resulting transformant was 6.6-fold higher (approximately 200 mg/L than the control strain, indicating that B. distachyon TDC effectively converts L-tyrosine to tyramine. Our results suggest that B. distachyon possesses enzymes that are capable of modifying aromatic residues, and that S. cerevisiae is a suitable host for the production of L-tyrosine derivatives.

  13. Skin peptide tyrosine-tyrosine, a member of the pancreatic polypeptide family: isolation, structure, synthesis, and endocrine activity.

    Science.gov (United States)

    Mor, A; Chartrel, N; Vaudry, H; Nicolas, P

    1994-10-25

    Pancreatic polypeptide, peptide tyrosine-tyrosine (PYY), and neuropeptide tyrosine (NPY), three members of a family of structurally related peptides, are mainly expressed in the endocrine pancreas, in endocrine cells of the gut, and in the brain, respectively. In the present study, we have isolated a peptide of the pancreatic polypeptide family from the skin of the South American arboreal frog Phyllomedusa bicolor. The primary structure of the peptide was established as Tyr-Pro-Pro-Lys-Pro-Glu-Ser-Pro-Gly-Glu10-Asp-Ala-Ser-Pro-Glu-Glu- Met-Asn- Lys-Tyr20-Leu-Thr-Ala-Leu-Arg-His-Tyr-Ile-Asn-Leu30-Val-Thr- Arg-Gln-Arg-Tyr-NH2 . This unusual peptide, named skin peptide tyrosine-tyrosine (SPYY), exhibits 94% similarity with PYY from the frog Rana ridibunda. A synthetic replicate of SPYY inhibits melanotropin release from perifused frog neurointermediate lobes in very much the same way as NPY. These results demonstrate the occurrence of a PYY-like peptide in frog skin. Our data also suggest the existence of a pituitary-skin regulatory loop in amphibians.

  14. Tyrosine-Nitrated Proteins: Proteomic and Bioanalytical Aspects.

    Science.gov (United States)

    Batthyány, Carlos; Bartesaghi, Silvina; Mastrogiovanni, Mauricio; Lima, Analía; Demicheli, Verónica; Radi, Rafael

    2017-03-01

    "Nitroproteomic" is under active development, as 3-nitrotyrosine in proteins constitutes a footprint left by the reactions of nitric oxide-derived oxidants that are usually associated to oxidative stress conditions. Moreover, protein tyrosine nitration can cause structural and functional changes, which may be of pathophysiological relevance for human disease conditions. Biological protein tyrosine nitration is a free radical process involving the intermediacy of tyrosyl radicals; in spite of being a nonenzymatic process, nitration is selectively directed toward a limited subset of tyrosine residues. Precise identification and quantitation of 3-nitrotyrosine in proteins has represented a "tour de force" for researchers. Recent Advances: A small number of proteins are preferential targets of nitration (usually less than 100 proteins per proteome), contrasting with the large number of proteins modified by other post-translational modifications such as phosphorylation, acetylation, and, notably, S-nitrosation. Proteomic approaches have revealed key features of tyrosine nitration both in vivo and in vitro, including selectivity, site specificity, and effects in protein structure and function. Identification of 3-nitrotyrosine-containing proteins and mapping nitrated residues is challenging, due to low abundance of this oxidative modification in biological samples and its unfriendly behavior in mass spectrometry (MS)-based technologies, that is, MALDI, electrospray ionization, and collision-induced dissociation. The use of (i) classical two-dimensional electrophoresis with immunochemical detection of nitrated proteins followed by protein ID by regular MS/MS in combination with (ii) immuno-enrichment of tyrosine-nitrated peptides and (iii) identification of nitrated peptides by a MIDAS™ experiment is arising as a potent methodology to unambiguously map and quantitate tyrosine-nitrated proteins in vivo. Antioxid. Redox Signal. 26, 313-328.

  15. Cortactin Tyrosine Phosphorylation Promotes Its Deacetylation and Inhibits Cell Spreading

    Science.gov (United States)

    Meiler, Eugenia; Nieto-Pelegrín, Elvira; Martinez-Quiles, Narcisa

    2012-01-01

    Background Cortactin is a classical Src kinase substrate that participates in actin cytoskeletal dynamics by activating the Arp2/3 complex and interacting with other regulatory proteins, including FAK. Cortactin has various domains that may contribute to the assembly of different protein platforms to achieve process specificity. Though the protein is known to be regulated by post-translational modifications such as phosphorylation and acetylation, how tyrosine phosphorylation regulates cortactin activity is poorly understood. Since the basal level of tyrosine phosphorylation is low, this question must be studied using stimulated cell cultures, which are physiologically relevant but unreliable and difficult to work with. In fact, their unreliability may be the cause of some contradictory findings about the dynamics of tyrosine phosphorylation of cortactin in different processes. Methodology/Principal Findings In the present study, we try to overcome these problems by using a Functional Interaction Trap (FIT) system, which involves cotransfecting cells with a kinase (Src) and a target protein (cortactin), both of which are fused to complementary leucine-zipper domains. The FIT system allowed us to control precisely the tyrosine phosphorylation of cortactin and explore its relationship with cortactin acetylation. Conclusions/Significance Using this system, we provide definitive evidence that a competition exists between acetylation and tyrosine phosphorylation of cortactin and that phosphorylation inhibits cell spreading. We confirmed the results from the FIT system by examining endogenous cortactin in different cell types. Furthermore, we demonstrate that cell spreading promotes the association of cortactin and FAK and that tyrosine phosphorylation of cortactin disrupts this interaction, which may explain how it inhibits cell spreading. PMID:22479425

  16. Modular Engineering of l-Tyrosine Production in Escherichia coli

    Science.gov (United States)

    Juminaga, Darmawi; Baidoo, Edward E. K.; Redding-Johanson, Alyssa M.; Batth, Tanveer S.; Burd, Helcio; Mukhopadhyay, Aindrila; Petzold, Christopher J.

    2012-01-01

    Efficient biosynthesis of l-tyrosine from glucose is necessary to make biological production economically viable. To this end, we designed and constructed a modular biosynthetic pathway for l-tyrosine production in E. coli MG1655 by encoding the enzymes for converting erythrose-4-phosphate (E4P) and phosphoenolpyruvate (PEP) to l-tyrosine on two plasmids. Rational engineering to improve l-tyrosine production and to identify pathway bottlenecks was directed by targeted proteomics and metabolite profiling. The bottlenecks in the pathway were relieved by modifications in plasmid copy numbers, promoter strength, gene codon usage, and the placement of genes in operons. One major bottleneck was due to the bifunctional activities of quinate/shikimate dehydrogenase (YdiB), which caused accumulation of the intermediates dehydroquinate (DHQ) and dehydroshikimate (DHS) and the side product quinate; this bottleneck was relieved by replacing YdiB with its paralog AroE, resulting in the production of over 700 mg/liter of shikimate. Another bottleneck in shikimate production, due to low expression of the dehydroquinate synthase (AroB), was alleviated by optimizing the first 15 codons of the gene. Shikimate conversion to l-tyrosine was improved by replacing the shikimate kinase AroK with its isozyme, AroL, which effectively consumed all intermediates formed in the first half of the pathway. Guided by the protein and metabolite measurements, the best producer, consisting of two medium-copy-number, dual-operon plasmids, was optimized to produce >2 g/liter l-tyrosine at 80% of the theoretical yield. This work demonstrates the utility of targeted proteomics and metabolite profiling in pathway construction and optimization, which should be applicable to other metabolic pathways. PMID:22020510

  17. Synthesis of O-(2-[18F]fluoroethyl)-L-tyrosine based on a cartridge purification method

    International Nuclear Information System (INIS)

    Mueller, Dirk; Klette, Ingo; Kalb, Fabrizia; Baum, Richard P.

    2011-01-01

    Introduction: O-(2-[ 18 F]fluoroethyl)-L-tyrosine (FET) is widely used as a positron emission tomography tracer for brain tumors. Usually, a high-performance liquid chromatography (HPLC) purification at the end of the two-step synthesis is applied. In this work, we report an automatic radiosynthesis of FET with a purification procedure based on standard cartridges. Methods: O-(2-[ 18 F]fluoroethyl)-L-tyrosine was prepared by [ 18 F]fluoroethylation of L-tyrosine by a two-step synthesis using a modified [ 11 C]methionine module (Nuclear Interface). In the first reaction step, we synthesized [ 18 F]fluoroethyltosylate starting from [ 18 F]fluoride. After a purification step, L-tyrosine was [ 18 F]fluoroethylated with [ 18 F]fluoroethyltosylate. The final reaction mixture was purified by means of solid phase extraction. The FET was trapped on an SCX cartridge, eluted with saline solution and trapped again on an HRX cartridge. For a second purification step, the FET was eluted from the HRX cartridge with ammonium acetate buffer and collected on two SCX cartridges followed by a washing step with water. The final product was eluted with saline solution and neutralised with 450 μl NaHCO 3 solution (8.4%). Results: The synthesis was finished after 50 min and delivered the FET in a range of 3-16 GBq. The synthesis typically yielded 41% (21 experiments) of FET (d.c.) without an HPLC purification step. The radiochemical purity ranged between 97% and 100%. Conclusion: We present a radiosynthesis of FET where the usually used HPLC purification procedure has been substituted by a purification step based on standard cartridges. This method is useful for automatic modules without an expensive HPLC purification unit and for the routine production of FET.

  18. A new monoclonal antibody detects downregulation of protein tyrosine phosphatase receptor type γ in chronic myeloid leukemia patients

    Directory of Open Access Journals (Sweden)

    Marzia Vezzalini

    2017-06-01

    Full Text Available Abstract Background Protein tyrosine phosphatase receptor gamma (PTPRG is a ubiquitously expressed member of the protein tyrosine phosphatase family known to act as a tumor suppressor gene in many different neoplasms with mechanisms of inactivation including mutations and methylation of CpG islands in the promoter region. Although a critical role in human hematopoiesis and an oncosuppressor role in chronic myeloid leukemia (CML have been reported, only one polyclonal antibody (named chPTPRG has been described as capable of recognizing the native antigen of this phosphatase by flow cytometry. Protein biomarkers of CML have not yet found applications in the clinic, and in this study, we have analyzed a group of newly diagnosed CML patients before and after treatment. The aim of this work was to characterize and exploit a newly developed murine monoclonal antibody specific for the PTPRG extracellular domain (named TPγ B9-2 to better define PTPRG protein downregulation in CML patients. Methods TPγ B9-2 specifically recognizes PTPRG (both human and murine by flow cytometry, western blotting, immunoprecipitation, and immunohistochemistry. Results Co-localization experiments performed with both anti-PTPRG antibodies identified the presence of isoforms and confirmed protein downregulation at diagnosis in the Philadelphia-positive myeloid lineage (including CD34+/CD38bright/dim cells. After effective tyrosine kinase inhibitor (TKI treatment, its expression recovered in tandem with the return of Philadelphia-negative hematopoiesis. Of note, PTPRG mRNA levels remain unchanged in tyrosine kinase inhibitors (TKI non-responder patients, confirming that downregulation selectively occurs in primary CML cells. Conclusions The availability of this unique antibody permits its evaluation for clinical application including the support for diagnosis and follow-up of these disorders. Evaluation of PTPRG as a potential therapeutic target is also facilitated by the

  19. Receptor tyrosine phosphatase R-PTP-kappa mediates homophilic binding

    DEFF Research Database (Denmark)

    Sap, J; Jiang, Y P; Friedlander, D

    1994-01-01

    Receptor tyrosine phosphatases (R-PTPases) feature PTPase domains in the context of a receptor-like transmembrane topology. The R-PTPase R-PTP-kappa displays an extracellular domain composed of fibronectin type III motifs, a single immunoglobulin domain, as well as a recently defined MAM domain (Y...... not require PTPase activity or posttranslational proteolytic cleavage of the R-PTP-kappa protein and is calcium independent. The results suggest that R-PTPases may provide a link between cell-cell contact and cellular signaling events involving tyrosine phosphorylation....

  20. Cloning and expression of a widely expressed receptor tyrosine phosphatase

    DEFF Research Database (Denmark)

    Sap, J; D'Eustachio, P; Givol, D

    1990-01-01

    We describe the identification of a widely expressed receptor-type (transmembrane) protein tyrosine phosphatase (PTPase; EC 3.1.3.48). Screening of a mouse brain cDNA library under low-stringency conditions with a probe encompassing the intracellular (phosphatase) domain of the CD45 lymphocyte...... antigen yielded cDNA clones coding for a 794-amino acid transmembrane protein [hereafter referred to as receptor protein tyrosine phosphatase alpha (R-PTP-alpha)] with an intracellular domain displaying clear homology to the catalytic domains of CD45 and LAR (45% and 53%, respectively). The 142-amino acid...

  1. SOCS proteins in regulation of receptor tyrosine kinase signaling

    DEFF Research Database (Denmark)

    Kazi, Julhash U.; Kabir, Nuzhat N.; Flores Morales, Amilcar

    2014-01-01

    Receptor tyrosine kinases (RTKs) are a family of cell surface receptors that play critical roles in signal transduction from extracellular stimuli. Many in this family of kinases are overexpressed or mutated in human malignancies and thus became an attractive drug target for cancer treatment....... The signaling mediated by RTKs must be tightly regulated by interacting proteins including protein-tyrosine phosphatases and ubiquitin ligases. The suppressors of cytokine signaling (SOCS) family proteins are well-known negative regulators of cytokine receptors signaling consisting of eight structurally similar...

  2. Natural compounds as a source of protein tyrosine phosphatase inhibitors : Application to the rational design of small-molecule derivatives

    NARCIS (Netherlands)

    Ferreira, Carmen V.; Justo, Giselle Z.; Souza, Ana C. S.; Queiroz, Karla C. S.; Zambuzzi, William F.; Aoyama, Hiroshi; Peppelenbosch, Maikel P.

    2006-01-01

    Reversible phosphorylation of tyrosine residues is a key regulatory mechanism for numerous cellular events. Protein tyrosine kinases and protein tyrosine phosphatases (PTPs) have a pivotal role in regulating both normal cell physiology and pathophysiology. Accordingly, deregulated activity of both

  3. Novel tyrosine phosphorylation sites in rat skeletal muscle revealed by phosphopeptide enrichment and HPLC-ESI-MS/MS

    DEFF Research Database (Denmark)

    Zhang, Xiangmin; Højlund, Kurt; Luo, Moulun

    2012-01-01

    Tyrosine phosphorylation plays a fundamental role in many cellular processes including differentiation, growth and insulin signaling. In insulin resistant muscle, aberrant tyrosine phosphorylation of several proteins has been detected. However, due to the low abundance of tyrosine phosphorylation (...

  4. Pituitary Tumors

    Science.gov (United States)

    ... Association (ABTA) International RadioSurgery Association National Brain Tumor Society National Institute of Child Health and Human Development ... Definition The pituitary is a small, bean-sized gland ...

  5. Hypothalamic tumor

    Science.gov (United States)

    ... in the brain to reduce spinal fluid pressure. Risks of radiation therapy include damage to healthy brain cells when tumor cells are destroyed. Common side effects from chemotherapy include loss of appetite, nausea and vomiting, and fatigue.

  6. Receptor protein tyrosine phosphatase alpha is essential for hippocampal neuronal migration and long-term potentiation

    DEFF Research Database (Denmark)

    Petrone, Angiola; Battaglia, Fortunato; Wang, Cheng

    2003-01-01

    Despite clear indications of their importance in lower organisms, the contributions of protein tyrosine phosphatases (PTPs) to development or function of the mammalian nervous system have been poorly explored. In vitro studies have indicated that receptor protein tyrosine phosphatase alpha...

  7. Regulation of hematopoietic cell function by protein tyrosine kinase-encoding oncogenes, a review

    NARCIS (Netherlands)

    Punt, C. J.

    1992-01-01

    Tyrosine phosphorylation of proteins by protein tyrosine kinases (PTKs) is an important mechanism in the regulation of various cellular processes such as proliferation, differentiation, and transformation. Accumulating data implicate PTKs as essential intermediates in the transduction of

  8. Stimulation of {sup 125}I-3-iodo-{alpha}-methyl-L-tyrosine uptake in Chinese hamster ovary (CHO-K1) cells by tyrosine esters

    Energy Technology Data Exchange (ETDEWEB)

    Shikano, Naoto [Department of Radiological Sciences, Center for Medical Sciences and Center for Humanities and Sciences, Ibaraki Prefectural University of Health Sciences, Inashiki-gun, Ibaraki (Japan)], E-mail: sikano@ipu.ac.jp; Ogura, Masato; Sagara, Jun-ichi; Nakajima, Syuichi [Department of Radiological Sciences, Center for Medical Sciences and Center for Humanities and Sciences, Ibaraki Prefectural University of Health Sciences, Inashiki-gun, Ibaraki (Japan); Kobayashi, Masato [Division of Health Science, Graduate School of Health Sciences, Kanazawa University, Kanazawa, Ishikawa (Japan); Baba, Takeshi; Yamaguchi, Naoto; Iwamura, Yukio; Kubota, Nobuo [Department of Radiological Sciences, Center for Medical Sciences and Center for Humanities and Sciences, Ibaraki Prefectural University of Health Sciences, Inashiki-gun, Ibaraki (Japan); Kawai, Keiichi [Division of Health Science, Graduate School of Health Sciences, Kanazawa University, Kanazawa, Ishikawa (Japan)

    2010-02-15

    Introduction: Transport of the amino acid analog {sup 123}I-3-iodo-{alpha}-methyl-L-tyrosine, which is used in clinical SPECT imaging, occurs mainly via L-type amino acid transporter type 1 (LAT1; an amino acid exchanger). As LAT1 is highly expressed in actively proliferating tumors, we made a preliminary investigation of the effects of amino acid esters on enhancement of {sup 125}I-3-iodo-{alpha}-methyl-L-tyrosine (IMT) uptake via LAT1 in Chinese hamster ovary (CHO-K1) cells. Methods: Because the sequence of the CHO-K1 LAT1 gene is not available, we confirmed LAT1 expression through IMT (18.5 kBq) uptake mechanisms using specific inhibitors. L-Gly, L-Ser, L-Leu, L-Phe, L-Met, L-Tyr, D-Tyr, L-Val and L-Lys ethyl/methyl esters were tested in combination with IMT. Time-course studies over a 3-h period were conducted, and the concentration dependence of L-Tyr ethyl and methyl esters (0.001 to 10 mM) in combination with IMT was also examined. For a proof of de-esterification of L- and D-Tyr ethyl and methyl esters in the cells (by enzymatic attack or other cause), the concentration of L- and D-Tyr was analyzed by high-performance liquid chromatography of the esters in phosphate buffer (pH 7.4) and cell homogenates at 37 deg. C or under ice-cold conditions. Results: Inhibition tests suggested that LAT1 is involved in IMT uptake by CHO-K1 cells. Co-administration of 1 mM of L-Tyr ethyl or methyl ester with IMT produced the greatest enhancement. The de-esterification reaction was stereo selective and temperature dependent in the homogenate. De-esterification kinetics were very fast in the homogenate and very slow in the phosphate buffer. Conclusions: The L-Tyr ethyl or methyl esters were the most effective enhancers of IMT uptake into CHO-K1 cells and acted by trans-stimulation of the amino acid exchange function of LAT1. This result suggests that de-esterification in the cells may be caused by enzymatic attack. We will use IMT and L-Tyr ethyl or methyl esters to examine

  9. Fluorescence anisotropy of tyrosinate anion using one-, two- and three-photon excitation: tyrosinate anion fluorescence.

    Science.gov (United States)

    Kierdaszuk, Borys

    2013-03-01

    We examined the emission spectra and steady-state anisotropy of tyrosinate anion fluorescence with one-photon (250-310 nm), two-photon (570-620 nm) and three-photon (750-930 nm) excitation. Similar emission spectra of the neutral (pH 7.2) and anionic (pH 13) forms of N-acetyl-L-tyrosinamide (NATyrA) (pKa 10.6) were observed for all modes of excitation, with the maxima at 302 and 352 nm, respectively. Two-photon excitation (2PE) and three-photon excitation (3PE) spectra of the anionic form were the same as that for one-photon excitation (1PE). In contrast, 2PE spectrum from the neutral form showed ~30-nm shift to shorter wavelengths relative to 1PE spectrum (λmax 275 nm) at two-photon energy (550 nm), the latter being overlapped with 3PE spectrum, both at two-photon energy (550 nm). Two-photon cross-sections for NATyrA anion at 565-580 nm were 10 % of that for N-acetyl-L-tryptophanamide (NATrpA), and increased to 90 % at 610 nm, while for the neutral form of NATyrA decreased from 2 % of that for NATrpA at 570 nm to near zero at 585 nm. Surprisingly, the fundamental anisotropy of NATyrA anion in vitrified solution at -60 °C was ~0.05 for 2PE at 610 nm as compared to near 0.3 for 1PE at 305 nm, and wavelength-dependence appears to be a basic feature of its anisotropy. In contrast, the 3PE anisotropy at 900 nm was about 0.5, and 3PE and 1PE anisotropy values appear to be related by the cos(6) θ to cos(2) θ photoselection factor (approx. 10/6) independently of excitation wavelength. Attention is drawn to the possible effect of tyrosinate anions in proteins on their multi-photon induced fluorescence emission and excitation spectra as well as excitation anisotropy spectra.

  10. Multi-tyrosine kinase inhibitors in preclinical studies for pediatric CNS AT/RT: Evidence for synergy with Topoisomerase-I inhibition

    Directory of Open Access Journals (Sweden)

    Jayanthan Aarthi

    2011-12-01

    Full Text Available Abstract Background Currently, Atypical Teratoid Rhabdoid Tumor (AT/RT constitutes one of the most difficult to treat malignancies in pediatrics. Hence, new knowledge of potential targets for therapeutics and the development of novel treatment approaches are urgently needed. We have evaluated the presence of cytokine pathways and the effects of two clinically available multi-tyrosine kinase inhibitors for cytotoxicity, target modulation and drug combinability against AT/RT cell lines. Results AT/RT cell lines expressed measurable quantities of VEGF, FGF, PDGF and SDF-1, although the absolute amounts varied between the cell lines. The targeted receptor tyrosine kinase inhibitor sorafenib inhibited the key signaling molecule Erk, which was activated following the addition of own conditioned media, suggesting the existence of autocrine/paracrine growth stimulatory pathways. The multi-tyrosine kinase inhibitors sorafenib and sunitinib also showed significant growth inhibition of AT/RT cells and their activity was enhanced by combination with the topoisomerase inhibitor, irinotecan. The loss of cytoplasmic NF-kappa-B in response to irinotecan was diminished by sorafenib, providing evidence for a possible benefit for this drug combination. Conclusions In addition to previously described involvement of insulin like growth factor (IGF family of cytokines, a multitude of other growth factors may contribute to the growth and survival of AT/RT cells. However, consistent with the heterogeneous nature of this tumor, quantitative and qualitative differences may exist among different tumor samples. Multi-tyrosine kinase inhibitors appear to have effective antitumor activity against all cell lines studied. In addition, the target modulation studies and drug combinability data provide the groundwork for additional studies and support the evaluation of these agents in future treatment protocols.

  11. Tyrosine kinase, aurora kinase and leucine aminopeptidase as attractive drug targets in anticancer therapy - characterisation of their inhibitors.

    Science.gov (United States)

    Ziemska, Joanna; Solecka, Jolanta

    Cancers are the leading cause of deaths all over the world. Available anticancer agents used in clinics exhibit low therapeutic index and usually high toxicity. Wide spreading drug resistance of cancer cells induce a demanding need to search for new drug targets. Currently, many on-going studies on novel compounds with potent anticancer activity, high selectivity as well as new modes of action are conducted. In this work, we describe in details three enzyme groups, which are at present of extensive interest to medical researchers and pharmaceutical companies. These include receptor tyrosine kinases (e.g. EGFR enzymes) and non-receptor tyrosine kinases (Src enzymes), type A, B and C Aurora kinases and aminopeptidases, especially leucine aminopeptidase. We discuss classification of these enzymes, biochemistry as well as their role in the cell cycle under normal conditions and during cancerogenesis. Further on, the work describes enzyme inhibitors that are under in vitro, preclinical, clinical studies as well as drugs available on the market. Both, chemical structures of discovered inhibitors and the role of chemical moieties in novel drug design are discussed. Described enzymes play essential role in cell cycle, especially in mitosis (Aurora kinases), cell differentiation, growth and apoptosis (tyrosine kinases) as well as G1/S transition (leucine aminopeptidase). In cancer cells, they are overexpressed and only their inhibition may stop tumor progression. This review presents the clinical outcomes of selected inhibitors and argues the safety of drug usage in human volunteers. Clinical studies of EGFR and Src kinase inhibitors in different tumors clearly show the need for molecular selection of patients (to those with mutations in genes coding EGFR and Src) to achieve positive clinical response. Current data indicates the great necessity for new anticancer treatment and actions to limit off-target activity.

  12. Role of Tyrosine Isomers in Acute and Chronic Diseases Leading to Oxidative Stress - A Review.

    Science.gov (United States)

    Molnár, Gergő A; Kun, Szilárd; Sélley, Eszter; Kertész, Melinda; Szélig, Lívia; Csontos, Csaba; Böddi, Katalin; Bogár, Lajos; Miseta, Attila; Wittmann, István

    2016-01-01

    Oxidative stress plays a major role in the pathogenesis of a variety of acute and chronic diseases. Measurement of the oxidative stress-related end products may be performed, e.g. that of structural isomers of the physiological para-tyrosine, namely meta- and ortho-tyrosine, that are oxidized derivatives of phenylalanine. Recent data suggest that in sepsis, serum level of meta-tyrosine increases, which peaks on the 2(nd) and 3(rd) days (ptyrosine excretion correlated with both need of daily insulin dose and the insulin-glucose product in non-diabetic septic cases (ptyrosine excretion, urinary meta-tyrosine/para-tyrosine, urinary ortho-tyrosine/para-tyrosine and urinary (meta- + orthotyrosine)/ para-tyrosine proved to be markers of carbohydrate homeostasis. In a chronic rodent model, we tried to compensate the abnormal tyrosine isomers using para-tyrosine, the physiological amino acid. Rats were fed a standard high cholesterol-diet, and were given para-tyrosine or vehicle orally. High-cholesterol feeding lead to a significant increase in aortic wall meta-tyrosine content and a decreased vasorelaxation of the aorta to insulin and the glucagon-like peptide-1 analogue, liraglutide, that both could be prevented by administration of para-tyrosine. Concluding, these data suggest that meta- and ortho-tyrosine are potential markers of oxidative stress in acute diseases related to oxidative stress, and may also interfere with insulin action in septic humans. Competition of meta- and ortho-tyrosine by supplementation of para-tyrosine may exert a protective role in oxidative stress-related diseases.

  13. Evidence for a tyrosine protonation change during the primary phototransition of bacteriorhodopsin at low temperature.

    OpenAIRE

    Rothschild, K J; Roepe, P; Ahl, P L; Earnest, T N; Bogomolni, R A; Das Gupta, S K; Mulliken, C M; Herzfeld, J

    1986-01-01

    Isotopically labeled tyrosines have been selectively incorporated into bacteriorhodopsin (bR). A comparison of the low-temperature bR570 to K Fourier transform infrared-difference spectra of these samples and normal bR provides information about the role of tyrosine in the primary phototransition. Several tyrosine contributions to the difference spectrum are found. These results and comparison with the spectra of model compounds suggest that a tyrosinate group protonates during the bR570 to K...

  14. Role of Bruton's tyrosine kinase in B cells and malignancies

    NARCIS (Netherlands)

    Pal Singh, S. (Simar); F. Dammeijer (Floris); R.W. Hendriks (Rudi)

    2018-01-01

    textabstractBruton's tyrosine kinase (BTK) is a non-receptor kinase that plays a crucial role in oncogenic signaling that is critical for proliferation and survival of leukemic cells in many B cell malignancies. BTK was initially shown to be defective in the primary immunodeficiency X-linked

  15. Anxious moments for the protein tyrosine phosphatase PTP1B

    OpenAIRE

    Krishnan, Navasona; Tonks, Nicholas K.

    2015-01-01

    Chronic stress can lead to the development of anxiety and mood disorders. Thus, novel therapies for preventing adverse effects of stress are vitally important. Recently, the protein tyrosine phosphatase PTP1B was identified as a novel regulator of stress-induced anxiety. This opens up exciting opportunities to exploit PTP1B inhibitors as anxiolytics.

  16. Eosin-sensitized photooxidation of substituted phenylalanines and tyrosines

    Energy Technology Data Exchange (ETDEWEB)

    Rizzuto, F.; Spikes, J.D.

    1977-01-01

    The cosin-sensitized photooxidation of tyrosine and a number of compounds related to tyrosine (substituted phenylalanines) was studied by steady-state kinetic and flash photolysis techniques. In particular, the role of the phenolic group and the amino and carboxyl groups of the alanyl side chain in the photooxidation mechanism was investigated in detail. Several relationships between substrate structure and susceptibility to photooxidation as well as effects of substrate structure on photooxidation mechanisms were found. For example, phenylalanine is not photooxidizable, but substitution of electron-donating (activating) groups such as -OH (as in tyrosine) or -NH/sub 2/ (as in p-aminophenylalanine) results in rapidly photooxidized derivatives. However, substituting deactivating groups such as -Cl (as in p-chlorophenylalanine) or weakly activating groups such as -OCH/sub 3/ (as in 4-methoxyphenylalanine) result in non-photooxidizable derivatives. Substitution of additional activating groups to the ring of hydroxy-substituted phenylalanines results in increased rates of photooxidation, whereas additional deactivating groups result in decreased photooxidation rates. The rate-determining step in the photooxidation mechanism is shown to be dependent on the presence and position of an electron-donating substituent on the benzenoid ring. Only minor involvement of the side chain amino and carboxyl groups was found. Both singlet oxygen and hydrogen abstraction mechanisms are involved in the eosin-sensitized photooxidation of hydroxy-substituted phenylalanines (e.g., tyrosine). The hydrogen abstraction mechanism probably predominates at both pH 8 and 11.

  17. Isolation of a tyrosine-activating enzyme from baker's yeast

    NARCIS (Netherlands)

    Ven, A.M. van de; Koningsberger, V.V.; Overbeek, J.Th.G.

    1958-01-01

    The extracts of ether-CO2-frozen baker's yeast contain enzymes that catalyze the ATP-linked amino acid activation by way of pyrophosphate elimination. From the extract a tyrosine-activating enzyme could be isolated, which, judging from ultracentrifugation and electrophoretic data, was about 70% pure

  18. Variability in bioavailability of small molecular tyrosine kinase inhibitors

    NARCIS (Netherlands)

    Herbrink, Maikel; Nuijen, Bastiaan; Schellens, Jan H M; Beijnen, Jos H.

    2015-01-01

    Small molecular tyrosine kinase inhibitors (smTKIs) are in the centre of the very quickly expanding area of personalized chemotherapy and oral applicability thereof. The number of drugs in this class is rapidly growing, with twenty current approvals by both the European Medicines Agency (EMA) and

  19. Expression of tyrosine kinase gene in mouse thymic stromal cells

    NARCIS (Netherlands)

    Rinke de Wit, T. F.; Izon, D. J.; Revilla, C.; Oosterwegel, M.; Bakker, A. Q.; van Ewijk, W.; Kruisbeek, A. M.

    1996-01-01

    Amongst the most important signal transduction molecules involved in regulating growth and differentiation are the protein tyrosine kinases (PTK). Since T cell development is a consequence of interactions between thymic stromal cells (TSC) and thymocytes, identification of the PTK in both

  20. ZDHHC3 Tyrosine Phosphorylation Regulates Neural Cell Adhesion Molecule Palmitoylation

    Science.gov (United States)

    Lievens, Patricia Marie-Jeanne; Kuznetsova, Tatiana; Kochlamazashvili, Gaga; Cesca, Fabrizia; Gorinski, Natalya; Galil, Dalia Abdel; Cherkas, Volodimir; Ronkina, Natalia; Lafera, Juri; Gaestel, Matthias

    2016-01-01

    The neural cell adhesion molecule (NCAM) mediates cell-cell and cell-matrix adhesion. It is broadly expressed in the nervous system and regulates neurite outgrowth, synaptogenesis, and synaptic plasticity. Previous in vitro studies revealed that palmitoylation of NCAM is required for fibroblast growth factor 2 (FGF2)-stimulated neurite outgrowth and identified the zinc finger DHHC (Asp-His-His-Cys)-containing proteins ZDHHC3 and ZDHHC7 as specific NCAM-palmitoylating enzymes. Here, we verified that FGF2 controlled NCAM palmitoylation in vivo and investigated molecular mechanisms regulating NCAM palmitoylation by ZDHHC3. Experiments with overexpression and pharmacological inhibition of FGF receptor (FGFR) and Src revealed that these kinases control tyrosine phosphorylation of ZDHHC3 and that ZDHHC3 is phosphorylated by endogenously expressed FGFR and Src proteins. By site-directed mutagenesis, we found that Tyr18 is an FGFR1-specific ZDHHC3 phosphorylation site, while Tyr295 and Tyr297 are specifically phosphorylated by Src kinase in cell-based and cell-free assays. Abrogation of tyrosine phosphorylation increased ZDHHC3 autopalmitoylation, enhanced interaction with NCAM, and upregulated NCAM palmitoylation. Expression of ZDHHC3 with tyrosine mutated in cultured hippocampal neurons promoted neurite outgrowth. Our findings for the first time highlight that FGFR- and Src-mediated tyrosine phosphorylation of ZDHHC3 modulates ZDHHC3 enzymatic activity and plays a role in neuronal morphogenesis. PMID:27247265

  1. Association of connexin43 with a receptor protein tyrosine phosphatase

    NARCIS (Netherlands)

    Giepmans, Ben N G; Feiken, Elles; Gebbink, Martijn F B G; Moolenaar, Wouter H

    2003-01-01

    Connexin-43(Cx43)-based gap junctional communication is transiently inhibited by certain G protein-coupled receptor agonists, including lysophosphatidic acid, endothelin and thrombin. Our previous studies have implicated the c-Src protein tyrosine kinase in mediating closure of Cx43 based gap

  2. Uptake of Tyrosine Amino Acid on Nano-Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Hossam M. Nassef

    2018-01-01

    Full Text Available Graphene oxide (GO is emerging as a promising nanomaterial with potential application in the detection and analysis of amino acids, DNA, enzymes, and proteins in biological fluid samples. So, the reaction of GO with amino acids should be characterized and determined before using it in biosensing methods and devices. In this study, the reaction of tyrosine amino acid (Tyr with GO was characterized using FT-IR, UV-vis spectrophotometry, and scanning electron microscopy (SEM before its use. The optimum conditions for GO’s interaction with Tyr amino acid have been studied under variable conditions. The optimum conditions of pH, temperature, shaking time, and GO and tyrosine concentrations for the uptaking of tyrosine amino acid onto the GO’s surface from aqueous solution were determined. The SEM analysis showed that the GO supplied was in a particle size range between 5.4 and 8.1 nm. A pH of 8.4–9.4 at 25 °C and 5 min of shaking time were the optimum conditions for a maximum uptake of 1.4 μg/mL of tyrosine amino acid onto 0.2 mg/mL of GO.

  3. Constitutive Activity in an Ancestral Form of Abl Tyrosine Kinase.

    Directory of Open Access Journals (Sweden)

    Saadat U Aleem

    Full Text Available The c-abl proto-oncogene encodes a nonreceptor tyrosine kinase that is found in all metazoans, and is ubiquitously expressed in mammalian tissues. The Abl tyrosine kinase plays important roles in the regulation of mammalian cell physiology. Abl-like kinases have been identified in the genomes of unicellular choanoflagellates, the closest relatives to the Metazoa, and in related unicellular organisms. Here, we have carried out the first characterization of a premetazoan Abl kinase, MbAbl2, from the choanoflagellate Monosiga brevicollis. The enzyme possesses SH3, SH2, and kinase domains in a similar arrangement to its mammalian counterparts, and is an active tyrosine kinase. MbAbl2 lacks the N-terminal myristoylation and cap sequences that are critical regulators of mammalian Abl kinase activity, and we show that MbAbl2 is constitutively active. When expressed in mammalian cells, MbAbl2 strongly phosphorylates cellular proteins on tyrosine, and transforms cells much more potently than mammalian Abl kinase. Thus, MbAbl2 appears to lack the autoinhibitory mechanism that tightly constrains the activity of mammalian Abl kinases, suggesting that this regulatory apparatus arose more recently in metazoan evolution.

  4. Tumor Types: Understanding Brain Tumors

    Science.gov (United States)

    ... May cause excessive secretion of hormones Common among men and women in their 50s-80s Accounts for about 13 percent of all brain tumors Symptoms Headache Depression Vision loss Nausea or vomiting Behavioral and cognitive ...

  5. Implication of protein tyrosine phosphatase 1B in MCF-7 cell proliferation and resistance to 4-OH tamoxifen

    International Nuclear Information System (INIS)

    Blanquart, Christophe; Karouri, Salah-Eddine; Issad, Tarik

    2009-01-01

    The protein tyrosine phosphatase 1B (PTP1B) and the T-cell protein tyrosine phosphatase (TC-PTP) were initially thought to be mainly anti-oncogenic. However, overexpression of PTP1B and TC-PTP has been observed in human tumors, and recent studies have demonstrated that PTP1B contributes to the appearance of breast tumors by modulating ERK pathway. In the present work, we observed that decreasing the expression of TC-PTP or PTP1B in MCF-7 cells using siRNA reduced cell proliferation without affecting cell death. This reduction in proliferation was associated with decreased ERK phosphorylation. Moreover, selection of tamoxifen-resistant MCF-7 cells, by long-term culture in presence of 4-OH tamoxifen, resulted in cells that display overexpression of PTP1B and TC-PTP, and concomitant increase in ERK and STAT3 phosphorylation. siRNA experiments showed that PTP1B, but not TC-PTP, is necessary for resistance to 4-OH tamoxifen. Therefore, our work indicates that PTP1B could be a relevant therapeutic target for treatment of tamoxifen-resistant breast cancers.

  6. Combined therapeutic potential of nuclear receptors with receptor tyrosine kinase inhibitors in lung cancer

    International Nuclear Information System (INIS)

    Wairagu, Peninah M.; Park, Kwang Hwa; Kim, Jihye; Choi, Jong-Whan; Kim, Hyun-Won; Yeh, Byung-Il; Jung, Soon-Hee; Yong, Suk-Joong; Jeong, Yangsik

    2014-01-01

    Highlights: • The 48 NR genes and 48 biological anti-cancer targets are profiled in paired-cells. • Growth inhibition by NR ligands or TKIs is target receptor level-dependent. • T0901317 with gefitinib/PHA665752 shows additive growth inhibition in lung cells. - Abstract: Cancer heterogeneity is a big hurdle in achieving complete cancer treatment, which has led to the emergence of combinational therapy. In this study, we investigated the potential use of nuclear receptor (NR) ligands for combinational therapy with other anti-cancer drugs. We first profiled all 48 NRs and 48 biological anti-cancer targets in four pairs of lung cell lines, where each pair was obtained from the same patient. Two sets of cell lines were normal and the corresponding tumor cell lines while the other two sets consisted of primary versus metastatic tumor cell lines. Analysis of the expression profile revealed 11 NRs and 15 cancer targets from the two pairs of normal versus tumor cell lines, and 9 NRs and 9 cancer targets from the primary versus metastatic tumor cell lines had distinct expression patterns in each category. Finally, the evaluation of nuclear receptor ligand T0901317 for liver X receptor (LXR) demonstrated its combined therapeutic potential with tyrosine kinase inhibitors. The combined treatment of cMET inhibitor PHA665752 or EGFR inhibitor gefitinib with T0901317 showed additive growth inhibition in both H2073 and H1993 cells. Mechanistically, the combined treatment suppressed cell cycle progression by inhibiting cyclinD1 and cyclinB expression. Taken together, this study provides insight into the potential use of NR ligands in combined therapeutics with other biological anti-cancer drugs

  7. Deficiency in Protein Tyrosine Phosphatase PTP1B Shortens Lifespan and Leads to Development of Acute Leukemia.

    Science.gov (United States)

    Le Sommer, Samantha; Morrice, Nicola; Pesaresi, Martina; Thompson, Dawn; Vickers, Mark A; Murray, Graeme I; Mody, Nimesh; Neel, Benjamin G; Bence, Kendra K; Wilson, Heather M; Delibegović, Mirela

    2018-01-01

    Protein tyrosine phosphatase PTP1B is a critical regulator of signaling pathways controlling metabolic homeostasis, cell proliferation, and immunity. In this study, we report that global or myeloid-specific deficiency of PTP1B in mice decreases lifespan. We demonstrate that myeloid-specific deficiency of PTP1B is sufficient to promote the development of acute myeloid leukemia. LysM-PTP1B -/- mice lacking PTP1B in the innate myeloid cell lineage displayed a dysregulation of bone marrow cells with a rapid decline in population at midlife and a concomitant increase in peripheral blood blast cells. This phenotype manifested further with extramedullary tumors, hepatic macrophage infiltration, and metabolic reprogramming, suggesting increased hepatic lipid metabolism prior to overt tumor development. Mechanistic investigations revealed an increase in anti-inflammatory M2 macrophage responses in liver and spleen, as associated with increased expression of arginase I and the cytokines IL10 and IL4. We also documented STAT3 hypersphosphorylation and signaling along with JAK-dependent upregulation of antiapoptotic proteins Bcl2 and BclXL. Our results establish a tumor suppressor role for PTP1B in the myeloid lineage cells, with evidence that its genetic inactivation in mice is sufficient to drive acute myeloid leukemia. Significance: This study defines a tumor suppressor function for the protein tyrosine phosphatase PTP1B in myeloid lineage cells, with evidence that its genetic inactivation in mice is sufficient to drive acute myeloid leukemia. Cancer Res; 78(1); 75-87. ©2017 AACR . ©2017 American Association for Cancer Research.

  8. Tumor immunology.

    Science.gov (United States)

    Mocellin, Simone; Lise, Mario; Nitti, Donato

    2007-01-01

    Advances in tumor immunology are supporting the clinical implementation of several immunological approaches to cancer in the clinical setting. However, the alternate success of current immunotherapeutic regimens underscores the fact that the molecular mechanisms underlying immune-mediated tumor rejection are still poorly understood. Given the complexity of the immune system network and the multidimensionality of tumor/host interactions, the comprehension of tumor immunology might greatly benefit from high-throughput microarray analysis, which can portrait the molecular kinetics of immune response on a genome-wide scale, thus accelerating the discovery pace and ultimately catalyzing the development of new hypotheses in cell biology. Although in its infancy, the implementation of microarray technology in tumor immunology studies has already provided investigators with novel data and intriguing new hypotheses on the molecular cascade leading to an effective immune response against cancer. Although the general principles of microarray-based gene profiling have rapidly spread in the scientific community, the need for mastering this technique to produce meaningful data and correctly interpret the enormous output of information generated by this technology is critical and represents a tremendous challenge for investigators, as outlined in the first section of this book. In the present Chapter, we report on some of the most significant results obtained with the application of DNA microarray in this oncology field.

  9. Pancreatic islet cell tumor

    Science.gov (United States)

    ... cell tumors; Islet of Langerhans tumor; Neuroendocrine tumors; Peptic ulcer - islet cell tumor; Hypoglycemia - islet cell tumor ... stomach acid. Symptoms may include: Abdominal pain Diarrhea ... and small bowel Vomiting blood (occasionally) Glucagonomas make ...

  10. A protein-tyrosine phosphatase with sequence similarity to the SH2 domain of the protein-tyrosine kinases.

    Science.gov (United States)

    Shen, S H; Bastien, L; Posner, B I; Chrétien, P

    1991-08-22

    The phosphorylation of proteins at tyrosine residues is critical in cellular signal transduction, neoplastic transformation and control of the mitotic cycle. These mechanisms are regulated by the activities of both protein-tyrosine kinases (PTKs) and protein-tyrosine phosphatases (PTPases). As in the PTKs, there are two classes of PTPases: membrane associated, receptor-like enzymes and soluble proteins. Here we report the isolation of a complementary DNA clone encoding a new form of soluble PTPase, PTP1C. The enzyme possesses a large noncatalytic region at the N terminus which unexpectedly contains two adjacent copies of the Src homology region 2 (the SH2 domain) found in various nonreceptor PTKs and other cytoplasmic signalling proteins. As with other SH2 sequences, the SH2 domains of PTP1C formed high-affinity complexes with the activated epidermal growth factor receptor and other phosphotyrosine-containing proteins. These results suggest that the SH2 regions in PTP1C may interact with other cellular components to modulate its own phosphatase activity against interacting substrates. PTPase activity may thus directly link growth factor receptors and other signalling proteins through protein-tyrosine phosphorylation.

