WorldWideScience

Sample records for tyrosine hydroxylase activity

  1. Identification and optimization of tyrosine hydroxylase activity in Mucuna pruriens DC. var. utilis.

    Science.gov (United States)

    Luthra, Pratibha Mehta; Singh, Satendra

    2010-05-01

    Tyrosine hydroxylase, an iron containing tetrahydrobiopterin dependent monooxygenase (tyrosine 3-monooxygenase; EC 1.14.16.2), catalyzes the rate-limiting step in which L: -dopa is formed from the substrate L-tyrosine. L-Dopa concentration and activity of L-tyrosine hydroxylase enzyme were measured in roots, stem, leaves, pods, and immature seeds of Mucuna pruriens. Immature seeds contained maximum L-dopa content and mature leaves possessed maximum catalytic activity of tyrosine hydroxylase. Tyrosine hydroxylase from leaf homogenate was characterized as a 55 kDa protein by SDS-PAGE and Western-blot analysis with monoclonal mouse IgG2a tyrosine hydroxylase antibody. The conditions for maximum tyrosine hydroxylase activity from the leaf extract were optimized with respect to temperature, pH, cofactor 6-MPH(4), and divalent metal ions. The tyrosine hydroxylase from leaf extract possessed a K (m) value of 808.63 microM for L-tyrosine at 37 degrees C and pH 6.0. The activity of the enzyme was slightly inhibited at 2,000 microM L-tyrosine. Higher concentrations of the cofactor 6-MPH(4), however, completely inhibited the synthesis of L-dopa. Tyrosine hydroxylase converted specific monophenols such as L-tyrosine (808.63 microM) and tyramine (K (m) 1.1 mM) to diphenols L-dopa and dopamine, respectively. Fe(II) activated the enzyme while higher concentration of other divalent metals reduced its activity. For the first time, tyrosine hydroxylase from M. pruriens is being reported in this study.

  2. Genetics Home Reference: tyrosine hydroxylase deficiency

    Science.gov (United States)

    ... Email Facebook Twitter Home Health Conditions TH deficiency Tyrosine hydroxylase deficiency Printable PDF Open All Close All ... Javascript to view the expand/collapse boxes. Description Tyrosine hydroxylase (TH) deficiency is a disorder that primarily ...

  3. Role of ascorbic acid on tyrosine hydroxylase activity in the adrenal gland of guinea pig

    International Nuclear Information System (INIS)

    Nakashima, Yoko; Sanada, Hiroo; Suzue, Ryokuero; Kawada, Shoji

    1976-01-01

    The decrease of tyrosine hydroxylase activity in adrenal homogenate in scurvy was recovered after the administration of ascorbic acid. The causes of the increase in the enzyme activity after the administration of ascorbic acid have been studied. 1. No significant elevation in the enzyme activity was observed after the administration of reserpine to the scorbutic guinea pig. 2. A dose of metal chelating agent, α, α'-dipyridyl, prevented the ascorbic acid-induced or reserpine-induced increase in enzyme activity in the scorbutic and the nonscorbutic guinea pigs, respectively. 3. Tyrosine hydroxylase activity was partially recovered by the administration of FeSO 4 to the scorbutic guinea pig. From these results, it became clear that the induction of tyrosine hydroxylase which was not observed in scurvy was due to the deficiency of Fe 2+ . These results suggested that ascorbic acid affected the induction of this enzyme via Fe 2+ . (auth.)

  4. Role of ascorbic acid on tyrosine hydroxylase activity in the adrenal gland of guinea pig

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Y; Sanada, H; Suzue, R; Kawada, S [National Inst. of Nutrition, Tokyo (Japan)

    1976-10-01

    The decrease of tyrosine hydroxylase activity in adrenal homogenate in scurvy was recovered after the administration of ascorbic acid. The causes of the increase in the enzyme activity after the administration of ascorbic acid have been studied. 1. No significant elevation in the enzyme activity was observed after the administration of reserpine to the scorbutic guinea pig. 2. A dose of metal chelating agent, ..cap alpha.., ..cap alpha..'-dipyridyl, prevented the ascorbic acid-induced or reserpine-induced increase in enzyme activity in the scorbutic and the nonscorbutic guinea pigs, respectively. 3. Tyrosine hydroxylase activity was partially recovered by the administration of FeSO/sub 4/ to the scorbutic guinea pig. From these results, it became clear that the induction of tyrosine hydroxylase which was not observed in scurvy was due to the deficiency of Fe/sup 2 +/. These results suggested that ascorbic acid affected the induction of this enzyme via Fe/sup 2 +/.

  5. Highly sensitive assay for tyrosine hydroxylase activity by high-performance liquid chromatography.

    Science.gov (United States)

    Nagatsu, T; Oka, K; Kato, T

    1979-07-21

    A highly sensitive assay for tyrosine hydroxylase (TH) activity by high-performance liquid chromatography (HPLC) with amperometric detection was devised based on the rapid isolation of enzymatically formed DOPA by a double-column procedure, the columns fitted together sequentially (the top column of Amberlite CG-50 and the bottom column of aluminium oxide). DOPA was adsorbed on the second aluminium oxide column, then eluted with 0.5 M hydrochloric acid, and assayed by HPLC with amperometric detection. D-Tyrosine was used for the control. alpha-Methyldopa was added to the incubation mixture as an internal standard after incubation. This assay was more sensitive than radioassays and 5 pmol of DOPA formed enzymatically could be measured in the presence of saturating concentrations of tyrosine and 6-methyltetrahydropterin. The TH activity in 2 mg of human putamen could be easily measured, and this method was found to be particularly suitable for the assay of TH activity in a small number of nuclei from animal and human brain.

  6. Morphological Features of Tyrosine Hydroxylase Immunoreactive ...

    African Journals Online (AJOL)

    The current immunohistochemical study used the antibody against tyrosine hydroxylase (TH) to observe the immunoreactive elements in the mouse pancreas. The results indicated the presence of immunoreactive nerve fibers and endocrine cells. The immunopositive nerve fibers appeared as thick and thin bundles; thick ...

  7. Detection of tyrosine hydroxylase in dopaminergic neuron cell using gold nanoparticles-based barcode DNA.

    Science.gov (United States)

    An, Jeung Hee; Oh, Byung-Keun; Choi, Jeong Woo

    2013-04-01

    Tyrosine hydroxylase, the rate-limiting enzyme of catecholamine biosysthesis, is predominantly expressed in several cell groups within the brain, including the dopaminergic neurons of the substantia nigra and ventral tegmental area. We evaluated the efficacy of this protein-detection method in detecting tyrosine hydroxylase in normal and oxidative stress damaged dopaminergic cells. In this study, a coupling of DNA barcode and bead-based immnunoassay for detecting tyrosine hydroxylaser with PCR-like sensitivity is reported. The method relies on magnetic nanoparticles with antibodies and nanoparticles that are encoded with DNA and antibodies that can sandwich the target protein captured by the nanoparticle-bound antibodies. The aggregate sandwich structures are magnetically separated from solution, and treated to remove the conjugated barcode DNA. The DNA barcodes were identified by PCR analysis. The concentration of tyrosine hydroxylase in dopaminergic cell can be easily and rapidly detected using bio-barcode assay. The bio-barcode assay is a rapid and high-throughput screening tool to detect of neurotransmitter such as dopamine.

  8. Brain catecholamine depletion and motor impairment in a Th knock-in mouse with type B tyrosine hydroxylase deficiency.

    Science.gov (United States)

    Korner, Germaine; Noain, Daniela; Ying, Ming; Hole, Magnus; Flydal, Marte I; Scherer, Tanja; Allegri, Gabriella; Rassi, Anahita; Fingerhut, Ralph; Becu-Villalobos, Damasia; Pillai, Samyuktha; Wueest, Stephan; Konrad, Daniel; Lauber-Biason, Anna; Baumann, Christian R; Bindoff, Laurence A; Martinez, Aurora; Thöny, Beat

    2015-10-01

    Tyrosine hydroxylase catalyses the hydroxylation of L-tyrosine to l-DOPA, the rate-limiting step in the synthesis of catecholamines. Mutations in the TH gene encoding tyrosine hydroxylase are associated with the autosomal recessive disorder tyrosine hydroxylase deficiency, which manifests phenotypes varying from infantile parkinsonism and DOPA-responsive dystonia, also termed type A, to complex encephalopathy with perinatal onset, termed type B. We generated homozygous Th knock-in mice with the mutation Th-p.R203H, equivalent to the most recurrent human mutation associated with type B tyrosine hydroxylase deficiency (TH-p.R233H), often unresponsive to l-DOPA treatment. The Th knock-in mice showed normal survival and food intake, but hypotension, hypokinesia, reduced motor coordination, wide-based gate and catalepsy. This phenotype was associated with a gradual loss of central catecholamines and the serious manifestations of motor impairment presented diurnal fluctuation but did not improve with standard l-DOPA treatment. The mutant tyrosine hydroxylase enzyme was unstable and exhibited deficient stabilization by catecholamines, leading to decline of brain tyrosine hydroxylase-immunoreactivity in the Th knock-in mice. In fact the substantia nigra presented an almost normal level of mutant tyrosine hydroxylase protein but distinct absence of the enzyme was observed in the striatum, indicating a mutation-associated mislocalization of tyrosine hydroxylase in the nigrostriatal pathway. This hypomorphic mouse model thus provides understanding on pathomechanisms in type B tyrosine hydroxylase deficiency and a platform for the evaluation of novel therapeutics for movement disorders with loss of dopaminergic input to the striatum. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Effects of methamphetamine exposure on anxiety-like behavior in the open field test, corticosterone, and hippocampal tyrosine hydroxylase in adolescent and adult mice.

    Science.gov (United States)

    Struntz, Katelyn H; Siegel, Jessica A

    2018-08-01

    Methamphetamine (MA) is a psychomotor stimulant drug that can alter behavior, the stress response system, and the dopaminergic system. The effects of MA can be modulated by age, however relatively little research has examined the acute effects of MA in adolescents and how the effects compare to those found in adults. The hippocampal dopamine system is altered by MA exposure and can modulate anxiety-like behavior, but the effects of MA on the hippocampal dopamine system have not been well studied, especially in adolescent animals. In order to assess potential age differences in the effects of MA exposure, this research examined the effects of acute MA exposure on locomotor and anxiety-like behavior in the open field test, plasma corticosterone levels, and hippocampal total tyrosine hydroxylase and phosphorylated tyrosine hydroxylase levels in adolescent and adult male C57BL/6 J mice. Tyrosine hydroxylase is the rate limiting enzyme in the synthesis of dopamine and was used as a marker of the hippocampal dopaminergic system. Mice were exposed to saline or 4 mg/kg MA and locomotor and anxiety-like behavior were measured in the open field test. Serum and brains were collected immediately after testing and plasma corticosterone and hippocampal total tyrosine hydroxylase and phosphorylated tyrosine hydroxylase levels measured. MA-exposed mice showed increased locomotor activity and anxiety-like behavior in the open field test compared with saline controls, regardless of age. There was no effect of MA on plasma corticosterone levels or hippocampal total tyrosine hydroxylase or phosphorylated tyrosine hydroxylase levels in either adolescent or adult mice. These data suggest that acute MA exposure during adolescence and adulthood increases locomotor activity and anxiety-like behavior but does not alter plasma corticosterone levels or hippocampal total tyrosine hydroxylase or phosphorylated tyrosine hydroxylase levels, and that these effects are not modulated by age

  10. Organization and evolution of the rat tyrosine hydroxylase gene

    International Nuclear Information System (INIS)

    Brown, E.R.; Coker, G.T. III; O'Malley, K.L.

    1987-01-01

    This report describes the organization of the rat tyrosine hydroxylase (TH) gene and compares its structure with the human phenylalanine hydroxylase gene. Both genes are single copy and contain 13 exons separated by 12 introns. Remarkably, the positions of 10 out 12 intron/exon boundaries are identical for the two genes. These results support the idea that these hydroxylases genes are members of a gene family which has a common evolutionary origin. The authors predict that this ancestral gene would have encoded exons similar to those of TH prior to evolutionary drift to other members of this gene family

  11. Restricted expression of Neuroglobin in the mouse retina and co-localization with Melanopsin and Tyrosine Hydroxylase

    DEFF Research Database (Denmark)

    Hundahl, C A; Fahrenkrug, J; Luuk, H

    2012-01-01

    level of Melanopsin and Tyrosine Hydroxylase were investigated in Ngb-null mice. Ngb-immunoreactivity was found in a few neurons of the ganglion cell and inner nuclear layers co-expressing Melanopsin and Tyrosine Hydroxylase, respectively. Ngb deficiency neither affected the level of Melanopsin...... and Tyrosine Hydroxylase proteins nor the intactness of PACAP-positive retinohypothalamic projections in the suprachiasmatic nucleus. Based on the present results, it seems unlikely that Ngb could have a major role in retinal oxygen homeostasis and neuronal survival under normal conditions. The present study...

  12. Tyrosine hydroxylase polymorphism (C-824T) and hypertension: a population-based study

    DEFF Research Database (Denmark)

    Nielsen, Søren J; Jeppesen, Jørgen Lykke; Torp-Pedersen, Christian

    2010-01-01

    Sympathetic nervous system (SNS) overactivity is present in a large proportion of the hypertensive population and precedes the development of established hypertension. Variations in the proximal promoter of the tyrosine hydroxylase (TH) gene have been shown to influence biochemical and physiologi......Sympathetic nervous system (SNS) overactivity is present in a large proportion of the hypertensive population and precedes the development of established hypertension. Variations in the proximal promoter of the tyrosine hydroxylase (TH) gene have been shown to influence biochemical...

  13. Restricted expression of Neuroglobin in the mouse retina and co-localization with Melanopsin and Tyrosine Hydroxylase

    International Nuclear Information System (INIS)

    Hundahl, C.A.; Fahrenkrug, J.; Luuk, H.; Hay-Schmidt, A.; Hannibal, J.

    2012-01-01

    Highlights: ► Restricted Neuroglobin expression in the mouse retina. ► Antibody validation using Neuroglobin-null mice. ► Co-expression of Neuroglobin with Melanopsin and tyrosine hydroxylase. ► No effect of Neuroglobin deficiency on neuronal survival. -- Abstract: Neuroglobin (Ngb), a neuronal specific oxygen binding heme-globin, reported to be expressed at high levels in most layers of the murine retina. Ngb’s function is presently unknown, but based on its high expression level and oxygen binding capabilities Ngb was proposed to function as an oxygen reservoir facilitating oxygen metabolism in highly active neurons or to function as a neuroprotectant. In the present study, we re-examined the expression pattern of Ngb in the retina using a highly validated antibody. Furthermore, intactness of retino-hypothalamic projections and the retinal expression level of Melanopsin and Tyrosine Hydroxylase were investigated in Ngb-null mice. Ngb-immunoreactivity was found in a few neurons of the ganglion cell and inner nuclear layers co-expressing Melanopsin and Tyrosine Hydroxylase, respectively. Ngb deficiency neither affected the level of Melanopsin and Tyrosine Hydroxylase proteins nor the intactness of PACAP-positive retinohypothalamic projections in the suprachiasmatic nucleus. Based on the present results, it seems unlikely that Ngb could have a major role in retinal oxygen homeostasis and neuronal survival under normal conditions. The present study suggests that a number of previously published reports have relied on antibodies with dubious specificity.

  14. Restricted expression of Neuroglobin in the mouse retina and co-localization with Melanopsin and Tyrosine Hydroxylase

    Energy Technology Data Exchange (ETDEWEB)

    Hundahl, C.A., E-mail: c.hundahl@gmail.com [Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, Copenhagen (Denmark); Centre of Excellence for Translational Medicine, University of Tartu, Tartu (Estonia); Department of Physiology, University of Tartu, Tartu (Estonia); Department of Neuroscience and Pharmacology, The Panum Institute, University of Copenhagen, Copenhagen (Denmark); Fahrenkrug, J. [Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, Copenhagen (Denmark); Luuk, H. [Centre of Excellence for Translational Medicine, University of Tartu, Tartu (Estonia); Department of Physiology, University of Tartu, Tartu (Estonia); Hay-Schmidt, A. [Department of Neuroscience and Pharmacology, The Panum Institute, University of Copenhagen, Copenhagen (Denmark); Hannibal, J. [Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, Copenhagen (Denmark)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer Restricted Neuroglobin expression in the mouse retina. Black-Right-Pointing-Pointer Antibody validation using Neuroglobin-null mice. Black-Right-Pointing-Pointer Co-expression of Neuroglobin with Melanopsin and tyrosine hydroxylase. Black-Right-Pointing-Pointer No effect of Neuroglobin deficiency on neuronal survival. -- Abstract: Neuroglobin (Ngb), a neuronal specific oxygen binding heme-globin, reported to be expressed at high levels in most layers of the murine retina. Ngb's function is presently unknown, but based on its high expression level and oxygen binding capabilities Ngb was proposed to function as an oxygen reservoir facilitating oxygen metabolism in highly active neurons or to function as a neuroprotectant. In the present study, we re-examined the expression pattern of Ngb in the retina using a highly validated antibody. Furthermore, intactness of retino-hypothalamic projections and the retinal expression level of Melanopsin and Tyrosine Hydroxylase were investigated in Ngb-null mice. Ngb-immunoreactivity was found in a few neurons of the ganglion cell and inner nuclear layers co-expressing Melanopsin and Tyrosine Hydroxylase, respectively. Ngb deficiency neither affected the level of Melanopsin and Tyrosine Hydroxylase proteins nor the intactness of PACAP-positive retinohypothalamic projections in the suprachiasmatic nucleus. Based on the present results, it seems unlikely that Ngb could have a major role in retinal oxygen homeostasis and neuronal survival under normal conditions. The present study suggests that a number of previously published reports have relied on antibodies with dubious specificity.

  15. Novel Mutations in the Tyrosine Hydroxylase Gene in the First Czech Patient with Tyrosine Hydroxylase Deficiency

    Directory of Open Access Journals (Sweden)

    K. Szentiványi

    2012-01-01

    Full Text Available Tyrosine hydroxylase deficiency manifests mainly in early childhood and includes two clinical phenotypes: an infantile progressive hypokinetic-rigid syndrome with dystonia (type A and a neonatal complex encephalopathy (type B. The biochemical diagnostics is exclusively based on the quantitative determination of the neurotransmitters or their metabolites in cerebrospinal fluid (CSF. The implementation of neurotransmitter analysis in clinical praxis is necessary for early diagnosis and adequate treatment. Neurotransmitter metabolites in CSF were analyzed in 82 children (at the age 1 month to 17 years with clinical suspicion for neurometabolic disorders using high performance liquid chromatography (HPLC with electrochemical detection. The CSF level of homovanillic acid (HVA was markedly decreased in three children (64, 79 and 94 nmol/l in comparison to age related controls (lower limit 218–450 nmol/l. Neurological findings including severe psychomotor retardation, quadruspasticity and microcephaly accompanied with marked dystonia, excessive sweating in the first patient was compatible with the diagnosis of tyrosine hydroxylase (TH deficiency (type B and subsequent molecular analysis revealed two novel heterozygous mutations c.636A>C and c.1124G>C in the TH gene. The treatment with L-DOPA/carbidopa resulted in the improvement of dystonia. Magnetic resonance imaging studies in two other patients with microcephaly revealed postischaemic brain damage, therefore secondary HVA deficit was considered in these children. Diagnostic work-up in patients with neurometabolic disorders should include analysis of neurotransmitter metabolites in CSF.

  16. Mobilisation of store Ca2+ activates tyrosine hydroxylase in bovine adrenal chromaffin cells

    International Nuclear Information System (INIS)

    McKenzie, S.; Marley, P.D.

    2001-01-01

    Full text: Many receptor agonists are able to activate tyrosine hydroxylase (TOH) in bovine adrenal chromaffin cells. The majority of these are dependent on extracellular Ca 2+ for this action. Entry of extracellular Ca 2+ through voltage-operated Ca 2+ channels is very effective at activating TOH. The contribution of the intracellular Ca 2+ stores to TOH activation however is not known. Previous studies have shown that mobilisation of intracellular Ca 2+ stores is effective at increasing phosphorylation of TOH, but its effect on TOH activity has not been studied. Therefore, in the present study, the effect of mobilisation of store Ca 2+ on TOH activity was investigated using primary cultures of bovine adrenal chromaffin cells. Cells were prepared from abattoir tissue and cultured for 3-6 days. TOH activity was determined over 10 minutes, measuring the 14 CO 2 produced following the hydroxylation and rapid decarboxylation of 14 C-tyrosine offered to intact cells. Caffeine increased TOH activity in a concentration-dependent manner with a maximum response of 100% increase at 20mM. This effect was not due to osmolarity since 20mM sucrose had no effect.Nor was it due to inhibition of phosphodiesterases, since the effect of caffeine was still seen in the presence of 1mM IBMX. However,caffeine-induced TOH activation was substantially reduced in the absence of extracellular Ca 2+ . The results suggest that TOH activity can be increased by mobilising intracellular Ca 2+ stores, but that this effect involves extracellular Ca 2+ influx, possibly through store-operated channels. Copyright (2001) Australian Neuroscience Society

  17. The alpha(2)-adrenoceptors do not modify the activity of tyrosine hydroxylase, corticoliberine, and neuropeptide Y producing hypothalamic magnocellular neurons ion the Long Evans and Brattleboro rats

    DEFF Research Database (Denmark)

    Bundzikova, J; Pirnik, Z; Zelena, D

    2010-01-01

    The hypothalamic supraoptic (SON) and paraventricular (PVN) nuclei are activated by body salt-fluid variations. Stimulation of alpha(2)-adrenoceptors by an agonist-xylazine (XYL) activates oxytocinergic but not vasopressinergic magnocellular neurons. In this study, tyrosine hydroxylase (TH), cort...

  18. Tyrosine hydroxylase in the ventral tegmental area of rams with high or low libido-A role for dopamine.

    Science.gov (United States)

    Kramer, A C; Mirto, A J; Austin, K J; Roselli, C E; Alexander, B M

    2017-12-01

    Dopamine synthesis in the ventral tegmental area (VTA) is necessary for the reinforcement of sexual behavior. The objective of this study determined if sexual stimuli initiates reward, and whether reward is attenuated in sexually inactive rams. Sexually active rams were exposed to urine from estrous (n=4) or ovariectomized (n=3) ewes with inactive rams (n=3) exposed to urine from estrous ewes. Following exposure, rams were exsanguinated and brains perfused. Alternating sections of the VTA were stained for Fos related antigens (FRA), tyrosine hydroxylase, and dopamine beta-hydroxylase activity. Forebrain tissue, mid-sagittal ventral to the anterior corpus callosum, was stained for dopamine D 2 receptors. Concentrations of cortisol was determined prior to and following exposure. Exposure to ovariectomized-ewe urine in sexually active rams did not influence (P=0.6) FRA expression, but fewer (PSexually inactive rams had fewer (Psexually active rams following exposure to estrous ewe urine. VTA neurons staining positive for dopamine beta-hydroxylase did not differ by sexual activity (P=0.44) or urine exposure (P=0.07). Exposure to stimulus did not influence (P=0.46) numbers of forebrain neurons staining positive for dopamine D2 receptors in sexually active rams, but fewer (P=0.04) neurons stain positive in inactive rams. Serum concentrations of cortisol did not differ (P≥0.52) among rams prior to or following stimulus. In conclusion sexual inactivity is unlikely due to stress, but may be partially a result of decreased tyrosine hydroxylase and/or the response to dopamine. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A unique dual activity amino acid hydroxylase in Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Gaskell

    Full Text Available The genome of the protozoan parasite Toxoplasma gondii was found to contain two genes encoding tyrosine hydroxylase; that produces L-DOPA. The encoded enzymes metabolize phenylalanine as well as tyrosine with substrate preference for tyrosine. Thus the enzymes catabolize phenylalanine to tyrosine and tyrosine to L-DOPA. The catalytic domain descriptive of this class of enzymes is conserved with the parasite enzyme and exhibits similar kinetic properties to metazoan tyrosine hydroxylases, but contains a unique N-terminal extension with a signal sequence motif. One of the genes, TgAaaH1, is constitutively expressed while the other gene, TgAaaH2, is induced during formation of the bradyzoites of the cyst stages of the life cycle. This is the first description of an aromatic amino acid hydroxylase in an apicomplexan parasite. Extensive searching of apicomplexan genome sequences revealed an ortholog in Neospora caninum but not in Eimeria, Cryptosporidium, Theileria, or Plasmodium. Possible role(s of these bi-functional enzymes during host infection are discussed.

  20. Polymorphism in the tyrosine hydroxylase (TH gene is associated with activity-impulsivity in German Shepherd Dogs.

    Directory of Open Access Journals (Sweden)

    Eniko Kubinyi

    Full Text Available We investigated the association between repeat polymorphism in intron 4 of the tyrosine hydroxylase (TH gene and two personality traits, activity-impulsivity and inattention, in German Shepherd Dogs. The behaviour of 104 dogs was characterized by two instruments: (1 the previously validated Dog-Attention Deficit Hyperactivity Disorder Rating Scale (Dog-ADHD RS filled in by the dog owners and (2 the newly developed Activity-impulsivity Behavioural Scale (AIBS containing four subtests, scored by the experimenters. Internal consistency, inter-observer reliability, test-retest reliability and convergent validity were demonstrated for AIBS. Dogs possessing at least one short allele were proved to be more active-impulsive by both instruments, compared to dogs carrying two copies of the long allele (activity-impulsivity scale of Dog-ADHD RS: p = 0.007; AIBS: p = 0.023. The results have some potential to support human studies; however, further research should reveal the molecular function of the TH gene variants, and look for the effect in more breeds.

  1. Further RFLPs at the human tyrosine hydroxylase locus

    Energy Technology Data Exchange (ETDEWEB)

    Koerner, J; Uhlhaas, S; Propping, P; Gal, A [Institut fuer Humangenetik der Universitaet, Bonn (West Germany); Mallet, J [CNRS, Gif-sur-Yvette (France)

    1988-09-26

    The human cDNA clone (Ty7) of tyrosine hydroxylase was used. A two-allele (C1 and C2) Bg1II RFLP has been described recently with bands either at 6.9 or 8.4 kb (2). In addition, a faint invariant band appears at 9.0 kb. A third Bg1II allele (C3) with a band at 8.0 kb was detected. The allele frequency was studied in 35 and 39 unrelated Caucasians. Co-dominant inheritance for both RFLPs described here was demonstrated in 6 nuclear kindreds. RFLPs were observed under normal hybridization and wash stringencies.

  2. Tyrosine hydroxylase positive nerves and mast cells in the porcine gallbladder

    Directory of Open Access Journals (Sweden)

    I. Stefanov

    2017-03-01

    Full Text Available The aim of this study was to detect the localisation of tyrosine hydroxylase (TH positive nerve fibres (THN and distribution of tyrosine hydroxylase positive mast cells (THMC in the wall of porcine gallbladder. THN were observed as single fibres, nerve fibres forming perivascular plexuses and nerve fibres grouped within the nerve fascicles. In the gallbladder`s fundus, body and neck, the TH+ fibres formed mucosal, muscular and serosal nonganglionated nerve plexuses. Toluidine blue (TB staining was used to confirm that the TH positive cells were mast cells. The number of THMC in the propria of gallbladder`s fundus, body and neck was significantly higher than in the muscular and serosal layers in both genders. The number of mast cells in the musculature was higher than in the serosa. The density and location of the THMC were similar to the TB positive (with gamma meta-chromasia mast cells in both males and females, and statistically significant difference was not established. In conclusion, original data concerning the existence and localisation of catecholaminergic nerves and THMC distribution in the porcine gallbladder’s wall are presented. The results could con-tribute to the body of knowledge of functional communication between autonomic nerves and mast cells in the gallbladder.

  3. Quantitative radioautographic determination of brain tyrosine hydroxylase after direct transfer into nitro-cellulose and immunochemical detection

    International Nuclear Information System (INIS)

    Weissmann, D.; Labatut, R.; Gillon, J.Y.

    1988-01-01

    An improved quantitative immuno chemical determination of tyrosine hydroxylase brain concentrations was designed by using direct transfer into nitro-cellulose from 20 μm thick brain sections followed by immuno-detection and quantitative radioautography [fr

  4. Human phenylalanine hydroxylase is activated by H2O2: a novel mechanism for increasing the L-tyrosine supply for melanogenesis in melanocytes

    International Nuclear Information System (INIS)

    Schallreuter, Karin U.; Wazir, Umar; Kothari, Sonal; Gibbons, Nicholas C.J.; Moore, Jeremy; Wood, John M.

    2004-01-01

    Epidermal phenylalanine hydroxylase (PAH) produces L-tyrosine from the essential amino acid L-phenylalanine supporting melanogenesis in human melanocytes. Those PAH activities increase linearly in the different skin phototypes I-VI (Fitzpatrick classification) and also increase up to 24 h after UVB light with only one minimal erythemal dose. Since UVB generates also H 2 O 2 , we here asked the question whether this reactive oxygen species could influence the activity of pure recombinant human PAH. Under saturating conditions with the substrate L-phenylalanine (1 x 10 -3 M), the V max for enzyme activity increased 4-fold by H 2 O 2 (>2.0 x 10 -3 M). Lineweaver-Burk analysis identified a mixed activation mechanism involving both the regulatory and catalytic domains of PAH. Hyperchem molecular modelling and Deep View analysis support oxidation of the single Trp 120 residue to 5-OH-Trp 120 by H 2 O 2 causing a conformational change in the regulatory domain. PAH was still activated by H 2 O 2 in the presence of the electron donor/cofactor 6(R)-L-erythro-5,6,7,8-tetrahydrobiopterin despite slow oxidation of this cofactor. In vivo FT-Raman spectroscopy confirmed decreased epidermal phenylalanine in association with increased tyrosine after UVB exposure. Hence, generation of H 2 O 2 by UVB can activate epidermal PAH leading to an increased L-tyrosine pool for melanogenesis

  5. Effect of runway training on rat brain tyrosine hydroxylase: differential effect of continuous and partial reinforcement schedules.

    Science.gov (United States)

    Boarder, M R; Feldon, J; Gray, J A; Fillenz, M

    1979-12-01

    Previous experiments have implicated ascending noradrenergic systems in the development of the behavioural responses to different patterns of reward. In this report food deprived male Sprague--Dawley rats were trained to run a straight alley for good reward on a continuous reinforcement (CRF) or a partial reinforcement (PRF) schedule. Tyrosine hydroxylase measured in a partially solubilized preparation from hippocampus and hypothalamus at the end of acquisition was not different from controls, indicating that enzyme induction does not occur during either training schedules. However, hippocampal synaptosomal tyrosine hydroxylation rates from the CRF group was significantly higher than from either the PRF group or the handled controls. This indicates that at the end of the acquisition schedule the noradrenergic projection to hippocampus was more active in the CRF group than with the PRF group or the handled control.

  6. Excess amounts of 3-iodo-l-tyrosine induce Parkinson-like features in experimental approaches of Parkinsonism.

    Science.gov (United States)

    Fernández-Espejo, Emilio; Bis-Humbert, Cristian

    2018-06-06

    3-iodo-l-tyrosine might play a role in Parkinson's disease since this molecule is able, at high concentration, to inhibit tyrosine-hydroxylase activity, the rate-limiting enzyme in dopamine biosynthesis. The possible Parkinson-like effects of 3-iodo-l-tyrosine were tested on three experimental approaches in mice: cultured substantia nigra neurons, the enteric nervous system of the jejunum after intra-peritoneal infusions, and the nigrostriatal system following unilateral intrabrain injections. 3-iodo-l-tyrosine, a physiological molecule, was used at concentrations higher than its serum levels in humans. Parkinson-like signs were evaluated through abnormal aggregation of α-synuclein and tyrosine-hydroxylase, loss of tyrosine-hydroxylase-expressing and striatum-projecting neurons and fibers, reduced tyrosine-hydroxylase density, and Parkinson-like motor and non-motor deficits. The retrograde tracer FluoroGold was used in the brain model. The findings revealed that excess amounts of 3-iodo-l-tyrosine induce Parkinson-like effects in the three experimental approaches. Thus, culture neurons of substantia nigra show, after 3-iodo-l-tyrosine exposure, intracytoplasmic inclusions that express α-synuclein and tyrosine-hydroxylase. Intra-peritoneal infusions of 3-iodo-l-tyrosine cause, in the long-term, α-synuclein aggregation, thicker α-synuclein-positive fibers, and loss of tyrosine-hydroxylase-positive cells and fibers in intramural plexuses and ganglia of the jejunum. Infusion of 3-iodo-l-tyrosine into the left dorsal striata of mice damages the nigrostriatal system, as revealed through lower striatal tyrosine-hydroxylase density, reduced number of tyrosine-hydroxylase-expressing and striatum-projecting neurons in the left substantia nigra, as well as the emergence of Parkinson-like behavioral deficits such as akinesia, bradykinesia, motor disbalance, and locomotion directional bias. In conclusion, excess amounts of 3-iodo-l-tyrosine induce Parkinson-like features in

  7. Tissue Specific Expression of Cre in Rat Tyrosine Hydroxylase and Dopamine Active Transporter-Positive Neurons.

    Science.gov (United States)

    Liu, Zhenyi; Brown, Andrew; Fisher, Dan; Wu, Yumei; Warren, Joe; Cui, Xiaoxia

    2016-01-01

    The rat is a preferred model system over the mouse for neurological studies, and cell type-specific Cre expression in the rat enables precise ablation of gene function in neurons of interest, which is especially valuable for neurodegenerative disease modeling and optogenetics. Yet, few such Cre rats are available. Here we report the characterization of two Cre rats, tyrosine hydroxylase (TH)-Cre and dopamine active transporter (DAT or Slc6a3)-Cre, by using a combination of immunohistochemistry (IHC) and mRNA fluorescence in situ hybridization (FISH) as well as a fluorescent reporter for Cre activity. We detected Cre expression in expected neurons in both Cre lines. Interestingly, we also found that in Th-Cre rats, but not DAT-Cre rats, Cre is expressed in female germ cells, allowing germline excision of the floxed allele and hence the generation of whole-body knockout rats. In summary, our data demonstrate that targeted integration of Cre cassette lead to faithful recapitulation of expression pattern of the endogenous promoter, and mRNA FISH, in addition to IHC, is an effective method for the analysis of the spatiotemporal gene expression patterns in the rat brain, alleviating the dependence on high quality antibodies that are often not available against rat proteins. The Th-Cre and the DAT-Cre rat lines express Cre in selective subsets of dopaminergic neurons and should be particularly useful for researches on Parkinson's disease.

  8. Effects of manganese on tyrosine hydroxylase (TH) activity and TH-phosphorylation in a dopaminergic neural cell line

    International Nuclear Information System (INIS)

    Zhang Danhui; Kanthasamy, Arthi; Anantharam, Vellareddy; Kanthasamy, Anumantha

    2011-01-01

    Manganese (Mn) exposure causes manganism, a neurological disorder similar to Parkinson's disease. However, the cellular mechanism by which Mn impairs the dopaminergic neurotransmitter system remains unclear. We previously demonstrated that caspase-3-dependent proteolytic activation of protein kinase C delta (PKCδ) plays a key role in Mn-induced apoptotic cell death in dopaminergic neurons. Recently, we showed that PKCδ negatively regulates tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis, by enhancing protein phosphatase-2A activity in dopaminergic neurons. Here, we report that Mn exposure can affect the enzymatic activity of TH, the rate-limiting enzyme in dopamine synthesis, by activating PKCδ-PP2A signaling pathway in a dopaminergic cell model. Low dose Mn (3-10 μM) exposure to differentiated mesencephalic dopaminergic neuronal cells for 3 h induced a significant increase in TH activity and phosphorylation of TH-Ser40. The PKCδ specific inhibitor rottlerin did not prevent Mn-induced TH activity or TH-Ser40 phosphorylation. On the contrary, chronic exposure to 0.1-1 μM Mn for 24 h induced a dose-dependent decrease in TH activity. Interestingly, chronic Mn treatment significantly increased PKCδ kinase activity and protein phosphatase 2A (PP2A) enzyme activity. Treatment with the PKCδ inhibitor rottlerin almost completely prevented chronic Mn-induced reduction in TH activity, as well as increased PP2A activity. Neither acute nor chronic Mn exposures induced any cytotoxic cell death or altered TH protein levels. Collectively, these results demonstrate that low dose Mn exposure impairs TH activity in dopaminergic cells through activation of PKCδ and PP2A activity.

  9. Transcriptional regulation of the tyrosine hydroxylase gene by glucocorticoid and cyclic AMP

    International Nuclear Information System (INIS)

    Lewis, E.J.; Harrington, C.A.; Chikaraishi, D.M.

    1987-01-01

    Glucocorticoid and cyclic AMP increase tyrosine hydroxylase (TH) activity and mRNA levels in pheochromocytoma cultures. The transcriptional activity of the TH gene, as measured by nuclear run-on assay, is also increased when cultures are treated with the synthetic glucocorticoid dexamethasone or agents that increase intracellular cyclic AMP, such as forskolin and 8-BrcAMP. Both inducers effect transcriptional changes within 10 min after treatment and are maximal after 30 min for forskolin and after 60 min for dexamethasone. The 5' flanking sequences of the TH gene were fused to the bacterial gene chloramphenicol acetyltransferase (CAT), and the hybrid gene was transfected into pheochromocytoma cultures and GH 4 pituitary cells. In both cell lines, a region of the TH gene containing bases -272 to +27 conferred induction of CAT by cyclic AMP, but not by glucocorticoid. The same results were found when a region of the TH gene containing -773 to + 27 was used. Thus, the sequences required for induction of TH by cyclic AMP are contained within 272 bases of 5' flanking sequence, but sequences sufficient for glucocorticoid regulation are not contained with 773 bases

  10. The metabolism of L-phenylalanine and L-tyrosine by liver cells isolated from adrenalectomized rats and from streptozotocin-diabetic rats.

    OpenAIRE

    Stanley, J C; Fisher, M J; Pogson, C I

    1985-01-01

    Flux through, and maximal activities of, key enzymes of phenylalanine and tyrosine degradation were measured in liver cells prepared from adrenalectomized rats and from streptozotocin-diabetic rats. Adrenalectomy decreased the phenylalanine hydroxylase flux/activity ratio; this was restored by steroid treatment in vivo. Changes in the phosphorylation state of the hydroxylase may mediate these effects; there was no significant change in the maximal activity of the hydroxylase. Tyrosine metabol...

  11. Putaminal mosaic visualized by tyrosine hydroxylase immunohistochemistry in the human neostriatum.

    Directory of Open Access Journals (Sweden)

    Ryoma eMorigaki

    2016-04-01

    Full Text Available Among the basal ganglia-thalamocortical circuits, the putamen plays a critical role in the ‘motor’ circuits that control voluntary movements and motor learning. The human neostriatum comprises two functional subdivisions known as the striosome (patch and matrix compartments. Accumulating evidence suggests that compartment-specific dysregulations of dopamine activity might be involved in the disease-specific pathology and symptoms of human striatal diseases including movement disorders. This study was undertaken to examine whether or how striatal dopaminergic innervations are organized into the compartmentalized architecture found in the putamen of adult human brains. For this purpose, we used a highly sensitive immunohistochemistry technique to identify tyrosine hydroxylase (TH, EC 1.14.16.2, a marker for striatal dopaminergic axons and terminals, in formalin-fixed paraffin-embedded tissues obtained from autopsied human brains. Herein, we report that discrete compartmentalization of TH-labeled innervations occurs in the putamen, as in the caudate nucleus, with a higher density of TH labeling in the matrix compared to the striosomes. Our results provide anatomical evidence to support the hypothesis that compartment-specific dysfunction of the striosome-matrix dopaminergic systems might contribute to the genesis of movement disorders.

  12. Differential Expression of Tyrosine Hydroxylase Protein and Apoptosis-Related Genes in Differentiated and Undifferentiated SH-SY5Y Neuroblastoma Cells Treated with MPP+

    OpenAIRE

    Khwanraj, Kawinthra; Phruksaniyom, Chareerut; Madlah, Suriyat; Dharmasaroja, Permphan

    2015-01-01

    The human neuroblastoma SH-SY5Y cell line has been used as a dopaminergic cell model for Parkinson's disease research. Whether undifferentiated or differentiated SH-SY5Y cells are more suitable remains controversial. This study aims to evaluate the expression of apoptosis-related mRNAs activated by MPP+ and evaluate the differential expression of tyrosine hydroxylase (TH) in undifferentiated and retinoic acid- (RA-) induced differentiated cells. The western blot results showed a gradual decre...

  13. The expression and significance of tyrosine hydroxylase in the brain tissue of Parkinsons disease rats

    OpenAIRE

    Chen, Yuan; Lian, Yajun; Ma, Yunqing; Wu, Chuanjie; Zheng, Yake; Xie, Nanchang

    2017-01-01

    The expression and significance of tyrosine hydroxylase (TH) in brain tissue of rats with Parkinson's disease (PD) were explored and analyzed. A total of 120 clean-grade and healthy adult Wistar rats weighing 180–240 g were randomly divided equally into four groups according to the random number table method. Rats were sacrificed before and after the model establishment for 3, 6 or 8 weeks. The number of revolutions in rats was observed and the relative expression of TH mRNA in brain tissue w...

  14. Increased expression of tyrosine hydroxylase immunoreactivity in paraventricular and supraoptic neurons in illnesses with prolonged osmotic or nonosmotic stimulation of vasopressin release

    NARCIS (Netherlands)

    Panayotacopoulou, Maria T.; Malidelis, Yiannis I.; Fliers, Eric; Bouras, Constantin; Ravid, Rivka; Swaab, Dick F.

    2002-01-01

    Our previous studies indicated that in the human para-ventricular (PVN) and supraoptic (SON) nuclei, tyrosine hydroxylase (TH) - the first and rate-limiting enzyme in catecholamine synthesis - is localized mainly in magnocellular neurons and that antemortem factors regulate its expression. The

  15. Modulation of tyrosine hydroxylase gene expression in the central nervous system visualized by in situ hybridization

    International Nuclear Information System (INIS)

    Berod, A.; Biguet, N.F.; Dumas, S.; Bloch, B.; Mallet, J.

    1987-01-01

    cDNA probe was used for in situ hybridization studies on histological sections through the locus coeruleus, substantia nigra, and the ventral tegmental area of the rat brain. Experimental conditions were established that yielded no background and no signal when pBR322 was used as control probe. Using the tyrosine hydroxylase probe, the authors ascertained the specificity of the labeling over catecholaminergic cells by denervation experiments and comparison of the hybridization pattern with that of immunoreactivity. The use of 35 S-labeled probe enabled the hybridization signal to be resolved at the cellular level. A single injection of reserpine into the rat led to an increase of the intensity of the autoradiographic signal over the locus coeruleus area, confirming an RNA gel blot analysis. The potential of in situ hybridization to analyze patterns of modulation of gene activity as a result of nervous activity is discussed

  16. Effect of ghrelin receptor agonist and antagonist on the activity of arcuate nucleus tyrosine hydroxylase containing neurons in C57BL/6 male mice exposed to normal or high fat diet

    Czech Academy of Sciences Publication Activity Database

    Pirník, Z.; Majerčíková, Z.; Holubová, Martina; Pirník, R.; Železná, Blanka; Maletínská, Lenka; Kiss, A.

    2014-01-01

    Roč. 65, č. 4 (2014), s. 477-486 ISSN 0867-5910 Institutional support: RVO:61388963 Keywords : growth hormone secretagogue receptor * ghrelin receptor agonist * ghrelin receptor antagonist * high fat diet * tyrosine hydroxylase * arcuate nucleus * food intake Subject RIV: CE - Biochemistry Impact factor: 2.386, year: 2014

  17. Characterisation of tryptic peptides of phosphorylated tyrosine hydroxylase by high-pressure liquid chromatography electrospray ionisation mass spectrometry

    International Nuclear Information System (INIS)

    Graham, Mark E.; Dickson, Phillip W.; Dunkley, Peter R.; Nagy-Felsobuki, Ellak I. von

    2005-01-01

    Tyrosine hydroxylase (TH) is involved in the biosynthesis of catecholamines and is activated by phosphorylation. Phosphorylated TH was analysed using high-pressure liquid chromatography combined with electrospray mass spectrometry (HPLC ESI-MS). Two mass scanning methods were used to detect tryptic cleavage products of TH. In the positive electrospray ionisation mode (ESI+), the peptides that contain the phosphorylation sites of TH were identified. In the alternative method, a phosphopeptide was detected in the negative electrospray ionisation mode (ESI-) using single ion monitoring in combination with a sequential ESI+ switching experiment. A raised baseline interfered with detection of hydrophilic peptides in ESI-, with the signal-to-noise ratio indicating that the method was operating near the limit of detection for a conventional electrospray source. The switching method improved the certainty of identification of phosphopeptides

  18. Tyrosine hydroxylase regulatory domain as indicator of enzyme sensitivity to irradiation

    International Nuclear Information System (INIS)

    Mustafayeva, N.N.; Alieva, I.N.; Aliev, Ds.I.

    2002-01-01

    Full text: At the present time contra dictionary and variously kind opinions concern to effect of different level of irradiation on the structure and functional activity of the tyrosine hydroxylase (TH), the key a rate-limiting enzyme in the biosynthesis of catecholamines are discussed in this study. To date, the effect of the irradiation on the both catalytic and N-terminal regulatory domains of TH localized in the different parts of the brain has been established. Th is responsible for dopamine, noradrenaline and adrenaline catecholamines neuro mediators biosynthesis, so a number of pathological changes in an organism has been induced by the structural reorganization different parts of the TH domains under pathological effect of environment. The available conformational states of the human TH type 1 (hTH1) regulatory domain, the activity of which is regulated by the feedback inhibition of the catecholamine products including dopamine has been established by the method of molecular mechanics. It is shown that N-terminal sequence Met30-Ser40 of hTH1 located between the two a-helices (residues 16-29 and residues 41-59) has a number of low-energy conformational states. The most available structures consists of b-turn type II on the pentapeptide fragment of hTH1. This fragment distortion under pathological factors effect, i.e. irradiation may lead to global reorganization in enzyme structure as well as at the enzyme catalytic and regulatory functions

  19. Tyrosine hydroxylase-immunoreactivity and its relations with gonadotropin-releasing hormone and neuropeptide Y in the preoptic area of the guinea pig.

    Science.gov (United States)

    Bogus-Nowakowska, Krystyna; Równiak, Maciej; Hermanowicz-Sobieraj, Beata; Wasilewska, Barbara; Najdzion, Janusz; Robak, Anna

    2016-12-01

    The present study examines the distribution of tyrosine hydroxylase (TH) immunoreactivity and its morphological relationships with neuropeptide Y (NPY)- and gonadoliberin (GnRH)-immunoreactive (IR) structures in the preoptic area (POA) of the male guinea pig. Tyrosine hydroxylase was expressed in relatively small population of perikarya and they were mostly observed in the periventricular preoptic nucleus and medial preoptic area. The tyrosine hydroxylase-immunoreactive (TH-IR) fibers were dispersed troughout the whole POA. The highest density of these fibers was observed in the median preoptic nucleus, however, in the periventricular preoptic nucleus and medial preoptic area they were only slightly less numerous. In the lateral preoptic area, the density of TH-IR fibers was moderate. Two morphological types of TH-IR fibers were distinguished: smooth and varicose. Double immunofluorescence staining showed that TH and GnRH overlapped in the guinea pig POA but they never coexisted in the same structures. TH-IR fibers often intersected with GnRH-IR structures and many of them touched the GnRH-IR perikarya or dendrites. NPY wchich was abundantly present in the POA only in fibers showed topographical proximity with TH-IR structures. Althoug TH-IR perikarya and fibers were often touched by NPY-IR fibers, colocalization of TH and NPY in the same structures was very rare. There was only a small population of fibers which contained both NPY and TH. In conclusion, the morphological evidence of contacts between TH- and GnRH-IR nerve structures may be the basis of catecholaminergic control of GnRH release in the preoptic area of the male guinea pig. Moreover, TH-IR neurons were conatcted by NPY-IR fibers and TH and NPY colocalized in some fibers, thus NPY may regulate catecholaminergic neurons in the POA. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. The conversion of phenylalanine to tyrosine in man. Direct measurement by continuous intravenous tracer infusions of L-[ring-2H5]phenylalanine and L-[1-13C] tyrosine in the postabsorptive state

    International Nuclear Information System (INIS)

    Clarke, J.T.; Bier, D.M.

    1982-01-01

    Steady state phenylalanine and tyrosine turnover and the rate of conversion of phenylalanine of tyrosine in vivo were determined in 6 healthy postabsorptive adult volunteers. Continuous infusions of tracer amounts of L-[ring- 2 H5]phenylalanine were determined intravenously for 13-14 hr. After 9-10 hr, a priming dose followed by a continuous infusion of L-[1- 13 C]tyrosine was added and maintained, along with the [ 2 H5]phenylalanine infusion, for 4 hr. Venous plasma samples were obtained before the initiation of each infusion and every 30 min during the course of the combined [ 2 H5]phenylalanine and [ 13 C]tyrosine infusion for determination of isotopic enrichments of [ 2 H5]phenylalanine, [ 13 C]tyrosine, and [ 2 H4]tyrosine by gas chromatograph-mass spectrometric analysis of the N-trifluoroacetyl-, methyl ester derivatives of the amino acids. Calculated from the observed enrichments, free phenylalanine and tyrosine turnover rates were 36.1 +/- 5.1 mumole . kg-1 . h-1 and 39.8 +/- 3.5 mumole . kg-1 . h-1, respectively. Phenylalanine was converted to tyrosine at the rate of 5.83 +/- 0.59 mumole . kg-1 . h-1, accounting for approximately 16% of either the phenylalanine or the tyrosine flux. The results indicate that the normal basal steady state phenylalanine hydroxylase activity in vivo in man is lower than that obtained from phenylalanine loading studies. This supports the existence of some type of substance activation of the enzyme as reflected in the previously reported exponential relationship between phenylalanine concentration and phenylalanine hydroxylase activity in vitro. The use of continuous simultaneous infusions of tracer amounts of stable isotope-labeled phenylalanine and tyrosine provides a direct means for studying physiological regulation of phenylalanine hydroxylase activity in vivo

  1. Stable preparations of tyrosine hydroxylase provide the solution structure of the full-length enzyme

    Science.gov (United States)

    Bezem, Maria T.; Baumann, Anne; Skjærven, Lars; Meyer, Romain; Kursula, Petri; Martinez, Aurora; Flydal, Marte I.

    2016-01-01

    Tyrosine hydroxylase (TH) catalyzes the rate-limiting step in the biosynthesis of catecholamine neurotransmitters. TH is a highly complex enzyme at mechanistic, structural, and regulatory levels, and the preparation of kinetically and conformationally stable enzyme for structural characterization has been challenging. Here, we report on improved protocols for purification of recombinant human TH isoform 1 (TH1), which provide large amounts of pure, stable, active TH1 with an intact N-terminus. TH1 purified through fusion with a His-tagged maltose-binding protein on amylose resin was representative of the iron-bound functional enzyme, showing high activity and stabilization by the natural feedback inhibitor dopamine. TH1 purified through fusion with a His-tagged ZZ domain on TALON is remarkably stable, as it was partially inhibited by resin-derived cobalt. This more stable enzyme preparation provided high-quality small-angle X-ray scattering (SAXS) data and reliable structural models of full-length tetrameric TH1. The SAXS-derived model reveals an elongated conformation (Dmax = 20 nm) for TH1, different arrangement of the catalytic domains compared with the crystal structure of truncated forms, and an N-terminal region with an unstructured tail that hosts the phosphorylation sites and a separated Ala-rich helical motif that may have a role in regulation of TH by interacting with binding partners. PMID:27462005

  2. Derivation of mouse embryonic stem cell lines from tyrosine hydroxylase reporter mice crossed with a human SNCA transgenic mouse model of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Margarita Chumarina

    2017-03-01

    Full Text Available Mouse embryonic stem cell (mESC lines were derived by crossing heterozygous transgenic (tg mice expressing green fluorescent protein (GFP under the control of the rat tyrosine hydroxylase (TH promoter, with homozygous alpha-synuclein (aSYN mice expressing human mutant SNCAA53T under the control of the mouse Prion promoter (MoPrP, or wildtype (WT mice. The expression of GFP and human aSYN was validated by immunocytochemistry in midbrain neuron cultures upon differentiation of mESC lines using stromal cell-derived inducing activity. These mESC lines can help to study the impact of human aSYN expression in neurons and oligodendrocytes, and also trace GFP-expressing midbrain neurons.

  3. Biosynthesis of caffeic acid in Escherichia coli using its endogenous hydroxylase complex

    Directory of Open Access Journals (Sweden)

    Lin Yuheng

    2012-04-01

    Full Text Available Abstract Background Caffeic acid (3,4-dihydroxycinnamic acid is a natural phenolic compound derived from the plant phenylpropanoid pathway. Caffeic acid and its phenethyl ester (CAPE have attracted increasing attention for their various pharmaceutical properties and health-promoting effects. Nowadays, large-scale production of drugs or drug precursors via microbial approaches provides a promising alternative to chemical synthesis and extraction from plant sources. Results We first identified that an Escherichia coli native hydroxylase complex previously characterized as the 4-hydroxyphenylacetate 3-hydroxylase (4HPA3H was able to convert p-coumaric acid to caffeic acid efficiently. This critical enzymatic step catalyzed in plants by a membrane-associated cytochrome P450 enzyme, p-coumarate 3-hydroxylase (C3H, is difficult to be functionally expressed in prokaryotic systems. Moreover, the performances of two tyrosine ammonia lyases (TALs from Rhodobacter species were compared after overexpression in E. coli. The results indicated that the TAL from R. capsulatus (Rc possesses higher activity towards both tyrosine and L-dopa. Based on these findings, we further designed a dual pathway leading from tyrosine to caffeic acid consisting of the enzymes 4HPA3H and RcTAL. This heterologous pathway extended E. coli native tyrosine biosynthesis machinery and was able to produce caffeic acid (12.1 mg/L in minimal salt medium. Further improvement in production was accomplished by boosting tyrosine biosynthesis in E. coli, which involved the alleviation of tyrosine-induced feedback inhibition and carbon flux redirection. Finally, the titer of caffeic acid reached 50.2 mg/L in shake flasks after 48-hour cultivation. Conclusion We have successfully established a novel pathway and constructed an E. coli strain for the production of caffeic acid. This work forms a basis for further improvement in production, as well as opens the possibility of microbial synthesis

  4. Early fetal acquisition of the chromaffin and neuronal immunophenotype by human adrenal medullary cells. An immunohistological study using monoclonal antibodies to chromogranin A, synaptophysin, tyrosine hydroxylase, and neuronal cytoskeletal proteins.