  11. Imaging of brain tumors

    International Nuclear Information System (INIS)

    Gaensler, E.H.L.

    1995-01-01

    The contents are diagnostic approaches, general features of tumors -hydrocephalus, edema, attenuation and/or intensity value, hemorrhage, fat, contrast enhancement, intra-axial supratentorial tumors - tumors of glial origin, oligodendrogliomas, ependymomas, subependymomas, subependymal giant cell astrocytomas, choroid plexus papilloma; midline tumors - colloid cysts, craniopharyngiomas; pineal region tumors and miscellaneous tumors i.e. primary intracerebral lymphoma, primitive neuroectodermal tumors, hemangioblastomas; extraaxial tumors - meningiomas; nerve sheath tumors -schwannomas, epidermoids, dermoids, lipomas, arachnoid cysts; metastatic tumors (8 refs.)

  12. Imaging of brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Gaensler, E H.L. [California Univ., San Francisco, CA (United States). Dept. of Radiology

    1996-12-31

    The contents are diagnostic approaches, general features of tumors -hydrocephalus, edema, attenuation and/or intensity value, hemorrhage, fat, contrast enhancement, intra-axial supratentorial tumors - tumors of glial origin, oligodendrogliomas, ependymomas, subependymomas, subependymal giant cell astrocytomas, choroid plexus papilloma; midline tumors - colloid cysts, craniopharyngiomas; pineal region tumors and miscellaneous tumors i.e. primary intracerebral lymphoma, primitive neuroectodermal tumors, hemangioblastomas; extraaxial tumors - meningiomas; nerve sheath tumors -schwannomas, epidermoids, dermoids, lipomas, arachnoid cysts; metastatic tumors (8 refs.).

  13. Site specific interaction between ZnO nanoparticles and tyrosine: A density functional theory study

    Science.gov (United States)

    Singh, Satvinder; Singh, Janpreet; Singh, Baljinder; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.

    2018-05-01

    First Principles Calculations have been performed on ZnO/Tyrosine atomic complex to study site specific interaction of Tyrosine and ZnO nanoparticles. Calculated results shows that -COOH group present in Tyrosine is energetically more favorable than -NH2 group. Interactions show ionic bonding between ZnO and Tyrosine. All the calculations have been performed under the Density Functional Theory (DFT) framework. Structural and electronic properties of (ZnO)3/Tyrosine complex have been studied. Gaussian basis set approach has been adopted for the calculations. A ring type most stable (ZnO)3 atomic cluster has been modeled, analyzed and used for the calculations.

  14. Ibrutinib Inhibits ERBB Receptor Tyrosine Kinases and HER2-Amplified Breast Cancer Cell Growth.

    Science.gov (United States)

    Chen, Jun; Kinoshita, Taisei; Sukbuntherng, Juthamas; Chang, Betty Y; Elias, Laurence

    2016-12-01

    Ibrutinib is a potent, small-molecule Bruton tyrosine kinase (BTK) inhibitor developed for the treatment of B-cell malignancies. Ibrutinib covalently binds to Cys481 in the ATP-binding domain of BTK. This cysteine residue is conserved among 9 other tyrosine kinases, including HER2 and EGFR, which can be targeted. Screening large panels of cell lines demonstrated that ibrutinib was growth inhibitory against some solid tumor cells, including those inhibited by other HER2/EGFR inhibitors. Among sensitive cell lines, breast cancer lines with HER2 overexpression were most potently inhibited by ibrutinib (ibrutinib coincided with downregulation of phosphorylation on HER2 and EGFR and their downstream targets, AKT and ERK. Irreversible inhibition of HER2 and EGFR in breast cancer cells was established after 30-minute incubation above 100 nmol/L or following 2-hour incubation at lower concentrations. Furthermore, ibrutinib inhibited recombinant HER2 and EGFR activity that was resistant to dialysis and rapid dilution, suggesting an irreversible interaction. The dual activity toward TEC family (BTK and ITK) and ERBB family kinases was unique to ibrutinib, as ERBB inhibitors do not inhibit or covalently bind BTK or ITK. Xenograft studies with HER2 + MDA-MB-453 and BT-474 cells in mice in conjunction with determination of pharmacokinetics demonstrated significant exposure-dependent inhibition of growth and key signaling molecules at levels that are clinically achievable. Ibrutinib's unique dual spectrum of activity against both TEC family and ERBB kinases suggests broader applications of ibrutinib in oncology. Mol Cancer Ther; 15(12); 2835-44. ©2016 AACR. ©2016 American Association for Cancer Research.

  15. Molecular mechanism of 17-allylamino-17-demethoxygeldanamycin (17-AAG)-induced AXL receptor tyrosine kinase degradation.

    Science.gov (United States)

    Krishnamoorthy, Gnana Prakasam; Guida, Teresa; Alfano, Luigi; Avilla, Elvira; Santoro, Massimo; Carlomagno, Francesca; Melillo, Rosa Marina

    2013-06-14

    The receptor tyrosine kinase AXL is overexpressed in many cancer types including thyroid carcinomas and has well established roles in tumor formation and progression. Proper folding, maturation, and activity of several oncogenic receptor tyrosine kinases require HSP90 chaperoning. HSP90 inhibition by the antibiotic geldanamycin or its derivative 17-allylamino-17-demethoxygeldanamycin (17-AAG) causes destabilization of its client proteins. Here we show that AXL is a novel client protein of HSP90. 17-AAG induced a time- and dose-dependent down-regulation of endogenous or ectopically expressed AXL protein, thereby inhibiting AXL-mediated signaling and biological activity. 17-AAG-induced AXL down-regulation specifically affected fully glycosylated mature receptor present on cell membrane. By using biotin and [(35)S]methionine labeling, we showed that 17-AAG caused depletion of membrane-localized AXL by mediating its degradation in the intracellular compartment, thus restricting its exposure on the cell surface. 17-AAG induced AXL polyubiquitination and subsequent proteasomal degradation; under basal conditions, AXL co-immunoprecipitated with HSP90. Upon 17-AAG treatment, AXL associated with the co-chaperone HSP70 and the ubiquitin E3 ligase carboxyl terminus of HSC70-interacting protein (CHIP). Overexpression of CHIP, but not of the inactive mutant CHIP K30A, induced accumulation of AXL polyubiquitinated species upon 17-AAG treatment. The sensitivity of AXL to 17-AAG required its intracellular domain because an AXL intracellular domain-deleted mutant was insensitive to the compound. Active AXL and kinase-dead AXL were similarly sensitive to 17-AAG, implying that 17-AAG sensitivity does not require receptor phosphorylation. Overall our data elucidate the molecular basis of AXL down-regulation by HSP90 inhibitors and suggest that HSP90 inhibition in anticancer therapy can exert its effect through inhibition of multiple kinases including AXL.

  16. Molecular Mechanism of 17-Allylamino-17-demethoxygeldanamycin (17-AAG)-induced AXL Receptor Tyrosine Kinase Degradation*

    Science.gov (United States)

    Krishnamoorthy, Gnana Prakasam; Guida, Teresa; Alfano, Luigi; Avilla, Elvira; Santoro, Massimo; Carlomagno, Francesca; Melillo, Rosa Marina

    2013-01-01

    The receptor tyrosine kinase AXL is overexpressed in many cancer types including thyroid carcinomas and has well established roles in tumor formation and progression. Proper folding, maturation, and activity of several oncogenic receptor tyrosine kinases require HSP90 chaperoning. HSP90 inhibition by the antibiotic geldanamycin or its derivative 17-allylamino-17-demethoxygeldanamycin (17-AAG) causes destabilization of its client proteins. Here we show that AXL is a novel client protein of HSP90. 17-AAG induced a time- and dose-dependent down-regulation of endogenous or ectopically expressed AXL protein, thereby inhibiting AXL-mediated signaling and biological activity. 17-AAG-induced AXL down-regulation specifically affected fully glycosylated mature receptor present on cell membrane. By using biotin and [35S]methionine labeling, we showed that 17-AAG caused depletion of membrane-localized AXL by mediating its degradation in the intracellular compartment, thus restricting its exposure on the cell surface. 17-AAG induced AXL polyubiquitination and subsequent proteasomal degradation; under basal conditions, AXL co-immunoprecipitated with HSP90. Upon 17-AAG treatment, AXL associated with the co-chaperone HSP70 and the ubiquitin E3 ligase carboxyl terminus of HSC70-interacting protein (CHIP). Overexpression of CHIP, but not of the inactive mutant CHIP K30A, induced accumulation of AXL polyubiquitinated species upon 17-AAG treatment. The sensitivity of AXL to 17-AAG required its intracellular domain because an AXL intracellular domain-deleted mutant was insensitive to the compound. Active AXL and kinase-dead AXL were similarly sensitive to 17-AAG, implying that 17-AAG sensitivity does not require receptor phosphorylation. Overall our data elucidate the molecular basis of AXL down-regulation by HSP90 inhibitors and suggest that HSP90 inhibition in anticancer therapy can exert its effect through inhibition of multiple kinases including AXL. PMID:23629654

  17. Signaling by Kit protein-tyrosine kinase--the stem cell factor receptor.

    Science.gov (United States)

    Roskoski, Robert

    2005-11-11

    Signaling by stem cell factor and Kit, its receptor, plays important roles in gametogenesis, hematopoiesis, mast cell development and function, and melanogenesis. Moreover, human and mouse embryonic stem cells express Kit transcripts. Stem cell factor exists as both a soluble and a membrane-bound glycoprotein while Kit is a receptor protein-tyrosine kinase. The complete absence of stem cell factor or Kit is lethal. Deficiencies of either produce defects in red and white blood cell production, hypopigmentation, and sterility. Gain-of-function mutations of Kit are associated with several human neoplasms including acute myelogenous leukemia, gastrointestinal stromal tumors, and mastocytomas. Kit consists of an extracellular domain, a transmembrane segment, a juxtamembrane segment, and a protein kinase domain that contains an insert of about 80 amino acid residues. Binding of stem cell factor to Kit results in receptor dimerization and activation of protein kinase activity. The activated receptor becomes autophosphorylated at tyrosine residues that serve as docking sites for signal transduction molecules containing SH2 domains. The adaptor protein APS, Src family kinases, and Shp2 tyrosyl phosphatase bind to phosphotyrosine 568. Shp1 tyrosyl phosphatase and the adaptor protein Shc bind to phosphotyrosine 570. C-terminal Src kinase homologous kinase and the adaptor Shc bind to both phosphotyrosines 568 and 570. These residues occur in the juxtamembrane segment of Kit. Three residues in the kinase insert domain are phosphorylated and attract the adaptor protein Grb2 (Tyr703), phosphatidylinositol 3-kinase (Tyr721), and phospholipase Cgamma (Tyr730). Phosphotyrosine 900 in the distal kinase domain binds phosphatidylinositol 3-kinase which in turn binds the adaptor protein Crk. Phosphotyrosine 936, also in the distal kinase domain, binds the adaptor proteins APS, Grb2, and Grb7. Kit has the potential to participate in multiple signal transduction pathways as a result of

  18. Formation of tyrosine isomers in aqueous phenylalanine solutions by gamma irradiation

    International Nuclear Information System (INIS)

    Aflaki, F.; Salahinejad, M.; Roozbehani, A.

    2009-01-01

    Ortho-tyrosine detection method can be used for detection of irradiated protein rich foods. Tyrosine isomers produced by gamma radiation of aqueous phenylalanine solutions at wide dose levels (0.1-50 k Gy) were examined to obtain basic information for o-tyrosine detection method of irradiated foods. Determination of tyrosines produced in aqueous phenylalanine solutions were carried out by high performance liquid chromatography and fluorescence detection. The detection limit of o-tyrosine was 0.01 ppm and the linear range of calibration and the relative standard deviation of analysis was 50 ng and 4-13%, respectively. The amounts of the tyrosines increased with the irradiation level up to 10 k Gy and no further tyrosine formation was observed when the dose level was increased. At a constant dose level, the yield of tyrosines initially increased with the phenylalanine concentration, while with further increase of phenylalanine concentration no effect on increase of tyrosine yield was observed. When the dose rate was varying from 2.3 k Gy/h to 1.2 k Gy/h with a total amount of 10 k Gy in each case, there was no significant effect on tyrosine isomers formation was observed. Also the results showed that tyrosine yield was affected by temperature, p H and the presence of oxygen

  19. Tyrosine transport in winter flounder intestine: Interaction with Na+-K+-2Cl- cotransport

    International Nuclear Information System (INIS)

    Musch, M.W.; McConnell, F.M.; Goldstein, L.; Field, M.

    1987-01-01

    Tyrosine absorption across the brush border of the intestinal epithelium of the winter flounder Pseudopleuronectes americanus was studied in Ussing chambers modified to determine early rates of uptake. At 0.1 mM tyrosine, the 4-min rate of uptake (influx) of tyrosine across the brush border averaged 37.5 nmol·cm -2 ·h -1 . Omission of Na decreased influx by 60%, indicting that tyrosine influx occurs, at least in part, by a Na-coupled process. Ouabain inhibited influx by 80%. Inhibition of brush border Na + -K + -2Cl - cotransport by bumetanide, 8-bromo-cyclic GMP, or Cl replacement stimulated tyrosine influx 2.5- to 4-fold. However, atriopeptin III, which also inhibits Na + -K + -2Cl - cotransport, did not stimulate tyrosine influx. Cyclic AMP, which does not appear to inhibit ion cotransport, did not stimulate tyrosine influx. Both cyclic GMP and bumetanide also stimulated the net mucosa-to-serosa tyrosine flux (43 and 29%, respectively) and increased the cellular concentration of tyrosine by 50%. Thus tyrosine's influx is increased to a greater extent than is its transmural flux or its cellular concentration, suggesting that the main change occurs at the brush border and represents large increases in both influx and efflux of tyrosine across this membrane

  20. Autophosphorylation of JAK2 on tyrosines 221 and 570 regulates its activity.

    Science.gov (United States)

    Argetsinger, Lawrence S; Kouadio, Jean-Louis K; Steen, Hanno; Stensballe, Allan; Jensen, Ole N; Carter-Su, Christin

    2004-06-01

    The tyrosine kinase JAK2 is a key signaling protein for at least 20 receptors in the cytokine/hematopoietin receptor superfamily and is a component of signaling by insulin receptor and several G-protein-coupled receptors. However, there is only limited knowledge of the physical structure of JAK2 or which of the 49 tyrosines in JAK2 are autophosphorylated. In this study, mass spectrometry and two-dimensional peptide mapping were used to determine that tyrosines 221, 570, and 1007 in JAK2 are autophosphorylated. Phosphorylation of tyrosine 570 is particularly robust. In response to growth hormone, JAK2 was rapidly and transiently phosphorylated at tyrosines 221 and 570, returning to basal levels by 60 min. Analysis of the sequences surrounding tyrosines 221 and 570 in JAK2 and tyrosines in other proteins that are phosphorylated in response to ligands that activate JAK2 suggests that the YXX[L/I/V] motif is one of the motifs recognized by JAK2. Experiments using JAK2 with tyrosines 221 and 570 mutated to phenylalanine suggest that tyrosines 221 and 570 in JAK2 may serve as regulatory sites in JAK2, with phosphorylation of tyrosine 221 increasing kinase activity and phosphorylation of tyrosine 570 decreasing kinase activity and thereby contributing to rapid termination of ligand activation of JAK2.

  1. Bone tumors

    International Nuclear Information System (INIS)

    Moylan, D.J.; Yelovich, R.M.

    1991-01-01

    Primary bone malignancies are relatively rare with less than 4,000 new cases per year. Multiple myeloma (more correctly a hematologic malignancy) accounts for 40%; osteosarcomas, 28%; chondrosarcomas, 13%; fibrosarcomas arising in bone, 4%; and Ewing's sarcoma, 7%. The authors discuss various treatments for bone tumors, including radiotherapy, chemotherapy and surgery

  2. Wilms Tumor

    Science.gov (United States)

    ... a child's general health and to detect any adverse side effects (such as low red or white blood cell ... medicine needed, which helps reduce long-term side effects. The most common ... can be completely removed by surgery. About 41% of all Wilms tumors are stage ...

  3. Nephrogenic tumors

    International Nuclear Information System (INIS)

    Wiesbauer, P.

    2008-01-01

    Nephroblastomas are the most common malignant renal tumors in childhood. According to the guidelines of the SIOP (Societe Internationale d'Oncologie Pediatrique) and GPOH (Gesellschaft fuer Paediatrische Onkologie und Haematologie) pre-operative chemotherapy can be started without histological confirmation and thus initial imaging studies, in particular ultrasound, play an outstanding role for diagnostic purposes

  4. Caveolin-1 overexpression in benign and malignant salivary gland tumors.

    Science.gov (United States)

    Jaafari-Ashkavandi, Zohreh; Ashraf, Mohammad Javad; Nazhvani, Ali Dehghani; Azizi, Zahra

    2016-02-01

    Caveolin-1, a tyrosine-phosphorylated protein, is supposed to have different regulatory roles as promoter or suppressor in many human cancers. However, no published study concerned its expression in benign and malignant salivary gland tumors. The aim of this study was to evaluate and compare the expression of Cav-1 in the most common benign and malignant salivary gland tumors and evaluate its correlation with proliferation activity. In this cross-sectional retrospective study, immunohistochemical expression of caveolin-1 and Ki67 were evaluated in 49 samples, including 11 normal salivary glands, 15 cases of pleomorphic adenoma (PA), 13 adenoid cystic carcinomas (AdCC), and 10 mucoepidermoid carcinomas (MEC). The expression of Cav-1 was seen in 18 % of normal salivary glands and 85 % of tumors. The immunoreaction in the tumors was significantly higher than normal tissues (P = 0.001), but the difference between benign and malignant tumors was not significant (P = 0.07). Expression of Cav-1 was correlated with Ki67 labeling index in PAs, but not in malignant tumors. Cav-1 expression was not in association with tumor size and stage. Overexpression of Cav-1 was found in salivary gland tumors in comparison with normal tissues, but no significant difference was observed between benign and malignant tumors. Cav-1 was inversely correlated with proliferation in PA. Therefore, this marker may participate in tumorigenesis of salivary gland tumors and may be a potential biomarker for cancer treatments.

  5. Receptor Tyrosine Kinases as Targets for Treatment of Peripheral Nerve Sheath Tumors in NF 1 Patients

    Science.gov (United States)

    2010-03-01

    expression analysis after laser-assisted microdissection. Int. J. Mol. Med., 11, 449–453. 22.Plaat,B.E., Molenaar ,W.M., Mastik,M.F., Hoekstra,H.J., te...and erbB2 in MPNST Neuro-oNcology • D E C E M B E R 2 0 0 8 957 20. Plaat BE, Molenaar WM, Mastik MF, Hoekstra HJ, te Meerman GJ, van den Berg E

  6. The role of GH receptor tyrosine phosphorylation in Stat5 activation

    DEFF Research Database (Denmark)

    Hansen, J A; Hansen, L H; Wang, X

    1997-01-01

    Stimulation of GH receptors leads to rapid activation of Jak2 kinase and subsequent tyrosine phosphorylation of the GH receptor. Three specific tyrosines located in the C-terminal domain of the GH receptor have been identified as being involved in GH-stimulated transcription of the Spi 2.1 promoter....... Mutated GH receptors lacking all but one of these three tyrosines are able to mediate a transcriptional response when transiently transfected into CHO cells together with a Spi 2.1 promoter/luciferase construct. Similarly, these GH receptors were found to be able to mediate activation of Stat5 DNA......-binding activity, whereas the GH receptor mutant lacking all intracellular tyrosines was not. Synthetic tyrosine phosphorylated peptides corresponding to the GH receptor sequence around the three tyrosines inhibited Stat5 DNA-binding activity while their non-phosphorylated counterparts were ineffective. Tyrosine...

  7. Three Paths to Better Tyrosine Kinase Inhibition Behind the Blood-Brain Barrier in Treating Chronic Myelogenous Leukemia and Glioblastoma with Imatinib

    Science.gov (United States)

    Kast, Richard E; Focosi, Daniele

    2010-01-01

    Chronic myelogenous leukemia (CML) can be controlled for years with the tyrosine kinase inhibitor imatinib but because imatinib poorly penetrates the blood-brain barrier (BBB), on occasion, the CML clone will thrive and evolve to an accelerated phase in the resulting imatinib sanctuary within the central nervous system. In this, CML resembles glioblastoma in that imatinib, which otherwise may be effective, cannot get to the tumor. Although a common street drug of abuse, methamphetamine is Food and Drug Administration-approved and marketed as a pharmaceutical drug to treat attention-deficit disorders. It has shown the ability to open the BBB in rodents. We have some clinical hints that it may do so in humans as well. This short note presents three new points potentially leading to better tyrosine kinase inhibition behind the BBB: 1) Pharmaceutical methamphetamine may have a useful role in treating both CML and glioblastoma by allowing higher imatinib concentrations behind the BBB. 2) The old antidepressant and monoamine oxidase inhibitor selegiline, used to treat Parkinson disease, is catabolized to methamphetamine. Selegiline, as a nonscheduled drug,may therefore be an easier way to open the BBB, allowing more effective chemotherapy with tyrosine kinases. 3) Dasatinib is a tyrosine kinase inhibitor with a spectrum of inhibition only partially overlapping that of imatinib and a mechanism of tyrosine kinase inhibition that is different from that of imatinib. The two should be additive. In addition, dasatinib crosses the BBB poorly, and it can therefore be expected to benefit from methamphetamine-assisted entry. PMID:20165690

  8. Molecular aspects of tumor cell migration and invasion

    Directory of Open Access Journals (Sweden)

    Giuseppina Bozzuto

    2010-03-01

    Full Text Available Cell migration and invasion are crucial steps in many physiological events. However, they are also implicated in the physiopathology of many diseases, such as cancer. To spread through the tissues, tumor cells use mechanisms that involve several molecular actors: adhesion receptor families, receptor tyrosine kinases, cytoskeleton proteins, adapter and signalling proteins interplay in a complex scenario. The balance of cellular signals for proliferation and survival responses also regulates migratory behaviours of tumor cells. To complicate the scene of crime drug resistance players can interfere thus worsening this delicate situation. The complete understanding of this molecular jungle is an impossible mission: some molecular aspects are reviewed in this paper.

  9. A receptor tyrosine kinase, UFO/Axl, and other genes isolated by a modified differential display PCR are overexpressed in metastatic prostatic carcinoma cell line DU145.

    Science.gov (United States)

    Jacob, A N; Kalapurakal, J; Davidson, W R; Kandpal, G; Dunson, N; Prashar, Y; Kandpal, R P

    1999-01-01

    We have used a modified differential display PCR protocol for isolating 3' restriction fragments of cDNAs specifically expressed or overexpressed in metastatic prostate carcinoma cell line DU145. Several cDNA fragments were identified that matched to milk fat globule protein, UFO/Axl, a receptor tyrosine kinase, human homologue of a Xenopus maternal transcript, laminin and laminin receptor, human carcinoma-associated antigen, and some expressed sequence tags. The transcript for milk fat globule protein, a marker protein shown to be overexpressed in breast tumors, was elevated in DU145 cells. The expression of UFO/Axl, a receptor tyrosine kinase, was considerably higher in DU145 cells as compared to normal prostate cells and prostatic carcinoma cell line PC-3. The overexpression of UFO oncogene in DU145 cells is discussed in the context of prostate cancer metastasis.

  10. Identification and optimization of tyrosine hydroxylase activity in Mucuna pruriens DC. var. utilis.

    Science.gov (United States)

    Luthra, Pratibha Mehta; Singh, Satendra

    2010-05-01

    Tyrosine hydroxylase, an iron containing tetrahydrobiopterin dependent monooxygenase (tyrosine 3-monooxygenase; EC 1.14.16.2), catalyzes the rate-limiting step in which L: -dopa is formed from the substrate L-tyrosine. L-Dopa concentration and activity of L-tyrosine hydroxylase enzyme were measured in roots, stem, leaves, pods, and immature seeds of Mucuna pruriens. Immature seeds contained maximum L-dopa content and mature leaves possessed maximum catalytic activity of tyrosine hydroxylase. Tyrosine hydroxylase from leaf homogenate was characterized as a 55 kDa protein by SDS-PAGE and Western-blot analysis with monoclonal mouse IgG2a tyrosine hydroxylase antibody. The conditions for maximum tyrosine hydroxylase activity from the leaf extract were optimized with respect to temperature, pH, cofactor 6-MPH(4), and divalent metal ions. The tyrosine hydroxylase from leaf extract possessed a K (m) value of 808.63 microM for L-tyrosine at 37 degrees C and pH 6.0. The activity of the enzyme was slightly inhibited at 2,000 microM L-tyrosine. Higher concentrations of the cofactor 6-MPH(4), however, completely inhibited the synthesis of L-dopa. Tyrosine hydroxylase converted specific monophenols such as L-tyrosine (808.63 microM) and tyramine (K (m) 1.1 mM) to diphenols L-dopa and dopamine, respectively. Fe(II) activated the enzyme while higher concentration of other divalent metals reduced its activity. For the first time, tyrosine hydroxylase from M. pruriens is being reported in this study.

  11. Structure determination of T-cell protein-tyrosine phosphatase

    DEFF Research Database (Denmark)

    Iversen, L.F.; Møller, K. B.; Pedersen, A.K.

    2002-01-01

    Protein-tyrosine phosphatase 1B (PTP1B) has recently received much attention as a potential drug target in type 2 diabetes. This has in particular been spurred by the finding that PTP1B knockout mice show increased insulin sensitivity and resistance to diet-induced obesity. Surprisingly, the highly...... homologous T cell protein-tyrosine phosphatase (TC-PTP) has received much less attention, and no x-ray structure has been provided. We have previously co-crystallized PTP1B with a number of low molecular weight inhibitors that inhibit TC-PTP with similar efficiency. Unexpectedly, we were not able to co...... the high degree of functional and structural similarity between TC-PTP and PTP1B, we have been able to identify areas close to the active site that might be addressed to develop selective inhibitors of each enzyme....

  12. Oligonucleotide aptamers against tyrosine kinase receptors: Prospect for anticancer applications.

    Science.gov (United States)

    Camorani, Simona; Crescenzi, Elvira; Fedele, Monica; Cerchia, Laura

    2018-04-01

    Transmembrane receptor tyrosine kinases (RTKs) play crucial roles in cancer cell proliferation, survival, migration and differentiation. Area of intense research is searching for effective anticancer therapies targeting these receptors and, to date, several monoclonal antibodies and small-molecule tyrosine kinase inhibitors have entered the clinic. However, some of these drugs show limited efficacy and give rise to acquired resistance. Emerging highly selective compounds for anticancer therapy are oligonucleotide aptamers that interact with their targets by recognizing a specific three-dimensional structure. Because of their nucleic acid nature, the rational design of advanced strategies to manipulate aptamers for both diagnostic and therapeutic applications is greatly simplified over antibodies. In this manuscript, we will provide a comprehensive overview of oligonucleotide aptamers as next generation strategies to efficiently target RTKs in human cancers. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Bone sialoprotein II synthesized by cultured osteoblasts contains tyrosine sulfate

    International Nuclear Information System (INIS)

    Ecarot-Charrier, B.; Bouchard, F.; Delloye, C.

    1989-01-01

    Isolated mouse osteoblasts that retain their osteogenic activity in culture were incubated with [35S] sulfate. Two radiolabeled proteins, in addition to proteoglycans, were extracted from the calcified matrix of osteoblast cultures. All the sulfate label in both proteins was in the form of tyrosine sulfate as assessed by amino acid analysis and thin layer chromatography following alkaline hydrolysis. The elution behavior on DEAE-Sephacel of the major sulfated protein and the apparent Mr on sodium dodecyl sulfate gels were characteristic of bone sialoprotein II extracted from rat. This protein was shown to cross-react with an antiserum raised against bovine bone sialoprotein II, indicating that bone sialoprotein II synthesized by cultured mouse osteoblasts is a tyrosine-sulfated protein. The minor sulfated protein was tentatively identified as bone sialoprotein I or osteopontin based on its elution properties on DEAE-Sephacel and anomalous behavior on sodium dodecyl sulfate gels similar to those reported for rat bone sialoprotein I

  14. Novel Bruton's tyrosine kinase inhibitors currently in development

    Directory of Open Access Journals (Sweden)

    D'Cruz OJ

    2013-03-01

    Full Text Available Osmond J D'Cruz,1 Fatih M Uckun1,21Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, CA, USA; 2Department of Pediatrics, University of Southern California, Los Angeles, CA, USAAbstract: Bruton's tyrosine kinase (Btk is intimately involved in multiple signal-transduction pathways regulating survival, activation, proliferation, and differentiation of B-lineage lymphoid cells. Btk is overexpressed and constitutively active in several B-lineage lymphoid malignancies. Btk has emerged as a new antiapoptotic molecular target for treatment of B-lineage leukemias and lymphomas. Preclinical and early clinical results indicate that Btk inhibitors may be useful in the treatment of leukemias and lymphomas.Keywords: tyrosine kinase, personalized therapy, kinase inhibitors, Btk, leukemia, lymphoma

  15. Ibrutinib, a Bruton's tyrosine kinase inhibitor, exhibits antitumoral activity and induces autophagy in glioblastoma.

    Science.gov (United States)

    Wang, Jin; Liu, Xiaoyang; Hong, Yongzhi; Wang, Songtao; Chen, Pin; Gu, Aihua; Guo, Xiaoyuan; Zhao, Peng

    2017-07-17

    Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults. Ibrutinib, a Bruton's tyrosine kinase (BTK) inhibitor, is a novel anticancer drug used for treating several types of cancers. In this study, we aimed to determine the role of ibrutinib on GBM. Cell proliferation was determined by using cell viability, colony formation, and 5-ethynyl-2'-deoxyuridine (EdU) assays. Cell cycle and cell apoptosis were analyzed by flow cytometry. Cell migratory ability was evaluated by wound healing assays and trans-well migration assays. ATG7 expression was knocked-down by transfection with Atg7-specific small interfering RNA. Overexpression of active Akt protein was achieved by transfecting the cells with a plasmid expressing constitutively active Akt (CA-Akt). Transmission electron microscopy was performed to examine the formation of autophagosomes in cells. Immunofluorescence and western blot analyses were used to analyze protein expression. Tumor xenografts in nude mice and immunohistochemistry were performed to evaluate the effect of ibrutinib on tumor growth in vivo. Ibrutinib inhibited cellular proliferation and migration, and induced apoptosis and autophagy in LN229 and U87 cells. Overexpression of the active Akt protein decreased ibrutinib-induced autophagy, while inhibiting Akt by LY294002 treatment enhanced ibrutinib-induced autophagy. Specific inhibition of autophagy by 3-methyladenine (3MA) or Atg7 targeting with small interfering RNA (si-Atg7) enhanced the anti-GBM effect of ibrutinib in vitro and in vivo. Our results indicate that ibrutinib exerts a profound antitumor effect and induces autophagy through Akt/mTOR signaling pathway in GBM cells. Autophagy inhibition promotes the antitumor activity of ibrutinib in GBM. Our findings provide important insights into the action of an anticancer agent combining with autophagy inhibitor for malignant glioma.

  16. Senescence as biologic endpoint following pharmacological targeting of receptor tyrosine kinases in cancer.

    Science.gov (United States)

    Francica, Paola; Aebersold, Daniel M; Medová, Michaela

    2017-02-15

    Cellular senescence was first described in 1961 in a seminal study by Hayflick and Moorhead as a limit to the replicative lifespan of somatic cells after serial cultivation. Since then, major advances in our understanding of senescence have been achieved suggesting that this mechanism is activated also by oncogenic stimuli, oxidative stress and DNA damage, giving rise to the concept of premature senescence. Regardless of the initial trigger, numerous experimental observations have been provided to support the notion that both replicative and premature senescence play pivotal roles in early stages of tumorigenesis and in response of tumor cells to anticancer treatments. Moreover, various studies have suggested that the induction of senescence by both chemo- and radiotherapy in a variety of cancer types correlates with treatment outcome. As it is widely accepted that cellular senescence may function as a fundamental barrier of tumor progression, the significance of senescence for clinical interventions that make use of novel molecular targeting-based modalities needs to be well defined. Interestingly, despite numerous studies evaluating efficacies of receptor tyrosine kinases (RTKs) targeting strategies in both preclinical and clinical settings, the relevance of RTKs inhibition-associated senescence in tumors remains less characterized. Here we review the available literature that describes premature senescence as a major mechanism following targeting of RTKs in preclinical as well as in clinical settings. Additionally, we discuss the possible role of diverse RTKs in regulating the induction of senescence following cellular stress and possible implications of this crosstalk in identification of biomarkers of inhibitor-mediated chemo- and radiosensitization approaches. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Proteomic analysis of tyrosine phosphorylation during human liver transplantation

    Directory of Open Access Journals (Sweden)

    Boutros Tarek

    2007-01-01

    Full Text Available Abstract Background Ischemia-reperfusion (I/R causes a dramatic reprogramming of cell metabolism during liver transplantation and can be linked to an alteration of the phosphorylation level of several cellular proteins. Over the past two decades, it became clear that tyrosine phosphorylation plays a pivotal role in a variety of important signalling pathways and was linked to a wide spectrum of diseases. Functional profiling of the tyrosine phosphoproteome during liver transplantation is therefore of great biological significance and is likely to lead to the identification of novel targets for drug discovery and provide a basis for novel therapeutic strategies. Results Using liver biopsies collected during the early phases of organ procurement and transplantation, we aimed at characterizing the global patterns of tyrosine phosphorylation during hepatic I/R. A proteomic approach, based on the purification of tyrosine phosphorylated proteins followed by their identification using mass spectrometry, allowed us to identify Nck-1, a SH2/SH3 adaptor, as a potential regulator of I/R injury. Using immunoblot, cell fractionation and immunohistochemistry, we demonstrate that Nck-1 phosphorylation, expression and localization were affected in liver tissue upon I/R. In addition, mass spectrometry identification of Nck-1 binding partners during the course of the transplantation also suggested a dynamic interaction between Nck-1 and actin during I/R. Conclusion Taken together, our data suggest that Nck-1 may play a role in I/R-induced actin reorganization, which was previously reported to be detrimental for the hepatocytes of the transplanted graft. Nck-1 could therefore represent a target of choice for the design of new organ preservation strategies, which could consequently help to reduce post-reperfusion liver damages and improve transplantation outcomes.

  18. SH2 domains: modulators of nonreceptor tyrosine kinase activity

    OpenAIRE

    Filippakopoulos, Panagis; Müller, Susanne; Knapp, Stefan

    2009-01-01

    The Src homology 2 (SH2) domain is a sequence-specific phosphotyrosine-binding module present in many signaling molecules. In cytoplasmic tyrosine kinases, the SH2 domain is located N-terminally to the catalytic kinase domain (SH1) where it mediates cellular localization, substrate recruitment, and regulation of kinase activity. Initially, structural studies established a role of the SH2 domain stabilizing the inactive state of Src family members. However, biochemical characterization showed ...

  19. Src protein-tyrosine kinase structure and regulation

    International Nuclear Information System (INIS)

    Roskoski, Robert

    2004-01-01

    Src and Src-family protein kinases are proto-oncogenes that play key roles in cell morphology, motility, proliferation, and survival. v-Src (a viral protein) is encoded by the chicken oncogene of Rous sarcoma virus, and Src (the cellular homologue) is encoded by a physiological gene, the first of the proto-oncogenes. From the N- to C-terminus, Src contains an N-terminal 14-carbon myristoyl group, a unique segment, an SH3 domain, an SH2 domain, a protein-tyrosine kinase domain, and a C-terminal regulatory tail. The chief phosphorylation sites of Src include tyrosine 416 that results in activation from autophosphorylation and tyrosine 527 that results in inhibition from phosphorylation by C-terminal Src kinase. In the restrained state, the SH2 domain forms a salt bridge with phosphotyrosine 527, and the SH3 domain binds to the kinase domain via a polyproline type II left-handed helix. The SH2 and SH3 domains occur on the backside of the kinase domain away from the active site where they stabilize a dormant enzyme conformation. Protein-tyrosine phosphatases such as PTPα displace phosphotyrosine 527 from the Src SH2 domain and mediate its dephosphorylation leading to Src kinase activation. C-terminal Src kinase consists of an SH3, SH2, and kinase domain; it lacks an N-terminal myristoyl group and a C-terminal regulatory tail. Its X-ray structure has been determined, and the SH2 lobe occupies a position that is entirely different from that of Src. Unlike Src, the C-terminal Src kinase SH2 and SH3 domains stabilize an active enzyme conformation. Amino acid residues in the αD helix near the catalytic loop in the large lobe of C-terminal Src kinase serve as a docking site for the physiological substrate (Src) but not for an artificial substrate (polyGlu 4 Tyr)

  20. Novel function of transcription factor Nrf2 as an inhibitor of RON tyrosine kinase receptor-mediated cancer cell invasion.

    Science.gov (United States)

    Thangasamy, Amalraj; Rogge, Jessica; Krishnegowda, Naveen K; Freeman, James W; Ammanamanchi, Sudhakar

    2011-09-16

    Recepteur d' origine nantais (RON), a tyrosine kinase receptor, is aberrantly expressed in human tumors and promotes cancer cell invasion. RON receptor activation is also associated with resistance to tamoxifen treatment in breast cancer cells. Nrf2 is a positive regulator of cytoprotective genes. Using chromatin immunoprecipitation (ChIP) and site-directed mutagenesis studies of the RON promoter, we identified Nrf2 as a negative regulator of RON gene expression. High Nrf2 and low RON expression was observed in normal mammary tissue whereas high RON and low or undetectable expression of Nrf2 was observed in breast tumors. The Nrf2 inducer sulforaphane (SFN) as well as ectopic Nrf2 expression or knock-down of the Nrf2 negative regulator keap1, which stabilizes Nrf2, inhibited RON expression and invasion of carcinoma cells. Consequently, our studies identified a novel functional role for Nrf2 as a "repressor" and RON kinase as a molecular target of SFN, which mediates the anti-tumor effects of SFN. These results are not limited to breast cancer cells since the Nrf2 inducer SFN stabilized Nrf2 and inhibited RON expression in carcinoma cells from various tumor types.

  1. ABL tyrosine kinase inhibition variable effects on the invasive properties of different triple negative breast cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Clément Chevalier

    Full Text Available The non-receptor tyrosine kinase ABL drives myeloid progenitor expansion in human chronic myeloid leukemia. ABL inhibition by the tyrosine kinase inhibitor nilotinib is a first-line treatment for this disease. Recently, ABL has also been implicated in the transforming properties of solid tumors, including triple negative (TN breast cancer. TN breast cancers are highly metastatic and several cell lines derived from these tumors display high invasive activity in vitro. This feature is associated with the activation of actin-rich membrane structures called invadopodia that promote extracellular matrix degradation. Here, we investigated nilotinib effect on the invasive and migratory properties of different TN breast cancer cell lines. Nilotinib decreased both matrix degradation and invasion in the TN breast cancer cell lines MDA-MB 231 and MDA-MB 468. However, and unexpectedly, nilotinib increased by two-fold the invasive properties of the TN breast cancer cell line BT-549 and of Src-transformed fibroblasts. Both display much higher levels of ABL kinase activity compared to MDA-MB 231. Similar effects were obtained by siRNA-mediated down-regulation of ABL expression, confirming ABL central role in this process. ABL anti-tumor effect in BT-549 cells and Src-transformed fibroblasts was not dependent on EGF secretion, as recently reported in neck and squamous carcinoma cells. Rather, we identified the TRIO-RAC1 axis as an important downstream element of ABL activity in these cancer cells. In conclusion, the observation that TN breast cancer cell lines respond differently to ABL inhibitors could have implications for future therapies.

  2. PTP1B-dependent regulation of receptor tyrosine kinase signaling by the actin-binding protein Mena.

    Science.gov (United States)

    Hughes, Shannon K; Oudin, Madeleine J; Tadros, Jenny; Neil, Jason; Del Rosario, Amanda; Joughin, Brian A; Ritsma, Laila; Wyckoff, Jeff; Vasile, Eliza; Eddy, Robert; Philippar, Ulrike; Lussiez, Alisha; Condeelis, John S; van Rheenen, Jacco; White, Forest; Lauffenburger, Douglas A; Gertler, Frank B

    2015-11-01

    During breast cancer progression, alternative mRNA splicing produces functionally distinct isoforms of Mena, an actin regulator with roles in cell migration and metastasis. Aggressive tumor cell subpopulations express Mena(INV), which promotes tumor cell invasion by potentiating EGF responses. However, the mechanism by which this occurs is unknown. Here we report that Mena associates constitutively with the tyrosine phosphatase PTP1B and mediates a novel negative feedback mechanism that attenuates receptor tyrosine kinase signaling. On EGF stimulation, complexes containing Mena and PTP1B are recruited to the EGFR, causing receptor dephosphorylation and leading to decreased motility responses. Mena also interacts with the 5' inositol phosphatase SHIP2, which is important for the recruitment of the Mena-PTP1B complex to the EGFR. When Mena(INV) is expressed, PTP1B recruitment to the EGFR is impaired, providing a mechanism for growth factor sensitization to EGF, as well as HGF and IGF, and increased resistance to EGFR and Met inhibitors in signaling and motility assays. In sum, we demonstrate that Mena plays an important role in regulating growth factor-induced signaling. Disruption of this attenuation by Mena(INV) sensitizes tumor cells to low-growth factor concentrations, thereby increasing the migration and invasion responses that contribute to aggressive, malignant cell phenotypes. © 2015 Hughes, Oudin, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Dual Inhibition of Topoisomerase II and Tyrosine Kinases by the Novel Bis-Fluoroquinolone Chalcone-Like Derivative HMNE3 in Human Pancreatic Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Yong-Chao Ma

    Full Text Available Both tyrosine kinase and topoisomerase II (TopII are important anticancer targets, and their respective inhibitors are widely used in cancer therapy. However, some combinations of anticancer drugs could exhibit mutually antagonistic actions and drug resistance, which further limit their therapeutic efficacy. Here, we report that HMNE3, a novel bis-fluoroquinolone chalcone-like derivative that targets both tyrosine kinase and TopII, induces tumor cell proliferation and growth inhibition. The viabilities of 6 different cancer cell lines treated with a range of HMNE3 doses were detected using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Cellular apoptosis was determined using Hoechst 33258 fluorescence staining and the terminal deoxynucleotidyl transferase (TdT dUTP nick-end labeling (TUNEL assay. The expression of activated Caspase-3 was examined by immunocytochemistry. The tyrosine kinase activity was measured with a human receptor tyrosine kinase (RTK detection kit using a horseradish peroxidase (HRP-conjugated phosphotyrosine (pY20 antibody as the substrate. The topoisomerase II activity was measured using agarose gel electrophoresis with the DNA plasmid pBR322 as the substrate. The expression levels of the P53, Bax, Bcl-2, Caspase-3, -8, -9, p-cSrc, c-Src and topoisomerase II proteins were detected by western blot analysis. The proliferation of five of the six cancer cell lines was significantly inhibited by HMNE3 at 0.312 to 10 μmol/L in a time- and dose-dependent manner. Treatment of the Capan-1 and Panc-1 cells with 1.6 to 3.2 μM HMNE3 for 48 h significantly increased the percentage of apoptotic cells (P<0.05, and this effect was accompanied by a decrease in tyrosine kinase activity. HMNE3 potentially inhibited tyrosine kinase activity in vitro with an IC50 value of 0.64±0.34 μmol/L in Capan-1 cells and 3.1±0.86 μmol/L in Panc-1 cells. The activity of c-Src was significantly inhibited by HMNE3 in a dose

  4. Tyrosine glycosylation is involved in muscle-glycogen synthesis

    International Nuclear Information System (INIS)

    Rodriguez, I.R.; Tandecarz, J.S.; Kirkman, B.R.; Whelan, W.J.