    NARCIS (Netherlands)

    Molenaar, W M; Lee, V M; Trojanowski, J Q

    1990-01-01

    The development of chromaffin and neuronal features in the adrenal medulla was studied in normal human fetuses with gestational ages (GAs) of 6-34 weeks. Monoclonal antibodies specific for chromogranin A, synaptophysin, and tyrosine hydroxylase; for different subunits and phosphoisoforms of

  5. Studies on estradiol-2/4-hydroxylase activity in rat brain and liver

    International Nuclear Information System (INIS)

    Theron, C.N.

    1985-03-01

    A sensitive and specific radio-enzymatic assay was used to study estradiol-2/4-hydroxylase activity in rat liver microsomes and in microsomes obtained from 6 discrete brain areas of the rat. Kinetic parameters were determined for these enzyme activities. The effects of different P-450 inhibitors on estradiol-2/4-hydroxylase activity in brain and liver microsomes were also studied. In both organs these enzyme activities were found to be located mainly in the microsomal fraction and were inhibited by the 3 P-450 inhibitors tested. The hepatic estradiol-2/4-hydroxylase activity in adult male rats was significantly higher than that of females, but the enzyme activity in the brain did not exhibit a similar sex difference. Furthermore, estradiol-2/4-hydroxylase activity in rat liver was strongly induced by phenobarbitone treatment, but not in the brain. The phenobarbitone-induced activity in male and female rats exhibited significant kinetic differences. In female rats sexual maturation was associated with significant changes in the apparent Km of estradiol-2/4-hydroxylases in the liver and hypothalamus. Evidence was found that the in vitro estradiol-2/4-hydroxylase activity in rat brain and liver is due to more than one form of microsomal P-450. Kinetic studies showed important differences between the estradiol-2/4-hydroxylase activities in the hippocampus and hypothalamus. Significant differences in estradiol-2/4-hydroxylase activities were observed in the 6 brain areas studied, with the hippocampus showing the highest, and the hypothalamus the lowest activity at all developmental stages in both male and female rats

  6. FoxO1 in dopaminergic neurons regulates energy homeostasis and targets tyrosine hydroxylase

    Science.gov (United States)

    Doan, Khanh V.; Kinyua, Ann W.; Yang, Dong Joo; Ko, Chang Mann; Moh, Sang Hyun; Shong, Ko Eun; Kim, Hail; Park, Sang-Kyu; Kim, Dong-Hoon; Kim, Inki; Paik, Ji-Hye; DePinho, Ronald A.; Yoon, Seul Gi; Kim, Il Yong; Seong, Je Kyung; Choi, Yun-Hee; Kim, Ki Woo

    2016-01-01

    Dopaminergic (DA) neurons are involved in the integration of neuronal and hormonal signals to regulate food consumption and energy balance. Forkhead transcriptional factor O1 (FoxO1) in the hypothalamus plays a crucial role in mediation of leptin and insulin function. However, the homoeostatic role of FoxO1 in DA system has not been investigated. Here we report that FoxO1 is highly expressed in DA neurons and mice lacking FoxO1 specifically in the DA neurons (FoxO1 KODAT) show markedly increased energy expenditure and interscapular brown adipose tissue (iBAT) thermogenesis accompanied by reduced fat mass and improved glucose/insulin homoeostasis. Moreover, FoxO1 KODAT mice exhibit an increased sucrose preference in concomitance with higher dopamine and norepinephrine levels. Finally, we found that FoxO1 directly targets and negatively regulates tyrosine hydroxylase (TH) expression, the rate-limiting enzyme of the catecholamine synthesis, delineating a mechanism for the KO phenotypes. Collectively, these results suggest that FoxO1 in DA neurons is an important transcriptional factor that directs the coordinated control of energy balance, thermogenesis and glucose homoeostasis. PMID:27681312

  7. Determination of Phenylalanine and Tyrosine by High Performance Liquid Chromatography-Tandem Mass Spectrometry.

    Science.gov (United States)

    Peat, Judy; Garg, Uttam

    2016-01-01

    Hyperphenylalaninemia/phenylketonuria (PKU) is one of the most common inborn errors of amino acid metabolism affecting about 1:15,000 infants in the United States. PKU is an autosomal recessive disorder that if untreated results in mental retardation. The most common cause of PKU is deficiency of the enzyme phenylalanine hydroxylase that converts phenylalanine to tyrosine. Tyrosine deficiency results in impaired synthesis of catecholamines and thyroxine. Less commonly, it can result from defects in the synthesis or regeneration of tetrahydrobiopterin (BH4), an essential cofactor for the enzyme phenylalanine hydroxylase. Increased phenylalanine and decreased tyrosine in blood are used in the diagnosis and follow-up of patients with PKU. LC/MS/MS method is described for the quantification of phenylalanine and tyrosine.

  8. Development of vitamin D3 25-hydroxylase activity in rat liver microsomes

    International Nuclear Information System (INIS)

    Thierry-Palmer, M.; Cullins, S.; Rashada, S.; Gray, T.K.; Free, A.

    1986-01-01

    The authors have determined the ontogeny of vitamin D 3 25-hydroxylase activity in rat liver microsomes. Microsomes from fetuses, neonates, and their mothers were incubated with 44 nM 3 H-vitamin D 3 in the presence of an NADPH generating system, oxygen, KCl, and MgCl 2 . Lipid extracts of the incubation samples were partially purified by thin-layer chromatography. Tritiated 25-hydroxy vitamin D 3 (250HD 3 ) was analyzed by high-pressure liquid chromatography using 94/6 hexane/isopropanol. Production rate for 250HD 3 in the mothers ranged from 0.22 to 0.30 pmol/mg protein/hr. Activities in the fetuses and neonates were 2.1, 12.9, 32.0, 35.8, and 71.0% of that of their mothers at -3, 0, 2, 7, and 15 days of age. The cytosolic fraction protected the substrate from degradation, stimulated the vitamin D 3 25-hydroxylase reaction in neonates and mothers (1.4 to 1.7 fold increase), and was absolutely required for 25-hydroxylase activity in fetuses. These data suggest that microsomal vitamin D 3 25-hydroxylase activity develops slowly and approaches full activity near the weaning stage. A cytosolic factor present as early as -3 days of age stimulates the activity of the microsomal vitamin D 3 25-hydroxylase

  9. Elevated blood plasma levels of epinephrine, norepinephrine, tyrosine hydroxylase, TGFβ1, and TNFα associated with high-altitude pulmonary edema in Indian population

    Directory of Open Access Journals (Sweden)

    Pandey P

    2016-08-01

    Full Text Available Priyanka Pandey,1,2 Zahara Ali,1,2 Ghulam Mohammad,3 MA Qadar Pasha1,2 1Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi, 2Department of Biotechnology, Savitribai Phule Pune University, Pune, 3Department of Medicine, SNM Hospital, Ladakh, Jammu and Kashmir, India Abstract: Biomarkers are essential to unravel the locked pathophysiology of any disease. This study investigated the role of biomarkers and their interactions with each other and with the clinical parameters to study the physiology of high-altitude pulmonary edema (HAPE in HAPE-patients (HAPE-p against adapted highlanders (HLs and healthy sojourners, HAPE-controls (HAPE-c. For this, seven circulatory biomarkers, namely, epinephrine, norepinephrine, tyrosine hydroxylase, transforming growth factor beta 1, tumor necrosis factor alpha (TNFα, platelet-derived growth factor beta beta, and C-reactive protein (CRP, were measured in blood plasma of the three study groups. All the subjects were recruited at ~3,500 m, and clinical features such as arterial oxygen saturation (SaO2, body mass index, and mean arterial pressure were measured. Increased levels of epinephrine, norepinephrine, tyrosine hydroxylase, transforming growth factor-beta 1, and TNFα were observed in HAPE-p against the healthy groups, HAPE-c, and HLs (P<0.0001. CRP levels were decreased in HAPE-p against HAPE-c and HLs (P<0.0001. There was no significant difference or very marginal difference in the levels of these biomarkers in HAPE-c and HLs (P>0.01. Correlation analysis revealed a negative correlation between epinephrine and norepinephrine (P=4.6E-06 in HAPE-p and positive correlation in HAPE-c (P=0.004 and HLs (P=9.78E-07. A positive correlation was observed between TNFα and CRP (P=0.004 in HAPE-p and a negative correlation in HAPE-c (P=4.6E-06. SaO2 correlated negatively with platelet-derived growth factor beta beta (HAPE-p; P=0.05, norepinephrine (P=0.01, and TNFα (P=0.005 and

  10. Tyrosine hydroxylase immunoreactivity and [3H]WIN 35,428 binding to the dopamine transporter in a hamster model of idiopathic paroxysmal dystonia

    International Nuclear Information System (INIS)

    Nobrega, J.N.; Gernert, M.; Loescher, W.; Raymond, R.; Belej, T.; Richter, A.

    1999-01-01

    Recent pharmacological studies and receptor analyses have suggested that dopamine neurotransmission is enhanced in mutant dystonic hamsters (dt sz ), a model of idiopathic paroxysmal dystonia which displays attacks of generalized dystonia in response to mild stress. In order to further characterize the nature of dopamine alterations, the present study investigated possible changes in the number of dopaminergic neurons, as defined by tyrosine hydroxylase immunohistochemistry, as well as binding to the dopamine transporter labelled with [ 3 H]WIN 35,428 in dystonic hamsters. No differences in the number of tyrosine hydroxylase-immunoreactive neurons were found within the substantia nigra and ventral tegmental area of mutant hamsters compared to non-dystonic control hamsters. Similarly, under basal conditions, i.e. in the absence of a dystonic episode, no significant changes in [ 3 H]WIN 35,428 binding were detected in dystonic brains. However, in animals killed during the expression of severe dystonia, significant decreases in dopamine transporter binding became evident in the nucleus accumbens and ventral tegmental area in comparison to controls exposed to the same external stimulation. Since stimulation tended to increase [ 3 H]WIN 35,428 binding in control brains, the observed decrease in the ventral tegmental area appeared to be due primarily to the fact that binding was increased less in dystonic brains than in similarly stimulated control animals.This finding could reflect a diminished ability of the dopamine transporter to undergo adaptive changes in response to external stressful stimulation in mutant hamsters. The selective dopamine uptake inhibitor GBR 12909 (20 mg/kg) aggravated dystonia in mutant hamsters, further suggesting that acute alterations in dopamine transporter function during stimulation may be an important component of dystonia in this model. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. A Tyrosine-Hydroxylase Characterization of Dopaminergic Neurons in the Honey Bee Brain

    Directory of Open Access Journals (Sweden)

    Stevanus R. Tedjakumala

    2017-07-01

    Full Text Available Dopamine (DA plays a fundamental role in insect behavior as it acts both as a general modulator of behavior and as a value system in associative learning where it mediates the reinforcing properties of unconditioned stimuli (US. Here we aimed at characterizing the dopaminergic neurons in the central nervous system of the honey bee, an insect that serves as an established model for the study of learning and memory. We used tyrosine hydroxylase (TH immunoreactivity (ir to ensure that the neurons detected synthesize DA endogenously. We found three main dopaminergic clusters, C1–C3, which had been previously described; the C1 cluster is located in a small region adjacent to the esophagus (ES and the antennal lobe (AL; the C2 cluster is situated above the C1 cluster, between the AL and the vertical lobe (VL of the mushroom body (MB; the C3 cluster is located below the calyces (CA of the MB. In addition, we found a novel dopaminergic cluster, C4, located above the dorsomedial border of the lobula, which innervates the visual neuropils of the bee brain. Additional smaller processes and clusters were found and are described. The profuse dopaminergic innervation of the entire bee brain and the specific connectivity of DA neurons, with visual, olfactory and gustatory circuits, provide a foundation for a deeper understanding of how these sensory modules are modulated by DA, and the DA-dependent value-based associations that occur during associative learning.

  12. Species differences in the regulation of tyrosine hydroxylase in Cnemidophorus whiptail lizards.

    Science.gov (United States)

    Woolley, Sarah C; Crews, David

    2004-09-05

    Evolution of behavioral phenotype involves changes in the underlying neural substrates. Cnemidophorus whiptail lizards enable the study of behavioral and neural evolution because ancestral species involved in producing unisexual, hybrid species still exist. Catecholaminergic systems modulate the expression of social behaviors in a number of vertebrates, including whiptails, and therefore we investigated how changes in catecholamine production correlated with evolutionary changes in behavioral phenotype by measuring the size and number of catecholamine producing (tyrosine hydroxylase-immunoreactive, or TH-ir) cells across the reproductive cycle in females from two related whiptail species. Cnemidophorusuniparens is a triploid, parthenogenetic species that arose from hybridization events involving the diploid, sexual species C. inornatus. Prior to ovulation, females from both species display femalelike receptive behaviors. However, after ovulation, only parthenogenetic individuals display malelike mounting behavior. In all nuclei measured, we found larger TH-ir cells in the parthenogen, a difference consistent with species differences in ploidy. In contrast, species differences in the number of TH-ir cells were nucleus specific. In the preoptic area and anterior hypothalamus, parthenogens had fewer TH-ir cells than females of the sexual species. Reproductive state only affected TH-ir cell number in the substantia nigra pars compacta (SNpc), and C. uniparens individuals had more TH-ir cells after ovulation than when previtellogenic. Thus, species differences over the reproductive cycle in the SNpc are correlated with species differences in behavior, and it appears that the process of speciation may have produced a novel neural and behavioral phenotype in the parthenogen.

  13. Acetanilide 4-hydroxylase and acetanilide 2-hydroxylase activity in hepatic microsomes from induced mice.

    Science.gov (United States)

    Lewandowski, M; Chui, Y C; Levi, P; Hodgson, E

    1991-02-01

    A simple and sensitive method for the separation of 14C-labelled acetanilide, 4-hydroxyacetanilide, 3-hydroxyacetanilide and 2-hydroxyacetanilide was developed using thin-layer chromatography. This separation is the basis for the assay of acetanilide 4-hydroxylase and acetanilide 2-hydroxylase activity in liver microsomes from DBA2/N male mice that had been treated with phenobarbital, 3-methylcholanthrene, isosafrole or n-butylbenzodioxole. Microsomes were incubated with [14C]acetanilide and extracted with benzene and ethyl acetate. The extract was applied to silica gel plates and developed with a hexane/isopropanol/ammonium hydroxide/water solvent system. The radiolabelled phenolic metabolites and the parent compound were detected using a Berthold Automatic TLC Linear Analyzer. Although the 4-hydroxylated metabolite was the primary product detected, this method can be used to detect other phenolic metabolites.

  14. Tyrosine hydroxylase immunoreactivity and [{sup 3}H]WIN 35,428 binding to the dopamine transporter in a hamster model of idiopathic paroxysmal dystonia

    Energy Technology Data Exchange (ETDEWEB)

    Nobrega, J.N. [Neuroimaging Research Section, Clarke Institute of Psychiatry, Toronto (Canada); Gernert, M.; Loescher, W. [Department of Pharmacology, Toxicology and Pharmacy, School of Veterinary Medicine, Buenteweg 17, D-30559 Hannover (Germany); Raymond, R.; Belej, T. [Neuroimaging Research Section, Clarke Institute of Psychiatry, Toronto (Canada); Richter, A. [Department of Pharmacology, Toxicology and Pharmacy, School of Veterinary Medicine, Buenteweg 17, D-30559 Hannover (Germany)

    1999-08-01

    Recent pharmacological studies and receptor analyses have suggested that dopamine neurotransmission is enhanced in mutant dystonic hamsters (dt{sup sz}), a model of idiopathic paroxysmal dystonia which displays attacks of generalized dystonia in response to mild stress. In order to further characterize the nature of dopamine alterations, the present study investigated possible changes in the number of dopaminergic neurons, as defined by tyrosine hydroxylase immunohistochemistry, as well as binding to the dopamine transporter labelled with [{sup 3}H]WIN 35,428 in dystonic hamsters. No differences in the number of tyrosine hydroxylase-immunoreactive neurons were found within the substantia nigra and ventral tegmental area of mutant hamsters compared to non-dystonic control hamsters. Similarly, under basal conditions, i.e. in the absence of a dystonic episode, no significant changes in [{sup 3}H]WIN 35,428 binding were detected in dystonic brains. However, in animals killed during the expression of severe dystonia, significant decreases in dopamine transporter binding became evident in the nucleus accumbens and ventral tegmental area in comparison to controls exposed to the same external stimulation. Since stimulation tended to increase [{sup 3}H]WIN 35,428 binding in control brains, the observed decrease in the ventral tegmental area appeared to be due primarily to the fact that binding was increased less in dystonic brains than in similarly stimulated control animals.This finding could reflect a diminished ability of the dopamine transporter to undergo adaptive changes in response to external stressful stimulation in mutant hamsters. The selective dopamine uptake inhibitor GBR 12909 (20 mg/kg) aggravated dystonia in mutant hamsters, further suggesting that acute alterations in dopamine transporter function during stimulation may be an important component of dystonia in this model. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved000.

  15. Chronic desipramine treatment alters tyrosine hydroxylase but not norepinephrine transporter immunoreactivity in norepinephrine axons in the rat prefrontal cortex

    Science.gov (United States)

    Erickson, Susan L.; Gandhi, Anjalika R.; Asafu-Adjei, Josephine K.; Sampson, Allan R.; Miner, LeeAnn; Blakely, Randy D.; Sesack, Susan R.

    2011-01-01

    Pharmacological blockade of norepinephrine (NE) reuptake is clinically effective in treating several mental disorders. Drugs that bind to the NE transporter (NET) alter both protein levels and activity of NET and also the catecholamine synthetic enzyme tyrosine hydroxylase (TH). We examined the rat prefrontal cortex (PFC) by electron microscopy to determine whether the density and subcellular distribution of immunolabeling for NET and colocalization of NET with TH within individual NE axons were altered by chronic treatment with the selective NE uptake inhibitor desipramine (DMI). Following DMI treatment (21 days, 15 mg/kg/day), NET-immunoreactive (-ir) axons were significantly less likely to colocalize TH. This finding is consistent with reports of reduced TH levels and activity in the locus coeruleus after chronic DMI and indicates a reduction of NE synthetic capacity in the PFC. Measures of NET expression and membrane localization, including the number of NET-ir profiles per tissue area sampled, the number of gold particles per NET-ir profile area, and the proportion of gold particles associated with the plasma membrane, were similar in DMI and vehicle treated rats. These findings were verified using two different antibodies directed against distinct epitopes of the NET protein. The results suggest that chronic DMI treatment does not reduce NET expression within individual NE axons in vivo or induce an overall translocation of NET protein away from the plasma membrane in the PFC as measured by ultrastructural immunogold labeling. Our findings encourage consideration of possible postranslational mechanisms for regulating NET activity in antidepressant-induced modulation of NE clearance. PMID:21208501

  16. The Effects of Insulin-Induced Hypoglycaemia on Tyrosine Hydroxylase Phosphorylation in Rat Brain and Adrenal Gland.

    Science.gov (United States)

    Senthilkumaran, Manjula; Johnson, Michaela E; Bobrovskaya, Larisa

    2016-07-01

    In this study we investigated the effects of insulin-induced hypoglycaemia on tyrosine hydroxylase (TH) protein and TH phosphorylation in the adrenal gland, C1 cell group, locus coeruleus (LC) and midbrain dopaminergic cell groups that are thought to play a role in response to hypoglycaemia and compared the effects of different concentrations of insulin in rats. Insulin (1 and 10 U/kg) treatment caused similar reductions in blood glucose concentration (from 7.5-9 to 2-3 mmol/L); however, plasma adrenaline concentration was increased 20-30 fold in response to 10 U/kg insulin and only 14 fold following 1 U/kg. Time course studies (at 10 U/kg insulin) revealed that in the adrenal gland, Ser31 phosphorylation was increased between 30 and 90 min (4-5 fold), implying that TH was activated to increase catecholamine synthesis in adrenal medulla to replenish the stores. In the brain, Ser19 phosphorylation was limited to certain dopaminergic groups in the midbrain, while Ser31 phosphorylation was increased in most catecholaminergic regions at 60 min (1.3-2 fold), suggesting that Ser31 phosphorylation may be an important mechanism to maintain catecholamine synthesis in the brain. Comparing the effects of 1 and 10 U/kg insulin revealed that Ser31 phosphorylation was increased to similar extent in the adrenal gland and C1 cell group in response to both doses whereas Ser31 and Ser19 phosphorylation were only increased in response to 1 U/kg insulin in LC and in response to 10 U/kg insulin in most midbrain regions. Thus, the adrenal gland and some catecholaminergic brain regions become activated in response to insulin administration and brain catecholamines may be important for initiation of physiological defences against insulin-induced hypoglycaemia.

  17. Human albumin prevents 6-hydroxydopamine-induced loss of tyrosine hydroxylase in in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Li-Juan Zhang

    Full Text Available Human albumin has recently been demonstrated to protect brain neurons from injury in rat ischemic brain. However, there is no information available about whether human albumin can prevent loss of tyrosine hydroxylase (TH expression of dopaminergic (DA neurons induced by 6-hydroxydopamine (6-OHDA toxicity that is most commonly used to create a rat model of Parkinson's disease (PD. In the present study, two microliters of 1.25% human albumin were stereotaxically injected into the right striatum of rats one day before or 7 days after the 6-OHDA lesion in the same side. D-Amphetamine-induced rotational asymmetry was measured 7 days, 3 and 10 weeks after 6-OHDA lesion. We observed that intrastriatal administration of human albumin significantly reduced the degree of rotational asymmetry. The number of TH-immunoreactive neurons present in the substantia nigra was greater in 6-OHDA lesioned rats following human albumin-treatment than non-human albumin treatment. TH-immunoreactivity in the 6-OHDA-lesioned striatum was also significantly increased in the human albumin-treated rats. To examine the mechanisms underlying the effects of human albumin, we challenged PC12 cells with 6-OHDA as an in vitro model of PD. Incubation with human albumin prevented 6-OHDA-induced reduction of cell viability in PC12 cell cultures, as measured by MTT assay. Furthermore, human albumin reduced 6-OHDA-induced formation of reactive oxygen species (ROS and apoptosis in cultured PC12 cells, as assessed by flow cytometry. Western blot analysis showed that human albumin inhibited 6-OHDA-induced activation of JNK, c-Jun, ERK, and p38 mitogen-activated protein kinases (MAPK signaling in PC12 cultures challenged with 6-OHDA. Human albumin may protect against 6-OHDA toxicity by influencing MAPK pathway followed by anti-ROS formation and anti-apoptosis.

  18. Human Albumin Prevents 6-Hydroxydopamine-Induced Loss of Tyrosine Hydroxylase in In Vitro and In Vivo

    Science.gov (United States)

    Zhang, Li-Juan; Xue, Yue-Qiang; Yang, Chun; Yang, Wei-Hua; Chen, Long; Zhang, Qian-Jin; Qu, Ting-Yu; Huang, Shile; Zhao, Li-Ru; Wang, Xiao-Min; Duan, Wei-Ming

    2012-01-01

    Human albumin has recently been demonstrated to protect brain neurons from injury in rat ischemic brain. However, there is no information available about whether human albumin can prevent loss of tyrosine hydroxylase (TH) expression of dopaminergic (DA) neurons induced by 6-hydroxydopamine (6-OHDA) toxicity that is most commonly used to create a rat model of Parkinson's disease (PD). In the present study, two microliters of 1.25% human albumin were stereotaxically injected into the right striatum of rats one day before or 7 days after the 6-OHDA lesion in the same side. D-Amphetamine-induced rotational asymmetry was measured 7 days, 3 and 10 weeks after 6-OHDA lesion. We observed that intrastriatal administration of human albumin significantly reduced the degree of rotational asymmetry. The number of TH-immunoreactive neurons present in the substantia nigra was greater in 6-OHDA lesioned rats following human albumin-treatment than non-human albumin treatment. TH-immunoreactivity in the 6-OHDA-lesioned striatum was also significantly increased in the human albumin-treated rats. To examine the mechanisms underlying the effects of human albumin, we challenged PC12 cells with 6-OHDA as an in vitro model of PD. Incubation with human albumin prevented 6-OHDA-induced reduction of cell viability in PC12 cell cultures, as measured by MTT assay. Furthermore, human albumin reduced 6-OHDA-induced formation of reactive oxygen species (ROS) and apoptosis in cultured PC12 cells, as assessed by flow cytometry. Western blot analysis showed that human albumin inhibited 6-OHDA-induced activation of JNK, c-Jun, ERK, and p38 mitogen-activated protein kinases (MAPK) signaling in PC12 cultures challenged with 6-OHDA. Human albumin may protect against 6-OHDA toxicity by influencing MAPK pathway followed by anti-ROS formation and anti-apoptosis. PMID:22815976

  19. Abnormal tyrosine and phenylalanine metabolism in patients with tyrosyluria and phenylketonuria; gas-liquid chromatographic analysis of urinary metabolites

    NARCIS (Netherlands)

    Wadman, S.K.; Heiden, C. van der; Ketting, D.; Sprang, F.J. van

    Gas-liquid chromatographic methods have been developed for the analysis of: urinary phenylalanine metabolites (I) in patients with phenylketonuria, tyrosine metabolites (II) in patients with a disturbed tyrosine metabolism at the level of p-hydroxyphenylpyruvate hydroxylase, and homogentisic acid in

  20. Pharmacologic inhibition of L-tyrosine degradation ameliorates cerebral dopamine deficiency in murine phenylketonuria (PKU)

    Science.gov (United States)

    Harding, Cary O.; Winn, Shelley R.; Gibson, K. Michael; Arning, Erland; Bottiglieri, Teodoro; Grompe, Markus

    2014-01-01

    Summary Monoamine neurotransmitter deficiency has been implicated in the etiology of neuropsychiatric symptoms associated with chronic hyperphenylalaninemia in phenylketonuria (PKU). Two proposed explanations for neurotransmitter deficiency in PKU include first, that chronically elevated blood L-phenylalanine (Phe) inhibits the transport of L-tyrosine (Tyr) and L-tryptophan (Trp), the substrates for dopamine and serotonin synthesis respectively, into brain. In the second hypothesis, elevated Phe competitively inhibits brain tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH) activities, the rate limiting steps in dopamine and serotonin synthesis. Dietary supplementation with large neutral amino acids (LNAA) including Tyr and Trp has been recommended for individuals with chronically elevated blood Phe in an attempt to restore amino acid and monoamine homeostasis in brain. As a potential alternative treatment approach, we demonstrate that pharmacologic inhibition of Tyr degradation through oral administration of nitisinone (NTBC) yielded sustained increases in blood and brain Tyr, decreased blood and brain Phe, and consequently increased dopamine synthesis in a murine model of PKU. Our results suggest that Phe-mediated inhibition of TH activity is the likely mechanism of impaired dopamine synthesis in PKU. Pharmacologic inhibition of Tyr degradation may be a promising adjunct therapy for CNS monoamine neurotransmitter deficiency in hyperphenylalaninemic individuals with PKU. PMID:24487571

  1. Vitamin D regulates tyrosine hydroxylase expression: N-cadherin a possible mediator.

    Science.gov (United States)

    Cui, X; Pertile, R; Liu, P; Eyles, D W

    2015-09-24

    Vitamin D is a neuroactive steroid. Its genomic actions are mediated via the active form of vitamin D, 1,25(OH)2D3, binding to the vitamin D receptor (VDR). The VDR emerges in the rat mesencephalon at embryonic day 12, representing the peak period of dopaminergic cell birth. Our prior studies reveal that developmental vitamin D (DVD)-deficiency alters the ontogeny of dopaminergic neurons in the developing mesencephalon. There is also consistent evidence from others that 1,25(OH)2D3 promotes the survival of dopaminergic neurons in models of dopaminergic toxicity. In both developmental and toxicological studies it has been proposed that 1,25(OH)2D3 may modulate the differentiation and maturation of dopaminergic neurons; however, to date there is lack of direct evidence. The aim of the current study is to investigate this both in vitro using a human SH-SY5Y cell line transfected with rodent VDR and in vivo using a DVD-deficient model. Here we show that in VDR-expressing SH-SY5Y cells, 1,25(OH)2D3 significantly increased production of tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis. This effect was dose- and time-dependent, but was not due to an increase in TH-positive cell number, nor was it due to the production of trophic survival factors for dopamine neurons such as glial-derived neurotrophic factor (GDNF). In accordance with 1,25(OH)2D3's anti-proliferative actions in the brain, 1,25(OH)2D3 reduced the percentage of dividing cells from approximately 15-10%. Given the recently reported role of N-cadherin in the direct differentiation of dopaminergic neurons, we examined here whether it may be elevated by 1,25(OH)2D3. We confirmed this in vitro and more importantly, we showed DVD-deficiency decreases N-cadherin expression in the embryonic mesencephalon. In summary, in our in vitro model we have shown 1,25(OH)2D3 increases TH expression, decreases proliferation and elevates N-cadherin, a potential factor that mediates these processes

  2. Molecular phenotyping of transient postnatal tyrosine hydroxylase neurons in the rat bed nucleus of the stria terminalis.

    Science.gov (United States)

    Carter, David A

    2017-07-01

    The bed nucleus of the stria terminalis (BNST) is a complex integrative centre in the forebrain, composed of multiple sub-nuclei, each with discrete populations of neurons. Progress in understanding BNST function, both in the adult and during postnatal maturation, is dependent upon a more complete characterization of neuronal phenotypes in the BNST. The aim of the current study was to define the molecular phenotype of one postnatal BNST neuronal population, in order to identify molecular factors that may underlie both (protein marker-related) immaturity, and secondly, the transience of this phenotype. This BNST population was originally identified by high, but transient expression of the EGR1 transcription factor (TF) in postnatal rat lateral intermediate BNST (BNSTLI). The current results confirm a high level of Egr1 activation in postnatal day 10 (PN10) male BNSTLI that is lost at PN40, and now demonstrate a similar pattern of transient activation in female brains. Apparent cellular immaturity in this population, as indicated by low levels of the adult neuronal marker NeuN/RBFOX3, was found to be uncorrelated with both key neuronal regulator protein expression (SOX2 and REST), and also RBFOX2 protein levels. The BNSTLI neurons have a partial catecholaminergic phenotype (tyrosine hydroxylase-positive/dopa decarboxylase-negative; TH+ve/DDC-ve) that is lost at PN40. In contrast, the co-expressed neuropeptide, somatostatin, is maintained, albeit at lower levels, at PN40. The transcriptional basis of the transient and partial catecholaminergic phenotype was investigated by analysing TFs known to maintain adult dopaminergic (TH+ve/DDC+ve) neuronal phenotypes. The BNSTLI neurons were shown to lack forkhead TFs including FOXA1, FOXA2 and FOXO1. In addition, the BNSTLI neurons had low, primarily cytoplasmic, expression of NR4A2/NURR1, an orphan nuclear receptor that is critical for adult maintenance of midbrain dopamine neurons. These results detail the molecular features

  3. Renal denervation decreases blood pressure and renal tyrosine hydroxylase but does not augment the effect of hypotensive drugs.

    Science.gov (United States)

    Skrzypecki, Janusz; Gawlak, Maciej; Huc, Tomasz; Szulczyk, Paweł; Ufnal, Marcin

    2017-01-01

    The effect of renal denervation on the efficacy of antihypertensive drugs has not yet been elucidated. Twenty-week-old spontaneously hypertensive rats were treated with metoprolol, losartan, indapamide, or saline (controls) and assigned to renal denervation or a sham procedure. Acute hemodynamic measurements were performed ten days later. Series showing a significant interaction between renal denervation and the drugs were repeated with chronic telemetry measurements. In the saline series, denervated rats showed a significantly lower mean arterial blood pressure (blood pressure) than the sham-operated rats. In contrast, in the metoprolol series denervated rats showed a significantly higher blood pressure than sham rats. There were no differences in blood pressure between denervated and sham rats in the losartan and indapamide series. In chronic studies, a 4-week treatment with metoprolol caused a decrease in blood pressure. Renal denervation and sham denervation performed 10 days after the onset of metoprolol treatment did not affect blood pressure. Denervated rats showed markedly reduced renal nerve tyrosine hydroxylase levels. In conclusion, renal denervation decreases blood pressure in hypertensive rats. The hypotensive action of metoprolol, indapamide, and losartan is not augmented by renal denervation, suggesting the absence of synergy between renal denervation and the drugs investigated in this study.

  4. Transient knockdown of tyrosine hydroxylase during development has persistent effects on behaviour in adult zebrafish (Danio rerio.

    Directory of Open Access Journals (Sweden)

    Isabel Formella

    Full Text Available Abnormal dopamine (DA signaling is often suggested as causative in schizophrenia. The other prominent hypothesis for this disorder, largely driven by epidemiological data, is that certain adverse events during the early stages of brain development increase an individual's risk of developing schizophrenia later in life. However, the clinical and preclinical literature consistently implicates behavioural, cognitive, and pharmacological abnormalities, implying that DA signaling is abnormal in the adult brain. How can we reconcile these two major hypotheses underlying much of the clinical and basic research into schizophrenia? In this study we have transiently knocked down tyrosine hydroxylase (TH, the rate limiting enzyme in DA synthesis gene expression in the early stages of brain development in zebrafish using morpholinos. We show that by adulthood, TH and DA levels have returned to normal and basic DA-mediated behaviours, such as locomotion, are also normal. However, when they were exposed to a novel environment the levels of freezing and immediate positioning in deeper zones were significantly reduced in these adult fish. The neurochemistry underlying these behaviours is complex, and the exact mechanisms for these abnormal behaviours remains unknown. This study demonstrates that early transient alterations in DA ontogeny can produce persistent alterations in adult brain function and suggests that the zebrafish may be a promising model animal for future studies directed at clarifying the basic neurodevelopmental mechanisms behind complex psychiatric disease.

  5. The role of GH receptor tyrosine phosphorylation in Stat5 activation

    DEFF Research Database (Denmark)

    Hansen, J A; Hansen, L H; Wang, X

    1997-01-01

    Stimulation of GH receptors leads to rapid activation of Jak2 kinase and subsequent tyrosine phosphorylation of the GH receptor. Three specific tyrosines located in the C-terminal domain of the GH receptor have been identified as being involved in GH-stimulated transcription of the Spi 2.1 promoter....... Mutated GH receptors lacking all but one of these three tyrosines are able to mediate a transcriptional response when transiently transfected into CHO cells together with a Spi 2.1 promoter/luciferase construct. Similarly, these GH receptors were found to be able to mediate activation of Stat5 DNA......-binding activity, whereas the GH receptor mutant lacking all intracellular tyrosines was not. Synthetic tyrosine phosphorylated peptides corresponding to the GH receptor sequence around the three tyrosines inhibited Stat5 DNA-binding activity while their non-phosphorylated counterparts were ineffective. Tyrosine...

  6. Allosteric activation of midazolam CYP3A5 hydroxylase activity by icotinib - Enhancement by ketoconazole.

    Science.gov (United States)

    Zhuang, XiaoMei; Zhang, TianHong; Yue, SiJia; Wang, Juan; Luo, Huan; Zhang, YunXia; Li, Zheng; Che, JinJing; Yang, HaiYing; Li, Hua; Zhu, MingShe; Lu, Chuang

    2016-12-01

    Icotinib (ICO), a novel small molecule and a tyrosine kinase inhibitor, was developed and approved recently in China for non-small cell lung cancer. During screening for CYP inhibition potential in human liver microsomes (HLM), heterotropic activation toward CYP3A5 was revealed. Activation by icotinib was observed with CYP3A-mediated midazolam hydroxylase activity in HLM (∼40% over the baseline) or recombinant human CYP3A5 (rhCYP3A5) (∼70% over the baseline), but not in the other major CYPs including rhCYP3A4. When co-incubated with selective CYP3A4 inhibitor CYP3cide or monoclonal human CYP3A4 inhibitory antibody in HLM, the activation was extended to ∼60%, suggesting CYP3A5 might be the isozyme involved. Further, the relative activation was enhanced to ∼270% in rhCYP3A5 in the presence of ketoconazole. The activation was substrate and pathway dependent and observed only in the formation of 1'-OH-midazolam, and not 4-OH-midazolam, 6β-OH-testosterone, or oxidized nifedipine. The activation requires the presence of cytochrome b5 and it is only observed in the liver microsomes of dogs, monkeys, and humans, but not in rats and mice. Kinetic analyses of 1'-OH-midazolam formation showed that ICO increased the V max values in HLM and rhCYP3A5 with no significant changes in K m values. By adding CYP3cide with ICO to the incubation, the V max values increased 2-fold over the CYP3cide control. Addition of ketoconazole with ICO alone or ICO plus CYP3cide resulted in an increase in V max values and decrease in K m values compared to their controls. This phenomenon may be attributed to a new mechanism of CYP3A5 heterotropic activation, which warrants further investigation. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Differential Expression of Tyrosine Hydroxylase Protein and Apoptosis-Related Genes in Differentiated and Undifferentiated SH-SY5Y Neuroblastoma Cells Treated with MPP+

    Directory of Open Access Journals (Sweden)

    Kawinthra Khwanraj

    2015-01-01

    Full Text Available The human neuroblastoma SH-SY5Y cell line has been used as a dopaminergic cell model for Parkinson’s disease research. Whether undifferentiated or differentiated SH-SY5Y cells are more suitable remains controversial. This study aims to evaluate the expression of apoptosis-related mRNAs activated by MPP+ and evaluate the differential expression of tyrosine hydroxylase (TH in undifferentiated and retinoic acid- (RA- induced differentiated cells. The western blot results showed a gradual decrease in TH in undifferentiated cells and a gradual increase in TH in differentiated cells from days 4 to 10 after cell plating. Immunostaining revealed a gradual increase in TH along with neuritic outgrowth in differentiated cells on days 4 and 7 of RA treatment. For the study on cell susceptibility to MPP+ and the expression of apoptosis-related genes, MTT assay showed a decrease in cell viability to approximately 50% requiring 500 and 1000 μM of MPP+ for undifferentiated and RA-differentiated cells, respectively. Using real-time RT-PCR, treatment with 500 μM MPP+ led to significant increases in the Bax/Bcl-2 ratio, p53, and caspase-3 in undifferentiated cells but was without significance in differentiated cells. In conclusion, differentiated cells may be more suitable, and the shorter duration of RA differentiation may make the SH-SY5Y cell model more accessible.

  8. A novel mutation in the lysyl hydroxylase 1 gene causes decreased lysyl hydroxylase activity in an ehlers-danlos VIA patient

    NARCIS (Netherlands)

    Walker, L.C.; Overstreet, M.A.; Siddiqui, A.; Paepe, A. de; Ceylaner, G.; Malfait, F.; Symoens, S.; Atsawasuwan, P.; Yamauchi, M.; Ceylaner, S.; Bank, R.A.; Yeowell, H.N.

    2005-01-01

    The clinical diagnosis of a patient with the phenotype of Ehlers-Danlos syndrome type VI was confirmed biochemically by the severely diminished level of lysyl hydroxylase (LH) activity in the patient's skin fibroblasts. A novel homozygous mutation, a single base change of T1360 → G in exon 13 of the

  9. Heterogeneous expression of cholesterol 7α-hydroxylase and sterol 27- hydroxylase genes in the rat liver lobulus

    NARCIS (Netherlands)

    Twisk, J.; Hoekman, M.F.M.; Mager, W.H.; Moorman, A.F.M.; Boer, P.A.J. de; Scheja, L.; Princen, H.M.G.; Gebhardt, R.

    1995-01-01

    We investigated the lobular localization and molecular level of expression of cholesterol 7α-hydroxylase and sterol 27-hydroxylase, two key enzymes in bile acid synthesis, in isolated periportal and pericentral hepatocytes and by in situ hybridization of rat liver. Enzyme activity, mRNA, and gene

  10. Autophosphorylation of JAK2 on tyrosines 221 and 570 regulates its activity.

    Science.gov (United States)

    Argetsinger, Lawrence S; Kouadio, Jean-Louis K; Steen, Hanno; Stensballe, Allan; Jensen, Ole N; Carter-Su, Christin

    2004-06-01

    The tyrosine kinase JAK2 is a key signaling protein for at least 20 receptors in the cytokine/hematopoietin receptor superfamily and is a component of signaling by insulin receptor and several G-protein-coupled receptors. However, there is only limited knowledge of the physical structure of JAK2 or which of the 49 tyrosines in JAK2 are autophosphorylated. In this study, mass spectrometry and two-dimensional peptide mapping were used to determine that tyrosines 221, 570, and 1007 in JAK2 are autophosphorylated. Phosphorylation of tyrosine 570 is particularly robust. In response to growth hormone, JAK2 was rapidly and transiently phosphorylated at tyrosines 221 and 570, returning to basal levels by 60 min. Analysis of the sequences surrounding tyrosines 221 and 570 in JAK2 and tyrosines in other proteins that are phosphorylated in response to ligands that activate JAK2 suggests that the YXX[L/I/V] motif is one of the motifs recognized by JAK2. Experiments using JAK2 with tyrosines 221 and 570 mutated to phenylalanine suggest that tyrosines 221 and 570 in JAK2 may serve as regulatory sites in JAK2, with phosphorylation of tyrosine 221 increasing kinase activity and phosphorylation of tyrosine 570 decreasing kinase activity and thereby contributing to rapid termination of ligand activation of JAK2.

  11. Autophosphorylation of JAK2 on tyrosines 221 and 570 regulates its activity

    DEFF Research Database (Denmark)

    Argetsinger, Lawrence S; Kouadio, Jean-Louis K; Steen, Hanno

    2004-01-01

    or which of the 49 tyrosines in JAK2 are autophosphorylated. In this study, mass spectrometry and two-dimensional peptide mapping were used to determine that tyrosines 221, 570, and 1007 in JAK2 are autophosphorylated. Phosphorylation of tyrosine 570 is particularly robust. In response to growth hormone......, JAK2 was rapidly and transiently phosphorylated at tyrosines 221 and 570, returning to basal levels by 60 min. Analysis of the sequences surrounding tyrosines 221 and 570 in JAK2 and tyrosines in other proteins that are phosphorylated in response to ligands that activate JAK2 suggests that the YXX......[L/I/V] motif is one of the motifs recognized by JAK2. Experiments using JAK2 with tyrosines 221 and 570 mutated to phenylalanine suggest that tyrosines 221 and 570 in JAK2 may serve as regulatory sites in JAK2, with phosphorylation of tyrosine 221 increasing kinase activity and phosphorylation of tyrosine 570...

  12. A novel therapeutic approach to 6-OHDA-induced Parkinson's disease in rats via supplementation of PTD-conjugated tyrosine hydroxylase.

    Science.gov (United States)

    Wu, Shao Ping; Fu, Ai Ling; Wang, Yu Xia; Yu, Lei Ping; Jia, Pei Yuan; Li, Qian; Jin, Guo Zhang; Sun, Man Ji

    2006-07-21

    The present study aimed to evaluate whether the protein transduction domain (PTD)-conjugated human tyrosine hydroxylase (TH) fusion protein was effective on the 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease (PD) model rats. An expression vector pET-PTD-TH harbouring the PTD-TH gene was constructed and transformed to the Escherichia coli BL21 cells for expression. The expressed recombinant PTD-TH with a molecular weight of 61 kD was successfully transduced (1 microM) into the dopaminergic SH-sy5y human neuroblastoma cells in vitro and visualized by immunohistochemical assay. An in vivo experiment in rats showed that the iv administered PTD-TH protein (8 mg/kg) permeated across the blood-brain barrier, penetrated into the striatum and midbrain, and peaked at 5-8 h after the injection. The behavioral effects of PTD-TH on the apomorphine-induced rotations in the PD model rats 8 weeks after the 6-OHDA lesion showed that a single bolus of PTD-TH (8 mg/kg) iv injection caused a decrement of 60% of the contralateral turns on day 1 and 40% on days 5-17. The results imply that iv delivery of PTD-TH is therapeutically effective on the 6-OHDA-induced PD in rats, the PTD-mediated human TH treatment opening a promising therapeutic direction in treatment of PD.

  13. A novel therapeutic approach to 6-OHDA-induced Parkinson's disease in rats via supplementation of PTD-conjugated tyrosine hydroxylase

    International Nuclear Information System (INIS)

    Wu Shaoping; Fu Ailing; Wang Yuxia; Yu Leiping; Jia Peiyuan; Li Qian; Jin Guozhang; Sun Manji

    2006-01-01

    The present study aimed to evaluate whether the protein transduction domain (PTD)-conjugated human tyrosine hydroxylase (TH) fusion protein was effective on the 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease (PD) model rats. An expression vector pET-PTD-TH harbouring the PTD-TH gene was constructed and transformed to the Escherichia coli BL21 cells for expression. The expressed recombinant PTD-TH with a molecular weight of 61 kD was successfully transduced (1 μM) into the dopaminergic SH-sy5y human neuroblastoma cells in vitro and visualized by immunohistochemical assay. An in vivo experiment in rats showed that the iv administered PTD-TH protein (8 mg/kg) permeated across the blood-brain barrier, penetrated into the striatum and midbrain, and peaked at 5-8 h after the injection. The behavioral effects of PTD-TH on the apomorphine-induced rotations in the PD model rats 8 weeks after the 6-OHDA lesion showed that a single bolus of PTD-TH (8 mg/kg) iv injection caused a decrement of 60% of the contralateral turns on day 1 and 40% on days 5-17. The results imply that iv delivery of PTD-TH is therapeutically effective on the 6-OHDA-induced PD in rats, the PTD-mediated human TH treatment opening a promising therapeutic direction in treatment of PD

  14. Tyrosine sulfation modulates activity of tick-derived thrombin inhibitors

    Science.gov (United States)

    Thompson, Robert E.; Liu, Xuyu; Ripoll-Rozada, Jorge; Alonso-García, Noelia; Parker, Benjamin L.; Pereira, Pedro José Barbosa; Payne, Richard J.

    2017-09-01

    Madanin-1 and chimadanin are two small cysteine-free thrombin inhibitors that facilitate blood feeding in the tick Haemaphysalis longicornis. Here, we report a post-translational modification—tyrosine sulfation—of these two proteins that is critical for potent anti-thrombotic and anticoagulant activity. Inhibitors produced in baculovirus-infected insect cells displayed heterogeneous sulfation of two tyrosine residues within each of the proteins. One-pot ligation-desulfurization chemistry enabled access to homogeneous samples of all possible sulfated variants of the proteins. Tyrosine sulfation of madanin-1 and chimadanin proved crucial for thrombin inhibitory activity, with the doubly sulfated variants three orders of magnitude more potent than the unmodified inhibitors. The three-dimensional structure of madanin-1 in complex with thrombin revealed a unique mode of inhibition, with the sulfated tyrosine residues binding to the basic exosite II of the protease. The importance of tyrosine sulfation within this family of thrombin inhibitors, together with their unique binding mode, paves the way for the development of anti-thrombotic drug leads based on these privileged scaffolds.

  15. Effect of hyperthyroidism on circulating prolactin and hypothalamic expression of tyrosine hydroxylase, prolactin signaling cascade members and estrogen and progesterone receptors during late pregnancy and lactation in the rat.

    Science.gov (United States)

    Pennacchio, Gisela E; Neira, Flavia J; Soaje, Marta; Jahn, Graciela A; Valdez, Susana R

    2017-02-15

    Hyperthyroidism (HyperT) compromises pregnancy and lactation, hindering suckling-induced PRL release. We studied the effect of HyperT on hypothalamic mRNA (RT-qPCR) and protein (Western blot) expression of tyrosine hydroxylase (TH), PRL receptor (PRLR) and signaling pathway members, estrogen-α (ERα) and progesterone (PR) receptors on late pregnancy (days G19, 20 and 21) and early lactation (L2) in rats. HyperT advanced pre-partum PRL release, reduced circulating PRL on L2 and increased TH mRNA (G21 and L2), p-TH, PRLR mRNA, STAT5 protein (G19 and L2), PRLR protein (G21) and CIS protein (G19). PRs mRNAs and protein decreased on G19 but afterwards PRA mRNA (G20), PRB mRNA (G21) and PRA mRNA and protein (L2) increased. ERα protein increased on G19 and decreased on G20. Thus, the altered hypothalamic PRLR, STAT5, PR and ERα expression in hyperthyroid rats may induce elevated TH expression and activation, that consequently, elevate dopaminergic tone during lactation, blunting suckling-induced PRL release and litter growth. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Use of deuterated tyrosine and phenylalanine in the study of catecholamine and aromatic acid metabolism

    International Nuclear Information System (INIS)

    Curtius, H.C.; Redweik, U.; Steinmann, B.; Leimbacher, W.; Wegmann, H.

    1975-01-01

    Deuterated tyrosine and phenylalanine have been used for the study of their respective metabolism in patients with phenylketonuria (PKU) and in healthy persons. Urinary excretion of dopamine and its metabolites was studied by GC-MS after oral administration of deuterated L-tyrosine in 2 patients with PKU and in normal controls at low and high plasma phenylalanine levels. From these studies it seemed that the in vivo tyrosine 3-hydroxylase activity and thus the formation of L-dopa depend on the phenylalanine concentration in plasma and also in tissues. After loading 3 mentally retarded patients with 3,5-[ 2 H 2 ]-4-hydroxyphenylalanine, we found, among others, excretion of deuterated m-hydroxyphenyl-hydracrylic acid, p-hydroxymandelic acid, p-hydroxybenzoic acid, p-hydroxyhippuric acid, benzoic acid and hippuric acid. An intramolecular rearrangement is postulated. Deuterated phenylalanine was used to investigate phenylalanine and dopa metabolism in PKU. In addition, one untreated person with PKU of normal intelligence and normal excretion of catecholamines at high plasma phenylalanine concentration was investigated in order to see whether there exists an alternative metabolic pathway from phenylalanine to dopa formation

  17. The effect of streptozotocin-induced diabetes on phenylalanine hydroxylase expression in rat liver.

    OpenAIRE

    Taylor, D S; Dahl, H H; Mercer, J F; Green, A K; Fisher, M J

    1989-01-01

    The impact of experimentally induced diabetes on the expression of rat liver phenylalanine hydroxylase has been investigated. A significant elevation in maximal enzymic activity was observed in diabetes. This was associated with significant increases in the amount of enzyme, the phenylalanine hydroxylase-specific translational activity of hepatic RNA and the abundance of phenylalanine hydroxylase-specific mRNA. These changes in phenylalanine hydroxylase expression were not observed when diabe...

  18. Constitutive Activity in an Ancestral Form of Abl Tyrosine Kinase.

    Directory of Open Access Journals (Sweden)

    Saadat U Aleem

    Full Text Available The c-abl proto-oncogene encodes a nonreceptor tyrosine kinase that is found in all metazoans, and is ubiquitously expressed in mammalian tissues. The Abl tyrosine kinase plays important roles in the regulation of mammalian cell physiology. Abl-like kinases have been identified in the genomes of unicellular choanoflagellates, the closest relatives to the Metazoa, and in related unicellular organisms. Here, we have carried out the first characterization of a premetazoan Abl kinase, MbAbl2, from the choanoflagellate Monosiga brevicollis. The enzyme possesses SH3, SH2, and kinase domains in a similar arrangement to its mammalian counterparts, and is an active tyrosine kinase. MbAbl2 lacks the N-terminal myristoylation and cap sequences that are critical regulators of mammalian Abl kinase activity, and we show that MbAbl2 is constitutively active. When expressed in mammalian cells, MbAbl2 strongly phosphorylates cellular proteins on tyrosine, and transforms cells much more potently than mammalian Abl kinase. Thus, MbAbl2 appears to lack the autoinhibitory mechanism that tightly constrains the activity of mammalian Abl kinases, suggesting that this regulatory apparatus arose more recently in metazoan evolution.

  19. Expression of tyrosine hydroxylase in CD4+ T cells contributes to alleviation of Th17/Treg imbalance in collagen-induced arthritis.

    Science.gov (United States)

    Wang, Xiao-Qin; Liu, Yan; Cai, Huan-Huan; Peng, Yu-Ping; Qiu, Yi-Hua

    2016-12-01

    Tyrosine hydroxylase (TH), a rate-limiting enzyme for the synthesis of catecholamines, is expressed in T lymphocytes. However, the role of T cell-expressed TH in rheumatoid arthritis (RA) is less clear. Herein, we aimed to show the contribution of TH expression by CD4 + T cells to alleviation of helper T (Th)17/regulatory T (Treg) imbalance in collagen-induced arthritis (CIA), a mouse model of RA. CIA was prepared by intradermal injection of collagen type II (CII) at tail base of DBA1/J mice. Expression of TH in the spleen and the ankle joints was measured by real-time polymerase chain reaction and Western blot analysis. Percentages of TH-expressing Th17 and Treg cells in splenic CD4 + T cells were determined by flow cytometry. Overexpression and knockdown of TH gene in CD4 + T cells were taken to evaluate effects of TH on Th17 and Treg cells in CIA. TH expression was upregulated in both the inflamed tissues (spleen and ankle joints) and the CD4 + T cells of CIA mice. In splenic CD4 + T cells, the cells expressing TH were increased during CIA. These cells that expressed more TH in CIA were mainly Th17 cells rather than Treg cells. TH gene overexpression in CD4 + T cells from CIA mice reduced Th17 cell percentage as well as Th17-related transcription factor and cytokine expression and secretion, whereas TH gene knockdown enhanced the Th17 cell activity. In contrast, TH gene overexpression increased Treg-related cytokine expression and secretion in CD4 + T cells of CIA mice, while TH gene knockdown decreased the Treg cell changes. Collectively, these findings show that CIA induces TH expression in CD4 + T cells, particularly in Th17 cells, and suggest that the increased TH expression during CIA represents an anti-inflammatory mechanism.

  20. Tyrosine phosphorylation in T cells is regulated by phosphatase activity: studies with phenylarsine oxide.

    OpenAIRE

    Garcia-Morales, P; Minami, Y; Luong, E; Klausner, R D; Samelson, L E

    1990-01-01

    Activation of T cells induces rapid tyrosine phosphorylation on the T-cell receptor zeta chain and other substrates. These phosphorylations can be regulated by a number of protein-tyrosine kinases (ATP: protein-tyrosine O-phosphotransferase, EC 2.7.1.112) and protein-tyrosine-phosphatases (protein-tyrosine-phosphate phosphohydrolase, EC 3.1.3.48). In this study, we demonstrate that phenylarsine oxide can inhibit tyrosine phosphatases while leaving tyrosine kinase function intact. We use this ...

  1. Presence of corticotrophin-releasing factor and/or tyrosine hydroxylase in cells of a neural brain-testicular pathway that are labelled by a transganglionic tracer.

    Science.gov (United States)

    James, P; Rivier, C; Lee, S

    2008-02-01

    Our laboratory has shown that male testosterone levels are not solely controlled by the release of hypothalamic gonadotrophin-releasing hormone and pituitary luteinising hormone, but are also regulated by a multisynaptic pathway connecting the brain and the testis that interferes with the testosterone response to gonadotrophins. This pathway, which is independent of the pituitary gland, is activated by an i.c.v. injection of either the stress-related peptide corticotrophin-releasing factor (CRF) or of beta-adrenoceptor agonists, both of which alter androgen release and decrease levels of the peripheral-type benzodiazepine receptor and the steroidogenic acute regulatory protein within Leydig cells. Our original studies used the retrograde transganglionic tracer pseudorabies virus (PRV) to map progression of the virus from the testes to upper brain levels. The present study aimed to extend this work by identifying the regions where CRF and catecholamine neurones represented components of the stress-activated, brain-testicular pathway that prevents testosterone increases. To this end, anaesthetised adult male rats received an intra-testicular injection of PRV. Using immunofluorescence, we identified co-labelling of PRV and either CRF or tyrosine hydroxylase (TH), the enzyme responsible for biogenic amine synthesis. Co-labelling of PRV and CRF was found in the bed nucleus of the stria terminalis, the paraventricular nucleus of the hypothalamus (PVN) and the central amygdala. Co-labelling of PRV and TH was found in the PVN, substantia nigra, A7/Kölliker-Fuse area, area of A5, locus coeruleus, nucleus of solitary tract, area of C3, area of C2 and the area of C1/A1. These results indicate that most cell groups of the ventral noradrenergic pathway have neurones that are a part of the brain-testicular pathway. This suggests that the stress hormones CRF and catecholamines may act as neurotransmitters that signal the pathway to inhibit increases in plasma testosterone levels.

  2. SH2 domains: modulators of nonreceptor tyrosine kinase activity.

    Science.gov (United States)

    Filippakopoulos, Panagis; Müller, Susanne; Knapp, Stefan

    2009-12-01

    The Src homology 2 (SH2) domain is a sequence-specific phosphotyrosine-binding module present in many signaling molecules. In cytoplasmic tyrosine kinases, the SH2 domain is located N-terminally to the catalytic kinase domain (SH1) where it mediates cellular localization, substrate recruitment, and regulation of kinase activity. Initially, structural studies established a role of the SH2 domain stabilizing the inactive state of Src family members. However, biochemical characterization showed that the presence of the SH2 domain is frequently required for catalytic activity, suggesting a crucial function stabilizing the active state of many nonreceptor tyrosine kinases. Recently, the structure of the SH2-kinase domain of Fes revealed that the SH2 domain stabilizes the active kinase conformation by direct interactions with the regulatory helix alphaC. Stabilizing interactions between the SH2 and the kinase domains have also been observed in the structures of active Csk and Abl. Interestingly, mutations in the SH2 domain found in human disease can be explained by SH2 domain destabilization or incorrect positioning of the SH2. Here we summarize our understanding of mechanisms that lead to tyrosine kinase activation by direct interactions mediated by the SH2 domain and discuss how mutations in the SH2 domain trigger kinase inactivation.

  3. Hemin-Graphene Derivatives with Increased Peroxidase Activities Restrain Protein Tyrosine Nitration.

    Science.gov (United States)

    Xu, Huan; Yang, Zhen; Li, Hailing; Gao, Zhonghong

    2017-12-14

    Protein tyrosine nitration is implicated in the occurrence and progression of pathological conditions involving free radical reactions. It is well recognized that hemin can catalyze protein tyrosine nitration in the presence of nitrite and hydrogen peroxide. Generally, the catalytic efficiency is positively correlated to its peroxidase activity. In this study, however, it is found that the efficiency of hemin in catalyzing protein tyrosine nitration is largely suppressed after functionalization with graphene derivatives, even though its peroxidase-like activity is more than quadrupled. Further studies show that the oxidation of tyrosine is still observed for these composites; dityrosine formation, however, is greatly inhibited. Furthermore, these composites also exhibit strong effects on the oxidation of nitrite into nitrate. Therefore, we propose a mechanism in which hemin-graphene derivatives facilitate the oxidation of tyrosine and nitrite to produce tyrosyl radicals and nitrogen dioxide radicals in the presence of hydrogen peroxide, but graphene interlayers serve as barriers that hinder radical-radical coupling reactions; consequently, protein tyrosine nitration is restrained. This property of hemin-graphene derivatives, by which they catalyze substrate oxidation but suppress radical-radical coupling reactions, shows their great potential in selective oxidation procedures for byproduct removal. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Production of tyrosine through phenylalanine hydroxylation bypasses the intrinsic feedback inhibition in Escherichia coli.

    Science.gov (United States)

    Huang, Jin; Lin, Yuheng; Yuan, Qipeng; Yan, Yajun

    2015-04-01

    Tyrosine is a proteinogenic aromatic amino acid that is often used as a supplement of food and animal feed, as well as a (bio-)synthetic precursor to various pharmaceutically or industrially important molecules. Extensive metabolic engineering efforts have been made towards the efficient and cost-effective microbial production of tyrosine. Conventional strategies usually focus on eliminating intrinsic feedback inhibition and redirecting carbon flux into the shikimate pathway. In this study, we found that continuous conversion of phenylalanine into tyrosine by the action of tetrahydromonapterin (MH4)-utilizing phenylalanine 4-hydroxylase (P4H) can bypass the feedback inhibition in Escherichia coli, leading to tyrosine accumulation in the cultures. First, expression of the P4H from Xanthomonas campestris in combination with an MH4 recycling system in wild-type E. coli allowed the strain to accumulate tyrosine at 262 mg/L. On this basis, enhanced expression of the key enzymes associated with the shikimate pathway and the MH4 biosynthetic pathway resulted in the elevation of tyrosine production up to 401 mg/L in shake flasks. This work demonstrated a novel approach to tyrosine production and verified the possibility to alleviate feedback inhibition by creating a phenylalanine sink.

  5.   A rationally designed tyrosine hydroxylase DNA vaccine induces specific antineuroblastoma immunity

    DEFF Research Database (Denmark)

    Huebener, Nicole; Fest, Stefan; Strandsby, Anne Bystrup

    2008-01-01

    Therapeutic vaccination against tumor antigens without induction of autoimmunity remains a major challenge in cancer immunotherapy. Here, we show for the first time effective therapeutic vaccination followed by suppression of established spontaneous neuroblastoma metastases using a tyrosine...... show effective therapeutic vaccination against neuroblastoma with a novel rationally designed TH minigene vaccine without induction of autoimmunity providing an important baseline for future clinical application of this strategy....

  6. Antisense and sense expression of cDNA coding for CYP73A15, a class II cinnamate 4-hydroxylase, leads to a delayed and reduced production of lignin in tobacco

    Science.gov (United States)

    Blee, K.; Choi, J. W.; O'Connell, A. P.; Jupe, S. C.; Schuch, W.; Lewis, N. G.; Bolwell, G. P.

    2001-01-01

    A number of plant species contain the class II of genes encoding the cytochrome P450, CYP73, the cognate protein of which cinnamic acid 4-hydroxylase, is the second enzyme of the phenylpropanoid pathway. In order to begin to determine possible functionality, tobacco has been transformed with a truncated French bean class II cinnamate hydroxylase (CYP73A15) in the sense and antisense orientations. Signals for C4H protein could be detected in vascular tissue from wild-type plants using heterologous probes. The transformed plants showed a normal phenotype, even though detectable C4H protein was much reduced in tissue prints. Young propagated transformants displayed a range of reduced C4H activities, as well as either reduced or no phloroglucinol-stainable lignin. However, all mature tobacco plants showed the accumulation of lignin, even though its deposition was apparently delayed. This was not due to induction of tyrosine ammonia-lyase activity, which was not detected, but instead it is presumed due to sufficient C4H residual activity. Analysis of the lignin content of the plants showed reductions of up to 30% with a slightly reduced syringyl to guaiacyl ratio as compared to wild type. This reduction level was favourable in comparison with some other targets in the lignification pathway that have been manipulated including that of class I cinnamate 4-hydroxylase. It is proposed that the class II cinnamate 4-hydroxylase might also function in lignification in a number of species including French bean and tobacco, based on these data.

  7. Simultaneous measurement of cholesterol 7 alpha-hydroxylase activity by reverse-phase high-performance liquid chromatography using both endogenous and exogenous [4-14C]cholesterol as substrate

    International Nuclear Information System (INIS)

    Hylemon, P.B.; Studer, E.J.; Pandak, W.M.; Heuman, D.M.; Vlahcevic, Z.R.; Chiang, J.Y.

    1989-01-01

    The HPLC-spectrophotometric method for measuring cholesterol 7 alpha-hydroxylase activity was modified by using a C-18 reverse-phase column to separate 7 alpha-hydroxy-4-cholesten-3-one and 4-cholesten-3-one and by adding 7 beta-hydroxycholesterol to each reaction mixture as an internal recovery standard. With this method, we were able to simultaneously measure cholesterol 7 alpha-hydroxylase activity using endogenous cholesterol and exogenous [4- 14 C]cholesterol as substrate. Rat liver cytosol differentially stimulated (286%) the 7 alpha-hydroxylation of exogenous [4- 14 C]-cholesterol. In contrast, total cholesterol 7 alpha-hydroxylase activity was stimulated only 35% by cytosol. This method should prove useful for studying mechanisms of cholesterol delivery to cholesterol 7 alpha-hydroxylase

  8. Tyrosine hydroxylase (TH), its cofactor tetrahydrobiopterin (BH4), other catecholamine-related enzymes, and their human genes in relation to the drug and gene therapies of Parkinson's disease (PD): historical overview and future prospects.

    Science.gov (United States)

    Nagatsu, Toshiharu; Nagatsu, Ikuko

    2016-11-01

    Tyrosine hydroxylase (TH), which was discovered at the National Institutes of Health (NIH) in 1964, is a tetrahydrobiopterin (BH4)-requiring monooxygenase that catalyzes the first and rate-limiting step in the biosynthesis of catecholamines (CAs), such as dopamine, noradrenaline, and adrenaline. Since deficiencies of dopamine and noradrenaline in the brain stem, caused by neurodegeneration of dopamine and noradrenaline neurons, are mainly related to non-motor and motor symptoms of Parkinson's disease (PD), we have studied human CA-synthesizing enzymes [TH; BH4-related enzymes, especially GTP-cyclohydrolase I (GCH1); aromatic L-amino acid decarboxylase (AADC); dopamine β-hydroxylase (DBH); and phenylethanolamine N-methyltransferase (PNMT)] and their genes in relation to PD in postmortem brains from PD patients, patients with CA-related genetic diseases, mice with genetically engineered CA neurons, and animal models of PD. We purified all human CA-synthesizing enzymes, produced their antibodies for immunohistochemistry and immunoassay, and cloned all human genes, especially the human TH gene and the human gene for GCH1, which synthesizes BH4 as a cofactor of TH. This review discusses the historical overview of TH, BH4-, and other CA-related enzymes and their genes in relation to the pathophysiology of PD, the development of drugs, such as L-DOPA, and future prospects for drug and gene therapy for PD, especially the potential of induced pluripotent stem (iPS) cells.

  9. Tyrosine Hydroxylase (TH)- and Aromatic-L-Amino Acid Decarboxylase (AADC)-Immunoreactive Neurons of the Common Marmoset (Callithrix jacchus) Brain: An Immunohistochemical Analysis

    Science.gov (United States)

    Karasawa, Nobuyuki; Hayashi, Motoharu; Yamada, Keiki; Nagatsu, Ikuko; Iwasa, Mineo; Takeuchi, Terumi; Uematsu, Mitsutoshi; Watanabe, Kazuko; Onozuka, Minoru

    2007-01-01

    From the perspective of comparative morphology, the distribution of non-monoaminergic neurons in the common marmoset (Callithrix jacchus) was investigated using an immunohistochemical method with specific antibodies to tyrosine hydroxylase (TH) and aromatic-L-amino acid decarboxylase (AADC). TH-immunoreactive (IR) neurons (but not AADC-IR) neurons were observed in the olfactory tubercle, preoptic suprachiasmatic nucleus, periventricular hypothalamic nucleus, arcuate nucleus, paraventricular nucleus, periaqueductal gray matter, medial longitudinal fasciculus, substantia nigra, and nucleus solitaris. In contrast, AADC-IR (but not TH-IR), small, oval and spindle-shaped neurons were sparsely distributed in the following areas: the hypothalamus from the anterior nucleus to the lateral nucleus, the dorsomedial nucleus, the dorsomedial area of the medial mammillary nucleus and the arcuate nucleus; the midbrain, including the stria medullaris and substantia nigra; and the medulla oblongata, including the dorsal area of the nucleus solitaris and the medullary reticular nucleus. The distribution of AADC-IR neurons was not as extensive in the marmoset as it is in rats. However, these neurons were located in the marmoset, but not the rat substantia nigra. Furthermore, AADC-IR neurons that are present in the human striatum were absent in that of the marmoset. The present results indicate that the distribution of non-monoaminergic neurons in the brain of the common marmoset is unique and different from that in humans and rodents. PMID:17653300

  10. Influence of some anti-inflammatory drugs on the activity of aryl hydrocarbon hydroxylase and the cytochrome P450 content

    Energy Technology Data Exchange (ETDEWEB)

    Mostafa, M.H.; Sheweita, S.A.; Abdel-Moneam, N.M. (Alexandria Univ. (Egypt))

    1990-06-01

    The metabolism of benzo({alpha})pyrene is mediated by the mixed function oxidase system including the cytochrome P450-dependent aryl hydrocarbon hydroxylase. The data of the present study revealed the ability of various commonly used anti-inflammatory drugs to alter the activity of this enzyme system, where all the tested drugs, namely phenyl butazone, ketoprofen, piroxicam, and acetaminophen, caused an increase in both the activity of aryl hydrocarbon hydroxylase and the cytochrome P450 content whether administered as a single dose or as a repeated dose for 6 consecutive days. The percentage of change for all drugs except phenyl butazone was proportional to the duration of drug administration. On the other hand, pyrazole which is chemically related to phenyl butazone, had no significant effect when administered as a single dose but caused a decrease in both studied parameters when administered as a repeated dose for 6 consecutive days. The mechanisms by which these commonly used drugs modify the aryl hydrocarbon hydroxylase activity and the cytochrome p450 content are discussed in the text.

  11. Effects of biogenic aldehydes and aldehyde dehydrogenase inhibitors on rat brain tryptophan hydroxylase activity in vitro.

    Science.gov (United States)

    Nilsson, G E; Tottmar, O

    1987-04-21

    The effect of indole-3-acetaldehyde, 5-hydroxyindole-3-acetaldehyde, disulfiram, diethyldithiocarbamate, coprine, and 1-amino-cyclopropanol on tryptophan hydroxylase activity was studied in vitro using high performance liquid chromatography with electro-chemical detection. With the analytical method developed, 5-hydroxytryptophan, serotonin, and 5-hydroxyindole-3-acetic acid could be measured simultaneously. Indole-3-acetaldehyde (12-1200 microM) was found to cause a 6-33% inhibition of the enzyme. Dependent upon the nature of the sulfhydryl- or reducing-agent (dithiotreitol, glutathione, or ascorbate) present in the incubates, the degree of inhibition by disulfiram varied, probably due to the formation of various mixed disulfides. Also the presence of diethyldithiocarbamate (160-1600 microM) was found to inhibit tryptophan hydroxylase (28-91%), while 5-hydroxyindole-3-acetaldehyde, coprine, or 1-aminocyclopropanol appeared to have no effect on the enzyme activity.

  12. Isolation of a tyrosine-activating enzyme from baker's yeast

    NARCIS (Netherlands)

    Ven, A.M. van de; Koningsberger, V.V.; Overbeek, J.Th.G.

    1958-01-01

    The extracts of ether-CO2-frozen baker's yeast contain enzymes that catalyze the ATP-linked amino acid activation by way of pyrophosphate elimination. From the extract a tyrosine-activating enzyme could be isolated, which, judging from ultracentrifugation and electrophoretic data, was about 70% pure

  13. Organisation and tyrosine hydroxylase and calretinin immunoreactivity in the main olfactory bulb of paca (Cuniculus paca): a large caviomorph rodent.

    Science.gov (United States)

    Sasahara, Tais Harumi de Castro; Leal, Leonardo Martins; Spillantini, Maria Grazia; Machado, Márcia Rita Fernandes

    2015-04-01

    The majority of neuroanatomical and chemical studies of the olfactory bulb have been performed in small rodents, such as rats and mice. Thus, this study aimed to describe the organisation and the chemical neuroanatomy of the main olfactory bulb (MOB) in paca, a large rodent belonging to the Hystricomorpha suborder and Caviomorpha infraorder. For this purpose, histological and immunohistochemical procedures were used to characterise the tyrosine hydroxylase (TH) and calretinin (CR) neuronal populations and their distribution. The paca MOB has eight layers: the olfactory nerve layer (ONL), the glomerular layer (GL), the external plexiform layer (EPL; subdivided into the inner and outer sublayers), the mitral cell layer (MCL), the internal plexiform layer (IPL), the granule cell layer (GCL), the periventricular layer and the ependymal layer. TH-ir neurons were found mostly in the GL, and moderate numbers of TH-ir neurons were scattered in the EPL. Numerous varicose fibres were distributed in the IPL and in the GCL. CR-ir neurons concentrated in the GL, around the base of the olfactory glomeruli. Most of the CR-ir neurons were located in the MCL, IPL and GCL. Some of the granule cells had an apical dendrite with a growth cone. The CR immunoreactivity was also observed in the ONL with olfactory nerves strongly immunostained. This study has shown that the MOB organisation in paca is consistent with the description in other mammals. The characterisation and distribution of the population of TH and CR in the MOB is not exclusively to this species. This large rodent shares common patterns to other caviomorph rodent, as guinea pig, and to the myomorph rodents, as mice, rats and hamsters.

  14. Assays for mammalian tyrosinase: a comparative study

    International Nuclear Information System (INIS)

    Jara, J.R.; Solano, F.; Lozano, J.A.

    1988-01-01

    This work describes a comparative study of the tyrosinase activity determined using three methods which are the most extensively employed; two radiometric assays using L-tyrosine as substrate (tyrosine hydroxylase and melanin formation activities) and one spectrophotometric assay using L-dopa (dopa oxidase activity). The three methods were simultaneously employed to measure the activities of the soluble, melanosomal, and microsomal tyrosinase isozymes from Harding-Passey mouse melanoma through their purification processes. The aim of this study was to find any correlation among the tyrosinase activities measured by the three different assays and to determine whether that correlation varied with the isozyme and its degree of purification. The results show that mammalian tyrosinase has a greater turnover number for L-dopa than for L-tyrosine. Thus, enzyme activity, expressed as mumol of substrate transformed per min, is higher in assays using L-dopa as substrate than those using L-tyrosine. Moreover, the percentage of hydroxylated L-tyrosine that is converted into melanin is low and is affected by several factors, apparently decreasing the tyrosinase activity measured by the melanin formation assay. Bearing these considerations in mind, average interassay factors are proposed. Their values are 10 to transform melanin formation into tyrosine hydroxylase activity, 100 to transform tyrosine hydroxylase into dopa oxidase activity, and 1,000 to transform melanin formation into dopa oxidase activity. Variations in these values due to the presence in the tyrosinase preparations of either inhibitors or regulatory factors in melanogenesis independent of tyrosinase are also discussed

  15. Processes for the production of hydroxycinnamic acids using polypeptides having tyrosine ammonia lyase activity

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention generally relates to the field of biotechnology as it applies to the production of hydroxycinnamic acids using polypeptides having tyrosine ammonia lyase activity. More particularly, the present invention pertains to polypeptides having tyrosine ammonia lyase activity and high...... substrate specificity towards tyrosine, which makes them particularly suitable in the production of p-coumaric acid and other hydroxycinnamic acids. The present invention thus provides processes for the production of p-coumaric acid and other hydroxycinnamic acids employing these polypeptides as well...

  16. Hypoxic-ischemic injury decreases anxiety-like behavior in rats when associated with loss of tyrosine-hydroxylase immunoreactive neurons of the substantia nigra

    International Nuclear Information System (INIS)

    Hei, Ming-Yan; Luo, Ya-Li; Zhang, Xiao-Chun; Liu, Hong; Gao, Ru; Wu, Jing-Jiang

    2011-01-01

    Neonatal Sprague-Dawley rats were randomly divided into normal control, mild hypoxia-ischemia (HI), and severe HI groups (N = 10 in each group at each time) on postnatal day 7 (P7) to study the effect of mild and severe HI on anxiety-like behavior and the expression of tyrosine hydroxylase (TH) in the substantia nigra (SN). The mild and severe HI groups were exposed to hypoxia (8% O 2 /92% N 2 ) for 90 and 150 min, respectively. The elevated plus-maze (EPM) test was performed to assess anxiety-like behavior by measuring time spent in the open arms (OAT) and OAT%, and immunohistochemistry was used to determine the expression of TH in the SN at P14, P21, and P28. OAT and OAT% in the EPM were significantly increased in both the mild (1.88-, 1.99-, and 2.04-fold, and 1.94-, 1.51-, and 1.46-fold) and severe HI groups (1.69-, 1.68-, and 1.87-fold, and 1.83-, 1.43-, and 1.39-fold, respectively; P < 0.05). The percent of TH-positive cells occupying the SN area was significantly and similarly decreased in both the mild (17.7, 40.2, and 47.2%) and severe HI groups (16.3, 32.2, and 43.8%, respectively; P < 0.05). The decrease in the number of TH-positive cells in the SN and the level of protein expression were closely associated (Pearson correlation analysis: r = 0.991, P = 0.000 in the mild HI group and r = 0.974, P = 0.000 in the severe HI group) with the impaired anxiety-like behaviors. We conclude that neonatal HI results in decreased anxiety-like behavior during the juvenile period of Sprague-Dawley rats, which is associated with the decreased activity of TH in the SN. The impairment of anxiety and the expression of TH are not likely to be dependent on the severity of HI

  17. Hypoxic-ischemic injury decreases anxiety-like behavior in rats when associated with loss of tyrosine-hydroxylase immunoreactive neurons of the substantia nigra

    Directory of Open Access Journals (Sweden)

    Hei Ming-Yan

    2012-01-01

    Full Text Available Neonatal Sprague-Dawley rats were randomly divided into normal control, mild hypoxia-ischemia (HI, and severe HI groups (N = 10 in each group at each time on postnatal day 7 (P7 to study the effect of mild and severe HI on anxiety-like behavior and the expression of tyrosine hydroxylase (TH in the substantia nigra (SN. The mild and severe HI groups were exposed to hypoxia (8% O2/92% N2 for 90 and 150 min, respectively. The elevated plus-maze (EPM test was performed to assess anxiety-like behavior by measuring time spent in the open arms (OAT and OAT%, and immunohistochemistry was used to determine the expression of TH in the SN at P14, P21, and P28. OAT and OAT% in the EPM were significantly increased in both the mild (1.88-, 1.99-, and 2.04-fold, and 1.94-, 1.51-, and 1.46-fold and severe HI groups (1.69-, 1.68-, and 1.87-fold, and 1.83-, 1.43-, and 1.39-fold, respectively; P < 0.05. The percent of TH-positive cells occupying the SN area was significantly and similarly decreased in both the mild (17.7, 40.2, and 47.2% and severe HI groups (16.3, 32.2, and 43.8%, respectively; P < 0.05. The decrease in the number of TH-positive cells in the SN and the level of protein expression were closely associated (Pearson correlation analysis: r = 0.991, P = 0.000 in the mild HI group and r = 0.974, P = 0.000 in the severe HI group with the impaired anxiety-like behaviors. We conclude that neonatal HI results in decreased anxiety-like behavior during the juvenile period of Sprague-Dawley rats, which is associated with the decreased activity of TH in the SN. The impairment of anxiety and the expression of TH are not likely to be dependent on the severity of HI.

  18. Src inhibitor herbimycin A prevents 132.7 kDa tyrosine phosphatase activity in Ramos Burkitt's lymphoma B cell line

    International Nuclear Information System (INIS)

    Hristov, K.; Mitev, V.; Knox, K.

    2006-01-01

    Reversible tyrosine phosphorylation, regulation of expression and proteolytic cleavage control tyrosine phosphatase contribution for the signalling pathways of B-cell antigen receptor (BCR), and CD40 during B cell selection. We used Ramos-BL B cell line to determine whether BCR and CD40 stimulation, or inhibition of the Src - tyrosine kinase, tyrosine phosphatase and caspase activity have an effect on the tyrosine phosphatase activities determined on in-gel phosphatase assay. The tyrosine phosphatase activities present in whole cell lysates of Ramos-BL B cells following treatment with 20 μg/ml anti-IgM, 1 μg/ml anti-CD40, 10 μM herbimycin A, 178 μM vanadate,100 μM phenylarsine oxide and 10 μM zVAD-fmk were detected with an in-gel phosphatase assay. Seven major tyrosine phosphatase activities with approximate molecular weight of 132.7, 63.9, 60.3, 54.2, 49.7, 44.6, and 39 kDa are present in whole cell lysates of Ramos-BL B cells. Treatment with Src-PTK inhibitor herbimycin A prevents 132.7 kDa tyrosine phosphatase activity. We conclude that the catalytic activity of Src-PTK in Ramos-BL B cells is critical for the presence of this 132.7 kDa tyrosine phosphatase activity. (authors)

  19. Pervanadate induces Mammalian Ste20 Kinase 3 (MST3) tyrosine phosphorylation but not activation.

    Science.gov (United States)

    Kan, Wei-Chih; Lu, Te-Ling; Ling, Pin; Lee, Te-Hsiu; Cho, Chien-Yu; Huang, Chi-Ying F; Jeng, Wen-Yih; Weng, Yui-Ping; Chiang, Chun-Yen; Wu, Jin Bin; Lu, Te-Jung

    2016-07-01

    The yeast Ste20 (sterile) protein kinase, which is a serine/threonine kinase, responds to the stimulation of the G proteincoupled receptor (GPCR) pheromone receptor. Ste20 protein kinase serves as the critical component that links signaling from the GPCR/G proteins to the mitogen-activated protein kinase (MAPK) cascade in yeast. The yeast Ste20p functions as a MAP kinase kinase kinase kinase (MAP4K) in the pheromone response. Ste20-like kinases are structurally conserved from yeast to mammals. The mechanism by which MAP4K links GPCR to the MAPK pathway is less clearly defined in vertebrates. In addition to MAP4K, the tyrosine kinase cascade bridges G proteins and the MAPK pathway in vertebrate cells. Mammalian Ste20 Kinase 3 (MST3) has been categorized into the Ste20 family and has been reported to function in the regulation of cell polarity and migration. However, whether MST3 tyrosine phosphorylation regulates diverse signaling pathways is unknown. In this study, the tyrosine phosphatase inhibitor pervanadate was found to induce MST3 tyrosine phosphorylation in intact cells, and the activity of tyrosine-phosphorylated MST3 was measured. This tyrosine-directed phosphorylation was independent of MST3 activity. Parameters including protein conformation, Triton concentration and ionic concentration influenced the sensitivity of MST3 activity. Taken together, our data suggests that the serine/threonine kinase MST3 undergoes tyrosinedirected phosphorylation. The tyrosine-phosphorylated MST3 may create a docking site for the structurally conserved SH2/SH3 (Src Homology 2 and 3) domains within the Src oncoprotein. The unusual tyrosinephosphorylated MST3 may recruit MST3 to various signaling components. Copyright © 2016. Published by Elsevier Inc.

  20. Increasing proportions of tyrosine hydroxylase-immunoreactive interneurons colocalize with choline acetyltransferase or vasoactive intestinal peptide in the developing rat cerebral cortex

    Science.gov (United States)

    Asmus, Stephen E.; Cocanougher, Benjamin T.; Allen, Donald L.; Boone, John B.; Brooks, Elizabeth A.; Hawkins, Sarah M.; Hench, Laura A.; Ijaz, Talha; Mayfield, Meredith N.

    2011-01-01

    Cortical interneurons are critical for information processing, and their dysfunction has been implicated in neurological disorders. One subset of this diverse cell population expresses tyrosine hydroxylase (TH) during postnatal rat development. Cortical TH-immunoreactive neurons appear at postnatal day (P) 16. The number of TH cells sharply increases between P16 and P20 and subsequently decreases to adult values. The absence of apoptotic markers in these cells suggests that the reduction in cell number is not due to cell death but is due to a decline in TH production. Cortical TH cells lack all additional catecholaminergic enzymes, and many coexpress GABA and calretinin, but little else is known about their phenotype or function. Because interneurons containing choline acetyltransferase (ChAT) or vasoactive intestinal peptide (VIP) share characteristics with cortical TH neurons, the coexpression of TH with ChAT or VIP was examined throughout the neocortex at P16, P20, and P30. The proportions of TH cell profiles double-labeled for ChAT or VIP significantly increased between P16 and P30. Based on their proximity to blood vessels, intrinsic cholinergic and VIPergic cells have been hypothesized to regulate cortical microcirculation. Labeling with the gliovascular marker aquaporin-4 revealed that at least half of the TH cells were apposed to microvessels at these ages, and many of these cells contained ChAT or VIP. Cortical TH neurons did not coproduce nitric oxide synthase. These results suggest that increasing proportions of cortical TH neurons express ChAT or VIP developmentally and that a subset of these TH neurons may regulate local blood flow. PMID:21295554

  1. Modulation of catalytic activity in multi-domain protein tyrosine phosphatases.

    Directory of Open Access Journals (Sweden)

    Lalima L Madan

    Full Text Available Signaling mechanisms involving protein tyrosine phosphatases govern several cellular and developmental processes. These enzymes are regulated by several mechanisms which include variation in the catalytic turnover rate based on redox stimuli, subcellular localization or protein-protein interactions. In the case of Receptor Protein Tyrosine Phosphatases (RPTPs containing two PTP domains, phosphatase activity is localized in their membrane-proximal (D1 domains, while the membrane-distal (D2 domain is believed to play a modulatory role. Here we report our analysis of the influence of the D2 domain on the catalytic activity and substrate specificity of the D1 domain using two Drosophila melanogaster RPTPs as a model system. Biochemical studies reveal contrasting roles for the D2 domain of Drosophila Leukocyte antigen Related (DLAR and Protein Tyrosine Phosphatase on Drosophila chromosome band 99A (PTP99A. While D2 lowers the catalytic activity of the D1 domain in DLAR, the D2 domain of PTP99A leads to an increase in the catalytic activity of its D1 domain. Substrate specificity, on the other hand, is cumulative, whereby the individual specificities of the D1 and D2 domains contribute to the substrate specificity of these two-domain enzymes. Molecular dynamics simulations on structural models of DLAR and PTP99A reveal a conformational rationale for the experimental observations. These studies reveal that concerted structural changes mediate inter-domain communication resulting in either inhibitory or activating effects of the membrane distal PTP domain on the catalytic activity of the membrane proximal PTP domain.

  2. Insulin-like growth factor I enhances proenkephalin synthesis and dopamine β-hydroxylase activity in adrenal chromaffin cells

    International Nuclear Information System (INIS)

    Wilson, S.P.

    1991-01-01

    Insulin-like growth factor I (IGF-I) increased both the contents of proenkephalin derived enkephalin-containing peptides and the activity of dopamine β-hydroxylase in bovine adrenal chromaffin cells. These increases in dopamine β-hydroxylase and enkephalin-containing peptides continued for at least 8 days. The half-maximal IGF-I concentration for these effects was ∼ 1 nM, with maximal effects observed at 10-30 nM. In contrast, insulin was 1,000-fold less potent. Pretreatment of chromaffin cells with IGF-I increased the rate of [ 35 S]proenkephalin synthesis 4-fold compared to untreated cells. Total protein synthesis increased only 1.5-fold under these conditions. These results suggest that IGF-I may be a normal regulator of chromaffin cell function

  3. Insulin-like growth factor I enhances proenkephalin synthesis and dopamine. beta. -hydroxylase activity in adrenal chromaffin cells

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, S.P. (Univ. of South Carolina School of Medicine, Columbia (USA))

    1991-01-01

    Insulin-like growth factor I (IGF-I) increased both the contents of proenkephalin derived enkephalin-containing peptides and the activity of dopamine {beta}-hydroxylase in bovine adrenal chromaffin cells. These increases in dopamine {beta}-hydroxylase and enkephalin-containing peptides continued for at least 8 days. The half-maximal IGF-I concentration for these effects was {approximately} 1 nM, with maximal effects observed at 10-30 nM. In contrast, insulin was 1,000-fold less potent. Pretreatment of chromaffin cells with IGF-I increased the rate of ({sup 35}S)proenkephalin synthesis 4-fold compared to untreated cells. Total protein synthesis increased only 1.5-fold under these conditions. These results suggest that IGF-I may be a normal regulator of chromaffin cell function.

  4. Phenylalanine hydroxylase from Legionella pneumophila is a thermostable enzyme with a major functional role in pyomelanin synthesis.

    Directory of Open Access Journals (Sweden)

    Marte I Flydal

    Full Text Available Legionella pneumophila is a pathogenic bacterium that can cause Legionnaires' disease and other non-pneumonic infections in humans. This bacterium produces a pyomelanin pigment, a potential virulence factor with ferric reductase activity. In this work, we have investigated the role of phenylalanine hydroxylase from L. pneumophila (lpPAH, the product of the phhA gene, in the synthesis of the pyomelanin pigment and the growth of the bacterium in defined compositions.Comparative studies of wild-type and phhA mutant corroborate that lpPAH provides the excess tyrosine for pigment synthesis. phhA and letA (gacA appear transcriptionally linked when bacteria were grown in buffered yeast extract medium at 37°C. phhA is expressed in L. pneumophila growing in macrophages. We also cloned and characterized lpPAH, which showed many characteristics of other PAHs studied so far, including Fe(II requirement for activity. However, it also showed many particular properties such as dimerization, a high conformational thermal stability, with a midpoint denaturation temperature (T(m = 79 ± 0.5°C, a high specific activity at 37°C (10.2 ± 0.3 µmol L-Tyr/mg/min and low affinity for the substrate (K(m (L-Phe = 735 ± 50 µM.lpPAH has a major functional role in the synthesis of pyomelanin and promotes growth in low-tyrosine media. The high thermal stability of lpPAH might reflect the adaptation of the enzyme to withstand relatively high survival temperatures.

  5. Identification and characterization of phenol hydroxylase from phenol-degrading Candida tropicalis strain JH8.

    Science.gov (United States)

    Long, Yan; Yang, Sheng; Xie, Zhixiong; Cheng, Li

    2014-09-01

    The gene phhY encoding phenol hydroxylase from Candida tropicalis JH8 was cloned, sequenced, and expressed in Escherichia coli. The gene phhY contained an open reading frame of 2130 bp encoding a polypeptide of 709 amino acid residues. From its sequence analysis, it is a member of a family of flavin-containing aromatic hydroxylases and shares 41% amino acid identity with phenol hydroxylase from Trichosporon cutaneum. The recombinant phenol hydroxylase exists as a homotetramer structure with a native molecular mass of 320 kDa. Recombinant phenol hydroxylase was insensitive to pH treatment; its optimum pH was at 7.6. The optimum temperature for the enzyme was 30 °C, and its activity was rapidly lost at temperatures above 60 °C. Under the optimal conditions with phenol as substrate, the K(m) and V(max) of recombinant phenol hydroxylase were 0.21 mmol·L(-1) and 0.077 μmol·L(-1)·min(-1), respectively. This is the first paper presenting the cloning and expression in E. coli of the phenol hydroxylase gene from C. tropicalis and the characterization of the recombinant phenol hydroxylase.

  6. Species differences in the immunoreactive expression of oxytocin, vasopressin, tyrosine hydroxylase and estrogen receptor alpha in the brain of Mongolian gerbils (Meriones unguiculatus and Chinese striped hamsters (Cricetulus barabensis.

    Directory of Open Access Journals (Sweden)

    Yu Wang

    Full Text Available Species differences in neurochemical expression and activity in the brain may play an important role in species-specific patterns of social behavior. In the present study, we used immunoreactive (ir labeling to compare the regional density of cells containing oxytocin (OT, vasopressin (AVP, tyrosine hydroxylase (TH, or estrogen receptor alpha (ERα staining in the brains of social Mongolian gerbils (Meriones unguiculatus and solitary Chinese striped hamsters (Cricetulus barabensis. Multiple region- and neurochemical-specific species differences were found. In the anterior hypothalamus (AH, Mongolian gerbils had higher densities of AVP-ir and ERα-ir cells than Chinese striped hamsters. In the lateral hypothalamus (LH, Mongolian gerbils also had higher densities of AVP-ir and TH-ir cells, but a lower density of OT-ir cells, than Chinese striped hamsters. Furthermore, in the anterior nucleus of the medial preoptic area (MPOAa, Mongolian gerbils had higher densities of OT-ir and AVP-ir cells than Chinese striped hamsters, and an opposite pattern was found in the posterior nucleus of the MPOA (MPOAp. Some sex differences were also observed. Females of both species had higher densities of TH-ir cells in the MPOAa and of OT-ir cells in the intermediate nucleus of the MPOA (MPOAi than males. Given the role of these neurochemicals in social behaviors, our data provide additional evidence to support the notion that species-specific patterns of neurochemical expression in the brain may be involved in species differences in social behaviors associated with different life strategies.

  7. Tyrosine content, influx and accumulation rate, and catecholamine biosynthesis measured in vivo, in the central nervous system and in peripheral organs of the young rat. Influence of neonatal hypo- and hyperthyroidism.

    Science.gov (United States)

    Diarra, A; Lefauconnier, J M; Valens, M; Georges, P; Gripois, D

    1989-10-01

    The influence of neonatal hypo- and hyperthyroidism on different aspects of tyrosine metabolism in the hypothalamus, striatum, brainstem, adrenal glands, heart and brown adipose tissue (BAT) were studied in 14-day old rats. The synthesis rate of catecholamines (CA) was also determined in vivo after the injection of labelled tyrosine. Hypothyroidism increases tyrosinaemia and endogenous tyrosine concentration in the hypothalamus and BAT. Hyperthyroidism decreases tyrosinaemia and endogenous tyrosine levels in the striatum, adrenals and heart. The accumulation rate of tyrosine determined 30 min after an intravenous injection of the labelled amino acid has been determined in the organs, together with the influx of the amino acid, determined within 20s. Hypothyroidism increases tyrosine accumulation rate in all the organs studied, and tyrosine clearance is decreased in the striatum and brainstem; together with an increased tyrosinaemia, this leads to a normal influx. The influx of tyrosine is increased in the hypothalamus. Hyperthyroidism decreases tyrosine accumulation rate in all the organs except the adrenals. These results indicate that the thyroid status of the young rat can influence tyrosine uptake mechanisms, without modifying an organ's tyrosine content. The fact that hypothyroidism increases tyrosine influx in the hypothalamus without modifying it in the brainstem and striatum reflects an heterogeneous reactivity to the lack of thyroid hormones in different brain structures. Neonatal hypothyroidism decreases the CA synthesis rate in the striatum, the heart and the interscapular brown adipose tissue, while synthesis was enhanced in the brainstem and the adrenals. It is likely that these variations in CA synthesis are due to thyroid hormone modulation of tyrosine hydroxylase activity, the enzyme which catalyses the rate limiting step in CA biosynthesis.

  8. Phytanoyl-CoA hydroxylase activity is induced by phytanic acid

    NARCIS (Netherlands)

    Zomer, A. W.; Jansen, G. A.; van der Burg, B.; Verhoeven, N. M.; Jakobs, C.; van der Saag, P. T.; Wanders, R. J.; Poll-The, B. T.

    2000-01-01

    Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a branched-chain fatty acid present in various dietary products such as milk, cheese and fish. In patients with Refsum disease, accumulation of phytanic acid occurs due to a deficiency of phytanoyl-CoA hydroxylase, a peroxisomal enzyme

  9. DMPD: Receptor tyrosine kinases and the regulation of macrophage activation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14726496 Receptor tyrosine kinases and the regulation of macrophage activation. Cor...osine kinases and the regulation of macrophage activation. PubmedID 14726496 Title Receptor tyrosine...rell PH, Morrison AC, Lutz MA. J Leukoc Biol. 2004 May;75(5):731-7. Epub 2004 Jan 14. (.png) (.svg) (.html) (.csml) Show Receptor tyr

  10. Tyrosine kinases in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Kobayashi Akiko

    2011-08-01

    Full Text Available Abstract Rheumatoid arthritis (RA is an inflammatory, polyarticular joint disease. A number of cellular responses are involved in the pathogenesis of rheumatoid arthritis, including activation of inflammatory cells and cytokine expression. The cellular responses involved in each of these processes depends on the specific signaling pathways that are activated; many of which include protein tyrosine kinases. These pathways include the mitogen-activated protein kinase pathway, Janus kinases/signal transducers and activators transcription pathway, spleen tyrosine kinase signaling, and the nuclear factor κ-light-chain-enhancer of activated B cells pathway. Many drugs are in development to target tyrosine kinases for the treatment of RA. Based on the number of recently published studies, this manuscript reviews the role of tyrosine kinases in the pathogenesis of RA and the potential role of kinase inhibitors as new therapeutic strategies of RA.

  11. Genetics Home Reference: 21-hydroxylase deficiency

    Science.gov (United States)

    ... adrenal hyperplasias that impair hormone production and disrupt sexual development. 21-hydroxylase deficiency is responsible for about 95 ... excess production of androgens leads to abnormalities of sexual development in people with 21-hydroxylase deficiency . A lack ...

  12. From the Cover: Prenatal Nicotinic Exposure Attenuates Respiratory Chemoreflexes Associated With Downregulation of Tyrosine Hydroxylase and Neurokinin 1 Receptor in Rat Pup Carotid Body.

    Science.gov (United States)

    Zhao, Lei; Zhuang, Jianguo; Gao, Xiuping; Ye, Chunyan; Lee, Lu-Yuan; Xu, Fadi

    2016-09-01

    Maternal cigarette smoke is the major risk of sudden infant death syndrome (SIDS). A depressed ventilatory response to hypoxia (HVR) and hypercapnia (HCVR) is thought to be responsible for the pathogenesis of SIDS and the carotid body is critically involved in these responses. We have recently reported that prenatal nicotinic exposure (PNE) over the full gestation induces depressed HVR in rat pups. Here, we asked whether PNE (1) depressed not only HVR but also HCVR that were dependent on the carotid body, (2) affected some important receptors and neurochemicals expressed in the carotid body, such as tyrosine hydroxylase (TH), neurokinin-1 receptor (NK1R), and α7 nicotinic acetylcholine receptor (α7nAChR), and (3) blunted the ventilatory responses to activation of these receptors. To this end, HVR and HCVR in Ctrl and PNE pups were measured with plethysmography before and after carotid body ablation (Series I), mRNA expression and/or immunoreactivity (IR) of TH, NK1R, and α7nAChR in the carotid body were examined by RT-PCR and immunohistochemistry (Series II), and the ventilatory responses were tested before and after intracarotid injection of substance P (NK1R agonist) and AR-R17779 (α7nAChR agonist) (Series III). Our results showed that PNE (1) significantly depressed both HVR and HCVR and these depressions were abolished by carotid body ablation, (2) reduced the relative population of glomus cells, mRNA NK1R, and α7nAChR and IR of NK1R and TH in the carotid body, and (3) decreased ventilatory responses to intracarotid injection of substance P or AR-R17779. These results suggest that PNE acting via the carotid body could strikingly blunt HVR and HCVR, likely through downregulating TH and NK1R. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. CRYSTAL STRUCTURE OF HUMAN DOPAMINE BETA-HYDROXYLASE

    DEFF Research Database (Denmark)

    2017-01-01

    A crystalline form of dopamine β-hydroxylase is provided. X-ray crystallography reveals the space group and cell dimensions, as well as the atomic coordinates. The information can be used for identifying one or more modulators of dopamine β-hydroxylase, which can then be chemically synthesised...... and used in treatment. A process for preparing the crystalline form of human dopamine β-hydroxylase is also provided....

  14. Neural control of left ventricular contractility in the dog heart: synaptic interactions of negative inotropic vagal preganglionic neurons in the nucleus ambiguus with tyrosine hydroxylase immunoreactive terminals.

    Science.gov (United States)

    Massari, V J; Dickerson, L W; Gray, A L; Lauenstein, J M; Blinder, K J; Newsome, J T; Rodak, D J; Fleming, T J; Gatti, P J; Gillis, R A

    1998-08-17

    Recent physiological evidence indicates that vagal postganglionic control of left ventricular contractility is mediated by neurons found in a ventricular epicardial fat pad ganglion. In the dog this region has been referred to as the cranial medial ventricular (CMV) ganglion [J.L. Ardell, Structure and function of mammalian intrinsic cardiac neurons, in: J.A. Armour, J.L. Ardell (Eds.). Neurocardiology, Oxford Univ. Press, New York, 1994, pp. 95-114; B.X. Yuan, J.L. Ardell, D.A. Hopkins, A.M. Losier, J.A. Armour, Gross and microscopic anatomy of the canine intrinsic cardiac nervous system, Anat. Rec., 239 (1994) 75-87]. Since activation of the vagal neuronal input to the CMV ganglion reduces left ventricular contractility without influencing cardiac rate or AV conduction, this ganglion contains a functionally selective pool of negative inotropic parasympathetic postganglionic neurons. In the present report we have defined the light microscopic distribution of preganglionic negative inotropic neurons in the CNS which are retrogradely labeled from the CMV ganglion. Some tissues were also processed for the simultaneous immunocytochemical visualization of tyrosine hydroxylase (TH: a marker for catecholaminergic neurons) and examined with both light microscopic and electron microscopic methods. Histochemically visualized neurons were observed in a long slender column in the ventrolateral nucleus ambiguus (NA-VL). The greatest number of retrogradely labeled neurons were observed just rostral to the level of the area postrema. TH perikarya and dendrites were commonly observed interspersed with vagal motoneurons in the NA-VL. TH nerve terminals formed axo-dendritic synapses upon negative inotropic vagal motoneurons, however the origin of these terminals remains to be determined. We conclude that synaptic interactions exist which would permit the parasympathetic preganglionic vagal control of left ventricular contractility to be modulated monosynaptically by

  15. A single tyrosine of the interleukin-9 (IL-9) receptor is required for STAT activation, antiapoptotic activity, and growth regulation by IL-9.

    Science.gov (United States)

    Demoulin, J B; Uyttenhove, C; Van Roost, E; DeLestré, B; Donckers, D; Van Snick, J; Renauld, J C

    1996-09-01

    Interleukin-9 (IL-9), a T-cell-derived cytokine, interacts with a specific receptor associated with the IL-2 receptor gamma chain. In this report, we analyze the functional domains of the human IL-9 receptor transfected into mouse lymphoid cell lines. Three different functions were examined: growth stimulation in factor-dependent pro-B Ba/F3 cells, protection against dexamethasone-induced apoptosis, and Ly-6A2 induction in BW5147 lymphoma cells. The results indicated that a single tyrosine, at position 116 in the cytoplasmic domain, was required for all three activities. In addition, we observed that human IL-9 reduced the proliferation rate of transfected BW5147 cells, an effect also dependent on the same tyrosine. This amino acid was necessary for IL-9-mediated tyrosine phosphorylation of the receptor and for STAT activation but not for IRS-2/4PS activation or for JAK1 phosphorylation, which depended on a domain closer to the plasma membrane. We also showed that JAK1 was constitutively associated with the IL-9 receptor. Activated STAT complexes induced by IL-9 were found to contain STAT1, STAT3, and STAT5 transcription factors. Moreover, sequence homologies between human IL-9 receptor tyrosine 116 and tyrosines (of other receptors activating STAT3 and STAT5 were observed. Taken together, these data indicate that a single tyrosine of the IL-9 receptor, required for activation of three different STAT proteins, is necessary for distinct activities of this cytokine, including proliferative responses.

  16. Receptor protein tyrosine phosphatase alpha activates Src-family kinases and controls integrin-mediated responses in fibroblasts

    DEFF Research Database (Denmark)

    Su, J; Muranjan, M; Sap, J

    1999-01-01

    of tyrosine kinases, the activity of which is tightly controlled by inhibitory phosphorylation of a carboxyterminal tyrosine residue (Tyr527 in chicken c-Src); this phosphorylation induces the kinases to form an inactive conformation. Whereas the identity of such inhibitory Tyr527 kinases has been well...... established, no corresponding phosphatases have been identified that, under physiological conditions, function as positive regulators of c-Src and Fyn in fibroblasts. RESULTS: Receptor protein tyrosine phosphatase alpha (RPTPalpha) was inactivated by homologous recombination. Fibroblasts derived from...... these RPTPalpha-/- mice had impaired tyrosine kinase activity of both c-Src and Fyn, and this was accompanied by a concomitant increase in c-Src Tyr527 phosphorylation. RPTPalpha-/- fibroblasts also showed a reduction in the rate of spreading on fibronectin substrates, a trait that is a phenocopy of the effect...

  17. Mechanism-based inactivation of cytochrome P-450 dependent benzo[a]pyrene hydroxylase activity by acetylenic and olefinic polycyclic arylhydrocarbons

    International Nuclear Information System (INIS)

    Gan, L.S.

    1986-01-01

    A series of aryl acetylenes and aryl olefins have been examined as substrates and inhibitors of cytochrome P-450 dependent monooxygenases in liver microsomes from 5,6-benzoflavone or phenobarbital pretreated rats. 1-Ethynylpyrene (EP), 3-ethynylperylene (EPL), cis- and trans-1-(2-bromo-vinyl)pyrene (c-BVP and t-BVP), and 1-allylpyrene (AP) serve as mechanism-based irreversible inactivators (suicide inhibitors) of benzo(a)pyrene (BP) hydroxylase, while 1-vinyl-pyrene (VP) and phenyl 1-pyrenyl acetylene (PPA) do not cause a detectable suicide inhibition of the BP hydroxylase. The mechanism-based loss of BP hydroxylase activity caused by the aryl acetylenes is not accompanied by a corresponding loss of the P-450 content of the microsomes. In the presence of NADPH, 3 H-labeled EP covalently attached to P-450 isozymes with a measured stoichiometry of one mole of EP per mole of the P-450 heme. The results of the effects of these aryl derivatives in the mammalian cell-mediated mutagenesis assay and toxicity assay show that none of the compounds examined nor any of the their metabolites produced in the incubation system are cytotoxic to V79 cells

  18. Mapping the functional landscape of frequent phenylalanine hydroxylase (PAH) genotypes promotes personalised medicine in phenylketonuria.

    Science.gov (United States)

    Danecka, Marta K; Woidy, Mathias; Zschocke, Johannes; Feillet, François; Muntau, Ania C; Gersting, Søren W

    2015-03-01

    In phenylketonuria, genetic heterogeneity, frequent compound heterozygosity, and the lack of functional data for phenylalanine hydroxylase genotypes hamper reliable phenotype prediction and individualised treatment. A literature search revealed 690 different phenylalanine hydroxylase genotypes in 3066 phenylketonuria patients from Europe and the Middle East. We determined phenylalanine hydroxylase function of 30 frequent homozygous and compound heterozygous genotypes covering 55% of the study population, generated activity landscapes, and assessed the phenylalanine hydroxylase working range in the metabolic (phenylalanine) and therapeutic (tetrahydrobiopterin) space. Shared patterns in genotype-specific functional landscapes were linked to biochemical and pharmacological phenotypes, where (1) residual activity below 3.5% was associated with classical phenylketonuria unresponsive to pharmacological treatment; (2) lack of defined peak activity induced loss of response to tetrahydrobiopterin; (3) a higher cofactor need was linked to inconsistent clinical phenotypes and low rates of tetrahydrobiopterin response; and (4) residual activity above 5%, a defined peak of activity, and a normal cofactor need were associated with pharmacologically treatable mild phenotypes. In addition, we provide a web application for retrieving country-specific information on genotypes and genotype-specific phenylalanine hydroxylase function that warrants continuous extension, updates, and research on demand. The combination of genotype-specific functional analyses with biochemical, clinical, and therapeutic data of individual patients may serve as a powerful tool to enable phenotype prediction and to establish personalised medicine strategies for dietary regimens and pharmacological treatment in phenylketonuria. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Tyrosine 842 in the activation loop is required for full transformation by the oncogenic mutant FLT3-ITD.