    1986-01-01

    Rabbit-muscle glycogen contains a covalently bound protein having Mr 37,000 that the authors will henceforth refer to as glycogenin. It is completely insoluble in water at pH 5, and may be generated as a precipitate as a result of the combined action on glycogen of α-amylase and glucoamylase, or by treatment with anhydrous hydrogen fluoride. In the former case the protein still carries some of the glucose residues of glycogen (10-30 per mole of glycogenin). The linkage between glycogen and glycogenin has been identified as a novel glycosidic-amino acid bond. The authors demonstrated glucosylation with UDP[/sup 14/C]glucose by a muscle extract of two rabbit-muscle proteins contained in the same extract. The relation of these proteins to glycogenin, and whether the amino acid undergoing glucosylation is tyrosine, remains to be explored. The discovery of glycogenin is, the authors believe, an important clue to the mechanism of biogenesis of glycogen and may represent a previously unsuspected means of metabolic control of the glycogen content of the cell and the location of glycogen within the cell. The facts that the linkage between glycogen and glycogenin is via tyrosine, that insulin stimulates glycogen synthesis, and acts on its receptor by causing it to become an active tyrosine kinase, may be linked by a common thread

  5. SH2 domains: modulators of nonreceptor tyrosine kinase activity.

    Science.gov (United States)

    Filippakopoulos, Panagis; Müller, Susanne; Knapp, Stefan

    2009-12-01

    The Src homology 2 (SH2) domain is a sequence-specific phosphotyrosine-binding module present in many signaling molecules. In cytoplasmic tyrosine kinases, the SH2 domain is located N-terminally to the catalytic kinase domain (SH1) where it mediates cellular localization, substrate recruitment, and regulation of kinase activity. Initially, structural studies established a role of the SH2 domain stabilizing the inactive state of Src family members. However, biochemical characterization showed that the presence of the SH2 domain is frequently required for catalytic activity, suggesting a crucial function stabilizing the active state of many nonreceptor tyrosine kinases. Recently, the structure of the SH2-kinase domain of Fes revealed that the SH2 domain stabilizes the active kinase conformation by direct interactions with the regulatory helix alphaC. Stabilizing interactions between the SH2 and the kinase domains have also been observed in the structures of active Csk and Abl. Interestingly, mutations in the SH2 domain found in human disease can be explained by SH2 domain destabilization or incorrect positioning of the SH2. Here we summarize our understanding of mechanisms that lead to tyrosine kinase activation by direct interactions mediated by the SH2 domain and discuss how mutations in the SH2 domain trigger kinase inactivation.

  6. "Cancer tumor".

    Science.gov (United States)

    Bronshtehn, V. A.

    The title is a phrase borrowed from a speech by a Leningrad pressman, V. E. Lvov, who called upon those attending a theoretical conference on ideological issues in astronomy held by the Leningrad Branch of the All-Union Astronomic and Geodetic Society (13 - 4 December 1948), "to make a more radical emphasis on the negative role of relativistic cosmology which is a cancer tumor disintegrating the contemporary astronomy theory, and a major ideological enemy of a materialist astronomy".

  7. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 1: basic principles and properties of tyrosine chromophore.

    Science.gov (United States)

    Antosiewicz, Jan M; Shugar, David

    2016-06-01

    Spectroscopic properties of tyrosine residues may be employed in structural studies of proteins. Here we discuss several different types of UV-Vis spectroscopy, like normal, difference and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, and corresponding optical properties of the tyrosine chromophore, phenol, which are used to study protein structure.

  8. Tyrosine 769 of the keratinocyte growth factor receptor is required for receptor signaling but not endocytosis

    International Nuclear Information System (INIS)

    Ceridono, Mara; Belleudi, Francesca; Ceccarelli, Simona; Torrisi, Maria Rosaria

    2005-01-01

    Keratinocyte growth factor receptor (KGFR) is a receptor tyrosine kinase expressed on epithelial cells which belongs to the family of fibroblast growth factor receptors (FGFRs). Following ligand binding, KGFR is rapidly autophosphorylated on specific tyrosine residues in the intracellular domain, recruits substrate proteins, and is rapidly internalized by clathrin-mediated endocytosis. The role of different autophosphorylation sites in FGFRs, and in particular the role of the tyrosine 766 in FGFR1, first identified as PLCγ binding site, has been extensively studied. We analyzed here the possible role of the tyrosine 769 in KGFR, corresponding to tyrosine 766 in FGFR1, in the regulation of KGFR signal transduction and MAPK activation as well as in the control of the endocytic process of KGFR. A mutant KGFR in which tyrosine 769 was substituted by phenylalanine was generated and transfected in NIH3T3 and HeLa cells. Our results indicate that tyrosine 769 is required for the binding to KGFR and tyrosine phosphorylation of PLCγ as well as for the full activation of MAPKs and for cell proliferation through the regulation of FRS2 tyrosine phosphorylation, suggesting that this residue represents a key regulator of KGFR signal transduction. Our data also show that tyrosine 769 is not involved in the regulation of the endocytic process of KGFR

  9. Conversion of p-tyrosine to p-tyramine in the isolated perfused rat kidney: Modulation by perfusate concentrations of p-tyrosine

    International Nuclear Information System (INIS)

    Brier, M.E.; Bowsher, R.R.; Henry, D.P.; Mayer, P.R.

    1991-01-01

    The authors used the isolated perfused rat kidney to evaluate the role of renal decarboxylation of p-tyrosine as the source of urinary p-tyramine. Kidneys were perfused with concentrations of p-tyrosine ranging from 0.02 mM to 2.0 mM. p-Tyramine was measured by a sensitive and specific radioenzymatic assay. An increase in the perfusate concentration of p-tyrosine resulted in a significant increase in p-tyramine production that was blocked by the addition of NSD-1015, an inhibitor of aromatic-1-amino decarboxylase (AADC). They conclude p-tyrosine is the precursor for the renal production of p-tyramine, renal AADC catalyzes the formation of urinary p-tyramine, synthesized p-tyramine is predominantly excreted in the urine, and p-tyramine synthesis is modulated by the arterial delivery of p-tyrosine to the kidney

  10. Autocrine motility factor (neuroleukin, phosphohexose isomerase) induces cell movement through 12-lipoxygenase-dependent tyrosine phosphorylation and serine dephosphorylation events.

    Science.gov (United States)

    Timár, J; Tóth, S; Tóvári, J; Paku, S; Raz, A

    1999-01-01

    Autocrine motility factor (AMF) is one of the motility cytokines regulating tumor cell migration, therefore identification of the signaling pathway coupled with it has critical importance. Previous studies revealed several elements of this pathway predominated by lipoxygenase-PKC activations but the role for tyrosine kinases remained questionable. Motility cytokines frequently have mitogenic effect as well, producing activation of overlapping signaling pathways therefore we have used B16a melanoma cells as models where AMF has exclusive motility effect. Our studies revealed that in B16a cells AMF initiated rapid (1-5 min) activation of the protein tyrosine kinase (PTK) cascade inducing phosphorylation of 179, 125, 95 and 40/37 kD proteins which was mediated by upstream cyclo- and lipoxygenases. The phosphorylated proteins were localized to the cortical actin-stress fiber attachment zones in situ by confocal microscopy. On the other hand, AMF receptor activation induced significant decrease in overall serine-phosphorylation level of cellular proteins accompanied by serine phosphorylation of 200, 90, 78 and 65 kd proteins. The decrease in serine phosphorylation was independent of PTKs, PKC as well as cyclo- and lipoxygenases. However, AMF induced robust translocation of PKCalpha to the stress fibers and cortical actin suggesting a critical role for this kinase in the generation of the motility signal. Based on the significant decrease in serine phosphorylation after AMF stimulus in B16a cells we postulated the involvement of putative serine/threonine phosphatase(s) upstream lipoxygenase and activation of the protein tyrosine kinase cascade downstream cyclo- and lipoxygenase(s) in the previously identified autocrine motility signal.

  11. Efficacy and mechanism of action of the tyrosine kinase inhibitors gefitinib, lapatinib and neratinib in the treatment of HER2-positive breast cancer: preclinical and clinical evidence.

    Science.gov (United States)

    Segovia-Mendoza, Mariana; González-González, María E; Barrera, David; Díaz, Lorenza; García-Becerra, Rocío

    2015-01-01

    An increasing number of tumors, including breast cancer, overexpress proteins of the epidermal growth factor receptor (EGFR) family. The interaction between family members activates signaling pathways that promote tumor progression and resistance to treatment. Human epidermal growth factor receptor type II (HER2) positive breast cancer represents a clinical challenge for current therapy. It has motivated the development of novel and more effective therapeutic EGFR family target drugs, such as tyrosine kinase inhibitors (TKIs). This review focuses on the effects of three TKIs mostly studied in HER2- positive breast cancer, lapatinib, gefitinib and neratinib. Herein, we discuss the mechanism of action, therapeutic advantages and clinical applications of these TKIs. To date, TKIs seem to be promising therapeutic agents for the treatment of HER2-overexpressing breast tumors, either as monotherapy or combined with other pharmacological agents.

  12. Src homology domain 2-containing protein-tyrosine phosphatase-1 (SHP-1) binds and dephosphorylates G(alpha)-interacting, vesicle-associated protein (GIV)/Girdin and attenuates the GIV-phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway.

    Science.gov (United States)

    Mittal, Yash; Pavlova, Yelena; Garcia-Marcos, Mikel; Ghosh, Pradipta

    2011-09-16

    GIV (Gα-interacting vesicle-associated protein, also known as Girdin) is a bona fide enhancer of PI3K-Akt signals during a diverse set of biological processes, e.g. wound healing, macrophage chemotaxis, tumor angiogenesis, and cancer invasion/metastasis. We recently demonstrated that tyrosine phosphorylation of GIV by receptor and non-receptor-tyrosine kinases is a key step that is required for GIV to directly bind and enhance PI3K activity. Here we report the discovery that Src homology 2-containing phosphatase-1 (SHP-1) is the major protein-tyrosine phosphatase that targets two critical phosphotyrosines within GIV and antagonizes phospho-GIV-dependent PI3K enhancement in mammalian cells. Using phosphorylation-dephosphorylation assays, we demonstrate that SHP-1 is the major and specific protein-tyrosine phosphatase that catalyzes the dephosphorylation of tyrosine-phosphorylated GIV in vitro and inhibits ligand-dependent tyrosine phosphorylation of GIV downstream of both growth factor receptors and GPCRs in cells. In vitro binding and co-immunoprecipitation assays demonstrate that SHP-1 and GIV interact directly and constitutively and that this interaction occurs between the SH2 domain of SHP-1 and the C terminus of GIV. Overexpression of SHP-1 inhibits tyrosine phosphorylation of GIV and formation of phospho-GIV-PI3K complexes, and specifically suppresses GIV-dependent activation of Akt. Consistently, depletion of SHP-1 enhances peak tyrosine phosphorylation of GIV, which coincides with an increase in peak Akt activity. We conclude that SHP-1 antagonizes the action of receptor and non-receptor-tyrosine kinases on GIV and down-regulates the phospho-GIV-PI3K-Akt axis of signaling.

  13. Understanding Brain Tumors

    Science.gov (United States)

    ... to Know About Brain Tumors . What is a Brain Tumor? A brain tumor is an abnormal growth
 ... Tumors” from Frankly Speaking Frankly Speaking About Cancer: Brain Tumors Download the full book Questions to ask ...

  14. Brain tumor - primary - adults

    Science.gov (United States)

    ... Vestibular schwannoma (acoustic neuroma) - adults; Meningioma - adults; Cancer - brain tumor (adults) ... Primary brain tumors include any tumor that starts in the brain. Primary brain tumors can start from brain cells, ...

  15. Brain tumor - children

    Science.gov (United States)

    ... children; Neuroglioma - children; Oligodendroglioma - children; Meningioma - children; Cancer - brain tumor (children) ... The cause of primary brain tumors is unknown. Primary brain tumors may ... (spread to nearby areas) Cancerous (malignant) Brain tumors ...

  16. Adrenal Gland Tumors: Statistics

    Science.gov (United States)

    ... Gland Tumor: Statistics Request Permissions Adrenal Gland Tumor: Statistics Approved by the Cancer.Net Editorial Board , 03/ ... primary adrenal gland tumor is very uncommon. Exact statistics are not available for this type of tumor ...

  17. Pediatric brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Poussaint, Tina Y. [Department of Radiology, Boston, MA (United States); Panigrahy, Ashok [Children' s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Department of Radiology, Pittsburgh, PA (United States); Huisman, Thierry A.G.M. [Charlotte R. Bloomberg Children' s Center, Johns Hopkins Hospital, Division of Pediatric Radiology and Pediatric Neuroradiology, Baltimore, MD (United States)

    2015-09-15

    Among all causes of death in children from solid tumors, pediatric brain tumors are the most common. This article includes an overview of a subset of infratentorial and supratentorial tumors with a focus on tumor imaging features and molecular advances and treatments of these tumors. Key to understanding the imaging features of brain tumors is a firm grasp of other disease processes that can mimic tumor on imaging. We also review imaging features of a common subset of tumor mimics. (orig.)

  18. Preclinical evaluation of sunitinib, a multi-tyrosine kinase inhibitor, as a radiosensitizer for human prostate cancer

    International Nuclear Information System (INIS)

    Brooks, Colin; Sheu, Tommy; Bridges, Kathleen; Mason, Kathy; Kuban, Deborah; Mathew, Paul; Meyn, Raymond

    2012-01-01

    Many prostate cancers demonstrate an increased expression of growth factor receptors such as vascular endothelial growth factor receptor (VEGFR) and platelet derived growth factor receptor (PDGFR) which have been correlated with increased resistance to radiotherapy and poor prognosis in other tumors. Therefore, response to radiation could potentially be improved by using inhibitors of these abnormally activated pathways. We have investigated the radiosensitizing effects of sunitinib, a potent, multi-tyrosine kinase inhibitor of the VEGFR and PDGFR receptors, on human prostate cancer cells. The radiosensitizing effects of sunitinib were assessed on human prostate cancer cell lines DU145, PC3 and LNCaP by clonogenic assay. Sunitinib’s ability to inhibit the activities of its key targets was determined by immunoblot analysis. The radiosensitizing effects of sunitinib in vivo were tested on human tumor xenografts growing in nude mice where response was assessed by tumor growth delay. Clonogenic survival curve assays for both DU145 and PC3 cells showed that the surviving fraction at 2 Gy was reduced from 0.70 and 0.52 in controls to 0.44 and 0.38, respectively, by a 24 hr pretreatment with 100 nM sunitinib. LNCaP cells were not radiosensitized by sunitinib. Dose dependent decreases in VEGFR and PDGFR activation were also observed following sunitinib in both DU145 and PC3 cells. We assessed the ability of sunitinib to radiosensitize PC3 xenograft tumors growing in the hind limb of nude mice. Sunitinib given concurrently with radiation did not prolong tumor growth delay. However, when animals were treated with sunitinib commencing the day after fractionated radiation was complete, tumor growth delay was enhanced compared to radiation alone. We conclude, based on the in vivo results, that sunitinib and radiation do not interact directly to radiosensitize the PC3 tumor cells in vivo as they did in vitro. The fact that tumor growth delay was enhanced when sunitinib was

  19. Testis tumors

    International Nuclear Information System (INIS)

    White, R.L.; Maier, J.G.

    1987-01-01

    Clinical trials are evaluating new combinations of drugs with the goal of diminishing the toxicity associated with the current regimens while not compromising the chance for cure. The evolution of information and staging studies such as tumor markers, CT scanning and MR scanning has made possible the detection of residual metastatic disease while obviating the need for surgical staging procedures. This has made less treatment possible for a large number of patients. The regularity of follow-up studies has made early detection of recurrences a possibility, so that effective and curative treatment is generally possible

  20. Branched-chain amino acids to tyrosine ratio value as a potential prognostic factor for hepatocellular carcinoma.

    Science.gov (United States)

    Ishikawa, Toru

    2012-05-07

    The prognosis of hepatocellular carcinoma (HCC) depends on tumor extension as well as hepatic function. Hepatic functional reserve is recognized as a factor affecting survival in the treatment of HCC; the Child-Pugh classification system is the most extensively used method for assessing hepatic functional reserve in patients with chronic liver disease, using serum albumin level to achieve accurate assessment of the status of protein metabolism. However, insufficient attention has been given to the status of amino acid (AA) metabolism in chronic liver disease and HCC. Fischer's ratio is the molar ratio of branched-chain AAs (BCAAs: leucine, valine, isoleucine) to aromatic AAs (phenylalanine, tyrosine) and is important for assessing liver metabolism, hepatic functional reserve and the severity of liver dysfunction. Although this ratio is difficult to determine in clinical situations, BCAAs/tyrosine molar concentration ratio (BTR) has been proposed as a simpler substitute. BTR correlates with various liver function examinations, including markers of hepatic fibrosis, hepatic blood flow and hepatocyte function, and can thus be considered as reflecting the degree of hepatic impairment. This manuscript examines the literature to clarify whether BTR can serve as a prognostic factor for treatment of HCC.

  1. Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Macek, B

    2006-01-01

    for phosphotyrosine-containing proteins in Streptomyces griseus by immunoaffinity chromatography identified bacterial SSBs as a novel target of bacterial tyrosine kinases. Since genes encoding protein-tyrosine kinases (PTKs) have not been recognized in streptomycetes, and SSBs from Streptomyces coelicolor (Sc......SSB) and Bacillus subtilis (BsSSB) share 38.7% identity, we used a B.subtilis protein-tyrosine kinase YwqD to phosphorylate two cognate SSBs (BsSSB and YwpH) in vitro. We demonstrate that in vivo phosphorylation of B.subtilis SSB occurs on tyrosine residue 82, and this reaction is affected antagonistically...... by kinase YwqD and phosphatase YwqE. Phosphorylation of B.subtilis SSB increased binding almost 200-fold to single-stranded DNA in vitro. Tyrosine phosphorylation of B.subtilis, S.coelicolor and Escherichia coli SSBs occured while they were expressed in E.coli, indicating that tyrosine phosphorylation...

  2. Vav promotes differentiation of human tumoral myeloid precursors

    International Nuclear Information System (INIS)

    Bertagnolo, Valeria; Brugnoli, Federica; Mischiati, Carlo; Sereni, Alessia; Bavelloni, Alberto; Carini, Cinzia; Capitani, Silvano

    2005-01-01

    Vav is one of the genetic markers that correlate with the differentiation of hematopoietic cells. In T and B cells, it appears crucial for both development and functions, while, in non-lymphoid hematopoietic cells, Vav seems not involved in cell maturation, but rather in the response of mature cells to agonist-dependent proliferation and phagocytosis. We have previously demonstrated that the amount and the tyrosine phosphorylation of Vav are up-regulated in both whole cells and nuclei of tumoral promyelocytes induced to granulocytic maturation by ATRA and that tyrosine-phosphorylated Vav does not display any ATRA-induced GEF activity but contributes to the regulation of PI 3-K activity. In this study, we report that Vav accumulates in nuclei of ATRA-treated APL-derived cells and that the down-modulation of Vav prevents differentiation of tumoral promyelocytes, indicating that it is a key molecule in ATRA-dependent myeloid maturation. On the other hand, the overexpression of Vav induces an increased expression of surface markers of granulocytic differentiation without affecting the maturation-related changes of the nuclear morphology. Consistent with an effect of Vav on the transcriptional machinery, array profiling shows that the inhibition of the Syk-dependent tyrosine phosphorylation of Vav reduces the number of ATRA-induced genes. Our data support the unprecedented notion that Vav plays crucial functions in the maturation process of myeloid cells, and suggest that Vav can be regarded as a potential target for the therapeutic treatment of myeloproliferative disorders

  3. Naturally occurring, tumor-specific, therapeutic proteins.

    Science.gov (United States)

    Argiris, Konstantinos; Panethymitaki, Chrysoula; Tavassoli, Mahvash

    2011-05-01

    The emerging approach to cancer treatment known as targeted therapies offers hope in improving the treatment of therapy-resistant cancers. Recent understanding of the molecular pathogenesis of cancer has led to the development of targeted novel drugs such as monoclonal antibodies, small molecule inhibitors, mimetics, antisense and small interference RNA-based strategies, among others. These compounds act on specific targets that are believed to contribute to the development and progression of cancers and resistance of tumors to conventional therapies. Delivered individually or combined with chemo- and/or radiotherapy, such novel drugs have produced significant responses in certain types of cancer. Among the most successful novel compounds are those which target tyrosine kinases (imatinib, trastuzumab, sinutinib, cetuximab). However, these compounds can cause severe side-effects as they inhibit pathways such as epidermal growth factor receptor (EGFR) or platelet-derived growth factor receptor, which are also important for normal functions in non-transformed cells. Recently, a number of proteins have been identified which show a remarkable tumor-specific cytotoxic activity. This toxicity is independent of tumor type or specific genetic changes such as p53, pRB or EGFR aberrations. These tumor-specific killer proteins are either derived from common human and animal viruses such as E1A, E4ORF4 and VP3 (apoptin) or of cellular origin, such as TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) and MDA-7 (melanoma differentiation associated-7). This review aims to present a current overview of a selection of these proteins with preferential toxicity among cancer cells and will provide an insight into the possible mechanism of action, tumor specificity and their potential as novel tumor-specific cancer therapeutics.

  4. HER2 mutated breast cancer responds to treatment with single agent neratinib, a second generation HER2/EGFR tyrosine kinase inhibitor

    Science.gov (United States)

    Ben–Baruch, Noa Efrat; Bose, Ron; Kavuri, Shyam M.; Ma, Cynthia X.; Ellis, Matthew J.

    2015-01-01

    Activating mutations in the HER2 tyrosine kinase have been identified in human breast cancers that lack HER2 gene amplification. These patients are not candidates for HER2 targeted drugs under current standards of care, but preclinical data strongly suggest that these patients will benefit from anti-HER2 drugs. In this case report, we describe a young woman with metastatic breast cancer whose tumor was found to carry a HER2 L755S mutation, which is in the kinase domain of HER2. Treatment with the second generation HER2/EGFR tyrosine kinase inhibitor, neratinib, resulted in partial response and dramatic improvement in the patient’s function status. This partial response lasted 11 months and when the patient’s cancer progressed, she was treated with neratinib plus capecitabine and her cancer again responded. This second response parallels the benefit seen with continuing trastuzumab in HER2 amplified breast cancer after disease progression. This case is the first report, to our knowledge, of successful single agent treatment of HER2 mutated breast cancer. Two clinical trials of neratinib for HER2 mutated, metastatic breast cancer are currently enrolling patients. Further, data from The Cancer Genome Atlas project have identified HER2 mutations in a wide range of solid tumors, including bladder, colorectal, and non-small cell lung cancer, suggesting that clinical trials of neratinib or neratinib-based combinations for HER2 mutated solid tumors is warranted. PMID:26358790

  5. HER2-Mutated Breast Cancer Responds to Treatment With Single-Agent Neratinib, a Second-Generation HER2/EGFR Tyrosine Kinase Inhibitor.

    Science.gov (United States)

    Ben-Baruch, Noa Efrat; Bose, Ron; Kavuri, Shyam M; Ma, Cynthia X; Ellis, Matthew J

    2015-09-01

    Activating mutations in the HER2 tyrosine kinase have been identified in human breast cancers that lack HER2 gene amplification. These patients are not candidates for HER2-targeted drugs under current standards of care, but preclinical data strongly suggest that these patients will benefit from anti-HER2 drugs. This case report describes a young woman with metastatic breast cancer whose tumor was found to carry a HER2 L755S mutation, which is in the kinase domain of HER2. Treatment with the second-generation HER2/EGFR tyrosine kinase inhibitor neratinib resulted in partial response and dramatic improvement in the patient's functional status. This partial response lasted 11 months, and when the patient's cancer progressed, she was treated with neratinib plus capecitabine and her cancer again responded. This second response parallels the benefit seen with continuing trastuzumab in HER2-amplified breast cancer after disease progression. This case represents the first report, to our knowledge, of successful single-agent treatment of HER2-mutated breast cancer. Two clinical trials of neratinib for HER2-mutated metastatic breast cancer are currently enrolling patients. Further, data from The Cancer Genome Atlas project have identified HER2 mutations in a wide range of solid tumors, including bladder, colorectal, and non-small cell lung cancers, suggesting that clinical trials of neratinib or neratinib-based combinations for HER2-mutated solid tumors is warranted. Copyright © 2015 by the National Comprehensive Cancer Network.

  6. Unsupervised consensus cluster analysis of [18F]-fluoroethyl-L-tyrosine positron emission tomography identified textural features for the diagnosis of pseudoprogression in high-grade glioma.

    Science.gov (United States)

    Kebir, Sied; Khurshid, Zain; Gaertner, Florian C; Essler, Markus; Hattingen, Elke; Fimmers, Rolf; Scheffler, Björn; Herrlinger, Ulrich; Bundschuh, Ralph A; Glas, Martin

    2017-01-31

    Timely detection of pseudoprogression (PSP) is crucial for the management of patients with high-grade glioma (HGG) but remains difficult. Textural features of O-(2-[18F]fluoroethyl)-L-tyrosine positron emission tomography (FET-PET) mirror tumor uptake heterogeneity; some of them may be associated with tumor progression. Fourteen patients with HGG and suspected of PSP underwent FET-PET imaging. A set of 19 conventional and textural FET-PET features were evaluated and subjected to unsupervised consensus clustering. The final diagnosis of true progression vs. PSP was based on follow-up MRI using RANO criteria. Three robust clusters have been identified based on 10 predominantly textural FET-PET features. None of the patients with PSP fell into cluster 2, which was associated with high values for textural FET-PET markers of uptake heterogeneity. Three out of 4 patients with PSP were assigned to cluster 3 that was largely associated with low values of textural FET-PET features. By comparison, tumor-to-normal brain ratio (TNRmax) at the optimal cutoff 2.1 was less predictive of PSP (negative predictive value 57% for detecting true progression, p=0.07 vs. 75% with cluster 3, p=0.04). Clustering based on textural O-(2-[18F]fluoroethyl)-L-tyrosine PET features may provide valuable information in assessing the elusive phenomenon of pseudoprogression.

  7. Teratoid Wilms′ tumor - A rare renal tumor

    Directory of Open Access Journals (Sweden)

    Biswanath Mukhopadhyay

    2011-01-01

    Full Text Available Teratoid Wilms′ tumor is an extremely rare renal tumor. We report a case of unilateral teratoid Wilms′ tumor in a 4-year-old girl. The patient was admitted with a right-sided abdominal mass. The mass was arising from the right kidney. Radical nephrectomy was done and the patient had an uneventful recovery. Histopathology report showed teratoid Wilms′ tumor.

  8. Intracellular Growth Is Dependent on Tyrosine Catabolism in the Dimorphic Fungal Pathogen Penicillium marneffei

    Science.gov (United States)

    Boyce, Kylie J.; McLauchlan, Alisha; Schreider, Lena; Andrianopoulos, Alex

    2015-01-01

    During infection, pathogens must utilise the available nutrient sources in order to grow while simultaneously evading or tolerating the host’s defence systems. Amino acids are an important nutritional source for pathogenic fungi and can be assimilated from host proteins to provide both carbon and nitrogen. The hpdA gene of the dimorphic fungus Penicillium marneffei, which encodes an enzyme which catalyses the second step of tyrosine catabolism, was identified as up-regulated in pathogenic yeast cells. As well as enabling the fungus to acquire carbon and nitrogen, tyrosine is also a precursor in the formation of two types of protective melanin; DOPA melanin and pyomelanin. Chemical inhibition of HpdA in P. marneffei inhibits ex vivo yeast cell production suggesting that tyrosine is a key nutrient source during infectious growth. The genes required for tyrosine catabolism, including hpdA, are located in a gene cluster and the expression of these genes is induced in the presence of tyrosine. A gene (hmgR) encoding a Zn(II)2-Cys6 binuclear cluster transcription factor is present within the cluster and is required for tyrosine induced expression and repression in the presence of a preferred nitrogen source. AreA, the GATA-type transcription factor which regulates the global response to limiting nitrogen conditions negatively regulates expression of cluster genes in the absence of tyrosine and is required for nitrogen metabolite repression. Deletion of the tyrosine catabolic genes in the cluster affects growth on tyrosine as either a nitrogen or carbon source and affects pyomelanin, but not DOPA melanin, production. In contrast to other genes of the tyrosine catabolic cluster, deletion of hpdA results in no growth within macrophages. This suggests that the ability to catabolise tyrosine is not required for macrophage infection and that HpdA has an additional novel role to that of tyrosine catabolism and pyomelanin production during growth in host cells. PMID:25812137

  9. Exploring the Hypersensitivity of PTEN Deleted Prostate Cancer Stem Cells to WEE1 Tyrosine Kinase Inhibitors

    Science.gov (United States)

    2015-12-01

    AWARD NUMBER: W81XWH-14-1-0251 TITLE: Exploring the Hypersensitivity of PTEN Deleted Prostate Cancer Stem Cells to WEE1 Tyrosine Kinase... Tyrosine Kinase Inhibitors 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0251 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Kiran Mahajan 5d...ABSTRACT Central to all cycling cells-including prostate cancer stem cells- is the expression of WEE1 tyrosine kinase. WEE1 monitors duplication of

  10. Involvement of the N-terminal unique domain of Chk tyrosine kinase in Chk-induced tyrosine phosphorylation in the nucleus

    International Nuclear Information System (INIS)

    Nakayama, Yuji; Kawana, Akiko; Igarashi, Asae; Yamaguchi, Naoto

    2006-01-01

    Chk tyrosine kinase phosphorylates Src-family kinases and suppresses their kinase activity. We recently showed that Chk localizes to the nucleus as well as the cytoplasm and inhibits cell proliferation. In this study, we explored the role of the N-terminal unique domain of Chk in nuclear localization and Chk-induced tyrosine phosphorylation in the nucleus. In situ binding experiments showed that the N-terminal domain of Chk was associated with the nucleus and the nuclear matrix. The presence of the N-terminal domain of Chk led to a fourfold increase in cell population exhibiting Chk-induced tyrosine phosphorylation in the nucleus. Expression of Chk but not kinase-deficient Chk induced tyrosine phosphorylation of a variety of proteins ranging from 23 kDa to ∼200 kDa, especially in Triton X-100-insoluble fraction that included chromatin and the nuclear matrix. Intriguingly, in situ subnuclear fractionations revealed that Chk induced tyrosine phosphorylation of proteins that were associated with the nuclear matrix. These results suggest that various unidentified substrates of Chk, besides Src-family kinases, may be present in the nucleus. Thus, our findings indicate that the importance of the N-terminal domain to Chk-induced tyrosine phosphorylation in the nucleus, implicating that these nuclear tyrosine-phosphorylated proteins may contribute to inhibition of cell proliferation

  11. DETECTION AND PURIFICATION OF TYROSINE-SULFATED PROTEINS USING A NOVEL ANTI-SULFOTYROSINE MONOCLONAL ANTIBODY*

    Science.gov (United States)

    Hoffhines, Adam J.; Damoc, Eugen; Bridges, Kristie G.; Leary, Julie A.; Moore, Kevin L.

    2006-01-01

    Protein-tyrosine O-sulfation is a post-translational modification mediated by one of two Golgi tyrosylprotein sulfotransferases (TPST-1 & TPST-2) that catalyze the transfer of sulfate to tyrosine residues in secreted and transmembrane proteins. Tyrosine sulfation plays a role in protein-protein interactions in several well-defined systems. Although dozens of tyrosine-sulfated proteins are known, many more are likely to exist and await description. Advancing our understanding of the importance of tyrosine sulfation in biological systems requires the development of new tools for the detection and study of tyrosine-sulfated proteins. We have developed a novel anti-sulfotyrosine monoclonal antibody, called PSG2, that binds with high affinity and exquisite specificity to sulfotyrosine residues in peptides and proteins independent of sequence context. We show that it can detect tyrosinesulfated proteins in complex biological samples and can be used as a probe to assess the role of tyrosine sulfation in protein function. We also demonstrate the utility of PSG2 in the purification of tyrosine-sulfated proteins from crude tissue samples. Finally, Western blot analysis using PSG2 indicates that certain sperm/epididymal proteins are undersulfated in Tpst2−/− mice. This indicates that TPST-1 and TPST-2 have distinct macromolecular substrate specificities and provides clues as to the molecular mechanism of the infertility of Tpst2−/− males. PSG2 should be widely applicable for identification of tyrosine-sulfated proteins in other systems and organisms. PMID:17046811

  12. Determination of o-tyrosine in shrimps, fish, mussels and egg-white

    International Nuclear Information System (INIS)

    Meier, W.; Hediger, H.; Artho, A.; Meier, E.J.M.

    1993-01-01

    With this new HPLC-system the o-tyrosine in irradiated shrimps, fish, mussels and egg-white is very well separated from other peaks in the chromatogram. It is not any more necessary to freeze dry the samples. Samples with an amount of o-tyrosine greater than 0.1 mg/kg are suspect. To confirm such results, the o-tyrosine fraction can be collected and the o-tyrosine can be determined either by GC/MS after derivatisation with chloro-formicacid-methylester or by a second HPLC-step using a cation exchange column. (orig./vhe)

  13. Hydroxyl radical induced cross-linking of cytosine and tyrosine in nucleohistone

    International Nuclear Information System (INIS)

    Gajewski, E.; Dizdaroglu, M.

    1990-01-01

    Hydroxyl radical induced formation of a DNA-protein cross-link involving cytosine and tyrosine in nucleohistone in buffered aqueous solution is reported. The technique of gas chromatography-mass spectrometry was used for this investigation. A γ-irradiated aqueous mixture of cytosine and tyrosine was first investigated in order to obtain gas chromatographic-mass spectrometric properties of possible cytosine-tyrosine cross-links. One cross-link was observed, and its structure was identified as the product from the formation of a covalent bond between carbon 6 of cytosine and carbon 3 of tyrosine. With the use of gas chromatography-mass spectrometry with selected-ion monitoring, this cytosine-tyrosine cross-link was identified in acidic hydrolysates of calf thymus nucleohistone γ-irradiated in N 2 O-saturated aqueous solution. The yield of this DNA-protein cross-link in nucleohistone was found to be a linear function of the radiation dose in the range of 100-500 Gy (J·kg -1 ). This yield amounted to 0.05 nmol·J -1 . Mechanisms underlying the formation of the cytosine-tyrosine cross-link in nucleohistone were proposed to involve radical-radical and/or radical addition reactions of hydroxyl adduct radicals of cytosine and tyrosine moieties, forming a covalent bond between carbon 6 of cytosine and carbon 3 of tyrosine. When oxygen was present in irradiated solutions, no cytosine-tyrosine cross-links were observed

  14. Subcutaneous L-tyrosine elicits cutaneous analgesia in response to local skin pinprick in rats.

    Science.gov (United States)

    Hung, Ching-Hsia; Chiu, Chong-Chi; Liu, Kuo-Sheng; Chen, Yu-Wen; Wang, Jhi-Joung

    2015-10-15

    The purpose of the study was to estimate the ability of L-tyrosine to induce cutaneous analgesia and to investigate the interaction between L-tyrosine and the local anesthetic lidocaine. After subcutaneously injecting the rats with L-tyrosine and lidocaine in a dose-dependent manner, cutaneous analgesia (by blocking the cutaneous trunci muscle reflex-CTMR) was evaluated in response to the local pinprick. The drug-drug interaction was analyzed by using an isobolographic method. We showed that both L-tyrosine and lidocaine produced dose-dependent cutaneous analgesia. On the 50% effective dose (ED50) basis, the rank of drug potency was lidocaine (5.09 [4.88-5.38] μmol)>L-tyrosine (39.1 [36.5-41.8] μmol) (Ptyrosine lasted longer than that caused by lidocaine (Ptyrosine exhibited an additive effect on infiltrative cutaneous analgesia. Our pre-clinical study demonstrated that L-tyrosine elicits the local/cutaneous analgesia, and the interaction between L-tyrosine and lidocaine is additive. L-tyrosine has a lower potency but much greater duration of cutaneous analgesia than lidocaine. Adding L-tyrosine to lidocaine preparations showed greater duration of cutaneous analgesia compared with lidocaine alone. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. A reduced graphene oxide based electrochemical biosensor for tyrosine detection

    Science.gov (United States)

    Wei, Junhua; Qiu, Jingjing; Li, Li; Ren, Liqiang; Zhang, Xianwen; Chaudhuri, Jharna; Wang, Shiren

    2012-08-01

    In this paper, a ‘green’ and safe hydrothermal method has been used to reduce graphene oxide and produce hemin modified graphene nanosheet (HGN) based electrochemical biosensors for the determination of l-tyrosine levels. The as-fabricated HGN biosensors were characterized by UV-visible absorption spectra, fluorescence spectra, Fourier transform infrared spectroscopy (FTIR) spectra and thermogravimetric analysis (TGA). The experimental results indicated that hemin was successfully immobilized on the reduced graphene oxide nanosheet (rGO) through π-π interaction. TEM images and EDX results further confirmed the attachment of hemin on the rGO nanosheet. Cyclic voltammetry tests were carried out for the bare glass carbon electrode (GCE), the rGO electrode (rGO/GCE), and the hemin-rGO electrode (HGN/GCE). The HGN/GCE based biosensor exhibits a tyrosine detection linear range from 5 × 10-7 M to 2 × 10-5 M with a detection limitation of 7.5 × 10-8 M at a signal-to-noise ratio of 3. The sensitivity of this biosensor is 133 times higher than that of the bare GCE. In comparison with other works, electroactive biosensors are easily fabricated, easily controlled and cost-effective. Moreover, the hemin-rGO based biosensors demonstrate higher stability, a broader detection linear range and better detection sensitivity. Study of the oxidation scheme reveals that the rGO enhances the electron transfer between the electrode and the hemin, and the existence of hemin groups effectively electrocatalyzes the oxidation of tyrosine. This study contributes to a widespread clinical application of nanomaterial based biosensor devices with a broader detection linear range, improved stability, enhanced sensitivity and reduced costs.

  16. Further RFLPs at the human tyrosine hydroxylase locus

    Energy Technology Data Exchange (ETDEWEB)

    Koerner, J; Uhlhaas, S; Propping, P; Gal, A [Institut fuer Humangenetik der Universitaet, Bonn (West Germany); Mallet, J [CNRS, Gif-sur-Yvette (France)

    1988-09-26

    The human cDNA clone (Ty7) of tyrosine hydroxylase was used. A two-allele (C1 and C2) Bg1II RFLP has been described recently with bands either at 6.9 or 8.4 kb (2). In addition, a faint invariant band appears at 9.0 kb. A third Bg1II allele (C3) with a band at 8.0 kb was detected. The allele frequency was studied in 35 and 39 unrelated Caucasians. Co-dominant inheritance for both RFLPs described here was demonstrated in 6 nuclear kindreds. RFLPs were observed under normal hybridization and wash stringencies.

  17. Second-generation inhibitors of Bruton tyrosine kinase

    Directory of Open Access Journals (Sweden)

    Jingjing Wu

    2016-09-01

    Full Text Available Abstract Bruton tyrosine kinase (BTK is a critical effector molecule for B cell development and plays a major role in lymphoma genesis. Ibrutinib is the first-generation BTK inhibitor. Ibrutinib has off-target effects on EGFR, ITK, and Tec family kinases, which explains the untoward effects of ibrutinib. Resistance to ibrutinib was also reported. The C481S mutation in the BTK kinase domain was reported to be a major mechanism of resistance to ibrutinib. This review summarizes the clinical development of novel BTK inhibitors, ACP-196 (acalabrutinib, ONO/GS-4059, and BGB-3111.

  18. Tea Contains Potent Inhibitors of Tyrosine Phosphatase PTP1B

    OpenAIRE

    Ma, Junfeng; Li, Zhe; Xing, Shu; Ho, Wanting Tina; Fu, Xueqi; Zhao, Zhizhuang Joe

    2011-01-01

    Tea is widely consumed all over the world. Studies have demonstrated the role of tea in prevention and treatment of various chronic diseases including diabetes and obesity, but the underlying mechanism is unclear. PTP1B is a widely expressed tyrosine phosphatase which has been defined as a target for therapeutic drug development to treat diabetes and obesity. In screening for inhibitors of PTP1B, we found that aqueous extracts of teas exhibited potent PTP1B inhibitory effects with an IC50 val...

  19. Organization and evolution of the rat tyrosine hydroxylase gene

    International Nuclear Information System (INIS)

    Brown, E.R.; Coker, G.T. III; O'Malley, K.L.

    1987-01-01

    This report describes the organization of the rat tyrosine hydroxylase (TH) gene and compares its structure with the human phenylalanine hydroxylase gene. Both genes are single copy and contain 13 exons separated by 12 introns. Remarkably, the positions of 10 out 12 intron/exon boundaries are identical for the two genes. These results support the idea that these hydroxylases genes are members of a gene family which has a common evolutionary origin. The authors predict that this ancestral gene would have encoded exons similar to those of TH prior to evolutionary drift to other members of this gene family

  20. Tyrosine Kinase Inhibitor Treatment for Newly Diagnosed Chronic Myeloid Leukemia.

    Science.gov (United States)

    Radich, Jerald P; Mauro, Michael J

    2017-08-01

    Chronic myeloid leukemia (CML) is a myeloproliferative disorder that accounts for approximately 10% of new cases of leukemia. The introduction of tyrosine kinase inhibitors has led to a reduction in mortalities. Thus, the estimated prevalence of CML is increasing. The National Comprehensive Cancer Network and the European Leukemia Net guidelines incorporate frequent molecular monitoring of the fusion BCR-ABL transcript to ensure that patients reach and keep treatment milestones. Most patients with CML are diagnosed in the chronic phase, and approximately 10% to 30% of these patients will at some time in their course meet definition criteria of resistance to imatinib. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Phase I study of icotinib, an EGFR tyrosine kinase inhibitor combined with IMRT in nasopharyngeal carcinoma.

    Science.gov (United States)

    Hu, Wei; Wang, Wei; Yang, Peinong; Zhou, Chao; Yang, Weifang; Wu, Bo; Lu, Hongsheng; Yang, Haihua

    2015-01-01

    Epidermal growth factor receptor (EGFR) is a new target for nasopharyngeal carcinoma (NPC) therapy. This prospective phase I study sought to determine the safety and recommended phase II dose of icotinib, a novel highly selective oral EGFR tyrosine kinase inhibitor, in combination with intensity-modulated radiotherapy (IMRT) in patients with NPC. Eligible patients with NPC received escalating doses of icotinib during IMRT. We treated six patients at a particular dose level until the maximum tolerated dose (MTD) was determined. The starting dose was 125 mg, once-daily and the dose was escalated to another level 125 mg, twice- and thrice- daily, until dose-limiting toxicity (DLT) occurred in two or more patients at a dose level. Expression and mutation analysis of EGFR were performed in all cases. A total of twelve patients were enrolled. Three patients experienced DLT (250 mg/day cohort) and MTD was 125 mg/day. Mucositis toxicity appears to be the major DLT. While EGFR expression in tumor tissue was detected in 75% (9/12) patients, EGFR mutation was detected in 16.67% (1/6) patients in 125 mg/day cohort, and 50% (3/6) in 250 mg/day cohort. The combination of icotinib (125 mg/day) and IMRT in patients with locally NPC had an acceptable safety profile and was well tolerated.

  2. Histological transformation after acquired resistance to epidermal growth factor tyrosine kinase inhibitors.

    Science.gov (United States)

    Shao, Yi; Zhong, Dian-Sheng

    2018-04-01

    Non-small-cell lung cancer patients with sensitive epidermal growth factor receptor mutations generally respond well to tyrosine kinase inhibitors (TKIs). However, acquired resistance will eventually develop place after 8-16 months. Several mechanisms contribute to the resistance including T790M mutation, c-Met amplification, epithelial mesenchymal transformation and PIK3CA mutation; however, histological transformation is a rare mechanism. The patterns and mechanisms underlying histological transformation need to be explored. We searched PubMed, EMBASE and search engines Google Scholar, Medical Matrix for literature related to histological transformation. Case reports, cases series, and clinical and basic medical research articles were reviewed. Sixty-one articles were included in this review. Cases of transformation to small-cell lung cancer, squamous cell carcinoma, large-cell neuroendocrine carcinoma and sarcoma after TKI resistance have all been reported. As the clinical course differed dramatically between cases, a new treatment scheme needs to be recruited. The mechanisms underlying histological transformation have not been fully elucidated and probably relate to cancer stem cells, driver genetic alterations under selective pressure or the heterogeneity of the tumor. When TKI resistance develops, we recommend that patients undergo a second biopsy to determine the reason, guide the next treatment and predict the prognosis.