    Science.gov (United States)

    Kazi, Julhash U; Chougule, Rohit A; Li, Tianfeng; Su, Xianwei; Moharram, Sausan A; Rupar, Kaja; Marhäll, Alissa; Gazi, Mohiuddin; Sun, Jianmin; Zhao, Hui; Rönnstrand, Lars

    2017-07-01

    The type III receptor tyrosine kinase FLT3 is frequently mutated in acute myeloid leukemia. Oncogenic FLT3 mutants display constitutive activity leading to aberrant cell proliferation and survival. Phosphorylation on several critical tyrosine residues is known to be essential for FLT3 signaling. Among these tyrosine residues, Y842 is located in the so-called activation loop. The position of this tyrosine residue is well conserved in all receptor tyrosine kinases. It has been reported that phosphorylation of the activation loop tyrosine is critical for catalytic activity for some but not all receptor tyrosine kinases. The role of Y842 residue in FLT3 signaling has not yet been studied. In this report, we show that Y842 is not important for FLT3 activation or ubiquitination but plays a critical role in regulating signaling downstream of the receptor as well as controlling receptor stability. We found that mutation of Y842 in the FLT3-ITD oncogenic mutant background reduced cell viability and increased apoptosis. Furthermore, the introduction of the Y842 mutation in the FLT3-ITD background led to a dramatic reduction in in vitro colony forming capacity. Additionally, mice injected with cells expressing FLT3-ITD/Y842F displayed a significant delay in tumor formation, compared to FLT3-ITD expressing cells. Microarray analysis comparing gene expression regulated by FLT3-ITD versus FLT3-ITD/Y842F demonstrated that mutation of Y842 causes suppression of anti-apoptotic genes. Furthermore, we showed that cells expressing FLT3-ITD/Y842F display impaired activity of the RAS/ERK pathway due to reduced interaction between FLT3 and SHP2 leading to reduced SHP2 activation. Thus, we suggest that Y842 is critical for FLT3-mediated RAS/ERK signaling and cellular transformation.

  20. Suppression of sterol 27-hydroxylase mRNA and transcriptional activity by bile acids in cultured rat hepatocytes

    NARCIS (Netherlands)

    Twisk, J.; Wit, E.C.M. de; Princen, H.M.G.

    1995-01-01

    In previous work we have demonstrated suppression of cholesterol 7α-hydroxylase by bile acids at the level of mRNA and transcription, resulting in a similar decline in bile acid synthesis in cultured rat hepatocytes. In view of the substantial contribution of the 'alternative' or '27-hydroxylase'

  1. Phenylalanine metabolism in isolated rat liver cells. Effects of glucagon and diabetes.

    OpenAIRE

    Carr, F P; Pogson, C I

    1981-01-01

    1. Methods are described for monitoring the metabolic flux through phenylalanine hydroxylase, the tyrosine catabolic pathway and phenylalanine: pyruvate transaminase in isolated liver cell incubations. 2. The relationship between hydroxylase flux and phenylalanine concentration is sigmoidal. 3. Glucagon increases hydroxylase activity at low, near-physiological, substrate concentrations only. The hormone does not affect the rate of formation of phenylpyruvate. 4. Experimental diabetes (for 10 ...

  2. Protein-tyrosine phosphatase SHP2 contributes to GDNF neurotrophic activity through direct binding to phospho-Tyr687 in the RET receptor tyrosine kinase.

    Science.gov (United States)

    Perrinjaquet, Maurice; Vilar, Marçal; Ibáñez, Carlos F

    2010-10-08

    The signaling mechanisms by which neurotrophic receptors regulate neuronal survival and axonal growth are still incompletely understood. In the receptor tyrosine kinase RET, a receptor for GDNF (glial cell line-derived neurotrophic factor), the functions of the majority of tyrosine residues that become phosphorylated are still unknown. Here we have identified the protein-tyrosine phosphatase SHP2 as a novel direct interactor of RET and the first effector known to bind to phosphorylated Tyr(687) in the juxtamembrane region of the receptor. We show that SHP2 is recruited to RET upon ligand binding in a cooperative fashion, such that both interaction with Tyr(687) and association with components of the Tyr(1062) signaling complex are required for stable recruitment of SHP2 to the receptor. SHP2 recruitment contributes to the ability of RET to activate the PI3K/AKT pathway and promote survival and neurite outgrowth in primary neurons. Furthermore, we find that activation of protein kinase A (PKA) by forskolin reduces the recruitment of SHP2 to RET and negatively affects ligand-mediated neurite outgrowth. In agreement with this, mutation of Ser(696), a known PKA phosphorylation site in RET, enhances SHP2 binding to the receptor and eliminates the effect of forskolin on ligand-induced outgrowth. Together, these findings establish SHP2 as a novel positive regulator of the neurotrophic activities of RET and reveal Tyr(687) as a critical platform for integration of RET and PKA signals. We anticipate that several other phosphotyrosines of unknown function in neuronal receptor tyrosine kinases will also support similar regulatory functions.

  3. Autoinhibition of Bruton's tyrosine kinase (Btk) and activation by soluble inositol hexakisphosphate

    Science.gov (United States)

    Wang, Qi; Vogan, Erik M; Nocka, Laura M; Rosen, Connor E; Zorn, Julie A; Harrison, Stephen C; Kuriyan, John

    2015-01-01

    Bruton's tyrosine kinase (Btk), a Tec-family tyrosine kinase, is essential for B-cell function. We present crystallographic and biochemical analyses of Btk, which together reveal molecular details of its autoinhibition and activation. Autoinhibited Btk adopts a compact conformation like that of inactive c-Src and c-Abl. A lipid-binding PH-TH module, unique to Tec kinases, acts in conjunction with the SH2 and SH3 domains to stabilize the inactive conformation. In addition to the expected activation of Btk by membranes containing phosphatidylinositol triphosphate (PIP3), we found that inositol hexakisphosphate (IP6), a soluble signaling molecule found in both animal and plant cells, also activates Btk. This activation is a consequence of a transient PH-TH dimerization induced by IP6, which promotes transphosphorylation of the kinase domains. Sequence comparisons with other Tec-family kinases suggest that activation by IP6 is unique to Btk. DOI: http://dx.doi.org/10.7554/eLife.06074.001 PMID:25699547

  4. Antibody-induced dimerization activates the epidermal growth factor receptor tyrosine kinase

    NARCIS (Netherlands)

    Spaargaren, M.; Defize, L. H.; Boonstra, J.; de Laat, S. W.

    1991-01-01

    The relationship between epidermal growth factor receptor (EGF-R) protein tyrosine kinase activation and ligand-induced receptor dimerization was investigated using several bivalent anti-EGF-R antibodies directed against various receptor epitopes. In A431 membrane preparations and permeabilized

  5. Skin peptide tyrosine-tyrosine, a member of the pancreatic polypeptide family: isolation, structure, synthesis, and endocrine activity.

    Science.gov (United States)

    Mor, A; Chartrel, N; Vaudry, H; Nicolas, P

    1994-10-25

    Pancreatic polypeptide, peptide tyrosine-tyrosine (PYY), and neuropeptide tyrosine (NPY), three members of a family of structurally related peptides, are mainly expressed in the endocrine pancreas, in endocrine cells of the gut, and in the brain, respectively. In the present study, we have isolated a peptide of the pancreatic polypeptide family from the skin of the South American arboreal frog Phyllomedusa bicolor. The primary structure of the peptide was established as Tyr-Pro-Pro-Lys-Pro-Glu-Ser-Pro-Gly-Glu10-Asp-Ala-Ser-Pro-Glu-Glu- Met-Asn- Lys-Tyr20-Leu-Thr-Ala-Leu-Arg-His-Tyr-Ile-Asn-Leu30-Val-Thr- Arg-Gln-Arg-Tyr-NH2 . This unusual peptide, named skin peptide tyrosine-tyrosine (SPYY), exhibits 94% similarity with PYY from the frog Rana ridibunda. A synthetic replicate of SPYY inhibits melanotropin release from perifused frog neurointermediate lobes in very much the same way as NPY. These results demonstrate the occurrence of a PYY-like peptide in frog skin. Our data also suggest the existence of a pituitary-skin regulatory loop in amphibians.

  6. Protein-tyrosine Phosphatase SHP2 Contributes to GDNF Neurotrophic Activity through Direct Binding to Phospho-Tyr687 in the RET Receptor Tyrosine Kinase*

    Science.gov (United States)

    Perrinjaquet, Maurice; Vilar, Marçal; Ibáñez, Carlos F.

    2010-01-01

    The signaling mechanisms by which neurotrophic receptors regulate neuronal survival and axonal growth are still incompletely understood. In the receptor tyrosine kinase RET, a receptor for GDNF (glial cell line-derived neurotrophic factor), the functions of the majority of tyrosine residues that become phosphorylated are still unknown. Here we have identified the protein-tyrosine phosphatase SHP2 as a novel direct interactor of RET and the first effector known to bind to phosphorylated Tyr687 in the juxtamembrane region of the receptor. We show that SHP2 is recruited to RET upon ligand binding in a cooperative fashion, such that both interaction with Tyr687 and association with components of the Tyr1062 signaling complex are required for stable recruitment of SHP2 to the receptor. SHP2 recruitment contributes to the ability of RET to activate the PI3K/AKT pathway and promote survival and neurite outgrowth in primary neurons. Furthermore, we find that activation of protein kinase A (PKA) by forskolin reduces the recruitment of SHP2 to RET and negatively affects ligand-mediated neurite outgrowth. In agreement with this, mutation of Ser696, a known PKA phosphorylation site in RET, enhances SHP2 binding to the receptor and eliminates the effect of forskolin on ligand-induced outgrowth. Together, these findings establish SHP2 as a novel positive regulator of the neurotrophic activities of RET and reveal Tyr687 as a critical platform for integration of RET and PKA signals. We anticipate that several other phosphotyrosines of unknown function in neuronal receptor tyrosine kinases will also support similar regulatory functions. PMID:20682772

  7. Imidacloprid, a neonicotinoid insecticide, facilitates tyrosine hydroxylase transcription and phenylethanolamine N-methyltransferase mRNA expression to enhance catecholamine synthesis and its nicotine-evoked elevation in PC12D cells.

    Science.gov (United States)

    Kawahata, Ichiro; Yamakuni, Tohru

    2018-02-01

    Imidacloprid is a neonicotinoid insecticide acting as an agonist of nicotinic acetylcholine receptors (nAChRs) in the target insects. However, questions about the safety to mammals, including human have emerged. Overactivation of mammalian peripheral catecholaminergic systems leads to onset of tachycardia, hypertension, vomiting, etc., which have been observed in acutely imidacloprid-poisoned patients as well. Physiological activation of the nAChRs is known to drive catecholamine biosynthesis and secretion in mammalian adrenal chromaffin cells. Yet, the impacts of imidacloprid on the catecholaminergic function of the chromaffin cells remain to be evaluated. In this study using PC12D cells, a catecholaminergic cell line derived from the medulla chromaffin-cell tumors of rat adrenal gland, we examined whether imidacloprid itself could impact the catecholamine-synthesizing ability. Imidacloprid alone did facilitate tyrosine hydroxylase (TH) transcription via activation of α3β4 nAChR and the α7 subunit-comprising receptor. The insecticide showed the TH transcription-facilitating ability at the concentrations of 3 and 30 μM, at which acetylcholine is known to produce physiological responses, including catecholamine secretion through the nAChRs in adrenal chromaffin cells. The insecticide-facilitated TH transcription was also dependent on PKA- and RhoA-mediated signaling pathways. The insecticide coincidentally raised levels of TH and phenylethanolamine N-methyltransferase (PNMT) mRNA, and as a consequence, increased catecholamine production, although the efficacy of the neonicotinoid was lesser than that of nicotine, indicating its partial agonist-like action. Intriguingly, in cultured rat adrenal chromaffin cells, imidacloprid did increase levels of TH and PNMT protein. When the chromaffin cells were treated with nicotine in the presence of the insecticide, nicotine-elevated adrenaline production was enhanced due to facilitation of nicotine-increased TH and PNMT

  8. 24-Hydroxylase in Cancer: Impact on Vitamin D-based Anticancer Therapeutics

    Science.gov (United States)

    Luo, Wei; Hershberger, Pamela A.; Trump, Donald L.; Johnson, Candace S.

    2013-01-01

    The active vitamin D hormone 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) plays a major role in regulating calcium homeostasis and bone mineralization. 1,25(OH)2D3 also modulates cellular proliferation and differentiation in a variety of cell types. 24-hydroxylase, encoded by the CYP24A1 gene, is the key enzyme which converts 1,25(OH)2D3 to less active calcitroic acid. Nearly all cell types express 24-hydroxylase, the highest activity being observed in the kidney. There is increasing evidence linking the incidence and prognosis of certain cancers to low serum 25 (OH)D3 levels and high expression of vitamin D 24-hydroxylase supporting the idea that elevated CYP24A1 expression may stimulate degradation of vitamin D metabolites including 25-(OH)D3 and 1,25(OH)2D3. The over expression of CYP24A1 in cancer cells may be a factor affecting 1,25(OH)2D3 bioavailability and anti-proliferative activity pre-clinically and clinically. The combination of 1,25(OH)2D3 with CYP24A1 inhibitors enhances 1,25(OH)2D3 mediated signaling and anti-proliferative effects and may be useful in overcoming effects of aberrant CYP24 expression. PMID:23059474

  9. Activation of the protein tyrosine phosphatase SHP2 via the interleukin-6 signal transducing receptor protein gp130 requires tyrosine kinase Jak1 and limits acute-phase protein expression.

    Science.gov (United States)

    Schaper, F; Gendo, C; Eck, M; Schmitz, J; Grimm, C; Anhuf, D; Kerr, I M; Heinrich, P C

    1998-11-01

    Stimulation of the interleukin-6 (IL-6) signalling pathway occurs via the IL-6 receptor-glycoprotein 130 (IL-6R-gp130) receptor complex and results in the regulation of acute-phase protein genes in liver cells. Ligand binding to the receptor complex leads to tyrosine phosphorylation and activation of Janus kinases (Jak), phosphorylation of the signal transducing subunit gp130, followed by recruitment and phosphorylation of the signal transducer and activator of transcription factors STAT3 and STAT1 and the src homology domain (SH2)-containing protein tyrosine phosphatase (SHP2). The tyrosine phosphorylated STAT factors dissociate from the receptor, dimerize and translocate to the nucleus where they bind to enhancer sequences of IL-6 target genes. Phosphorylated SHP2 is able to bind growth factor receptor bound protein (grb2) and thus might link the Jak/STAT pathway to the ras/raf/mitogen-activated protein kinase pathway. Here we present data on the dose-dependence, kinetics and kinase requirements for SHP2 phosphorylation after the activation of the signal transducer, gp130, of the IL-6-type family receptor complex. When human fibrosarcoma cell lines deficient in Jak1, Jak2 or tyrosine kinase 2 (Tyk2) were stimulated with IL-6-soluble IL-6R complexes it was found that only in Jak1-, but not in Jak 2- or Tyk2-deficient cells, SHP2 activation was greatly impaired. It is concluded that Jak1 is required for the tyrosine phosphorylation of SHP2. This phosphorylation depends on Tyr-759 in the cytoplasmatic domain of gp130, since a Tyr-759-->Phe exchange abrogates SHP2 activation and in turn leads to elevated and prolonged STAT3 and STAT1 activation as well as enhanced acute-phase protein gene induction. Therefore, SHP2 plays an important role in acute-phase gene regulation.

  10. Co-localization patterns of neurotensin receptor 1 and tyrosine hydroxylase in brain regions involved in motivation and social behavior in male European starlings.

    Science.gov (United States)

    Merullo, Devin P; Spool, Jeremy A; Zhao, Changjiu; Riters, Lauren V

    2018-04-01

    Animals communicate in distinct social contexts to convey information specific to those contexts, such as sexual or agonistic motivation. In seasonally-breeding male songbirds, seasonal changes in day length and increases in testosterone stimulate sexually-motivated song directed at females for courtship and reproduction. Dopamine and testosterone may act in the same brain regions to stimulate sexually-motivated singing. The neuropeptide neurotensin, acting at the neurotensin receptor 1 (NTR1), can strongly influence dopamine transmission. The goal of this study was to gain insight into the degree to which seasonal changes in physiology modify interactions between neurotensin and dopamine to adjust context-appropriate communication. Male European starlings were examined in physiological conditions that stimulate season-typical forms of communication: late summer/early fall non-breeding condition (low testosterone; birds sing infrequently), late fall non-breeding condition (low testosterone; birds produce non-sexually motivated song), and spring breeding condition (high testosterone; males produce sexually-motivated song). Double fluorescent immunolabeling was performed to detect co-localization patterns between tyrosine hydroxylase (TH; the rate-limiting enzyme in dopamine synthesis) and NTR1 in brain regions implicated in motivation and song production (the ventral tegmental area, medial preoptic nucleus, periaqueductal gray, and lateral septum). Co-localization between TH and NTR1 was present in the ventral tegmental area for all physiological conditions, and the number of co-localized cells did not differ across conditions. Immunolabeling for TH and NTR1 was also present in the other examined regions, although no co-localization was seen. These results support the hypothesis that interactions between NTR1 and dopamine in the ventral tegmental area may modulate vocalizations, but suggest that testosterone- or photoperiod-induced changes in NTR1/TH co

  11. Influence of neonatal and adult hyperthyroidism on behavior and biosynthetic capacity for norepinephrine, dopamine and 5-hydroxytryptamine in rat brain.

    Science.gov (United States)

    Rastogi, R B; Singhal, R L

    1976-09-01

    In neonatal rats, administration of l-triiodothyronine (10 mug/100 g/day) for 30 days presented signs of hyperthyroidism which included accelerated development of a variety of physical and behavioral characteristics accompanying maturation. The spontaneous motor activity was increased by 69%. Exposure of developing rats to thyroid hormone significantly increased the endogenous concentration of striatal tyrosine and the activity of tyrosine hydroxylase as well as the levels of dopamine in several brain regions. The concentration of striatal homovanillic acid and 3,4-dihydroxyphenylacetic acid, the chief metabolites of dopamine, was also increased and the magnitude of change was greater than the rise in dopamine. Despite increases in the activity of tyrosine hydroxylase and the availability of the substrate tyrosine, the steady-state levels of norepinephrine remained unaltered in various regions of brain except in cerebellum. Futhermore, neonatal hyperthyroidism significantly increased the levels of midbrain tryptophan and tryptophan hydroxylase activity but produced no change in 5-hydroxytryptamine levels of several discrete brain regions, except hypothalamus and cerebellum where its concentration was slightly decreased. However, the 5-hydroxyindoleacetic acid levels were enhanced in hypothalamus, ponsmedulla, midbrain, striatum and hippocampus. The elevated levels of 5-hydroxyindoleacetic acid did not seem to be due to increased intraneuronal deamination of 5-hydroxytryptamine since monoamine oxidase activity was not affected in cerebral cortex and midbrain of hyperthyroid rats. The data demonstrate that hyperthyroidism significantly increased the synthesis as well as the utilization of catecholamines and 5-hydroxytryptamine in maturing brain. Since the mature brain is known to respond differently to thyroid hormone action than does the developing brain, the effect of L-triiodothyronine treatment on various putative neurohumors also was examined in adult rats

  12. Domains of the growth hormone receptor required for association and activation of JAK2 tyrosine kinase

    DEFF Research Database (Denmark)

    VanderKuur, J A; Wang, X; Zhang, L

    1994-01-01

    Growth hormone (GH) has recently been shown to activate the GH receptor (GHR)-associated tyrosine kinase JAK2. In the present study, regions of the GHR required for JAK2 association with GHR were identified. GH-dependent JAK2 association with GHR was detected in Chinese hamster ovary (CHO) cells...... and RIN-5AH cells, the ability of JAK2 to associate with the mutated GHR was found to correlate with GH-dependent activation of JAK2, tyrosyl phosphorylation of GHR (in the case of GHR1-638 and GHR1-454), and the ability of the GHR to copurify with tyrosine kinase activity. In CHO cells expressing mutated......, and that tyrosines in the N-terminal half of the cytoplasmic domain of the GHR are phosphorylated by JAK2. The finding that a specific interaction with the C-terminal half of GHR appears to be necessary for p97 phosphorylation indicates that while JAK2 activation may be necessary for a full biological response to GH...

  13. Activation of the TASK-2 channel after cell swelling is dependent on tyrosine phosphorylation

    DEFF Research Database (Denmark)

    Kirkegaard, Signe Skyum; Lambert, Ian Henry; Gammeltoft, Steen

    2010-01-01

    (K,vol) indicating that inhibition of RVD reflects inhibition of TASK-2. We find that in EATC the tyrosine kinase inhibitor genistein inhibits RVD by 90%, and that the tyrosine phosphatase inhibitor monoperoxo(picolinato)-oxo-vanadate(V) [mpV(pic)] shifted the volume set point for inactivation of the channel...... to a lower cell volume. Swelling-activated K(+) efflux was impaired by genistein and the Src kinase family inhibitor 4-amino-5-(4-chloro-phenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) and enhanced by the tyrosine phosphatase inhibitor mpV(pic). With the use of the TASK-2 inhibitor clofilium......, it is demonstrated that mpV(pic) increased the volume-sensitive part of the K(+) efflux 1.3 times. To exclude K(+) efflux via a KCl cotransporter, cellular Cl(-) was substituted with NO(3)(-). Also under these conditions K(+) efflux was completely blocked by genistein. Thus tyrosine kinases seem to be involved...

  14. Roles of the tyrosine isomers meta-tyrosine and ortho-tyrosine in oxidative stress.

    Science.gov (United States)

    Ipson, Brett R; Fisher, Alfred L

    2016-05-01

    The damage to cellular components by reactive oxygen species, termed oxidative stress, both increases with age and likely contributes to age-related diseases including Alzheimer's disease, atherosclerosis, diabetes, and cataract formation. In the setting of oxidative stress, hydroxyl radicals can oxidize the benzyl ring of the amino acid phenylalanine, which then produces the abnormal tyrosine isomers meta-tyrosine or ortho-tyrosine. While elevations in m-tyrosine and o-tyrosine concentrations have been used as a biological marker of oxidative stress, there is emerging evidence from bacterial, plant, and mammalian studies demonstrating that these isomers, particularly m-tyrosine, directly produce adverse effects to cells and tissues. These new findings suggest that the abnormal tyrosine isomers could in fact represent mediators of the effects of oxidative stress. Consequently the accumulation of m- and o-tyrosine may disrupt cellular homeostasis and contribute to disease pathogenesis, and as result, effective defenses against oxidative stress can encompass not only the elimination of reactive oxygen species but also the metabolism and ultimately the removal of the abnormal tyrosine isomers from the cellular amino acid pool. Future research in this area is needed to clarify the biologic mechanisms by which the tyrosine isomers damage cells and disrupt the function of tissues and organs and to identify the metabolic pathways involved in removing the accumulated isomers after exposure to oxidative stress. Published by Elsevier B.V.

  15. Comparison of aryl hydrocarbon hydroxylase and acetanilide 4-hydroxylase induction by polycyclic aromatic compounds in human and mouse cell lines.

    Science.gov (United States)

    Jaiswal, A K; Nebert, D W; Eisen, H W

    1985-08-01

    The human MCF-7 and the mouse Hepa-1 cell culture lines were compared for aryl hydrocarbon hydroxylase and acetanilide 4-hydroxylase inducibility by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and benzo[a]anthracene (BA) and TCDD- and BA-specific binding in the cytosol and nucleus. The effective concentration of BA in the growth medium required to induce either enzyme to 50% of its maximally inducible activity (EC50) was the same (5-11 microM) in both MCF-7 and Hepa-1 cells. On the other hand, the EC50 for TCDD in MCF-7 cells (5-25 nM) was more than 40-fold greater than that in Hepa-1 cells (0.4 to 0.6 nM). P1-450- and P3-450-specific mouse cDNA probes were used to quantitate mRNA induction in the Hepa-1 cell line. P1-450 mRNA was induced markedly by TCDD and benzo[a] anthracene, whereas P3-450 mRNA was induced negligibly. A P1-450-specific human cDNA probe was used to quantitate P1-450 mRNA induction in the MCF-7 cell line. Aryl hydrocarbon hydroxylase inducibility by TCDD or BA always paralleled P1-450 mRNA inducibility in either the mouse or human line. Although the cytosolic Ah receptor in Hepa-1 cells was easily detected by sucrose density gradient centrifugation, gel permeation chromatography, and anion-exchange high-performance liquid chromatography, the cytosolic receptor cannot be detected in MCF-7 cells. Following in vivo exposure of cultures to radiolabeled TCDD, the intranuclear concentration of inducer-receptor complex was at least fifty times greater in Hepa-1 than MCF-7 cultures. The complete lack of measurable cytosolic receptor and almost totally absent inducer-receptor complex in the nucleus of MCF-7 cells was, therefore, out of proportion to its capacity for aryl hydrocarbon hydroxylase and acetanilide 4-hydroxylase inducibility. This MCF-7 line should provide an interesting model for a better understanding of the mechanisms of drug-metabolizing enzyme induction by polycyclic aromatic compounds, including the Ah receptor-mediated mechanism.

  16. Tyrosine Phosphorylation of the Guanine Nucleotide Exchange Factor GIV Promotes Activation of PI3K During Cell Migration

    Science.gov (United States)

    Lin, Changsheng; Ear, Jason; Pavlova, Yelena; Mittal, Yash; Kufareva, Irina; Ghassemian, Majid; Abagyan, Ruben; Garcia-Marcos, Mikel; Ghosh, Pradipta

    2014-01-01

    GIV (Gα-interacting vesicle-associated protein; also known as Girdin), enhances Akt activation downstream of multiple growth factor– and G-protein–coupled receptors to trigger cell migration and cancer invasion. Here we demonstrate that GIV is a tyrosine phosphoprotein that directly binds to and activates phosphoinositide 3-kinase (PI3K). Upon ligand stimulation of various receptors, GIV was phosphorylated at Tyr1764 and Tyr1798 by both receptor and non-receptor tyrosine kinases. These phosphorylation events enabled direct binding of GIV to the N- and C-terminal SH2 domains of p85α, a regulatory subunit of PI3K, stabilized receptor association with PI3K, and enhanced PI3K activity at the plasma membrane to trigger cell migration. Tyrosine phosphorylation of GIV and its association with p85α increased during metastatic progression of a breast carcinoma. These results suggest a mechanism by which multiple receptors activate PI3K through tyrosine phosphorylation of GIV, thereby making the GIVPI3K interaction a potential therapeutic target within the PI3K-Akt pathway. PMID:21954290

  17. Crosstalk between G protein-coupled receptors (GPCRs and tyrosine kinase receptor (TXR in the heart after morphine withdrawal

    Directory of Open Access Journals (Sweden)

    Pilar eAlmela

    2013-12-01

    Full Text Available G protein-coupled receptors (GPCRs comprise a large family of membrane receptors involved in signal transduction. These receptors are linked to a variety of physiological and biological processes such as regulation of neurotransmission, growth and cell differentiation among others. Some of the effects of GPCRs are known to be mediated by the activation of mitogen-activated extracellular kinase (MAPK pathways. Cross-talk among various signal pathways plays an important role in activation of intracellular and intranuclear signal transduction cascades. Naloxone-induced morphine withdrawal leads to an up-regulation of adenyl cyclase-mediated signalling, resulting in high expression of protein kinase (PK A. In addition, there is also an increased expression of extracellular signal regulated kinase (ERK, one member of MAPK. For this reason, the crosstalk between these GPCRs and receptors with tyrosine kinase activity (TKR can be considered a possible mechanism for adaptive changes that occurs after morphine withdrawal. Morphine withdrawal activates ERK1/2 and phosphorylated tyrosine hydroxylase (TH at Ser31 in the right and left ventricle. When N-(2-guanidinoethyl-5-isoquinolinesulfonamide (HA-1004, a PKA inhibitor was infused, the ability of morphine withdrawal to activate ERK, which phosphorylates TH at Ser31, was reduced. The present finding demonstrated that the enhancement of ERK1/2 expression and the phosphorylation state of TH at Ser31 during morphine withdrawal are dependent on PKA and suggest cross-talk between PKA and ERK1/2 transduction pathway mediating morphine withdrawal-induced activation of TH. Increasing understanding of the mechanisms that interconnect the two pathway regulated by GPCRs and TKRs may facilitate the design of new therapeutic strategies.

  18. Hydroxylase inhibition attenuates colonic epithelial secretory function and ameliorates experimental diarrhea.

    LENUS (Irish Health Repository)

    Ward, Joseph B J

    2012-02-01

    Hydroxylases are oxygen-sensing enzymes that regulate cellular responses to hypoxia. Transepithelial Cl(-) secretion, the driving force for fluid secretion, is dependent on O(2) availability for generation of cellular energy. Here, we investigated the role of hydroxylases in regulating epithelial secretion and the potential for targeting these enzymes in treatment of diarrheal disorders. Ion transport was measured as short-circuit current changes across voltage-clamped monolayers of T(84) cells and mouse colon. The antidiarrheal efficacy of dimethyloxallyl glycine (DMOG) was tested in a mouse model of allergic disease. Hydroxylase inhibition with DMOG attenuated Ca(2+)- and cAMP-dependent secretory responses in voltage-clamped T(84) cells to 20.2 +\\/- 2.6 and 38.8 +\\/- 6.7% (n=16; P<\\/=0.001) of those in control cells, respectively. Antisecretory actions of DMOG were time and concentration dependent, being maximal after 18 h of DMOG (1 mM) treatment. DMOG specifically inhibited Na(+)\\/K(+)-ATPase pump activity without altering its expression or membrane localization. In mice, DMOG inhibited agonist-induced secretory responses ex vivo and prevented allergic diarrhea in vivo. In conclusion, hydroxylases are important regulators of epithelial Cl(-) and fluid secretion and present a promising target for development of new drugs to treat transport disorders.

  19. Hydroxylase inhibition attenuates colonic epithelial secretory function and ameliorates experimental diarrhea.

    LENUS (Irish Health Repository)

    Ward, Joseph B J

    2011-02-01

    Hydroxylases are oxygen-sensing enzymes that regulate cellular responses to hypoxia. Transepithelial Cl(-) secretion, the driving force for fluid secretion, is dependent on O(2) availability for generation of cellular energy. Here, we investigated the role of hydroxylases in regulating epithelial secretion and the potential for targeting these enzymes in treatment of diarrheal disorders. Ion transport was measured as short-circuit current changes across voltage-clamped monolayers of T(84) cells and mouse colon. The antidiarrheal efficacy of dimethyloxallyl glycine (DMOG) was tested in a mouse model of allergic disease. Hydroxylase inhibition with DMOG attenuated Ca(2+)- and cAMP-dependent secretory responses in voltage-clamped T(84) cells to 20.2 ± 2.6 and 38.8 ± 6.7% (n=16; P≤0.001) of those in control cells, respectively. Antisecretory actions of DMOG were time and concentration dependent, being maximal after 18 h of DMOG (1 mM) treatment. DMOG specifically inhibited Na(+)\\/K(+)-ATPase pump activity without altering its expression or membrane localization. In mice, DMOG inhibited agonist-induced secretory responses ex vivo and prevented allergic diarrhea in vivo. In conclusion, hydroxylases are important regulators of epithelial Cl(-) and fluid secretion and present a promising target for development of new drugs to treat transport disorders.

  20. Sex-dependent differences in phenobarbitane-induced oestradiol-2-hydroxylase activity in rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Theron, C.N.; Neethling, A.C.; Taljaard, J.J.F. (Stellenbosch Univ. (South Africa). Dept. of Chemical Pathology)

    1981-08-15

    Oestradiol-2-hydroxylase (E/sub 2/-OH) activity was measured in liver and brain microsomes of 6-8-week-old Wistar rats. Phenobarbitone (75 mg/kg daily for 3 days) significantly increased enzyme activity in the liver of males and females, but there were striking differences between the two sexes. In males the enzyme activity was increased by 37% over control values and in females by 200%. The total microsomol cytochrome P-450 content was increased by 75% in males and by 82% in females. The apparent Michaelis constant (K(m)) of E/sub 2/-OH for 17..beta..-oestradiol in untreated males (9,8 ..mu..M) and females (9,2 ..mu..M) did not differ significantly. Phenobarbitone treatment, however, tended to reduce the apparent K(m) in males (8,2 ..mu..M) and to increase it in females (18,7 ..mu..M). E/sub 2/-OH activity was also detected in brain tissue of both sexes, but it was 50-200-fold lower than in the liver and was not increased by phenobarbitone.

  1. Sex-dependent differences in phenobarbitane-induced oestradiol-2-hydroxylase activity in rat liver

    International Nuclear Information System (INIS)

    Theron, C.N.; Neethling, A.C.; Taljaard, J.J.F.

    1981-01-01

    Oestradiol-2-hydroxylase (E 2 -OH) activity was measured in liver and brain microsomes of 6-8-week-old Wistar rats. Phenobarbitone (75 mg/kg daily for 3 days) significantly increased enzyme activity in the liver of males and females, but there were striking differences between the two sexes. In males the enzyme activity was increased by 37% over control values and in females by 200%. The total microsomol cytochrome P-450 content was increased by 75% in males and by 82% in females. The apparent Michaelis constant (K(m)) of E 2 -OH for 17β-oestradiol in untreated males (9,8 μM) and females (9,2 μM) did not differ significantly. Phenobarbitone treatment, however, tended to reduce the apparent K(m) in males (8,2 μM) and to increase it in females (18,7 μM). E 2 -OH activity was also detected in brain tissue of both sexes, but it was 50-200-fold lower than in the liver and was not increased by phenobarbitone

  2. SH2 domains: modulators of nonreceptor tyrosine kinase activity

    OpenAIRE

    Filippakopoulos, Panagis; Müller, Susanne; Knapp, Stefan

    2009-01-01

    The Src homology 2 (SH2) domain is a sequence-specific phosphotyrosine-binding module present in many signaling molecules. In cytoplasmic tyrosine kinases, the SH2 domain is located N-terminally to the catalytic kinase domain (SH1) where it mediates cellular localization, substrate recruitment, and regulation of kinase activity. Initially, structural studies established a role of the SH2 domain stabilizing the inactive state of Src family members. However, biochemical characterization showed ...

  3. Sch proteins are localized on endoplasmic reticulum membranes and are redistributed after tyrosine kinase receptor activation

    DEFF Research Database (Denmark)

    Lotti, L V; Lanfrancone, L; Migliaccio, E

    1996-01-01

    area of the cell and mostly associated with the cytosolic side of rough endoplasmic reticulum membranes. Upon epidermal growth factor treatment and receptor tyrosine kinase activation, the immunolabeling became peripheral and was found to be associated with the cytosolic surface of the plasma membrane....... The rough endoplasmic reticulum localization of Shc proteins in unstimulated cells and their massive recruitment to the plasma membrane, endocytic structures, and peripheral cytosol following receptor tyrosine kinase activation could account for multiple putative functions of the adaptor protein....

  4. Cytoplasm-predominant Pten associates with increased region-specific brain tyrosine hydroxylase and dopamine D2 receptors in mouse model with autistic traits.

    Science.gov (United States)

    He, Xin; Thacker, Stetson; Romigh, Todd; Yu, Qi; Frazier, Thomas W; Eng, Charis

    2015-01-01

    Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by impairment in social communication/interaction and inflexible/repetitive behavior. Several lines of evidence support genetic factors as a predominant cause of ASD. Among those autism susceptibility genes that have been identified, the PTEN tumor suppressor gene, initially identified as predisposing to Cowden heritable cancer syndrome, was found to be mutated in a subset of ASD patients with extreme macrocephaly. However, the ASD-relevant molecular mechanism mediating the effect of PTEN mutations remains elusive. We developed a Pten knock-in murine model to study the effects of Pten germline mutations, specifically altering subcellular localization, in ASD. Proteins were isolated from the hemispheres of the male littermates, and Western blots were performed to determine protein expression levels of tyrosine hydroxylase (TH). Immunohistochemical stains were carried out to validate the localization of TH and dopamine D2 receptors (D2R). PC12 cells ectopically expressing either wild-type or missense mutant PTEN were then compared for the differences in TH expression. Mice carrying Pten mutations have high TH and D2R in the striatum and prefrontal cortex. They also have increased phosphorylation of cAMP response element-binding protein (CREB) and TH. Mechanistically, PTEN downregulates TH production in PC12 cells via inhibiting the phosphoinositide 3-kinase (PI3K)/CREB signaling pathway, while PTEN reduces TH phosphorylation via suppressing MAPK pathway. Unlike wild-type PTEN but similar to the mouse knock-in mutant Pten, three naturally occurring missense mutations of PTEN that we previously identified in ASD patients, H93R, F241S, and D252G, were not able to suppress TH when overexpressed in PC12 cells. In addition, two other PTEN missense mutations, C124S (pan phosphatase dead) and G129E (lipid phosphatase dead), failed to suppress TH when ectopically expressed in PC12 cells

  5. Phosphopeptide occupancy and photoaffinity cross-linking of the v-Src SH2 domain attenuates tyrosine kinase activity.

    Science.gov (United States)

    Garcia, P; Shoelson, S E; Drew, J S; Miller, W T

    1994-12-02

    Phosphorylation of c-Src at carboxyl-terminal Tyr-527 suppresses tyrosine kinase activity and transforming potential, presumably by facilitating the intramolecular interaction of the C terminus of Src with its SH2 domain. In addition, it has been shown previously that occupancy of the c-Src SH2 domain with a phosphopeptide stimulates c-Src kinase catalytic activity. We have performed analogous studies with v-Src, the transforming protein from Rous sarcoma virus, which has extensive homology with c-Src. v-Src lacks an autoregulatory phosphorylation site, and its kinase domain is constitutively active. Phosphopeptides corresponding to the sequences surrounding c-Src Tyr-527 and a Tyr-Glu-Glu-Ile motif from the hamster polyoma virus middle T antigen inhibit tyrosine kinase activity of baculovirus-expressed v-Src 2- and 4-fold, respectively. To determine the mechanism of this regulation, the Tyr-527 phosphopeptide was substituted with the photoactive amino acid p-benzoylphenylalanine at the adjacent positions (N- and C-terminal) to phosphotyrosine. These peptides photoinactivate the v-Src tyrosine kinase 5-fold in a time- and concentration-dependent manner. Furthermore, the peptides cross-link an isolated Src SH2 domain with similar rates and specificity. These data indicate that occupancy of the v-Src SH2 domain induces a conformational change that is transmitted to the kinase domain and attenuates tyrosine kinase activity.

  6. 1α-hydroxylase and innate immune responses to 25-hydroxyvitamin D in colonic cell lines

    Science.gov (United States)

    Lagishetty, Venu; Chun, Rene F.; Liu, Nancy Q.; Lisse, Thomas S.; Adams, John S.; Hewison, Martin

    2010-01-01

    Vitamin D-insufficiency is a prevalent condition in populations throughout the world, with low serum levels of 25-hydroxyvitamin D (25OHD) linked to a variety of human health concerns including cancer, autoimmune disease and infection. Current data suggest that 25OHD action involves localized extra-renal conversion to 1,25-dihydroxyvitamin D (1,25(OH)2D) via tissue-specific expression of the enzyme 25-hydroxyvitamin D-1α-hydroxylase (1α-hydroxylase). In cells such as macrophages, expression of 1α-hydroxylase is intimately associated with toll-like receptor (TLR) recognition of pathogens. However, this mechanism may not be exclusive to extra-renal generation of 1,25(OH)2D. To investigate the relationship between TLR-mediated pathogen recognition and vitamin D-induced antibacterial activity, intracrine responses to 25OHD metabolism were explored in vitro using the established colonic cell lines Caco-2 and Caco-2 clone BBe. Analysis of antibacterial factors such as cathelicidin (LL37) and β-defensin-4 (DEFB4) was carried out following co-treatment with TLR ligands. Data indicate that, unlike macrophages, Caco-2 and BBe colonic cell lines are unresponsive to TLR-induced 1α-hydroxylase. Alternative activators of 1α-hydroxylase such as transforming growth factor β were also ineffective at priming intracrine responses to 25OHD. Thus, in common with other barrier sites such as the skin or placenta, colonic epithelial cells may require specific factors to initiate intracrine responses to vitamin D. PMID:20152900

  7. Synthesis of deuterium and tritium labelled tyrosine

    International Nuclear Information System (INIS)

    Kanska, M.; Drabarek, S.

    1980-01-01

    A new method of synthesis of tyrosine labelled with deuterium and tritium in the aromatic ring has been developed. Deuterated and tritiated tyrosine was obtained by isotope exchange between tyrosine and deuterated or tritiated water at elevated temperature in hydrochloric acid medium using K 2 PtCl 4 as a catalyst. For synthesis of tritiated tyrosine 1 Ci HTO was used; the specific activity of the product was 5 mCi/mMol. (author)

  8. Phorbol ester-induced serine phosphorylation of the insulin receptor decreases its tyrosine kinase activity.

    Science.gov (United States)

    Takayama, S; White, M F; Kahn, C R

    1988-03-05

    The effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on the function of the insulin receptor was examined in intact hepatoma cells (Fao) and in solubilized extracts purified by wheat germ agglutinin chromatography. Incubation of ortho[32P]phosphate-labeled Fao cells with TPA increased the phosphorylation of the insulin receptor 2-fold after 30 min. Analysis of tryptic phosphopeptides from the beta-subunit of the receptor by reverse-phase high performance liquid chromatography and determination of their phosphoamino acid composition suggested that TPA predominantly stimulated phosphorylation of serine residues in a single tryptic peptide. Incubation of the Fao cells with insulin (100 nM) for 1 min stimulated 4-fold the phosphorylation of the beta-subunit of the insulin receptor. Prior treatment of the cells with TPA inhibited the insulin-stimulated tyrosine phosphorylation by 50%. The receptors extracted with Triton X-100 from TPA-treated Fao cells and purified on immobilized wheat germ agglutinin retained the alteration in kinase activity and exhibited a 50% decrease in insulin-stimulated tyrosine autophosphorylation and phosphotransferase activity toward exogenous substrates. This was due primarily to a decrease in the Vmax for these reactions. TPA treatment also decreased the Km of the insulin receptor for ATP. Incubation of the insulin receptor purified from TPA-treated cells with alkaline phosphatase decreased the phosphate content of the beta-subunit to the control level and reversed the inhibition, suggesting that the serine phosphorylation of the beta-subunit was responsible for the decreased tyrosine kinase activity. Our results support the notion that the insulin receptor is a substrate for protein kinase C in the Fao cell and that the increase in serine phosphorylation of the beta-subunit of the receptor produced by TPA treatment inhibited tyrosine kinase activity in vivo and in vitro. These data suggest that protein kinase C may regulate the function

  9. Seventeen Alpha-hydroxylase Deficiency

    Directory of Open Access Journals (Sweden)

    Siew-Lee Wong

    2006-01-01

    Full Text Available Seventeen a-hydroxylase deficiency (17OHD is a rare form of congenital adrenal hyperplasia in which defects in the biosynthesis of cortisol and sex steroid result in mineralocorticoid excess, hypokalemic hypertension and sexual abnormalities such as pseudohermaphroditism in males, and sexual infantilism in females. The disease is inherited in an autosomal recessive pattern, and is caused by mutations in the gene encoding cytochrome P450c17 (CYP17, which is the single polypeptide that mediates both 17α-hydroxylase and 17,20-lyase activities. We report the case of a 15-year-old patient with 17OHD who had a female phenotype but male karyotype (46,XY. The diagnosis was made based on classical clinical features, biochemical data and molecular genetic study. Two mutations were identified by polymerase chain reaction amplification and sequencing, including a S106P point mutation in exon 2 and a 9-bp (GACTCTTTC deletion from nucleotide position 1519 in exon 8 of CYP17. The first of these mutations was found in the father and the second in the mother, and both have been previously reported in Asia. The patient's hypertension and hypokalemia resolved after glucocorticoid replacement and treatment with potassium-sparing diuretics. Sex hormone replacement was prescribed for induction of sexual development and reduction of the final height. Prophylactic gonadectomy was scheduled. In summary, 17OHD should be suspected in patients with hypokalemic hypertension and lack of secondary sexual development so that appropriate therapy can be implemented.

  10. Cloning and expression analysis of tyrosine hydroxylase and changes in catecholamine levels in brain during ontogeny and after sex steroid analogues exposure in the catfish, Clarias batrachus.

    Science.gov (United States)

    Mamta, Sajwan Khatri; Raghuveer, Kavarthapu; Sudhakumari, Cheni-Chery; Rajakumar, Anbazhagan; Basavaraju, Yaraguntappa; Senthilkumaran, Balasubramanian

    2014-02-01

    Tyrosine hydroxylase (Th) is the rate-limiting enzyme for catecholamine (CA) biosynthesis and is considered to be a marker for CA-ergic neurons, which regulate the levels of gonadotropin-releasing hormone in brain and gonadotropins in the pituitary. In the present study, we cloned full-length cDNA of Th from the catfish brain and evaluated its expression pattern in the male and female brain during early development and after sex-steroid analogues treatment using quantitative real-time PCR. We measured the CA levels to compare our results on Th. Cloned Th from catfish brain is 1.591 kb, which encodes a putative protein of 458 amino acid residues and showed high homology with other teleosts. The tissue distribution of Th revealed ubiquitous expression in all the tissues analyzed with maximum expression in male and female brain. Copy number analysis showed two-fold more transcript abundance in the female brain when compared with the male brain. A differential expression pattern of Th was observed in which the mRNA levels were significantly higher in females compared with males, during early brain development. CAs, l-3,4-dihydroxyphenylalanine, dopamine, and norepinephrine levels measured using high-performance liquid chromatography with electrochemical detection in the developing male and female brain confirmed the prominence of the CA-ergic system in the female brain. Sex-steroid analogue treatment using methyltestosterone and ethinylestradiol confirmed our findings of the differential expression of Th related to CA levels. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Rat-liver cholesterol 7α-hydroxylase. Pt. 1

    International Nuclear Information System (INIS)

    Cantfort, J. van; Renson, J.; Gielen, J.

    1975-01-01

    A new assay is described to measure the activity of cholesterol 7α-hydroxylase and compared to the conventional 14 C method used by other investigators. This method is based on the mechanism of the enzymic hydroxylation, i.e. a direct and stereospecific substitution of the 7α-hydrogen by a hydroxyl group. [7α- 3 H]cholesterol is incubated at 37 0 C and in the presence of molecular O 2 , in a medium buffered by potassium phosphate at pH 7.4 and containing liver microsomes (or 9,000 x g supernatant), NADPH, MgCl 2 and cysteamine. Tween-80 (1.5 mg/ml) is used to introduce enough substrate (300 μM) in the incubation mixture to saturate the ezyme (K(m) = 100 μM). Under these conditions the tritiated water released into the incubation medium reflects accurately the enzymic activity. The results obtained with this method are similar to the one obtained with a [4- 14 C]cholesterol technique (r = 0.96; P 3 H]cholesterol method is a complete independence from further metabolism of the first enzymic product, the 7α-hydroxycholesterol, the tritiated water representing the entire cholesterol 7α-hydroxylase activity. (orig.) [de

  12. mTORC2 promotes type I insulin-like growth factor receptor and insulin receptor activation through the tyrosine kinase activity of mTOR.

    Science.gov (United States)

    Yin, Yancun; Hua, Hui; Li, Minjing; Liu, Shu; Kong, Qingbin; Shao, Ting; Wang, Jiao; Luo, Yuanming; Wang, Qian; Luo, Ting; Jiang, Yangfu

    2016-01-01

    Mammalian target of rapamycin (mTOR) is a core component of raptor-mTOR (mTORC1) and rictor-mTOR (mTORC2) complexes that control diverse cellular processes. Both mTORC1 and mTORC2 regulate several elements downstream of type I insulin-like growth factor receptor (IGF-IR) and insulin receptor (InsR). However, it is unknown whether and how mTOR regulates IGF-IR and InsR themselves. Here we show that mTOR possesses unexpected tyrosine kinase activity and activates IGF-IR/InsR. Rapamycin induces the tyrosine phosphorylation and activation of IGF-IR/InsR, which is largely dependent on rictor and mTOR. Moreover, mTORC2 promotes ligand-induced activation of IGF-IR/InsR. IGF- and insulin-induced IGF-IR/InsR phosphorylation is significantly compromised in rictor-null cells. Insulin receptor substrate (IRS) directly interacts with SIN1 thereby recruiting mTORC2 to IGF-IR/InsR and promoting rapamycin- or ligand-induced phosphorylation of IGF-IR/InsR. mTOR exhibits tyrosine kinase activity towards the general tyrosine kinase substrate poly(Glu-Tyr) and IGF-IR/InsR. Both recombinant mTOR and immunoprecipitated mTORC2 phosphorylate IGF-IR and InsR on Tyr1131/1136 and Tyr1146/1151, respectively. These effects are independent of the intrinsic kinase activity of IGF-IR/InsR, as determined by assays on kinase-dead IGF-IR/InsR mutants. While both rictor and mTOR immunoprecitates from rictor(+/+) MCF-10A cells exhibit tyrosine kinase activity towards IGF-IR and InsR, mTOR immunoprecipitates from rictor(-/-) MCF-10A cells do not induce IGF-IR and InsR phosphorylation. Phosphorylation-deficient mutation of residue Tyr1131 in IGF-IR or Tyr1146 in InsR abrogates the activation of IGF-IR/InsR by mTOR. Finally, overexpression of rictor promotes IGF-induced cell proliferation. Our work identifies mTOR as a dual-specificity kinase and clarifies how mTORC2 promotes IGF-IR/InsR activation.

  13. MHC class I signaling in T cells leads to tyrosine kinase activity and PLC-gamma 1 phosphorylation

    DEFF Research Database (Denmark)

    Skov, S; Odum, Niels; Claesson, M H

    1995-01-01

    phosphorylation and the subsequent calcium response. The early tyrosine kinase activity was found to be dependent on expression of the TCR/CD3 complex and the CD45 molecule on the surface of the T cells. Furthermore, MHC-I cross-linking was shown to tyrosine phosphorylate PLC-gamma 1 (phospholipase C-gamma 1...

  14. Oncogenic activation of v-kit involves deletion of a putative tyrosine-substrate interaction site.

    Science.gov (United States)

    Herbst, R; Munemitsu, S; Ullrich, A

    1995-01-19

    The transforming gene of the Hardy-Zuckerman-4 strain of feline sarcoma virus, v-kit, arose by transduction of the cellular c-kit gene, which encodes the receptor tyrosine kinase (RTK) p145c-kit. To gain insight into the molecular basis of the v-kit transforming potential, we characterized the feline c-kit by cDNA cloning. Comparison of the feline v-kit and c-kit sequences revealed, in addition to deletions of the extracellular and transmembrane domains, three additional mutations in the v-kit oncogene product: deletion of tyrosine-569 and valine-570, the exchange of aspartate at position 761 to glycine, and replacement of the C-terminal 50 amino acids by five unrelated residues. Examinations of individual v-kit mutations in the context of chimeric receptors yielded inhibitory effects for some mutants on both autophosphorylation and substrate phosphorylation functions. In contrast, deletion of tyrosine-569 and valine-570 significantly enhanced transforming and mitogenic activities of p145c-kit, while the other mutations had no significant effects. Conservation in subclass III RTKs and the identification of the corresponding residue in beta PDGF-R, Y579, as a binding site for src family tyrosine kinases suggests an important role for Y568 in kit signal regulation and the definition of its oncogenic potential. Repositioning of Y571 by an inframe two codon deletion may be the crucial alteration resulting in enhancement of v-kit oncogenic activity.

  15. Requirement for tyrosine phosphatase during serotonergic neuromodulation by protein kinase C.

    Science.gov (United States)

    Catarsi, S; Drapeau, P

    1997-08-01

    Tyrosine kinases and phosphatases are abundant in the nervous system, where they signal cellular differentiation, mediate the responses to growth factors, and direct neurite outgrowth during development. Tyrosine phosphorylation can also alter ion channel activity, but its physiological significance remains unclear. In an identified leech mechanosensory neuron, the ubiquitous neuromodulator serotonin increases the activity of a cation channel by activating protein kinase C (PKC), resulting in membrane depolarization and modulation of the receptive field properties. We observed that the effects on isolated neurons and channels were blocked by inhibiting tyrosine phosphatases. Serotonergic stimulation of PKC thus activates a tyrosine phosphatase activity associated with the channels, which reverses their constitutive inhibition by tyrosine phosphorylation, representing a novel form of neuromodulation.

  16. 1alpha-hydroxylase and innate immune responses to 25-hydroxyvitamin D in colonic cell lines.

    Science.gov (United States)

    Lagishetty, Venu; Chun, Rene F; Liu, Nancy Q; Lisse, Thomas S; Adams, John S; Hewison, Martin

    2010-07-01

    Vitamin D-insufficiency is a prevalent condition in populations throughout the world, with low serum levels of 25-hydroxyvitamin D (25OHD) linked to a variety of human health concerns including cancer, autoimmune disease and infection. Current data suggest that 25OHD action involves localized extra-renal conversion to 1,25-dihydroxyvitamin D (1,25(OH)2D) via tissue-specific expression of the enzyme 25-hydroxyvitamin D-1alpha-hydroxylase (1alpha-hydroxylase). In cells such as macrophages, expression of 1alpha-hydroxylase is intimately associated with toll-like receptor (TLR) recognition of pathogens. However, this mechanism may not be exclusive to extra-renal generation of 1,25(OH)2D. To investigate the relationship between TLR-mediated pathogen recognition and vitamin D-induced antibacterial activity, intracrine responses to 25OHD metabolism were explored in vitro using the established colonic cell lines Caco-2 and Caco-2 clone BBe. Analysis of antibacterial factors such as cathelicidin (LL37) and beta-defensin-4 (DEFB4) was carried out following co-treatment with TLR ligands. Data indicate that, unlike macrophages, Caco-2 and BBe colonic cell lines are unresponsive to TLR-induced 1alpha-hydroxylase. Alternative activators of 1alpha-hydroxylase such as transforming growth factor beta were also ineffective at priming intracrine responses to 25OHD. Thus, in common with other barrier sites such as the skin or placenta, colonic epithelial cells may require specific factors to initiate intracrine responses to vitamin D. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  17. A protein-tyrosine phosphatase with sequence similarity to the SH2 domain of the protein-tyrosine kinases.

    Science.gov (United States)

    Shen, S H; Bastien, L; Posner, B I; Chrétien, P

    1991-08-22

    The phosphorylation of proteins at tyrosine residues is critical in cellular signal transduction, neoplastic transformation and control of the mitotic cycle. These mechanisms are regulated by the activities of both protein-tyrosine kinases (PTKs) and protein-tyrosine phosphatases (PTPases). As in the PTKs, there are two classes of PTPases: membrane associated, receptor-like enzymes and soluble proteins. Here we report the isolation of a complementary DNA clone encoding a new form of soluble PTPase, PTP1C. The enzyme possesses a large noncatalytic region at the N terminus which unexpectedly contains two adjacent copies of the Src homology region 2 (the SH2 domain) found in various nonreceptor PTKs and other cytoplasmic signalling proteins. As with other SH2 sequences, the SH2 domains of PTP1C formed high-affinity complexes with the activated epidermal growth factor receptor and other phosphotyrosine-containing proteins. These results suggest that the SH2 regions in PTP1C may interact with other cellular components to modulate its own phosphatase activity against interacting substrates. PTPase activity may thus directly link growth factor receptors and other signalling proteins through protein-tyrosine phosphorylation.

  18. Importance of tyrosine phosphorylation in receptor kinase complexes.

    Science.gov (United States)

    Macho, Alberto P; Lozano-Durán, Rosa; Zipfel, Cyril

    2015-05-01

    Tyrosine phosphorylation is an important post-translational modification that is known to regulate receptor kinase (RK)-mediated signaling in animals. Plant RKs are annotated as serine/threonine kinases, but recent work has revealed that tyrosine phosphorylation is also crucial for the activation of RK-mediated signaling in plants. These initial observations have paved the way for subsequent detailed studies on the mechanism of activation of plant RKs and the biological relevance of tyrosine phosphorylation for plant growth and immunity. In this Opinion article we review recent reports on the contribution of RK tyrosine phosphorylation in plant growth and immunity; we propose that tyrosine phosphorylation plays a major regulatory role in the initiation and transduction of RK-mediated signaling in plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Minoxidil specifically decreases the expression of lysine hydroxylase in cultured human skin fibroblasts.

    Science.gov (United States)

    Hautala, T; Heikkinen, J; Kivirikko, K I; Myllylä, R

    1992-01-01

    The levels of lysine hydroxylase protein and the levels of the mRNAs for lysine hydroxylase and the alpha- and beta-subunits of proline 4-hydroxylase were measured in cultured human skin fibroblasts treated with 1 mM-minoxidil. The data demonstrate that minoxidil decreases the amount of lysine hydroxylase protein, this being due to a decrease in the level of lysine hydroxylase mRNA. The effect of minoxidil appears to be highly specific, as no changes were observed in the amounts of mRNAs for the alpha- and beta-subunits of proline 4-hydroxylase. Images Fig. 1. Fig. 2. Fig. 3. PMID:1314568

  20. The biological activity of the human epidermal growth factor receptor is positively regulated by its C-terminal tyrosines

    DEFF Research Database (Denmark)

    Helin, K; Velu, T; Martin, P

    1991-01-01

    mutants in the full length receptor. EGF-dependent transforming ability of the single point mutants is similar to that of the wild type, while that of double mutants is decreased and an even lower activity is present in the triple mutant. In each bioassay, including EGF-dependent focal transformation...... biologically. The EGF-R kinase activity is affected by tyrosine substitution since in vitro phosphorylation of exogenous substrates is reduced in the double and triple mutants. Autophosphorylation, in vivo and in vitro, is also reduced, but not totally abolished in the triple point mutant and Dc123 indicating......The epidermal growth factor receptor (EGF-R) C-terminus contains three conserved tyrosines (Y-1068, Y-1148, Y-1173) which are phosphorylated upon EGF activation. To clarify the functional role of these tyrosines, each has been mutated to phenylalanine and studied as single, double and triple...

  1. Angiotensin II regulation of neuromodulation: downstream signaling mechanism from activation of mitogen-activated protein kinase.

    Science.gov (United States)

    Lu, D; Yang, H; Raizada, M K

    1996-12-01

    Angiotensin II (Ang II) stimulates expression of tyrosine hydroxylase and norepinephrine transporter genes in brain neurons; however, the signal-transduction mechanism is not clearly defined. This study was conducted to determine the involvement of the mitogen-activated protein (MAP) kinase signaling pathway in Ang II stimulation of these genes. MAP kinase was localized in the perinuclear region of the neuronal soma. Ang II caused activation of MAP kinase and its subsequent translocation from the cytoplasmic to nuclear compartment, both effects being mediated by AT1 receptor subtype. Ang II also stimulated SRE- and AP1-binding activities and fos gene expression and its translocation in a MAP kinase-dependent process. These observations are the first demonstration of a downstream signaling pathway involving MAP kinase in Ang II-mediated neuromodulation in noradrenergic neurons.

  2. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten

    2010-01-01

    in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by tyrosine......Bacteria and Eukarya share essentially the same family of protein-serine/threonine kinases, also known as the Hanks-type kinases. However, when it comes to protein-tyrosine phosphorylation, bacteria seem to have gone their own way. Bacterial protein-tyrosine kinases (BY-kinases) are bacterial...... and highlighted their importance in bacterial physiology. Having no orthologues in Eukarya, BY-kinases are receiving a growing attention from the biomedical field, since they represent a particularly promising target for anti-bacterial drug design....

  3. Alpha-Hydroxylation of lignoceric and nervonic acids in the brain. Effects of altered thyroid function on postnatal development of the hydroxylase activity.

    Science.gov (United States)

    Murad, S; Strycharz, G D; Kishimoto, Y

    1976-09-10

    Rat brain postnuclear preparations catalyzed the alpha-hydroxylation of nervonic acid with an apparent Km of 3 muM. Evidence has been presented which suggests that nervonic acid in the brain is hydroxylated by the same enzyme system which hydroxylates lignoceric acid. The hydroxylase activity in brains of normal (euthyroid) rats increased rapidly from a low in the period immediately following birth to a maximum at the 23rd day and then declined to a low level characteristic of the mature brain. Neonatal hypothyroidism retarded the development of the activity and shifted its peak to the 39th day after birth. Conversely, neonatal hyperthyroidism accelerated the entire developmental pattern and shifted the peak to the 16th day after birth. The hydroxylase activity in mouse brain was also increased by thyroid hormone administration from the 13th through the 18th day after birth. Unlike normal mice, the low activity in jimpy mice was not affected by this treatment. It is concluded that thyroid hormones play an important role in the control of brain fatty acid alpha-hydroxylation. The stimulation of alpha-hydroxy fatty acid synthesis in response to hyperthyroidism during the early postnatal period may be one of the major effects of thyroid hormones in accelerating myelination of the central nervous system.

  4. Ethanol and Other Short-Chain Alcohols Inhibit NLRP3 Inflammasome Activation through Protein Tyrosine Phosphatase Stimulation

    Science.gov (United States)

    Hoyt, Laura R.; Ather, Jennifer L.; Randall, Matthew J.; DePuccio, Daniel P.; Landry, Christopher C.; Wewers, Mark D.; Gavrilin, Mikhail A.; Poynter, Matthew E.

    2016-01-01

    Immunosuppression is a major complication of alcoholism that contributes to increased rates of opportunistic infections and sepsis in alcoholics. The NLRP3 inflammasome, a multi-protein intracellular pattern recognition receptor complex that facilitates the cleavage and secretion of the pro-inflammatory cytokines IL-1β and IL-18, can be inhibited by ethanol and we sought to better understand the mechanism through which this occurs and whether chemically similar molecules exert comparable effects. We show that ethanol can specifically inhibit activation of the NLRP3 inflammasome, resulting in attenuated IL-1β and caspase-1 cleavage and secretion, as well as diminished ASC speck formation, without affecting potassium efflux, in a mouse macrophage cell line (J774), mouse bone marrow derived dendritic cells, mouse neutrophils, and human PBMCs. The inhibitory effects on the Nlrp3 inflammasome were independent of GABAA receptor activation or NMDA receptor inhibition, but was associated with decreased oxidant production. Ethanol treatment markedly decreased cellular tyrosine phosphorylation, while administration of the tyrosine phosphatase inhibitor sodium orthovanadate prior to ethanol restored tyrosine phosphorylation and IL-1β secretion subsequent to ATP stimulation. Furthermore, sodium orthovanadate-induced phosphorylation of ASC Y144, necessary and sufficient for Nlrp3 inflammasome activation, and secretion of phosphorylated ASC, were inhibited by ethanol. Finally, multiple alcohol-containing organic compounds exerted inhibitory effects on the Nlrp3 inflammasome, whereas 2-methylbutane (isopentane), the analogous alkane of the potent inhibitor isoamyl alcohol (isopentanol), did not. Our results demonstrate that ethanol antagonizes the NLRP3 inflammasome at an apical event in its activation through the stimulation of protein tyrosine phosphatases, an effect shared by other short-chain alcohols. PMID:27421477

  5. Electrode Potentials of l-Tryptophan, l-Tyrosine, 3-Nitro-l-tyrosine, 2,3-Difluoro-l-tyrosine, and 2,3,5-Trifluoro-l-tyrosine.

    Science.gov (United States)

    Mahmoudi, Leila; Kissner, Reinhard; Nauser, Thomas; Koppenol, Willem H

    2016-05-24

    Electrode potentials for aromatic amino acid radical/amino acid couples were deduced from cyclic voltammograms and pulse radiolysis experiments. The amino acids investigated were l-tryptophan, l-tyrosine, N-acetyl-l-tyrosine methyl ester, N-acetyl-3-nitro-l-tyrosine ethyl ester, N-acetyl-2,3-difluoro-l-tyrosine methyl ester, and N-acetyl-2,3,5-trifluoro-l-tyrosine methyl ester. Conditional potentials were determined at pH 7.4 for all compounds listed; furthermore, Pourbaix diagrams for l-tryptophan, l-tyrosine, and N-acetyl-3-nitro-l-tyrosine ethyl ester were obtained. Electron transfer accompanied by proton transfer is reversible, as confirmed by detailed analysis of the current waves, and because the slopes of the Pourbaix diagrams obey Nernst's law. E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH) at pH 7 are 0.99 ± 0.01 and 0.97 ± 0.01 V, respectively. Pulse radiolysis studies of two dipeptides that contain both amino acids indicate a difference in E°' of approximately 0.06 V. Thus, in small peptides, we recommend values of 1.00 and 0.96 V for E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH), respectively. The electrode potential of N-acetyl-3-nitro-l-tyrosine ethyl ester is higher, while because of mesomeric stabilization of the radical, those of N-acetyl-2,3-difluoro-l-tyrosine methyl ester and N-acetyl-2,3,5-trifluoro-l-tyrosine methyl ester are lower than that of tyrosine. Given that the electrode potentials at pH 7 of E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH) are nearly equal, they would be, in principle, interchangeable. Proton-coupled electron transfer pathways in proteins that use TrpH and TyrOH are thus nearly thermoneutral.

  6. Leukotriene B4 omega-hydroxylase in human polymorphonuclear leukocytes. Partial purification and identification as a cytochrome P-450.

    Science.gov (United States)

    Shak, S; Goldstein, I M

    1985-09-01

    Human polymorphonuclear leukocytes (PMN) not only synthesize and respond to leukotriene B4 (LTB4), but also catabolize this mediator of inflammation rapidly and specifically by omega-oxidation. To characterize the enzyme(s) responsible for omega-oxidation of LTB4, human PMN were disrupted by sonication and subjected to differential centrifugation to yield membrane, granule, and cytosol fractions (identified by biochemical markers). LTB4 omega-hydroxylase activity was concentrated (together with NADPH cytochrome c reductase activity) only in the membrane fraction (specific activity increased 10-fold as compared to whole sonicates, 41% recovery). Negligible activity was detected in granule or cytosol fractions. LTB4 omega-hydroxylase activity in isolated PMN membranes was linear with respect to duration of incubation and protein concentration, was maximal at pH 7.4, had a Km for LTB4 of 0.6 microM, and was dependent on oxygen and on reduced pyridine nucleotides (apparent Km for NADPH = 0.5 microM; apparent Km for NADH = 223 microM). The LTB4 omega-hydroxylase was inhibited significantly by carbon monoxide, ferricytochrome c, SKF-525A, and Triton X-100, but was not affected by alpha-naphthoflavone, azide, cyanide, catalase, and superoxide dismutase. Finally, isolated PMN membranes exhibited a carbon monoxide difference spectrum with a peak at 452 nm. Thus, we have partially purified the LTB4 omega-hydroxylase in human PMN and identified the enzyme as a membrane-associated, NADPH-dependent cytochrome P-450.

  7. Novel vitamin D 1α-hydroxylase gene mutations in a Chinese ...

    Indian Academy of Sciences (India)

    2011-08-19

    Aug 19, 2011 ... known as vitamin D 1α-hydroxylase deficiency or pseu- dovitamin D ... amplicons of the 378 bp were digested with restriction enzyme PvuI and ... have no enzymatic activity; a missense mutation c.473T>C. (p.L158P) in the ...

  8. Evaluation of Brachypodium distachyon L-Tyrosine Decarboxylase Using L-Tyrosine Over-Producing Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Shuhei Noda

    Full Text Available To demonstrate that herbaceous biomass is a versatile gene resource, we focused on the model plant Brachypodium distachyon, and screened the B. distachyon for homologs of tyrosine decarboxylase (TDC, which is involved in the modification of aromatic compounds. A total of 5 candidate genes were identified in cDNA libraries of B. distachyon and were introduced into Saccharomyces cerevisiae to evaluate TDC expression and tyramine production. It is suggested that two TDCs encoded in the transcripts Bradi2g51120.1 and Bradi2g51170.1 have L-tyrosine decarboxylation activity. Bradi2g51170.1 was introduced into the L-tyrosine over-producing strain of S. cerevisiae that was constructed by the introduction of mutant genes that promote deregulated feedback inhibition. The amount of tyramine produced by the resulting transformant was 6.6-fold higher (approximately 200 mg/L than the control strain, indicating that B. distachyon TDC effectively converts L-tyrosine to tyramine. Our results suggest that B. distachyon possesses enzymes that are capable of modifying aromatic residues, and that S. cerevisiae is a suitable host for the production of L-tyrosine derivatives.

  9. Antibacterial and EGFR-Tyrosine Kinase Inhibitory Activities of Polyhydroxylated Xanthones from Garcinia succifolia

    Directory of Open Access Journals (Sweden)

    Susawat Duangsrisai

    2014-11-01

    Full Text Available Chemical investigation of the methanol extract of the wood of Garcinia succifolia Kurz (Clusiaceae led to the isolation of 1,5-dihydroxyxanthone (1, 1,7-dihydroxyxanthone (2, 1,3,7-trihydroxyxanthone (3, 1,5,6-trihydroxyxanthone (4, 1,6,7-trihydroxyxanthone (5, and 1,3,6,7-tetrahydroxyxanthone (6. All of the isolated xanthones were evaluated for their antibacterial activity against bacterial reference strains, two Gram-positive (Staphylococcus aureus ATTC 25923, Bacillus subtillis ATCC 6633 and two Gram-negative (Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853, and environmental drug-resistant isolates (S. aureus B1, Enteroccoccus faecalis W1, and E. coli G1, as well as for their epidermal growth factor receptor (EGFR of tyrosine kinase inhibitory activity. Only 1,5,6-trihydroxy-(4, 1,6,7-trihydroxy-(5, and 1,3,6,7-tetrahydroxyxanthones (6 exhibited antibacterial activity against Gram-positive bacteria, however none was active against vancomycin-resistant E. faecalis. Additionally, 1,7-dihydroxyxanthone (2 showed synergism with oxacillin, but not with ampicillin. On the other hand, only 1,5-dihydroxyxanthone (1 and 1,7-dihydroxyxanthone (2 were found to exhibit the EGFR-tyrosine kinase inhibitory activity, with IC50 values of 90.34 and 223 nM, respectively.

  10. Structural and biochemical characterization of 3-hydroxybenzoate 6-hydroxylase

    NARCIS (Netherlands)

    Montersino, S.

    2012-01-01

    The thesis deals with the characterization of a new flavoprotein hydroxylase 3 hydroxybenzoate 6-hydroxylase (3HB6H) from Rhodococcus jostii RHA1. 3HB6H is able to insert exclusively oxygen in para-position and the enzyme has been chosen to study the structural basis of such regioselectivity. As

  11. Functional characterization of autophosphorylation sites of the activated insulin receptor-tyrosine kinase

    International Nuclear Information System (INIS)

    Flores-Riveros, J.R.; Lane, M.D.

    1987-01-01

    Insulin receptor, solubilized from 3T3-L1 cellular membranes and then purified, was autophosphorylated with [γ- 32 P]ATP in the absence or presence of insulin. Specific phosphopeptides generated by trypsin digestion of the 32 P-labeled β-subunit were identified and separated by reverse phase HPLC. In the absence of insulin, radioactivity of the phosphopeptides is evenly distributed among four major peaks designated as sites I, II, III and IV, according to their order of elution. This pattern is maintained for at least the first 30 min of autophosphorylation. When the reaction is carried out in the presence of insulin, > 50% of the total 32 P radioactivity is found in site I and the rate of 32 P incorporation into this site is markedly higher than into sites II, III and IV. Maximal activation of tyrosine kinase activity, as estimated by substrate phosphorylation, is coincident with the nearly complete phosphorylation of site I. Delayed activation of previously autophosphorylated receptor by insulin, but not by EGF or IGF-I, produced a similar pattern where phosphorylated site I predominates. These observations indicate that one major insulin-regulated autophosphorylation site in the β-subunit is responsible for activation of the insulin receptor tyrosine kinase. The isolation of this phosphopeptide on a preparative scale and its characterization are now in progress

  12. Membrane depolarization-induced RhoA/Rho-associated kinase activation and sustained contraction of rat caudal arterial smooth muscle involves genistein-sensitive tyrosine phosphorylation

    Science.gov (United States)

    Mita, Mitsuo; Tanaka, Hitoshi; Yanagihara, Hayato; Nakagawa, Jun-ichi; Hishinuma, Shigeru; Sutherland, Cindy; Walsh, Michael P.; Shoji, Masaru

    2013-01-01

    Rho-associated kinase (ROK) activation plays an important role in K+-induced contraction of rat caudal arterial smooth muscle (Mita et al., Biochem J. 2002; 364: 431–40). The present study investigated a potential role for tyrosine kinase activity in K+-induced RhoA activation and contraction. The non-selective tyrosine kinase inhibitor genistein, but not the src family tyrosine kinase inhibitor PP2, inhibited K+-induced sustained contraction (IC50 = 11.3 ± 2.4 µM). Genistein (10 µM) inhibited the K+-induced increase in myosin light chain (LC20) phosphorylation without affecting the Ca2+ transient. The tyrosine phosphatase inhibitor vanadate induced contraction that was reversed by genistein (IC50 = 6.5 ± 2.3 µM) and the ROK inhibitor Y-27632 (IC50 = 0.27 ± 0.04 µM). Vanadate also increased LC20 phosphorylation in a genistein- and Y-27632-dependent manner. K+ stimulation induced translocation of RhoA to the membrane, which was inhibited by genistein. Phosphorylation of MYPT1 (myosin-targeting subunit of myosin light chain phosphatase) was significantly increased at Thr855 and Thr697 by K+ stimulation in a genistein- and Y-27632-sensitive manner. Finally, K+ stimulation induced genistein-sensitive tyrosine phosphorylation of proteins of ∼55, 70 and 113 kDa. We conclude that a genistein-sensitive tyrosine kinase, activated by the membrane depolarization-induced increase in [Ca2+]i, is involved in the RhoA/ROK activation and sustained contraction induced by K+. Ca2+ sensitization, myosin light chain phosphatase, RhoA, Rho-associated kinase, tyrosine kinase PMID:24133693

  13. Tyrosine dephosphorylation regulates AMPAR internalisation in mGluR-LTD.

    Science.gov (United States)

    Gladding, Clare M; Collett, Valerie J; Jia, Zhengping; Bashir, Zafar I; Collingridge, Graham L; Molnár, Elek

    2009-02-01

    Long-term depression (LTD) can be induced at hippocampal CA1 synapses by activation of either NMDA receptors (NMDARs) or group I metabotropic glutamate receptors (mGluRs), using their selective agonists NMDA and (RS)-3,5-dihydroxyphenylglycine (DHPG), respectively. Recent studies revealed that DHPG-LTD is dependent on activation of postsynaptic protein tyrosine phosphatases (PTPs), which transiently dephosphorylate tyrosine residues in AMPA receptors (AMPARs). Here we show that while both endogenous GluR2 and GluR3 AMPAR subunits are tyrosine phosphorylated at basal activity, only GluR2 is dephosphorylated in DHPG-LTD. The tyrosine dephosphorylation of GluR2 does not occur in NMDA-LTD. Conversely, while NMDA-LTD is associated with the dephosphorylation of GluR1-serine-845, DHPG-LTD does not alter the phosphorylation of this site. The increased AMPAR endocytosis in DHPG-LTD is PTP-dependent and involves tyrosine dephosphorylation of cell surface AMPARs. Together, these results indicate that the subunit selective tyrosine dephosphorylation of surface GluR2 regulates AMPAR internalisation in DHPG-LTD but not in NMDA-LTD in the hippocampus.

  14. Protein tyrosine kinase and mitogen-activated protein kinase signalling pathways contribute to differences in heterophil-mediated innate immune responsiveness between two lines of broilers

    Science.gov (United States)

    Protein tyrosine phosphorylation mediates signal transduction of cellular processes, with protein tyrosine kinases (PTKs) regulating virtually all signaling events. The mitogen-activated protein kinase (MAPK) super-family consists of three conserved pathways that convert receptor activation into ce...

  15. Understanding Which Residues of the Active Site and Loop Structure of a Tyrosine Aminomutase Define Its Mutase and Lyase Activities.

    Science.gov (United States)

    Attanayake, Gayanthi; Walter, Tyler; Walker, Kevin D

    2018-05-30

    Site-directed mutations and substrate analogues were used to gain insights into the branch-point reaction of the 3,5-dihydro-5-methylidene-4 H-imidazol-4-one (MIO)-tyrosine aminomutase from Oryza sativa ( OsTAM). Exchanging the active residues of OsTAM (Y125C/N446K) for those in a phenylalanine aminomutase TcPAM altered its substrate specificity from tyrosine to phenylalanine. The aminomutase mechanism of OsTAM surprisingly changed almost exclusively to that of an ammonia lyase making cinnamic acid (>95%) over β-phenylalanine [Walter, T., et al. (2016) Biochemistry 55, 3497-3503]. We hypothesized that the missing electronics or sterics on the aryl ring of the phenylalanine substrate, compared with the sizable electron-donating hydroxyl of the natural tyrosine substrate, influenced the unexpected lyase reactivity of the OsTAM mutant. The double mutant was incubated with 16 α-phenylalanine substituent analogues of varying electronic strengths and sterics. The mutant converted each analogue principally to its acrylate with ∼50% conversion of the p-Br substrate, making only a small amount of the β-amino acid. The inner loop structure over the entrance to the active site was also mutated to assess how the lyase and mutase activities are affected. An OsTAM loop mutant, matching the loop residues of TcPAM, still chiefly made >95% of the acrylate from each substrate. A combined active site:loop mutant was most reactive but remained a lyase, making 10-fold more acrylates than other mutants did. While mutations within the active site changed the substrate specificity of OsTAM, continued exploration is needed to fully understand the interplay among the inner loop, the substrate, and the active site in defining the mutase and lyase activities.

  16. Highly Active and Specific Tyrosine Ammonia-Lyases from Diverse Origins Enable Enhanced Production of Aromatic Compounds in Bacteria and Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Jendresen, Christian Bille; Stahlhut, Steen Gustav; Li, Mingji

    2015-01-01

    Phenylalanine and tyrosine ammonia-lyases form cinnamic acid and p-coumaric acid, which are precursors of a wide range of aromatic compounds of biotechnological interest. Lack of highly active and specific tyrosine ammonia-lyases has previously been a limitation in metabolic engineering approaches...

  17. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER).

    Science.gov (United States)

    Ma, Shao; Yin, Ning; Qi, Xiaomei; Pfister, Sandra L; Zhang, Mei-Jie; Ma, Rong; Chen, Guan

    2015-05-30

    Protein-protein interactions can increase or decrease its therapeutic target activity and the determining factors involved, however, are largely unknown. Here, we report that tyrosine-dephosphorylation of epidermal growth factor receptor (EGFR) increases its therapeutic target activity by disrupting its interaction with estrogen receptor (ER). Protein tyrosine phosphatase H1 (PTPH1) dephosphorylates the tyrosine kinase EGFR, disrupts its interaction with the nuclear receptor ER, and increases breast cancer sensitivity to small molecule tyrosine kinase inhibitors (TKIs). These effects require PTPH1 catalytic activity and its interaction with EGFR, suggesting that the phosphatase may increase the sensitivity by dephosphorylating EGFR leading to its dissociation with ER. Consistent with this notion, a nuclear-localization defective ER has a higher EGFR-binding activity and confers the resistance to TKI-induced growth inhibition. Additional analysis show that PTPH1 stabilizes EGFR, stimulates the membranous EGFR accumulation, and enhances the growth-inhibitory activity of a combination therapy of TKIs with an anti-estrogen. Since EGFR and ER both are substrates for PTPH1 in vitro and in intact cells, these results indicate that an inhibitory EGFR-ER protein complex can be switched off through a competitive enzyme-substrate binding. Our results would have important implications for the treatment of breast cancer with targeted therapeutics.

  18. Deoxysarpagine hydroxylase--a novel enzyme closing a short side pathway of alkaloid biosynthesis in Rauvolfia.

    Science.gov (United States)

    Yu, Bingwu; Ruppert, Martin; Stöckigt, Joachim

    2002-08-01

    Microsomal preparations from cell suspension cultures of the Indian plant Rauvolfia serpentina catalyze the hydroxylation of deoxysarpagine under formation of sarpagine. The newly discovered enzyme is dependent on NADPH and oxygen. It can be inhibited by typical cytochrome P450 inhibitors such as cytochrome c, ketoconazole, metyrapone, tetcyclacis and carbon monoxide. The CO-effect is reversible with light (450 nm). The data indicate that deoxysarpagine hydroxylase is a novel cytochrome P450-dependent monooxygenase. A pH optimum of 8.0 and a temperature optimum of 35 degrees C were determined. K(m) values were 25 microM for NADPH and 7.4 microM for deoxysarpagine. Deoxysarpagine hydroxylase activity was stable in presence of 20% sucrose at -25 degrees C for >3 months. The analysis of presence of the hydroxylase in nine cell cultures of seven different families indicates a very limited taxonomic distribution of this enzyme.

  19. Duration-dependence of the effect of treadmill exercise on hyperactivity in attention deficit hyperactivity disorder rats.

    Science.gov (United States)

    Ji, Eun-Sang; Kim, Chang-Ju; Park, Jun Heon; Bahn, Geon Ho

    2014-04-01

    Attention-deficit hyperactivity disorder (ADHD) is a common neurobehavioral disorder, and its symptoms are hyperactivity and deficits in learning and memory. Physical exercise increases dopamine synthesis and neuronal activity in various brain regions. In the present study, we investigate the duration-dependence of the treadmill exercise on hyperactivity in relation with dopamine expression in ADHD. Spontaneously hypertensive rats were used for the ADHD rats and Wistar-Kyoto rats were used for the control rats. The rats in the exercise groups were forced to run on a treadmill for 10 min, 30 min, and 60 min once daily for 28 consecutive days. For this experiment, open field test and immunohistochemistry for tyrosine hydroxylase were conducted. The present results revealed that ADHD rats showed hyperactivity, and tyrosine hydroxylase expression in the striatum and substantia nigra were decreased in ADHD rats. Treadmill exercise alleviated hyperactivity and also increased TH expression in ADHD rats. Treadmill exercise for 30 min per day showed most potent suppressing effect on hyperactivity, and this dose of treadmill exercise also most potently inhibited tyrosine hydroxylase expression. The present study suggests that treadmill exercise for 30 min once a day is the most effective therapeutic intervention for ADHD patients.

  20. Amino acids in health and disease: New perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, S.

    1987-01-01

    This book contains 33 selections. Some of the titles are: Regulation of Adrenal Tyrosine Hydroxylase Gene Expression During Cold Stress; The Molecular Genetics of Phenylketonuria; Prospects for Somatic Gene Therapy of Phenylketonuria; Behavioral Effects of Sugar; Effects of Tyrosine and Tryptophan on Blood Pressure in the Rat; and The Enzymology of the Aromatic Amino Acid Hydroxylases.

  1. Cinnamic acid 4-hydroxylase of sorghum [Sorghum biocolor (L.) Moench] gene SbC4H1 restricts lignin synthesis in Arabidopsis

    Science.gov (United States)

    Cinnamic acid 4-hydroxylase (C4H) is the first hydroxylase enzyme of the phenylpropanoid pathway, and its content and activity affects the lignin synthesis. In this study, we isolated a C4H gene SbC4H1 from the suppression subtractive hybridization library of brown midrib (bmr) mutants of Sorghum b...

  2. Mechanism-based inactivation of benzo[a]pyrene hydroxylase by aryl acetylenes and aryl olefins

    International Nuclear Information System (INIS)

    Gan, L.S.; Lu, J.Y.L.; Alworth, W.L.

    1986-01-01

    A series of aryl acetylenes and aryl olefins have been examined as substrates and inhibitors of cytochrome P-450 dependent monooxgenases in liver microsomes from 5,6-benzoflavone or phenobarbital pretreated rats. 1-Ethynylpyrene, 3-ethynylperylene, 2-ethynylfluorene, methyl 1-pyrenyl acetylene, cis- and trans-1-(2-bromovinyl)pyrene, and 1-allylpyrene serve as mechanism-based irreversible inactivators (suicide inhibitors) of benzo[a]pyrene hydroxylase, while 1-vinylpyrene and phenyl 1-pyrenyl acetylene do not cause a detectable suicide inhibition of benzo[a]pyrene hydroxylase. The mechanism-based loss of benzo[a]pyrene hydroxylase caused by the aryl acetylenes is not accompanied by a corresponding loss of the P-450 content of the microsomes (suicide destruction). The suicide inhibition by these aryl acetylenes therefore does not involve covalent binding to the heme moiety of the monooxygenase. Nevertheless, in the presence of NADPH, 3 H-labeled 1-ethynylpyrene becomes covalently attached to the cytochrome P-450 protein; the measured stoichiometry of binding is one 1-ethynylpyrene per P-450 heme unit. The authors conclude that the inhibition of benzo[a]pyrene hydroxylase produced by 1-ethynylpyrene may be related to the mechanism of suicide inhibition of P-450 activity by chloramphenicol rather than the mechanism of suicide destruction of P-450 previously described for acetylene and propyne

  3. Effect of nerve activity on transport of nerve growth factor and dopamine β-hydroxylase antibodies in sympathetic neurones

    International Nuclear Information System (INIS)

    Lees, G.; Chubb, I.; Freeman, C.; Geffen, L.; Rush, R.

    1981-01-01

    The effect of nerve activity on the uptake and retrograde transport of nerve growth factor (NGF) and dopamine β-hydroxylase (DBH) antibodies was studied by injecting 125 I-labelled NGF and anti-DBH into the anterior eye chamber of guinea-pigs. Decentralization of the ipsilateral superior cervical ganglion (SCG) had no significant effect on the retrograde transport of either NGF or anti-DBH. Phenoxybenzamine produced a 50% increase in anti-DBH but not NGF accumulation and this effect was prevented by prior decentralization. This demonstrates that NGF is taken up independently of the retrieval of synaptic vesicle components. (Auth.)

  4. Lipoprotein cholesterol uptake mediates upregulation of bile acid synthesis by increasing cholesterol 7a-hydroxylase but not sterol 27- hydroxylase gene expression in cultured rat hepatocytes.

    NARCIS (Netherlands)

    Post, S.M.; Twisk, J.W.R.; van der Fits, L.T.E.; Wit, E.C.M.; Hoekman, M.F.M.; Mager, W.H.; Princen, H.M.G.

    1999-01-01

    Lipoproteins may supply substrate for the formation of bile acids, and the amount of hepatic cholesterol can regulate bile-acid synthesis and increase cholesterol 7α-hydroxylase expression. However, the effect of lipoprotein cholesterol on sterol 27-hydroxylase expression and the role of different

  5. Autophosphorylation of JAK2 on Tyrosines 221 and 570 Regulates Its Activity

    OpenAIRE

    Argetsinger, Lawrence S.; Kouadio, Jean-Louis K.; Steen, Hanno; Stensballe, Allan; Jensen, Ole N.; Carter-Su, Christin

    2004-01-01

    The tyrosine kinase JAK2 is a key signaling protein for at least 20 receptors in the cytokine/hematopoietin receptor superfamily and is a component of signaling by insulin receptor and several G-protein-coupled receptors. However, there is only limited knowledge of the physical structure of JAK2 or which of the 49 tyrosines in JAK2 are autophosphorylated. In this study, mass spectrometry and two-dimensional peptide mapping were used to determine that tyrosines 221, 570, and 1007 in JAK2 are a...

  6. Therapeutic Potential of a Prolyl Hydroxylase Inhibitor FG-4592 for Parkinson’s Diseases in Vitro and in Vivo: Regulation of Redox Biology and Mitochondrial Function

    Directory of Open Access Journals (Sweden)

    Xuan Li

    2018-04-01

    Full Text Available As the main transcription factor that regulates the cellular responses to hypoxia, Hypoxia-inducible factor-1α (HIF-1α plays an important role in the pathogenesis of Parkinson’s disease (PD. HIF-1α is normally degraded through ubiquitination after hydroxylation by prolyl hydroxylases (PHD. Emerging evidence has suggested that HIF PHD inhibitors (HIF-PHI may have neuroprotective effects on PD through increasing HIF-1α levels. However, the therapeutic benefit of HIF-PHI for PD remains poorly explored due to the lack of proper clinical compounds and understanding of the underlying molecular mechanisms. In this study, we examined the therapeutic benefit of a new HIF-PHI, FG-4592, which is currently in phase 3 clinical trials to treat anemia in patients with chronic kidney diseases (CKD in PD models. FG-4592 attenuates MPP+ -induced apoptosis and loss of tyrosine hydroxylase (TH in SH-SY5Y cells. Pretreatment with FG-4592 mitigates MPP+-induced loss of mitochondrial membrane potential (MMP, mitochondrial oxygen consumption rate (OCR, production of reactive oxygen species (ROS and ATP. Furthermore, FG-4592 counterbalances the oxidative stress through up-regulating nuclear factor erythroid 2 p45-related factor 2 (Nrf-2, heme oxygenase-1 (HO-1 and superoxide dismutase 2 (SOD2. FG-4592 treatment also induces the expression of Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α through increasing the phosphorylation of AMP-activated protein kinase (AMPK. In MPTP-treated mice, FG-4592 protects against MPTP-induced loss of TH-positive neurons of substantia nigra and attenuates behavioral impairments. Collectively, our study demonstrates that FG-4592 is a promising therapeutic strategy for PD through improving the mitochondrial function under oxidative stress.

  7. Synthesis of [N-C[sup 3]H[sub 3

    Energy Technology Data Exchange (ETDEWEB)

    Wyrick, S D; Myers, A M; Booth, R G; Kula, N S; Baldessarini, R J; Mailman, R B [North Carolina Univ., Chapel Hill, NC (United States). School of Pharmacy and Brain and Development Research Center Harvard Medical School, Boston, MA (United States) Massachusetts General Hospital, Belmont, MA (United States). Mailman Research Center

    1994-02-01

    Subsequent to the discovery that the (+)-benzomorphan sigma receptor ligands, (+)-pentazocine and (+)-N-allylnormetazocine, stimulated tyrosine hydroxylase activity and dopamine synthesis in rat striatum in vitro, we reported a similar effect on a structurally similar series of 1-phenyl-3-aminotetrahydronaphthalenes (phenylaminotetralins, PAT's). We previously reported the synthesis of tritium labeled Cl,OH-PAT to be used in radioreceptor and autoradiography studies and found that it labeled a sigma-like site in guinea pig brain with an apparent Kd of [approx] 50 pM and with a pharmacological profile unique from other known CNS receptors. Here we report the synthesis of high specific activity tritium labeled trans-(1R,3S)-(-)-H[sub 2]PAT as this enantiomer was found to be more active in the tyrosine hydroxylase assay and possessed approximately 45 fold greater affinity for the novel neuromodulatory sigma-like receptor. (author).

  8. Prolyl hydroxylase-1 regulates hepatocyte apoptosis in an NF-κB-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, Susan F.; Fábián, Zsolt; Schaible, Bettina; Lenihan, Colin R.; Schwarzl, Thomas [School of Medicine and Medical Science, The Conway Institute, University College Dublin, Belfield, Dublin 4 Ireland (Ireland); Rodriguez, Javier [Systems Biology Ireland, University College Dublin, Dublin 4 (Ireland); Zheng, Xingnan; Li, Zongwei [Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC (United States); Tambuwala, Murtaza M. [School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, BT52 1SA, Northern Ireland (United Kingdom); Higgins, Desmond G.; O' Meara, Yvonne [School of Medicine and Medical Science, The Conway Institute, University College Dublin, Belfield, Dublin 4 Ireland (Ireland); Slattery, Craig [School of Biomolecular and Biomedical Science, The Conway Institute, University College Dublin, Belfield, Dublin 4 Ireland (Ireland); Manresa, Mario C. [School of Medicine and Medical Science, The Conway Institute, University College Dublin, Belfield, Dublin 4 Ireland (Ireland); Fraisl, Peter; Bruning, Ulrike [Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Vesalius Research Center, VIB, B-3000 (Belgium); Baes, Myriam [Laboratory for Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven (Belgium); Carmeliet, Peter; Doherty, Glen [Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Vesalius Research Center, VIB, B-3000 (Belgium); Kriegsheim, Alex von [Systems Biology Ireland, University College Dublin, Dublin 4 (Ireland); Cummins, Eoin P. [School of Medicine and Medical Science, The Conway Institute, University College Dublin, Belfield, Dublin 4 Ireland (Ireland); and others

    2016-06-03

    Hepatocyte death is an important contributing factor in a number of diseases of the liver. PHD1 confers hypoxic sensitivity upon transcription factors including the hypoxia inducible factor (HIF) and nuclear factor-kappaB (NF-κB). Reduced PHD1 activity is linked to decreased apoptosis. Here, we investigated the underlying mechanism(s) in hepatocytes. Basal NF-κB activity was elevated in PHD1{sup −/−} hepatocytes compared to wild type controls. ChIP-seq analysis confirmed enhanced binding of NF-κB to chromatin in regions proximal to the promoters of genes involved in the regulation of apoptosis. Inhibition of NF-κB (but not knock-out of HIF-1 or HIF-2) reversed the anti-apoptotic effects of pharmacologic hydroxylase inhibition. We hypothesize that PHD1 inhibition leads to altered expression of NF-κB-dependent genes resulting in reduced apoptosis. This study provides new information relating to the possible mechanism of therapeutic action of hydroxylase inhibitors that has been reported in pre-clinical models of intestinal and hepatic disease. -- Highlights: •Genetic ablation of PHD1 upregulates NF-kappaB (NF-κB) in hepatocytes. •Activation of NF-κB leads to differential DNA-binding of p50/p65 and results in differential regulation of apoptotic genes. •We identified proline 191 in the beta subunit of the I-kappaB kinase as a target for PHD1-mediated hydroxylation. •Blockade of prolyl-4-hydroxylases has been found cytoprotective in liver cells.

  9. Treatment of Nonclassic 11-Hydroxylase Deficiency with Ashwagandha Root

    Directory of Open Access Journals (Sweden)

    Daniel Powell

    2017-01-01

    Full Text Available An elderly woman presented with acne and male pattern alopecia, which upon diagnostic evaluation was found to be due to nonclassic 11-hydroxylase deficiency. We previously reported that Ashwagandha root ameliorates nonclassic 3-β-ol dehydrogenase and aldosterone synthase deficiencies. This is the first report of its use being associated with amelioration of nonclassic 11-hydroxylase deficiency, where its apparent effects appear to be dose-related.

  10. Involvement of the N-terminal unique domain of Chk tyrosine kinase in Chk-induced tyrosine phosphorylation in the nucleus

    International Nuclear Information System (INIS)

    Nakayama, Yuji; Kawana, Akiko; Igarashi, Asae; Yamaguchi, Naoto

    2006-01-01

    Chk tyrosine kinase phosphorylates Src-family kinases and suppresses their kinase activity. We recently showed that Chk localizes to the nucleus as well as the cytoplasm and inhibits cell proliferation. In this study, we explored the role of the N-terminal unique domain of Chk in nuclear localization and Chk-induced tyrosine phosphorylation in the nucleus. In situ binding experiments showed that the N-terminal domain of Chk was associated with the nucleus and the nuclear matrix. The presence of the N-terminal domain of Chk led to a fourfold increase in cell population exhibiting Chk-induced tyrosine phosphorylation in the nucleus. Expression of Chk but not kinase-deficient Chk induced tyrosine phosphorylation of a variety of proteins ranging from 23 kDa to ∼200 kDa, especially in Triton X-100-insoluble fraction that included chromatin and the nuclear matrix. Intriguingly, in situ subnuclear fractionations revealed that Chk induced tyrosine phosphorylation of proteins that were associated with the nuclear matrix. These results suggest that various unidentified substrates of Chk, besides Src-family kinases, may be present in the nucleus. Thus, our findings indicate that the importance of the N-terminal domain to Chk-induced tyrosine phosphorylation in the nucleus, implicating that these nuclear tyrosine-phosphorylated proteins may contribute to inhibition of cell proliferation

  11. Retroviral-mediated gene transfer and expression of human phenylalanine hydroxylase in primary mouse hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Peng, H.; Armentano, D.; Mackenzie-Graham, L.; Shen, R.F.; Darlington, G.; Ledley, F.D.; Woo, S.L.C. (Baylor College of Medicine, Houston, TX (USA))

    1988-11-01

    Genetic therapy for phenylketonuria (severe phenylalanine hydroxylase deficiency) may require introduction of a normal phenylalanine hydroxylase gene into hepatic cells of patients. The authors report development of a recombinant retrovirus based on the N2 vector for gene transfer and expression of human phenylalanine hydroxylase cDNA in primary mouse hepatocytes. This construct contains an internal promoter of the human {alpha}{sub 1}-antitrypsin gene driving transcription of the phenylalanine hydroxylase cDNA. Primary mouse hepatocytes were isolated from newborn mice, infected with the recombinant virus, and selected for expression of the neomycin-resistance gene. Hepatocytes transformed with the recombinant virus contained high levels of human phenylalanine hydroxylase mRNA transcripts originating from the retroviral and internal promoters. These results demonstrate that the transcriptional regulatory elements of the {alpha}{sub 1} antitrypsin gene retain their tissue-specific function in the recombinant provirus and establish a method for efficient transfer and high-level expression of human phenylalanine hydroxylase in primary hepatocytes.

  12. Retroviral-mediated gene transfer and expression of human phenylalanine hydroxylase in primary mouse hepatocytes

    International Nuclear Information System (INIS)

    Peng, H.; Armentano, D.; Mackenzie-Graham, L.; Shen, R.F.; Darlington, G.; Ledley, F.D.; Woo, S.L.C.

    1988-01-01

    Genetic therapy for phenylketonuria (severe phenylalanine hydroxylase deficiency) may require introduction of a normal phenylalanine hydroxylase gene into hepatic cells of patients. The authors report development of a recombinant retrovirus based on the N2 vector for gene transfer and expression of human phenylalanine hydroxylase cDNA in primary mouse hepatocytes. This construct contains an internal promoter of the human α 1 -antitrypsin gene driving transcription of the phenylalanine hydroxylase cDNA. Primary mouse hepatocytes were isolated from newborn mice, infected with the recombinant virus, and selected for expression of the neomycin-resistance gene. Hepatocytes transformed with the recombinant virus contained high levels of human phenylalanine hydroxylase mRNA transcripts originating from the retroviral and internal promoters. These results demonstrate that the transcriptional regulatory elements of the α 1 antitrypsin gene retain their tissue-specific function in the recombinant provirus and establish a method for efficient transfer and high-level expression of human phenylalanine hydroxylase in primary hepatocytes

  13. Radiolytic dimerization of tyrosine in alkaline solutions of poly-L-tyrosine, glycyl-L-tyrosine and tyrosine

    International Nuclear Information System (INIS)

    Boguta, G.; Dancewicz, A.M.

    1982-01-01

    Blue fluorescence characteristic of dityrosine appeared in γ-irradiated solutions of tyrosine, glycyl-L-tyrosine or polytyrosine (MW 110,000). The intensity of fluorescence was used for the determination of the dityrosine concentration in hydrolysed samples. The radiation-induced formation of dityrosine depended on pH and on the presence of oxygen during radiolysis carried out with a total dose of the order of 1000 Gy. The presence of oxygen in the system suppressed the formation of dityrosine in solution at low or neutral pH but had no effect on this process in alkaline solutions. Except for the radiolysis of air-saturated poly-L-tyrosine solutions, where G(Dityrosine) = 0.35, the yields of dityrosine at high pH were lower than the yields obtained during radiolysis at low pH and in the absence of oxygen. (author)

  14. Hindbrain Catecholamine Neurons Activate Orexin Neurons During Systemic Glucoprivation in Male Rats.

    Science.gov (United States)

    Li, Ai-Jun; Wang, Qing; Elsarelli, Megan M; Brown, R Lane; Ritter, Sue

    2015-08-01

    Hindbrain catecholamine neurons are required for elicitation of feeding responses to glucose deficit, but the forebrain circuitry required for these responses is incompletely understood. Here we examined interactions of catecholamine and orexin neurons in eliciting glucoprivic feeding. Orexin neurons, located in the perifornical lateral hypothalamus (PeFLH), are heavily innervated by hindbrain catecholamine neurons, stimulate food intake, and increase arousal and behavioral activation. Orexin neurons may therefore contribute importantly to appetitive responses, such as food seeking, during glucoprivation. Retrograde tracing results showed that nearly all innervation of the PeFLH from the hindbrain originated from catecholamine neurons and some raphe nuclei. Results also suggested that many catecholamine neurons project collaterally to the PeFLH and paraventricular hypothalamic nucleus. Systemic administration of the antiglycolytic agent, 2-deoxy-D-glucose, increased food intake and c-Fos expression in orexin neurons. Both responses were eliminated by a lesion of catecholamine neurons innervating orexin neurons using the retrogradely transported immunotoxin, anti-dopamine-β-hydroxylase saporin, which is specifically internalized by dopamine-β-hydroxylase-expressing catecholamine neurons. Using designer receptors exclusively activated by designer drugs in transgenic rats expressing Cre recombinase under the control of tyrosine hydroxylase promoter, catecholamine neurons in cell groups A1 and C1 of the ventrolateral medulla were activated selectively by peripheral injection of clozapine-N-oxide. Clozapine-N-oxide injection increased food intake and c-Fos expression in PeFLH orexin neurons as well as in paraventricular hypothalamic nucleus neurons. In summary, catecholamine neurons are required for the activation of orexin neurons during glucoprivation. Activation of orexin neurons may contribute to appetitive responses required for glucoprivic feeding.

  15. Epidermal growth factor receptor activation by diesel particles is mediated by tyrosine phosphatase inhibition

    International Nuclear Information System (INIS)

    Tal, Tamara L.; Bromberg, Philip A.; Kim, Yumee; Samet, James M.

    2008-01-01

    Exposure to particulate matter (PM) is associated with increased cardiopulmonary morbidity and mortality. Diesel exhaust particles (DEP) are a major component of ambient PM and may contribute to PM-induced pulmonary inflammation. Proinflammatory signaling is mediated by phosphorylation-dependent signaling pathways whose activation is opposed by the activity of protein tyrosine phosphatases (PTPases) which thereby function to maintain signaling quiescence. PTPases contain an invariant catalytic cysteine that is susceptible to electrophilic attack. DEP contain electrophilic oxy-organic compounds that may contribute to the oxidant effects of PM. Therefore, we hypothesized that exposure to DEP impairs PTPase activity allowing for unopposed basal kinase activity. Here we report that exposure to 30 μg/cm 2 DEP for 4 h induces differential activation of signaling in primary cultures of human airway epithelial cells (HAEC), a primary target cell in PM inhalation. In-gel kinase activity assay of HAEC exposed to DEPs of low (L-DEP), intermediate (I-DEP) or high (H-DEP) organic content showed differential activation of intracellular kinases. Exposure to these DEP also induced varying levels of phosphorylation of the receptor tyrosine kinase EGFR in a manner that requires EGFR kinase activity but does not involve receptor dimerization. We demonstrate that treatment with DEP results in an impairment of total and EGFR-directed PTPase activity in HAEC with a potency that is independent of the organic content of these particles. These data show that DEP-induced EGFR phosphorylation in HAEC is the result of a loss of PTPase activities which normally function to dephosphorylate EGFR in opposition to baseline EGFR kinase activity

  16. The effects of Urtica dioica L. leaf extract on aniline 4-hydroxylase in mice.

    Science.gov (United States)

    Ozen, Tevfik; Korkmaz, Halil

    2009-01-01

    The effects of hydroalcoholic (80% ethanol-20% water) extract of Urtica dioica L. on microsomal aniline 4-hydroxylase (A4H) were investigated in the liver of Swiss albino mice (8- 10-weeks-old) treated with two doses (50 and 100 mg/kg body weight, given orally for 14 days ). The activities of A4H showed a significant increase in the liver at both dose levels of extract treatment. The hydroalcoholic extract of Urtica dioica induced the activities of A4H that had been increased by treatment of metal ions (Mg2+ and Ca2+) and the mixture of cofactors (NADH and NADPH). At saturated concentration of cofactor, microsomal A4H exhibited significantly even higher activities in the presence of the mixture of cofactors than NADPH and NADH. Mg2+ and Ca2+ ions acted as stimulants in vitro. The present results suggest that the hydroalcoholic extract of Urtica dioica may have modalatory effect on aniline hydroxylase at least in part and enhance the activity of A4H adding metals ions and cofactors.

  17. Renal albumin excretion: twin studies identify influences of heredity, environment, and adrenergic pathway polymorphism

    DEFF Research Database (Denmark)

    Rao, Fangwen; Wessel, Jennifer; Wen, Gen

    2007-01-01

    biosynthesis (tyrosine hydroxylase), catabolism (monoamine oxidase A), storage/release (chromogranin A), receptor target (dopamine D1 receptor), and postreceptor signal transduction (sorting nexin 13 and rho kinase). Epistasis (gene-by-gene interaction) occurred between alleles at rho kinase, tyrosine...... hydroxylase, chromogranin A, and sorting nexin 13. Dopamine D1 receptor polymorphism showed pleiotropic effects on both albumin and dopamine excretion. These studies establish new roles for heredity and environment in albumin excretion. Urinary excretions of albumin and catecholamines are highly heritable......, and their parallel suggests adrenergic mediation of early glomerular permeability alterations. Albumin excretion is influenced by multiple adrenergic pathway genes and is, thus, polygenic. Such functional links between adrenergic activity and glomerular injury suggest novel approaches to its prediction, prevention...

  18. Identification of tyrosine residues in the intracellular domain of the growth hormone receptor required for transcriptional signaling and Stat5 activation

    DEFF Research Database (Denmark)

    Hansen, L. H.; Wang, X.; Kopchick, J J

    1996-01-01

    The binding of growth hormone (GH) to its receptor results in its dimerization followed by activation of Jak2 kinase and tyrosine phosphorylation of the GH receptor itself, as well as Jak2 and the transcription factors Stat1, -3, and -5. In order to study the role of GH receptor tyrosine phosphor...

  19. Tyrosine-like condensed derivatives as tyrosinase inhibitors.

    Science.gov (United States)

    Matos, Maria João; Santana, Lourdes; Uriarte, Eugenio; Serra, Silvia; Corda, Marcella; Fadda, Maria Benedetta; Era, Benedetta; Fais, Antonella

    2012-05-01

    We report the pharmacological evaluation of a new series of 3-aminocoumarins differently substituted with hydroxyl groups, which have been synthesized because they include in their structures the tyrosine fragment (tyrosine-like compounds), with the aim of discovering structural features necessary for tyrosinase inhibitory activity. The synthesized compounds 4 and 7-9 were evaluated in vitro as mushroom tyrosinase inhibitors. Two of the described compounds showed lower IC50 (concentration giving 50% inhibition of tyrosinase activity) than umbelliferone, used as a reference compound. Compound 7 (IC50=53µm) was the best tyrosinase inhibitor of this small series, having an IC50 value 10-fold lower than umbelliferone. Compound 7 (3-amino-7-hydroxycoumarin) had amino and hydroxyl groups precisely mimicking the same positions that both groups occupy on the tyrosine molecule. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  20. PTP-PEST targets a novel tyrosine site in p120 catenin to control epithelial cell motility and Rho GTPase activity

    Science.gov (United States)

    Espejo, Rosario; Jeng, Yowjiun; Paulucci-Holthauzen, Adriana; Rengifo-Cam, William; Honkus, Krysta; Anastasiadis, Panos Z.; Sastry, Sarita K.