  3. Cooperation of imipramine blue and tyrosine kinase blockade demonstrates activity against chronic myeloid leukemia

    Science.gov (United States)

    Laidlaw, Kamilla M.E.; Berhan, Samuel; Liu, Suhu; Silvestri, Giovannino; Holyoake, Tessa L.; Frank, David A.; Aggarwal, Bharat; Bonner, Michael Y.; Perrotti, Danilo

    2016-01-01

    The use of tyrosine kinase inhibitors (TKI), including nilotinib, has revolutionized the treatment of chronic myeloid leukemia (CML). However current unmet clinical needs include combating activation of additional survival signaling pathways in persistent leukemia stem cells after long-term TKI therapy. A ubiquitous signaling alteration in cancer, including CML, is activation of reactive oxygen species (ROS) signaling, which may potentiate stem cell activity and mediate resistance to both conventional chemotherapy and targeted inhibitors. We have developed a novel nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, imipramine blue (IB) that targets ROS generation. ROS levels are known to be elevated in CML with respect to normal hematopoietic stem/progenitor cells and not corrected by TKI. We demonstrate that IB has additive benefit with nilotinib in inhibiting proliferation, viability, and clonogenic function of TKI-insensitive quiescent CD34+ CML chronic phase (CP) cells while normal CD34+ cells retained their clonogenic capacity in response to this combination therapy in vitro. Mechanistically, the pro-apoptotic activity of IB likely resides in part through its dual ability to block NF-κB and re-activate the tumor suppressor protein phosphatase 2A (PP2A). Combining BCR-ABL1 kinase inhibition with NADPH oxidase blockade may be beneficial in eradication of CML and worthy of further investigation. PMID:27438151

  4. Spleen tyrosine kinase (Syk), a novel target of curcumin, is required for B lymphoma growth.

    Science.gov (United States)

    Gururajan, Murali; Dasu, Trivikram; Shahidain, Seif; Jennings, C Darrell; Robertson, Darrell A; Rangnekar, Vivek M; Bondada, Subbarao

    2007-01-01

    Curcumin (diferuloylmethane), a component of dietary spice turmeric (Curcuma longa), has been shown in recent studies to have therapeutic potential in the treatment of cancer, diabetes, arthritis, and osteoporosis. We investigated the ability of curcumin to modulate the growth of B lymphomas. Curcumin inhibited the growth of both murine and human B lymphoma in vitro and murine B lymphoma in vivo. We also demonstrate that curcumin-mediated growth inhibition of B lymphoma is through inhibition of the survival kinase Akt and its key target Bad. However, in vitro kinase assays show that Akt is not a direct target of curcumin. We identified a novel target for curcumin in B lymphoma viz spleen tyrosine kinase (Syk). Syk is constitutively activated in primary tumors and B lymphoma cell lines and curcumin down-modulates Syk activity accompanied by down-regulation of Akt activation. Moreover, we show that overexpression of Akt, a target of Syk, or Bcl-x(L), a target of Akt can overcome curcumin-induced apoptosis of B lymphoma cells. These observations suggest a novel growth promoting role for Syk in lymphoma cells.

  5. Fasting potentiates the anticancer activity of tyrosine kinase inhibitors by strengthening MAPK signaling inhibition

    Science.gov (United States)

    Caffa, Irene; D'Agostino, Vito; Damonte, Patrizia; Soncini, Debora; Cea, Michele; Monacelli, Fiammetta; Odetti, Patrizio; Ballestrero, Alberto; Provenzani, Alessandro; Longo, Valter D.; Nencioni, Alessio

    2015-01-01

    Tyrosine kinase inhibitors (TKIs) are now the mainstay of treatment in many types of cancer. However, their benefit is frequently short-lived, mandating the search for safe potentiation strategies. Cycles of fasting enhance the activity of chemo-radiotherapy in preclinical cancer models and dietary approaches based on fasting are currently explored in clinical trials. Whether combining fasting with TKIs is going to be potentially beneficial remains unknown. Here we report that starvation conditions increase the ability of commonly administered TKIs, including erlotinib, gefitinib, lapatinib, crizotinib and regorafenib, to block cancer cell growth, to inhibit the mitogen-activated protein kinase (MAPK) signaling pathway and to strengthen E2F-dependent transcription inhibition. In cancer xenografts models, both TKIs and cycles of fasting slowed tumor growth, but, when combined, these interventions were significantly more effective than either type of treatment alone. In conclusion, cycles of fasting or of specifically designed fasting-mimicking diets should be evaluated in clinical studies as a means to potentiate the activity of TKIs in clinical use. PMID:25909220

  6. Induction of matrix metalloproteinase-2 by tenascin-X deficiency is mediated through the c-Jun N-terminal kinase and protein tyrosine kinase phosphorylation pathway

    International Nuclear Information System (INIS)

    Matsumoto, Ken-ichi; Minamitani, Takeharu; Orba, Yasuko; Sato, Mami; Sawa, Hirofumi; Ariga, Hiroyoshi

    2004-01-01

    The results of our previous study showed that tumor invasion and metastasis are promoted in extracellular matrix (ECM) tenascin-X-deficient (TNX-/-) mice via increased expression of matrix metalloproteinases (MMPs). However, little is known about the relationship between TNX deficiency and activation of MMP genes. In this study, we investigated the molecular mechanism by which TNX deficiency activates the MMP-2 gene. We examined the intracellular signaling pathways that regulate gene expression of the proteinase in isolated fibroblasts. Results of gelatin zymography showed that MMP-2 was induced to a greater extent in TNX-/- fibroblasts embedded in type I collagen than in wild-type fibroblasts. RT-PCR analysis revealed that the increased level of MMP-2 expression was caused at the transcription level. Conversely, stable overexpression of TNX in a fibroblast cell line reduced MMP-2 expression and suppressed MMP-2 promoter activity. In addition, treatment of TNX-/- fibroblasts with SP600125, a c-Jun N-terminal kinase (JNK) inhibitor, and genistein, a tyrosine kinase inhibitor, suppressed the increased level of proMMP-2 and increased MMP-2 promoter activity in TNX-/- fibroblasts. Furthermore, increased activation of JNK and tyrosine phosphorylation of certain proteins were observed in TNX-/- fibroblasts. These findings suggest that induction of MMP-2 by TNX deficiency is mediated, at least in part, through the JNK and protein tyrosine kinase phosphorylation pathway

  7. Targeting the epidermal growth factor receptor in solid tumor malignancies

    DEFF Research Database (Denmark)

    Nedergaard, Mette K; Hedegaard, Chris J; Poulsen, Hans S

    2012-01-01

    been proposed as valid targets in many cancer therapy settings. Different strategies have been developed in order to either inhibit EGFR/EGFRvIII activity or to ablate EGFR/EGFRvIII-positive tumor cells. Drugs that inhibit these receptors include monoclonal antibodies (mAbs) that bind...... to the extracellular part of EGFR, blocking the binding sites for the EGFR ligands, and intracellular tyrosine kinase inhibitors (TKIs) that block the ATP binding site of the tyrosine kinase domain. Besides an EGFRvIII-targeted vaccine, conjugated anti-EGFR mAbs have been used in different settings to deliver lethal...... agents to the EGFR/EGFRvIII-positive cells; among these are radio-labelled mAbs and immunotoxins. This article reviews the current status and efficacy of EGFR/EGFRvIII-targeted therapies....

  8. Tumor Macroenvironment and Metabolism

    OpenAIRE

    Al-Zhoughbi, Wael; Huang, Jianfeng; Paramasivan, Ganapathy S.; Till, Holger; Pichler, Martin; Guertl-Lackner, Barbara; Hoefler, Gerald

    2014-01-01

    In this review we introduce the concept of the tumor macroenvironment and explore it in the context of metabolism. Tumor cells interact with the tumor microenvironment including immune cells. Blood and lymph vessels are the critical components that deliver nutrients to the tumor and also connect the tumor to the macroenvironment. Several factors are then released from the tumor itself but potentially also from the tumor microenvironment, influencing the metabolism of distant tissues and organ...

  9. Large gastrointestinal stromal tumor and advanced adenocarcinoma in the rectum coexistent with an incidental prostate carcinoma: A case report

    Directory of Open Access Journals (Sweden)

    Toshiaki Suzuki

    2014-01-01

    CONCLUSION: Radical surgery with perioperative adjuvant chemotherapy using tyrosine kinase inhibitors is the choice for treatment of large GISTs with a malignant potential. Our report suggests that aggressive surgical approach would be feasible, when a secondary tumor is present near the GIST.

  10. Down-regulated expression of the protein-tyrosine phosphatase 1B (PTP1B) is associated with aggressive clinicopathologic features and poor prognosis in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Zheng, Long-Yi; Zhou, Dong-Xun; Lu, Jin; Zhang, Wen-Jun; Zou, Da-Jin

    2012-01-01

    Highlights: ► PTP1B protein showed decreased expression in 67.79% of the HCC patients. ► Low PTP1B expression predicts poor prognosis of HCC. ► Low PTP1B expression is correlated with expansion of OV6 + tumor-initiating cells. ► Down-regulation of PTP1B is associated with activation of Wnt/β-Catenin signaling. -- Abstract: The protein-tyrosine phosphatase 1B (PTP1B) is a classical non-transmembrane protein tyrosine phosphatase that plays a key role in metabolic signaling and can exert both tumor suppressing and tumor promoting effects in different cancers depending on the substrate involved and the cellular context. However, the expression level and function of PTP1B in hepatocellular carcinoma (HCC) remain unclear. In this study, PTP1B expression was detected by immunohistochemistry in normal liver tissue (n = 16) and hepatocellular carcinoma (n = 169). The correlations between PTP1B expression level and clinicopathologic features and patient survival were also analyzed. One hundred and eleven of 169 HCC patients (65.7%) had negative or low PTP1B expression in tumorous tissues, whereas normal tissues always expressed strong PTP1B. Decreased PTP1B expression was significantly associated with aggressive clinicopathologic features and poor prognosis. Immunohistochemistry also showed that low PTP1B expression level was correlated with high percentage of OV6 + tumor-initiating cells (T-ICs) and high frequency of nuclear β-Catenin expression in HCC specimens. Our findings demonstrate for the first time that the loss of inhibitory effect of PTP1B may contribute to progression and invasion of HCC through activation of Wnt/β-Catenin signaling and expansion of liver T-ICs. PTP1B may serve as a valuable prognostic biomarker and potential therapeutic target in HCC.

  11. Down-regulated expression of the protein-tyrosine phosphatase 1B (PTP1B) is associated with aggressive clinicopathologic features and poor prognosis in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Long-Yi [Department of Endocrinology, Changhai Hospital, 168 Changhai Road, Shanghai 200433 (China); Zhou, Dong-Xun [Department of Comprehensive Treatment II, Eastern Hepatobiliary Surgery Hospital, 225 Changhai Road, Shanghai 200438 (China); Lu, Jin [Department of Endocrinology, Changhai Hospital, 168 Changhai Road, Shanghai 200433 (China); Zhang, Wen-Jun [Department of Emergency, Changhai Hospital, 168 Changhai Road, Shanghai 200433 (China); Zou, Da-Jin, E-mail: dajinzou@hotmail.com [Department of Endocrinology, Changhai Hospital, 168 Changhai Road, Shanghai 200433 (China)

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer PTP1B protein showed decreased expression in 67.79% of the HCC patients. Black-Right-Pointing-Pointer Low PTP1B expression predicts poor prognosis of HCC. Black-Right-Pointing-Pointer Low PTP1B expression is correlated with expansion of OV6{sup +} tumor-initiating cells. Black-Right-Pointing-Pointer Down-regulation of PTP1B is associated with activation of Wnt/{beta}-Catenin signaling. -- Abstract: The protein-tyrosine phosphatase 1B (PTP1B) is a classical non-transmembrane protein tyrosine phosphatase that plays a key role in metabolic signaling and can exert both tumor suppressing and tumor promoting effects in different cancers depending on the substrate involved and the cellular context. However, the expression level and function of PTP1B in hepatocellular carcinoma (HCC) remain unclear. In this study, PTP1B expression was detected by immunohistochemistry in normal liver tissue (n = 16) and hepatocellular carcinoma (n = 169). The correlations between PTP1B expression level and clinicopathologic features and patient survival were also analyzed. One hundred and eleven of 169 HCC patients (65.7%) had negative or low PTP1B expression in tumorous tissues, whereas normal tissues always expressed strong PTP1B. Decreased PTP1B expression was significantly associated with aggressive clinicopathologic features and poor prognosis. Immunohistochemistry also showed that low PTP1B expression level was correlated with high percentage of OV6{sup +} tumor-initiating cells (T-ICs) and high frequency of nuclear {beta}-Catenin expression in HCC specimens. Our findings demonstrate for the first time that the loss of inhibitory effect of PTP1B may contribute to progression and invasion of HCC through activation of Wnt/{beta}-Catenin signaling and expansion of liver T-ICs. PTP1B may serve as a valuable prognostic biomarker and potential therapeutic target in HCC.

  12. Fourier transform infrared difference spectroscopy of bacteriorhodopsin and its photoproducts regenerated with deuterated tyrosine

    International Nuclear Information System (INIS)

    Dollinger, G.; Eisenstein, L.; Lin, S.L.; Nakanishi, K.; Termini, J.

    1986-01-01

    Fourier transform infrared (FTIR) difference spectroscopy has been used to detect the vibrational modes due to tyrosine residues in the protein that change in position or intensity between light-adapted bacteriorhodopsin (LA) and other species, namely, the K and M intermediates and dark-adapted bacteriorhodopsin (DA). To aid in the identification of the bands that change in these various species, the FTIR spectra of the free amino acids Tyr-d0, Tyr-d2 ( 2 H at positions ortho to OH), and Tyr-d4 ( 2 H at positions ortho and meta to OH) were measured in H 2 O and D 2 O at low and high pH. The characteristic frequencies of the Tyr species obtained in this manner were then used to identify the changes in protonation state of the tyrosine residues in the various bacteriorhodopsin species. The two diagnostically most useful bands were the approximately 1480-cm-1 band of Tyr(OH)-d2 and the approximately 1277-cm-1 band of Tyr(O-)-d0. Mainly by observing the appearance or disappearance of these bands in the difference spectra of pigments incorporating the tyrosine isotopes, it was possible to identify the following: in LA, one tyrosine and one tyrosinate; in the K intermediate, two tyrosines; in the M intermediate, one tyrosine and one tyrosinate; and in DA, two tyrosines. Since these residues were observed in the difference spectra K/LA, M/LA, and DA/LA, they represent the tyrosine or tyrosinate groups that most likely undergo changes in protonation state due to the conversions. These changes are most likely linked to the proton translocation process of bacteriorhodopsin

  13. Metal ion interaction with phosphorylated tyrosine analogue monolayers on gold.

    Science.gov (United States)

    Petoral, Rodrigo M; Björefors, Fredrik; Uvdal, Kajsa

    2006-11-23

    Phosphorylated tyrosine analogue molecules (pTyr-PT) were assembled onto gold substrates, and the resulting monolayers were used for metal ion interaction studies. The monolayers were characterized by X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IRAS), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), both prior to and after exposure to metal ions. XPS verified the elemental composition of the molecular adsorbate and the presence of metal ions coordinated to the phosphate groups. Both the angle-dependent XPS and IRAS results were consistent with the change in the structural orientation of the pTyr-PT monolayer upon exposure to metal ions. The differential capacitance of the monolayers upon coordination of the metal ions was evaluated using EIS. These metal ions were found to significantly change the capacitance of the pTyr-PT monolayers in contrast to the nonphosphorylated tyrosine analogue (TPT). CV results showed reduced electrochemical blocking capabilities of the phosphorylated analogue monolayer when exposed to metal ions, supporting the change in the structure of the monolayer observed by XPS and IRAS. The largest change in the structure and interfacial capacitance was observed for aluminum ions, compared to calcium, magnesium, and chromium ions. This type of monolayer shows an excellent capability to coordinate metal ions and has a high potential for use as sensing layers in biochip applications to monitor the presence of metal ions.

  14. Tyrosine Sulfation as a Protein Post-Translational Modification

    Directory of Open Access Journals (Sweden)

    Yuh-Shyong Yang

    2015-01-01

    Full Text Available Integration of inorganic sulfate into biological molecules plays an important role in biological systems and is directly involved in the instigation of diseases. Protein tyrosine sulfation (PTS is a common post-translational modification that was first reported in the literature fifty years ago. However, the significance of PTS under physiological conditions and its link to diseases have just begun to be appreciated in recent years. PTS is catalyzed by tyrosylprotein sulfotransferase (TPST through transfer of an activated sulfate from 3'-phosphoadenosine-5'-phosphosulfate to tyrosine in a variety of proteins and peptides. Currently, only a small fraction of sulfated proteins is known and the understanding of the biological sulfation mechanisms is still in progress. In this review, we give an introductory and selective brief review of PTS and then summarize the basic biochemical information including the activity and the preparation of TPST, methods for the determination of PTS, and kinetics and reaction mechanism of TPST. This information is fundamental for the further exploration of the function of PTS that induces protein-protein interactions and the subsequent biochemical and physiological reactions.

  15. Role of Receptor Tyrosine Kinase Signaling in Renal Fibrosis

    Directory of Open Access Journals (Sweden)

    Feng Liu

    2016-06-01

    Full Text Available Renal fibrosis can be induced in different renal diseases, but ultimately progresses to end stage renal disease. Although the pathophysiologic process of renal fibrosis have not been fully elucidated, it is characterized by glomerulosclerosis and/or tubular interstitial fibrosis, and is believed to be caused by the proliferation of renal inherent cells, including glomerular epithelial cells, mesangial cells, and endothelial cells, along with defective kidney repair, renal interstitial fibroblasts activation, and extracellular matrix deposition. Receptor tyrosine kinases (RTKs regulate a variety of cell physiological processes, including metabolism, growth, differentiation, and survival. Many studies from in vitro and animal models have provided evidence that RTKs play important roles in the pathogenic process of renal fibrosis. It is also showed that tyrosine kinases inhibitors (TKIs have anti-fibrotic effects in basic research and clinical trials. In this review, we summarize the evidence for involvement of specific RTKs in renal fibrosis process and the employment of TKIs as a therapeutic approach for renal fibrosis.

  16. Whole-genome sequencing of a malignant granular cell tumor with metabolic response to pazopanib

    Science.gov (United States)

    Wei, Lei; Liu, Song; Conroy, Jeffrey; Wang, Jianmin; Papanicolau-Sengos, Antonios; Glenn, Sean T.; Murakami, Mitsuko; Liu, Lu; Hu, Qiang; Conroy, Jacob; Miles, Kiersten Marie; Nowak, David E.; Liu, Biao; Qin, Maochun; Bshara, Wiam; Omilian, Angela R.; Head, Karen; Bianchi, Michael; Burgher, Blake; Darlak, Christopher; Kane, John; Merzianu, Mihai; Cheney, Richard; Fabiano, Andrew; Salerno, Kilian; Talati, Chetasi; Khushalani, Nikhil I.; Trump, Donald L.; Johnson, Candace S.; Morrison, Carl D.

    2015-01-01

    Granular cell tumors are an uncommon soft tissue neoplasm. Malignant granular cell tumors comprise T transitions, particularly when immediately preceded by a 5′ G. A loss-of-function mutation was detected in a newly recognized tumor suppressor candidate, BRD7. No mutations were found in known targets of pazopanib. However, we identified a receptor tyrosine kinase pathway mutation in GFRA2 that warrants further evaluation. To the best of our knowledge, this is only the second reported case of a malignant granular cell tumor exhibiting a response to pazopanib, and the first whole-genome sequencing of this uncommon tumor type. The findings provide insight into the genetic basis of malignant granular cell tumors and identify potential targets for further investigation. PMID:27148567

  17. Dectin-1-mediated signaling leads to characteristic gene expressions and cytokine secretion via spleen tyrosine kinase (Syk) in rat mast cells.

    Science.gov (United States)

    Kimura, Yukihiro; Chihara, Kazuyasu; Honjoh, Chisato; Takeuchi, Kenji; Yamauchi, Shota; Yoshiki, Hatsumi; Fujieda, Shigeharu; Sada, Kiyonao

    2014-11-07

    Dectin-1 recognizes β-glucan and plays important roles for the antifungal immunity through the activation of spleen tyrosine kinase (Syk) in dendritic cells or macrophages. Recently, expression of Dectin-1 was also identified in human and mouse mast cells, although its physiological roles were largely unknown. In this report, rat mast cell line RBL-2H3 was analyzed to investigate the molecular mechanism of Dectin-1-mediated activation and responses of mast cells. Treatment of cells with Dectin-1-specific agonist curdlan induced tyrosine phosphorylation of cellular proteins and the interaction of Dectin-1 with the Src homology 2 domain of Syk. These responses depended on tyrosine phosphorylation of the hemi-immunoreceptor tyrosine-based activation motif in the cytoplasmic tail of Dectin-1, whereas they were independent of the γ-subunit of high-affinity IgE receptor. DNA microarray and real-time PCR analyses showed that Dectin-1-mediated signaling stimulated gene expression of transcription factor Nfkbiz and inflammatory cytokines, such as monocyte chemoattractant protein-1, IL-3, IL-4, IL-13, and tumor necrosis factor (TNF)-α. The response was abrogated by pretreatment with Syk inhibitor R406. These results suggest that Syk is critical for Dectin-1-mediated activation of mast cells, although the signaling differs from that triggered by FcϵRI activation. In addition, these gene expressions induced by curdlan stimulation were specifically observed in mast cells, suggesting that Dectin-1-mediated signaling of mast cells offers new insight into the antifungal immunity. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Detection of a rare BCR-ABL tyrosine kinase fusion protein in H929 multiple myeloma cells using immunoprecipitation (IP)-tandem mass spectrometry (MS/MS).

    Science.gov (United States)

    Breitkopf, Susanne B; Yuan, Min; Pihan, German A; Asara, John M

    2012-10-02

    Hypothesis directed proteomics offers higher throughput over global analyses. We show that immunoprecipitation (IP)-tandem mass spectrometry (LC-MS/MS) in H929 multiple myeloma (MM) cancer cells led to the discovery of a rare and unexpected BCR-ABL fusion, informing a therapeutic intervention using imatinib (Gleevec). BCR-ABL is the driving mutation in chronic myeloid leukemia (CML) and is uncommon to other cancers. Three different IP-MS experiments central to cell signaling pathways were sufficient to discover a BCR-ABL fusion in H929 cells: phosphotyrosine (pY) peptide IP, p85 regulatory subunit of phosphoinositide-3-kinase (PI3K) IP, and the GRB2 adaptor IP. The pY peptides inform tyrosine kinase activity, p85 IP informs the activating adaptors and receptor tyrosine kinases (RTKs) involved in AKT activation and GRB2 IP identifies RTKs and adaptors leading to ERK activation. Integration of the bait-prey data from the three separate experiments identified the BCR-ABL protein complex, which was confirmed by biochemistry, cytogenetic methods, and DNA sequencing revealed the e14a2 fusion transcript. The tyrosine phosphatase SHP2 and the GAB2 adaptor protein, important for MAPK signaling, were common to all three IP-MS experiments. The comparative treatment of tyrosine kinase inhibitor (TKI) drugs revealed only imatinib, the standard of care in CML, was inhibitory to BCR-ABL leading to down-regulation of pERK and pS6K and inhibiting cell proliferation. These data suggest a model for directed proteomics from patient tumor samples for selecting the appropriate TKI drug(s) based on IP and LC-MS/MS. The data also suggest that MM patients, in addition to CML patients, may benefit from BCR-ABL diagnostic screening.

  19. Function of Bruton's tyrosine kinase during B cell development is partially independent of its catalytic activity

    NARCIS (Netherlands)

    S. Middendorp; G.M. Dingjan (Gemma); A. Maas (Alex); K. Dahlenborg; R.W. Hendriks (Rudi)

    2003-01-01

    textabstractThe Tec family member Bruton's tyrosine kinase (Btk) is a cytoplasmic protein tyrosine kinase that transduces signals from the pre-B and B cell receptor (BCR). Btk is involved in pre-B cell maturation by regulating IL-7 responsiveness, cell surface phenotype changes,

  20. Ionization of tyrosine residues in human serum albumin and in its complexes with bilirubin and laurate

    DEFF Research Database (Denmark)

    Honoré, B; Brodersen, R

    1992-01-01

    Spectrophotometric titration of human serum albumin indicates that ionization of the 18 tyrosine residues takes place between pH 9 and 12.7. A Hill plot indicates that protons dissociate co-operatively from tyrosine residues, in pure albumin between pH 11.0 and 11.4 with a Hill coefficient 1.7, a...

  1. Structural basis for inhibition of the protein tyrosine phosphatase 1B by phosphotyrosine peptide mimetics

    NARCIS (Netherlands)

    Groves, M R; Yao, Z J; Roller, P P; Burke, T R; Barford, D

    1998-01-01

    Protein tyrosine phosphatases regulate diverse cellular processes and represent important targets for therapeutic intervention in a number of diseases. The crystal structures of protein tyrosine phosphatase 1B (PTP1B) in complex with small molecule inhibitors based upon two classes of

  2. The Relationship among Tyrosine Decarboxylase and Agmatine Deiminase Pathways in Enterococcus faecalis

    Directory of Open Access Journals (Sweden)

    Marta Perez

    2017-11-01

    Full Text Available Enterococci are considered mainly responsible for the undesirable accumulation of the biogenic amines tyramine and putrescine in cheeses. The biosynthesis of tyramine and putrescine has been described as a species trait in Enterococcus faecalis. Tyramine is formed by the decarboxylation of the amino acid tyrosine, by the tyrosine decarboxylase (TDC route encoded in the tdc cluster. Putrescine is formed from agmatine by the agmatine deiminase (AGDI pathway encoded in the agdi cluster. These biosynthesis routes have been independently studied, tyrosine and agmatine transcriptionally regulate the tdc and agdi clusters. The objective of the present work is to study the possible co-regulation among TDC and AGDI pathways in E. faecalis. In the presence of agmatine, a positive correlation between putrescine biosynthesis and the tyrosine concentration was found. Transcriptome studies showed that tyrosine induces the transcription of putrescine biosynthesis genes and up-regulates pathways involved in cell growth. The tyrosine modulation over AGDI route was not observed in the mutant Δtdc strain. Fluorescence analyses using gfp as reporter protein revealed PaguB (the promoter of agdi catabolic genes was induced by tyrosine in the wild-type but not in the mutant strain, confirming that tdc cluster was involved in the tyrosine induction of putrescine biosynthesis. This study also suggests that AguR (the transcriptional regulator of agdi was implicated in interaction among the two clusters.

  3. DMPD: Receptor tyrosine kinases and the regulation of macrophage activation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14726496 Receptor tyrosine kinases and the regulation of macrophage activation. Cor...osine kinases and the regulation of macrophage activation. PubmedID 14726496 Title Receptor tyrosine...rell PH, Morrison AC, Lutz MA. J Leukoc Biol. 2004 May;75(5):731-7. Epub 2004 Jan 14. (.png) (.svg) (.html) (.csml) Show Receptor tyr

  4. Detection method of prawn irradiated in frozen state using tyrosine isomers as a marker

    International Nuclear Information System (INIS)

    Oikawa, H.; Satomi, M.; Omura, Y.; Yano, Y.

    2001-01-01

    Internationally the use of food irradiation has been expanding. And therefore a method is needed to detect whether food has been irradiated or not. We examined the content of the tyrosine isomers, m-tyrosine and omicron-tyrosine, of prawns irradiated in the frozen state (< -30 deg C) as a marker of the detection method. The tyrosine isomer content linearly increased with increasing dose, and the level of tyrosine isomers in the frozen-irradiated prawn was 50 - 60 % of the un frozen ones. But the difference in the content of tyrosine isomers between non-irradiated and irradiated at 5.0 kGy, that is the approved dose for frozen shellfish in countries where this technique is approved, is enough for discrimination. In addition, the content of tyrosine isomers showed little change during the frozen storage for 120 days. So we think the method using tyrosine isomers is suitable for practical use in Japan for imports of many kinds of frozen shellfish

  5. Mechanism of protein tyrosine phosphatase 1B-mediated inhibition of leptin signalling

    DEFF Research Database (Denmark)

    Lund, I K; Hansen, J A; Andersen, H S

    2005-01-01

    Upon leptin binding, the leptin receptor is activated, leading to stimulation of the JAK/STAT signal transduction cascade. The transient character of the tyrosine phosphorylation of JAK2 and STAT3 suggests the involvement of protein tyrosine phosphatases (PTPs) as negative regulators...

  6. Tyrosine and carboxyl protonation changes in the bacteriorhodopsin photocycle. 1. M412 and L550 intermediates

    International Nuclear Information System (INIS)

    Roepe, P.; Ahl, P.L.; Gupta, S.K.D.; Herzfeld, J.; Rothschild, K.J.

    1987-01-01

    The role of tyrosines in the bacteriorhodopsin (bR) photocycle has been investigated by using Fourier transform infrared (FTIR) and UV difference spectroscopies. Tyrosine contributions to the BR 570 → M 412 FTIR difference spectra recorded at several temperatures and pH's were identified by isotopically labeling tyrosine residues in bacteriorhodopsin. The frequencies and deuterium/hydrogen exchange sensitivities of these peaks and of peaks in spectra of model compounds in several environments suggest that at least two different tyrosine groups participate in the bR photocycle during the formation of M 412 . One group undergoes a tyrosinatetyrosine conversion during the BR 570 → K 630 transition. A second tyrosine group deprotonates between L 550 and M 412 . Low-temperature UV difference spectra in the 220-350-nm region of both purple membrane suspensions and rehydrated films support these conclusions. The UV spectra also indicate perturbations(s) of one or more tryptophan group(s). Several carboxyl groups appear to undergo a series of protonation changes between BR 570 and M 412 , as indicated by infrared absorption changes in the 1770-1720-cm -1 region. These results are consistent with the existence of a proton wire in bacteriorhodopsin that involves both tyrosine and carboxyl groups

  7. Ligand-mediated negative regulation of a chimeric transmembrane receptor tyrosine phosphatase

    DEFF Research Database (Denmark)

    Desai, D M; Sap, J; Schlessinger, J

    1993-01-01

    CD45, a transmembrane protein tyrosine phosphatase (PTPase), is required for TCR signaling. Multiple CD45 isoforms, differing in the extracellular domain, are expressed in a tissue- and activation-specific manner, suggesting an important function for this domain. We report that a chimeric protein...... that ligand-mediated regulation of receptor-PTPases may have mechanistic similarities with receptor tyrosine kinases....

  8. Bosutinib induced pleural effusions: Case report and review of tyrosine kinase inhibitors induced pulmonary toxicity

    Directory of Open Access Journals (Sweden)

    Natalia I. Moguillansky, MD

    2017-01-01

    Full Text Available Tyrosine kinase inhibitors are known to cause pulmonary complications. We report a case of bosutinib related bilateral pleural effusions in a patient with chronic myeloid leukemia. Characteristics of the pleural fluid are presented. We also discuss other tyrosine kinase inhibitors induced pulmonary toxicities, including pulmonary hypertension and interstitial lung disease.

  9. Suppression of adhesion-induced protein tyrosine phosphorylation decreases invasive and metastatic potentials of B16-BL6 melanoma cells by protein tyrosine kinase inhibitor genistein.

    Science.gov (United States)

    Yan, C; Han, R

    1997-01-01

    Protein tyrosine kinase (PTK) appears to be involved in the activation of signaling during cell attachment to and spreading on extracellular matrix (ECM) in the metastatic cascade. To verify the assumption that PTK inhibitors might impair ECM signaling and prevent cancer metastasis, the highly metastatic B16-BL6 mouse melanoma cells were exposed to the PTK inhibitor genistein for 3 days. The ability of the cells to invade through reconstituted basement membrane (Matrigel) and to establish experimental pulmonary metastatic foci in C57BL/6 mice decreased after genistein exposure. The genistein-treated cells were also prevented from attaching to Matrigel and spread extremely poorly on the ECM substratum. Immunoblot analysis showed that tyrosine phosphorylation of a 125-kD protein in response to cell spreading on Matrigel was suppressed in the genistein-treated cells. Adhesion-induced protein tyrosine phosphorylation represents the earlier and specific event in the activation of ECM signaling, so this result implied ECM signaling was impaired in the treated cells. With immunofluorescence microscopy, the adhesion-induced tyrosine phosphorylated proteins were located at the pericytoplasms of well-spread cells, but not at the periphery of poorly spread genistein-treated cells. Therefore, this paper suggests that genistein might impair ECM signaling and subsequently prevent cancer cells from spreading well and invading or establishing metastasis through the suppression of adhesion-induced protein tyrosine phosphorylation. PTKs and adhesion-induced protein tyrosine phosphorylation might play a role in the control of invasion and metastasis.

  10. Pediatric Brain Tumor Foundation

    Science.gov (United States)

    ... navigate their brain tumor diagnosis. WATCH AND SHARE Brain tumors and their treatment can be deadly so ... Pediatric Central Nervous System Cancers Read more >> Pediatric Brain Tumor Foundation 302 Ridgefield Court, Asheville, NC 28806 ...

  11. Brain Tumors (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Brain Tumors KidsHealth / For Parents / Brain Tumors What's in ... radiation therapy or chemotherapy, or both. Types of Brain Tumors There are many different types of brain ...

  12. Childhood Brain Tumors

    Science.gov (United States)

    Brain tumors are abnormal growths inside the skull. They are among the most common types of childhood ... still be serious. Malignant tumors are cancerous. Childhood brain and spinal cord tumors can cause headaches and ...

  13. Malignant bone tumors

    International Nuclear Information System (INIS)

    Zedgenidze, G.A.; Kishkovskij, A.N.; Elashov, Yu.G.

    1984-01-01

    Clinicoroentgenologic semiotics of malignant bone tumors as well as metastatic bone tumors are presented. Diagnosis of malignant and metastatic bone tumors should be always complex, representing a result of cooperation of a physician, roentgenologist, pathoanatomist

  14. Tumors and Pregnancy

    Science.gov (United States)

    Tumors during pregnancy are rare, but they can happen. Tumors can be either benign or malignant. Benign tumors aren't cancer. Malignant ones are. The most common cancers in pregnancy are breast cancer, cervical cancer, lymphoma, and melanoma. ...

  15. Neuroendocrine Tumor: Statistics

    Science.gov (United States)

    ... Tumor > Neuroendocrine Tumor: Statistics Request Permissions Neuroendocrine Tumor: Statistics Approved by the Cancer.Net Editorial Board , 01/ ... the body. It is important to remember that statistics on the survival rates for people with a ...

  16. Cell Transformation by PTP1B Truncated Mutants Found in Human Colon and Thyroid Tumors.

    Science.gov (United States)

    Mei, Wenhan; Wang, Kemin; Huang, Jian; Zheng, Xinmin

    2016-01-01

    Expression of wild-type protein tyrosine phosphatase (PTP) 1B may act either as a tumor suppressor by dysregulation of protein tyrosine kinases or a tumor promoter through Src dephosphorylation at Y527 in human breast cancer cells. To explore whether mutated PTP1B is involved in human carcinogenesis, we have sequenced PTP1B cDNAs from human tumors and found splice mutations in ~20% of colon and thyroid tumors. The PTP1BΔE6 mutant expressed in these two tumor types and another PTP1BΔE5 mutant expressed in colon tumor were studied in more detail. Although PTP1BΔE6 revealed no phosphatase activity compared with wild-type PTP1B and the PTP1BΔE5 mutant, its expression induced oncogenic transformation of rat fibroblasts without Src activation, indicating that it involved signaling pathways independent of Src. The transformed cells were tumourigenic in nude mice, suggesting that the PTP1BΔE6 affected other molecule(s) in the human tumors. These observations may provide a novel therapeutic target for colon and thyroid cancer.

  17. Requirement for tyrosine phosphatase during serotonergic neuromodulation by protein kinase C.

    Science.gov (United States)

    Catarsi, S; Drapeau, P

    1997-08-01

    Tyrosine kinases and phosphatases are abundant in the nervous system, where they signal cellular differentiation, mediate the responses to growth factors, and direct neurite outgrowth during development. Tyrosine phosphorylation can also alter ion channel activity, but its physiological significance remains unclear. In an identified leech mechanosensory neuron, the ubiquitous neuromodulator serotonin increases the activity of a cation channel by activating protein kinase C (PKC), resulting in membrane depolarization and modulation of the receptive field properties. We observed that the effects on isolated neurons and channels were blocked by inhibiting tyrosine phosphatases. Serotonergic stimulation of PKC thus activates a tyrosine phosphatase activity associated with the channels, which reverses their constitutive inhibition by tyrosine phosphorylation, representing a novel form of neuromodulation.

  18. Evidence for association of the cloned liver growth hormone receptor with a tyrosine kinase

    DEFF Research Database (Denmark)

    Wang, X; Uhler, M D; Billestrup, N

    1992-01-01

    The ability of the cloned liver growth hormone (GH) receptor, when expressed in mammalian cell lines, to copurify with tyrosine kinase activity and be tyrosyl phosphorylated was examined. 125I-human growth hormone-GH receptor complexes isolated from COS-7 cells transiently expressing high levels...... of tyrosine kinase activity with cloned liver GH receptor. The level of phosphorylation of the GH receptor was very low, as compared with the endogenous GH receptor in 3T3-F442A cells, suggesting that tyrosine kinase activity is not intrinsic to the cloned GH receptor but rather resides with a kinase present...... in a variety of cell types. The finding that the level of phosphorylation of GH receptor appears to vary with cell type is consistent with the cloned liver GH receptor being a substrate for an associated tyrosine kinase and with the amount of such a GH receptor-associated tyrosine kinase being cell type-specific....

  19. A Multifeatures Fusion and Discrete Firefly Optimization Method for Prediction of Protein Tyrosine Sulfation Residues.

    Science.gov (United States)

    Guo, Song; Liu, Chunhua; Zhou, Peng; Li, Yanling

    2016-01-01

    Tyrosine sulfation is one of the ubiquitous protein posttranslational modifications, where some sulfate groups are added to the tyrosine residues. It plays significant roles in various physiological processes in eukaryotic cells. To explore the molecular mechanism of tyrosine sulfation, one of the prerequisites is to correctly identify possible protein tyrosine sulfation residues. In this paper, a novel method was presented to predict protein tyrosine sulfation residues from primary sequences. By means of informative feature construction and elaborate feature selection and parameter optimization scheme, the proposed predictor achieved promising results and outperformed many other state-of-the-art predictors. Using the optimal features subset, the proposed method achieved mean MCC of 94.41% on the benchmark dataset, and a MCC of 90.09% on the independent dataset. The experimental performance indicated that our new proposed method could be effective in identifying the important protein posttranslational modifications and the feature selection scheme would be powerful in protein functional residues prediction research fields.

  20. Muscarinic agonists and phorbol esters increase tyrosine phosphorylation of a 40-kilodalton protein in hippocampal slices

    International Nuclear Information System (INIS)

    Stratton, K.R.; Worley, P.F.; Huganir, R.L.; Baraban, J.M.

    1989-01-01

    The authors have used the hippocampal slice preparation to investigate the regulation of protein tyrosine phosphorylation in brain. After pharmacological treatment of intact slices, proteins were separated by electrophoresis, and levels of protein tyrosine phosphorylation were assessed by immunoblotting with specific anti-phosphotyrosine antibodies. Phorbol esters, activators of the serine- and threonine-phosphorylating enzyme protein kinase C, selectively increase tyrosine phosphorylation of a soluble protein with an apparent molecular mass of approximately 40 kilodaltons. Muscarinic agonists such as carbachol and oxotremorine M that strongly activate the inositol phospholipid system also increase tyrosine phosphorylation of this protein. Neurotransmitter activation of the inositol phospholipid system and protein kinase C appears to trigger a cascade leading to increased tyrosine phosphorylation

  1. Loss of Function Studies in Mice and Genetic Association Link Receptor Protein Tyrosine Phosphatase a to Schizophrenia

    DEFF Research Database (Denmark)

    Takahashi, Nagahide; Nielsen, Karin Sandager; Aleksic, Branko

    2011-01-01

    Solid evidence links schizophrenia (SZ) susceptibility to neurodevelopmental processes involving tyrosine phosphorylation-mediated signaling. Mouse studies implicate the Ptpra gene, encoding protein tyrosine phosphatase RPTPa, in the control of radial neuronal migration, cortical cytoarchitecture...

  2. Human Organotypic Lung Tumor Models: Suitable For Preclinical 18F-FDG PET-Imaging.

    Directory of Open Access Journals (Sweden)

    David Fecher

    Full Text Available Development of predictable in vitro tumor models is a challenging task due to the enormous complexity of tumors in vivo. The closer the resemblance of these models to human tumor characteristics, the more suitable they are for drug-development and -testing. In the present study, we generated a complex 3D lung tumor test system based on acellular rat lungs. A decellularization protocol was established preserving the architecture, important ECM components and the basement membrane of the lung. Human lung tumor cells cultured on the scaffold formed cluster and exhibited an up-regulation of the carcinoma-associated marker mucin1 as well as a reduced proliferation rate compared to respective 2D culture. Additionally, employing functional imaging with 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography (FDG-PET these tumor cell cluster could be detected and tracked over time. This approach allowed monitoring of a targeted tyrosine kinase inhibitor treatment in the in vitro lung tumor model non-destructively. Surprisingly, FDG-PET assessment of single tumor cell cluster on the same scaffold exhibited differences in their response to therapy, indicating heterogeneity in the lung tumor model. In conclusion, our complex lung tumor test system features important characteristics of tumors and its microenvironment and allows monitoring of tumor growth and -metabolism in combination with functional imaging. In longitudinal studies, new therapeutic approaches and their long-term effects can be evaluated to adapt treatment regimes in future.

  3. Src-homology 2 domain-containing tyrosine phosphatase 2 promotes oral cancer invasion and metastasis

    Science.gov (United States)

    2014-01-01

    Background Tumor invasion and metastasis represent a major unsolved problem in cancer pathogenesis. Recent studies have indicated the involvement of Src-homology 2 domain-containing tyrosine phosphatase 2 (SHP2) in multiple malignancies; however, the role of SHP2 in oral cancer progression has yet to be elucidated. We propose that SHP2 is involved in the progression of oral cancer toward metastasis. Methods SHP2 expression was evaluated in paired oral cancer tissues by using immunohistochemical staining and real-time reverse transcription polymerase chain reaction. Isogenic highly invasive oral cancer cell lines from their respective low invasive parental lines were established using a Boyden chamber assay, and changes in the hallmarks of the epithelial-mesenchymal transition (EMT) were assessed to evaluate SHP2 function. SHP2 activity in oral cancer cells was reduced using si-RNA knockdown or enforced expression of a catalytically deficient mutant to analyze migratory and invasive ability in vitro and metastasis toward the lung in mice in vivo. Results We observed the significant upregulation of SHP2 in oral cancer tissues and cell lines. Following SHP2 knockdown, the oral cancer cells markedly attenuated migratory and invasion ability. We observed similar results in phosphatase-dead SHP2 C459S mutant expressing cells. Enhanced invasiveness was associated with significant upregulation of E-cadherin, vimentin, Snail/Twist1, and matrix metalloproteinase-2 in the highly invasive clones. In addition, we determined that SHP2 activity is required for the downregulation of phosphorylated ERK1/2, which modulates the downstream effectors, Snail and Twist1 at a transcript level. In lung tissue sections of mice, we observed that HSC3 tumors with SHP2 deletion exhibited significantly reduced metastatic capacity, compared with tumors administered control si-RNA. Conclusions Our data suggest that SHP2 promotes the invasion and metastasis of oral cancer cells. These results

  4. Analysis of copy number loss of the ErbB4 receptor tyrosine kinase in glioblastoma.

    Directory of Open Access Journals (Sweden)

    DeAnalisa C Jones

    Full Text Available Current treatments for glioblastoma multiforme (GBM-an aggressive form of brain cancer-are minimally effective and yield a median survival of 14.6 months and a two-year survival rate of 30%. Given the severity of GBM and the limitations of its treatment, there is a need for the discovery of novel drug targets for GBM and more personalized treatment approaches based on the characteristics of an individual's tumor. Most receptor tyrosine kinases-such as EGFR-act as oncogenes, but publicly available data from the Cancer Cell Line Encyclopedia (CCLE indicates copy number loss in the ERBB4 RTK gene across dozens of GBM cell lines, suggesting a potential tumor suppressor role. This loss is mutually exclusive with loss of its cognate ligand NRG1 in CCLE as well, more strongly suggesting a functional role. The availability of higher resolution copy number data from clinical GBM patients in The Cancer Genome Atlas (TCGA revealed that a region in Intron 1 of the ERBB4 gene was deleted in 69.1% of tumor samples harboring ERBB4 copy number loss; however, it was also found to be deleted in the matched normal tissue samples from these GBM patients (n = 81. Using the DECIPHER Genome Browser, we also discovered that this mutation occurs at approximately the same frequency in the general population as it does in the disease population. We conclude from these results that this loss in Intron 1 of the ERBB4 gene is neither a de novo driver mutation nor a predisposing factor to GBM, despite the indications from CCLE. A biological role of this significantly occurring genetic alteration is still unknown. While this is a negative result, the broader conclusion is that while copy number data from large cell line-based data repositories may yield compelling hypotheses, careful follow up with higher resolution copy number assays, patient data, and general population analyses are essential to codify initial hypotheses prior to investing experimental resources.

  5. Peripheral epithelial odontogenic tumor

    International Nuclear Information System (INIS)

    Carzoglio, J.; Tancredi, N.; Capurro, S.; Ravecca, T.; Scarrone, P.