    2014-01-01

    ABSTRACT Tyrosine phosphorylation is implicated in regulating the adherens junction protein, p120 catenin (p120), however, the mechanisms are not well defined. Here, we show, using substrate trapping, that p120 is a direct target of the protein tyrosine phosphatase, PTP-PEST, in epithelial cells. Stable shRNA knockdown of PTP-PEST in colon carcinoma cells results in an increased cytosolic pool of p120 concomitant with its enhanced tyrosine phosphorylation and decreased association with E-cadherin. Consistent with this, PTP-PEST knockdown cells exhibit increased motility, enhanced Rac1 and decreased RhoA activity on a collagen substrate. Furthermore, p120 localization is enhanced at actin-rich protrusions and lamellipodia and has an increased association with the guanine nucleotide exchange factor, VAV2, and cortactin. Exchange factor activity of VAV2 is enhanced by PTP-PEST knockdown whereas overexpression of a VAV2 C-terminal domain or DH domain mutant blocks cell motility. Analysis of point mutations identified tyrosine 335 in the N-terminal domain of p120 as the site of PTP-PEST dephosphorylation. A Y335F mutant of p120 failed to induce the ‘p120 phenotype’, interact with VAV2, stimulate cell motility or activate Rac1. Together, these data suggest that PTP-PEST affects epithelial cell motility by controlling the distribution and phosphorylation of p120 and its availability to control Rho GTPase activity. PMID:24284071

  1. A reliable radiochromatographic assay technique for hepatic microsomal 16α-hydroxylase activity towards oestrone 3-sulphate

    International Nuclear Information System (INIS)

    Tsoutsoulis, C.J.; Hobkirk, R.

    1980-01-01

    A reliable procedure for the assay of liver microsomal 16α-hydroxylation of oestrone 3-sulphate has been developed for the guinea pig. It is based on the rapid, quantitative separation of oestradiol and oestriol by Sephadex LH-20 columns after the chemical reduction and enzymic hydrolysis of the incubation products. Microsomal preparations and incubation conditions that optimized 16α-hydroxylation of oestrone 3-sulphate were employed. Under these circumstances, reduction of the substrate at C-17 and hydrolysis of the sulphate were minimized. Conditions were established that yielded reaction linearity with respect to time and microsomal concentration. This hydroxylation had an absolute requirement for NADPH, which could not be satisfied by NADH. Apparent Ksub(m) values for oestrone 3-sulphate and NADPH, under the conditions used, were 14μM and 0.17mM respectively. 16α-hydroxylase activity was present in the liver microsomal fraction from heavily pigmented, female English Shorthaired guinea pigs. Much lower activity was detected in mature pigmented males and albino females. No activity could be demonstrated in mature, albino males. (author)

  2. Mechanism of papain-catalyzed synthesis of oligo-tyrosine peptides.

    Science.gov (United States)

    Mitsuhashi, Jun; Nakayama, Tsutomu; Narai-Kanayama, Asako

    2015-01-01

    Di-, tri-, and tetra-tyrosine peptides with angiotensin I-converting enzyme inhibitory activity were synthesized by papain-catalyzed polymerization of L-tyrosine ethyl ester in aqueous media at 30 °C. Varying the reaction pH from 6.0 to 7.5 and the initial concentration of the ester substrate from 25 to 100 mM, the highest yield of oligo-tyrosine peptides (79% on a substrate basis) was produced at pH 6.5 and 75 mM, respectively. In the reaction initiated with 100 mM of the substrate, approx. 50% yield of insoluble, highly polymerized peptides accumulated. At less than 15 mM, the reaction proceeded poorly; however, from 30 mM to 120 mM a dose-dependent increase in the consumption rate of the substrate was observed with a sigmoidal curve. Meanwhile, each of the tri- and tetra-tyrosine peptides, even at approx. 5mM, was consumed effectively by papain but was not elongated to insoluble polymers. For deacylation of the acyl-papain intermediate through which a new peptide bond is made, L-tyrosine ethyl ester, even at 5mM, showed higher nucleophilic activity than di- and tri-tyrosine. These results indicate that the mechanism through which papain polymerizes L-tyrosine ethyl ester is as follows: the first interaction between papain and the ester substrate is a rate-limiting step; oligo-tyrosine peptides produced early in the reaction period are preferentially used as acyl donors, while the initial ester substrate strongly contributes as a nucleophile to the elongation of the peptide product; and the balance between hydrolytic fragmentation and further elongation of oligo-tyrosine peptides is dependent on the surrounding concentration of the ester substrate. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Presence of ecto-protein tyrosine phosphatase activity is vital for survival of Setaria cervi, a bovine filarial parasite.

    Science.gov (United States)

    Singh, Neetu; Heneberg, Petr; Rathaur, Sushma

    2014-10-01

    The ecto protein tyrosine phosphatases (PTP) are known to play a crucial role in the pathogenesis and survival of the intracellular parasites. However, their presence and role in filarial parasites is still unknown. We found a significant amount of tyrosine phosphatase activity in the surface antigen fraction extracted from Setaria cervi (S. cervi), a bovine filarial parasite. An antibody designed against the conserved catalytic core of human protein tyrosine phosphatases, PTP1B cross reacted with a 63 kDa band in the surface antigen. We detected a significant amount of PTP activity in the intact S. cervi adult parasites as well as microfilariae in this study for the first time. This PTP may be localized on the surface of the parasite with an exposed active site available for the external substrates. The PTP activity was also inhibited by sodium orthovanadate and phenyl arsine oxide, specific inhibitors of PTP in both the life stages. The Km and Vmax for PTP in the adult parasites and microfilariae were determined to be 2.574 ± 0.14 mM; 206.3 ± 2.75 μM Pi/h/two parasites and 5.510 ± 0.59 mM; 62.27 ± 2.27 μM Pi/h/10(6) parasites respectively using O-P-L-Tyrosine as substrate. Interestingly, a positive correlation was observed between the inhibition in PTP activity and reduction in the motility/ viability of the parasites when they were subjected to the specific PTP inhibitors (Orthovanadate and Phenyl arsine oxide) for 4 h in the KRB maintenance medium. The activity was also significantly inhibited in the parasites exposed to antifilarial drug/compounds for e.g. Diethylcarbamazine, Acetylsalicylic Acid and SK7, a methyl chalcone. Therefore suggesting a possible role played by PTP in the survival of the parasite, its interaction with the host as well as in the screening of newly synthesized antifilarials/drugs.

  4. Microsomal aryl hydrocarbon hydroxylase comparison of the direct, indirect and radiometric assays

    International Nuclear Information System (INIS)

    Denison, M.S.; Murray, M.; Wilkinson, C.F.

    1983-01-01

    The direct fluorometric assay of aryl hydrocarbon hydroxlyase has been compared to the more commonly used indirect fluorometric and radiometric assays. Although rat hepatic microsomal activities measured by the direct assay were consistently higher than those obtained by the other assays, the relative changes in activity following enzyme induction and/or inhibition were similar. The direct assay provides an accurate and rapid measure of aryl hydrocarbon hydroxylase activity and avoids several problems inherent in the indirect and radiometric assays. 2 tables

  5. Potent and Selective Triazole-Based Inhibitors of the Hypoxia-Inducible Factor Prolyl-Hydroxylases with Activity in the Murine Brain.

    Directory of Open Access Journals (Sweden)

    Mun Chiang Chan

    Full Text Available As part of the cellular adaptation to limiting oxygen availability in animals, the expression of a large set of genes is activated by the upregulation of the hypoxia-inducible transcription factors (HIFs. Therapeutic activation of the natural human hypoxic response can be achieved by the inhibition of the hypoxia sensors for the HIF system, i.e. the HIF prolyl-hydroxylases (PHDs. Here, we report studies on tricyclic triazole-containing compounds as potent and selective PHD inhibitors which compete with the 2-oxoglutarate co-substrate. One compound (IOX4 induces HIFα in cells and in wildtype mice with marked induction in the brain tissue, revealing that it is useful for studies aimed at validating the upregulation of HIF for treatment of cerebral diseases including stroke.

  6. Protein tyrosine phosphatases: regulatory mechanisms.

    NARCIS (Netherlands)

    den Hertog, J.; Ostman, A.; Bohmer, F.D.

    2008-01-01

    Protein-tyrosine phosphatases are tightly controlled by various mechanisms, ranging from differential expression in specific cell types to restricted subcellular localization, limited proteolysis, post-translational modifications affecting intrinsic catalytic activity, ligand binding and

  7. Mechanism of Cytochrome P450 17A1-Catalyzed Hydroxylase and Lyase Reactions

    DEFF Research Database (Denmark)

    Bonomo, Silvia; Jorgensen, Flemming Steen; Olsen, Lars

    2017-01-01

    Cytochrome P450 17A1 (CYP17A1) catalyzes C17 hydroxylation of pregnenolone and progesterone and the subsequent C17–C20 bond cleavage (lyase reaction) to form androgen precursors. Compound I (Cpd I) and peroxo anion (POA) are the heme-reactive species underlying the two reactions. We have characte...... the concept that the selectivity of the steroidogenic CYPs is ruled by direct interactions with the enzyme, in contrast to the selectivity of drug-metabolizing CYPs, where the reactivity of the substrates dominates....... characterized the reaction path for both the hydroxylase and lyase reactions using density functional theory (DFT) calculations and the enzyme–substrate interactions by molecular dynamics (MD) simulations. Activation barriers for positions subject to hydroxylase reaction have values close to each other and span...

  8. An artificial TCA cycle selects for efficient α-ketoglutarate dependent hydroxylase catalysis in engineered Escherichia coli.

    Science.gov (United States)

    Theodosiou, Eleni; Breisch, Marina; Julsing, Mattijs K; Falcioni, Francesco; Bühler, Bruno; Schmid, Andreas

    2017-07-01

    Amino acid hydroxylases depend directly on the cellular TCA cycle via their cosubstrate α-ketoglutarate (α-KG) and are highly useful for the selective biocatalytic oxyfunctionalization of amino acids. This study evaluates TCA cycle engineering strategies to force and increase α-KG flux through proline-4-hydroxylase (P4H). The genes sucA (α-KG dehydrogenase E1 subunit) and sucC (succinyl-CoA synthetase β subunit) were alternately deleted together with aceA (isocitrate lyase) in proline degradation-deficient Escherichia coli strains (ΔputA) expressing the p4h gene. Whereas, the ΔsucCΔaceAΔputA strain grew in minimal medium in the absence of P4H, relying on the activity of fumarate reductase, growth of the ΔsucAΔaceAΔputA strictly depended on P4H activity, thus coupling growth to proline hydroxylation. P4H restored growth, even when proline was not externally added. However, the reduced succinyl-CoA pool caused a 27% decrease of the average cell size compared to the wildtype strain. Medium supplementation partially restored the morphology and, in some cases, enhanced proline hydroxylation activity. The specific proline hydroxylation rate doubled when putP, encoding the Na + /l-proline transporter, was overexpressed in the ΔsucAΔaceAΔputA strain. This is in contrast to wildtype and ΔputA single-knock out strains, in which α-KG availability obviously limited proline hydroxylation. Such α-KG limitation was relieved in the ΔsucAΔaceAΔputA strain. Furthermore, the ΔsucAΔaceAΔputA strain was used to demonstrate an agar plate-based method for the identification and selection of active α-KG dependent hydroxylases. This together with the possibility to waive selection pressure and overcome α-KG limitation in respective hydroxylation processes based on living cells emphasizes the potential of TCA cycle engineering for the productive application of α-KG dependent hydroxylases. Biotechnol. Bioeng. 2017;114: 1511-1520. © 2017 Wiley Periodicals, Inc.

  9. Regulation of ex vivo tyrosine hydroxylase (TH) activity is not altered by chronic lead (Pb) exposure

    International Nuclear Information System (INIS)

    Lasley, S.M.; Green, M.C.

    1991-01-01

    Previous studies have suggested that chronic Pb exposure results in impaired regulation of CNS dopamine (DA) synthesis in rats. The present study was designed to directly assess TH activity in exposed animals compared to controls, employing a pharmacological model that assesses the functional status of dopaminergic synthesis-modulating autoreceptors. At birth dams received 0.2% Pb acetate in drinking water. Offspring were weaned to and maintained on the same solution until termination at 60 or 120 days. Rats were given saline or a DA agonist (EMD 23448 or CGS 15855A) 45 min before sacrifice followed 15 min later by gamma-butyrolactone (GBL). Regional TH activity was measured by a modification of the tritium release method. DA content was determined by liquid chromatography. The ability of EMD 23448 to prevent the GBL-induced increase in DA content was significantly diminished in caudate-putamen (C-P) of exposed rats compared to controls, similar to previous observations. However, an analogous effect of Pb on TH activity in this drug model was not observed using CGS 15855A in rats either 60 or 120 days of age. These findings suggest that chronic Pb exposure has no effect on autoreceptor-mediated regulation of TH in DA neurons when TH activity is measured ex vivo

  10. The Tyrosine Aminomutase TAM1 Is Required for β-Tyrosine Biosynthesis in Rice

    Science.gov (United States)

    Yan, Jian; Aboshi, Takako; Teraishi, Masayoshi; Strickler, Susan R.; Spindel, Jennifer E.; Tung, Chih-Wei; Takata, Ryo; Matsumoto, Fuka; Maesaka, Yoshihiro; McCouch, Susan R.; Okumoto, Yutaka; Mori, Naoki; Jander, Georg

    2015-01-01

    Non-protein amino acids, often isomers of the standard 20 protein amino acids, have defense-related functions in many plant species. A targeted search for jasmonate-induced metabolites in cultivated rice (Oryza sativa) identified (R)-β-tyrosine, an isomer of the common amino acid (S)-α-tyrosine in the seeds, leaves, roots, and root exudates of the Nipponbare cultivar. Assays with 119 diverse cultivars showed a distinct presence/absence polymorphism, with β-tyrosine being most prevalent in temperate japonica cultivars. Genetic mapping identified a candidate gene on chromosome 12, which was confirmed to encode a tyrosine aminomutase (TAM1) by transient expression in Nicotiana benthamiana and in vitro enzyme assays. A point mutation in TAM1 eliminated β-tyrosine production in Nipponbare. Rice cultivars that do not produce β-tyrosine have a chromosome 12 deletion that encompasses TAM1. Although β-tyrosine accumulation was induced by the plant defense signaling molecule jasmonic acid, bioassays with hemipteran and lepidopteran herbivores showed no negative effects at physiologically relevant β-tyrosine concentrations. In contrast, root growth of Arabidopsis thaliana and other tested dicot plants was inhibited by concentrations as low as 1 μM. As β-tyrosine is exuded into hydroponic medium at higher concentrations, it may contribute to the allelopathic potential of rice. PMID:25901084

  11. Exploring oxidative modifications of tyrosine

    DEFF Research Database (Denmark)

    Houée-Lévin, C; Bobrowski, K; Horakova, L

    2015-01-01

    residues are oxidised in vivo with impact on cellular homeostasis and redox signalling pathways. A notable example is tyrosine, which can undergo a number of oxidative post-translational modifications to form 3-hydroxy-tyrosine, tyrosine crosslinks, 3-nitrotyrosine and halogenated tyrosine, with different...... effects on cellular functions. Tyrosine oxidation has been studied extensively in vitro, and this has generated detailed information about the molecular mechanisms that may occur in vivo. An important aspect of studying tyrosine oxidation both in vitro and in biological systems is the ability to monitor...... residues modified and the nature of the modification. These approaches have helped understanding of the consequences of tyrosine oxidation in biological systems, especially its effects on cell signalling and cell dysfunction, linking to roles in disease. There is mounting evidence that tyrosine oxidation...

  12. Expression of Xanthophyllomyces dendrorhous cytochrome-P450 hydroxylase and reductase in Mucor circinelloides.

    Science.gov (United States)

    Csernetics, Árpád; Tóth, Eszter; Farkas, Anita; Nagy, Gábor; Bencsik, Ottó; Vágvölgyi, Csaba; Papp, Tamás

    2015-02-01

    Carotenoids are natural pigments that act as powerful antioxidants and have various beneficial effects on human and animal health. Mucor circinelloides (Mucoromycotina) is a carotenoid producing zygomycetes fungus, which accumulates β-carotene as the main carotenoid but also able to produce the hydroxylated derivatives of β-carotene (i.e. zeaxanthin and β-cryptoxanthin) in low amount. These xanthophylls, together with the ketolated derivatives of β-carotene (such as canthaxanthin, echinenone and astaxanthin) have better antioxidant activity than β-carotene. In this study our aim was to modify and enhance the xanthophyll production of the M. circinelloides by expression of heterologous genes responsible for the astaxanthin biosynthesis. The crtS and crtR genes, encoding the cytochrome-P450 hydroxylase and reductase, respectively, of wild-type and astaxanthin overproducing mutant Xanthophyllomyces dendrorhous strains were amplified from cDNA and the nucleotide and the deduced amino acid sequences were compared to each other. Introduction of the crtS on autonomously replicating plasmid in the wild-type M. circinelloides resulted enhanced zeaxanthin and β-cryptoxanthin accumulation and the presence of canthaxanthin, echinenone and astaxanthin in low amount; the β-carotene hydroxylase and ketolase activity of the X. dendrorhous cytochrome-P450 hydroxylase in M. circinelloides was verified. Increased canthaxanthin and echinenone production was observed by expression of the gene in a canthaxanthin producing mutant M. circinelloides. Co-expression of the crtR and crtS genes led to increase in the total carotenoid and slight change in xanthophyll accumulation in comparison with transformants harbouring the single crtS gene.

  13. Expression of the vitamin D receptor, 25-hydroxylases, 1alpha-hydroxylase and 24-hydroxylase in the human kidney and renal clear cell cancer

    DEFF Research Database (Denmark)

    Blomberg Jensen, Martin; Andersen, Claus B.; Nielsen, John E

    2010-01-01

    The vitamin D receptor (VDR), CYP27B1 and CYP24A1 are expressed in the human kidney, but the segmental expression of the 25-hydroxylases is unknown. A comprehensive analysis of CYP2R1, CYP27A1, CYP27B1, VDR and CYP24A1 expression in normal kidney and renal clear cell cancer (CCc) would reveal...

  14. Robotic synthesis of L-[1-11C]tyrosine

    International Nuclear Information System (INIS)

    Luurtsema, Gert; Medema, Jitze; Elsinga, P.H.; Visser, G.M.; Vaalburg, Willem

    1994-01-01

    L-[1- 11 C]tyrosine promises to become an important tracer for determination of the protein synthesis rate (PSR) in tumor tissue and brain. The commercially available Anatech RB-86 robotic system is utilized for the automation of the L-[1- 11 C]tyrosine production via the isocyanide method as reported by Bolster et al. (Eur. J. Nucl. Med. 12, 321-324, 1986). The total synthesis time, including HPLC-purification and enantiomeric separation is 60 min. With a practical yield of 20 mCi L-[1- 11 C]tyrosine at a specific activity > 1000 Ci/mmol. (author)

  15. Electronic structure description of the cis-MoOS unit in models for molybdenum hydroxylases.

    Science.gov (United States)

    Doonan, Christian J; Rubie, Nick D; Peariso, Katrina; Harris, Hugh H; Knottenbelt, Sushilla Z; George, Graham N; Young, Charles G; Kirk, Martin L

    2008-01-09

    The molybdenum hydroxylases catalyze the oxidation of numerous aromatic heterocycles and simple organics and, unlike other hydroxylases, utilize water as the source of oxygen incorporated into the product. The electronic structures of the cis-MoOS units in CoCp2[TpiPrMoVOS(OPh)] and TpiPrMoVIOS(OPh) (TpiPr = hydrotris(3-isopropylpyrazol-1-yl)borate), new models for molybdenum hydroxylases, have been studied in detail using S K-edge X-ray absorption spectroscopy, vibrational spectroscopy, and detailed bonding calculations. The results show a highly delocalized Mo=S pi* LUMO redox orbital that is formally Mo(dxy) with approximately 35% sulfido ligand character. Vibrational spectroscopy has been used to quantitate Mo-Ssulfido bond order changes in the cis-MoOS units as a function of redox state. Results support a redox active molecular orbital that has a profound influence on MoOS bonding through changes to the relative electro/nucleophilicity of the terminal sulfido ligand accompanying oxidation state changes. The bonding description for these model cis-MoOS systems supports enzyme mechanisms that are under orbital control and dominantly influenced by the unique electronic structure of the cis-MoOS site. The electronic structure of the oxidized enzyme site is postulated to play a role in polarizing a substrate carbon center for nucleophilic attack by metal activated water and acting as an electron sink in the two-electron oxidation of substrates.

  16. Solubilization and characterization of a novel tyrosine kinase from rat adipocytes

    International Nuclear Information System (INIS)

    Yagaloff, K.A.; Czech, M.P.

    1987-01-01

    The authors report the efficient solubilization and characterization of a Triton X-100 insoluble tyrosine kinase from rat adipocytes. Plasma membranes were prepared from rat epididymal fat pads and were solubilized in 1% Triton X-100. Following centrifugation, the pellet was solubilized for 15 min at 4 0 C using both ionic and non-ionic detergents. Tyrosine kinase activity was measured in the soluble and particulate fractions using the exogenous substrate poly(glu-tyr) in a TCA precipitation assay. Reactions were performed in 50mM Hepes, 10mM MgCl 2 and 100μM gamma[ 32 P]-ATP (10Ci/mmol) at 4 0 C with or without 1mg/ml of the polyaminoacid. Incorporation rates of 100 to 1000 pmol/min/mg were obtained, while endogenous [ 32 P] incorporation was typically less than 10% of that in the presence of poly(glu-tyr). More than 75% of the tyrosine kinase activity was recovered in the soluble supernatant using this assay methodology. The solubilized tyrosine kinase was found to require Mg 2+ or Mn 2+ but preferred Mg 2+ and was inhibited by high levels of Mn 2+ . Kinase activity was strongly inhibited by Ca 2+ (>50% at 1mM), NaCl (>50% at 250mM) and NH 4 SO 4 (>50% at 50mM) but was activated by 10μM heparin and 5mM dithiothreitol. These properties distinguish the solubilized tyrosine kinase from other cellular tyrosine kinases

  17. Experimentally calibrated computational chemistry of tryptophan hydroxylase: Trans influence, hydrogen-bonding, and 18-electron rule govern O-2-activation

    DEFF Research Database (Denmark)

    Haahr, Lærke Tvedebrink; Kepp, Kasper Planeta; Boesen, Jane

    2010-01-01

    with the experimental value (0.25 mm/s) which we propose as the structure of the hydroxylating intermediate, with the tryptophan substrate well located for further reaction 3.5 Å from the ferryl group. Based on the optimized transition states, the activation barriers for the two paths (glu and his) are similar, so......Insight into the nature of oxygen activation in tryptophan hydroxylase has been obtained from density functional computations. Conformations of O2-bound intermediates have been studied with oxygen trans to glutamate and histidine, respectively. An O2-adduct with O2 trans to histidine (Ohis...... towards the cofactor and a more activated O–O bond (1.33 Å) than in Oglu (1.30 Å). It is shown that the cofactor can hydrogen bond to O2 and activate the O–O bond further (from 1.33 to 1.38 Å). The Ohis intermediate leads to a ferryl intermediate (Fhis) with an isomer shift of 0.34 mm/s, also consistent...

  18. Antibody-induced activation of the epidermal growth factor receptor tyrosine kinase requires the presence of detergent

    NARCIS (Netherlands)

    Spaargaren, M.; Defize, L. H.; de Laat, S. W.; Boonstra, J.

    1990-01-01

    Activation of the epidermal growth factor receptor (EGF-R) tyrosine kinase was investigated in membrane preparations as well as intact A431 cells, using anti-EGF-R antibodies directed against extra- and intracellular receptor domains. In vitro assay conditions were mimicked on whole cells by a mild

  19. Genetics Home Reference: dopamine beta-hydroxylase deficiency

    Science.gov (United States)

    ... common features include an unusually large range of joint movement (hypermobility) and muscle weakness. Related Information What ... Dopamine beta-hydroxylase deficiency Washington Univeristy, St. Louis: Neuromuscular Disease Center Patient Support and Advocacy Resources (1 ...

  20. INHIBITION OF PROTEIN TYROSINE PHOSPHATASE ACTIVITY MEDIATES EPIDERMAL GROWTH FACTOR RECEPTOR SIGNALING IN HUMAN AIRWAY EPITHELIAL CELLS

    Science.gov (United States)

    Epidemiological studies have implicated zinc in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to metal-laden PM inhibits protein tyrosine phosphatase (PTP) activity in human primary bronchial epithelial cells (HAEC) and leads t...

  1. PROLACTIN-INDUCED TYROSINE PHOSPHORYLATION, ACTIVATION AND RECEPTOR ASSOCIATION OF FOCAL ADHESION KINASE (FAK) IN MAMMARY EPITHELIAL CELLS

    Science.gov (United States)

    Prolactin-Induced Tyrosine Phosphorylation, Activation and ReceptorAssociation of Focal Adhesion Kinase (FAK) in Mammary Epithelial Cells. Suzanne E. Fenton1 and Lewis G. Sheffield2. 1U.S. Environmental ProtectionAgency, MD-72, Research Triangle Park, NC 27711, and

  2. Induction of hepatic aryl hydrocarbon hydroxylase and epoxide hydrase in Wistar rats pretreated with oral methadone hydrochloride.

    Science.gov (United States)

    Bellward, G D; Gontovnick, L S; Otten, M

    1977-01-01

    Methadone-HCl added to the drinking water of adult female Wistar rats for 4 weeks produced an increase in the aryl hydrocarbon hydroxylase activity of the hepatic microsomal fraction to 222% of control levels. No change was seen in epoxide hydrase activity. In contrast, when male rats were treated similarly, there was an increase in epoxide hydrase activity to 212% of controls with no change in aryl hydrocarbon hydroxylase activity. No such changes were observed when the subcutaneous route of administration or chronic, low-dose, intraperitoneal injections were used. There were no differences in hepatic cytochrome P-450 or protein concentrations in treated animals as compared to their respective control groups. Control studies were carried out with quinine sulfate in the drinking water to decrease water intake to the level of the methadone-treated group. No elevation in either enzyme activity occurred in this control group. Similarly, paired-feeding studies showed the elevation of enzyme activity to be due to the methadone, not food deprivation. The effects of concurrent therapy of methadone with phenobarbital sodium or 3-methylcholanthrene were compared.

  3. Src-family-tyrosine kinase Lyn is critical for TLR2-mediated NF-κB activation through the PI 3-kinase signaling pathway.

    Science.gov (United States)

    Toubiana, Julie; Rossi, Anne-Lise; Belaidouni, Nadia; Grimaldi, David; Pene, Frederic; Chafey, Philippe; Comba, Béatrice; Camoin, Luc; Bismuth, Georges; Claessens, Yann-Erick; Mira, Jean-Paul; Chiche, Jean-Daniel

    2015-10-01

    TLR2 has a prominent role in host defense against a wide variety of pathogens. Stimulation of TLR2 triggers MyD88-dependent signaling to induce NF-κB translocation, and activates a Rac1-PI 3-kinase dependent pathway that leads to transactivation of NF-κB through phosphorylation of the P65 NF-κB subunit. This transactivation pathway involves tyrosine phosphorylations. The role of the tyrosine kinases in TLR signaling is controversial, with discrepancies between studies using only chemical inhibitors and knockout mice. Here, we show the involvement of the tyrosine-kinase Lyn in TLR2-dependent activation of NF-κB in human cellular models, by using complementary inhibition strategies. Stimulation of TLR2 induces the formation of an activation cluster involving TLR2, CD14, PI 3-kinase and Lyn, and leads to the activation of AKT. Lyn-dependent phosphorylation of the p110 catalytic subunit of PI 3-kinase is essential to the control of PI 3-kinase biological activity upstream of AKT and thereby to the transactivation of NF-κB. Thus, Lyn kinase activity is crucial in TLR2-mediated activation of the innate immune response in human mononuclear cells. © The Author(s) 2015.

  4. Functionalization of protected tyrosine via Sonogashira reaction: synthesis of 3-(1,2,3-triazolyl)-tyrosine.

    Science.gov (United States)

    Vasconcelos, Stanley N S; Shamim, Anwar; Ali, Bakhat; de Oliveira, Isadora M; Stefani, Hélio A

    2016-05-01

    1,2,3-Triazol tyrosines were synthesized from tyrosine alkynes that were in turn prepared via Sonogashira cross-coupling reaction. The tyrosine alkynes were subjected to click-chemistry reaction conditions leading to the corresponding 3-(1,2,3-triazolyl)-tyrosines in yields ranging from moderate to good.

  5. Parkinsonism in phenylketonuria: a consequence of dopamine depletion?

    NARCIS (Netherlands)

    Velema, Marieke; Boot, Erik; Engelen, Marc; Hollak, Carla

    2015-01-01

    Phenylketonuria (PKU) is caused by a deficiency or inactivity of the enzyme phenylalanine hydroxylase that converts phenylalanine (Phe) to tyrosine (Tyr). It has been proposed that a reduction of brain Tyr levels, as well as reduced activity of the key regulatory enzyme of dopamine (DA) synthesis

  6. The crystal structure of tryptophan hydroxylase with bound amino acid substrate

    DEFF Research Database (Denmark)

    Windahl, Michael Skovbo; Petersen, Charlotte Rode; Christensen, Hans Erik Mølager

    2008-01-01

    Tryptophan hydroxylase (TPH) is a mononuclear non-heme iron enzyme, which catalyzes the reaction between tryptophan, O2, and tetrahydrobiopterin (BH4) to produce 5-hydroxytryptophan and 4a-hydroxytetrahydrobiopterin. This is the first and rate-limiting step in the biosynthesis of the neurotransmi......Tryptophan hydroxylase (TPH) is a mononuclear non-heme iron enzyme, which catalyzes the reaction between tryptophan, O2, and tetrahydrobiopterin (BH4) to produce 5-hydroxytryptophan and 4a-hydroxytetrahydrobiopterin. This is the first and rate-limiting step in the biosynthesis...... acid hydroxylase with bound natural amino acid substrate. The iron coordination can be described as distorted trigonal bipyramidal coordination with His273, His278, and Glu318 (partially bidentate) and one imidazole as ligands. The tryptophan stacks against Pro269 with a distance of 3.9 Å between...

  7. PTP1B Inhibition Causes Rac1 Activation by Enhancing Receptor Tyrosine Kinase Signaling

    Directory of Open Access Journals (Sweden)

    Ayako Tsuchiya

    2014-04-01

    Full Text Available Background/Aims: The present study investigated the signaling pathway underlying Rac1 activation induced by the linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl-cyclopropyl]-octanoic acid (DCP-LA. Methods: Activity of protein tyrosine phosphatase 1B (PTP1B was assayed under cell-free conditions. Western blot was carried out to quantify phosphorylation of insulin receptor substrate-1 (IRS-1 and Akt in PC-12 cells. Rac1 activity was monitored in the föerster resonance energy transfer (FRET analysis using living and fixed PC-12 cells. Results: DCP-LA markedly suppressed PTP1B activity in a concentration (100 pM-100 µM-dependent manner. In the DCP-LA binding assay, fluorescein-conjugated DCP-LA produced a single fluorescent signal band at 60 kDa, corresponding to the molecule of PTP1B, and the signal was attenuated or abolished by co-treatment or pretreatment with non-conjugated DCP-LA. DCP-LA significantly enhanced nerve growth factor (NGF-stimulated phosphorylation of IRS-1 at Tyr1222 and Akt1/2 at Thr308/309 and Ser473/474 in PC-12 cells. In the FRET analysis, DCP-LA significantly enhanced NGF-stimulated Rac1 activation, which is abrogated by the phosphatidylinositol 3 kinase (PI3K inhibitor wortmannin, the 3-phosphoinositide-dependent protein kinase-1 (PDK1 inhibitor BX912, or the Akt inhibitor MK2206. Conclusion: The results of the present study show that DCP-LA-induced PTP1B inhibition, possibly through its direct binding, causes Rac1 activation by enhancing a pathway along a receptor tyrosine kinase (RTK/IRS-1/PI3K/Akt/Rac1 axis.

  8. Conformational Clusters of Phosphorylated Tyrosine.

    Science.gov (United States)

    Abdelrasoul, Maha; Ponniah, Komala; Mao, Alice; Warden, Meghan S; Elhefnawy, Wessam; Li, Yaohang; Pascal, Steven M

    2017-12-06

    Tyrosine phosphorylation plays an important role in many cellular and intercellular processes including signal transduction, subcellular localization, and regulation of enzymatic activity. In 1999, Blom et al., using the limited number of protein data bank (PDB) structures available at that time, reported that the side chain structures of phosphorylated tyrosine (pY) are partitioned into two conserved conformational clusters ( Blom, N.; Gammeltoft, S.; Brunak, S. J. Mol. Biol. 1999 , 294 , 1351 - 1362 ). We have used the spectral clustering algorithm to cluster the increasingly growing number of protein structures with pY sites, and have found that the pY residues cluster into three distinct side chain conformations. Two of these pY conformational clusters associate strongly with a narrow range of tyrosine backbone conformation. The novel cluster also highly correlates with the identity of the n + 1 residue, and is strongly associated with a sequential pYpY conformation which places two adjacent pY side chains in a specific relative orientation. Further analysis shows that the three pY clusters are associated with distinct distributions of cognate protein kinases.

  9. Insulin receptor binding and tyrosine kinase activity in skeletal muscle from normal pregnant women and women with gestational diabetes

    DEFF Research Database (Denmark)

    Damm, P.; Handberg, A.; Kühl, C.

    1993-01-01

    OBJECTIVE: To ascertain whether the decreased glucose tolerance and insulin resistance found in normal and gestational diabetic pregnancy might be associated with changes in insulin receptor function. METHODS: Eight nonpregnant healthy women (nonpregnant controls), eight healthy pregnant women...... (pregnant controls), and eight women with gestational diabetes were investigated. All were non-obese. Muscle biopsies were obtained from the vastus lateralis muscle, and insulin binding and tyrosine kinase activities in partially purified skeletal muscle insulin receptors were studied. The pregnant controls...... with gestational diabetes compared to nonpregnant controls (P pregnant women did not differ from the other two groups. Postpartum, no differences in insulin binding were found between the groups. Basal and maximal tyrosine kinase activities toward the exogenous substrate poly(Glu4Tyr1) were...

  10. Functional analysis of Antirrhinum kelloggii flavonoid 3'-hydroxylase and flavonoid 3',5'-hydroxylase genes; critical role in flower color and evolution in the genus Antirrhinum.

    Science.gov (United States)

    Ishiguro, Kanako; Taniguchi, Masumi; Tanaka, Yoshikazu

    2012-05-01

    The enzymes flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H) play an important role in flower color by determining the B-ring hydroxylation pattern of anthocyanins, the major floral pigments. F3'5'H is necessary for biosynthesis of the delphinidin-based anthocyanins that confer a violet or blue color to most plants. Antirrhinum majus does not produce delphinidin and lacks violet flower colour while A. kelloggii produces violet flowers containing delphinidin. To understand the cause of this inter-specific difference in the Antirrhinum genus, we isolated one F3'H and two F3'5'H homologues from the A. kelloggii petal cDNA library. Their amino acid sequences showed high identities to F3'Hs and F3'5'Hs of closely related species. Transgenic petunia expressing these genes had elevated amounts of cyanidin and delphinidin respectively, and flower color changes in the transgenics reflected the type of accumulated anthocyanidins. The results indicate that the homologs encode F3'H and F3'5'H, respectively, and that the ancestor of A. majus lost F3'5'H activity after its speciation from the ancestor of A. kelloggii.

  11. Recent advances in biochemical and molecular analysis of congenital adrenal hyperplasia due to 21-hydroxylase deficiency

    Directory of Open Access Journals (Sweden)

    Jin-Ho Choi

    2016-03-01

    Full Text Available The term congenital adrenal hyperplasia (CAH covers a group of autosomal recessive disorders caused by defects in one of the steroidogenic enzymes involved in the synthesis of cortisol or aldosterone from cholesterol in the adrenal glands. Approximately 95% of all CAH cases are caused by 21-hydroxylase deficiency encoded by the CYP21A2 gene. The disorder is categorized into classical forms, including the salt-wasting and the simple virilizing types, and nonclassical forms based on the severity of the disease. The severity of the clinical features varies according to the level of residual 21-hydroxylase activity. Newborn screening for CAH is performed in many countries to prevent salt-wasting crises in the neonatal period, to prevent male sex assignment in affected females, and to reduce long-term morbidities, such as short stature, gender confusion, and psychosexual disturbances. 17α-hydroxyprogesterone is a marker for 21-hydroxylase deficiency and is measured using a radioimmunoassay, an enzyme-linked immunosorbent assay, or a fluoroimmunoassay. Recently, liquid chromatography linked with tandem mass spectrometry was developed for rapid, highly specific, and sensitive analysis of multiple analytes. Urinary steroid analysis by gas chromatography mass spectrometry also provides qualitative and quantitative data on the excretion of steroid hormone metabolites. Molecular analysis of CYP21A2 is useful for genetic counseling, confirming diagnosis, and predicting prognoses. In conclusion, early detection using neonatal screening tests and treatment can prevent the worst outcomes of 21-hydroxylase deficiency.

  12. Increased activity of the Vesicular Soluble N-Ethylmaleimide-sensitive Factor Attachment Protein Receptor TI-VAMP/VAMP7 by Tyrosine Phosphorylation in the Longin Domain*

    Science.gov (United States)

    Burgo, Andrea; Casano, Alessandra M.; Kuster, Aurelia; Arold, Stefan T.; Wang, Guan; Nola, Sébastien; Verraes, Agathe; Dingli, Florent; Loew, Damarys; Galli, Thierry

    2013-01-01

    Vesicular (v)- and target (t)-SNAREs play essential roles in intracellular membrane fusion through the formation of cytoplasmic α-helical bundles. Several v-SNAREs have a Longin N-terminal extension that, by promoting a closed conformation, plays an autoinhibitory function and decreases SNARE complex formation and membrane fusion efficiency. The molecular mechanism leading to Longin v-SNARE activation is largely unknown. Here we find that exocytosis mediated by the Longin v-SNARE TI-VAMP/VAMP7 is activated by tonic treatment with insulin and insulin-like growth factor-1 but not by depolarization and intracellular calcium rise. In search of a potential downstream mechanism, we found that TI-VAMP is phosphorylated in vitro by c-Src kinase on tyrosine 45 of the Longin domain. Accordingly, a mutation of tyrosine 45 into glutamate, but not phenylalanine, activates both t-SNARE binding and exocytosis. Activation of TI-VAMP-mediated exocytosis thus relies on tyrosine phosphorylation. PMID:23471971

  13. Spectroscopic studies of fluorescent complexes of tyrosine 8-hydroxyquinoline and tyrosine-8-hydroxyquinaldine in aqueous phase

    International Nuclear Information System (INIS)

    Jakhrani, M.A.; Kazi, T.G.

    2002-01-01

    A new method has been developed by preparing complexes involving condensation of tyrosine with 8-hydroxyquinoline (Oxine) and 8-hydroxyquinaldine (Quinaldine) respectively, producing fluorescent products. The products obtained have been investigated for identification and quantitative estimation using different spectroscopic techniques including fluorescence activity of newly synthesized products. 8-hydroxyquinaldine and 8-hydroxyquinoline (Oxine) condensed with tyrosine separately produced water soluble fluorescent complexes. The complexes have been investigated for identification and quantitative estimation of amino acids. Identification of amino acids in nano mole or below than nano mole has become possible by present fluorometric activity of these complexes involving different excitation and emission wavelengths. The fluorometric activity of complexes has been observed to be 100 to 1000 times higher than assay method involving ninhydrin and amino acid analyzer. The method adopted in our laboratory is rapid, versatile with good reproducibility and provides excellent results for adoption by analytical, agricultural and biomedical laboratories to estimate amino acids and metals in composite matrix. (author)

  14. Muscarinic agonists and phorbol esters increase tyrosine phosphorylation of a 40-kilodalton protein in hippocampal slices

    International Nuclear Information System (INIS)

    Stratton, K.R.; Worley, P.F.; Huganir, R.L.; Baraban, J.M.

    1989-01-01

    The authors have used the hippocampal slice preparation to investigate the regulation of protein tyrosine phosphorylation in brain. After pharmacological treatment of intact slices, proteins were separated by electrophoresis, and levels of protein tyrosine phosphorylation were assessed by immunoblotting with specific anti-phosphotyrosine antibodies. Phorbol esters, activators of the serine- and threonine-phosphorylating enzyme protein kinase C, selectively increase tyrosine phosphorylation of a soluble protein with an apparent molecular mass of approximately 40 kilodaltons. Muscarinic agonists such as carbachol and oxotremorine M that strongly activate the inositol phospholipid system also increase tyrosine phosphorylation of this protein. Neurotransmitter activation of the inositol phospholipid system and protein kinase C appears to trigger a cascade leading to increased tyrosine phosphorylation

  15. Src protein-tyrosine kinase structure and regulation

    International Nuclear Information System (INIS)

    Roskoski, Robert

    2004-01-01

    Src and Src-family protein kinases are proto-oncogenes that play key roles in cell morphology, motility, proliferation, and survival. v-Src (a viral protein) is encoded by the chicken oncogene of Rous sarcoma virus, and Src (the cellular homologue) is encoded by a physiological gene, the first of the proto-oncogenes. From the N- to C-terminus, Src contains an N-terminal 14-carbon myristoyl group, a unique segment, an SH3 domain, an SH2 domain, a protein-tyrosine kinase domain, and a C-terminal regulatory tail. The chief phosphorylation sites of Src include tyrosine 416 that results in activation from autophosphorylation and tyrosine 527 that results in inhibition from phosphorylation by C-terminal Src kinase. In the restrained state, the SH2 domain forms a salt bridge with phosphotyrosine 527, and the SH3 domain binds to the kinase domain via a polyproline type II left-handed helix. The SH2 and SH3 domains occur on the backside of the kinase domain away from the active site where they stabilize a dormant enzyme conformation. Protein-tyrosine phosphatases such as PTPα displace phosphotyrosine 527 from the Src SH2 domain and mediate its dephosphorylation leading to Src kinase activation. C-terminal Src kinase consists of an SH3, SH2, and kinase domain; it lacks an N-terminal myristoyl group and a C-terminal regulatory tail. Its X-ray structure has been determined, and the SH2 lobe occupies a position that is entirely different from that of Src. Unlike Src, the C-terminal Src kinase SH2 and SH3 domains stabilize an active enzyme conformation. Amino acid residues in the αD helix near the catalytic loop in the large lobe of C-terminal Src kinase serve as a docking site for the physiological substrate (Src) but not for an artificial substrate (polyGlu 4 Tyr)

  16. Regulation of rabbit lung cytochrome P-450 prostaglandin omega-hydroxylase (P-450/sub PG-omega/) during pregnancy

    International Nuclear Information System (INIS)

    Muerhoff, A.S.; Williams, D.E.; Jackson, V.; Leithauser, M.T.; Waterman, M.R.; Johnson, E.F.; Masters, B.S.S.

    1987-01-01

    The mechanism of induction during pregnancy of a rabbit lung prostaglandin omega-hydroxylase cytochrome P-450 has been investigated. This activity has been demonstrated to be induced over 100-fold in 28-day pregnant rabbits, as compared to nonpregnant rabbits. The induction is reflected by an increase in the amount of P-450/sub PG-omega/ protein as measured by Western blotting. P-450/sub PG-omega/ microsomal protein increases throughout gestation concomitant with an increase in PGE 1 omega-hydroxylase activity. Elucidation of the level of induction involved extraction of RNA from rabbit lungs obtained at various days of gestation followed by in vitro translation of the RNA in the presence of 35 S-methionine. Immunoprecipitation of newly synthesized P-450 and analysis of the immunoisolates by SDS-PAGE, autoradiography and densitometry of the P-450/sub PG-omega/ band revealed that the P-450/sub PG-omega/ mRNA levels followed the gestational time-dependent increase observed for both PGE 1 omega-hydroxylase activity and P-450/sub PG-omega/ protein, i.e., a gradual increase peaking at 28-days, dropping precipitously to near control levels following parturition. These data suggest that control of P-450/sub PG-omega expression occurs at the transcriptional level. Western blots of human lung bronchioloalveolar-carcinoma cell lines NCL-H322 and NCL-H358 utilizing a guinea pig IgG to P-450/sub PG-omega/ detect a cross-reactive species

  17. COMPARATION OF SEVERAL PLANTS EXTRACT AND VITAMIN C INHIBITION ACTIVITY TO TYROSINE PHOTODEGRADATION INDUCED BY KETOPROFEN AND ITS TOTAL PHENOLIC COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Tatang Irianti

    2016-12-01

    Full Text Available Antioxidant is known to inhibit free radical reaction. Tyrosine photodegradation can be caused by radical reaction. Nowadays, plant with antioxidants are widely used to inhibit free radical reaction. Study of inhibition of photodegradation used four groups. Those groups are: P1 consisted of 2mL tyrosine 0,05 %; P2 consisted of 2 mL tyrosine 0,05 %, and 600 μL Rhetoflam (topical ketoprofen 1 %; P3 consisted of 2 mL tyrosine 0,05 %, 60μL Rhetoflam 1 %, and 100 μL tea leaf water ekstract 0,15 %; P4 consisted of 2 mL tyrosine 0,05 %, 600 μL Rhetoflam 1 %, and 100 μL mahkota dewa fruit water ekstract 0,15 %; P5 consisted of 2 mL tyrosine 0,05 %, 600 μL Rhetoflam 1 %, and 100 μL finger root etanolic ekstract 0,15 %; P6 consisted of 2 mL tyrosine 0,05 %, 600 μL Rhetoflam 1 %, and 100 μL vitamin C 0,15 %; each group is added with aquadest up to 5,0 mL and illuminated with mercuric lamp for four hours. Level of remaining tyrosine was measured with visible spectrophotometric method. We used ANOVA to analyse the data with convidence level of 0,95 and then continued by Tukey (HSD. Follin-Ciocalteu method with galic acid calibration curve was used to determine total phenolic level. The level of total phenolic of tea leaf aquoeus extract, mahkota dewa fruit aquoeus extract, fingerroot ethanolic extract were 29.64±0.86 %; 8.29 % 0.27 %; and 7.11 %, 0.15 %, respectively. Our investigation also found gallic acid equivalent (GAE with the inhibition activity of 4.03; 1.58; and 2.09 and they were bigger than Vitamin C with the same concentration of 0.15 %.

  18. Urokinase receptor expression involves tyrosine phosphorylation of phosphoglycerate kinase.

    Science.gov (United States)

    Shetty, Praveenkumar; Velusamy, Thirunavukkarasu; Bhandary, Yashodhar P; Liu, Ming C; Shetty, Sreerama

    2010-02-01

    The interaction of urokinase-type plasminogen activator (uPA) with its receptor, uPAR, plays a central role in several pathophysiological processes, including cancer. uPA induces its own cell surface receptor expression through stabilization of uPAR mRNA. The mechanism involves binding of a 51 nt uPAR mRNA coding sequence with phosphoglycerate kinase (PGK) to down regulate cell surface uPAR expression. Tyrosine phosphorylation of PGK mediated by uPA treatment enhances uPAR mRNA stabilization. In contrast, inhibition of tyrosine phosphorylation augments PGK binding to uPAR mRNA and attenuates uPA-induced uPAR expression. Mapping the specific peptide region of PGK indicated that its first quarter (amino acids 1-100) interacts with uPAR mRNA. To determine if uPAR expression by uPA is regulated through activation of tyrosine residues of PGK, we mutated the specific tyrosine residue and tested mutant PGK for its ability to interfere with uPAR expression. Inhibition of tyrosine phosphorylation by mutating Y76 residue abolished uPAR expression induced by uPA treatment. These findings collectively demonstrate that Y76 residue present in the first quarter of the PGK molecule is involved in lung epithelial cell surface uPAR expression. This region can effectively mimic the function of a whole PGK molecule in inhibiting tumor cell growth.

  19. Salivary peptide tyrosine-tyrosine 3-36 modulates ingestive behavior without inducing taste aversion.

    Science.gov (United States)

    Hurtado, Maria D; Sergeyev, Valeriy G; Acosta, Andres; Spegele, Michael; La Sala, Michael; Waler, Nickolas J; Chiriboga-Hurtado, Juan; Currlin, Seth W; Herzog, Herbert; Dotson, Cedrick D; Gorbatyuk, Oleg S; Zolotukhin, Sergei

    2013-11-20

    Hormone peptide tyrosine-tyrosine (PYY) is secreted into circulation from the gut L-endocrine cells in response to food intake, thus inducing satiation during interaction with its preferred receptor, Y2R. Clinical applications of systemically administered PYY for the purpose of reducing body weight were compromised as a result of the common side effect of visceral sickness. We describe here a novel approach of elevating PYY in saliva in mice, which, although reliably inducing strong anorexic responses, does not cause aversive reactions. The augmentation of salivary PYY activated forebrain areas known to mediate feeding, hunger, and satiation while minimally affecting brainstem chemoreceptor zones triggering nausea. By comparing neuronal pathways activated by systemic versus salivary PYY, we identified a metabolic circuit associated with Y2R-positive cells in the oral cavity and extending through brainstem nuclei into hypothalamic satiety centers. The discovery of this alternative circuit that regulates ingestive behavior without inducing taste aversion may open the possibility of a therapeutic application of PYY for the treatment of obesity via direct oral application.

  20. Pre-Clinical Testing of New Hydroxybutyrate Analogues

    Science.gov (United States)

    2012-07-01

    will be assessed. Mac- 1 and GFAP immunostaining will be done to gauge inflammation as it relates to HDAC activity. Tyrosine hydroxylase and Nissl ... stained neurons will be counted and complex II histochemistry will be performed. Part II, we will prepare a new set of implanted mice treated with

  1. High frequency of cytolytic 21-hydroxylase-specific CD8+ T cells in autoimmune Addison's disease patients.

    Science.gov (United States)

    Dawoodji, Amina; Chen, Ji-Li; Shepherd, Dawn; Dalin, Frida; Tarlton, Andrea; Alimohammadi, Mohammad; Penna-Martinez, Marissa; Meyer, Gesine; Mitchell, Anna L; Gan, Earn H; Bratland, Eirik; Bensing, Sophie; Husebye, Eystein S; Pearce, Simon H; Badenhoop, Klaus; Kämpe, Olle; Cerundolo, Vincenzo

    2014-09-01

    The mechanisms behind destruction of the adrenal glands in autoimmune Addison's disease remain unclear. Autoantibodies against steroid 21-hydroxylase, an intracellular key enzyme of the adrenal cortex, are found in >90% of patients, but these autoantibodies are not thought to mediate the disease. In this article, we demonstrate highly frequent 21-hydroxylase-specific T cells detectable in 20 patients with Addison's disease. Using overlapping 18-aa peptides spanning the full length of 21-hydroxylase, we identified immunodominant CD8(+) and CD4(+) T cell responses in a large proportion of Addison's patients both ex vivo and after in vitro culture of PBLs ≤20 y after diagnosis. In a large proportion of patients, CD8(+) and CD4(+) 21-hydroxylase-specific T cells were very abundant and detectable in ex vivo assays. HLA class I tetramer-guided isolation of 21-hydroxylase-specific CD8(+) T cells showed their ability to lyse 21-hydroxylase-positive target cells, consistent with a potential mechanism for disease pathogenesis. These data indicate that strong CTL responses to 21-hydroxylase often occur in vivo, and that reactive CTLs have substantial proliferative and cytolytic potential. These results have implications for earlier diagnosis of adrenal failure and ultimately a potential target for therapeutic intervention and induction of immunity against adrenal cortex cancer. Copyright © 2014 by The American Association of Immunologists, Inc.

  2. Eosin-sensitized photooxidation of substituted phenylalanines and tyrosines

    Energy Technology Data Exchange (ETDEWEB)

    Rizzuto, F.; Spikes, J.D.

    1977-01-01

    The cosin-sensitized photooxidation of tyrosine and a number of compounds related to tyrosine (substituted phenylalanines) was studied by steady-state kinetic and flash photolysis techniques. In particular, the role of the phenolic group and the amino and carboxyl groups of the alanyl side chain in the photooxidation mechanism was investigated in detail. Several relationships between substrate structure and susceptibility to photooxidation as well as effects of substrate structure on photooxidation mechanisms were found. For example, phenylalanine is not photooxidizable, but substitution of electron-donating (activating) groups such as -OH (as in tyrosine) or -NH/sub 2/ (as in p-aminophenylalanine) results in rapidly photooxidized derivatives. However, substituting deactivating groups such as -Cl (as in p-chlorophenylalanine) or weakly activating groups such as -OCH/sub 3/ (as in 4-methoxyphenylalanine) result in non-photooxidizable derivatives. Substitution of additional activating groups to the ring of hydroxy-substituted phenylalanines results in increased rates of photooxidation, whereas additional deactivating groups result in decreased photooxidation rates. The rate-determining step in the photooxidation mechanism is shown to be dependent on the presence and position of an electron-donating substituent on the benzenoid ring. Only minor involvement of the side chain amino and carboxyl groups was found. Both singlet oxygen and hydrogen abstraction mechanisms are involved in the eosin-sensitized photooxidation of hydroxy-substituted phenylalanines (e.g., tyrosine). The hydrogen abstraction mechanism probably predominates at both pH 8 and 11.

  3. Leukotriene B4 omega-hydroxylase in human polymorphonuclear leukocytes. Suicidal inactivation by acetylenic fatty acids.