    2006-01-01

    A new case of peripheral epithelial odontogenic tumor (Pindborg tumor) is reported. It is localized in the superior right gingival region, a less frequent site, and has the histopathological features previously reported. Immunochemical studies were performed, revealing a differential positive stain to cytokeratins in tumor cells deeply seated in the tumor mass, probably related to tumoral cell heterogeneity.Interestingly, in this particular case S-100 protein positive reactivity was also detected in arborescent cells intermingled with tumoral cells, resembling Langerhans cells. Even though referred in the literature in central Pindborg tumors, no references were found about their presence in peripheral tumors, like the one that is presented here

  6. Anti-migratory effect of vinflunine in endothelial and glioblastoma cells is associated with changes in EB1 C-terminal detyrosinated/tyrosinated status.

    Directory of Open Access Journals (Sweden)

    Amandine Rovini

    Full Text Available We previously showed that vinflunine, a microtubule-targeting drug of the Vinca-alkaloid family exerted its anti-angiogenic/anti-migratory activities through an increase in microtubule dynamics and an inhibition of microtubule targeting to adhesion sites. Such effect was associated with a reduction of EB1 comet length at microtubule (+ ends. In this work we first showed that the pro-angiogenic vascular endothelial growth factor VEGF suppressed microtubule dynamics in living Human Umbilical Vein Endothelial Cells (HUVECs, increased EB1 comet length by 40%, and induced EB1 to bind all along the microtubules, without modifying its expression level. Such microtubule (+ end stabilization occurred close to the plasma membrane in the vicinity of focal adhesion as shown by TIRF microscopy experiments. Vinflunine completely abolished the effect of VEGF on EB1 comets. Interestingly, we found a correlation between the reduction of EB1 comet length by vinflunine and the inhibition of cell migration. By using 2D gel electrophoresis we demonstrated for the first time that EB1 underwent several post-translational modifications in endothelial and tumor cells. Particularly, the C-terminal EEY sequence was poorly detectable in control and VEGF-treated HUVECs suggesting the existence of a non-tyrosinated form of EB1. By using specific antibodies that specifically recognized and discriminated the native tyrosinated form of EB1 and a putative C-terminal detyrosinated form, we showed that a detyrosinated form of EB1 exists in HUVECs and tumor cells. Interestingly, vinflunine decreased the level of the detyrosinated form and increased the native tyrosinated form of EB1. Using 3-L-Nitrotyrosine incorporation experiments, we concluded that the EB1 C-terminal modifications result from a detyrosination/retyrosination cycle as described for tubulin. Altogether, our results show that vinflunine inhibits endothelial cell migration through an alteration of EB1 comet length

  7. A micro-PET/CT approach using O-(2-[{sup 18}F]fluoroethyl)-L-tyrosine in an experimental animal model of F98 glioma for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Menichetti, L., E-mail: luca.menichetti@ifc.cnr.it [CNR Institute of Clinical Physiology, Pisa (Italy); Petroni, D.; Panetta, D. [CNR Institute of Clinical Physiology, Pisa (Italy); Burchielli, S. [Fondazione CNR/Regione Toscana G. Monasterio, Pisa (Italy); Bortolussi, Silva [Dept. Theoretical and Nuclear Physics, University of Pavia, Pavia (Italy); Matteucci, M. [Scuola Superiore Sant' Anna, Pisa (Italy); Pascali, G.; Del Turco, S. [CNR Institute of Clinical Physiology, Pisa (Italy); Del Guerra, A. [Department of Physics, University of Pisa, Pisa (Italy); Altieri, S. [Dept. Theoretical and Nuclear Physics, University of Pavia, Pavia (Italy); Salvadori, P.A. [CNR Institute of Clinical Physiology, Pisa (Italy)

    2011-12-15

    The present study focuses on a micro-PET/CT application to be used for experimental Boron Neutron Capture Therapy (BNCT), which integrates, in the same frame, micro-CT derived anatomy and PET radiotracer distribution. Preliminary results have demonstrated that {sup 18}F-fluoroethyl-tyrosine (FET)/PET allows the identification of the extent of cerebral lesions in F98 tumor bearing rat. Neutron autoradiography and {alpha}-spectrometry on axial tissues slices confirmed the tumor localization and extraction, after the administration of fructose-boronophenylalanine (BPA). Therefore, FET-PET approach can be used to assess the transport, the net influx, and the accumulation of FET, as an aromatic amino acid analog of BPA, in experimental animal model. Coregistered micro-CT images allowed the accurate morphological localization of the radiotracer distribution and its potential use for experimental BNCT.

  8. PTPN13, a Fas-associated protein tyrosine phosphatase, is located on the long arm of chromosome 4 at band q21.3

    Energy Technology Data Exchange (ETDEWEB)

    Inazawa, Johji; Ariyama, Takeshi; Abe, Tatsuo [Kyoto Prefectural Univ. of Medicine (Japan)] [and others

    1996-01-15

    PTPN13 is a protein tyrosine phosphatase that associates with the C-terminal negative regulatory domain in the Fas (APO-1/CD95) receptor. The PTPN13 protein contains six GLGF repeats that have been found in the rat postsynaptic density protein (PSD-95) and the Drosophila tumor suppressor protein, lethal-(1)-disclarge-1 (dlg-1). The localization of the PTPN13 gene to human chromosome 4q21.3 was determined by both FISH and PCR analysis of somatic cell hybrids. This 4q21.3 chromosomal region contains a gene for autosomal dominant polycystic kidney disease as well as the region frequently deleted in liver and ovarian cancers, suggesting that PTPN13 is a candidate for one of the putative tumor suppressor genes on the long arm of chromosome 4. 21 refs., 1 fig.

  9. Effect of radiation on tyrosine and tetracycline in poultry meat

    International Nuclear Information System (INIS)

    Vachin, I.; Pavlov, A.; Lashev, L.

    1994-01-01

    The effect of gamma rays on tissue level changes of unbound tyrosine and tetracycline was examined in comparative trials with broiler chicken meat. White meat and dark meat samples were taken from the killed chicken and were frozen at -18 o C. The three experimental groups were gamma irradiated with doses of 1.0, 1.5 and 2 kGy. The contents of the unbound antibiotics were microbiologically tested on 24th hour and 45th day after irradiation using Bacillus subtilis ATCC 6633, respectively Bac. mycoides HB 2 as test organisms. It was found that on 25th hour after irradiation both antibiotics were not significantly changed compared to the controls. After 45 days of storage a tendency towards decreasing the antibiotic concentrations in both the white and dark meat had been detected. (author)

  10. Tyrosine Kinase Receptor Landscape in Lung Cancer: Therapeutical Implications

    Directory of Open Access Journals (Sweden)

    A. Quintanal-Villalonga

    2016-01-01

    Full Text Available Lung cancer is a heterogeneous disease responsible for the most cases of cancer-related deaths. The majority of patients are clinically diagnosed at advanced stages, with a poor survival rate. For this reason, the identification of oncodrivers and novel biomarkers is decisive for the future clinical management of this pathology. The rise of high throughput technologies popularly referred to as “omics” has accelerated the discovery of new biomarkers and drivers for this pathology. Within them, tyrosine kinase receptors (TKRs have proven to be of importance as diagnostic, prognostic, and predictive tools and, due to their molecular nature, as therapeutic targets. Along this review, the role of TKRs in the different lung cancer histologies, research on improvement of anti-TKR therapy, and the current approaches to manage anti-TKR resistance will be discussed.

  11. Receptor tyrosine kinase structure and function in health and disease

    Directory of Open Access Journals (Sweden)

    Oleg A. Karpov

    2015-09-01

    Full Text Available Receptor tyrosine kinases (RTKs are membrane proteins that control the flow of information through signal transduction pathways, impacting on different aspects of cell function. RTKs are characterized by a ligand-binding ectodomain, a single transmembrane α-helix, a cytosolic region comprising juxtamembrane and kinase domains followed by a flexible C-terminal tail. Somatic and germline RTK mutations can induce aberrant signal transduction to give rise to cardiovascular, developmental and oncogenic abnormalities. RTK overexpression occurs in certain cancers, correlating signal strength and disease incidence. Diverse RTK activation and signal transduction mechanisms are employed by cells during commitment to health or disease. Small molecule inhibitors are one means to target RTK function in disease initiation and progression. This review considers RTK structure, activation, and signal transduction and evaluates biological relevance to therapeutics and clinical outcomes.

  12. Tyrosine kinase inhibitors induced immune thrombocytopenia in chronic myeloid leukemia?

    Directory of Open Access Journals (Sweden)

    Avital F. Barak

    2011-12-01

    Full Text Available The outcome and quality of life of chronic myeloid leukemia (CML patients has remarkably changed with the treatment of tyrosine kinase inhibitors (TKIs. Currently, hematopoietic stem cell transplantation (HSCT is considered mainly as a third line salvage therapy in cases of TKIs resistance or intolerance. Here we describe a patient with chronic phase CML who developed both resistance and late occurrence of s severe thrombocytopenia on first and second generation TKIs and eventually underwent HSCT. Although the mechanism of the myelosuppression is not fully understood, we showed for the first time the development of dose dependent platelet antibodies in the presence of TKIs, suggesting the possibility of TKIs induced thrombocytopenia. Our case emphasizes that late development of severe myelosuppression during imatinib treatment is probably an important indication for consideration of early HSCT.

  13. Central regulation of metabolism by protein tyrosine phosphatases

    Directory of Open Access Journals (Sweden)

    Ryan eTsou

    2013-01-01

    Full Text Available Protein tyrosine phosphatases (PTPs are important regulators of intracellular signaling pathways via the dephosphorylation of phosphotyrosyl residues on various receptor and non-receptor substrates. The phosphorylation state of central nervous system (CNS signaling components underlies the molecular mechanisms of a variety of physiological functions including the control of energy balance and glucose homeostasis. In this review, we summarize the current evidence implicating PTPs as central regulators of metabolism, specifically highlighting their interactions with the neuronal leptin and insulin signaling pathways. We discuss the role of a number of PTPs (PTP1B, SHP2, TCPTP, RPTPe, and PTEN, reviewing the findings from genetic mouse models and in vitro studies which highlight these phosphatases as key central regulators of energy homeostasis.

  14. Clinical factors related to the efficacy of tyrosine kinase inhibitor therapy in radioactive iodine refractory recurrent differentiated thyroid cancer patients.

    Science.gov (United States)

    Sugino, Kiminori; Nagahama, Mitsuji; Kitagawa, Wataru; Ohkuwa, Keiko; Uruno, Takashi; Matsuzu, Kenichi; Suzuki, Akifumi; Masaki, Chie; Akaishi, Junko; Hames, Kiyomi Y; Tomoda, Chisato; Ogimi, Yuna; Ito, Koichi

    2018-03-28

    New insights in thyroid cancer biology propelled the development of targeted therapies as salvage treatment for radioiodine-refractory differentiated thyroid cancer (RR-DTC), and the tyrosine kinase inhibitor (TKI) lenvatinib has recently become available as a new line of therapy for RR-DTC. The aim of this study is to investigate clinical factors related to the efficacy of TKI therapy in recurrent RR-DTC patients and identify the optimal timing for the start of TKI therapy. The subjects consisted of 29 patients with progressive RR-DTC, 9 males and 20 females, median age 66 years. A univariate analysis was conducted in relation to progression free survival (PFS) and overall survival (OS) by the Kaplan-Meier method for the following variables: age, sex, histology of the primary tumor, thyroglobulin doubling time before the start of lenvatinib therapy, site of the target lesions, presence of a tumor-mediated symptom at the start of lenvatinib therapy, and baseline tumor size of the target lesions. Median duration of lenvatinib therapy was 14.7 months and median drug intensity was 9.5 mg. At the time of the data cut-off for the analysis, 9 patients (31.0%) have died of their disease (DOD), and a PR (partial response), SD (stable disease), and PD (progressive disease) were observed in 20 patients (69%), 6 patients (20.7%), 3 patients (10.3%), respectively. Univariate analyses showed that the presence of a symptom was the only factor significantly related to poorer PFS and OS. Clinical benefit of TKI therapy will be possibly limited when the therapy starts after tumor-mediated symptoms appear.

  15. DMPD: Macrophage-stimulating protein and RON receptor tyrosine kinase: potentialregulators of macrophage inflammatory activities. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12472665 Macrophage-stimulating protein and RON receptor tyrosine kinase: potential...:545-53. (.png) (.svg) (.html) (.csml) Show Macrophage-stimulating protein and RON receptor tyrosine kinase:...le Macrophage-stimulating protein and RON receptor tyrosine kinase: potentialregulators of macrophage inflam

  16. Analysis of tyrosine phosphorylation sites in signaling molecules by a phosphotyrosine-specific immonium ion scanning method

    DEFF Research Database (Denmark)

    Steen, Hanno; Pandey, Akhilesh; Andersen, Jens S

    2002-01-01

    mechanism for activating or inhibiting enzymes and for the assembly of multiprotein complexes. Here, we describe a mass spectrometry-based phosphotyrosine-specific immonium ion scanning (PSI scanning) method for selective detection of tyrosine-phosphorylated peptides. Once the tyrosine....... Because of its simplicity and specificity, PSI scanning is likely to become an important tool in proteomic studies of pathways involving tyrosine phosphorylation....

  17. Bruton tyrosine kinase inhibition in chronic lymphocytic leukemia.

    Science.gov (United States)

    Maddocks, Kami; Jones, Jeffrey A

    2016-04-01

    Chronic lymphocytic leukemia (CLL) is the most common adult leukemia and remains incurable outside of the setting of allogeneic stem cell transplant. While the standard therapy for both initial and relapsed CLL has traditionally included monoclonal antibody therapy in combination with chemotherapy, there are patients with high-risk disease features including unmutated IgVH, del(11q22) and del(17p13) that are associated with poor overall responses to these therapies with short time to relapse and shortened overall survival. Additionally, many of these therapies have a high rate of infectious toxicity in a population already at increased risk. Targeting the B-cell receptor (BCR) signaling pathway has emerged as a promising therapeutic advance in a variety of B-cell malignancies, including CLL. Bruton agammaglobulinemia tyrosine kinase (Btk) is a tyrosine kinase in the BCR pathway critical to the survival of both normal and malignant B cells and inhibition of this kinase has shown to block the progression of CLL. Ibrutinib, a first in class oral inhibitor of Btk, has shown promise as a very effective agent in the treatment of CLL-in both relapsed and upfront therapy, alone and in combination with other therapies, and in patients of all-risk disease-which has led to its approval in relapsed CLL and as frontline therapy in patients with the high-risk del(17p13) disease. Several studies are ongoing to evaluate the efficacy and safety of ibrutinib in combination with chemotherapy as frontline treatment for CLL and investigation into newer-generation Btk inhibitors is also underway. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Cytochrome C is tyrosine 97 phosphorylated by neuroprotective insulin treatment.

    Directory of Open Access Journals (Sweden)

    Thomas H Sanderson

    Full Text Available Recent advancements in isolation techniques for cytochrome c (Cytc have allowed us to discover post-translational modifications of this protein. We previously identified two distinct tyrosine phosphorylated residues on Cytc in mammalian liver and heart that alter its electron transfer kinetics and the ability to induce apoptosis. Here we investigated the phosphorylation status of Cytc in ischemic brain and sought to determine if insulin-induced neuroprotection and inhibition of Cytc release was associated with phosphorylation of Cytc. Using an animal model of global brain ischemia, we found a ∼50% decrease in neuronal death in the CA1 hippocampal region with post-ischemic insulin administration. This insulin-mediated increase in neuronal survival was associated with inhibition of Cytc release at 24 hours of reperfusion. To investigate possible changes in the phosphorylation state of Cytc we first isolated the protein from ischemic pig brain and brain that was treated with insulin. Ischemic brains demonstrated no detectable tyrosine phosphorylation. In contrast Cytc isolated from brains treated with insulin showed robust phosphorylation of Cytc, and the phosphorylation site was unambiguously identified as Tyr97 by immobilized metal affinity chromatography/nano-liquid chromatography/electrospray ionization mass spectrometry. We next confirmed these results in rats by in vivo application of insulin in the absence or presence of global brain ischemia and determined that Cytc Tyr97-phosphorylation is strongly induced under both conditions but cannot be detected in untreated controls. These data suggest a mechanism whereby Cytc is targeted for phosphorylation by insulin signaling, which may prevent its release from the mitochondria and the induction of apoptosis.

  19. Tyrosine phosphorylation of the human guanylyl cyclase C receptor

    Indian Academy of Sciences (India)

    Unknown

    **Laboratory of Cellular Carcinogenesis and Tumor Promotion, National Cancer Institute, National Institute of Health, .... This construct expresses the N-terminal 330 amino acids ... C-terminal 112 amino acids of GCC as fusion with GST.

  20. Radiological diagnostics of skeletal tumors

    International Nuclear Information System (INIS)

    Uhl, M.; Herget, G.W.

    2008-01-01

    The book contains contributions concerning the following topics: 1. introduction and fundamentals: WHO classification of bone tumors, imaging diagnostics and their function; localization, typical clinical and radiological criteria, TNM classification and status classification, invasive tumor diagnostics; 2. specific tumor diagnostics: chondrogenic bone tumors, osseous tumors, connective tissue bony tumors, osteoclastoma, osteomyelogenic bone tumors, vascular bone tumors, neurogenic bone tumors, chordoma; adamantinoma of the long tubular bone; tumor-like lesions, bony metastases, bone granulomas, differential diagnostics: tumor-like lesions

  1. Inhibition of receptor tyrosine kinase signalling by small molecule agonist of T-cell protein tyrosine phosphatase

    International Nuclear Information System (INIS)

    Mattila, Elina; Marttila, Heidi; Sahlberg, Niko; Kohonen, Pekka; Tähtinen, Siri; Halonen, Pasi; Perälä, Merja; Ivaska, Johanna

    2010-01-01

    T-cell protein tyrosine phosphatase (TCPTP/TC45) is a ubiquitously expressed intra-cellular non-receptor protein tyrosine phosphatase involved in the negative regulation of several cancer relevant cellular signalling pathways. We have previously shown that interaction between the α-cytoplasmic tail of α1β1 integrin and TCPTP activates TCPTP by disrupting an inhibitory intra-molecular bond in TCPTP. Thus, inhibition of the regulatory interaction in TCPTP is a desirable strategy for TCPTP activation and attenuation of oncogenic RTK signalling. However, this is challenging with low molecular weight compounds. We developed a high-throughput compatible assay to analyse activity of recombinant TCPTP in vitro. Using this assay we have screened 64280 small molecules to identify novel agonists for TCPTP. Dose-dependent response to TCPTP agonist was performed using the in vitro assay. Inhibition effects and specificity of TCPTP agonists were evaluated using TCPTP expressing and null mouse embryonic fibroblasts. Western blot analysis was used to evaluate attenuation of PDGFRβ and EGFR phosphorylation. Inhibition of VEGF signalling was analysed with VEGF-induced endothelial cell sprouting assays. From the screen we identified six TCPTP agonists. Two compounds competed with α1-cytoplasmic domain for binding to TCPTP, suggesting that they activate TCPTP similar to α1-cyt by disrupting the intra-molecular bond in TCPTP. Importantly, one of the compounds (spermidine) displayed specificity towards TCPTP in cells, since TCPTP -/- cells were 43-fold more resistant to the compound than TCPTP expressing cells. This compound attenuates PDGFRβ and VEGFR2 signalling in cells in a TCPTP-dependent manner and functions as a negative regulator of EGFR phosphorylation in cancer cells. In this study we showed that small molecules mimicking TCPTP-α1 interaction can be used as TCPTP agonists. These data provide the first proof-of-concept description of the use of high-throughput screening

  2. Interactions between Type III receptor tyrosine phosphatases and growth factor receptor tyrosine kinases regulate tracheal tube formation in Drosophila

    Directory of Open Access Journals (Sweden)

    Mili Jeon

    2012-04-01

    The respiratory (tracheal system of the Drosophila melanogaster larva is an intricate branched network of air-filled tubes. Its developmental logic is similar in some ways to that of the vertebrate vascular system. We previously described a unique embryonic tracheal tubulogenesis phenotype caused by loss of both of the Type III receptor tyrosine phosphatases (RPTPs, Ptp4E and Ptp10D. In Ptp4E Ptp10D double mutants, the linear tubes in unicellular and terminal tracheal branches are converted into bubble-like cysts that incorporate apical cell surface markers. This tube geometry phenotype is modulated by changes in the activity or expression of the epidermal growth factor receptor (Egfr tyrosine kinase (TK. Ptp10D physically interacts with Egfr. Here we demonstrate that the Ptp4E Ptp10D phenotype is the consequence of the loss of negative regulation by the RPTPs of three growth factor receptor TKs: Egfr, Breathless and Pvr. Reducing the activity of any of the three kinases by tracheal expression of dominant-negative mutants suppresses cyst formation. By competing dominant-negative and constitutively active kinase mutants against each other, we show that the three RTKs have partially interchangeable activities, so that increasing the activity of one kinase can compensate for the effects of reducing the activity of another. This implies that SH2-domain downstream effectors that are required for the phenotype are likely to be able to interact with phosphotyrosine sites on all three receptor TKs. We also show that the phenotype involves increases in signaling through the MAP kinase and Rho GTPase pathways.

  3. Production of tyrosine through phenylalanine hydroxylation bypasses the intrinsic feedback inhibition in Escherichia coli.

    Science.gov (United States)

    Huang, Jin; Lin, Yuheng; Yuan, Qipeng; Yan, Yajun

    2015-04-01

    Tyrosine is a proteinogenic aromatic amino acid that is often used as a supplement of food and animal feed, as well as a (bio-)synthetic precursor to various pharmaceutically or industrially important molecules. Extensive metabolic engineering efforts have been made towards the efficient and cost-effective microbial production of tyrosine. Conventional strategies usually focus on eliminating intrinsic feedback inhibition and redirecting carbon flux into the shikimate pathway. In this study, we found that continuous conversion of phenylalanine into tyrosine by the action of tetrahydromonapterin (MH4)-utilizing phenylalanine 4-hydroxylase (P4H) can bypass the feedback inhibition in Escherichia coli, leading to tyrosine accumulation in the cultures. First, expression of the P4H from Xanthomonas campestris in combination with an MH4 recycling system in wild-type E. coli allowed the strain to accumulate tyrosine at 262 mg/L. On this basis, enhanced expression of the key enzymes associated with the shikimate pathway and the MH4 biosynthetic pathway resulted in the elevation of tyrosine production up to 401 mg/L in shake flasks. This work demonstrated a novel approach to tyrosine production and verified the possibility to alleviate feedback inhibition by creating a phenylalanine sink.

  4. Testing whether Metazoan Tyrosine Loss Was Driven by Selection against Promiscuous Phosphorylation

    Science.gov (United States)

    Pandya, Siddharth; Struck, Travis J.; Mannakee, Brian K.; Paniscus, Mary; Gutenkunst, Ryan N.

    2015-01-01

    Protein tyrosine phosphorylation is a key regulatory modification in metazoans, and the corresponding kinase enzymes have diversified dramatically. This diversification is correlated with a genome-wide reduction in protein tyrosine content, and it was recently suggested that this reduction was driven by selection to avoid promiscuous phosphorylation that might be deleterious. We tested three predictions of this intriguing hypothesis. 1) Selection should be stronger on residues that are more likely to be phosphorylated due to local solvent accessibility or structural disorder. 2) Selection should be stronger on proteins that are more likely to be promiscuously phosphorylated because they are abundant. We tested these predictions by comparing distributions of tyrosine within and among human and yeast orthologous proteins. 3) Selection should be stronger against mutations that create tyrosine versus remove tyrosine. We tested this prediction using human population genomic variation data. We found that all three predicted effects are modest for tyrosine when compared with the other amino acids, suggesting that selection against deleterious phosphorylation was not dominant in driving metazoan tyrosine loss. PMID:25312910

  5. Determination of o-tyrosine as a marker for the detection of irradiated shrimps

    International Nuclear Information System (INIS)

    Hunková, J.; Simat, T.J.; Steinhart, H.

    2000-01-01

    o-tyrosine is proposed as a marker for the identification of irradiated protein-rich food. An HPLC method for qualitative and quantitative determination of non-protein bound o-tyrosine in shrimps (Crangon crangon) has been developed. For this purpose the o-tyrosine was extracted from non-irradiated as well as irradiated samples with perchloric acid, then separated isocratically (ammoniumformiat buffer, pH 4) on an RP-C18 column and detected by FLD (275/305 nm). The quantification of o-tyrosine was based on the use of alfa-methyl-p-tyrosine as internal standard. In non-irradiated shrimps a background level of 28.9 microg/kg was found. The content of o-tyrosine in 1 kGy irradiated shrimps was found to be 119.9 mikrog/kg, which was well 4-fold over the background level. The dependency between radiation dose and the amount of o-tyrosine was observed in the range of 0-5 kGy

  6. ROLE OF TYROSINE-SULFATED PROTEINS IN RETINAL STRUCTURE AND FUNCTION

    Science.gov (United States)

    Kanan, Y.; Al-Ubaidi, M.R.

    2014-01-01

    The extracellular matrix (ECM) plays a significant role in cellular and retinal health. The study of retinal tyrosine-sulfated proteins is an important first step toward understanding the role of ECM in retinal health and diseases. These secreted proteins are members of the retinal ECM. Tyrosine sulfation was shown to be necessary for the development of proper retinal structure and function. The importance of tyrosine sulfation is further demonstrated by the evolutionary presence of tyrosylprotein sulfotransferases, enzymes that catalyze proteins’ tyrosine sulfation, and the compensatory abilities of these enzymes. Research has identified four tyrosine-sulfated retinal proteins: fibulin 2, vitronectin, complement factor H (CFH), and opticin. Vitronectin and CFH regulate the activation of the complement system and are involved in the etiology of some cases of age-related macular degeneration. Analysis of the role of tyrosine sulfation in fibulin function showed that sulfation influences the protein's ability to regulate growth and migration. Although opticin was recently shown to exhibit anti-angiogenic properties, it is not yet determined what role sulfation plays in that function. Future studies focusing on identifying all of the tyrosine-sulfated retinal proteins would be instrumental in determining the impact of sulfation on retinal protein function in retinal homeostasis and diseases. PMID:25819460

  7. Synthesis of 2-[18F]fluoro-L-tyrosine via regiospecific fluoro-de-stannylation

    International Nuclear Information System (INIS)

    Hess, E.; Sichler, S.; Kluge, A.; Coenen, H.H.

    2002-01-01

    2-[ 18 F]Fluoro-L-tyrosine is a fluorine labelled amino acid, known to be incorporated into newly synthesised proteins, rendering it a potentially suitable tracer to image protein metabolism in vivo using positron emission tomography. For the electrophilic preparation of 2-[ 18 F]fluoro-L-tyrosine three protected 2-trialkylstannyl tyrosine derivatives have been synthesised for the first time as precursors. While O,N-di-Boc-2-triethylstannyl-L-tyrosine ethylester has proved to be suitable as precursor for radiosynthesis, imidazolidinon-derivatives of 2-triaklylstannyl tyrosine have not because of difficult fast hydrolysis of a phenolic O-methyl protective group. The di-Boc-tin derivative of tyrosine ethylester readily reacted with [ 18 F]F 2 , which was prepared via the 18 O(p,n) 18 F nuclear reaction. 2-[ 18 F]Fluoro-L-tyrosine was isolated after full deprotection with aqueous hydrobromic acid and HPLC purification with activities of 1.41±0.32 GBq. The isomeric and enantiomeric purity is high (both >99%). The preparation procedure is facile and easy to automate. The chemical yields of this fluoro-de-stannylation reaction as well as of the synthesis of 6-[ 18 F]fluoro-L-dopa, determined with an analogous precursor and non-radioactive fluorine under identical conditions, amounted to 42.7±1.6% and 60.2±2.8%, respectively

  8. Liver Tumors (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Liver Tumors KidsHealth / For Parents / Liver Tumors What's in this article? Types of Tumors ... Cancerous) Tumors Symptoms Diagnosis Treatment Coping Print The liver is the body's largest solid organ. Lying next ...

  9. Receptor tyrosine kinase (c-Kit inhibitors: a potential therapeutic target in cancer cells

    Directory of Open Access Journals (Sweden)

    Abbaspour Babaei M

    2016-08-01

    Full Text Available Maryam Abbaspour Babaei,1 Behnam Kamalidehghan,2,3 Mohammad Saleem,4–6 Hasniza Zaman Huri,1,7 Fatemeh Ahmadipour1 1Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; 2Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB, Shahrak-e Pajoohesh, 3Medical Genetics Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; 4Department of Urology, 5Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota, 6Section of Molecular Therapeutics & Cancer Health Disparity, The Hormel Institute, Austin, MN, USA; 7Clinical Investigation Centre, University Malaya Medical Centre, Lembah Pantai, Kuala Lumpur, Malaysia Abstract: c-Kit, a receptor tyrosine kinase, is involved in intracellular signaling, and the mutated form of c-Kit plays a crucial role in occurrence of some cancers. The function of c-Kit has led to the concept that inhibiting c-Kit kinase activity can be a target for cancer therapy. The promising results of inhibition of c-Kit for treatment of cancers have been observed in some cancers such as gastrointestinal stromal tumor, acute myeloid leukemia, melanoma, and other tumors, and these results have encouraged attempts toward improvement of using c-Kit as a capable target for cancer therapy. This paper presents the findings of previous studies regarding c-Kit as a receptor tyrosine kinase and an oncogene, as well as its gene targets and signaling pathways in normal and cancer cells. The c-Kit gene location, protein structure, and the role of c-Kit in normal cell have been discussed. Comprehending the molecular mechanism underlying c-Kit-mediated tumorogenesis is consequently essential and may lead to the identification of future novel drug targets. The potential mechanisms by which c-Kit induces cellular transformation have been described. This study aims to elucidate the function of c

  10. Targeting EGFR with photodynamic therapy in combination with Erbitux enhances in vivo bladder tumor response

    Directory of Open Access Journals (Sweden)

    Soo Khee

    2009-11-01

    Full Text Available Abstract Background Photodynamic therapy (PDT is a promising cancer treatment modality that involves the interaction of the photosensitizer, molecular oxygen and light of specific wavelength to destroy tumor cells. Treatment induced hypoxia is one of the main side effects of PDT and efforts are underway to optimize PDT protocols for improved efficacy. The aim of this study was to investigate the anti-tumor effects of PDT plus Erbitux, an angiogenesis inhibitor that targets epidermal growth factor receptor (EGFR, on human bladder cancer model. Tumor-bearing nude mice were assigned to four groups that included control, PDT, Erbitux and PDT plus Erbitux and tumor volume was charted over 90-day period. Results Our results demonstrate that combination of Erbitux with PDT strongly inhibits tumor growth in the bladder tumor xenograft model when compared to the other groups. Downregulation of EGFR was detected using immunohistochemistry, immunofluorescence and western blotting. Increased apoptosis was associated with tumor inhibition in the combination therapy group. In addition, we identified the dephosphorylation of ErbB4 at tyrosine 1284 site to play a major role in tumor inhibition. Also, at the RNA level downregulation of EGFR target genes cyclin D1 and c-myc was observed in tumors treated with PDT plus Erbitux. Conclusion The combination therapy of PDT and Erbitux effectively inhibits tumor growth and is a promising therapeutic approach in the treatment of bladder tumors.

  11. Endocrine tumors other than thyroid tumors

    International Nuclear Information System (INIS)

    Takeichi, Norio; Dohi, Kiyohiko

    1992-01-01

    This paper discusses the tendency for the occurrence of tumors in the endocrine glands, other than the thyroid gland, in A-bomb survivors using both autopsy and clinical data. ABCC-RERF sample data using 4136 autopsy cases (1961-1977) revealed parathyroid tumors in 13 A-bomb survivors, including 3 with the associated hyperparathyroidism, with the suggestion of dose-dependent increase in the occurrence of tumors. Based on clinical data from Hiroshima University, 7 (46.7%) of 15 parathyroid tumors cases were A-bomb survivors. Data (1974-1987) from the Tumor Registry Committee (TRC) in Hiroshima Prefecture revealed that a relative risk of parathyroid tumors was 5.6 times higher in the entire group of A-bomb survivors and 16.2 times higher in the group of heavily exposed A-bomb survivors, suggesting the dose-dependent increase in their occurrence. Adrenal tumors were detected in 47 of 123 cases from the TRC data, and 15 (31.5%) of these 47 were A-bomb survivors. Particularly, 11 cases of adrenal tumors associated with Cushing syndrome included 6 A-bomb survivors (54.5%). The incidence of multiple endocrine gonadial tumors (MEGT) tended to be higher with increasing exposure doses; and the 1-9 rad group, the 10-99 rad group, and the 100 or more rad group had a risk of developing MEGT of 4.1, 5.7, and 7.1, respectively, relative to both the not-in the city group and the 0 rad group. These findings suggested that there is a correlation between A-bomb radiation and the occurrence of parathyroid tumors (including hyperparathyroidism), adrenal tumors associated with Cushing syndrome and MEGT (especially, the combined thyroid and ovarian tumors and the combined thyroid and parathyroid tumors). (N.K.)

  12. Mechanism of papain-catalyzed synthesis of oligo-tyrosine peptides.

    Science.gov (United States)

    Mitsuhashi, Jun; Nakayama, Tsutomu; Narai-Kanayama, Asako

    2015-01-01

    Di-, tri-, and tetra-tyrosine peptides with angiotensin I-converting enzyme inhibitory activity were synthesized by papain-catalyzed polymerization of L-tyrosine ethyl ester in aqueous media at 30 °C. Varying the reaction pH from 6.0 to 7.5 and the initial concentration of the ester substrate from 25 to 100 mM, the highest yield of oligo-tyrosine peptides (79% on a substrate basis) was produced at pH 6.5 and 75 mM, respectively. In the reaction initiated with 100 mM of the substrate, approx. 50% yield of insoluble, highly polymerized peptides accumulated. At less than 15 mM, the reaction proceeded poorly; however, from 30 mM to 120 mM a dose-dependent increase in the consumption rate of the substrate was observed with a sigmoidal curve. Meanwhile, each of the tri- and tetra-tyrosine peptides, even at approx. 5mM, was consumed effectively by papain but was not elongated to insoluble polymers. For deacylation of the acyl-papain intermediate through which a new peptide bond is made, L-tyrosine ethyl ester, even at 5mM, showed higher nucleophilic activity than di- and tri-tyrosine. These results indicate that the mechanism through which papain polymerizes L-tyrosine ethyl ester is as follows: the first interaction between papain and the ester substrate is a rate-limiting step; oligo-tyrosine peptides produced early in the reaction period are preferentially used as acyl donors, while the initial ester substrate strongly contributes as a nucleophile to the elongation of the peptide product; and the balance between hydrolytic fragmentation and further elongation of oligo-tyrosine peptides is dependent on the surrounding concentration of the ester substrate. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Rates and energetics of tyrosine ring flips in yeast iso-2-cytochrome c

    International Nuclear Information System (INIS)

    Nall, B.T.; Zuniga, E.H.

    1990-01-01

    Isotope-edited nuclear magnetic resonance spectroscopy is used to monitor ring flip motion of the five tyrosine side chains in the oxidized and reduced forms of yeast iso-2-cytochrome c. With specifically labeled protein purified from yeast grown on media containing [3,5- 13 C]tyrosine, isotope-edited one-dimensional proton spectra have been collected over a 5-55 degree C temperature range. The spectra allow selective observation of the 10 3,5 tyrosine ring proton resonances and, using a two-site exchange model, allow estimation of the temperature dependence of ring flip rates from motion-induced changes in proton line shapes. For the reduced protein, tyrosines II and IV are in fast exchange throughout the temperature range investigated, or lack resolvable differences in static chemical shifts for the 3,5 ring protons. Tyrosines I, III, and V are in sloe exchange at low temperatures and in fast exchange at high temperatures. Spectral simulations give flip rates for individual tyrosines in a range of one flip per second at low temperatures to thousands of flips per second at high temperatures. Eyring plots show that two of the tyrosines (I and III) have essentially the same activation parameters. Tentative sequence-specific assignments for the tyrosines in reduced iso-2 are suggested by comparison to horse cytochrome c. For oxidized iso-2, five resonances are observed at high temperatures, suggesting flip rates for all five tyrosines sufficient to average static chemical shift differences. At lower temperatures, there is evidence of intermediate and slow flipping for some of the rings

  14. Axl receptor tyrosine kinase is up-regulated in metformin resistant prostate cancer cells

    Science.gov (United States)

    Bansal, Nitu; Mishra, Prasun J.; Stein, Mark; DiPaola, Robert S.; Bertino, Joseph R.

    2015-01-01

    Recent epidemiological studies showed that metformin, a widely used anti-diabetic drug might prevent certain cancers. Metformin also has an anti-proliferative effect in preclinical studies of both hematologic malignancies as well as solid cancers and clinical studies testing metformin as an anti-cancer drug are in progress. However, all cancer types do not respond to metformin with the same effectiveness or acquire resistance. To understand the mechanism of acquired resistance and possibly its mechanism of action as an anti-proliferative agent, we developed metformin resistant LNCaP prostate cancer cells. Metformin resistant LNCaP cells had an increased proliferation rate, increased migration and invasion ability as compared to the parental cells, and expressed markers of epithelial-mesenchymal transition (EMT). A detailed gene expression microarray comparing the resistant cells to the wild type cells revealed that Edil2, Ereg, Axl, Anax2, CD44 and Anax3 were the top up-regulated genes and calbindin 2 and TPTE (transmembrane phosphatase with tensin homology) and IGF1R were down regulated. We focused on Axl, a receptor tyrosine kinase that has been shown to be up regulated in several drug resistance cancers. Here, we show that the metformin resistant cell line as well as castrate resistant cell lines that over express Axl were more resistant to metformin, as well as to taxotere compared to androgen sensitive LNCaP and CWR22 cells that do not overexpress Axl. Forced overexpression of Axl in LNCaP cells decreased metformin and taxotere sensitivity and knockdown of Axl in resistant cells increased sensitivity to these drugs. Inhibition of Axl activity by R428, a small molecule Axl kinase inhibitor, sensitized metformin resistant cells that overexpressed Axl to metformin. Inhibitors of Axl may enhance tumor responses to metformin and other chemotherapy in cancers that over express Axl. PMID:26036314

  15. CT of abdominal tumor

    International Nuclear Information System (INIS)

    Endo, Satoshi; Yamada, Kenji; Ito, Masatoshi; Ito, Hisao; Yamaura, Harutsugu

    1981-01-01

    CT findings in 33 patients who had an abdominal tumor were evaluated. CT revealed a tumor in 31 cases. The organ from which the tumor originated was correctly diagnosed in 18 patients. Whether the tumor was solid or cystic was correctly predicted in 28 patients. The diagnosis malignant or benign nature of tumor was correct, incorrect and impossible, in 23, 3, and five patiens, respectively. (Kondo, M.)

  16. Processes for the production of hydroxycinnamic acids using polypeptides having tyrosine ammonia lyase activity

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention generally relates to the field of biotechnology as it applies to the production of hydroxycinnamic acids using polypeptides having tyrosine ammonia lyase activity. More particularly, the present invention pertains to polypeptides having tyrosine ammonia lyase activity and high...... substrate specificity towards tyrosine, which makes them particularly suitable in the production of p-coumaric acid and other hydroxycinnamic acids. The present invention thus provides processes for the production of p-coumaric acid and other hydroxycinnamic acids employing these polypeptides as well...

  17. Photolysis mechanism of aqueous tyrosine upon excitation of the second absorption band

    International Nuclear Information System (INIS)

    Shimizu, O.

    1984-01-01

    The formation mechanism of tyrosinyl radical was studied for aqueous solutions of tyrosine under irradiation at 235 nm which falls into the second absorption band. The work is based upon the analysis of the rate of bityrosine production for steady-state excitation at low intensity. The results indicate that monophotonic O-H bond cleavage of tyrosine, presumably involving the upper excited triplet state, is the initial photoprocess leading to the tyrosinyl radical when tyrosine is excited into the second absorption band. (author)

  18. Protein Tyrosine Nitration: Biochemical Mechanisms and Structural Basis of its Functional Effects

    Science.gov (United States)

    Radi, Rafael

    2012-01-01

    CONSPECTUS The nitration of protein tyrosine residues to 3-nitrotyrosine represents an oxidative postranslational modification that unveils the disruption of nitric oxide (•NO) signaling and metabolism towards pro-oxidant processes. Indeed, excess levels of reactive oxygen species in the presence of •NO or •NO-derived metabolites lead to the formation of nitrating species such as peroxynitrite. Thus, protein 3-nitrotyrosine has been established as a biomarker of cell, tissue and systemic “nitroxidative stress”. Moreover, tyrosine nitration modifies key properties of the amino acid (i.e. phenol group pKa, redox potential, hydrophobicity and volume). Thus, the incorporation of a nitro group (−NO2) to protein tyrosines can lead to profound structural and functional changes, some of which contribute to altered cell and tissue homeostasis. In this Account, I describe our current efforts to define 1) biologically-relevant mechanisms of protein tyrosine nitration and 2) how this modification can cause changes in protein structure and function at the molecular level. First, the relevance of protein tyrosine nitration via free radical-mediated reactions (in both peroxynitrite-dependent or independent pathways) involving the intermediacy of tyrosyl radical (Tyr•) will be underscored. This feature of the nitration process becomes critical as Tyr• can take variable fates, including the formation of 3-nitrotyrosine. Fast kinetic techniques, electron paramagnetic resonance (EPR) studies, bioanalytical methods and kinetic simulations have altogether assisted to characterize and fingerprint the reactions of tyrosine with peroxynitrite and one-electron oxidants and its further evolution to 3-nitrotyrosine. Recent findings show that nitration of tyrosines in proteins associated to biomembranes is linked to the lipid peroxidation process via a connecting reaction that involves the one-electron oxidation of tyrosine by lipid peroxyl radicals (LOO•). Second

  19. Unfolding of Ubiquitin Studied by Picosecond Time-Resolved Fluorescence of the Tyrosine Residue

    OpenAIRE

    Noronha, Melinda; Lima, João C.; Bastos, Margarida; Santos, Helena; Maçanita, António L.

    2004-01-01

    The photophysics of the single tyrosine in bovine ubiquitin (UBQ) was studied by picosecond time-resolved fluorescence spectroscopy, as a function of pH and along thermal and chemical unfolding, with the following results: First, at room temperature (25°C) and below pH 1.5, native UBQ shows single-exponential decays. From pH 2 to 7, triple-exponential decays were observed and the three decay times were attributed to the presence of tyrosine, a tyrosine-carboxylate hydrogen-bonded complex, and...

  20. Autophosphorylation of JAK2 on Tyrosines 221 and 570 Regulates Its Activity

    OpenAIRE

    Argetsinger, Lawrence S.; Kouadio, Jean-Louis K.; Steen, Hanno; Stensballe, Allan; Jensen, Ole N.; Carter-Su, Christin

    2004-01-01

    The tyrosine kinase JAK2 is a key signaling protein for at least 20 receptors in the cytokine/hematopoietin receptor superfamily and is a component of signaling by insulin receptor and several G-protein-coupled receptors. However, there is only limited knowledge of the physical structure of JAK2 or which of the 49 tyrosines in JAK2 are autophosphorylated. In this study, mass spectrometry and two-dimensional peptide mapping were used to determine that tyrosines 221, 570, and 1007 in JAK2 are a...

  1. Oncogenic Receptor Tyrosine Kinases Directly Phosphorylate Focal Adhesion Kinase (FAK) as a Resistance Mechanism to FAK-Kinase Inhibitors.

    Science.gov (United States)

    Marlowe, Timothy A; Lenzo, Felicia L; Figel, Sheila A; Grapes, Abigail T; Cance, William G

    2016-12-01

    Focal adhesion kinase (FAK) is a major drug target in cancer and current inhibitors targeted to the ATP-binding pocket of the kinase domain have entered clinical trials. However, preliminary results have shown limited single-agent efficacy in patients. Despite these unfavorable data, the molecular mechanisms that drive intrinsic and acquired resistance to FAK-kinase inhibitors are largely unknown. We have demonstrated that receptor tyrosine kinases (RTK) can directly bypass FAK-kinase inhibition in cancer cells through phosphorylation of FAK's critical tyrosine 397 (Y397). We also showed that HER2 forms a direct protein-protein interaction with the FAK-FERM-F1 lobe, promoting direct phosphorylation of Y397. In addition, FAK-kinase inhibition induced two forms of compensatory RTK reprogramming: (i) the rapid phosphorylation and activation of RTK signaling pathways in RTK High cells and (ii) the long-term acquisition of RTKs novel to the parental cell line in RTK Low cells. Finally, HER2 +: cancer cells displayed resistance to FAK-kinase inhibition in 3D growth assays using a HER2 isogenic system and HER2 + cancer cell lines. Our data indicate a novel drug resistance mechanism to FAK-kinase inhibitors whereby HER2 and other RTKs can rescue and maintain FAK activation (pY397) even in the presence of FAK-kinase inhibition. These data may have important ramifications for existing clinical trials of FAK inhibitors and suggest that individual tumor stratification by RTK expression would be important to predict patient response to FAK-kinase inhibitors. Mol Cancer Ther; 15(12); 3028-39. ©2016 AACR. ©2016 American Association for Cancer Research.