    Science.gov (United States)

    Shak, S; Reich, N O; Goldstein, I M; Ortiz de Montellano, P R

    1985-10-25

    Human polymorphonuclear leukocytes (PMN) not only generate and respond to leukotriene B4 (LTB4), but also catabolize this mediator of inflammation rapidly and specifically by omega-oxidation (probably due to the action of a cytochrome P-450 enzyme). To develop pharmacologically useful inhibitors of the LTB4 omega-hydroxylase in human PMN, we devised a general scheme for synthesizing terminal acetylenic fatty acids based on the "acetylenic zipper" reaction. We found that the LTB4 omega-hydroxylase in intact PMN and in PMN sonicates is inactivated in a concentration-dependent fashion by terminal acetylenic analogues of lauric, palmitic, and stearic acids (i.e. 11-dodecynoic, 15-hexadecynoic, and 17-octadecynoic acids). Consistent with a suicidal process, inactivation of the LTB4 omega-hydroxylase requires molecular oxygen and NADPH, is time-dependent, and follows pseudo-first-order kinetics. Inactivation of the omega-hydroxylase by acetylenic fatty acids also is dependent on the terminal acetylenic moiety and the carbon chain length. Saturated fatty acids lacking a terminal acetylenic moiety do not inactivate the omega-hydroxylase. In addition, the two long-chain (C16, C18) acetylenic fatty acids inactivate the omega-hydroxylase at much lower concentrations (less than 5.0 microM) than those required for inactivation by the short-chain (C12) terminal acetylenic fatty acid (100 microM). Potent suicidal inhibitors of the LTB4 omega-hydroxylase in human PMN will help elucidate the roles played by LTB4 and its omega-oxidation products in regulating PMN function and in mediating inflammation.

  4. Tyrosine Residues Regulate Multiple Nuclear Functions of P54nrb.

    Science.gov (United States)

    Lee, Ahn R; Hung, Wayne; Xie, Ning; Liu, Liangliang; He, Leye; Dong, Xuesen

    2017-04-01

    The non-POU-domain-containing octamer binding protein (NONO; also known as p54nrb) has various nuclear functions ranging from transcription, RNA splicing, DNA synthesis and repair. Although tyrosine phosphorylation has been proposed to account for the multi-functional properties of p54nrb, direct evidence on p54nrb as a phosphotyrosine protein remains unclear. To investigate the tyrosine phosphorylation status of p54nrb, we performed site-directed mutagenesis on the five tyrosine residues of p54nrb, replacing the tyrosine residues with phenylalanine or alanine, and immunoblotted for tyrosine phosphorylation. We then preceded with luciferase reporter assays, RNA splicing minigene assays, co-immunoprecipitation, and confocal microscopy to study the function of p54nrb tyrosine residues on transcription, RNA splicing, protein-protein interaction, and cellular localization. We found that p54nrb was not phosphorylated at tyrosine residues. Rather, it has non-specific binding affinity to anti-phosphotyrosine antibodies. However, replacement of tyrosine with phenylalanine altered p54nrb activities in transcription co-repression and RNA splicing in gene context-dependent fashions by means of differential regulation of p54nrb protein association with its interacting partners and co-regulators of transcription and splicing. These results demonstrate that tyrosine residues, regardless of phosphorylation status, are important for p54nrb function. J. Cell. Physiol. 232: 852-861, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Inhibition of biofilm formation by D-tyrosine: Effect of bacterial type and D-tyrosine concentration.

    Science.gov (United States)

    Yu, Cong; Li, Xuening; Zhang, Nan; Wen, Donghui; Liu, Charles; Li, Qilin

    2016-04-01

    D-Tyrosine inhibits formation and triggers disassembly of bacterial biofilm and has been proposed for biofouling control applications. This study probes the impact of D-tyrosine in different biofilm formation stages in both G+ and G- bacteria, and reveals a non-monotonic correlation between D-tyrosine concentration and biofilm inhibition effect. In the attachment stage, cell adhesion was studied in a flow chamber, where D-tyrosine caused significant reduction in cell attachment. Biofilms formed by Pseudomonas aeruginosa and Bacillus subtilis were characterized by confocal laser scanning microscopy as well as quantitative analysis of cellular biomass and extracellular polymeric substances. D-Tyrosine exhibited strong inhibitive effects on both biofilms with an effective concentration as low as 5 nM; the biofilms responded to D-tyrosine concentration change in a non-monotonic, bi-modal pattern. In addition, D-tyrosine showed notable and different impact on EPS production by G+ and G- bacteria. Extracellular protein was decreased in P. aeruginosa biofilms, but increased in those of B. subtilis. Exopolysaccharides production by P. aeruginosa was increased at low concentrations and reduced at high concentrations while no impact was found in B. subtilis. These results suggest that distinct mechanisms are at play at different D-tyrosine concentrations and they may be species specific. Dosage of D-tyrosine must be carefully controlled for biofouling control applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. MAP kinase-independent signaling in angiotensin II regulation of neuromodulation in SHR neurons.

    Science.gov (United States)

    Yang, H; Raizada, M K

    1998-09-01

    Angiotensin II (Ang II), via its interaction with the angiotensin type 1 (AT1) receptor subtype, causes enhanced stimulation of norepinephrine (NE) neuromodulation. This involves increased transcription of NE transporter, tyrosine hydroxylase, and dopamine ss-hydroxylase genes in Wistar-Kyoto rat (WKY) brain neurons. AT1 receptor-mediated regulation of certain signaling events (such as activation of the Ras-Raf-1-mitogen activated protein (MAP) kinase signaling pathway, nuclear translocation of transcription factors such as Fos and Jun, and the interactions of these factors with AP-1 binding sites) is involved in this NE neuromodulation (Lu et al. J Cell Biol. 1996;135:1609-1617). The aim of this study was to compare the signal transduction mechanism of Ang II regulation of NE neuromodulation in WKY and spontaneously hypertensive rat (SHR) brain neurons, in view of the fact that AT1 receptor expression and Ang II stimulation of NE neuromodulation are higher in SHR neurons compared with WKY neurons. Despite this hyperactivity, Ang II stimulation of Ras, Raf-1, and MAP kinase activities was comparable between the neurons from WKY and SHR. Similarly, central injections of Ang II caused a comparable stimulation of MAP kinase in the hypothalamic and brain stem areas of adult WKY and SHR. Inhibition of MAP kinase by either an MAP kinase kinase inhibitor (PD98059) or an MAP kinase antisense oligonucleotide completely attenuated the stimulatory effects of Ang II on [3H]-NE uptake, NE transporter mRNA, and tyrosine hydroxylase mRNA levels in WKY neurons. These treatments resulted in only 43% to 50% inhibition of [3H]-NE uptake and NE transporter and tyrosine hydroxylase mRNAs in SHR neurons. Thus, Ang II stimulation of NE neuromodulation was completely blocked by MAP kinase inhibition in WKY neurons and only partially blocked in the SHR neurons. These observations suggest the presence of an additional signal transduction pathway involved in NE neuromodulation in SHR neurons

  7. Evidence for association of the cloned liver growth hormone receptor with a tyrosine kinase

    DEFF Research Database (Denmark)

    Wang, X; Uhler, M D; Billestrup, N

    1992-01-01

    The ability of the cloned liver growth hormone (GH) receptor, when expressed in mammalian cell lines, to copurify with tyrosine kinase activity and be tyrosyl phosphorylated was examined. 125I-human growth hormone-GH receptor complexes isolated from COS-7 cells transiently expressing high levels...... of tyrosine kinase activity with cloned liver GH receptor. The level of phosphorylation of the GH receptor was very low, as compared with the endogenous GH receptor in 3T3-F442A cells, suggesting that tyrosine kinase activity is not intrinsic to the cloned GH receptor but rather resides with a kinase present...... in a variety of cell types. The finding that the level of phosphorylation of GH receptor appears to vary with cell type is consistent with the cloned liver GH receptor being a substrate for an associated tyrosine kinase and with the amount of such a GH receptor-associated tyrosine kinase being cell type-specific....

  8. [Development and Application of Catalytic Tyrosine Modification].

    Science.gov (United States)

    Sato, Shinichi; Tsushima, Michihiko; Nakamura, Kosuke; Nakamura, Hiroyuki

    2018-01-01

     The chemical labeling of proteins with synthetic probes is a key technique used in chemical biology, protein-based therapy, and material science. Much of the chemical labeling of native proteins, however, depends on the labeling of lysine and cysteine residues. While those methods have significantly contributed to native protein labeling, alternative methods that can modify different amino acid residues are still required. Herein we report the development of a novel methodology of tyrosine labeling, inspired by the luminol chemiluminescence reaction. Tyrosine residues are often exposed on a protein's surface and are thus expected to be good targets for protein functionalization. In our studies so far, we have found that 1) hemin oxidatively activates luminol derivatives as a catalyst, 2) N-methyl luminol derivative specifically forms a covalent bond with a tyrosine residue among the 20 kinds of natural amino acid residues, and 3) the efficiency of tyrosine labeling with N-methyl luminol derivative is markedly improved by using horseradish peroxidase (HRP) as a catalyst. We were able to use molecular oxygen as an oxidant under HRP/NADH conditions. By using these methods, the functionalization of purified proteins was carried out. Because N-methyl luminol derivative is an excellent protein labeling reagent that responds to the activation of peroxidase, this new method is expected to open doors to such biological applications as the signal amplification of HRP-conjugated antibodies and the detection of protein association in combination with peroxidase-tag technology.

  9. The mechanism of the tyrosine transporter TyrP supports a proton motive tyrosine decarboxylation pathway in Lactobacillus brevis

    NARCIS (Netherlands)

    Wolken, WAM; Lucas, PM; Lonvaud-Funel, A; Lolkema, JS; Wolken, Wout A.M.; Lucas, Patrick M.

    The tyrosine decarboxylase operon of Lactobacillus brevis IOEB9809 contains, adjacent to the tyrosine decarboxylase gene, a gene for TyrP, a putative tyrosine transporter. The two genes potentially form a proton motive tyrosine decarboxylation pathway. The putative tyrosine transporter gene of L.

  10. Suppression of adhesion-induced protein tyrosine phosphorylation decreases invasive and metastatic potentials of B16-BL6 melanoma cells by protein tyrosine kinase inhibitor genistein.

    Science.gov (United States)

    Yan, C; Han, R

    1997-01-01

    Protein tyrosine kinase (PTK) appears to be involved in the activation of signaling during cell attachment to and spreading on extracellular matrix (ECM) in the metastatic cascade. To verify the assumption that PTK inhibitors might impair ECM signaling and prevent cancer metastasis, the highly metastatic B16-BL6 mouse melanoma cells were exposed to the PTK inhibitor genistein for 3 days. The ability of the cells to invade through reconstituted basement membrane (Matrigel) and to establish experimental pulmonary metastatic foci in C57BL/6 mice decreased after genistein exposure. The genistein-treated cells were also prevented from attaching to Matrigel and spread extremely poorly on the ECM substratum. Immunoblot analysis showed that tyrosine phosphorylation of a 125-kD protein in response to cell spreading on Matrigel was suppressed in the genistein-treated cells. Adhesion-induced protein tyrosine phosphorylation represents the earlier and specific event in the activation of ECM signaling, so this result implied ECM signaling was impaired in the treated cells. With immunofluorescence microscopy, the adhesion-induced tyrosine phosphorylated proteins were located at the pericytoplasms of well-spread cells, but not at the periphery of poorly spread genistein-treated cells. Therefore, this paper suggests that genistein might impair ECM signaling and subsequently prevent cancer cells from spreading well and invading or establishing metastasis through the suppression of adhesion-induced protein tyrosine phosphorylation. PTKs and adhesion-induced protein tyrosine phosphorylation might play a role in the control of invasion and metastasis.

  11. Effects of x-rays or aseptic inflammatory reaction on the circadian rythm of tyrosine aminotransferase in mouse liver (TAT activity of mouse liver)

    International Nuclear Information System (INIS)

    Jungowska-Klin, B.

    1979-01-01

    The circadian rhythm of tyrosine aminotransferase (TAT) was investigated during 48 hours in the liver of mice subjected to: a/ subcutaneous inflammatory reaction, b/ ionizing radiation. The cyclic changes in the circadian enzyme activity were described with a harmonic function. In relation to the control mice in the experimental mice statistically significant changes were demonstrated in the activity of tyrosine aminotransferase associated with desynchronization of the circadian TAT rhythm, particularly evident in the first hours of the first day of the experiment. The functions of enzyme activity changed in the second 24-hours period showed, both qualitatively and quantitatively, a tendency for a gradual return of normal TAT activity in the 24-hour periods. (author)

  12. Leptin Intake at Physiological Doses Throughout Lactation in Male Wistar Rats Normalizes the Decreased Density of Tyrosine Hydroxylase-Immunoreactive Fibers in the Stomach Caused by Mild Gestational Calorie Restriction

    Directory of Open Access Journals (Sweden)

    Nara Szostaczuk

    2018-03-01

    Full Text Available Introduction: Gestational under nutrition in rats has been shown to decrease expression of sympathetic innervation markers in peripheral tissues of offspring, including the stomach. This has been linked to lower gastric secretion and decreased circulating levels of ghrelin. Considering the critical role of leptin intake during lactation in preventing obesity and reversing adverse developmental programming effects, we aimed to find out whether leptin supplementation may reverse the above mentioned alterations caused by mild gestational calorie restriction.Methods: Three groups of male rats were studied at a juvenile age (25 days old and during adulthood (3 and 6 months old: the offspring of ad libitum fed dams (controls, the offspring of dams that were diet restricted (20% from days 1 to 12 of gestation (CR, and CR rats supplemented with a daily oral dose of leptin (equivalent to 5 times the average amount they could receive each day from maternal milk throughout lactation (CR-Leptin. The density of TyrOH-immunoreactive (TyrOH+ fibers and the levels of Tyrosine hydroxylase (TyrOH—used as potential markers of functional sympathetic innervation—were measured in stomach. Plasma leptin and ghrelin levels were also determined.Results: Twenty five-day-old CR rats, but not CR-Leptin rats, displayed lower density of TyrOH+ fibers (−46% and TyrOH levels (−47% in stomach compared to controls. Alterations in CR animals were mitigated at 6 months of age, and differences were not significant. Adult CR-Leptin animals showed higher plasma ghrelin levels than CR animals, particularly at 3 months (+16%, and a lower leptin/ghrelin ratio (−28 and −37% at 3 and 6 months, respectively.Conclusion: Leptin intake during lactation is able to reverse the alterations in the density of TyrOH+ fibers in the stomach and normalize the increased leptin/ghrelin ratio linked to a mild gestational calorie restriction in rats, supporting the relevance of leptin as an

  13. Vitamin D-Dependent Rickets Type 1B (25-Hydroxylase Deficiency): A Rare Condition or a Misdiagnosed Condition?

    Science.gov (United States)

    Molin, Arnaud; Wiedemann, Arnaud; Demers, Nick; Kaufmann, Martin; Do Cao, Jérémy; Mainard, Laurent; Dousset, Brigitte; Journeau, Pierre; Abeguile, Geneviève; Coudray, Nadia; Mittre, Hervé; Richard, Nicolas; Weryha, Georges; Sorlin, Arthur; Jones, Glenville; Kottler, Marie-Laure; Feillet, Francois

    2017-09-01

    Vitamin D requires a two-step activation by hydroxylation: The first step is catalyzed by hepatic 25-hydroxylase (CYP2R1, 11p15.2) and the second one is catalyzed by renal 1α-hydroxylase (CYP27B1, 12q13.1), which produces the active hormonal form of 1,25-(OH) 2 D. Mutations of CYP2R1 have been associated with vitamin D-dependent rickets type 1B (VDDR1B), a very rare condition that has only been reported to affect 4 families to date. We describe 7 patients from 2 unrelated families who presented with homozygous loss-of-function mutations of CYP2R1. Heterozygous mutations were present in their normal parents. We identified a new c.124_138delinsCGG (p.Gly42_Leu46delinsArg) variation and the previously published c.296T>C (p.Leu99Pro) mutation. Functional in vitro studies confirmed loss-of-function enzymatic activity in both cases. We discuss the difficulties in establishing the correct diagnosis and the specific biochemical pattern, namely, very low 25-OH-D suggestive of classical vitamin D deficiency, in the face of normal/high concentrations of 1,25-(OH) 2 D. Siblings exhibited the three stages of rickets based on biochemical and radiographic findings. Interestingly, adult patients were able to maintain normal mineral metabolism without vitamin D supplementation. One index case presented with a partial improvement with 1alfa-hydroxyvitamin D 3 or alfacalcidol (1α-OH-D 3 ) treatment, and we observed a dramatic increase in the 1,25-(OH) 2 D serum concentration, which indicated the role of accessory 25-hydroxylase enzymes. Lastly, in patients who received calcifediol (25-OH-D 3 ), we documented normal 24-hydroxylase activity (CYP24A1). For the first time, and according to the concept of personalized medicine, we demonstrate dramatic improvements in patients who were given 25-OH-D therapy (clinical symptoms, biochemical data, and bone densitometry). In conclusion, the current study further expands the CYP2R1 mutation spectrum. We note that VDDR1B could be easily

  14. Soluble TAM receptor tyrosine kinases in rheumatoid arthritis: correlation with disease activity and bone destruction.

    Science.gov (United States)

    Xu, L; Hu, F; Zhu, H; Liu, X; Shi, L; Li, Y; Zhong, H; Su, Y

    2018-04-01

    The TAM receptor tyrosine kinases (TAM RTK) are a subfamily of receptor tyrosine kinases, the role of which in autoimmune diseases such as systemic lupus erythematosus has been well explored, while their functions in rheumatoid arthritis (RA) remain largely unknown. In this study, we investigated the role of soluble TAM receptor tyrosine kinases (sAxl/sMer/sTyro3) in patients with RA. A total of 306 RA patients, 100 osteoarthritis (OA) patients and 120 healthy controls (HCs) were enrolled into this study. The serum concentrations of sAxl/sMer/sTyro3 were measured by enzyme-linked immunosorbent assay (ELISA), then the associations between sAxl/sMer/sTyro3 levels and clinical features of RA patients were analysed. We also investigated whether sTyro3 could promote osteoclast differentiation in vitro in RA patients. The results showed that compared with healthy controls (HCs), sTyro3 levels in the serum of RA patients were elevated remarkably and sMer levels were decreased significantly, whereas there was no difference between HCs and RA patients on sAxl levels. The sTyro3 levels were correlated weakly but positively with white blood cells (WBC), immunoglobulin (Ig)M, rheumatoid factor (RF), swollen joint counts, tender joint counts, total sharp scores and joint erosion scores. Conversely, there were no significant correlations between sMer levels and the above indices. Moreover, RA patients with high disease activity also showed higher sTyro3 levels. In-vitro osteoclast differentiation assay showed further that tartrate-resistant acid phosphatase (TRAP) + osteoclasts were increased significantly in the presence of sTyro3. Collectively, our study indicated that serum sTyro3 levels were elevated in RA patients and correlated positively with disease activity and bone destruction, which may serve as an important participant in RA pathogenesis. © 2017 British Society for Immunology.

  15. ROLE OF TYROSINE-SULFATED PROTEINS IN RETINAL STRUCTURE AND FUNCTION

    Science.gov (United States)

    Kanan, Y.; Al-Ubaidi, M.R.

    2014-01-01

    The extracellular matrix (ECM) plays a significant role in cellular and retinal health. The study of retinal tyrosine-sulfated proteins is an important first step toward understanding the role of ECM in retinal health and diseases. These secreted proteins are members of the retinal ECM. Tyrosine sulfation was shown to be necessary for the development of proper retinal structure and function. The importance of tyrosine sulfation is further demonstrated by the evolutionary presence of tyrosylprotein sulfotransferases, enzymes that catalyze proteins’ tyrosine sulfation, and the compensatory abilities of these enzymes. Research has identified four tyrosine-sulfated retinal proteins: fibulin 2, vitronectin, complement factor H (CFH), and opticin. Vitronectin and CFH regulate the activation of the complement system and are involved in the etiology of some cases of age-related macular degeneration. Analysis of the role of tyrosine sulfation in fibulin function showed that sulfation influences the protein's ability to regulate growth and migration. Although opticin was recently shown to exhibit anti-angiogenic properties, it is not yet determined what role sulfation plays in that function. Future studies focusing on identifying all of the tyrosine-sulfated retinal proteins would be instrumental in determining the impact of sulfation on retinal protein function in retinal homeostasis and diseases. PMID:25819460

  16. High frequency of cytolytic 21-Hydroxylase specific CD8+ T cells in autoimmune Addison’s disease patients1

    Science.gov (United States)

    Dawoodji, Amina; Chen, Ji-Li; Shepherd, Dawn; Dalin, Frida; Tarlton, Andrea; Alimohammadi, Mohammad; Penna-Martinez, Marissa; Meyer, Gesine; Mitchell, Anna L; Gan, Earn H; Bratland, Eirik; Bensing, Sophie; Husebye, Eystein; Pearce, Simon H.; Badenhoop, Klaus; Kämpe, Olle; Cerundolo, Vincenzo

    2016-01-01

    The mechanisms behind the destruction of the adrenal glands in autoimmune Addison’s disease remain unclear. Autoantibodies against steroid 21-hydroxylase, an intracellular key enzyme of the adrenal cortex, are found in over 90% of patients, but these autoantibodies are not thought to mediate the disease. Here we demonstrate highly frequent 21-hydroxylase specific T cells detectable in 20 patients with Addison’s disease. Using overlapping 18aa peptides spanning the full length of 21-hydroxylase, we identified immunodominant CD8+ and CD4+ T cell responses in a large proportion of Addison’s patients both ex-vivo and after in-vitro culture of peripheral blood lymphocytes up to 20 years after diagnosis. In a large proportion of patients, CD8+ 21-hydroxylase specific T cells and CD4+ 21-hydroxylase specific T cells were very abundant and detectable in ex-vivo assays. HLA class-I tetramer-guided isolation of 21-hydroxylase specific CD8+ T cells showed their ability to lyse 21-hydroxylase positive target cells, consistent with a potential mechanism for disease pathogenesis. These data indicate strong cytotoxic T lymphocyte responses to 21-hydroxylase often occur in-vivo, and that reactive cytotoxic T lymphocytes have substantial proliferative and cytolytic potential. These results have implications for earlier diagnosis of adrenal failure and ultimately a potential target for therapeutic intervention and induction of immunity against adrenal cortex cancer. PMID:25063864

  17. The Dopamine D2 Receptor Gene in Lamprey, Its Expression in the Striatum and Cellular Effects of D2 Receptor Activation

    Science.gov (United States)

    Robertson, Brita; Huerta-Ocampo, Icnelia; Ericsson, Jesper; Stephenson-Jones, Marcus; Pérez-Fernández, Juan; Bolam, J. Paul; Diaz-Heijtz, Rochellys; Grillner, Sten

    2012-01-01

    All basal ganglia subnuclei have recently been identified in lampreys, the phylogenetically oldest group of vertebrates. Furthermore, the interconnectivity of these nuclei is similar to mammals and tyrosine hydroxylase-positive (dopaminergic) fibers have been detected within the input layer, the striatum. Striatal processing is critically dependent on the interplay with the dopamine system, and we explore here whether D2 receptors are expressed in the lamprey striatum and their potential role. We have identified a cDNA encoding the dopamine D2 receptor from the lamprey brain and the deduced protein sequence showed close phylogenetic relationship with other vertebrate D2 receptors, and an almost 100% identity within the transmembrane domains containing the amino acids essential for dopamine binding. There was a strong and distinct expression of D2 receptor mRNA in a subpopulation of striatal neurons, and in the same region tyrosine hydroxylase-immunoreactive synaptic terminals were identified at the ultrastructural level. The synaptic incidence of tyrosine hydroxylase-immunoreactive boutons was highest in a region ventrolateral to the compact layer of striatal neurons, a region where most striatal dendrites arborise. Application of a D2 receptor agonist modulates striatal neurons by causing a reduced spike discharge and a diminished post-inhibitory rebound. We conclude that the D2 receptor gene had already evolved in the earliest group of vertebrates, cyclostomes, when they diverged from the main vertebrate line of evolution (560 mya), and that it is expressed in striatum where it exerts similar cellular effects to that in other vertebrates. These results together with our previous published data (Stephenson-Jones et al. 2011, 2012) further emphasize the high degree of conservation of the basal ganglia, also with regard to the indirect loop, and its role as a basic mechanism for action selection in all vertebrates. PMID:22563388

  18. Pseudomonas aeruginosa 4-amino-4-deoxychorismate lyase: spatial conservation of an active site tyrosine and classification of two types of enzyme.

    Directory of Open Access Journals (Sweden)

    Patrick E F O'Rourke

    Full Text Available 4-Amino-4-deoxychorismate lyase (PabC catalyzes the formation of 4-aminobenzoate, and release of pyruvate, during folate biosynthesis. This is an essential activity for the growth of gram-negative bacteria, including important pathogens such as Pseudomonas aeruginosa. A high-resolution (1.75 Å crystal structure of PabC from P. aeruginosa has been determined, and sequence-structure comparisons with orthologous structures are reported. Residues around the pyridoxal 5'-phosphate cofactor are highly conserved adding support to aspects of a mechanism generic for enzymes carrying that cofactor. However, we suggest that PabC can be classified into two groups depending upon whether an active site and structurally conserved tyrosine is provided from the polypeptide that mainly forms an active site or from the partner subunit in the dimeric assembly. We considered that the conserved tyrosine might indicate a direct role in catalysis: that of providing a proton to reduce the olefin moiety of substrate as pyruvate is released. A threonine had previously been suggested to fulfill such a role prior to our observation of the structurally conserved tyrosine. We have been unable to elucidate an experimentally determined structure of PabC in complex with ligands to inform on mechanism and substrate specificity. Therefore we constructed a computational model of the catalytic intermediate docked into the enzyme active site. The model suggests that the conserved tyrosine helps to create a hydrophobic wall on one side of the active site that provides important interactions to bind the catalytic intermediate. However, this residue does not appear to participate in interactions with the C atom that undergoes an sp(2 to sp(3 conversion as pyruvate is produced. The model and our comparisons rather support the hypothesis that an active site threonine hydroxyl contributes a proton used in the reduction of the substrate methylene to pyruvate methyl in the final stage of

  19. The Role of Oxygen Sensors, Hydroxylases, and HIF in Cardiac Function and Disease

    Directory of Open Access Journals (Sweden)

    W. H. Davin Townley-Tilson

    2015-01-01

    Full Text Available Ischemic heart disease is the leading cause of death worldwide. Oxygen-sensing proteins are critical components of the physiological response to hypoxia and reperfusion injury, but the role of oxygen and oxygen-mediated effects is complex in that they can be cardioprotective or deleterious to the cardiac tissue. Over 200 oxygen-sensing proteins mediate the effects of oxygen tension and use oxygen as a substrate for posttranslational modification of other proteins. Hydroxylases are an essential component of these oxygen-sensing proteins. While a major role of hydroxylases is regulating the transcription factor HIF, we investigate the increasing scope of hydroxylase substrates. This review discusses the importance of oxygen-mediated effects in the heart as well as how the field of oxygen-sensing proteins is expanding, providing a more complete picture into how these enzymes play a multifaceted role in cardiac function and disease. We also review how oxygen-sensing proteins and hydroxylase function could prove to be invaluable in drug design and therapeutic targets for heart disease.

  20. c-Abl phosphorylation of Yin Yang 1's conserved tyrosine 254 in the spacer region modulates its transcriptional activity.

    Science.gov (United States)

    Daraiseh, Susan I; Kassardjian, Ari; Alexander, Karen E; Rizkallah, Raed; Hurt, Myra M

    2018-05-25

    Yin Yang 1 (YY1) is a multifunctional transcription factor that can activate or repress transcription depending on the promotor and/or the co-factors recruited. YY1 is phosphorylated in various signaling pathways and is critical for different biological functions including embryogenesis, apoptosis, proliferation, cell-cycle regulation and tumorigenesis. Here we report that YY1 is a substrate for c-Abl kinase phosphorylation at conserved residue Y254 in the spacer region. Pharmacological inhibition of c-Abl kinase by imatinib, nilotinib and GZD824, knock-down of c-Abl using siRNA, and the use of c-Abl kinase-dead drastically reduces tyrosine phosphorylation of YY1. Both radioactive and non-radioactive in vitro kinase assays, as well as co-immunoprecipitation in different cell lines, show that the target of c-Abl phosphorylation is tyrosine residue 254. c-Abl phosphorylation has little effect on YY1 DNA binding ability or cellular localization in asynchronous cells. However, functional studies reveal that c-Abl mediated phosphorylation of YY1 regulates YY1's transcriptional ability in vivo. In conclusion, we demonstrate the novel role of c-Abl kinase in regulation of YY1's transcriptional activity, linking YY1 regulation with c-Abl tyrosine kinase signaling pathways. Copyright © 2018. Published by Elsevier B.V.

  1. Differential regulation of catecholamine synthesis and transport in rat adrenal medulla by fluoxetine treatment.

    Science.gov (United States)

    Spasojevic, Natasa; Jovanovic, Predrag; Dronjak, Sladjana

    2015-03-01

    We have recently shown that chronic fluoxetine treatment acted significantly increasing plasma norepinephrine and epinephrine concentrations both in control and chronically stressed adult male rats. However, possible effects of fluoxetine on catecholamine synthesis and re-uptake in adrenal medulla have been largely unknown. In the present study the effects of chronic fluoxetine treatment on tyrosine hydroxylase, a rate-limiting enzyme in catecholamine synthesis, as well as a norepinephrine transporter and vesicular monoamine transporter 2 gene expressions in adrenal medulla of animals exposed to chronic unpredictable mild stress (CUMS) for 4 weeks, were investigated. Gene expression analyses were performed using a real-time quantitative reverse transcription-PCR. Chronically stressed animals had increased tyrosine hydroxylase mRNA levels and decreased expression of both transporters. Fluoxetine increased tyrosine hydroxylase and decreased norepinephrine transporter gene expression in both unstressed and CUMS rats. These findings suggest that chronic fluoxetine treatment increased plasma catecholamine levels by affecting opposing changes in catecholamine synthesis and uptake.

  2. Differential regulation of catecholamine synthesis and transport in rat adrenal medulla by fluoxetine treatment

    Directory of Open Access Journals (Sweden)

    NATASA SPASOJEVIC

    2015-03-01

    Full Text Available We have recently shown that chronic fluoxetine treatment acted significantly increasing plasma norepinephrine and epinephrine concentrations both in control and chronically stressed adult male rats. However, possible effects of fluoxetine on catecholamine synthesis and re-uptake in adrenal medulla have been largely unknown. In the present study the effects of chronic fluoxetine treatment on tyrosine hydroxylase, a rate-limiting enzyme in catecholamine synthesis, as well as a norepinephrine transporter and vesicular monoamine transporter 2 gene expressions in adrenal medulla of animals exposed to chronic unpredictable mild stress (CUMS for 4 weeks, were investigated. Gene expression analyses were performed using a real-time quantitative reverse transcription-PCR. Chronically stressed animals had increased tyrosine hydroxylase mRNA levels and decreased expression of both transporters. Fluoxetine increased tyrosine hydroxylase and decreased norepinephrine transporter gene expression in both unstressed and CUMS rats. These findings suggest that chronic fluoxetine treatment increased plasma catecholamine levels by affecting opposing changes in catecholamine synthesis and uptake.

  3. Tyrosine-Nitrated Proteins: Proteomic and Bioanalytical Aspects.

    Science.gov (United States)

    Batthyány, Carlos; Bartesaghi, Silvina; Mastrogiovanni, Mauricio; Lima, Analía; Demicheli, Verónica; Radi, Rafael

    2017-03-01

    "Nitroproteomic" is under active development, as 3-nitrotyrosine in proteins constitutes a footprint left by the reactions of nitric oxide-derived oxidants that are usually associated to oxidative stress conditions. Moreover, protein tyrosine nitration can cause structural and functional changes, which may be of pathophysiological relevance for human disease conditions. Biological protein tyrosine nitration is a free radical process involving the intermediacy of tyrosyl radicals; in spite of being a nonenzymatic process, nitration is selectively directed toward a limited subset of tyrosine residues. Precise identification and quantitation of 3-nitrotyrosine in proteins has represented a "tour de force" for researchers. Recent Advances: A small number of proteins are preferential targets of nitration (usually less than 100 proteins per proteome), contrasting with the large number of proteins modified by other post-translational modifications such as phosphorylation, acetylation, and, notably, S-nitrosation. Proteomic approaches have revealed key features of tyrosine nitration both in vivo and in vitro, including selectivity, site specificity, and effects in protein structure and function. Identification of 3-nitrotyrosine-containing proteins and mapping nitrated residues is challenging, due to low abundance of this oxidative modification in biological samples and its unfriendly behavior in mass spectrometry (MS)-based technologies, that is, MALDI, electrospray ionization, and collision-induced dissociation. The use of (i) classical two-dimensional electrophoresis with immunochemical detection of nitrated proteins followed by protein ID by regular MS/MS in combination with (ii) immuno-enrichment of tyrosine-nitrated peptides and (iii) identification of nitrated peptides by a MIDAS™ experiment is arising as a potent methodology to unambiguously map and quantitate tyrosine-nitrated proteins in vivo. Antioxid. Redox Signal. 26, 313-328.

  4. Receptor Tyrosine Kinases in Drosophila Development

    Science.gov (United States)

    Sopko, Richelle; Perrimon, Norbert

    2013-01-01

    Tyrosine phosphorylation plays a significant role in a wide range of cellular processes. The Drosophila genome encodes more than 20 receptor tyrosine kinases and extensive studies in the past 20 years have illustrated their diverse roles and complex signaling mechanisms. Although some receptor tyrosine kinases have highly specific functions, others strikingly are used in rather ubiquitous manners. Receptor tyrosine kinases regulate a broad expanse of processes, ranging from cell survival and proliferation to differentiation and patterning. Remarkably, different receptor tyrosine kinases share many of the same effectors and their hierarchical organization is retained in disparate biological contexts. In this comprehensive review, we summarize what is known regarding each receptor tyrosine kinase during Drosophila development. Astonishingly, very little is known for approximately half of all Drosophila receptor tyrosine kinases. PMID:23732470

  5. Cortactin Tyrosine Phosphorylation Promotes Its Deacetylation and Inhibits Cell Spreading

    Science.gov (United States)

    Meiler, Eugenia; Nieto-Pelegrín, Elvira; Martinez-Quiles, Narcisa

    2012-01-01

    Background Cortactin is a classical Src kinase substrate that participates in actin cytoskeletal dynamics by activating the Arp2/3 complex and interacting with other regulatory proteins, including FAK. Cortactin has various domains that may contribute to the assembly of different protein platforms to achieve process specificity. Though the protein is known to be regulated by post-translational modifications such as phosphorylation and acetylation, how tyrosine phosphorylation regulates cortactin activity is poorly understood. Since the basal level of tyrosine phosphorylation is low, this question must be studied using stimulated cell cultures, which are physiologically relevant but unreliable and difficult to work with. In fact, their unreliability may be the cause of some contradictory findings about the dynamics of tyrosine phosphorylation of cortactin in different processes. Methodology/Principal Findings In the present study, we try to overcome these problems by using a Functional Interaction Trap (FIT) system, which involves cotransfecting cells with a kinase (Src) and a target protein (cortactin), both of which are fused to complementary leucine-zipper domains. The FIT system allowed us to control precisely the tyrosine phosphorylation of cortactin and explore its relationship with cortactin acetylation. Conclusions/Significance Using this system, we provide definitive evidence that a competition exists between acetylation and tyrosine phosphorylation of cortactin and that phosphorylation inhibits cell spreading. We confirmed the results from the FIT system by examining endogenous cortactin in different cell types. Furthermore, we demonstrate that cell spreading promotes the association of cortactin and FAK and that tyrosine phosphorylation of cortactin disrupts this interaction, which may explain how it inhibits cell spreading. PMID:22479425

  6. Ethyl p-methoxycinnamate from Kaempferia galanga inhibits angiogenesis through tyrosine kinase

    Directory of Open Access Journals (Sweden)

    Juni Ekowati

    2015-04-01

    Full Text Available Background Many tumors express on their receptor tyrosine kinases vascular endothelial growth factor activity associated with angiogenesis. Inhibition of angiogenesis through reduction of tyrosine kinase activity is a promising strategy for cancer therapy. The present study aimed to determine the mechanism and potency of ethyl p-methoxycinnamate (EPMC isolated from Kaempferia galanga as angiogenesis inhibitor. Methods A laboratory experimental study was conducted using chorio-allantoic membranes (CAMs of nine-day old chicken eggs induced by 60ng basic fibroblast growth factor (bFGF. Ethyl p-methoxycinnamate (EPMC potency was determined at dosages of 30, 60, 90 and 120 mg and compared with celecoxib 60 mg as reference drug and one negative bFGF-induced control group. Neovascularization and endothelial cell count in CAM blood vessels were evaluated. To predict the antiangiogenic mechanism of EPMC, a docking study was performed with the Molegro Virtual Docker program on tyrosine kinase as receptor (PDB 1XKK. Results Angiogenesis stimulation by bFGF was prevented significantly (p<0.05 by EPMC at dosages of 30, 60, 90 and 120 mg and this activity was dose dependent. Molecular docking showed interaction between EPMC functional groups and tyrosine kinase amino acids at Met766, Met793, Thr854, Thr790, Gln791 and Ala743. There was an association between EPMC antiangiogenic activity and docking study results. Conclusions Ethyl p-methoxycinnamate is a potential new angiogenesis inhibitor through interaction with tyrosine kinase. EPMC could be a promising therapeutic agent for treatment of angiogenesis-related diseases.

  7. Biochemical characterization of the prolyl 3-hydroxylase 1.cartilage-associated protein.cyclophilin B complex.

    Science.gov (United States)

    Ishikawa, Yoshihiro; Wirz, Jackie; Vranka, Janice A; Nagata, Kazuhiro; Bächinger, Hans Peter

    2009-06-26

    The rough endoplasmic reticulum-resident protein complex consisting of prolyl 3-hydroxylase 1 (P3H1), cartilage-associated protein (CRTAP), and cyclophilin B (CypB) can be isolated from chick embryos on a gelatin-Sepharose column, indicating some involvement in the biosynthesis of procollagens. Prolyl 3-hydroxylase 1 modifies a single proline residue in the alpha chains of type I, II, and III collagens to (3S)-hydroxyproline. The peptidyl-prolyl cis-trans isomerase activity of cyclophilin B was shown previously to catalyze the rate of triple helix formation. Here we show that cyclophilin B in the complex shows peptidyl-prolyl cis-trans isomerase activity and that the P3H1.CRTAP.CypB complex has another important function: it acts as a chaperone molecule when tested with two classical chaperone assays. The P3H1.CRTAP.CypB complex inhibited the thermal aggregation of citrate synthase and was active in the denatured rhodanese refolding and aggregation assay. The chaperone activity of the complex was higher than that of protein-disulfide isomerase, a well characterized chaperone. The P3H1.CRTAP.CypB complex also delayed the in vitro fibril formation of type I collagen, indicating that this complex is also able to interact with triple helical collagen and acts as a collagen chaperone.

  8. Dose-dependent effects of oral tyrosine administration on plasma tyrosine levels and cognition in aging

    NARCIS (Netherlands)

    Rest, van de Ondine; Bloemendaal, Mirjam; Heus, De Rianne; Aarts, Esther

    2017-01-01

    The effects of tyrosine on plasma response and cognition in aging are unknown. We assessed the dose-dependent response to tyrosine administration in older adults in both plasma tyrosine concentrations and working memory performance. In this double blind randomized cross-over trial 17 older adults

  9. Dose-Dependent Effects of Oral Tyrosine Administration on Plasma Tyrosine Levels and Cognition in Aging

    NARCIS (Netherlands)

    Rest, O. van de; Bloemendaal, M.; Heus, R.A.A. de; Aarts, E.

    2017-01-01

    The effects of tyrosine on plasma response and cognition in aging are unknown. We assessed the dose-dependent response to tyrosine administration in older adults in both plasma tyrosine concentrations and working memory performance. In this double blind randomized cross-over trial 17 older adults

  10. Signal transduction by HLA-DR is mediated by tyrosine kinase(s) and regulated by CD45 in activated T cells

    DEFF Research Database (Denmark)

    Odum, Niels; Martin, P J; Schieven, G L

    1991-01-01

    Recently, it was shown that HLA class II molecules on B cells and activated human T cells can transmit signals involving tyrosine phosphorylation of specific proteins, activation of the inositol phospholipid pathway, and release of cytosolic free Ca2+(Ca2+)i. The regulation of class II induced si...

  11. Clinical, genetic, and structural basis of congenital adrenal hyperplasia due to 11β-hydroxylase deficiency.

    Science.gov (United States)

    Khattab, Ahmed; Haider, Shozeb; Kumar, Ameet; Dhawan, Samarth; Alam, Dauood; Romero, Raquel; Burns, James; Li, Di; Estatico, Jessica; Rahi, Simran; Fatima, Saleel; Alzahrani, Ali; Hafez, Mona; Musa, Noha; Razzghy Azar, Maryam; Khaloul, Najoua; Gribaa, Moez; Saad, Ali; Charfeddine, Ilhem Ben; Bilharinho de Mendonça, Berenice; Belgorosky, Alicia; Dumic, Katja; Dumic, Miroslav; Aisenberg, Javier; Kandemir, Nurgun; Alikasifoglu, Ayfer; Ozon, Alev; Gonc, Nazli; Cheng, Tina; Kuhnle-Krahl, Ursula; Cappa, Marco; Holterhus, Paul-Martin; Nour, Munier A; Pacaud, Daniele; Holtzman, Assaf; Li, Sun; Zaidi, Mone; Yuen, Tony; New, Maria I

    2017-03-07

    Congenital adrenal hyperplasia (CAH), resulting from mutations in CYP11B1 , a gene encoding 11β-hydroxylase, represents a rare autosomal recessive Mendelian disorder of aberrant sex steroid production. Unlike CAH caused by 21-hydroxylase deficiency, the disease is far more common in the Middle East and North Africa, where consanguinity is common often resulting in identical mutations. Clinically, affected female newborns are profoundly virilized (Prader score of 4/5), and both genders display significantly advanced bone ages and are oftentimes hypertensive. We find that 11-deoxycortisol, not frequently measured, is the most robust biochemical marker for diagnosing 11β-hydroxylase deficiency. Finally, computational modeling of 25 missense mutations of CYP11B1 revealed that specific modifications in the heme-binding (R374W and R448C) or substrate-binding (W116C) site of 11β-hydroxylase, or alterations in its stability (L299P and G267S), may predict severe disease. Thus, we report clinical, genetic, hormonal, and structural effects of CYP11B1 gene mutations in the largest international cohort of 108 patients with steroid 11β-hydroxylase deficiency CAH.

  12. Topoisomerase I tyrosine phosphorylation site and the DNA-interactive site

    International Nuclear Information System (INIS)

    Roll, D.; Durban, E.

    1986-01-01

    Phosphorylation of topoisomerase I (topo I) at serine by NII kinase is accompanied by stimulation of enzymatic activity. In contrast, phosphorylation at tyrosine by tyrosine kinase seems to inhibit enzymatic activity. This inhibition may be caused by interference of the phosphorylated tyrosine residue with the interaction of topo I with DNA. To test this, topo I was labeled with crude membrane fraction enriched for EGF-receptor kinase in presence of γ-P32-ATP and electrophoresed on SDS-polyacrylamide gels. Stained topo I bands were excised, dried, digested with trypsin and analyzed on a C18 reverse-phase HPLC column. One major peak of radioactivity eluted at fraction 23 with 20% acetonitrile. To obtain the DNA-interactive site, topo I was incubated with pBR322 DNA labeled by nick-translation followed by DNase I treatment, and electrophoresis on SDS-polyacrylamide gels. Tryptic peptides were generated and analyzed by reverse-phase HPLC. A major peak of radioactivity eluted at fraction 16-18 with 15.5-17% acetonitrile. Studies are in progress to resolve whether (a) the two peptides are different, i.e. the tyrosine-P site and DNA-tyrosine interactive site are localized at different regions of the topo I or (b) the peptide sequences are identical but the covalent attachment of deoxynucleotides altered the peptide's elution from the HPLC column

  13. Effects of excess dietary tyrosine or certain xenobiotics on the cholesterogenesis in rats

    International Nuclear Information System (INIS)

    Nagaoka, S.; Masaki, H.; Aoyama, Y.; Yoshida, A.

    1986-01-01

    Comparison of the effects of excess dietary tyrosine, DDT, chlorobutanol (Chloretone) or butylated hydroxyanisole (BHA) on serum cholesterol, hepatic activities of the rate-limiting enzyme of cholesterol synthesis,3-hydroxy-3-methylglutaryl coenzyme A reductase and in vivo rates of the hepatic cholesterol synthesis measured by 3 H 2 O incorporation were investigated in rats. Serum cholesterol concentration was significantly higher in rats fed the DDT, chlorobutanol, BHA or excess tyrosine diets than in rats fed the control diet for 7 days. Serum cholesterol concentration remained higher compared to control rats when excess tyrosine was fed for 21 d. When rats were fed a basal diet after feeding a tyrosine excess diet for 2 wk, liver weight and serum cholesterol level returned to normal within 7 d. The incorporation of 3 H 2 O into liver cholesterol and the activity of liver 3-hydroxy-3-methylglutaryl coenzyme A reductase were greater in rats fed excess tyrosine or certain xenobiotics than in control rats. Present results suggested that the increase in serum cholesterol concentration due to excess dietary tyrosine or certain xenobiotics is mainly attributable to the stimulation of liver cholesterol synthesis

  14. Mechanism of protein tyrosine phosphatase 1B-mediated inhibition of leptin signalling

    DEFF Research Database (Denmark)

    Lund, I K; Hansen, J A; Andersen, H S

    2005-01-01

    Upon leptin binding, the leptin receptor is activated, leading to stimulation of the JAK/STAT signal transduction cascade. The transient character of the tyrosine phosphorylation of JAK2 and STAT3 suggests the involvement of protein tyrosine phosphatases (PTPs) as negative regulators...

  15. 21 CFR 582.5920 - Tyrosine.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Tyrosine. 582.5920 Section 582.5920 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS... § 582.5920 Tyrosine. (a) Product. Tyrosine (L- and DL-forms). (b) Conditions of use. This substance is...

  16. Expression and enzymatic activity of phenylalanine ammonia-lyase and p-coumarate 3-hydroxylase in mango (Mangifera indica 'Ataulfo') during ripening.

    Science.gov (United States)

    Palafox-Carlos, H; Contreras-Vergara, C A; Muhlia-Almazán, A; Islas-Osuna, M A; González-Aguilar, G A

    2014-05-16

    Phenylalanine ammonia lyase (PAL) and p-coumarate 3-hydroxylase (C3H) are key enzymes in the phenylpropanoid pathway. The relative expression of PAL and C3H was evaluated in mango fruit cultivar 'Ataulfo' in four ripening stages (RS1, RS2, RS3, and RS4) by quantitative polymerase chain reaction. In addition, enzyme activity of PAL and C3H was determined in mango fruits during ripening. The PAL levels were downregulated at the RS2 and RS3 stages, while C3H levels were upregulated in fruits only at RS3. The enzyme activity of PAL followed a pattern that was different from that of the PAL expression, thus suggesting regulation at several levels. For C3H, a regulation at the transcriptional level is suggested because a similar pattern was revealed by its activity and transcript level. In this study, the complexity of secondary metabolite biosynthesis regulation is emphasized because PAL and C3H enzymes are involved in the biosynthesis of several secondary metabolites that are active during all mango ripening stages.

  17. Alzheimer's disease pathological lesions activate the spleen tyrosine kinase.

    Science.gov (United States)

    Schweig, Jonas Elias; Yao, Hailan; Beaulieu-Abdelahad, David; Ait-Ghezala, Ghania; Mouzon, Benoit; Crawford, Fiona; Mullan, Michael; Paris, Daniel

    2017-09-06

    The pathology of Alzheimer's disease (AD) is characterized by dystrophic neurites (DNs) surrounding extracellular Aβ-plaques, microgliosis, astrogliosis, intraneuronal tau hyperphosphorylation and aggregation. We have previously shown that inhibition of the spleen tyrosine kinase (Syk) lowers Aβ production and tau hyperphosphorylation in vitro and in vivo. Here, we demonstrate that Aβ-overexpressing Tg PS1/APPsw, Tg APPsw mice, and tau overexpressing Tg Tau P301S mice exhibit a pathological activation of Syk compared to wild-type littermates. Syk activation is occurring in a subset of microglia and is age-dependently increased in Aβ-plaque-associated dystrophic neurites of Tg PS1/APPsw and Tg APPsw mice. In Tg Tau P301S mice, a pure model of tauopathy, activated Syk occurs in neurons that show an accumulation of misfolded and hyperphosphorylated tau in the cortex and hippocampus. Interestingly, the tau pathology is exacerbated in neurons that display high levels of Syk activation supporting a role of Syk in the formation of tau pathological species in vivo. Importantly, human AD brain sections show both pathological Syk activation in DNs around Aβ deposits and in neurons immunopositive for pathological tau species recapitulating the data obtained in transgenic mouse models of AD. Additionally, we show that Syk overexpression leads to increased tau accumulation and promotes tau hyperphosphorylation at multiple epitopes in human neuron-like SH-SY5Y cells, further supporting a role of Syk in the formation of tau pathogenic species. Collectively, our data show that Syk activation occurs following Aβ deposition and the formation of tau pathological species. Given that we have previously shown that Syk activation also promotes Aβ formation and tau hyperphosphorylation, our data suggest that AD pathological lesions may be self-propagating via a Syk dependent mechanism highlighting Syk as an attractive therapeutic target for the treatment of AD.

  18. Incorporation of Ortho- and Meta-Tyrosine Into Cellular Proteins Leads to Erythropoietin-Resistance in an Erythroid Cell Line

    Directory of Open Access Journals (Sweden)

    Esztella Mikolás

    2014-04-01

    Full Text Available Background/Aims: Erythropoietin-resistance is an unsolved concern in the treatment of renal anaemia. We aimed to investigate the possible role of ortho- and meta-tyrosine - the hydroxyl free radical products of L-phenylalanine - in the development of erythropoietin-resistance. Methods: TF-1 erythroblast cell line was used. Cell concentration was determined on day 1; 2 and 3 by two independent observers simultaneously in Bürker cell counting chambers. Protein concentration was determined with colorimetric method. Para-, ortho- and meta-tyrosine levels were measured using reverse phase-HPLC with fluorescence detection. Using Western blot method activating phosphorylation of STAT5 and ERK1/2 were investigated. Results: We found a time- and concentration-dependent decrease of erythropoietin-induced proliferative activity in case of ortho- and meta-tyrosine treated TF-1 erythroblasts, compared to the para-tyrosine cultured cells. Decreased erythropoietin-response could be regained with a competitive dose of para-tyrosine. Proteins of erythroblasts treated by ortho- or meta-tyrosine had lower para-tyrosine and higher ortho- or meta-tyrosine content. Activating phosphorylation of ERK and STAT5 due to erythropoietin was practically prevented by ortho- or meta-tyrosine treatment. Conclusion: According to this study elevated ortho- and meta-tyrosine content of erythroblasts may lead to the dysfunction of intracellular signaling, resulting in erythropoietin-hyporesponsiveness.

  19. Tyrosine and carboxyl protonation changes in the bacteriorhodopsin photocycle. 2. Tyrosine-26 and -64

    International Nuclear Information System (INIS)

    Roepe, P.; Scherrer, P.; Ahl, P.L.; Gupta, S.K.D.; Bogomolni, R.A.; Herzfeld, J.; Rothschild, K.J.

    1987-01-01

    Low-temperature Fourier transform infrared (FTIR) and UV difference spectroscopies combined with selective tyrosine nitration and tyrosine isotopic labeling have been used to investigate the participation of tyrosines-26 and -64 in the bacteriorhodopsin (bR) photocycle. Nitration of Tyr-26 has no detectable effect on the FTIR or UV difference spectra of the BR 570 → K 630 or BR 570 → M 412 transitions. In contrast, nitration of Tyr-64 causes changes in both the FTIR and UV spectra of these transitions. However, this nitration does not alter tyrosine peaks in the FTIR difference spectra which have previously been associated with the protonation of a tyrosinate by K 630 and the deprotonation of a tyrosine by M 412 . Instead, Tyr-64 nitration appears to affect other tyrosine peaks. These results and changes in UV difference spectra upon Tyr-64 nitration are consistent with the deprotonation of Tyr-64 by M 412 as concluded previously. Effects on chromophore vibrations caused by Tyr-64 nitration are unaltered upon reducing the nitrotyrosine to aminotyrosine with sodium dithionite. Finally, nitro-Tyr-64 causes a shift in the frequency of a positive peak at 1739 cm -1 in the BR 570 → M 412 FTIR difference spectrum which reflects the protonation of a carboxyl-containing residue. The shift does not occur for samples containing amino-Tyr-64. These data suggest that Tyr-64 may interact with this carboxyl group

  20. Identification and analysis of a novel protein-tyrosine kinase from bovine thymus

    International Nuclear Information System (INIS)

    Zioncheck, T.F.; Harrison, M.L.; Geahlen, R.L.

    1986-01-01

    A cytosolic protein-tyrosine kinase has been identified and purified to near homogeneity from calf thymus by using the phosphorylation of the tyrosine-containing peptide angiotensin I as an assay. Specific peptide phosphorylating activity was enhanced by carrying out the assay at high ionic strength (2M NaCl). The inclusion of NaCl at this concentration acts to stimulate endogenous protein-tyrosine kinase activity while simultaneously inhibiting other endogenous kinases. The purification procedure involved extraction of the enzyme from calf-thymus and sequential chromatography on columns of DEAE-cellulose, heparin-agarose, casein-sepharose, butylagarose, and Sephadex G-75. Analysis of the most highly purified preparations by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single Coomassie blue-stained band of 41 KDa. This molecular weight was consistent with results obtained from gel filtration, indicating that the enzyme exists as a monomer. The enzyme has also been found to catalyze an autophosphorylation reaction. Incubation of the enzyme with Mn 2+ and [γ- 32 P]ATP led to its modification on a tyrosine residue. Phosphopeptide mapping experiments indicated that the 41 KDa kinase was distinct from p56, the major membrane-associated protein-tyrosine kinase in T lymphocytes

  1. Induction by phenobarbital of aniline-p-hydroxylase in mouse liver under the influence of X-irradiation and 2,4,6-triethyleneimino-1,3,5-triazine

    International Nuclear Information System (INIS)

    Erger, M.; Hollatz, R.; Tempel, K.