  2. Novel Tyrosine Phosphorylation Sites in Rat Skeletal Muscle Revealed by Phosphopeptide Enrichment and HPLC-ESI-MS/MS

    Science.gov (United States)

    Zhang, Xiangmin; Højlund, Kurt; Luo, Moulun; Meyer, Christian; Thangiah, Geetha; Yi, Zhengping

    2012-01-01

    Tyrosine phosphorylation plays a fundamental role in many cellular processes including differentiation, growth and insulin signaling. In insulin resistant muscle, aberrant tyrosine phosphorylation of several proteins has been detected. However, due to the low abundance of tyrosine phosphorylation (tyrosine phosphorylation sites have been identified in mammalian skeletal muscle to date. Here, we used immunoprecipitation of phosphotyrosine peptides prior to HPLC-ESI-MS/MS analysis to improve the discovery of tyrosine phosphorylation in relatively small skeletal muscle biopsies from rats. This resulted in the identification of 87 distinctly localized tyrosine phosphorylation sites in 46 muscle proteins. Among them, 31 appear to be novel. The tyrosine phosphorylated proteins included major enzymes in the glycolytic pathway and glycogen metabolism, sarcomeric proteins, and proteins involved in Ca2+ homeostasis and phosphocreatine resynthesis. Among proteins regulated by insulin, we found tyrosine phosphorylation sites in glycogen synthase, and two of its inhibitors, GSK-3α and DYRK1A. Moreover, tyrosine phosphorylation sites were identified in several MAP kinases and a protein tyrosine phosphatase, SHPTP2. These results provide the largest catalogue of mammalian skeletal muscle tyrosine phosphorylation sites to date and provide novel targets for the investigation of human skeletal muscle phosphoproteins in various disease states. PMID:22609512

  3. Imatinib mesylate inhibits Leydig cell tumor growth: evidence for in vitro and in vivo activity.

    Science.gov (United States)

    Basciani, Sabrina; Brama, Marina; Mariani, Stefania; De Luca, Gabriele; Arizzi, Mario; Vesci, Loredana; Pisano, Claudio; Dolci, Susanna; Spera, Giovanni; Gnessi, Lucio

    2005-03-01

    Leydig cell tumors are usually benign tumors of the male gonad. However, if the tumor is malignant, no effective treatments are currently available. Leydig cell tumors express platelet-derived growth factor (PDGF), kit ligand and their respective receptors, PDGFR and c-kit. We therefore evaluated the effects of imatinib mesylate (imatinib), a selective inhibitor of the c-kit and PDGFR tyrosine kinases, on the growth of rodent Leydig tumor cell lines in vivo and in vitro, and examined, in human Leydig cell tumor samples, the expression of activated PDGFR and c-kit and the mutations in exons of the c-kit gene commonly associated with solid tumors. Imatinib caused concentration-dependent decreases in the viability of Leydig tumor cell lines, which coincided with apoptosis and inhibition of proliferation and ligand-stimulated phosphorylation of c-kit and PDGFRs. Mice bearing s.c. allografts of a Leydig tumor cell line treated with imatinib p.o., had an almost complete inhibition of tumor growth, less tumor cell proliferation, increased apoptosis, and a lesser amount of tumor-associated mean vessel density compared with controls. No drug-resistant tumors appeared during imatinib treatment but tumors regrew after drug withdrawal. Human Leydig cell tumors showed an intense expression of the phosphorylated form of c-kit and a less intense expression of phosphorylated PDGFRs. No activating mutations in common regions of mutation of the c-kit gene were found. Our studies suggest that Leydig cell tumors might be a potential target for imatinib therapy.

  4. Lymphocyte-specific protein tyrosine kinase (Lck) interacts with CR6-interacting factor 1 (CRIF1) in mitochondria to repress oxidative phosphorylation

    International Nuclear Information System (INIS)

    Vahedi, Shahrooz; Chueh, Fu-Yu; Chandran, Bala; Yu, Chao-Lan

    2015-01-01

    Many cancer cells exhibit reduced mitochondrial respiration as part of metabolic reprogramming to support tumor growth. Mitochondrial localization of several protein tyrosine kinases is linked to this characteristic metabolic shift in solid tumors, but remains largely unknown in blood cancer. Lymphocyte-specific protein tyrosine kinase (Lck) is a key T-cell kinase and widely implicated in blood malignancies. The purpose of our study is to determine whether and how Lck contributes to metabolic shift in T-cell leukemia through mitochondrial localization. We compared the human leukemic T-cell line Jurkat with its Lck-deficient derivative Jcam cell line. Differences in mitochondrial respiration were measured by the levels of mitochondrial membrane potential, oxygen consumption, and mitochondrial superoxide. Detailed mitochondrial structure was visualized by transmission electron microscopy. Lck localization was evaluated by subcellular fractionation and confocal microscopy. Proteomic analysis was performed to identify proteins co-precipitated with Lck in leukemic T-cells. Protein interaction was validated by biochemical co-precipitation and confocal microscopy, followed by in situ proximity ligation assay microscopy to confirm close-range (<16 nm) interaction. Jurkat cells have abnormal mitochondrial structure and reduced levels of mitochondrial respiration, which is associated with the presence of mitochondrial Lck and lower levels of mitochondrion-encoded electron transport chain proteins. Proteomics identified CR6-interacting factor 1 (CRIF1) as the novel Lck-interacting protein. Lck association with CRIF1 in Jurkat mitochondria was confirmed biochemically and by microscopy, but did not lead to CRIF1 tyrosine phosphorylation. Consistent with the role of CRIF1 in functional mitoribosome, shRNA-mediated silencing of CRIF1 in Jcam resulted in mitochondrial dysfunction similar to that observed in Jurkat. Reduced interaction between CRIF1 and Tid1, another key component

  5. Gene expression analysis after receptor tyrosine kinase activation reveals new potential melanoma proteins

    International Nuclear Information System (INIS)

    Teutschbein, Janka; Haydn, Johannes M; Samans, Birgit; Krause, Michael; Eilers, Martin; Schartl, Manfred; Meierjohann, Svenja

    2010-01-01

    Melanoma is an aggressive tumor with increasing incidence. To develop accurate prognostic markers and targeted therapies, changes leading to malignant transformation of melanocytes need to be understood. In the Xiphophorus melanoma model system, a mutated version of the EGF receptor Xmrk (Xiphophorus melanoma receptor kinase) triggers melanomagenesis. Cellular events downstream of Xmrk, such as the activation of Akt, Ras, B-Raf or Stat5, were also shown to play a role in human melanomagenesis. This makes the elucidation of Xmrk downstream targets a useful method for identifying processes involved in melanoma formation. Here, we analyzed Xmrk-induced gene expression using a microarray approach. Several highly expressed genes were confirmed by realtime PCR, and pathways responsible for their induction were revealed using small molecule inhibitors. The expression of these genes was also monitored in human melanoma cell lines, and the target gene FOSL1 was knocked down by siRNA. Proliferation and migration of siRNA-treated melanoma cell lines were then investigated. Genes with the strongest upregulation after receptor activation were FOS-like antigen 1 (Fosl1), early growth response 1 (Egr1), osteopontin (Opn), insulin-like growth factor binding protein 3 (Igfbp3), dual-specificity phosphatase 4 (Dusp4), and tumor-associated antigen L6 (Taal6). Interestingly, most genes were blocked in presence of a SRC kinase inhibitor. Importantly, we found that FOSL1, OPN, IGFBP3, DUSP4, and TAAL6 also exhibited increased expression levels in human melanoma cell lines compared to human melanocytes. Knockdown of FOSL1 in human melanoma cell lines reduced their proliferation and migration. Altogether, the data show that the receptor tyrosine kinase Xmrk is a useful tool in the identification of target genes that are commonly expressed in Xmrk-transgenic melanocytes and melanoma cell lines. The identified molecules constitute new possible molecular players in melanoma development

  6. Tyrosine kinase domain mutations of EGFR gene in head and neck squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Vatte C

    2017-03-01

    Full Text Available Chittibabu Vatte,1 Ali M Al Amri,2 Cyril Cyrus,1 Shahanas Chathoth,1 Sadananda Acharya,3 Tariq Mohammad Hashim,4 Zhara Al Ali,2 Saleh Tawfeeq Alshreadah,2 Ahmed Alsayyah,4 Amein K Al-Ali5 1Department of Genetic Research, Institute for Research and Medical Consultation, University of Dammam, Dammam, 2Department of Internal Medicine, King Fahd Hospital of the University, University of Dammam, Al-Khobar, 3Department of Stemcell Research, Institute for Research and Medical Consultation, 4Department of Pathology, King Fahd Hospital of the University, University of Dammam, Al-Khobar, 5Department of Biochemistry, College of Medicine, University of Dammam, Dammam, Kingdom of Saudi Arabia Background: Epidermal growth factor receptor (EGFR is a commonly altered gene that is identified in various cancers, including head and neck squamous cell carcinoma (HNSCC. Therefore, EGFR is a promising molecular marker targeted by monoclonal antibodies and small molecule inhibitors targeting the tyrosine kinase (TK domain. Objective: The objective of this study was to investigate the spectrum of mutations in exons 18, 19, 20, and 21 of the EGFR gene in HNSCC patients. Materials and methods: This retrospective study included 47 confirmed HNSCC cases. Mutations in the TK domain, exons 18, 19, 20, and 21 of the EGFR gene, were detected by Scorpion® chemistry and ARMS® technologies on Rotor-Gene Q real-time polymerase chain reaction.Results: The tumors exhibited EGFR-TK domain mutations in 57% of cases. Four cases of T790M mutations were reported for the first time among HNSCC patients. Out of the total mutations, L861Q (exon 21, exon 20 insertions and deletions of exon 19 accounted for the majority of mutations (21%, 19%, and 17%, respectively. EGFR mutation status was correlated with the higher grade (P=0.026 and advanced stage (P=0.034 of HNSCC tumors.Conclusion: Higher frequency of EGFR-TK domain mutations together with the presence of the T790M mutation suggests

  7. Gene expression analysis after receptor tyrosine kinase activation reveals new potential melanoma proteins

    Directory of Open Access Journals (Sweden)

    Krause Michael

    2010-07-01

    Full Text Available Abstract Background Melanoma is an aggressive tumor with increasing incidence. To develop accurate prognostic markers and targeted therapies, changes leading to malignant transformation of melanocytes need to be understood. In the Xiphophorus melanoma model system, a mutated version of the EGF receptor Xmrk (Xiphophorus melanoma receptor kinase triggers melanomagenesis. Cellular events downstream of Xmrk, such as the activation of Akt, Ras, B-Raf or Stat5, were also shown to play a role in human melanomagenesis. This makes the elucidation of Xmrk downstream targets a useful method for identifying processes involved in melanoma formation. Methods Here, we analyzed Xmrk-induced gene expression using a microarray approach. Several highly expressed genes were confirmed by realtime PCR, and pathways responsible for their induction were revealed using small molecule inhibitors. The expression of these genes was also monitored in human melanoma cell lines, and the target gene FOSL1 was knocked down by siRNA. Proliferation and migration of siRNA-treated melanoma cell lines were then investigated. Results Genes with the strongest upregulation after receptor activation were FOS-like antigen 1 (Fosl1, early growth response 1 (Egr1, osteopontin (Opn, insulin-like growth factor binding protein 3 (Igfbp3, dual-specificity phosphatase 4 (Dusp4, and tumor-associated antigen L6 (Taal6. Interestingly, most genes were blocked in presence of a SRC kinase inhibitor. Importantly, we found that FOSL1, OPN, IGFBP3, DUSP4, and TAAL6 also exhibited increased expression levels in human melanoma cell lines compared to human melanocytes. Knockdown of FOSL1 in human melanoma cell lines reduced their proliferation and migration. Conclusion Altogether, the data show that the receptor tyrosine kinase Xmrk is a useful tool in the identification of target genes that are commonly expressed in Xmrk-transgenic melanocytes and melanoma cell lines. The identified molecules constitute

  8. Tumor macroenvironment and metabolism.

    Science.gov (United States)

    Al-Zoughbi, Wael; Al-Zhoughbi, Wael; Huang, Jianfeng; Paramasivan, Ganapathy S; Till, Holger; Pichler, Martin; Guertl-Lackner, Barbara; Hoefler, Gerald

    2014-04-01

    In this review we introduce the concept of the tumor macroenvironment and explore it in the context of metabolism. Tumor cells interact with the tumor microenvironment including immune cells. Blood and lymph vessels are the critical components that deliver nutrients to the tumor and also connect the tumor to the macroenvironment. Several factors are then released from the tumor itself but potentially also from the tumor microenvironment, influencing the metabolism of distant tissues and organs. Amino acids, and distinct lipid and lipoprotein species can be essential for further tumor growth. The role of glucose in tumor metabolism has been studied extensively. Cancer-associated cachexia is the most important tumor-associated systemic syndrome and not only affects the quality of life of patients with various malignancies but is estimated to be the cause of death in 15%-20% of all cancer patients. On the other hand, systemic metabolic diseases such as obesity and diabetes are known to influence tumor development. Furthermore, the clinical implications of the tumor macroenvironment are explored in the context of the patient's outcome with special consideration for pediatric tumors. Finally, ways to target the tumor macroenvironment that will provide new approaches for therapeutic concepts are described. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Lattice modes of the chirally pure and racemic phases of tyrosine crystals

    Energy Technology Data Exchange (ETDEWEB)

    Belyanchikov, M. A. [Moscow Institute of Physics and Technology (Russian Federation); Gorelik, V. S., E-mail: gorelik@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Gorshunov, B. P. [Moscow Institute of Physics and Technology (Russian Federation); Pyatyshev, A. Yu., E-mail: jb-valensia@mail.ru [Bauman Moscow State Technical University (Russian Federation)

    2017-01-15

    High-Q librational modes have been found to be present in the infrared absorption and Raman spectra of chirally pure L-tyrosine. Such modes can serve as terahertz radiation detectors and generators in chirally pure biostructures.

  10. Probing the Tyrosine Phosphorylation State in Breast Cancer by Src Homology 2 Domain Binding

    National Research Council Canada - National Science Library

    Mayer, Bruce J

    2006-01-01

    .... The overall goal of this project was to develop a novel molecular diagnostic method, termed SH2 profiling, that can classify cell samples based on their global protein tyrosine phosphorylation state...

  11. Structural basis for the regulation mechanism of the tyrosine kinase CapB from Staphylococcus aureus

    DEFF Research Database (Denmark)

    Olivares-Illana, Vanesa; Meyer, Philippe; Bechet, Emmanuelle

    2008-01-01

    Bacteria were thought to be devoid of tyrosine-phosphorylating enzymes. However, several tyrosine kinases without similarity to their eukaryotic counterparts have recently been identified in bacteria. They are involved in many physiological processes, but their accurate functions remain poorly...... understood due to slow progress in their structural characterization. They have been best characterized as copolymerases involved in the synthesis and export of extracellular polysaccharides. These compounds play critical roles in the virulence of pathogenic bacteria, and bacterial tyrosine kinases can thus...... be considered as potential therapeutic targets. Here, we present the crystal structures of the phosphorylated and unphosphorylated states of the tyrosine kinase CapB from the human pathogen Staphylococcus aureus together with the activator domain of its cognate transmembrane modulator CapA. This first high...

  12. Probing the Tyrosine Phosphorylation State in Breast Cancer by Src Homology 2 Domain Binding

    National Research Council Canada - National Science Library

    Mayer, Bruce

    2004-01-01

    .... The overall goal of this project is to develop a novel molecular diagnostic method, termed SH2 profiling, that can classify cell samples based on their global protein tyrosine phosphorylation state...

  13. Contribution of Protein Tyrosine Phosphateses to the Ontogeny and Progression of Chronic Myeloid Leukemia

    National Research Council Canada - National Science Library

    Tremblay, Michel

    2006-01-01

    ...). Inappropriate STAT1 and STAT5 activation have been observed in the Philadelphia chromosome-positive CML cell lines K562 and BV17, yet low levels of JAK1 tyrosine phosphorylation were observed...

  14. The presence of tyrosine glucoside in the haemolymph of lepidopteran insects

    International Nuclear Information System (INIS)

    Ishizaki, Yumi; Umebachi, Yoshishige

    1980-01-01

    A ninhydrin-positive substance from the haemolymph of Papilio xuthus was purified and identified as β-glucosyl-O-tyrosine by (1) color reactions, (2) incorporation of 14 C-tyrosine, (3) identification and estimation of hydrolysis products, (4) α- and β-glucosidase tests, and (5) UV-spectrum. The concentration of the tyrosine glucoside in haemolymph reaches a maximum at the prepupal stage, then decreases, and is on a low level during the middle stage of pupa. At the late pupal stage, the level again rises and is kept high before emergence. After emergence, it rapidly decreases. The same tyrosine glucoside has proved to be also present in the haemolymph of twelve other species of Lepidoptera. (author)

  15. The metabolism of C14-labeled phenylalanine and tyrosine in malaria-infected Culex-females

    International Nuclear Information System (INIS)

    Maier, W.A.; Nassif-Makki, H.

    1975-01-01

    Culex females are fed on C14-phenylalanine or C14-tyrosine in sugar solution. Autoradiographic studies on homogenated females 1 or 4 days after feeding, show that the labeled amino acids are metabolized on the first day and are not detectable on the fourth day. After increase of the amino acid concentration by saturation of the sugar solution with the unlabeled amino acid, the labeled acid and its metabolites are visible over a longer period of time. Phenylalanine is metabolized to tyrosine and at least four other substances. Radioactivity on the starting point of the chromatogram can be interpreted as incorporation of tyrosine into proteins. After infection with Plasmodium cathemerium, and feeding of C14-phenylalanine C14-tyrosine is demonstrable over a longer period. (orig.) [de

  16. Tyrosine phosphorylation of Eps15 is required for ligand-regulated, but not constitutive, endocytosis

    DEFF Research Database (Denmark)

    Confalonieri, S; Salcini, A E; Puri, C

    2000-01-01

    for endocytosis of the epidermal growth factor receptor (EGFR), the prototypical ligand-inducible receptor, but not of the transferrin receptor (TfR), the prototypical constitutively internalized receptor. Eps15, an endocytic protein that is tyrosine phosphorylated by EGFR, is a candidate for such a function....... Here, we show that tyrosine phosphorylation of Eps15 is necessary for internalization of the EGFR, but not of the TfR. We mapped Tyr 850 as the major in vivo tyrosine phosphorylation site of Eps15. A phosphorylation-negative mutant of Eps15 acted as a dominant negative on the internalization...... of the EGFR, but not of the TfR. A phosphopeptide, corresponding to the phosphorylated sequence of Eps15, inhibited EGFR endocytosis, suggesting that phosphotyrosine in Eps15 serves as a docking site for a phosphotyrosine binding protein. Thus, tyrosine phosphorylation of Eps15 represents the first molecular...

  17. Enzymatic-induced upconversion photoinduced electron transfer for sensing tyrosine in human serum.

    Science.gov (United States)

    Wu, Qiongqiong; Fang, Aijin; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo

    2016-03-15

    This paper reports a novel nanosensor for tyrosine based on photoinduced electron-transfer (PET) between NaYF4:Yb, Tm upconversion nanoparticles (UCNPs) and melanin-like polymers. Melanin-like films were obtained from catalytic oxidation of tyrosine by tyrosinase, and deposited on the surface of UCNPs, and then quenched the fluorescence of UCNPs. Under the optimized conditions, the fluorescence quenching of UCNPs showed a good linear response to tyrosine concentration in the range of 0.8-100 μΜ with a detection limit of 1.1 μΜ. Meanwhile, it showed good sensitivity, stability and has been successfully applied to the detection of tyrosine in human serum. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Conformational Structure of Tyrosine, Tyrosyl-Glycine, and Tyrosyl-Glycyl-Glycine by Double Resonance Spectroscopy

    Science.gov (United States)

    Abo-Riziq, Ali; Grace, Louis; Crews, Bridgit; Callahan, Michael P,; van Mourik, Tanja; de Vries, Mattanjah S,

    2011-01-01

    We investigated the variation in conformation for the amino acid tyrosine (Y), alone and in the small peptides tyrosine-glycine (YC) and tyrosine-glycine-glycine (YGG), in the gas phase by using UV-UV and IR-UV double resonance spectroscopy and density functional theory calculations. For tyrosine we found seven different conformations, for YG we found four different conformations, and for YGG we found three different conformations. As the peptides get larger, we observe fewer stable conformers, despite the increasing complexity and number of degrees of freedom. We find structural trends similar to those in phenylalanine-glycine glycine (FGG) and tryptophan-glycine-glycine (WGG)j however) the effect of dispersive forces in FGG for stabilizing a folded structure is replaced by that of hydrogen bonding in YGG.

  19. Determination of Phenylalanine and Tyrosine by High Performance Liquid Chromatography-Tandem Mass Spectrometry.

    Science.gov (United States)

    Peat, Judy; Garg, Uttam

    2016-01-01

    Hyperphenylalaninemia/phenylketonuria (PKU) is one of the most common inborn errors of amino acid metabolism affecting about 1:15,000 infants in the United States. PKU is an autosomal recessive disorder that if untreated results in mental retardation. The most common cause of PKU is deficiency of the enzyme phenylalanine hydroxylase that converts phenylalanine to tyrosine. Tyrosine deficiency results in impaired synthesis of catecholamines and thyroxine. Less commonly, it can result from defects in the synthesis or regeneration of tetrahydrobiopterin (BH4), an essential cofactor for the enzyme phenylalanine hydroxylase. Increased phenylalanine and decreased tyrosine in blood are used in the diagnosis and follow-up of patients with PKU. LC/MS/MS method is described for the quantification of phenylalanine and tyrosine.

  20. Low Expression of DYRK2 (Dual Specificity Tyrosine Phosphorylation Regulated Kinase 2 Correlates with Poor Prognosis in Colorectal Cancer.

    Directory of Open Access Journals (Sweden)

    Haiyan Yan

    Full Text Available Dual-specificity tyrosine-phosphorylation-regulated kinase 2 (DYRK2 is a member of dual-specificity kinase family, which could phosphorylate both Ser/Thr and Tyr substrates. The role of DYRK2 in human cancer remains controversial. For example, overexpression of DYRK2 predicts a better survival in human non-small cell lung cancer. In contrast, amplification of DYRK2 gene occurs in esophageal/lung adenocarcinoma, implying the role of DYRK2 as a potential oncogene. However, its clinical role in colorectal cancer (CRC has not been explored. In this study, we analyzed the expression of DYRK2 from Oncomine database and found that DYRK2 level is lower in primary or metastatic CRC compared to adjacent normal colon tissue or non-metastatic CRC, respectively, in 6 colorectal carcinoma data sets. The correlation between DYRK2 expression and clinical outcome in 181 CRC patients was also investigated by real-time PCR and IHC. DYRK2 expression was significantly down-regulated in colorectal cancer tissues compared with adjacent non-tumorous tissues. Functional studies confirmed that DYRK2 inhibited cell invasion and migration in both HCT116 and SW480 cells and functioned as a tumor suppressor in CRC cells. Furthermore, the lower DYRK2 levels were correlated with tumor sites (P = 0.023, advanced clinical stages (P = 0.006 and shorter survival in the advanced clinical stages. Univariate and multivariate analyses indicated that DYRK2 expression was an independent prognostic factor (P < 0.001. Taking all, we concluded that DYRK2 a novel prognostic biomarker of human colorectal cancer.

  1. Regulation of tyrosine phosphatases in the adventitia during vascular remodelling

    International Nuclear Information System (INIS)

    Micke, Patrick; Hackbusch, Daniel; Mercan, Sibel; Stawowy, Philipp; Tsuprykov, Oleg; Unger, Thomas; Ostman, Arne; Kappert, Kai

    2009-01-01

    Protein tyrosine phosphatases (PTPs) are regulators of growth factor signalling in vascular remodelling. The aim of this study was to evaluate PTP expression in the context of PDGF-signalling in the adventitia after angioplasty. Utilising a rat carotid artery model, the adventitial layers of injured and non-injured vessels were laser microdissected. The mRNA expression of the PDGF β-receptor, the ligands PDGF-A/B/C/D and the receptor-antagonising PTPs (DEP-1, TC-PTP, SHP-2, PTP1B) were determined and correlated to vascular morphometrics, proliferation markers and PDGF β-receptor phosphorylation. The levels of the PDGF β-receptor, PDGF-C and PDGF-D were upregulated concurrently with the antagonising PTPs DEP-1 and TC-PTP at day 8, and normalised at day 14 after vessel injury. Although the proliferation parameters were time-dependently altered in the adventitial layer, the phosphorylation of the PDGF β-receptor remained unchanged. The expression dynamics of specific PTPs indicate a regulatory role of PDGF-signalling also in the adventitia during vascular remodelling.

  2. Tyrosine aminotransferase from Leishmania infantum: A new drug target candidate

    Directory of Open Access Journals (Sweden)

    Miguel Angel Moreno

    2014-12-01

    Full Text Available Leishmania infantum is the etiological agent of zoonotic visceral leishmaniasis in the Mediterranean basin. The disease is fatal without treatment, which has been based on antimonial pentavalents for more than 60 years. Due to resistances, relapses and toxicity to current treatment, the development of new drugs is required. The structure of the L. infantum tyrosine aminotransferase (LiTAT has been recently solved showing important differences with the mammalian orthologue. The characterization of LiTAT is reported herein. This enzyme is cytoplasmic and is over-expressed in the more infective stages and nitric oxide resistant parasites. Unlike the mammalian TAT, LiTAT is able to use ketomethiobutyrate as co-substrate. The pharmacophore model of LiTAT with this specific co-substrate is described herein. This may allow the identification of new inhibitors present in the databases. All the data obtained support that LiTAT is a good target candidate for the development of new anti-leishmanial drugs.

  3. Bruton's Tyrosine Kinase: An Emerging Key Player in Innate Immunity.

    Science.gov (United States)

    Weber, Alexander N R; Bittner, Zsofia; Liu, Xiao; Dang, Truong-Minh; Radsak, Markus Philipp; Brunner, Cornelia

    2017-01-01

    Bruton's tyrosine kinase (BTK) was initially discovered as a critical mediator of B cell receptor signaling in the development and functioning of adaptive immunity. Growing evidence also suggests multiple roles for BTK in mononuclear cells of the innate immune system, especially in dendritic cells and macrophages. For example, BTK has been shown to function in Toll-like receptor-mediated recognition of infectious agents, cellular maturation and recruitment processes, and Fc receptor signaling. Most recently, BTK was additionally identified as a direct regulator of a key innate inflammatory machinery, the NLRP3 inflammasome. BTK has thus attracted interest not only for gaining a more thorough basic understanding of the human innate immune system but also as a target to therapeutically modulate innate immunity. We here review the latest developments on the role of BTK in mononuclear innate immune cells in mouse versus man, with specific emphasis on the sensing of infectious agents and the induction of inflammation. Therapeutic implications for modulating innate immunity and critical open questions are also discussed.

  4. Neratinib, A Novel HER2-Targeted Tyrosine Kinase Inhibitor.

    Science.gov (United States)

    Tiwari, Shruti Rakesh; Mishra, Prasun; Abraham, Jame

    2016-10-01

    HER2 gene amplification and receptor overexpression is identified in 20% to 25% of human breast cancers. Use of targeted therapy for HER2-amplified breast cancer has led to improvements in disease-free and overall survival in this subset of patients. Neratinib is an oral pan HER inhibitor, that irreversibly inhibits the tyrosine kinase activity of epidermal growth factor receptor (EGFR or HER1), HER2, and HER4, which leads to reduced phosphorylation and activation of downstream signaling pathways. Neratinib is currently being tested in a number of clinical trials for its safety and efficacy in lung cancer, and colorectal, bladder, and breast cancers. In this review we discuss the available phase I, II, and III data for use of neratinib in the metastatic, adjuvant, neoadjuvant, and extended adjuvant settings along with the ongoing clinical trials of neratinib in breast cancer. We also elaborate on the side effect profile of this relatively new drug and provide guidelines for its use in clinical practice. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Identification of a variant form of tyrosine phosphatase LYP

    Directory of Open Access Journals (Sweden)

    Ho Wanting T

    2010-11-01

    Full Text Available Abstract Background Protein tyrosine phosphatases (PTPs are important cell signaling regulators with major pathological implications. LYP (also known as PTPN22 is an intracellular enzyme initially found to be predominately expressed in lymphocytes. Importantly, an allelic R620W variant of LYP is strongly associated with multiple autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes, and autoimmune thyroid disease. Results In this study, we isolated a novel isoform of LYP designated LYP3. LYP3 differs from LYP1, the known isoform of LYP, in that it lacks a 28 amino acid segment right after the R620W site embedded in a proline-rich protein-protein interaction motif. Genomic sequence analysis revealed that LYP3 resulted from alternative splicing of the LYP gene located on chromosome 1p 13.3-13.1. Reverse transcription PCR analyses of 48 human tissues demonstrated that both LYP1 and LYP3 are predominantly expressed in primary and secondary lymphoid tissues but the relative expression levels of the two isoforms varies in different human tissues and individuals. Conclusions We thus identified a new variant form of LYP and conducted a comprehensive analysis of LYP tissue expressions. Considering the pathogenesis of LYP R620W, we believe that the expression of LYP3 may have an important role in regulating activity and function of LYP and may be implicated in autoimmune diseases.

  6. Tyrosine Phosphorylation in Toll-Like Receptor Signaling

    Science.gov (United States)

    Chattopadhyay, Saurabh; Sen, Ganes C.

    2014-01-01

    There is a wealth of knowledge about how different Ser/Thr protein kinases participate in Toll-like receptor (TLR) signaling. In many cases, we know the identities of the Ser/Thr residues of various components of the TLR-signaling pathways that are phosphorylated, the functional consequences of the phosphorylation and the responsible protein kinases. In contrast, the analysis of Tyr-phosphorylation of TLRs and their signaling proteins is currently incomplete, because several existing analyses are not systematic or they do not rely on robust experimental data. Nevertheless, it is clear that many TLRs require, for signaling, ligand-dependent phosphorylation of specific Tyr residues in their cytoplasmic domains; the list includes TLR2, TLR3, TLR4, TLR5, TLR8 and TLR9. In this article, we discuss the current status of knowledge on the effect of Tyr-phosphorylation of TLRs and their signaling proteins on their biochemical and biological functions, the possible identities of the relevant protein tyrosine kinases (PTKs) and the nature of regulations of PTK-mediated activation of TLR signaling pathways. PMID:25022196

  7. Regulation of Endothelial Adherens Junctions by Tyrosine Phosphorylation

    Science.gov (United States)

    Adam, Alejandro Pablo

    2015-01-01

    Endothelial cells form a semipermeable, regulated barrier that limits the passage of fluid, small molecules, and leukocytes between the bloodstream and the surrounding tissues. The adherens junction, a major mechanism of intercellular adhesion, is comprised of transmembrane cadherins forming homotypic interactions between adjacent cells and associated cytoplasmic catenins linking the cadherins to the cytoskeleton. Inflammatory conditions promote the disassembly of the adherens junction and a loss of intercellular adhesion, creating openings or gaps in the endothelium through which small molecules diffuse and leukocytes transmigrate. Tyrosine kinase signaling has emerged as a central regulator of the inflammatory response, partly through direct phosphorylation and dephosphorylation of the adherens junction components. This review discusses the findings that support and those that argue against a direct effect of cadherin and catenin phosphorylation in the disassembly of the adherens junction. Recent findings indicate a complex interaction between kinases, phosphatases, and the adherens junction components that allow a fine regulation of the endothelial permeability to small molecules, leukocyte migration, and barrier resealing. PMID:26556953

  8. Metazoan-like signaling in a unicellular receptor tyrosine kinase

    Directory of Open Access Journals (Sweden)

    Schultheiss Kira P

    2013-02-01

    Full Text Available Abstract Background Receptor tyrosine kinases (RTKs are crucial components of signal transduction systems in multicellular animals. Surprisingly, numerous RTKs have been identified in the genomes of unicellular choanoflagellates and other protists. Here, we report the first biochemical study of a unicellular RTK, namely RTKB2 from Monosiga brevicollis. Results We cloned, expressed, and purified the RTKB2 kinase, and showed that it is enzymatically active. The activity of RTKB2 is controlled by autophosphorylation, as in metazoan RTKs. RTKB2 possesses six copies of a unique domain (designated RM2 in its C-terminal tail. An isolated RM2 domain (or a synthetic peptide derived from the RM2 sequence served as a substrate for RTKB2 kinase. When phosphorylated, the RM2 domain bound to the Src homology 2 domain of MbSrc1 from M. brevicollis. NMR structural studies of the RM2 domain indicated that it is disordered in solution. Conclusions Our results are consistent with a model in which RTKB2 activation stimulates receptor autophosphorylation within the RM2 domains. This leads to recruitment of Src-like kinases (and potentially other M. brevicollis proteins and further phosphorylation, which may serve to increase or dampen downstream signals. Thus, crucial features of signal transduction circuitry were established prior to the evolution of metazoans from their unicellular ancestors.

  9. Raman spectra of iodine-derivatives of tyrosine and thyronine

    International Nuclear Information System (INIS)

    Loh, E.

    1974-01-01

    The Raman spectra of the iodine derivatives of tyrosine and thyronine in the form of compressed crystalline powders have been excited by 4880 A Argon laser on rotating samples at room temperature. The strong peaks in the low-frequency, -1 , region may be described by analogous vibrations of benzene as: I. the C-I out-of-plane bendings of E 1 sub(g) mode from 100 cm -1 to 180 cm -1 ; II. the C-I in-plane bendings of E 2 sub(g) and A 2 sub(g) mode from 190 cm -1 to 330 cm -1 and III. the C-I stretchings of E 2 sub(g) mode from 330 cm -1 to 400 cm -1 . In 3,3',5-triiodo-derivatives, the number of both the C-I in-plane bendings and C-I stretchings on the inner phenyl ring approximately doubles from thet of diiodo-derivatives. This doubling in number of peaks is presumably due to the modulation caused by the libration, which is associated with the C-I out-of-plane bending at position 3', of the outer phenyl ring

  10. EGFR mutation is a better predictor of response to tyrosine kinase inhibitors in non-small cell lung carcinoma than FISH, CISH, and immunohistochemistry.

    Science.gov (United States)

    Sholl, Lynette M; Xiao, Yun; Joshi, Victoria; Yeap, Beow Y; Cioffredi, Leigh-Anne; Jackman, David M; Lee, Charles; Jänne, Pasi A; Lindeman, Neal I

    2010-06-01

    About 10% of patients with non-small cell lung carcinoma (NSCLC) respond to epidermal growth factor receptor (EGFR)-targeted tyrosine kinase inhibitors (TKIs). More than 75% of "responders" have activating mutations in EGFR. However, mutation analysis is not widely available, and proposed alternatives (in situ hybridization and immunohistochemical analysis) have shown inconsistent associations with outcome. Fluorescence in situ hybridization (FISH), chromogenic in situ hybridization (CISH), immunohistochemical analysis, and DNA sequencing were compared in this study of 40 NSCLC samples from TKI-treated patients. Response rates were 12 of 19 in EGFR-mutant vs 1 of 20 EGFR wild-type tumors (P = .0001), 7 of 19 FISH+ vs 4 of 17 FISH- tumors (not significant [NS]), 5 of 16 CISH+ vs 6 of 21 CISH- tumors (NS), and 3 of 9 immunohistochemically positive vs 7 of 22 immunohistochemically negative tumors (NS). EGFR mutation was associated with improved progression-free survival (P = .0004). Increased copy number (FISH or CISH) and protein expression (immunohistochemical) did not independently predict outcome. Thus, EGFR sequence analysis was the only method useful for predicting response and progression-free survival following TKI therapy in NSCLC.

  11. Monitoring of Radiochemotherapy in Patients with Glioblastoma Using O-(2-[18F]Fluoroethyl-L-Tyrosine Positron Emission Tomography: Is Dynamic Imaging Helpful?

    Directory of Open Access Journals (Sweden)

    Marc D. Piroth

    2013-09-01

    Full Text Available Monitoring of radiochemotherapy (RCX in patients with glioblastoma is difficult because unspecific alterations in magnetic resonance imaging with contrast enhancement can mimic tumor progression. Changes in tumor to brain ratios (TBRs in positron emission tomography (PET using O-(2-[18F]fluoroethyl-L-tyrosine (18F-FET after RCX with temozolomide of patients with glioblastoma have been shown to be valuable parameters to predict survival. The kinetic behavior of 18F-FET in the tumors is another promising parameter to analyze tumor metabolism. In this study, we investigated the predictive value of dynamic 18F-FET PET during RCX of glioblastoma. Time-activity curves (TACs of 18F-FET uptake of 25 patients with glioblastoma were evaluated after surgery (FET-1, early (7–10 days after completion of RCX (FET-2, and 6 to 8 weeks later (FET-3. Changes in the time to peak (TTP and the slope of the TAC (10–50 minutes postinjection were analyzed and related to survival. Changes in kinetic parameters of 18F-FET uptake after RCX showed no relationship with survival time. In contrast, the high predictive value of changes of TBR to predict survival was confirmed. We conclude that dynamic 18F-FET PET does not provide additional prognostic information during RCX. Static 18F-FET PET imaging (20–40 minutes postinjection appears to be sufficient for this purpose and reduces costs.

  12. Imatinib and gastrointestinal stromal tumor (GIST: a selective targeted therapy Imatinib y tumor del estroma gastrointestinal (GIST: un tratamiento selectivo frente a una diana molecular

    Directory of Open Access Journals (Sweden)

    A. Fernández

    2004-10-01

    Full Text Available Gastrointestinal stromal tumors are the most frequent mesenchymal tumors in the gastrointestinal tract. They originate from the interstitial cells of Cajal and are characterized by an anomalous receptor for a growth factor with tyrosine-kinase activity (c-kit. This anomaly causes a permanent activation of the receptor and uncontrolled cell growth. These tumors show a poor response to traditional chemotherapy drugs, and are thus associated with low survival in cases of advanced disease. Imatinib, a tyrosine kinase inhibitor, is an example of selective targeted oncologic therapy that induces improved survival in these patients. We discuss two cases of metastatic gastrointestinal stromal tumors with a good response to imatinib, and also review the pathophysiology and treatment-related outcome of this type of tumors. We include results from clinical phase-III studies.Los tumores del estroma gastrointestinal son los tumores mesenquimales más frecuentes del tracto digestivo y se originan de las células intersticiales de Cajal. Se caracterizan por presentar un receptor para el factor de crecimiento con actividad tirosin kinasa (c-kit anómalo que condiciona su activación permanente y un crecimiento celular incontrolado. Tienen una baja supervivencia en casos de enfermedad avanzada, con escasa respuesta a los agentes quimioterápicos tradicionales. El imatinib es un fármaco inhibidor de la tirosín kinasa y un ejemplo de terapia oncológica selectiva que condiciona un importante aumento en la supervivencia de estos pacientes. Se presentan 2 casos de enfermedad metastásica con buena respuesta a imatinib, así como una revisión sobre la fisiopatología y evolución en el tratamiento de este tipo de tumores, incluyendo resultados de estudios en fase III.

  13. Effects of tyrosine kinase and phosphatase inhibitors on mitosis progression in synchronized tobacco BY-2 cells.

    Science.gov (United States)

    Sheremet, Ya A; Yemets, A I; Azmi, A; Vissenberg, K; Verbelen, J P; Blume, Ya B

    2012-01-01

    To test whether reversible tubulin phosphorylation plays any role in the process of plant mitosis the effects of inhibitors of tyrosine kinases, herbimycin A, genistein and tyrphostin AG 18, and of an inhibitor of tyrosine phosphatases, sodium orthovanadate, on microtubule organization and mitosis progression in a synchronized BY-2 culture has been investigated. It was found that treatment with inhibitors of tyrosine kinases of BY-2 cells at the G2/M transition did not lead to visible disturbances of mitotic microtubule structures, while it did reduce the frequency of their appearance. We assume that a decreased tyrosine phosphorylation level could alter the microtubule dynamic instability parameters during interphase/prophase transition. All types of tyrosine kinase inhibitors used caused a prophase delay: herbimycin A and genistein for 2 h, and tyrphostin AG18 for 1 h. Thereafter the peak of mitosis was displaced for 1 h by herbimycin A or genistein exposure, but after tyrphostin AG18 treatment the timing of the mitosis-peak was comparable to that in control cells. Enhancement of tyrosine phosphorylation induced by the tyrosine phosphatase inhibitor resulted in the opposite effect on BY-2 mitosis transition. Culture treatment with sodium orthovanadate during 1 h resulted in an accelerated start of the prophase and did not lead to the alteration in time of the mitotic index peak formation, as compared to control cells. We suppose that the reversible tyrosine phosphorylation can be involved in the regulation of interphase to M phase transition possibly through regulation of microtubule dynamics in plant cells.

  14. Sch proteins are localized on endoplasmic reticulum membranes and are redistributed after tyrosine kinase receptor activation

    DEFF Research Database (Denmark)

    Lotti, L V; Lanfrancone, L; Migliaccio, E

    1996-01-01

    area of the cell and mostly associated with the cytosolic side of rough endoplasmic reticulum membranes. Upon epidermal growth factor treatment and receptor tyrosine kinase activation, the immunolabeling became peripheral and was found to be associated with the cytosolic surface of the plasma membrane....... The rough endoplasmic reticulum localization of Shc proteins in unstimulated cells and their massive recruitment to the plasma membrane, endocytic structures, and peripheral cytosol following receptor tyrosine kinase activation could account for multiple putative functions of the adaptor protein....

  15. Tyrosine hydroxylase polymorphism (C-824T) and hypertension: a population-based study

    DEFF Research Database (Denmark)

    Nielsen, Søren J; Jeppesen, Jørgen Lykke; Torp-Pedersen, Christian

    2010-01-01

    Sympathetic nervous system (SNS) overactivity is present in a large proportion of the hypertensive population and precedes the development of established hypertension. Variations in the proximal promoter of the tyrosine hydroxylase (TH) gene have been shown to influence biochemical and physiologi......Sympathetic nervous system (SNS) overactivity is present in a large proportion of the hypertensive population and precedes the development of established hypertension. Variations in the proximal promoter of the tyrosine hydroxylase (TH) gene have been shown to influence biochemical...

  16. Bronchial carcinoid tumors: A rare malignant tumor

    African Journals Online (AJOL)

    2015-02-03

    Feb 3, 2015 ... Nigerian Journal of Clinical Practice • Sep-Oct 2015 • Vol 18 • Issue 5. Abstract. Bronchial carcinoid tumors (BCTs) are an uncommon group of lung tumors. They commonly affect the young adults and the middle aged, the same age group affected by other more common chronic lung conditions such as ...

  17. Structural basis for the regulation mechanism of the tyrosine kinase CapB from Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Vanesa Olivares-Illana

    2008-06-01

    Full Text Available Bacteria were thought to be devoid of tyrosine-phosphorylating enzymes. However, several tyrosine kinases without similarity to their eukaryotic counterparts have recently been identified in bacteria. They are involved in many physiological processes, but their accurate functions remain poorly understood due to slow progress in their structural characterization. They have been best characterized as copolymerases involved in the synthesis and export of extracellular polysaccharides. These compounds play critical roles in the virulence of pathogenic bacteria, and bacterial tyrosine kinases can thus be considered as potential therapeutic targets. Here, we present the crystal structures of the phosphorylated and unphosphorylated states of the tyrosine kinase CapB from the human pathogen Staphylococcus aureus together with the activator domain of its cognate transmembrane modulator CapA. This first high-resolution structure of a bacterial tyrosine kinase reveals a 230-kDa ring-shaped octamer that dissociates upon intermolecular autophosphorylation. These observations provide a molecular basis for the regulation mechanism of the bacterial tyrosine kinases and give insights into their copolymerase function.

  18. Validation of o-tyrosine as a marker for detection and dosimetry of irradiated chicken meat

    International Nuclear Information System (INIS)

    Chuaqui-Offermanns, N.; McDougall, T.E.; Guerrero, A.M.

    1993-01-01

    The o-tyrosine has been proposed as a marker for postirradiation identification of food that contains protein. In this study, the validity of using o-tyrosine for this purpose has been tested and established. The validation process involved examination of background levels of o-tyrosine in unirradiated chicken, radiation dose yield, postirradiation storage, dose rate, radiation type, temperature during irradiation, and oxygen concentration during irradiation. The o-tyrosine is present in unirradiated chicken meat at variable levels. However, these background levels are low enough that o-tyrosine can serve to determine whether chicken has been irradiated or not at the commercially approved doses (3 kGy). The radiation dose response curve for the formation of o-tyrosine is linear. The apparent yields may vary with the analytical method used; however, it is independent of the dose rate, radiation type, atmosphere, and temperature (above freezing) during irradiation. It is also independent of the storage time and temperature after irradiation. It is concluded that this marker can be used to determine the absorbed dose in chicken meat irradiated with either gamma rays or electrons under normal or modified atmosphere

  19. l-Tyrosine Contained in Dietary Supplement by Chemiluminescence Reaction of an Iron-Phthalocyanine Complex

    Directory of Open Access Journals (Sweden)

    Takao Ohtomo

    2012-01-01

    Full Text Available The chemiluminescence (CL signal immediately appeared when a hydrogen peroxide solution was injected into an iron-phthalocyanine tetrasulfonic acid (Fe-PTS aqueous solution. Moreover, the CL intensity of Fe-PTS decreased by adding L-tyrosine. Based on these results, the determination of trace amounts of L-tyrosine was developed using the quenching-chemiluminescence. The calibration curve of L-tyrosine was obtained in the concentration range of 2.0×10−7 M to 2.0×10−5 M. Moreover, the relative standard deviation (RSD was 1.63 % (=5 for 2.0×10−6 M L-tyrosine, and its detection limits (3σ were 1.81×10−7 M. The spike and recovery experiments for L-tyrosine were performed using a soft drink. Furthermore, the determination of L-tyrosine was applied to supplements containing various kinds of amino acids. Each satisfactory relative recovery was obtained at 98 to 102%.

  20. Tyrosine dephosphorylation regulates AMPAR internalisation in mGluR-LTD.

    Science.gov (United States)

    Gladding, Clare M; Collett, Valerie J; Jia, Zhengping; Bashir, Zafar I; Collingridge, Graham L; Molnár, Elek

    2009-02-01

    Long-term depression (LTD) can be induced at hippocampal CA1 synapses by activation of either NMDA receptors (NMDARs) or group I metabotropic glutamate receptors (mGluRs), using their selective agonists NMDA and (RS)-3,5-dihydroxyphenylglycine (DHPG), respectively. Recent studies revealed that DHPG-LTD is dependent on activation of postsynaptic protein tyrosine phosphatases (PTPs), which transiently dephosphorylate tyrosine residues in AMPA receptors (AMPARs). Here we show that while both endogenous GluR2 and GluR3 AMPAR subunits are tyrosine phosphorylated at basal activity, only GluR2 is dephosphorylated in DHPG-LTD. The tyrosine dephosphorylation of GluR2 does not occur in NMDA-LTD. Conversely, while NMDA-LTD is associated with the dephosphorylation of GluR1-serine-845, DHPG-LTD does not alter the phosphorylation of this site. The increased AMPAR endocytosis in DHPG-LTD is PTP-dependent and involves tyrosine dephosphorylation of cell surface AMPARs. Together, these results indicate that the subunit selective tyrosine dephosphorylation of surface GluR2 regulates AMPAR internalisation in DHPG-LTD but not in NMDA-LTD in the hippocampus.

  1. Oxidation of protein tyrosine or methionine residues: From the amino acid to the peptide

    Energy Technology Data Exchange (ETDEWEB)

    Berges, J [Universite Pierre et Marie Curie, UMR 7616, Laboratoire de Chimie Theorique, 75005 Paris (France); Trouillas, P [EA 4021 Faculte de Pharmacie, 2 Rue du Dr. Marcland, 87025 Limoges Cedex (France); Houee-Levin, C, E-mail: jb@lct.jussieu.fr, E-mail: patrick.trouillas@unilim.fr, E-mail: chantal.houee@u-psud.fr [Universite Paris Sud, UMR 8000, Laboratoire de Chimie Physique, 91405 Orsay (France) (France)

    2011-01-01

    Methionine and tyrosine are competing targets of oxidizing free radicals in peptides or proteins. The first step is the addition of OH radicals either on the sulphur atom of methionine, followed by OH{sup -} elimination, or on the aromatic cycle of tyrosine. The next step can be stabilization of methionine radical cation by a two centre-three electron bond, or intramolecular electron transfer from tyrosine to the methionine radical cation. In this latter case a tyrosine radical is formed, which appears deprotonated. In a first step we have compared the stability of the OH radical adducts on Methionine or on Tyrosine. In agreement with experimental results, the thermodynamical data indicate that the OH adduct on Tyrosine and the radical cation are more stable than those on methionine. In a second step we have investigated the stabilization of the radical cations of Methionine by formation of intramolecular S:X two-center three-electron bond (X=S, N, O). Finally we have compared the spin densities on separated amino acids to that in a radical pentapeptide, methionine enkephalin. One observes a delocalisation of the orbital of the odd electron on the sulfur atom of Met and on the cycle of Tyr. The peptidic chain is also concerned.

  2. Effect of tyrosine administration on duodenal ulcer induced by cysteamine in the rat

    International Nuclear Information System (INIS)

    Oishi, T.; Szabo, S.

    1987-01-01

    Duodenal ulcers were produced by administering cysteamine to rats. Pretreatment with the catecholamine precursor, L-tyrosine (40 mg/100 g i.p. for 5 days), decreased the intensity of duodenal ulcers induced by cysteamine. Equimolar doses of tyrosine methyl ester (51.2 mg/100 g i.p. or s.c.) were equally effective in reducing ulcer intensity. Other amino acids (i.e., alanine, aspartic acid, glutamic acid, glycine, leucine, lysine, tryptophan and valine) did not prevent experimental duodenal ulcers. Coadministration of other large neutral amino acids (e.g., leucine and valine) that compete with tyrosine for uptake into the brain did not inhibit the effect of tyrosine on duodenal ulcers induced by cysteamine. Gastric, duodenal and brain dopamine concentrations were increased 1 hr after the injection of tyrosine methyl ester (25.6 mg/100 g s.c.). These results suggest that the effect of tyrosine on duodenal ulcer induced by cysteamine may be mediated by changes in gastrointestinal dopamine metabolism

  3. Oxidation of protein tyrosine or methionine residues: From the amino acid to the peptide

    International Nuclear Information System (INIS)

    Berges, J; Trouillas, P; Houee-Levin, C

    2011-01-01

    Methionine and tyrosine are competing targets of oxidizing free radicals in peptides or proteins. The first step is the addition of OH radicals either on the sulphur atom of methionine, followed by OH - elimination, or on the aromatic cycle of tyrosine. The next step can be stabilization of methionine radical cation by a two centre-three electron bond, or intramolecular electron transfer from tyrosine to the methionine radical cation. In this latter case a tyrosine radical is formed, which appears deprotonated. In a first step we have compared the stability of the OH radical adducts on Methionine or on Tyrosine. In agreement with experimental results, the thermodynamical data indicate that the OH adduct on Tyrosine and the radical cation are more stable than those on methionine. In a second step we have investigated the stabilization of the radical cations of Methionine by formation of intramolecular S:X two-center three-electron bond (X=S, N, O). Finally we have compared the spin densities on separated amino acids to that in a radical pentapeptide, methionine enkephalin. One observes a delocalisation of the orbital of the odd electron on the sulfur atom of Met and on the cycle of Tyr. The peptidic chain is also concerned.

  4. Effects of excess dietary tyrosine or certain xenobiotics on the cholesterogenesis in rats

    International Nuclear Information System (INIS)

    Nagaoka, S.; Masaki, H.; Aoyama, Y.; Yoshida, A.

    1986-01-01

    Comparison of the effects of excess dietary tyrosine, DDT, chlorobutanol (Chloretone) or butylated hydroxyanisole (BHA) on serum cholesterol, hepatic activities of the rate-limiting enzyme of cholesterol synthesis,3-hydroxy-3-methylglutaryl coenzyme A reductase and in vivo rates of the hepatic cholesterol synthesis measured by 3 H 2 O incorporation were investigated in rats. Serum cholesterol concentration was significantly higher in rats fed the DDT, chlorobutanol, BHA or excess tyrosine diets than in rats fed the control diet for 7 days. Serum cholesterol concentration remained higher compared to control rats when excess tyrosine was fed for 21 d. When rats were fed a basal diet after feeding a tyrosine excess diet for 2 wk, liver weight and serum cholesterol level returned to normal within 7 d. The incorporation of 3 H 2 O into liver cholesterol and the activity of liver 3-hydroxy-3-methylglutaryl coenzyme A reductase were greater in rats fed excess tyrosine or certain xenobiotics than in control rats. Present results suggested that the increase in serum cholesterol concentration due to excess dietary tyrosine or certain xenobiotics is mainly attributable to the stimulation of liver cholesterol synthesis

  5. Insulin treatment promotes tyrosine phosphorylation of PKR and inhibits polyIC induced PKR threonine phosphorylation.

    Science.gov (United States)

    Swetha, Medchalmi; Ramaiah, Kolluru V A

    2015-11-01

    Tyrosine phosphorylation of insulin receptor beta (IRβ) in insulin treated HepG2 cells is inversely correlated to ser(51) phosphorylation in the alpha-subunit of eukaryotic initiation factor 2 (eIF2α) that regulates protein synthesis. Insulin stimulates interaction between IRβ and PKR, double stranded RNA-dependent protein kinase, also known as EIF2AK2, and phosphorylation of tyrosine residues in PKR, as analyzed by immunoprecipitation and pull down assays using anti-IRβ and anti-phosphotyrosine antibodies, recombinant IRβ and immunopurified PKR. Further polyIC or synthetic double stranded RNA-induced threonine phosphorylation or activation of immunopurified and cellular PKR is suppressed in the presence of insulin treated purified IRβ and cell extracts. Acute, but not chronic, insulin treatment enhances tyrosine phosphorylation of IRβ, its interaction with PKR and tyrosine phosphorylation of PKR. In contrast, lipopolysaccharide that stimulates threonine phosphorylation of PKR and eIF2α phosphorylation and AG 1024, an inhibitor of the tyrosine kinase activity of IRβ, reduces PKR association with the receptor, IRβ in HepG2 cells. These findings therefore may suggest that tyrosine phosphorylated PKR plays a role in the regulation of insulin induced protein synthesis and in maintaining insulin sensitivity, whereas, suppression of polyIC-mediated threonine phosphorylation of PKR by insulin compromises its ability to fight against virus infection in host cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Hemin-Graphene Derivatives with Increased Peroxidase Activities Restrain Protein Tyrosine Nitration.

    Science.gov (United States)

    Xu, Huan; Yang, Zhen; Li, Hailing; Gao, Zhonghong

    2017-12-14

    Protein tyrosine nitration is implicated in the occurrence and progression of pathological conditions involving free radical reactions. It is well recognized that hemin can catalyze protein tyrosine nitration in the presence of nitrite and hydrogen peroxide. Generally, the catalytic efficiency is positively correlated to its peroxidase activity. In this study, however, it is found that the efficiency of hemin in catalyzing protein tyrosine nitration is largely suppressed after functionalization with graphene derivatives, even though its peroxidase-like activity is more than quadrupled. Further studies show that the oxidation of tyrosine is still observed for these composites; dityrosine formation, however, is greatly inhibited. Furthermore, these composites also exhibit strong effects on the oxidation of nitrite into nitrate. Therefore, we propose a mechanism in which hemin-graphene derivatives facilitate the oxidation of tyrosine and nitrite to produce tyrosyl radicals and nitrogen dioxide radicals in the presence of hydrogen peroxide, but graphene interlayers serve as barriers that hinder radical-radical coupling reactions; consequently, protein tyrosine nitration is restrained. This property of hemin-graphene derivatives, by which they catalyze substrate oxidation but suppress radical-radical coupling reactions, shows their great potential in selective oxidation procedures for byproduct removal. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Amelioration of behavioral abnormalities in BH(4-deficient mice by dietary supplementation of tyrosine.

    Directory of Open Access Journals (Sweden)

    Sang Su Kwak

    Full Text Available This study reports an amelioration of abnormal motor behaviors in tetrahydrobiopterin (BH4-deficient Spr (-/- mice by the dietary supplementation of tyrosine. Since BH4 is an essential cofactor for the conversion of phenylalanine into tyrosine as well as the synthesis of dopamine neurotransmitter within the central nervous system, the levels of tyrosine and dopamine were severely reduced in brains of BH4-deficient Spr (-/- mice. We found that Spr (-/- mice display variable 'open-field' behaviors, impaired motor functions on the 'rotating rod', and dystonic 'hind-limb clasping'. In this study, we report that these aberrant motor deficits displayed by Spr (-/- mice were ameliorated by the therapeutic tyrosine diet for 10 days. This study also suggests that dopamine deficiency in brains of Spr (-/- mice may not be the biological feature of aberrant motor behaviors associated with BH4 deficiency. Brain levels of dopamine (DA and its metabolites in Spr (-/- mice were not substantially increased by the dietary tyrosine therapy. However, we found that mTORC1 activity severely suppressed in brains of Spr (-/- mice fed a normal diet was restored 10 days after feeding the mice the tyrosine diet. The present study proposes that brain mTORC1 signaling pathway is one of the potential targets in understanding abnormal motor behaviors associated with BH4-deficiency.

  8. PTB domain-directed substrate targeting in a tyrosine kinase from the unicellular choanoflagellate Monosiga brevicollis.

    Directory of Open Access Journals (Sweden)

    Victoria Prieto-Echagüe

    2011-04-01

    Full Text Available Choanoflagellates are considered to be the closest living unicellular relatives of metazoans. The genome of the choanoflagellate Monosiga brevicollis contains a surprisingly high number and diversity of tyrosine kinases, tyrosine phosphatases, and phosphotyrosine-binding domains. Many of the tyrosine kinases possess combinations of domains that have not been observed in any multicellular organism. The role of these protein interaction domains in M. brevicollis kinase signaling is not clear. Here, we have carried out a biochemical characterization of Monosiga HMTK1, a protein containing a putative PTB domain linked to a tyrosine kinase catalytic domain. We cloned, expressed, and purified HMTK1, and we demonstrated that it possesses tyrosine kinase activity. We used immobilized peptide arrays to define a preferred ligand for the third PTB domain of HMTK1. Peptide sequences containing this ligand sequence are phosphorylated efficiently by recombinant HMTK1, suggesting that the PTB domain of HMTK1 has a role in substrate recognition analogous to the SH2 and SH3 domains of mammalian Src family kinases. We suggest that the substrate recruitment function of the noncatalytic domains of tyrosine kinases arose before their roles in autoinhibition.

  9. Lysosomal cysteine peptidases - Molecules signaling tumor cell death and survival.

    Science.gov (United States)

    Pišlar, Anja; Perišić Nanut, Milica; Kos, Janko

    2015-12-01

    Lysosomal cysteine peptidases - cysteine cathepsins - are general intracellular protein-degrading enzymes that control also a variety of specific physiological processes. They can trigger irreversible events leading to signal transduction and activation of signaling pathways, resulting in cell survival and proliferation or cell death. In cancer cells, lysosomal cysteine peptidases are involved in multiple processes during malignant progression. Their translocation from the endosomal/lysosomal pathway to nucleus, cytoplasm, plasma membrane and extracellular space enables the activation and remodeling of a variety of tumor promoting proteins. Thus, lysosomal cysteine peptidases interfere with cytokine/chemokine signaling, regulate cell adhesion and migration and endocytosis, are involved in the antitumor immune response and apoptosis, and promote cell invasion, angiogenesis and metastasis. Further, lysosomal cysteine peptidases modify growth factors and receptors involved in tyrosine kinase dependent pathways such as MAPK, Akt and JNK, thus representing key signaling tools for the activation of tumor cell growth and proliferation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Incorporation of Ortho- and Meta-Tyrosine Into Cellular Proteins Leads to Erythropoietin-Resistance in an Erythroid Cell Line

    Directory of Open Access Journals (Sweden)

    Esztella Mikolás

    2014-04-01

    Full Text Available Background/Aims: Erythropoietin-resistance is an unsolved concern in the treatment of renal anaemia. We aimed to investigate the possible role of ortho- and meta-tyrosine - the hydroxyl free radical products of L-phenylalanine - in the development of erythropoietin-resistance. Methods: TF-1 erythroblast cell line was used. Cell concentration was determined on day 1; 2 and 3 by two independent observers simultaneously in Bürker cell counting chambers. Protein concentration was determined with colorimetric method. Para-, ortho- and meta-tyrosine levels were measured using reverse phase-HPLC with fluorescence detection. Using Western blot method activating phosphorylation of STAT5 and ERK1/2 were investigated. Results: We found a time- and concentration-dependent decrease of erythropoietin-induced proliferative activity in case of ortho- and meta-tyrosine treated TF-1 erythroblasts, compared to the para-tyrosine cultured cells. Decreased erythropoietin-response could be regained with a competitive dose of para-tyrosine. Proteins of erythroblasts treated by ortho- or meta-tyrosine had lower para-tyrosine and higher ortho- or meta-tyrosine content. Activating phosphorylation of ERK and STAT5 due to erythropoietin was practically prevented by ortho- or meta-tyrosine treatment. Conclusion: According to this study elevated ortho- and meta-tyrosine content of erythroblasts may lead to the dysfunction of intracellular signaling, resulting in erythropoietin-hyporesponsiveness.

  11. Children's Brain Tumor Foundation

    Science.gov (United States)

    ... 2 Family Donate Volunteer Justin's Hope Fund Children’s Brain Tumor Foundation, A non-profit organization, was founded ... and the long term outlook for children with brain and spinal cord tumors through research, support, education, ...

  12. Metaphyseal giant cell tumor

    International Nuclear Information System (INIS)

    Pereira, L.F.; Hemais, P.M.P.G.; Aymore, I.L.; Carmo, M.C.R. do; Cunha, M.E.P.R. da; Resende, C.M.C.

    1986-01-01

    Three cases of metaphyseal giant cell tumor are presented. A review of the literature is done, demostrating the lesion is rare and that there are few articles about it. Age incidence and characteristics of the tumor are discussed. (Author) [pt

  13. Testicular germinal tumors

    International Nuclear Information System (INIS)

    Fresco, R.

    2010-01-01

    This work is about diagnosis, treatment and monitoring of testicular germinal tumors. The presumed diagnosis is based in the anamnesis, clinical examination, testicular ultrasound and tumor markers. The definitive diagnosis is obtained through the inguinal radical orchidectomy

  14. Tissue engineered tumor models.

    Science.gov (United States)

    Ingram, M; Techy, G B; Ward, B R; Imam, S A; Atkinson, R; Ho, H; Taylor, C R

    2010-08-01

    Many research programs use well-characterized tumor cell lines as tumor models for in vitro studies. Because tumor cells grown as three-dimensional (3-D) structures have been shown to behave more like tumors in vivo than do cells growing in monolayer culture, a growing number of investigators now use tumor cell spheroids as models. Single cell type spheroids, however, do not model the stromal-epithelial interactions that have an important role in controlling tumor growth and development in vivo. We describe here a method for generating, reproducibly, more realistic 3-D tumor models that contain both stromal and malignant epithelial cells with an architecture that closely resembles that of tumor microlesions in vivo. Because they are so tissue-like we refer to them as tumor histoids. They can be generated reproducibly in substantial quantities. The bioreactor developed to generate histoid constructs is described and illustrated. It accommodates disposable culture chambers that have filled volumes of either 10 or 64 ml, each culture yielding on the order of 100 or 600 histoid particles, respectively. Each particle is a few tenths of a millimeter in diameter. Examples of histological sections of tumor histoids representing cancers of breast, prostate, colon, pancreas and urinary bladder are presented. Potential applications of tumor histoids include, but are not limited to, use as surrogate tumors for pre-screening anti-solid tumor pharmaceutical agents, as reference specimens for immunostaining in the surgical pathology laboratory and use in studies of invasive properties of cells or other aspects of tumor development and progression. Histoids containing nonmalignant cells also may have potential as "seeds" in tissue engineering. For drug testing, histoids probably will have to meet certain criteria of size and tumor cell content. Using a COPAS Plus flow cytometer, histoids containing fluorescent tumor cells were analyzed successfully and sorted using such criteria.

  15. RET is a potential tumor suppressor gene in colorectal cancer

    Science.gov (United States)

    Luo, Yanxin; Tsuchiya, Karen D.; Park, Dong Il; Fausel, Rebecca; Kanngurn, Samornmas; Welcsh, Piri; Dzieciatkowski, Slavomir; Wang, Jianping; Grady, William M.

    2012-01-01

    Cancer arises as the consequence of mutations and epigenetic alterations that activate oncogenes and inactivate tumor suppressor genes. Through a genome-wide screen for methylated genes in colon neoplasms, we identified aberrantly methylated RET in colorectal cancer. RET, a transmembrane receptor tyrosine kinase and a receptor for the GDNF-family ligands, was one of the first oncogenes to be identified and has been shown to be an oncogene in thyroid cancer and pheochromocytoma. However, unexpectedly, we found RET is methylated in 27% of colon adenomas and in 63% of colorectal cancers, and now provide evidence that RET has tumor suppressor activity in colon cancer. The aberrant methylation of RET correlates with decreased RET expression, whereas the restoration of RET in colorectal cancer cell lines results in apoptosis. Furthermore, in support of a tumor suppressor function of RET, mutant RET has also been found in primary colorectal cancer. We now show that these mutations inactivate RET, which is consistent with RET being a tumor suppressor gene in the colon. These findings suggest that the aberrant methylation of RET and the mutational inactivation of RET promote colorectal cancer formation and that RET can serve as a tumor suppressor gene in the colon. Moreover, the increased frequency of methylated RET in colon cancers compared to adenomas suggests RET inactivation is involved in the progression of colon adenomas to cancer. PMID:22751117

  16. Advances in the treatment of gastroenteropancreatic neuroendocrine tumors

    Directory of Open Access Journals (Sweden)

    Pamela L Kunz

    2010-06-01

    Full Text Available Pamela L Kunz, George A FisherStanford University Medical Center, CA, USAAbstract: Gastroenteropancreatic neuroendocrine tumors (GEP-NETs are a rare and heterogeneous class of neoplasms. While surgical resection is the mainstay of treatment, non-surgical therapies play a role in the setting of unresectable and metastatic disease. The goals of medical therapy are directed both at alleviating symptoms of peptide release and shrinking tumor mass. Biotherapies such as somatostatin analogs and interferon can decrease the secretion of peptides and inhibit their end-organ effects. A second objective for treatment of unresectable GEP-NETs is limiting tumor growth. Options for limiting tumor growth include somatostatin analogs, systemic chemotherapy, locoregional therapies, ionizing radiation, external beam radiation, and newer targeted agents. In particular, angiogenesis inhibitors, tyrosine kinase inhibitors, and mTOR inhibitors have shown early promising results. The rarity of these tumors, their resistance to standard chemotherapy, and the excellent performance status of most of these patients, make a strong argument for consideration of novel therapeutic trials.Keywords: neuroendocrine, gastroenteropancreatic, carcinoid, somatostatin

  17. Dietary branched-chain amino acid (BCAA) and tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Chan, W.; Baron, L.; Baron, P.; White, F.; Banks, W.L. Jr.

    1986-03-05

    The effects of high dietary BCAA on tumor growth was examined in adult male Fischer 344 rats inoculated with 10/sup 6/ viable MCA fibrosarcoma cells. Ten days after tumor inoculation, when tumors were of palpable size, rats were divided into two groups at random. The experimental(E) group was fed the AIN-76 diet supplemented with 4X the BCAA content of diet casein and the control(C) group was fed the AIN-76 made isonitrogenous with the E diet by glutamic acid supplementation. Five rats from each group were killed at days 0,3,6, and 9. Rats were injected with /sup 14/C-Tyrosine and /sup 3/H-Thymidine i.p. (2 and 4 uCi/100g BW, respectively) an hour before they were killed. The incorporation of /sup 14/C and /sup 3/H into the acid insoluble fraction of the tumor tissues samples were measured. Single cell suspension of tumor were prepared for cell cycle kinetics analysis using a Coulter EPICS IV flow microflorometer. The percentage of normal and hyperdiploid cells were analyzed. Results showed that both tumor size and weight were doubled at each time point the rats were killed. At day 0, the /sup 3/H and /sup 14/C incorporation were 32 +/- 10dpm and 27 +/- 4dpm/mg tumor, respectively. The /sup 3/H incorporation dropped in both diet groups at days 6 and 9 but the /sup 14/C incorporation showed a decrease only at day 9. These changes were statistically significant, P>0.05. No difference in the tumor growth parameters used in this study can be attributed to the high dietary BCAA.

  18. Dietary branched-chain amino acid (BCAA) and tumor growth

    International Nuclear Information System (INIS)

    Chan, W.; Baron, L.; Baron, P.; White, F.; Banks, W.L. Jr.

    1986-01-01

    The effects of high dietary BCAA on tumor growth was examined in adult male Fischer 344 rats inoculated with 10 6 viable MCA fibrosarcoma cells. Ten days after tumor inoculation, when tumors were of palpable size, rats were divided into two groups at random. The experimental(E) group was fed the AIN-76 diet supplemented with 4X the BCAA content of diet casein and the control(C) group was fed the AIN-76 made isonitrogenous with the E diet by glutamic acid supplementation. Five rats from each group were killed at days 0,3,6, and 9. Rats were injected with 14 C-Tyrosine and 3 H-Thymidine i.p. (2 and 4 uCi/100g BW, respectively) an hour before they were killed. The incorporation of 14 C and 3 H into the acid insoluble fraction of the tumor tissues samples were measured. Single cell suspension of tumor were prepared for cell cycle kinetics analysis using a Coulter EPICS IV flow microflorometer. The percentage of normal and hyperdiploid cells were analyzed. Results showed that both tumor size and weight were doubled at each time point the rats were killed. At day 0, the 3 H and 14 C incorporation were 32 +/- 10dpm and 27 +/- 4dpm/mg tumor, respectively. The 3 H incorporation dropped in both diet groups at days 6 and 9 but the 14 C incorporation showed a decrease only at day 9. These changes were statistically significant, P>0.05. No difference in the tumor growth parameters used in this study can be attributed to the high dietary BCAA

  19. Tumor interstitial fluid

    DEFF Research Database (Denmark)

    Gromov, Pavel; Gromova, Irina; Olsen, Charlotta J.

    2013-01-01

    Tumor interstitial fluid (TIF) is a proximal fluid that, in addition to the set of blood soluble phase-borne proteins, holds a subset of aberrantly externalized components, mainly proteins, released by tumor cells and tumor microenvironment through various mechanisms, which include classical...

  20. The use of dynamic O-(2-18F-fluoroethyl)-l-tyrosine PET in the diagnosis of patients with progressive and recurrent glioma.

    Science.gov (United States)

    Galldiks, Norbert; Stoffels, Gabriele; Filss, Christian; Rapp, Marion; Blau, Tobias; Tscherpel, Caroline; Ceccon, Garry; Dunkl, Veronika; Weinzierl, Martin; Stoffel, Michael; Sabel, Michael; Fink, Gereon R; Shah, Nadim J; Langen, Karl-Josef

    2015-09-01

    We evaluated the diagnostic value of static and dynamic O-(2-[(18)F]fluoroethyl)-L-tyrosine ((18)F-FET) PET parameters in patients with progressive or recurrent glioma. We retrospectively analyzed 132 dynamic (18)F-FET PET and conventional MRI scans of 124 glioma patients (primary World Health Organization grade II, n = 55; grade III, n = 19; grade IV, n = 50; mean age, 52 ± 14 y). Patients had been referred for PET assessment with clinical signs and/or MRI findings suggestive of tumor progression or recurrence based on Response Assessment in Neuro-Oncology criteria. Maximum and mean tumor/brain ratios of (18)F-FET uptake were determined (20-40 min post-injection) as well as tracer uptake kinetics (ie, time to peak and patterns of the time-activity curves). Diagnoses were confirmed histologically (95%) or by clinical follow-up (5%). Diagnostic accuracies of PET and MR parameters for the detection of tumor progression or recurrence were evaluated by receiver operating characteristic analyses/chi-square test. Tumor progression or recurrence could be diagnosed in 121 of 132 cases (92%). MRI and (18)F-FET PET findings were concordant in 84% and discordant in 16%. Compared with the diagnostic accuracy of conventional MRI to diagnose tumor progression or recurrence (85%), a higher accuracy (93%) was achieved by (18)F-FET PET when a mean tumor/brain ratio ≥2.0 or time to peak dynamic (18)F-FET PET parameters differentiate progressive or recurrent glioma from treatment-related nonneoplastic changes with higher accuracy than conventional MRI. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Effective L-Tyrosine Hydroxylation by Native and Immobilized Tyrosinase.

    Directory of Open Access Journals (Sweden)

    Małgorzata Cieńska

    Full Text Available Hydroxylation of L-tyrosine to 3,4-dihydroxyphenylalanine (L-DOPA by immobilized tyrosinase in the presence of ascorbic acid (AH2, which reduces DOPA-quinone to L-DOPA, is characterized by low reaction yields that are mainly caused by the suicide inactivation of tyrosinase by L-DOPA and AH2. The main aim of this work was to compare processes with native and immobilized tyrosinase to identify the conditions that limit suicide inactivation and produce substrate conversions to L-DOPA of above 50% using HPLC analysis. It was shown that immobilized tyrosinase does not suffer from partitioning and diffusion effects, allowing a direct comparison of the reactions performed with both forms of the enzyme. In typical processes, additional aeration was applied and boron ions to produce the L-DOPA and AH2 complex and hydroxylamine to close the cycle of enzyme active center transformations. It was shown that the commonly used pH 9 buffer increased enzyme stability, with concomitant reduced reactivity of 76%, and that under these conditions, the maximal substrate conversion was approximately 25 (native to 30% (immobilized enzyme. To increase reaction yield, the pH of the reaction mixture was reduced to 8 and 7, producing L-DOPA yields of approximately 95% (native enzyme and 70% (immobilized. A three-fold increase in the bound enzyme load achieved 95% conversion in two successive runs, but in the third one, tyrosinase lost its activity due to strong suicide inactivation caused by L-DOPA processing. In this case, the cost of the immobilized enzyme preparation is not overcome by its reuse over time, and native tyrosinase may be more economically feasible for a single use in L-DOPA production. The practical importance of the obtained results is that highly efficient hydroxylation of monophenols by tyrosinase can be obtained by selecting the proper reaction pH and is a compromise between complexation and enzyme reactivity.

  2. Alzheimer's disease pathological lesions activate the spleen tyrosine kinase.

    Science.gov (United States)

    Schweig, Jonas Elias; Yao, Hailan; Beaulieu-Abdelahad, David; Ait-Ghezala, Ghania; Mouzon, Benoit; Crawford, Fiona; Mullan, Michael; Paris, Daniel

    2017-09-06

    The pathology of Alzheimer's disease (AD) is characterized by dystrophic neurites (DNs) surrounding extracellular Aβ-plaques, microgliosis, astrogliosis, intraneuronal tau hyperphosphorylation and aggregation. We have previously shown that inhibition of the spleen tyrosine kinase (Syk) lowers Aβ production and tau hyperphosphorylation in vitro and in vivo. Here, we demonstrate that Aβ-overexpressing Tg PS1/APPsw, Tg APPsw mice, and tau overexpressing Tg Tau P301S mice exhibit a pathological activation of Syk compared to wild-type littermates. Syk activation is occurring in a subset of microglia and is age-dependently increased in Aβ-plaque-associated dystrophic neurites of Tg PS1/APPsw and Tg APPsw mice. In Tg Tau P301S mice, a pure model of tauopathy, activated Syk occurs in neurons that show an accumulation of misfolded and hyperphosphorylated tau in the cortex and hippocampus. Interestingly, the tau pathology is exacerbated in neurons that display high levels of Syk activation supporting a role of Syk in the formation of tau pathological species in vivo. Importantly, human AD brain sections show both pathological Syk activation in DNs around Aβ deposits and in neurons immunopositive for pathological tau species recapitulating the data obtained in transgenic mouse models of AD. Additionally, we show that Syk overexpression leads to increased tau accumulation and promotes tau hyperphosphorylation at multiple epitopes in human neuron-like SH-SY5Y cells, further supporting a role of Syk in the formation of tau pathogenic species. Collectively, our data show that Syk activation occurs following Aβ deposition and the formation of tau pathological species. Given that we have previously shown that Syk activation also promotes Aβ formation and tau hyperphosphorylation, our data suggest that AD pathological lesions may be self-propagating via a Syk dependent mechanism highlighting Syk as an attractive therapeutic target for the treatment of AD.

  3. From tyrosine to melanin: Signaling pathways and factors regulating melanogenesis

    Directory of Open Access Journals (Sweden)

    Zuzanna Rzepka

    2016-06-01

    Full Text Available Melanins are natural pigments of skin, hair and eyes and can be classified into two main types: brown to black eumelanin and yellow to reddish-brown pheomelanin. Biosynthesis of melanins takes place in melanosomes, which are specialized cytoplasmic organelles of melanocytes - dendritic cells located in the basal layer of the epidermis, uveal tract of the eye, hair follicles, as well as in the inner ear, central nervous system and heart. Melanogenesis is a multistep process and begins with the conversion of amino acid L-tyrosine to DOPAquinone. The addition of cysteine or glutathione to DOPAquinone leads to the intermediates formation, followed by subsequent transformations and polymerization to the final product, pheomelanin. In the absence of thiol compounds DOPAquinone undergoes an intramolecular cyclization and oxidation to form DOPAchrome, which is then converted to 5,6-dihydroksyindole (DHI or 5,6-dihydroxyindole-2-carboxylic acid (DHICA. Eumelanin is formed by polymerization of DHI and DHICA and their quinones. Regulation of melanogenesis is achieved by physical and biochemical factors. The article presents the intracellular signaling pathways: cAMP/PKA/CREB/MITF cascade, MAP kinases cascade, PLC/DAG/PKCβ cascade and NO/cGMP/PKG cascade, which are involved in the regulation of expression and activity of the melanogenesis-related proteins by ultraviolet radiation and endogenous agents (cytokines, hormones. Activity of the key melanogenic enzyme, tyrosinase, is also affected by pH and temperature. Many pharmacologically active substances are able to inhibit or stimulate melanin biosynthesis, as evidenced by in vitro studies on cultured pigment cells.

  4. Tyrosine aminotransferase contributes to benzylisoquinoline alkaloid biosynthesis in opium poppy.

    Science.gov (United States)

    Lee, Eun-Jeong; Facchini, Peter J

    2011-11-01

    Tyrosine aminotransferase (TyrAT) catalyzes the transamination of L-Tyr and α-ketoglutarate, yielding 4-hydroxyphenylpyruvic acid and L-glutamate. The decarboxylation product of 4-hydroxyphenylpyruvic acid, 4-hydroxyphenylacetaldehyde, is a precursor to a large and diverse group of natural products known collectively as benzylisoquinoline alkaloids (BIAs). We have isolated and characterized a TyrAT cDNA from opium poppy (Papaver somniferum), which remains the only commercial source for several pharmaceutical BIAs, including codeine, morphine, and noscapine. TyrAT belongs to group I pyridoxal 5'-phosphate (PLP)-dependent enzymes wherein Schiff base formation occurs between PLP and a specific Lys residue. The amino acid sequence of TyrAT showed considerable homology to other putative plant TyrATs, although few of these have been functionally characterized. Purified, recombinant TyrAT displayed a molecular mass of approximately 46 kD and a substrate preference for L-Tyr and α-ketoglutarate, with apparent K(m) values of 1.82 and 0.35 mm, respectively. No specific requirement for PLP was detected in vitro. Liquid chromatography-tandem mass spectrometry confirmed the conversion of L-Tyr to 4-hydroxyphenylpyruvate. TyrAT gene transcripts were most abundant in roots and stems of mature opium poppy plants. Virus-induced gene silencing was used to evaluate the contribution of TyrAT to BIA metabolism in opium poppy. TyrAT transcript levels were reduced by at least 80% in silenced plants compared with controls and showed a moderate reduction in total alkaloid content. The modest correlation between transcript levels and BIA accumulation in opium poppy supports a role for TyrAT in the generation of alkaloid precursors, but it also suggests the occurrence of other sources for 4-hydroxyphenylacetaldehyde.

  5. Effective L-Tyrosine Hydroxylation by Native and Immobilized Tyrosinase

    Science.gov (United States)

    Lewańczuk, Marcin; Koźlecki, Tomasz; Liesiene, Jolanta; Bryjak, Jolanta

    2016-01-01

    Hydroxylation of L-tyrosine to 3,4-dihydroxyphenylalanine (L-DOPA) by immobilized tyrosinase in the presence of ascorbic acid (AH2), which reduces DOPA-quinone to L-DOPA, is characterized by low reaction yields that are mainly caused by the suicide inactivation of tyrosinase by L-DOPA and AH2. The main aim of this work was to compare processes with native and immobilized tyrosinase to identify the conditions that limit suicide inactivation and produce substrate conversions to L-DOPA of above 50% using HPLC analysis. It was shown that immobilized tyrosinase does not suffer from partitioning and diffusion effects, allowing a direct comparison of the reactions performed with both forms of the enzyme. In typical processes, additional aeration was applied and boron ions to produce the L-DOPA and AH2 complex and hydroxylamine to close the cycle of enzyme active center transformations. It was shown that the commonly used pH 9 buffer increased enzyme stability, with concomitant reduced reactivity of 76%, and that under these conditions, the maximal substrate conversion was approximately 25 (native) to 30% (immobilized enzyme). To increase reaction yield, the pH of the reaction mixture was reduced to 8 and 7, producing L-DOPA yields of approximately 95% (native enzyme) and 70% (immobilized). A three-fold increase in the bound enzyme load achieved 95% conversion in two successive runs, but in the third one, tyrosinase lost its activity due to strong suicide inactivation caused by L-DOPA processing. In this case, the cost of the immobilized enzyme preparation is not overcome by its reuse over time, and native tyrosinase may be more economically feasible for a single use in L-DOPA production. The practical importance of the obtained results is that highly efficient hydroxylation of monophenols by tyrosinase can be obtained by selecting the proper reaction pH and is a compromise between complexation and enzyme reactivity. PMID:27711193

  6. Effective L-Tyrosine Hydroxylation by Native and Immobilized Tyrosinase.

    Science.gov (United States)

    Cieńska, Małgorzata; Labus, Karolina; Lewańczuk, Marcin; Koźlecki, Tomasz; Liesiene, Jolanta; Bryjak, Jolanta

    2016-01-01

    Hydroxylation of L-tyrosine to 3,4-dihydroxyphenylalanine (L-DOPA) by immobilized tyrosinase in the presence of ascorbic acid (AH2), which reduces DOPA-quinone to L-DOPA, is characterized by low reaction yields that are mainly caused by the suicide inactivation of tyrosinase by L-DOPA and AH2. The main aim of this work was to compare processes with native and immobilized tyrosinase to identify the conditions that limit suicide inactivation and produce substrate conversions to L-DOPA of above 50% using HPLC analysis. It was shown that immobilized tyrosinase does not suffer from partitioning and diffusion effects, allowing a direct comparison of the reactions performed with both forms of the enzyme. In typical processes, additional aeration was applied and boron ions to produce the L-DOPA and AH2 complex and hydroxylamine to close the cycle of enzyme active center transformations. It was shown that the commonly used pH 9 buffer increased enzyme stability, with concomitant reduced reactivity of 76%, and that under these conditions, the maximal substrate conversion was approximately 25 (native) to 30% (immobilized enzyme). To increase reaction yield, the pH of the reaction mixture was reduced to 8 and 7, producing L-DOPA yields of approximately 95% (native enzyme) and 70% (immobilized). A three-fold increase in the bound enzyme load achieved 95% conversion in two successive runs, but in the third one, tyrosinase lost its activity due to strong suicide inactivation caused by L-DOPA processing. In this case, the cost of the immobilized enzyme preparation is not overcome by its reuse over time, and native tyrosinase may be more economically feasible for a single use in L-DOPA production. The practical importance of the obtained results is that highly efficient hydroxylation of monophenols by tyrosinase can be obtained by selecting the proper reaction pH and is a compromise between complexation and enzyme reactivity.

  7. O-(2-[18F]fluoroethyl)-L-tyrosine uptake is an independent prognostic determinant in patients with glioma referred for radiation therapy

    International Nuclear Information System (INIS)

    Sweeney, Reinhart; Polat, Bülent; Flentje, Michael; Samnick, Samuel; Reiners, Christoph; Verburg, Frederik A.

    2014-01-01

    To evaluate the prognostic value of O-(2-[ 18 F]fluoroethyl)-L-tyrosine positron emission tomography (FET-PET) uptake intensity in World Health Organization (WHO) tumor grade II-IV gliomas. We studied 28 patients with WHO tumor grade II-IV gliomas who were referred to our department for radiation therapy. We acquired a FET-PET in all patients, as well as magnetic resonance imaging (MRI) of the brain consisting of at least T2-weighted imaging, flair and pre- and post-contrast T1-weighted imaging. SUVmax was measured and the tumor-to-brain uptake ratio (TBR) of all lesions was calculated based on the SUVmax (TBRmax) or SUVmean (TBRmean) of the contralateral healthy tissue. For this study, volumes were calculated using MRI alone, MRI + the volume with a SUVmax on FET-PET ≥ 2.2 as well as MRI + the volume with an uptake of at least 40% of the SUVmax. Tumor volumes were a median (range) of 88.6 (2.6-467.4) ml (MRI alone), 84.2 (2.8-474.4) ml (MRI + SUVmax on FET-PET ≥ 2.2) and 101.5 (4.0-512.1) ml (MRI + FET-PET uptake ≥ 40% SUVmax), respectively. TBR-SUVmean was 2.36 (1.46-4.08); TBR-SUVmax was 1.71 (0.97-2.85). During a follow-up of 18.7 (2.5-36.1) months after FET-PET, 12 patients died of malignant glioma. Patients with a SUVmax ≥ 2.6 had a significantly worse tumor-related mortality (p=0.005) and progression-free survival (p=0.038) than those with a lower SUVmax. Multivariate analysis showed that WHO tumor grade (p=0.001) and SUVmax ≥ 2.6 (p < 0.001) were independent predictors for tumor-related mortality, but not tumor volume or TBRmax or TBRmean. SUVmax ≥ 2.6 (p=0.007) and being treated for a recurrence rather than for a primary tumor manifestation (p=0.014) were predictors for progression-free survival, but not TBRmax or TBRmean. In this heterogeneous patient population, higher tracer uptake in FET-PET appears to be associated with a worse tumor-related mortality and a shorter duration of the disease-free interval. (author)

  8. Multiple gastrointestinal stromal tumors in type I neurofibromatosis: a pathologic and molecular study.

    Science.gov (United States)

    Yantiss, Rhonda K; Rosenberg, Andrew E; Sarran, Lisa; Besmer, Peter; Antonescu, Cristina R

    2005-04-01

    Multiple gastrointestinal stromal tumors typically occur in familial form associated with KIT receptor tyrosine kinase or platelet-derived growth factor receptor-alpha (PDGFRA) germline mutations, but may also develop in the setting of type 1 neurofibromatosis. The molecular abnormalities of gastrointestinal stromal tumors arising in neurofibromatosis have not been extensively studied. We identified three patients with type 1 neuro-fibromatosis and multiple small intestinal stromal tumors. Immunostains for CD117, CD34, desmin, actins, S-100 protein, and keratins were performed on all of the tumors. DNA was extracted from representative paraffin blocks from separate tumor nodules in each case and subjected to a nested polymerase chain reaction, using primers for KIT exons 9, 11, 13, and 17 and PDGFRA exons 12 and 18, followed by direct sequencing. The mean patient age was 56 years (range: 37-86 years, male/female ratio: 2/1). One patient had three tumors, one had five, and one had greater than 10 tumor nodules, all of which demonstrated histologic features characteristic of gastrointestinal stromal tumors and stained strongly for CD117 and CD34. One patient died of disease at 35 months, one was disease free at 12 months and one was lost to follow-up. DNA extracts from 10 gastrointestinal stromal tumors (three from each of two patients and four from one patient) were subjected to polymerase chain reactions and assessed for mutations. All of the tumors were wild type for KIT exons 9, 13, and 17 and PDGFRA exons 12 and 18. Three tumors from one patient had identical point mutations in KIT exon 11, whereas the other tumors were wild type at this locus. We conclude that, although most patients with type 1 neurofibromatosis and gastrointestinal stromal tumors do not have KIT or PDGFRA mutations, KIT germline mutations might be implicated in the pathogenesis of gastrointestinal stromal tumors in some patients.

  9. The use of amino acid PET and conventional MRI for monitoring of brain tumor therapy

    DEFF Research Database (Denmark)

    Galldiks, Norbert; Law, Ian; Pope, Whitney B

    2017-01-01

    Routine diagnostics and treatment monitoring of brain tumors is usually based on contrast-enhanced MRI. However, the capacity of conventional MRI to differentiate tumor tissue from posttherapeutic effects following neurosurgical resection, chemoradiation, alkylating chemotherapy, radiosurgery, and......),O-(2-[18F]fluoroethyl)-l-tyrosine (FET) and 3,4-dihydroxy-6-[18F]-fluoro-l-phenylalanine (FDOPA) and summarizes investigations regarding monitoring of brain tumor therapy......./or immunotherapy may be limited. Metabolic imaging using PET can provide relevant additional information on tumor metabolism, which allows for more accurate diagnostics especially in clinically equivocal situations. This review article focuses predominantly on the amino acid PET tracers11C-methyl-l-methionine (MET...

  10. PET and endocrine tumors

    International Nuclear Information System (INIS)

    Rigo, P.; Belhocine, T.; Hustinx, R.; Foidart-Willems, J.

    2000-01-01

    The authors review the main indications of PET examination, and specifically of 18 FDG, in the assessment of endocrine tumors: of the thyroid, of the parathyroid, of the adrenal and of the pituitary glands. Neuroendocrine tumors, gastro-entero-pancreatic or carcinoid tumors are also under the scope. Usually, the most differentiated tumors show only poor uptake of the FDG as they have a weak metabolic and proliferative activity. In the assessment of endocrine tumors, FDG-PET should be used only after most specific nuclear examinations been performed. (author)

  11. Tumor penetrating peptides

    Directory of Open Access Journals (Sweden)

    Tambet eTeesalu

    2013-08-01

    Full Text Available Tumor-homing peptides can be used to deliver drugs into tumors. Phage library screening in live mice has recently identified homing peptides that specifically recognize the endothelium of tumor vessels, extravasate, and penetrate deep into the extravascular tumor tissue. The prototypic peptide of this class, iRGD (CRGDKGPDC, contains the integrin-binding RGD motif. RGD mediates tumor homing through binding to αv integrins, which are selectively expressed on various cells in tumors, including tumor endothelial cells. The tumor-penetrating properties of iRGD are mediated by a second sequence motif, R/KXXR/K. This C-end Rule (or CendR motif is active only when the second basic residue is exposed at the C-terminus of the peptide. Proteolytic processing of iRGD in tumors activates the cryptic CendR motif, which then binds to neuropilin-1 activating an endocytic bulk transport pathway through tumor tissue. Phage screening has also yielded tumor-penetrating peptides that function like iRGD in activating the CendR pathway, but bind to a different primary receptor. Moreover, novel tumor-homing peptides can be constructed from tumor-homing motifs, CendR elements and protease cleavage sites. Pathologies other than tumors can be targeted with tissue-penetrating peptides, and the primary receptor can also be a vascular zip code of a normal tissue. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. The tumor-penetrating peptides are capable of taking a payload deep into tumor tissue in mice, and they also penetrate into human tumors ex vivo. Targeting with these peptides specifically increases the accumulation in tumors of a variety of drugs and contrast agents, such as doxorubicin, antibodies and nanoparticle-based compounds. Remarkably the drug to be targeted does not have to be coupled to the peptide; the bulk transport system activated by the peptide sweeps along any compound that is

  12. Tyrosine kinase fusion genes in pediatric BCR-ABL1-like acute lymphoblastic leukemia

    Science.gov (United States)

    Boer, Judith M.; Steeghs, Elisabeth M.P.; Marchante, João R.M.; Boeree, Aurélie; Beaudoin, James J.; Berna Beverloo, H.; Kuiper, Roland P.; Escherich, Gabriele; van der Velden, Vincent H.J.; van der Schoot, C. Ellen; de Groot-Kruseman, Hester A.; Pieters, Rob; den Boer, Monique L.

    2017-01-01

    Approximately 15% of pediatric B cell precursor acute lymphoblastic leukemia (BCP-ALL) is characterized by gene expression similar to that of BCR-ABL1-positive disease and unfavorable prognosis. This BCR-ABL1-like subtype shows a high frequency of B-cell development gene aberrations and tyrosine kinase-activating lesions. To evaluate the clinical significance of tyrosine kinase gene fusions in children with BCP-ALL, we studied the frequency of recently identified tyrosine kinase fusions, associated genetic features, and prognosis in a representative Dutch/German cohort. We identified 14 tyrosine kinase fusions among 77 BCR-ABL1-like cases (18%) and none among 76 non-BCR-ABL1-like B-other cases. Novel exon fusions were identified for RCSD1-ABL2 and TERF2-JAK2. JAK2 mutation was mutually exclusive with tyrosine kinase fusions and only occurred in cases with high CRLF2 expression. The non/late response rate and levels of minimal residual disease in the fusion-positive BCR-ABL1-like group were higher than in the non-BCR-ABL1-like B-others (p<0.01), and also higher, albeit not statistically significant, compared with the fusion-negative BCR-ABL1-like group. The 8-year cumulative incidence of relapse in the fusion-positive BCR-ABL1-like group (35%) was comparable with that in the fusion-negative BCR-ABL1-like group (35%), and worse than in the non-BCR-ABL1-like B-other group (17%, p=0.07). IKZF1 deletions, predominantly other than the dominant-negative isoform and full deletion, co-occurred with tyrosine kinase fusions. This study shows that tyrosine kinase fusion-positive cases are a high-risk subtype of BCP-ALL, which warrants further studies with specific kinase inhibitors to improve outcome. PMID:27894077

  13. Pervanadate induces Mammalian Ste20 Kinase 3 (MST3) tyrosine phosphorylation but not activation.

    Science.gov (United States)

    Kan, Wei-Chih; Lu, Te-Ling; Ling, Pin; Lee, Te-Hsiu; Cho, Chien-Yu; Huang, Chi-Ying F; Jeng, Wen-Yih; Weng, Yui-Ping; Chiang, Chun-Yen; Wu, Jin Bin; Lu, Te-Jung

    2016-07-01

    The yeast Ste20 (sterile) protein kinase, which is a serine/threonine kinase, responds to the stimulation of the G proteincoupled receptor (GPCR) pheromone receptor. Ste20 protein kinase serves as the critical component that links signaling from the GPCR/G proteins to the mitogen-activated protein kinase (MAPK) cascade in yeast. The yeast Ste20p functions as a MAP kinase kinase kinase kinase (MAP4K) in the pheromone response. Ste20-like kinases are structurally conserved from yeast to mammals. The mechanism by which MAP4K links GPCR to the MAPK pathway is less clearly defined in vertebrates. In addition to MAP4K, the tyrosine kinase cascade bridges G proteins and the MAPK pathway in vertebrate cells. Mammalian Ste20 Kinase 3 (MST3) has been categorized into the Ste20 family and has been reported to function in the regulation of cell polarity and migration. However, whether MST3 tyrosine phosphorylation regulates diverse signaling pathways is unknown. In this study, the tyrosine phosphatase inhibitor pervanadate was found to induce MST3 tyrosine phosphorylation in intact cells, and the activity of tyrosine-phosphorylated MST3 was measured. This tyrosine-directed phosphorylation was independent of MST3 activity. Parameters including protein conformation, Triton concentration and ionic concentration influenced the sensitivity of MST3 activity. Taken together, our data suggests that the serine/threonine kinase MST3 undergoes tyrosinedirected phosphorylation. The tyrosine-phosphorylated MST3 may create a docking site for the structurally conserved SH2/SH3 (Src Homology 2 and 3) domains within the Src oncoprotein. The unusual tyrosinephosphorylated MST3 may recruit MST3 to various signaling components. Copyright © 2016. Published by Elsevier Inc.

  14. Tyrosine Phosphorylation of the Human Serotonin Transporter: A Role in the Transporter Stability and Function

    Science.gov (United States)

    Annamalai, Balasubramaniam; Mannangatti, Padmanabhan; Arapulisamy, Obulakshmi; Shippenberg, Toni S.; Jayanthi, Lankupalle D.

    2012-01-01

    The serotonin (5-HT) transporter (SERT) regulates serotoninergic neurotransmission by clearing 5-HT released into the synaptic space. Phosphorylation of SERT on serine and threonine mediates SERT regulation. Whether tyrosine phosphorylation regulates SERT is unknown. Here, we tested the hypothesis that tyrosine-phosphorylation of SERT regulates 5-HT transport. In support of this, alkali-resistant 32P-labeled SERT was found in rat platelets, and Src-tyrosine kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo [3,4,d]pyrimidine (PP2) decreased platelet SERT function and expression. In human placental trophoblast cells expressing SERT, PP2 reduced transporter function, expression, and stability. Although siRNA silencing of Src expression decreased SERT function and expression, coexpression of Src resulted in PP2-sensitive increases in SERT function and expression. PP2 treatment markedly decreased SERT protein stability. Compared with WT-SERT, SERT tyrosine mutants Y47F and Y142F exhibited reduced 5-HT transport despite their higher total and cell surface expression levels. Moreover, Src-coexpression increased total and cell surface expression of Y47F and Y142F SERT mutants without affecting their 5-HT transport capacity. It is noteworthy that Y47F and Y142F mutants exhibited higher protein stability compared with WT-SERT. However, similar to WT-SERT, PP2 treatment decreased the stability of Y47F and Y142F mutants. Furthermore, compared with WT-SERT, Y47F and Y142F mutants exhibited lower basal tyrosine phosphorylation and no further enhancement of tyrosine phosphorylation in response to Src coexpression. These results provide the first evidence that SERT tyrosine phosphorylation supports transporter protein stability and 5HT transport. PMID:21992875

  15. Background levels and radiation dose yield of o-tyrosine in chicken meat

    International Nuclear Information System (INIS)

    Chuaqui-Offermanns, N.; McDougall, T.

    1991-01-01

    The measurement of o-tyrosine levels in poultry meat is a potential method for postirradiation dosimetry of poultry. The validity of using o-tyrosine for this purpose has not yet been established. As part of the validation process, the o-tyrosine content in unirradiated chicken meat, the radiation dose response curve, and the effects of postirradiation storage on o-tyrosine levels are examined. In 18 individual samples, the mean background level of o-tyrosine was 0.18 +/- 0.11 ppm (wet weight, 70% moisture), and the most frequent background level (60% of the cases) was between 0.05 and 0.15 ppm (wet weight, 70% moisture). In pooled samples of 10 chickens, the mean background level was 0.12 +/- 0.03 ppm (wet weight, 70% moisture). The levels were not significantly affected by storage at 5 degrees C (7 d) or by freezing the sample. The radiation dose response curve was linear within the dose range studied (0 to 10 kGy), with a slope of 0.127 + 0.003 ppm (wet weight)/kGy. Although there was some variation in the intercept (0.132 + 0.013), the slope was the same in all samples tested. Postirradiation storage at either 4 or 8 degrees C until spoilage did not affect the levels of o-tyrosine. These data indicate that o-tyrosine level may be useful for determining the absorbed dose in chicken meat gamma-irradiated to doses greater than 0.6 kGy. Further validation studies are continuing

  16. A p130Cas tyrosine phosphorylated substrate domain decoy disrupts v-Crk signaling

    Directory of Open Access Journals (Sweden)

    Hanafusa Hidesaburo

    2002-07-01

    Full Text Available Abstract Background The adaptor protein p130Cas (Cas has been shown to be involved in different cellular processes including cell adhesion, migration and transformation. This protein has a substrate domain with up to 15 tyrosines that are potential kinase substrates, able to serve as docking sites for proteins with SH2 or PTB domains. Cas interacts with focal adhesion plaques and is phosphorylated by the tyrosine kinases FAK and Src. A number of effector molecules have been shown to interact with Cas and play a role in its function, including c-crk and v-crk, two adaptor proteins involved in intracellular signaling. Cas function is dependent on tyrosine phosphorylation of its substrate domain, suggesting that tyrosine phosphorylation of Cas in part regulates its control of adhesion and migration. To determine whether the substrate domain alone when tyrosine phosphorylated could signal, we have constructed a chimeric Cas molecule that is phosphorylated independently of upstream signals. Results We found that a tyrosine phosphorylated Cas substrate domain acts as a dominant negative mutant by blocking Cas-mediated signaling events, including JNK activation by the oncogene v-crk in transient and stable lines and v-crk transformation. This block was the result of competition for binding partners as the chimera competed for binding to endogenous c-crk and exogenously expressed v-crk. Conclusion Our approach suggests a novel method to study adaptor proteins that require phosphorylation, and indicates that mere tyrosine phosphorylation of the substrate domain of Cas is not sufficient for its function.

  17. Epilepsy and Brain Tumors

    Institute of Scientific and Technical Information of China (English)

    Zhi-yi Sha

    2009-01-01

    @@ Epidemiology It is estimated 61,414 new cases of primary brain tumors are expected to be diagnosed in 2009 in the U.S. The incidence statistic of 61,414 persons diagnosed per year includes both malignant (22,738) and non-malignant (38,677) brain tumors. (Data from American Brain Tumor Association). During the years 2004-2005, approximately 359,000 people in the United States were living with the diagnosis of a primary brain or central nervous system tumor. Specifically, more than 81,000 persons were living with a malignant tumor, more than 267,000 persons with a benign tumor. For every 100,000 people in the United States, approximately 131 are living following the diagnosis of a brain tumor. This represents a prevalence rate of 130.8 per 100,000 person years[1].

  18. Formylbenzene diazonium hexafluorophosphate reagent for tyrosine-selective modification of proteins and the introduction of a bioorthogonal aldehyde.

    Science.gov (United States)

    Gavrilyuk, Julia; Ban, Hitoshi; Nagano, Masanobu; Hakamata, Wataru; Barbas, Carlos F

    2012-12-19

    4-Formylbenzene diazonium hexafluorophosphate (FBDP) is a novel bench-stable crystalline diazonium salt that reacts selectively with tyrosine to install a bioorthogonal aldehyde functionality. Model studies with N-acyl-tyrosine methylamide allowed us to identify conditions optimal for tyrosine ligation reactions with small peptides and proteins. FBDP-based conjugation was used for the facile introduction of small molecule tags, poly(ethylene glycol) chains (PEGylation), and functional small molecules onto model proteins and to label the surface of living cells.

  19. Formylbenzene diazonium hexafluorophosphate reagent for tyrosine-selective modification of proteins and the introduction of a bioorthogonal aldehyde

    OpenAIRE

    Gavrilyuk, Julia; Ban, Hitoshi; Nagano, Masanobu; Hakamata, Wataru; Barbas, Carlos F.

    2012-01-01

    4-Formylbenzene diazonium hexafluorophosphate (FBDP) is a novel bench-stable crystalline diazonium salt that reacts selectively with tyrosine to install a bioorthogonal aldehyde functionality. Model studies with N-acyl-tyrosine methylamide allowed us to identify conditions optimal for tyrosine ligation reactions with small peptides and proteins. FBDP-based conjugation was used for the facile introduction of small molecule tags, poly(ethylene) glycol chains (PEGylation), and functional small m...

  20. A Novel Method for Detection of Glycoproteins on Sodium Dodecyl Sulphate Polyacrylamide Gel Using Radio-Iodinated Tyrosine

    DEFF Research Database (Denmark)

    Nalla, Amarnadh; Draz, Hossam M.; Dole, Anita

    2009-01-01

    The aim of this study is to develop a novel method for detection of glycoproteins on polyacrylamide gel. In this method, radio-iodinated-tyrosine (125I-tyrosine) was conjugated to glycoprotein by schiff's base mechanism on the sodium dodecyl sulfate- polyacrylamide gel. Ovalbumin and Concanavalin...... of glycoproteins using 125I-tyrosine selectively detected ovalbumin. Present results showed that MPD enhanced glycoprotein detection method can be used as a sensitive tool for the detection of glycoproteins on polyacrylamide gel...

  1. Adaptor protein GRB2 promotes Src tyrosine kinase activation and podosomal organization by protein-tyrosine phosphatase ϵ in osteoclasts.

    Science.gov (United States)

    Levy-Apter, Einat; Finkelshtein, Eynat; Vemulapalli, Vidyasiri; Li, Shawn S-C; Bedford, Mark T; Elson, Ari

    2014-12-26

    The non-receptor isoform of protein-tyrosine phosphatase ϵ (cyt-PTPe) supports adhesion of bone-resorbing osteoclasts by activating Src downstream of integrins. Loss of cyt-PTPe reduces Src activity in osteoclasts, reduces resorption of mineralized matrix both in vivo and in cell culture, and induces mild osteopetrosis in young female PTPe KO mice. Activation of Src by cyt-PTPe is dependent upon this phosphatase undergoing phosphorylation at its C-terminal Tyr-638 by partially active Src. To understand how cyt-PTPe activates Src, we screened 73 Src homology 2 (SH2) domains for binding to Tyr(P)-638 of cyt-PTPe. The SH2 domain of GRB2 bound Tyr(P)-638 of cyt-PTPe most prominently, whereas the Src SH2 domain did not bind at all, suggesting that GRB2 may link PTPe with downstream molecules. Further studies indicated that GRB2 is required for activation of Src by cyt-PTPe in osteoclast-like cells (OCLs) in culture. Overexpression of GRB2 in OCLs increased activating phosphorylation of Src at Tyr-416 and of cyt-PTPe at Tyr-638; opposite results were obtained when GRB2 expression was reduced by shRNA or by gene inactivation. Phosphorylation of cyt-PTPe at Tyr-683 and its association with GRB2 are integrin-driven processes in OCLs, and cyt-PTPe undergoes autodephosphorylation at Tyr-683, thus limiting Src activation by integrins. Reduced GRB2 expression also reduced the ability of bone marrow precursors to differentiate into OCLs and reduced the fraction of OCLs in which podosomal adhesion structures assume organization typical of active, resorbing cells. We conclude that GRB2 physically links cyt-PTPe with Src and enables cyt-PTPe to activate Src downstream of activated integrins in OCLs. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Excess amounts of 3-iodo-l-tyrosine induce Parkinson-like features in experimental approaches of Parkinsonism.

    Science.gov (United States)

    Fernández-Espejo, Emilio; Bis-Humbert, Cristian

    2018-06-06

    3-iodo-l-tyrosine might play a role in Parkinson's disease since this molecule is able, at high concentration, to inhibit tyrosine-hydroxylase activity, the rate-limiting enzyme in dopamine biosynthesis. The possible Parkinson-like effects of 3-iodo-l-tyrosine were tested on three experimental approaches in mice: cultured substantia nigra neurons, the enteric nervous system of the jejunum after intra-peritoneal infusions, and the nigrostriatal system following unilateral intrabrain injections. 3-iodo-l-tyrosine, a physiological molecule, was used at concentrations higher than its serum levels in humans. Parkinson-like signs were evaluated through abnormal aggregation of α-synuclein and tyrosine-hydroxylase, loss of tyrosine-hydroxylase-expressing and striatum-projecting neurons and fibers, reduced tyrosine-hydroxylase density, and Parkinson-like motor and non-motor deficits. The retrograde tracer FluoroGold was used in the brain model. The findings revealed that excess amounts of 3-iodo-l-tyrosine induce Parkinson-like effects in the three experimental approaches. Thus, culture neurons of substantia nigra show, after 3-iodo-l-tyrosine exposure, intracytoplasmic inclusions that express α-synuclein and tyrosine-hydroxylase. Intra-peritoneal infusions of 3-iodo-l-tyrosine cause, in the long-term, α-synuclein aggregation, thicker α-synuclein-positive fibers, and loss of tyrosine-hydroxylase-positive cells and fibers in intramural plexuses and ganglia of the jejunum. Infusion of 3-iodo-l-tyrosine into the left dorsal striata of mice damages the nigrostriatal system, as revealed through lower striatal tyrosine-hydroxylase density, reduced number of tyrosine-hydroxylase-expressing and striatum-projecting neurons in the left substantia nigra, as well as the emergence of Parkinson-like behavioral deficits such as akinesia, bradykinesia, motor disbalance, and locomotion directional bias. In conclusion, excess amounts of 3-iodo-l-tyrosine induce Parkinson-like features in

  3. Synthesis of 6-[18F] and 4-[18F]fluoro-L-m-tyrosines via regioselective radiofluorodestannylation

    International Nuclear Information System (INIS)

    Namavari, Mohammad; Satyamurthy, N.; Phelps, M.E.; Barrio, J.R.; California Univ., Los Angeles, CA

    1993-01-01

    The regioselective radiofluorodestannylation of 6-trimethylstannyl-L-m-tyrosine derivative with [ 18 F]F 2 and [ 18 F]acetyl hypofluorite afforded, after acid hydrolysis, 6-[ 18 F]fluoro-L-m-tyrosine in radiochemical yields of 23 and 17%, respectively. Similarly, 4-[ 18 F]fluoro-L-m-tyrosine was synthesized in 11% radiochemical yield from the corresponding 4-trimethylstannyl-L-m-tyrosine derivative using [ 18 F]F 2 . The structural analyses of precursors, intermediates, and the final products (after 18 F decay), were carried out by 1 H, 13 C, 19 F, 119 Sn-NMR and high resolution mass spectroscopy. (author)

  4. A study on the protein-tyrosine kinase inhibitor, Genistein against radiation mortality on Swiss albino mice

    International Nuclear Information System (INIS)

    Lata, Manju; Patni, Shikha; Gaur, Ajay; Bhatia, A.L.

    2007-01-01

    Full text: The radioprotective effects of an acute administration of the isoflavone, Genistein (4', 5, 7-trihydroxyflavone) obtained from Soya foods has been investigated in adult mice. Genistein is also classified as a phytoestrogen. Genistein (4', 5, 7-trihydroxyflavone) is a naturally occurring isoflavone mainly found in legumes, such as soyabeans. Genistein has gained increasing attention because of its association with beneficial effects for treatment of cardiovascular disease, high blood pressure, osteoporosis, breast cancer, and prostate cancer. Genistein block protein-tyrosine kinase and other enzymes that trigger tumor formation. Genistein apparently reverse the process in which cancerous cells loose their individual identity. Mice were administered with different doses (100, 200, 300 and 400 mg/kg body weight) of Genistein before 8 Gy gamma radiations and optimum dose (200 mg/kg) was worked out for the experiment. The dose of Genistein (200 mg/kg) was administered intra peritoneally (I.P.; in 0.5 ml) to mice 15 minutes and 24 hrs before gamma irradiation. Mice treated with Genistein (200 mg/kg), 24 hr before irradiation demonstrated a significant increase in 30-day survival in contrast to mice treated with Genistein 15 minutes before irradiation

  5. Patients harboring EGFR mutation after primary resistance to crizotinib and response to EGFR-tyrosine kinase inhibitor

    Directory of Open Access Journals (Sweden)

    Wang WX

    2016-01-01

    Full Text Available Wenxian Wang,1 Xiaowen Jiang,1 Zhengbo Song,1,2 Yiping Zhang1,2 1Department of Chemotherapy, Zhejiang Cancer Hospital, 2Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, Zhejiang, People’s Republic of China Abstract: Anaplastic lymphoma kinase (ALK rearrangement lung cancer responds to ALK tyrosine kinase inhibitors. It is known that many cases ultimately acquired resistance to crizotinib. However, a case of primary resistance is rare. We present a case of harboring exon 19 deletion in epidermal growth factor receptor in ALK rearranged lung adenocarcinoma, who experienced a partial tumor response to icotinib after failure with crizotinib therapy and chemotherapy. Considering the partial response, we conclude that it is important to find the cause of resistance to crizotinib. We detected gene mutations with plasma by the next-generation sequencing; the next-generation sequencing demonstrates an attractive system to identify mutations improving the outcome of patients with a deadly disease. Keywords: non-small cell lung cancer, anaplastic lymphoma kinase, crizotinib, epidermal growth factor receptor

  6. Wild Roman chamomile extracts and phenolic compounds: enzymatic assays and molecular modelling studies with VEGFR-2 tyrosine kinase.

    Science.gov (United States)

    Guimarães, Rafaela; Calhelha, Ricardo C; Froufe, Hugo J C; Abreu, Rui M V; Carvalho, Ana Maria; Queiroz, Maria João R P; Ferreira, Isabel C F R

    2016-01-01

    Angiogenesis is a process by which new blood vessels are formed from the pre-existing vasculature, and it is a key process that leads to tumour development. Some studies have recognized phenolic compounds as chemopreventive agents; flavonoids, in particular, seem to suppress the growth of tumor cells modifying the cell cycle. Herein, the antiangiogenic activity of Roman chamomile (Chamaemelum nobile L.) extracts (methanolic extract and infusion) and the main phenolic compounds present (apigenin, apigenin-7-O-glucoside, caffeic acid, chlorogenic acid, luteolin, and luteolin-7-O-glucoside) was evaluated through enzymatic assays using the tyrosine kinase intracellular domain of the Vascular Endothelium Growth Factor Receptor-2 (VEGFR-2), which is a transmembrane receptor expressed fundamentally in endothelial cells involved in angiogenesis, and molecular modelling studies. The methanolic extract showed a lower IC50 value (concentration that provided 50% of VEGFR-2 inhibition) than the infusion, 269 and 301 μg mL(-1), respectively. Regarding phenolic compounds, luteolin and apigenin showed the highest capacity to inhibit the phosphorylation of VEGFR-2, leading us to believe that these compounds are involved in the activity revealed by the methanolic extract.

  7. LC-MS/MS assay for the quantitation of the tyrosine kinase inhibitor neratinib in human plasma.

    Science.gov (United States)

    Kiesel, Brian F; Parise, Robert A; Wong, Alvin; Keyvanjah, Kiana; Jacobs, Samuel; Beumer, Jan H

    2017-02-05

    Neratinib is an orally available tyrosine kinase inhibitor targeting HER2 (ERBB2) and EGFR (ERBB). It is being clinically evaluated for the treatment of breast and other solid tumors types as a single agent or in combination with other chemotherapies. In support of several phase I/II clinical trials investigating neratinib combinations, we developed and validated a novel LC-MS/MS assay for the quantification of neratinib in 100μL of human plasma with a stable isotopic internal standard. Analytes were extracted from plasma using protein precipitation and evaporation of the resulting supernatant followed by resuspension. Chromatographic separation was achieved using an Acquity UPLC BEH Shield RP18 column and a gradient methanol-water mobile phase containing 10% ammonium acetate. An ABI 4000 mass spectrometer and electrospray positive mode ionization were used for detection. The assay was linear from 2 to 1,000ng/mL and proved to be accurate (98.9-106.5%) and precise (neratinib. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A Case of Squamous Cell Carcinoma of Unknown Primary that Responded to the Multi-Tyrosine Kinase Inhibitor Lenvatinib

    Directory of Open Access Journals (Sweden)

    Reiko Kimura-Tsuchiya

    2018-02-01

    Full Text Available Lenvatinib is an oral tyrosine kinase inhibitor of vascular endothelial growth factor receptors 1, 2, and 3, fibroblast growth factor receptors 1 through 4, as well as platelet-derived growth factor receptor α, RET, and KIT. At present, lenvatinib is used in the treatment of thyroid cancer and renal cell carcinoma. We herein report a case of a 67-year-old patient with squamous cell carcinoma of unknown primary who was effectively treated with lenvatinib. The patient was initially diagnosed as having undifferentiated thyroid cancer, and after total thyroidectomy and bilateral lymph node dissection, lenvatinib was administered for the treatment of residual lymph node metastasis. A computed tomography scan after 1 month of lenvatinib administration showed marked regression of the lymph nodes, but interstitial pneumonia was also detected. Because the drug lymphocyte stimulation test for lenvatinib was strongly positive, we concluded that the interstitial pneumonia was induced by lenvatinib. The interstitial pneumonia only improved by the withdrawal of lenvatinib. Finally, his thyroid tumor was diagnosed as a metastasis of squamous cell carcinoma; however, we were unable to identify the primary lesion. This is the first reported case of interstitial pneumonia induced by lenvatinib.

  9. Tyrosine kinase ETK/BMX is up-regulated in bladder cancer and predicts poor prognosis in patients with cystectomy.

    Directory of Open Access Journals (Sweden)

    Shengjie Guo

    2011-03-01

    Full Text Available Deregulation of the non-receptor tyrosine kinase ETK/BMX has been reported in several solid tumors. In this report, we demonstrated that ETK expression is progressively increased during bladder cancer progression. We found that down-regulation of ETK in bladder cancer cells attenuated STAT3 and AKT activity whereas exogenous overexpression of ETK had opposite effects, suggesting that deregulation of ETK may attribute to the elevated activity of STAT3 and AKT frequently detected in bladder cancer. The survival, migration and invasion of bladder cancer cells were significantly compromised when ETK expression was knocked down by a specific shRNA. In addition, we showed that ETK localizes to mitochondria in bladder cancer cells through interacting with Bcl-XL and regulating ROS production and drug sensitivity. Therefore, ETK may play an important role in regulating survival, migration and invasion by modulating multiple signaling pathways in bladder cancer cells. Immunohistochemistry analysis on tissue microarrays containing 619 human bladder tissue samples shows that ETK is significantly upregulated during bladder cancer development and progression and ETK expression level predicts the survival rate of patients with cystectomy. Taken together, our results suggest that ETK may potentially serve as a new drug target for bladder cancer treatment as well as a biomarker which could be used to identify patients with higher mortality risk, who may be benefited from therapeutics targeting ETK activity.

  10. MUC1 (CD227) interacts with lck tyrosine kinase in Jurkat lymphoma cells and normal T cells.

    Science.gov (United States)

    Mukherjee, P; Tinder, T L; Basu, G D; Gendler, S J

    2005-01-01

    MUC1 (CD227) is a large transmembrane epithelial mucin glycoprotein, which is aberrantly overexpressed in most adenocarcinomas and is a target for immune therapy for epithelial tumors. Recently, MUC1 has been detected in a variety of hematopoietic cell malignancies including T and B cell lymphomas and myelomas; however, its function in these cells is not clearly defined. Using the Jurkat T cell lymphoma cell line and normal human T cells, we demonstrate that MUC1 is not only expressed in these cells but is also phosphorylated upon T cell receptor (TCR) ligation and associates with the Src-related T cell tyrosine kinase, p56lck. Upon TCR-mediated activation of Jurkat cells, MUC1 is found in the low-density membrane fractions, where linker of T cell activation is contained. Abrogation of MUC1 expression in Jurkat cells by MUC1-specific small interfering RNA resulted in defects in TCR-mediated downstream signaling events associated with T cell activation. These include reduction in Ca2+ influx and extracellular signal-regulated kinase 1/2 phosphorylation, leading to a decrease in CD69 expression, proliferation, and interleukin-2 production. These results suggest a regulatory role of MUC1 in modulating proximal signal transduction events through its interaction with proteins of the activation complex.

  11. Selective Sensing of Tyrosine Phosphorylation in Peptides Using Terbium(III Complexes

    Directory of Open Access Journals (Sweden)

    Jun Sumaoka

    2016-01-01

    Full Text Available Phosphorylation of tyrosine residues in proteins, as well as their dephosphorylation, is closely related to various diseases. However, this phosphorylation is usually accompanied by more abundant phosphorylation of serine and threonine residues in the proteins and covers only 0.05% of the total phosphorylation. Accordingly, highly selective detection of phosphorylated tyrosine in proteins is an urgent subject. In this review, recent developments in this field are described. Monomeric and binuclear TbIII complexes, which emit notable luminescence only in the presence of phosphotyrosine (pTyr, have been developed. There, the benzene ring of pTyr functions as an antenna and transfers its photoexcitation energy to the TbIII ion as the emission center. Even in the coexistence of phosphoserine (pSer and phosphothreonine (pThr, pTyr can be efficintly detected with high selectivity. Simply by adding these TbIII complexes to the solutions, phosphorylation of tyrosine in peptides by protein tyrosine kinases and dephosphorylation by protein tyrosine phosphatases can be successfully visualized in a real-time fashion. Furthermore, the activities of various inhibitors on these enzymes are quantitatively evaluated, indicating a strong potential of the method for efficient screening of eminent inhibitors from a number of candidates.

  12. Tyrosine 402 Phosphorylation of Pyk2 Is Involved in Ionomycin-Induced Neurotransmitter Release

    Science.gov (United States)

    Zhang, Zhao; Zhang, Yun; Mou, Zheng; Chu, Shifeng; Chen, Xiaoyu; He, Wenbin; Guo, Xiaofeng; Yuan, Yuhe; Takahashi, Masami; Chen, Naihong

    2014-01-01

    Protein tyrosine kinases, which are highly expressed in the central nervous system, are implicated in many neural processes. However, the relationship between protein tyrosine kinases and neurotransmitter release remains unknown. In this study, we found that ionomycin, a Ca2+ ionophore, concurrently induced asynchronous neurotransmitter release and phosphorylation of a non-receptor protein tyrosine kinase, proline-rich tyrosine kinase 2 (Pyk2), in clonal rat pheochromocytoma PC12 cells and cerebellar granule cells, whereas introduction of Pyk2 siRNA dramatically suppressed ionomycin-induced neurotransmitter release. Further study indicated that Tyr-402 (Y402) in Pyk2, instead of other tyrosine sites, underwent rapid phosphorylation after ionomycin induction in 1 min to 2 min. We demonstrated that the mutant of Pyk2 Y402 could abolish ionomycin-induced dopamine (DA) release by transfecting cells with recombinant Pyk2 and its mutants (Y402F, Y579F, Y580F, and Y881F). In addition, Src inhibition could prolong phosphorylation of Pyk2 Y402 and increase DA release. These findings suggested that Pyk2 was involved in ionomycin-induced neurotransmitter release through phosphorylation of Y402. PMID:24718602

  13. Free radical-mediated stimulation of tyrosine-specific protein kinase in rat liver plasma membrane

    International Nuclear Information System (INIS)

    Chan, T.M.; Tatoyan, A.; Cheng, E.; Shargill, N.S.; Pleta, M.

    1986-01-01

    Incorporation of 32 P from (γ- 32 P)-ATP into endogenous proteins of plasma membranes isolated from rat liver was significantly increased by several naphthoquinones including menadione. This apparent stimulation of membrane-associated protein kinase activity by these compounds was most striking (up to 6-7 fold) when the synthetic copolymers containing glutamate and tyrosine residues (4:1) was used as substrate. Since tyrosine residues are the only possible phosphate acceptor in the copolymers, the quinone-stimulated liver membrane protein kinase is most likely tyrosine specific. Although not required for protein kinase activity, dithiothreitol (DTT) was necessary for its stimulation by these quinonoid compounds. Hydrolysis of ATP was not significantly affected by quinones under the experimental conditions. Both menadione and vitamin k 5 increased phosphorylation of plasma membrane proteins of molecular weight 45 and 60 kd. The stimulatory effect of menadione on protein phosphorylation was prevented by the addition of superoxide dismutase. Dihydroxyfumerate, which spontaneously produces various radical species, and H 2 O 2 , also stimulated tyrosine-specific protein phosphorylation. DTT was also required for their full effect. It, therefore, appears that quinonone stimulation of tyrosine-specific protein phosphorylation is mediated by oxygen radicals

  14. Tyrosine phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression

    Science.gov (United States)

    Zhong, Li; Li, Baozheng; Jayandharan, Giridhararao; Mah, Cathryn S.; Govindasamy, Lakshmanan; Agbandje-McKenna, Mavis; Herzog, Roland W.; Weigel-Van Aken, Kirsten A.; Hobbs, Jacqueline A.; Zolotukhin, Sergei; Muzyczka, Nicholas; Srivastava, Arun

    2008-01-01

    We have documented that epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK) signaling negatively affects intracellular trafficking and transduction efficiency of recombinant adeno-associated virus 2 (AAV2) vectors. Specifically, inhibition of EGFR-PTK signaling leads to decreased ubiquitination of AAV2 capsid proteins, which in turn, facilitates viral nuclear transport by limiting proteasome-mediated degradation of AAV2 vectors. In the present studies, we observed that AAV capsids can indeed be phosphorylated at tyrosine residues by EGFR-PTK in in vitro phosphorylation assays and that phosphorylated AAV capsids retain their structural integrity. However, although phosphorylated AAV vectors enter cells as efficiently as their unphosphorylated counterparts, their transduction efficiency is significantly reduced. This reduction is not due to impaired viral second-strand DNA synthesis since transduction efficiency of both single-stranded AAV (ssAAV) and self-complementary AAV (scAAV) vectors is decreased by ~68% and ~74%, respectively. We also observed that intracellular trafficking of tyrosine-phosphorylated AAV vectors from cytoplasm to nucleus is significantly decreased, which leads to ubiquitination of AAV capsids followed by proteasome-mediated degradation, although downstream consequences of capsid ubiquitination may also be affected by tyrosine-phosphorylation. These studies provide new insights into the role of tyrosine-phosphorylation of AAV capsids in various steps in the virus life cycle, which has implications in the optimal use of recombinant AAV vectors in human gene therapy. PMID:18834608

  15. Identification and analysis of a novel protein-tyrosine kinase from bovine thymus

    International Nuclear Information System (INIS)

    Zioncheck, T.F.; Harrison, M.L.; Geahlen, R.L.

    1986-01-01

    A cytosolic protein-tyrosine kinase has been identified and purified to near homogeneity from calf thymus by using the phosphorylation of the tyrosine-containing peptide angiotensin I as an assay. Specific peptide phosphorylating activity was enhanced by carrying out the assay at high ionic strength (2M NaCl). The inclusion of NaCl at this concentration acts to stimulate endogenous protein-tyrosine kinase activity while simultaneously inhibiting other endogenous kinases. The purification procedure involved extraction of the enzyme from calf-thymus and sequential chromatography on columns of DEAE-cellulose, heparin-agarose, casein-sepharose, butylagarose, and Sephadex G-75. Analysis of the most highly purified preparations by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single Coomassie blue-stained band of 41 KDa. This molecular weight was consistent with results obtained from gel filtration, indicating that the enzyme exists as a monomer. The enzyme has also been found to catalyze an autophosphorylation reaction. Incubation of the enzyme with Mn 2+ and [γ- 32 P]ATP led to its modification on a tyrosine residue. Phosphopeptide mapping experiments indicated that the 41 KDa kinase was distinct from p56, the major membrane-associated protein-tyrosine kinase in T lymphocytes

  16. Biochemical evaluation of a parsley tyrosine decarboxylase results in a novel 4-hydroxyphenylacetaldehyde synthase enzyme.

    Science.gov (United States)

    Torrens-Spence, Michael P; Gillaspy, Glenda; Zhao, Bingyu; Harich, Kim; White, Robert H; Li, Jianyong

    2012-02-10

    Plant aromatic amino acid decarboxylases (AAADs) are effectively indistinguishable from plant aromatic acetaldehyde syntheses (AASs) through primary sequence comparison. Spectroscopic analyses of several characterized AASs and AAADs were performed to look for absorbance spectral identifiers. Although this limited survey proved inconclusive, the resulting work enabled the reevaluation of several characterized plant AAS and AAAD enzymes. Upon completion, a previously reported parsley AAAD protein was demonstrated to have AAS activity. Substrate specificity tests demonstrate that this novel AAS enzyme has a unique substrate specificity towards tyrosine (km 0.46mM) and dopa (km 1.40mM). Metabolite analysis established the abundance of tyrosine and absence of dopa in parsley extracts. Such analysis indicates that tyrosine is likely to be the sole physiological substrate. The resulting information suggests that this gene is responsible for the in vivo production of 4-hydroxyphenylacetaldehyde (4-HPAA). This is the first reported case of an AAS enzyme utilizing tyrosine as a primary substrate and the first report of a single enzyme capable of producing 4-HPAA from tyrosine. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Development of amperometric L-tyrosine sensor based on Fe-doped hydroxyapatite nanoparticles

    International Nuclear Information System (INIS)

    Kanchana, P.; Lavanya, N.; Sekar, C.

    2014-01-01

    A novel biosensor based on Fe-doped hydroxyapatite (Fe-HA) nanoparticles and tyrosinase has been developed for the detection of L-tyrosine. Nanostructured Fe-HA was synthesized by a simple microwave irradiation method, and its phase formation, morphology and magnetic property were examined by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). Electrochemical performance of the nano Fe-HA/tyrosinase modified glassy carbon electrode (GCE) for detection of L-tyrosine was investigated by cyclic voltammetry (CV) and amperometric methods. The fabricated biosensor exhibited a linear response to L-tyrosine over a wide concentration range of 1.0 × 10 −7 to 1.0 × 10 −5 M with a detection limit of 245 nM at pH 7.0. In addition, the fabricated sensor showed an excellent selectivity, good reproducibility, long-term stability and anti-interference towards the determination of L-tyrosine. - Highlights: • A novel amperometric L-tyrosine biosensor has been fabricated using nanostructured Fe-HA. • The fabricated sensor exhibits a wide linear range, good stability and high reproducibility. • Fe-HA assists microenvironment and direct electron transfer between enzyme and electrode surface. • The nano Fe-HA and electrode fabrication procedure are simple and less expensive

  18. New tyrosinase inhibitory decapeptide: Molecular insights into the role of tyrosine residues.

    Science.gov (United States)

    Ochiai, Akihito; Tanaka, Seiya; Imai, Yuta; Yoshida, Hisashi; Kanaoka, Takumi; Tanaka, Takaaki; Taniguchi, Masayuki

    2016-06-01

    Tyrosinase, a rate-limiting enzyme in melanin biosynthesis, catalyzes the hydroxylation of l-tyrosine to 3,4-dihydroxy-l-phenylalanine (l-dopa) (monophenolase reaction) and the subsequent oxidation of l-dopa to l-dopaquinone (diphenolase reaction). Thus, tyrosinase inhibitors have been proposed as skin-lightening agents; however, many of the existing inhibitors cannot be widely used in the cosmetic industry due to their high cytotoxicity and instability. On the other hand, some tyrosinase inhibitory peptides have been reported as safe. In this study, we found that the peptide TH10, which has a similar sequence to the characterized inhibitory peptide P4, strongly inhibits the monophenolase reaction with a half-maximal inhibitory concentration of 102 μM. Seven of the ten amino acid residues in TH10 were identical to P4; however, TH10 possesses one N-terminal tyrosine, whereas P4 contains three tyrosine residues located at its N-terminus, center, and C-terminus. Subsequent analysis using sequence-shuffled variants indicated that the tyrosine residues located at the N-terminus and center of P4 have little to no contribution to its inhibitory activity. Furthermore, docking simulation analysis of these peptides with mushroom tyrosinase demonstrated that the active tyrosine residue was positioned close to copper ions, suggesting that TH10 and P4 bind to tyrosinase as a substrate analogue. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Ab initio study on electron excitation and electron transfer in tryptophan-tyrosine system

    International Nuclear Information System (INIS)

    Tong Jing; Li Xiangyuan

    2002-01-01

    In this article, ab initio calculation has been performed to evaluate the transition energy of electronic excitation in tryptophan and tyrosine by using semiempirical molecular orbital method AM1 and complete active space self-consistent field method. The solvent effect has been considered by means of the conductor-like screening model. After geometric optimizations of isolated tryptophan and tyrosine, and their corresponding radicals and cations, reaction heat of these electron transfer reactions have been obtained by the means of complete active space self-consistent field method. The transition energies from the ground state, respectively, to the lowest excited state and to the lowest triplet state of these two amino acids are also calculated and compared with the experimentally observed values. The ionization potential and electron affinity are also calculated for tryptophan and tyrosine employing Koopmans' theorem and ab initio calculation. Compared with the experimental measurements, the theoretical results are found satisfactory. Theoretical results give good explanations on the experimental phenomena that N 3 · can preferably oxide the side chain of tryptophan residue and then the electron transfer from tyrosine residue to tryptophan residue follows in peptides involving tryptophan and tyrosine

  20. Topoisomerase I tyrosine phosphorylation site and the DNA-interactive site

    International Nuclear Information System (INIS)

    Roll, D.; Durban, E.

    1986-01-01

    Phosphorylation of topoisomerase I (topo I) at serine by NII kinase is accompanied by stimulation of enzymatic activity. In contrast, phosphorylation at tyrosine by tyrosine kinase seems to inhibit enzymatic activity. This inhibition may be caused by interference of the phosphorylated tyrosine residue with the interaction of topo I with DNA. To test this, topo I was labeled with crude membrane fraction enriched for EGF-receptor kinase in presence of γ-P32-ATP and electrophoresed on SDS-polyacrylamide gels. Stained topo I bands were excised, dried, digested with trypsin and analyzed on a C18 reverse-phase HPLC column. One major peak of radioactivity eluted at fraction 23 with 20% acetonitrile. To obtain the DNA-interactive site, topo I was incubated with pBR322 DNA labeled by nick-translation followed by DNase I treatment, and electrophoresis on SDS-polyacrylamide gels. Tryptic peptides were generated and analyzed by reverse-phase HPLC. A major peak of radioactivity eluted at fraction 16-18 with 15.5-17% acetonitrile. Studies are in progress to resolve whether (a) the two peptides are different, i.e. the tyrosine-P site and DNA-tyrosine interactive site are localized at different regions of the topo I or (b) the peptide sequences are identical but the covalent attachment of deoxynucleotides altered the peptide's elution from the HPLC column