    1977-01-01

    The phenobarbital-induced activity of aniline-p-hydroxylase in livers of mice was enhanced additionally when the animals were X-irradiated 4-16 hours before the administration of the inducer. The same effect could be demonstrated after repeated irradiation with low doses. 2,4,6-triethyleneimino-1,3,5-triazine (tretamine) inhibited the induction of aniline-p-hydroxylase only when administered in extremely high doses. Lower doses resulted in 'superinduciton'. (orig.) [de

  2. Tyrosine 769 of the keratinocyte growth factor receptor is required for receptor signaling but not endocytosis

    International Nuclear Information System (INIS)

    Ceridono, Mara; Belleudi, Francesca; Ceccarelli, Simona; Torrisi, Maria Rosaria

    2005-01-01

    Keratinocyte growth factor receptor (KGFR) is a receptor tyrosine kinase expressed on epithelial cells which belongs to the family of fibroblast growth factor receptors (FGFRs). Following ligand binding, KGFR is rapidly autophosphorylated on specific tyrosine residues in the intracellular domain, recruits substrate proteins, and is rapidly internalized by clathrin-mediated endocytosis. The role of different autophosphorylation sites in FGFRs, and in particular the role of the tyrosine 766 in FGFR1, first identified as PLCγ binding site, has been extensively studied. We analyzed here the possible role of the tyrosine 769 in KGFR, corresponding to tyrosine 766 in FGFR1, in the regulation of KGFR signal transduction and MAPK activation as well as in the control of the endocytic process of KGFR. A mutant KGFR in which tyrosine 769 was substituted by phenylalanine was generated and transfected in NIH3T3 and HeLa cells. Our results indicate that tyrosine 769 is required for the binding to KGFR and tyrosine phosphorylation of PLCγ as well as for the full activation of MAPKs and for cell proliferation through the regulation of FRS2 tyrosine phosphorylation, suggesting that this residue represents a key regulator of KGFR signal transduction. Our data also show that tyrosine 769 is not involved in the regulation of the endocytic process of KGFR

  3. Aging and a long-term diabetes mellitus increase expression of 1 α-hydroxylase and vitamin D receptors in the rat liver.

    Science.gov (United States)

    Vuica, Ana; Ferhatović Hamzić, Lejla; Vukojević, Katarina; Jerić, Milka; Puljak, Livia; Grković, Ivica; Filipović, Natalija

    2015-12-01

    Diabetes mellitus (DM) is a metabolic disorder associated with serious liver complications. As a metabolic chronic disease, DM is very common in the elderly. Recent studies suggest ameliorating effects of vitamin D on metabolic and oxidative stress in the liver tissue in an experimental model of DM. The aim of this study was to investigate the expression of vitamin D receptors (VDRs) and 1α-hydroxylase, the key enzyme for the production of active vitamin D form (calcitriol) in the liver during long-term diabetes mellitus type 1 (DM1) in aging rats. We performed immunohistochemical analysis of liver expression of 1α-hydroxylase and VDRs during aging in long-term streptozotocin-induced DM1. 1α-Hydroxylase was identified in the monocyte/macrophage system of the liver. In addition to the nuclear expression, we also observed the expression of VDR in membranes of lipid droplets within hepatocytes. Aging and long-term DM1 resulted in significant increases in the number of 1α-hydroxylase immunoreactive cells, as well as the percentage of strongly positive VDR hepatocytes. In conclusion, the liver has the capacity for active vitamin D synthesis in its monocyte/macrophage system that is substantially increased in aging and long-term diabetes mellitus. These conditions are also characterized by significant increases in vitamin D receptor expression in hepatocytes. The present study suggests that VDR signaling system could be a potential target in prevention of liver complications caused by diabetes and aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Tyrosine kinase signalling in breast cancer

    International Nuclear Information System (INIS)

    Hynes, Nancy E

    2000-01-01

    Cells are continuously exposed to diverse stimuli ranging from soluble endocrine and paracrine factors to signalling molecules on neighbouring cells. Receptors of the tyrosine kinase family play an important role in the integration and interpretation of these external stimuli, allowing a cell to respond appropriately to its environment. The activation of receptor tyrosine kinases (RTKs) is tightly controlled, allowing a normal cell to correctly integrate its external environment with internal signal transduction pathways. In contrast, due to numerous molecular alterations arising during the course of malignancy, a tumour is characterized by an abnormal response to its environment, which allows cancer cells to evade the normal mechanisms controlling cellular proliferation. Alterations in the expression of various RTKs, in their activation, and in the signalling molecules lying downstream of the receptors play important roles in the development of cancer. This topic is the major focus of the thematic review section of this issue of Breast Cancer Research

  5. The neurotoxic effects of methamphetamine on 5-hydroxytryptamine and dopamine in brain: evidence for the protective effect of chlormethiazole.

    Science.gov (United States)

    Green, A R; De Souza, R J; Williams, J L; Murray, T K; Cross, A J

    1992-04-01

    Studies were undertaken in mice and rats on the neurotoxic effects of methamphetamine on dopaminergic and 5-hydroxytryptaminergic neurones in the brain and the neuroprotective action of chlormethiazole. In initial studies, mice were injected with methamphetamine (5 mg/kg, i.p.) at 2 hr intervals, to a total of 4 times. This procedure produced a 66% loss of striatal dopamine and a 50% loss of tyrosine hydroxylase activity 3 days later. Chlormethiazole (50 mg/kg, i.p.), given 15 min before each dose of methamphetamine, totally prevented the methamphetamine-induced loss of tyrosine hydroxylase activity and partly prevented the loss of dopamine. Phencyclidine (20 mg/kg, i.p.), given in place of chlormethiazole, also prevented the loss of tyrosine hydroxylase. Administration to rats of 4 doses of methamphetamine (15 mg/kg, i.p.) at 3 hr intervals resulted in a 75% loss of striatal dopamine 3 days later and a similar loss of 5-HT and 5-HIAA in cortex and hippocampus. Chlormethiazole (50 mg/kg, i.p.), given 15 min before each injection of methamphetamine, protected against the loss of dopamine and indoleamine content, in the respective regions. Pentobarbital (25 mg/kg, i.p.) also provided substantial protection but diazepam (2.5 mg/kg, i.p.) was without effect. Confirming earlier studies, dizocilpine (1 mg/kg) also provided substantial protection against the methamphetamine-induced neurotoxicity. Preliminary data indicated that chlormethiazole was not neuroprotective because of a hypothermic action. These data therefore demonstrate that chlormethiazole is an effective neuroprotective agent against methamphetamine-induced neurotoxicity and extend the evidence for the possible value of this drug in preventing neurodegeneration.

  6. Ligand-mediated negative regulation of a chimeric transmembrane receptor tyrosine phosphatase

    DEFF Research Database (Denmark)

    Desai, D M; Sap, J; Schlessinger, J

    1993-01-01

    CD45, a transmembrane protein tyrosine phosphatase (PTPase), is required for TCR signaling. Multiple CD45 isoforms, differing in the extracellular domain, are expressed in a tissue- and activation-specific manner, suggesting an important function for this domain. We report that a chimeric protein...... that ligand-mediated regulation of receptor-PTPases may have mechanistic similarities with receptor tyrosine kinases....

  7. Prolyl hydroxylase domain enzymes: important regulators of cancer metabolism

    Directory of Open Access Journals (Sweden)

    Yang M

    2014-08-01

    Full Text Available Ming Yang,1 Huizhong Su,1 Tomoyoshi Soga,2 Kamil R Kranc,3 Patrick J Pollard1 1Cancer Biology and Metabolism Group, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK; 2Institute for Advanced Biosciences, Keio University, Mizukami, Tsuruoka, Yamagata, Japan; 3MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK Abstract: The hypoxia-inducible factor (HIF prolyl hydroxylase domain enzymes (PHDs regulate the stability of HIF protein by post-translational hydroxylation of two conserved prolyl residues in its α subunit in an oxygen-dependent manner. Trans-4-prolyl hydroxylation of HIFα under normal oxygen (O2 availability enables its association with the von Hippel-Lindau (VHL tumor suppressor pVHL E3 ligase complex, leading to the degradation of HIFα via the ubiquitin-proteasome pathway. Due to the obligatory requirement of molecular O2 as a co-substrate, the activity of PHDs is inhibited under hypoxic conditions, resulting in stabilized HIFα, which dimerizes with HIFβ and, together with transcriptional co-activators CBP/p300, activates the transcription of its target genes. As a key molecular regulator of adaptive response to hypoxia, HIF plays important roles in multiple cellular processes and its overexpression has been detected in various cancers. The HIF1α isoform in particular has a strong impact on cellular metabolism, most notably by promoting anaerobic, whilst inhibiting O2-dependent, metabolism of glucose. The PHD enzymes also seem to have HIF-independent functions and are subject to regulation by factors other than O2, such as by metabolic status, oxidative stress, and abnormal levels of endogenous metabolites (oncometabolites that have been observed in some types of cancers. In this review, we aim to summarize current understandings of the function and regulation of PHDs in cancer with an emphasis on their roles in metabolism. Keywords: prolyl hydroxylase domain (PHD

  8. Novel Bruton's tyrosine kinase inhibitors currently in development

    Directory of Open Access Journals (Sweden)

    D'Cruz OJ

    2013-03-01

    Full Text Available Osmond J D'Cruz,1 Fatih M Uckun1,21Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, CA, USA; 2Department of Pediatrics, University of Southern California, Los Angeles, CA, USAAbstract: Bruton's tyrosine kinase (Btk is intimately involved in multiple signal-transduction pathways regulating survival, activation, proliferation, and differentiation of B-lineage lymphoid cells. Btk is overexpressed and constitutively active in several B-lineage lymphoid malignancies. Btk has emerged as a new antiapoptotic molecular target for treatment of B-lineage leukemias and lymphomas. Preclinical and early clinical results indicate that Btk inhibitors may be useful in the treatment of leukemias and lymphomas.Keywords: tyrosine kinase, personalized therapy, kinase inhibitors, Btk, leukemia, lymphoma

  9. Structural Insights into Diversity and n-Alkane Biodegradation Mechanisms of Alkane Hydroxylases

    Directory of Open Access Journals (Sweden)

    Yurui eJi

    2013-03-01

    Full Text Available Environmental microbes utilize four degradation pathways for the oxidation of n-alkanes. Although the enzymes degrading n-alkanes in different microbes may vary, enzymes functioning in the first step in the aerobic degradation of alkanes all belong to the alkane hydroxylases. Alkane hydroxylases are a class of enzymes that insert oxygen atoms derived from molecular oxygen into different sites of the alkane terminus (or termini depending on the type of enzymes. In this review, we summarize the different types of alkane hydroxylases, their degrading steps and compare typical enzymes from various classes with regard to their three dimensional structures, in order to provide insights into how the enzymes mediate their different roles in the degradation of n-alkanes and what determines their different substrate ranges. Through the above analyses, the degrading mechanisms of enzymes can be elucidated and molecular biological methods can be utilized to expand their catalytic roles in the petrochemical industry or in bioremediation of oil-contaminated environments.

  10. Adaptor protein GRB2 promotes Src tyrosine kinase activation and podosomal organization by protein-tyrosine phosphatase ϵ in osteoclasts.

    Science.gov (United States)

    Levy-Apter, Einat; Finkelshtein, Eynat; Vemulapalli, Vidyasiri; Li, Shawn S-C; Bedford, Mark T; Elson, Ari

    2014-12-26

    The non-receptor isoform of protein-tyrosine phosphatase ϵ (cyt-PTPe) supports adhesion of bone-resorbing osteoclasts by activating Src downstream of integrins. Loss of cyt-PTPe reduces Src activity in osteoclasts, reduces resorption of mineralized matrix both in vivo and in cell culture, and induces mild osteopetrosis in young female PTPe KO mice. Activation of Src by cyt-PTPe is dependent upon this phosphatase undergoing phosphorylation at its C-terminal Tyr-638 by partially active Src. To understand how cyt-PTPe activates Src, we screened 73 Src homology 2 (SH2) domains for binding to Tyr(P)-638 of cyt-PTPe. The SH2 domain of GRB2 bound Tyr(P)-638 of cyt-PTPe most prominently, whereas the Src SH2 domain did not bind at all, suggesting that GRB2 may link PTPe with downstream molecules. Further studies indicated that GRB2 is required for activation of Src by cyt-PTPe in osteoclast-like cells (OCLs) in culture. Overexpression of GRB2 in OCLs increased activating phosphorylation of Src at Tyr-416 and of cyt-PTPe at Tyr-638; opposite results were obtained when GRB2 expression was reduced by shRNA or by gene inactivation. Phosphorylation of cyt-PTPe at Tyr-683 and its association with GRB2 are integrin-driven processes in OCLs, and cyt-PTPe undergoes autodephosphorylation at Tyr-683, thus limiting Src activation by integrins. Reduced GRB2 expression also reduced the ability of bone marrow precursors to differentiate into OCLs and reduced the fraction of OCLs in which podosomal adhesion structures assume organization typical of active, resorbing cells. We conclude that GRB2 physically links cyt-PTPe with Src and enables cyt-PTPe to activate Src downstream of activated integrins in OCLs. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Enzyme kinetic characterization of protein tyrosine phosphatases

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Branner, S.; Møller, K. B.

    2003-01-01

    Protein tyrosine phosphatases (PTPs) play a central role in cellular signaling processes, resulting in an increased interest in modulating the activities of PTPs. We therefore decided to undertake a detailed enzyme kinetic evaluation of various transmembrane and cytosolic PTPs (PTPalpha, PTPbeta...

  12. Pseudomonas aeruginosa invasion and cytotoxicity are independent events, both of which involve protein tyrosine kinase activity.

    Science.gov (United States)

    Evans, D J; Frank, D W; Finck-Barbançon, V; Wu, C; Fleiszig, S M

    1998-04-01

    Pseudomonas aeruginosa clinical isolates exhibit invasive or cytotoxic phenotypes. Cytotoxic strains acquire some of the characteristics of invasive strains when a regulatory gene, exsA, that controls the expression of several extracellular proteins, is inactivated. exsA mutants are not cytotoxic and can be detected within epithelial cells by gentamicin survival assays. The purpose of this study was to determine whether epithelial cell invasion precedes and/or is essential for cytotoxicity. This was tested by measuring invasion (gentamicin survival) and cytotoxicity (trypan blue staining) of PA103 mutants deficient in specific exsA-regulated proteins and by testing the effect of drugs that inhibit invasion for their effect on cytotoxicity. A transposon mutant in the exsA-regulated extracellular factor exoU was neither cytotoxic nor invasive. Furthermore, several of the drugs that inhibited invasion did not prevent cytotoxicity. These results show that invasion and cytotoxicity are mutually exclusive events, inversely regulated by an exsA-encoded invasion inhibitor(s). Both involve host cell protein tyrosine kinase (PTK) activity, but they differ in that invasion requires Src family tyrosine kinases and calcium-calmodulin activity. PTK inhibitor drugs such as genistein may have therapeutic potential through their ability to block both invasive and cytotoxicity pathways via an action on the host cell.

  13. Therapeutic treatment with a novel hypoxia-inducible factor hydroxylase inhibitor (TRC160334 ameliorates murine colitis

    Directory of Open Access Journals (Sweden)

    Gupta R

    2014-01-01

    Full Text Available Ram Gupta,1 Anita R Chaudhary,2 Binita N Shah,1 Avinash V Jadhav,3 Shitalkumar P Zambad,1 Ramesh Chandra Gupta,4 Shailesh Deshpande,4 Vijay Chauthaiwale,4 Chaitanya Dutt4 1Department of Pharmacology, 2Cellular and Molecular Biology, 3Preclinical Safety Evaluation, 4Discovery, Torrent Research Centre, Torrent Pharmaceuticals Ltd, Gandhinagar, Gujarat, India Background and aim: Mucosal healing in inflammatory bowel disease (IBD can be achieved by improvement of intestinal barrier protection. Activation of hypoxia-inducible factor (HIF has been identified as a critical factor for barrier protection during mucosal insult and is linked with improvement in symptoms of colitis. Although prophylactic efficacy of HIF hydroxylase inhibitors in murine colitis have been established, its therapeutic efficacy in clinically relevant therapeutic settings have not been established. In the present study we aim to establish therapeutic efficacy of TRC160334, a novel HIF hydroxylase inhibitor, in animal models of colitis. Methods: The efficacy of TRC160334 was evaluated in two different mouse models of colitis by oral route. A prophylactic efficacy study was performed in a 2,4,6-trinitrobenzene sulfonic acid-induced mouse model of colitis representing human Crohn's disease pathology. Additionally, a therapeutic efficacy study was performed in a dextran sulfate sodium-induced mouse model of colitis, a model simulating human ulcerative colitis. Results: TRC160334 treatment resulted in significant improvement in disease end points in both models of colitis. TRC160334 treatment resulted into cytoprotective heatshock protein 70 induction in inflamed colon. TRC160334 successfully attenuated the rate of fall in body weight, disease activity index, and macroscopic and microscopic scores of colonic damage leading to overall improvement in study outcome. Conclusion: Our findings are the first to demonstrate that therapeutic intervention with a HIF hydroxylase inhibitor

  14. DMPD: Macrophage-stimulating protein and RON receptor tyrosine kinase: potentialregulators of macrophage inflammatory activities. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12472665 Macrophage-stimulating protein and RON receptor tyrosine kinase: potential...:545-53. (.png) (.svg) (.html) (.csml) Show Macrophage-stimulating protein and RON receptor tyrosine kinase:...le Macrophage-stimulating protein and RON receptor tyrosine kinase: potentialregulators of macrophage inflam

  15. Ab initio study on electron excitation and electron transfer in tryptophan-tyrosine system

    International Nuclear Information System (INIS)

    Tong Jing; Li Xiangyuan

    2002-01-01

    In this article, ab initio calculation has been performed to evaluate the transition energy of electronic excitation in tryptophan and tyrosine by using semiempirical molecular orbital method AM1 and complete active space self-consistent field method. The solvent effect has been considered by means of the conductor-like screening model. After geometric optimizations of isolated tryptophan and tyrosine, and their corresponding radicals and cations, reaction heat of these electron transfer reactions have been obtained by the means of complete active space self-consistent field method. The transition energies from the ground state, respectively, to the lowest excited state and to the lowest triplet state of these two amino acids are also calculated and compared with the experimentally observed values. The ionization potential and electron affinity are also calculated for tryptophan and tyrosine employing Koopmans' theorem and ab initio calculation. Compared with the experimental measurements, the theoretical results are found satisfactory. Theoretical results give good explanations on the experimental phenomena that N 3 · can preferably oxide the side chain of tryptophan residue and then the electron transfer from tyrosine residue to tryptophan residue follows in peptides involving tryptophan and tyrosine

  16. HD-PTP is a catalytically inactive tyrosine phosphatase due to a conserved divergence in its phosphatase domain.

    Directory of Open Access Journals (Sweden)

    Marie-Claude Gingras

    Full Text Available The HD-PTP protein has been described as a tumor suppressor candidate and based on its amino acid sequence, categorized as a classical non-transmembrane protein tyrosine phosphatase (PTP. To date, no HD-PTP phosphorylated substrate has been identified and controversial results concerning its catalytic activity have been recently reported.Here we report a rigorous enzymatic analysis demonstrating that the HD-PTP protein does not harbor tyrosine phosphatase or lipid phosphatase activity using the highly sensitive DiFMUP substrate and a panel of different phosphatidylinositol phosphates. We found that HD-PTP tyrosine phosphatase inactivity is caused by an evolutionary conserved amino acid divergence of a key residue located in the HD-PTP phosphatase domain since its back mutation is sufficient to restore the HD-PTP tyrosine phosphatase activity. Moreover, in agreement with a tumor suppressor activity, HD-PTP expression leads to colony growth reduction in human cancer cell lines, independently of its catalytic PTP activity status.In summary, we demonstrate that HD-PTP is a catalytically inactive protein tyrosine phosphatase. As such, we identify one residue involved in its inactivation and show that its colony growth reduction activity is independent of its PTP activity status in human cancer cell lines.

  17. Receptor tyrosine phosphatase R-PTP-kappa mediates homophilic binding

    DEFF Research Database (Denmark)

    Sap, J; Jiang, Y P; Friedlander, D

    1994-01-01

    Receptor tyrosine phosphatases (R-PTPases) feature PTPase domains in the context of a receptor-like transmembrane topology. The R-PTPase R-PTP-kappa displays an extracellular domain composed of fibronectin type III motifs, a single immunoglobulin domain, as well as a recently defined MAM domain (Y...... not require PTPase activity or posttranslational proteolytic cleavage of the R-PTP-kappa protein and is calcium independent. The results suggest that R-PTPases may provide a link between cell-cell contact and cellular signaling events involving tyrosine phosphorylation....

  18. Effect of halogenated benzenes on acetanilide esterase, acetanilide hydroxylase and procaine esterase in rats.

    Science.gov (United States)

    Carlson, G P; Dziezak, J D; Johnson, K M

    1979-07-01

    1,2,4-Trichlorobenzene, 1,3,5-trichlorobenzene, hexachlorobenzene, 1,2,4-tribromobenzene, 1,3,5-tribromobenzene and hexabromobenzene were compared for their abilities to induce acetanilide esterase, acentailide hydroxylase and procaine esterase. Except for hexabromobenzene all induced acetanilide esterase whereas the hydroxylation of acetanilide was seen only with the fully halogenated benzenes and with 1,3,5-tribromobenzene. Hepatic procaine esterase activity was increased by the three chlorinated benzenes and 1,2,4-tribromobenzene.

  19. Function of Bruton's tyrosine kinase during B cell development is partially independent of its catalytic activity

    NARCIS (Netherlands)

    S. Middendorp; G.M. Dingjan (Gemma); A. Maas (Alex); K. Dahlenborg; R.W. Hendriks (Rudi)

    2003-01-01

    textabstractThe Tec family member Bruton's tyrosine kinase (Btk) is a cytoplasmic protein tyrosine kinase that transduces signals from the pre-B and B cell receptor (BCR). Btk is involved in pre-B cell maturation by regulating IL-7 responsiveness, cell surface phenotype changes,

  20. Tyrosine supplementation for phenylketonuria.

    Science.gov (United States)

    Webster, Diana; Wildgoose, Joanne

    2013-06-05

    Phenylketonuria is an inherited disease for which the main treatment is the dietary restriction of the amino acid phenylalanine. The diet has to be initiated in the neonatal period to prevent or reduce mental handicap. However, the diet is very restrictive and unpalatable and can be difficult to follow. A deficiency of the amino acid tyrosine has been suggested as a cause of some of the neuropsychological problems exhibited in phenylketonuria. Therefore, this review aims to assess the efficacy of tyrosine supplementation for phenylketonuria. To assess the effects of tyrosine supplementation alongside or instead of a phenylalanine-restricted diet for people with phenylketonuria, who commenced on diet at diagnosis and either continued on the diet or relaxed the diet later in life. To assess the evidence that tyrosine supplementation alongside, or instead of a phenylalanine-restricted diet improves intelligence, neuropsychological performance, growth and nutritional status, mortality rate and quality of life. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Trials Register which is comprised of references identified from comprehensive electronic database searches, handsearches of relevant journals and abstract books of conference proceedings. Additional studies were identified from handsearches of the Journal of Inherited Metabolic Disease (from inception in 1978 to 1998). The manufacturers of prescribable dietary products used in the treatment of phenylketonuria were also contacted for further references.Date of the most recent search of the Group's Inborn Errors of Metabolism Trials Register: 28 June 2012. All randomised or quasi-randomised trials investigating the use of tyrosine supplementation versus placebo in people with phenylketonuria in addition to, or instead of, a phenylalanine-restricted diet. People treated for maternal phenylketonuria were excluded. Two authors independently assessed the trial eligibility, methodological quality

  1. Receptor tyrosine phosphatase R-PTP-alpha is tyrosine-phosphorylated and associated with the adaptor protein Grb2

    DEFF Research Database (Denmark)

    Su, J; Batzer, A; Sap, J

    1994-01-01

    Receptor tyrosine phosphatases (R-PTPases) have generated interest because of their suspected involvement in cellular signal transduction. The adaptor protein Grb2 has been implicated in coupling receptor tyrosine kinases to Ras. We report that a ubiquitous R-PTPase, R-PTP-alpha, is tyrosine......-phosphorylated and associated in vivo with the Grb2 protein. This association can be reproduced in stably and transiently transfected cells, as well as in vitro using recombinant Grb2 protein. Association requires the presence of an intact SH2 domain in Grb2, as well as tyrosine phosphorylation of R-PTP-alpha. This observation...... links a receptor tyrosine phosphatase with a key component of a central cellular signalling pathway and provides a basis for addressing R-PTP-alpha function....

  2. Recruitment of SHP-1 protein tyrosine phosphatase and signalling by a chimeric T-cell receptor-killer inhibitory receptor

    DEFF Research Database (Denmark)

    Christensen, M D; Geisler, C

    2000-01-01

    Receptors expressing the immunoreceptor tyrosine-based inhibitory motif (ITIM) in their cytoplasmic tail play an important role in the negative regulation of natural killer and B-cell activation. A subpopulation of T cells expresses the ITIM containing killer cell inhibitory receptor (KIR), which...... recognize MHC class I molecules. Following coligation of KIR with an activating receptor, the tyrosine in the ITIM is phosphorylated and the cytoplasmic protein tyrosine phosphatase SHP-1 is recruited to the ITIM via its SH2 domains. It is still not clear how SHP-1 affects T-cell receptor (TCR) signalling...... regarding total protein tyrosine phosphorylation, TCR down-regulation, mobilization of intracellular free calcium, or induction of the activation markers CD69 and CD25....

  3. Biochemical Characterization of the Prolyl 3-Hydroxylase 1·Cartilage-associated Protein·Cyclophilin B Complex*

    Science.gov (United States)

    Ishikawa, Yoshihiro; Wirz, Jackie; Vranka, Janice A.; Nagata, Kazuhiro; Bächinger, Hans Peter

    2009-01-01

    The rough endoplasmic reticulum-resident protein complex consisting of prolyl 3-hydroxylase 1 (P3H1), cartilage-associated protein (CRTAP), and cyclophilin B (CypB) can be isolated from chick embryos on a gelatin-Sepharose column, indicating some involvement in the biosynthesis of procollagens. Prolyl 3-hydroxylase 1 modifies a single proline residue in the α chains of type I, II, and III collagens to (3S)-hydroxyproline. The peptidyl-prolyl cis-trans isomerase activity of cyclophilin B was shown previously to catalyze the rate of triple helix formation. Here we show that cyclophilin B in the complex shows peptidyl-prolyl cis-trans isomerase activity and that the P3H1·CRTAP·CypB complex has another important function: it acts as a chaperone molecule when tested with two classical chaperone assays. The P3H1·CRTAP·CypB complex inhibited the thermal aggregation of citrate synthase and was active in the denatured rhodanese refolding and aggregation assay. The chaperone activity of the complex was higher than that of protein-disulfide isomerase, a well characterized chaperone. The P3H1·CRTAP·CypB complex also delayed the in vitro fibril formation of type I collagen, indicating that this complex is also able to interact with triple helical collagen and acts as a collagen chaperone. PMID:19419969

  4. Role of tyrosine phosphatase inhibitors in cancer treatment with emphasis on SH2 domain-containing tyrosine phosphatases (SHPs)

    NARCIS (Netherlands)

    Irandoust, Mahban; van den Berg, Timo K.; Kaspers, Gertjan J. L.; Cloos, Jacqueline

    2009-01-01

    Protein tyrosine phosphorylation is one of the key mechanisms involved in signal transduction pathways. This modification is regulated by concerted action of protein tyrosine phosphatases and protein tyrosine kinases. Deregulation of either of these key regulators lead to abnormal cellular

  5. Retroviral-mediated gene transfer of human phenylalanine hydroxylase into NIH 3T3 and hepatoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Ledley, F.D.; Grenett, H.E.; McGinnis-Shelnutt, M.; Woo, S.L.C.

    1986-01-01

    Phenylketonuria (PKU) is caused by deficiency of the hepatic enzyme phenylalanine hydroxylase (PAH). A full-length human PAH cDNA sequence has been inserted into pzip-neoSV(X), which is a retroviral vector containing the bacterial neo gene. The recombinant has been transfected into Psi2 cells, which provide synthesis of the retroviral capsid. Recombinant virus was detected in the culture medium of the transfected Psi2 cells, which is capable of transmitting the human PAH gene into mouse NIH 3T3 cells by infection leading to stable incorporation of the recombinant provirus. Infected cells express PAH mRNA, immunoreactive PAH protein, and exhibit pterin-dependent phenylaline hydroxylase activity. The recombinant virus is also capable of infecting a mouse hepatoma cell line that does not normal synthesize PAH. PAH activity is present in the cellular extracts and the entire hydroxylation system is reconstituted in the hepatoma cells infected with the recombinant viruses. Thus, recombinant viruses containing human PAH cDNA provide a means for introducing functional PAH into mammalian cells of hepatic origin and can potentially be introduced into whole animals as a model for somatic gene therapy for PKU.

  6. Measurement of protein synthesis: in vitro comparison of (68)Ga-DOTA-puromycin, [ (3)H]tyrosine, and 2-fluoro-[ (3)H]tyrosine.

    Science.gov (United States)

    Eigner, Sebastian; Beckford Vera, Denis R; Fellner, Marco; Loktionova, Natalia S; Piel, Markus; Melichar, Frantisek; Rösch, Frank; Roß, Tobias L; Lebeda, Ondrej; Henke, Katerina Eigner

    2013-01-01

    )Ga-DOTA-Pur. No significant differences in the behavior of [(3)H]tyrosine and 2-fluoro-[(3)H]tyrosine were observed. Uptake of both tyrosine derivatives was decreased by inhibition of protein synthesis, but only to a level of 45-55% of initial uptake, indicating no direct link between tyrosine uptake and protein synthesis. In contrast, (68)Ga-DOTA-Pur uptake was directly linked to ribosomal activity and, therefore, to protein synthesis. (68)Ga-DOTA-Pur μPET imaging in rats revealed high tumor-to-background ratios and clearly defined regions of interest in the investigated tumors. Whereas the metabolic pathway of (68)Ga-DOTA-Pur is directly connected with the process of protein synthesis and shows high tumor uptake during μPET imaging, neither [(3)H]tyrosine nor 2-fluoro-[(3)H]tyrosine can be considered useful for determination of protein synthesis.

  7. Neurotransmitters and putative neuromodulators in the gut of Anguilla anguilla (L.. Localizations in the enteric nervous and endocrine systems

    Directory of Open Access Journals (Sweden)

    A Veggetti

    2009-12-01

    Full Text Available The gut of silver eels (Anguilla anguilla L. was investigated in order to describe both the cholinergic and adrenergic intramural innervations, and the localization of possible accessory neuromediators. Histochemical reactions for the demonstration of nicotinamide adenine dinucleotide phosphate, reduced form-(NADPH-diaphorase and acetylcholinesterese (AChEase were performed, as well as the immunohistochemical testing of tyrosine hydroxylase, met-enkephalin, substance P, calcitonin gene-related peptide (CGRP, bombesin, vasoactive intestinal peptide (VIP, neuropeptide Y (NPY, somatostatin, cholecystokinin-octapeptide (CCK-8, serotonin, cholineacetyltransferase. The results evidenced a different pattern in comparison with other vertebrates, namely mammals, and with other fish. Both NADPH-diaphorase and AChEase activities were histochemically detected all along the gut in the myenteric plexus, the inner musculature and the propria-submucosa. Tyrosine hydroxylase immunoreactivity was observed in the intestinal tract only, both in the myenteric plexus and in the inner musculature. Several neuropeptides (metenkephalin, CGRP, bombesin, substance P, VIP, NPY, somatostatin were, in addition, detected in the intramural innervation; some of them also in epithelial cells of the diffuse endocrine system (met-enkephalin, substance P, NPY, somatostatin. Serotonin was only present in endocrine cells. Tyrosine hydroxylase immunoreactivity was present in localizations to those of similar NADPHdiaphorase- reactivity, and in the same nerve bundles in which substance P- and CGRP-likeimmunoreactivities were detectable in the intestinal tract. In addition, NADPH-diaphorase-reactive neurons showed an anatomical relationship with AChEase-reactive nerve terminals, and a similar relationship existed between the latter and substance P-like immunoreactivity.

  8. Tyrosine isomers mediate the classical phenomenon of concomitant tumor resistance.

    Science.gov (United States)

    Ruggiero, Raúl A; Bruzzo, Juan; Chiarella, Paula; di Gianni, Pedro; Isturiz, Martín A; Linskens, Susana; Speziale, Norma; Meiss, Roberto P; Bustuoabad, Oscar D; Pasqualini, Christiane D

    2011-11-15

    Concomitant tumor resistance (CR) is a phenomenon originally described in 1906 in which a tumor-bearing host is resistant to the growth of secondary tumor implants and metastasis. Although recent studies have indicated that T-cell-dependent processes mediate CR in hosts bearing immunogenic small tumors, manifestations of CR induced by immunogenic and nonimmunogenic large tumors have been associated with an elusive serum factor. In this study, we identify this serum factor as tyrosine in its meta and ortho isoforms. In three different murine models of cancer that generate CR, both meta-tyrosine and ortho-tyrosine inhibited tumor growth. In addition, we showed that both isoforms of tyrosine blocked metastasis in a fourth model that does not generate CR but is sensitive to CR induced by other tumors. Mechanistic studies showed that the antitumor effects of the tyrosine isoforms were mediated, in part, by early inhibition of mitogen-activated protein/extracellular signal-regulated kinase pathway and inactivation of STAT3, potentially driving tumor cells into a state of dormancy. By revealing a molecular basis for the classical phenomenon of CR, our findings may stimulate new generalized approaches to limit the development of metastases that arise after resection of primary tumors, an issue of pivotal importance to oncologists and their patients. ©2011 AACR

  9. Modular Engineering of l-Tyrosine Production in Escherichia coli

    Science.gov (United States)

    Juminaga, Darmawi; Baidoo, Edward E. K.; Redding-Johanson, Alyssa M.; Batth, Tanveer S.; Burd, Helcio; Mukhopadhyay, Aindrila; Petzold, Christopher J.

    2012-01-01

    Efficient biosynthesis of l-tyrosine from glucose is necessary to make biological production economically viable. To this end, we designed and constructed a modular biosynthetic pathway for l-tyrosine production in E. coli MG1655 by encoding the enzymes for converting erythrose-4-phosphate (E4P) and phosphoenolpyruvate (PEP) to l-tyrosine on two plasmids. Rational engineering to improve l-tyrosine production and to identify pathway bottlenecks was directed by targeted proteomics and metabolite profiling. The bottlenecks in the pathway were relieved by modifications in plasmid copy numbers, promoter strength, gene codon usage, and the placement of genes in operons. One major bottleneck was due to the bifunctional activities of quinate/shikimate dehydrogenase (YdiB), which caused accumulation of the intermediates dehydroquinate (DHQ) and dehydroshikimate (DHS) and the side product quinate; this bottleneck was relieved by replacing YdiB with its paralog AroE, resulting in the production of over 700 mg/liter of shikimate. Another bottleneck in shikimate production, due to low expression of the dehydroquinate synthase (AroB), was alleviated by optimizing the first 15 codons of the gene. Shikimate conversion to l-tyrosine was improved by replacing the shikimate kinase AroK with its isozyme, AroL, which effectively consumed all intermediates formed in the first half of the pathway. Guided by the protein and metabolite measurements, the best producer, consisting of two medium-copy-number, dual-operon plasmids, was optimized to produce >2 g/liter l-tyrosine at 80% of the theoretical yield. This work demonstrates the utility of targeted proteomics and metabolite profiling in pathway construction and optimization, which should be applicable to other metabolic pathways. PMID:22020510

  10. Structure-based design of nitrosoureas containing tyrosine derivatives as potential antimelanoma agents.

    Science.gov (United States)

    Gadjeva, Vesselina

    2002-04-01

    Two new nitrosoureas (TNUs), containing tyrosine derivatives as carriers of nitrosourea cytotoxic group have been synthesised. The physicochemical properties such as half-life time (tau(0.5)), alkylating and carbamoylating activities were determined. The nitrosoureas showed a higher inhibiting effect on the DOPA-oxidase activity of mushroom tyrosinase than that of the antitumour drug N'-cyclohexyl-N-(2-chloroethyl)-N-nitrosourea (lomustine, CCNU). In vitro cytotoxic effects of newly synthesised tyrosine containing nitrosoureas have been studied and compared to those of CCNU. A higher cytotoxicity to B16 melanoma cells than to YAC-1 and to lymphocytes was demonstrated for the tyrosine containing nitrosoureas in comparison with CCNU. Based on the results presented, we accept that a new trend for synthesis of more selective and less toxic nitrosourea derivatives as potential antimelanomic drugs might be developed.

  11. A sandwich immunoassay for human prolyl 4-hydroxylase using monoclonal antibody

    International Nuclear Information System (INIS)

    Yoshida, Shinichi

    1986-01-01

    Monoclonal antibody was used in a sandwich enzyme immunoassay and in a radioimmunoassay for human serum immunoreactive prolyl 4-hydroxylase. The enzyme immunoassay utilized a monoclonal antibody as a solid phase and horseradish peroxidase-labeled rabbit antibody to human prolyl 4-hydroxylase as a conjugate. Sensitivity was 0.1 ng of enzyme per tube. With a conjugate purified by an enzyme-bound affinity column, sensitivity was increased to 0.01 ng per tube, and linearity was obtained between 0.01 to 30 ng per tube. The radioimmunoassay used a 125 I-labeled rabbit antibody (IgG) as the conjugate. Sensitivity of this technique was 0.4 ng of enzyme per tube. (Auth.)

  12. Evolution: Weevils Get Tough on Symbiotic Tyrosine.

    Science.gov (United States)

    Dale, Colin

    2017-12-04

    Weevils, which represent one of the most diverse groups of terrestrial insects in nature, obtain a tough exoskeleton through the activity of an ancient bacterial symbiont with a tiny genome that serves as a factory for the production of tyrosine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Ror receptor tyrosine kinases: orphans no more.

    Science.gov (United States)

    Green, Jennifer L; Kuntz, Steven G; Sternberg, Paul W

    2008-11-01

    Receptor tyrosine kinase-like orphan receptor (Ror) proteins are a conserved family of tyrosine kinase receptors that function in developmental processes including skeletal and neuronal development, cell movement and cell polarity. Although Ror proteins were originally named because the associated ligand and signaling pathway were unknown, recent studies in multiple species have now established that Ror proteins are Wnt receptors. Depending on the cellular context, Ror proteins can either activate or repress transcription of Wnt target genes and can modulate Wnt signaling by sequestering Wnt ligands. New evidence implicates Ror proteins in planar cell polarity, an alternative Wnt pathway. Here, we review the progress made in understanding these mysterious proteins and, in particular, we focus on their function as Wnt receptors.

  14. Analysis of tyrosine phosphorylation sites in signaling molecules by a phosphotyrosine-specific immonium ion scanning method

    DEFF Research Database (Denmark)

    Steen, Hanno; Pandey, Akhilesh; Andersen, Jens S

    2002-01-01

    mechanism for activating or inhibiting enzymes and for the assembly of multiprotein complexes. Here, we describe a mass spectrometry-based phosphotyrosine-specific immonium ion scanning (PSI scanning) method for selective detection of tyrosine-phosphorylated peptides. Once the tyrosine....... Because of its simplicity and specificity, PSI scanning is likely to become an important tool in proteomic studies of pathways involving tyrosine phosphorylation....

  15. Free radical-mediated stimulation of tyrosine-specific protein kinase in rat liver plasma membrane

    International Nuclear Information System (INIS)

    Chan, T.M.; Tatoyan, A.; Cheng, E.; Shargill, N.S.; Pleta, M.

    1986-01-01

    Incorporation of 32 P from (γ- 32 P)-ATP into endogenous proteins of plasma membranes isolated from rat liver was significantly increased by several naphthoquinones including menadione. This apparent stimulation of membrane-associated protein kinase activity by these compounds was most striking (up to 6-7 fold) when the synthetic copolymers containing glutamate and tyrosine residues (4:1) was used as substrate. Since tyrosine residues are the only possible phosphate acceptor in the copolymers, the quinone-stimulated liver membrane protein kinase is most likely tyrosine specific. Although not required for protein kinase activity, dithiothreitol (DTT) was necessary for its stimulation by these quinonoid compounds. Hydrolysis of ATP was not significantly affected by quinones under the experimental conditions. Both menadione and vitamin k 5 increased phosphorylation of plasma membrane proteins of molecular weight 45 and 60 kd. The stimulatory effect of menadione on protein phosphorylation was prevented by the addition of superoxide dismutase. Dihydroxyfumerate, which spontaneously produces various radical species, and H 2 O 2 , also stimulated tyrosine-specific protein phosphorylation. DTT was also required for their full effect. It, therefore, appears that quinonone stimulation of tyrosine-specific protein phosphorylation is mediated by oxygen radicals

  16. Tyrosine-sensitized photodimerization of thymine in aqueous solution

    International Nuclear Information System (INIS)

    Kaneko, M.; Matsuyama, A.; Nagata, C.

    1978-01-01

    Photodimerization of thymine in aqueous solution in the presence of tyrosine was studied with monochromatic UV irradiation. The total dimer formation was sensitized in the presence of tyrosine. The action spectrum of sensitized total dimer formation has a peak near 280 nm corresponding to the absorption maximum of tyrosine. Triplet quenchers reduced the sensitization substantially. It seems probable that tyrosine-sensitized photodimerization of thymine occurred via triplet-triplet energy transfer from tyrosine to thymine. (author)

  17. Natural compounds as a source of protein tyrosine phosphatase inhibitors : Application to the rational design of small-molecule derivatives

    NARCIS (Netherlands)

    Ferreira, Carmen V.; Justo, Giselle Z.; Souza, Ana C. S.; Queiroz, Karla C. S.; Zambuzzi, William F.; Aoyama, Hiroshi; Peppelenbosch, Maikel P.

    2006-01-01

    Reversible phosphorylation of tyrosine residues is a key regulatory mechanism for numerous cellular events. Protein tyrosine kinases and protein tyrosine phosphatases (PTPs) have a pivotal role in regulating both normal cell physiology and pathophysiology. Accordingly, deregulated activity of both

  18. Homeostatic mechanisms in dopamine synthesis and release: a mathematical model

    Directory of Open Access Journals (Sweden)

    Nijhout H Frederik

    2009-09-01

    Full Text Available Abstract Background Dopamine is a catecholamine that is used as a neurotransmitter both in the periphery and in the central nervous system. Dysfunction in various dopaminergic systems is known to be associated with various disorders, including schizophrenia, Parkinson's disease, and Tourette's syndrome. Furthermore, microdialysis studies have shown that addictive drugs increase extracellular dopamine and brain imaging has shown a correlation between euphoria and psycho-stimulant-induced increases in extracellular dopamine 1. These consequences of dopamine dysfunction indicate the importance of maintaining dopamine functionality through homeostatic mechanisms that have been attributed to the delicate balance between synthesis, storage, release, metabolism, and reuptake. Methods We construct a mathematical model of dopamine synthesis, release, and reuptake and use it to study homeostasis in single dopaminergic neuron terminals. We investigate the substrate inhibition of tyrosine hydroxylase by tyrosine, the consequences of the rapid uptake of extracellular dopamine by the dopamine transporters, and the effects of the autoreceoptors on dopaminergic function. The main focus is to understand the regulation and control of synthesis and release and to explicate and interpret experimental findings. Results We show that the substrate inhibition of tyrosine hydroxylase by tyrosine stabilizes cytosolic and vesicular dopamine against changes in tyrosine availability due to meals. We find that the autoreceptors dampen the fluctuations in extracellular dopamine caused by changes in tyrosine hydroxylase expression and changes in the rate of firing. We show that short bursts of action potentials create significant dopamine signals against the background of tonic firing. We explain the observed time courses of extracellular dopamine responses to stimulation in wild type mice and mice that have genetically altered dopamine transporter densities and the observed

  19. Survey of tyrosine kinase signaling reveals ROS kinase fusions in human cholangiocarcinoma.

    Directory of Open Access Journals (Sweden)

    Ting-Lei Gu

    Full Text Available Cholangiocarcinoma, also known as bile duct cancer, is the second most common primary hepatic carcinoma with a median survival of less than 2 years. The molecular mechanisms underlying the development of this disease are not clear. To survey activated tyrosine kinases signaling in cholangiocarcinoma, we employed immunoaffinity profiling coupled to mass spectrometry and identified DDR1, EPHA2, EGFR, and ROS tyrosine kinases, along with over 1,000 tyrosine phosphorylation sites from about 750 different proteins in primary cholangiocarcinoma patients. Furthermore, we confirmed the presence of ROS kinase fusions in 8.7% (2 out of 23 of cholangiocarcinoma patients. Expression of the ROS fusions in 3T3 cells confers transforming ability both in vitro and in vivo, and is responsive to its kinase inhibitor. Our data demonstrate that ROS kinase is a promising candidate for a therapeutic target and for a diagnostic molecular marker in cholangiocarcinoma. The identification of ROS tyrosine kinase fusions in cholangiocarcinoma, along with the presence of other ROS kinase fusions in lung cancer and glioblastoma, suggests that a more broadly based screen for activated ROS kinase in cancer is warranted.

  20. The effect of angiotensin 1-7 on tyrosine kinases activity in rat anterior pituitary

    International Nuclear Information System (INIS)

    Rebas, Elzbieta; Zabczynska, Joanna; Lachowicz, Agnieszka

    2006-01-01

    Angiotensin 1-7 (Ang 1-7) is a peptide originated from Ang II. It is known that in vessels Ang 1-7 shows opposite effects to Ang II. Ang 1-7 can modify processes of proliferation. However, Ang 1-7 action in pituitary gland cells was never studied. Moreover, the specific binding sites for Ang 1-7 are still unknown. The aim of this study was to examine the effects of Ang 1-7 on tyrosine kinases (PTKs) activity in the anterior pituitary. The reaction of phosphorylation was carrying out in presence of different concentration of Ang 1-7 and losartan (antagonist of AT1 receptor) and PD123319 (antagonist of AT2). Our results show that Ang 1-7 inhibited activity of PTK to 60% of basic activity. Losartan did not change the Ang 1-7-induced changes in PTKs activity. The presence of PD123319 together with Ang 1-7 caused stronger inhibition PTKs activity than Ang 1-7 alone. These observations suggest that Ang 1-7 binds to the novel, unknown, specific for this peptide receptor

  1. The carboxyl terminal tyrosine 417 residue of NOK has an autoinhibitory effect on NOK-mediated signaling transductions

    International Nuclear Information System (INIS)

    Li Yinghua; Zhong Shan; Rong Zhili; Ren Yongming; Li Zhiyong; Zhang Shuping; Chang Zhijie; Liu Li

    2007-01-01

    Receptor protein tyrosine kinases (RPTKs) are essential mediators of cell growth, differentiation, migration, and metabolism. Recently, a novel RPTK named NOK has been cloned and characterized. In current study, we investigated the role of the carboxyl terminal tyrosine 417 residue of NOK in the activations of different signaling pathways. A single tyrosine to phenylalanine point mutation at Y417 site (Y417 F) not only dramatically enhanced the NOK-induced activation of extracellular signal-regulated kinase (ERK), but also markedly promoted the NOK-mediated activation of both signal transducer and activator of transcription 1 and 3 (STAT1 and 3). Moreover, the proliferation potential of NIH3T3-NOK (Y417F) stable cells were significantly elevated as compared with that of NIH3T3-NOK. Overall, our results demonstrate that the tyrosine Y417 residue at the carboxyl tail of NOK exhibits an autoinhibitory role in NOK-mediated signaling transductions

  2. Expression and functional analysis of citrus carotene hydroxylases: unravelling the xanthophyll biosynthesis in citrus fruits.

    Science.gov (United States)

    Ma, Gang; Zhang, Lancui; Yungyuen, Witchulada; Tsukamoto, Issei; Iijima, Natsumi; Oikawa, Michiru; Yamawaki, Kazuki; Yahata, Masaki; Kato, Masaya

    2016-06-29

    Xanthophylls are oxygenated carotenoids and fulfill critical roles in plant growth and development. In plants, two different types of carotene hydroxylases, non-heme di-iron and heme-containing cytochrome P450, were reported to be involved in the biosynthesis of xanthophyll. Citrus fruits accumulate a high amount of xanthophylls, especially β,β-xanthophylls. To date, however, the roles of carotene hydroxylases in regulating xanthophyll content and composition have not been elucidated. In the present study, the roles of four carotene hydroxylase genes (CitHYb, CitCYP97A, CitCYP97B, and CitCYP97C) in the biosynthesis of xanthophyll in citrus fruits were investigated. Phylogenetic analysis showed that the four citrus carotene hydroxylases presented in four distinct clusters which have been identified in higher plants. CitHYb was a non-heme di-iron carotene hydroxylase, while CitCYP97A, CitCYP97B, and CitCYP97C were heme-containing cytochrome P450-type carotene hydroxylases. Gene expression results showed that the expression of CitHYb increased in the flavedo and juice sacs during the ripening process, which was well consistent with the accumulation of β,β-xanthophyll in citrus fruits. The expression of CitCYP97A and CitCYP97C increased with a peak in November, which might lead to an increase of lutein in the juice sacs during the ripening process. The expression level of CitCYP97B was much lower than that of CitHYb, CitCYP97A, and CitCYP97C in the juice sacs during the ripening process. Functional analysis showed that the CitHYb was able to catalyze the hydroxylation of the β-rings of β-carotene and α-carotene in Escherichia coli BL21 (DE3) cells. Meanwhile, when CitHYb was co-expressed with CitCYP97C, α-carotene was hydroxylated on the β-ring and ε-ring sequentially to produce lutein. CitHYb was a key gene for β,β-xanthophyll biosynthesis in citrus fruits. CitCYP97C functioned as an ε-ring hydroxylase to produce lutein using zeinoxanthin as a substrate

  3. Platelet-activating factor stimulation of tyrosine kinase and its relationship to phospholipase C in rabbit platelets: Studies with genistein and monoclonal antibody to phosphotyrosine

    International Nuclear Information System (INIS)

    Dhar, A.; Paul, A.K.; Shukla, S.D.

    1990-01-01

    Platelet-activating factor (PAF) is a proinflammatory lipid that has platelet-stimulating property. PAF receptor-coupled activation of phosphoinositide-specific phospholipase C (PLC) and phosphorylation of several proteins has already been established in our laboratory. To investigate further the molecular mechanism and relationship between activation of PLC and protein phosphorylation, we have used Genistein (a putative inhibitor of tyrosine-specific protein kinases), phosphotyrosine antibody, and phosphoamino acid analysis to probe the involvement of tyrosine kinase in this process. Washed rabbit platelets were loaded with myo-[2-3H]inositol and challenged with PAF (100 nM) after pretreatment with Genistein. PLC-mediated production of radioactive inositol monophosphate, inositol diphosphate, and inositol triphosphate was monitored. PAF alone caused stimulation of PLC activity [( 3H]inositol triphosphate production), whereas pretreatment with Genistein (0.5 mM) diminished PAF-stimulated PLC activity to basal level. Genistein also blocked PAF-stimulated platelet aggregation at this dose. In contrast to Genistein, staurosporine which inhibits protein kinase C, potentiated PAF-stimulated [3H]inositol triphosphate production. Genistein substantially inhibited the combined effects of staurosporine and PAF on inositol triphosphate production. Genistein also reduced PAF-induced phosphorylation of Mr 20,000 and 50,000 proteins. Phorbol 12-myristate 13-acetate-induced Mr 40,000 protein phosphorylation was also affected by Genistein. The above results suggested that Genistein inhibited tyrosine kinase at an early stage of signal transduction by inhibiting PLC. This, in turn, decreased the activation of protein kinase C and, therefore, caused a reduction in Mr 40,000 protein phosphorylation

  4. Phenylketonuria : Tyrosine beyond the phenylalanine-restricted diet

    NARCIS (Netherlands)

    van Spronsen, FJ; Smit, PGA; Koch, R

    Controversies exist on the role of tyrosine in the pathogenesis of phenylketonuria (PKU) and, consequently, on the therapeutic role of tyrosine. This review examines data and theoretical considerations on the role of tyrosine in the pathogenesis and treatment of PKU. It is concluded that treatment

  5. Rates and energetics of tyrosine ring flips in yeast iso-2-cytochrome c

    International Nuclear Information System (INIS)

    Nall, B.T.; Zuniga, E.H.

    1990-01-01

    Isotope-edited nuclear magnetic resonance spectroscopy is used to monitor ring flip motion of the five tyrosine side chains in the oxidized and reduced forms of yeast iso-2-cytochrome c. With specifically labeled protein purified from yeast grown on media containing [3,5- 13 C]tyrosine, isotope-edited one-dimensional proton spectra have been collected over a 5-55 degree C temperature range. The spectra allow selective observation of the 10 3,5 tyrosine ring proton resonances and, using a two-site exchange model, allow estimation of the temperature dependence of ring flip rates from motion-induced changes in proton line shapes. For the reduced protein, tyrosines II and IV are in fast exchange throughout the temperature range investigated, or lack resolvable differences in static chemical shifts for the 3,5 ring protons. Tyrosines I, III, and V are in sloe exchange at low temperatures and in fast exchange at high temperatures. Spectral simulations give flip rates for individual tyrosines in a range of one flip per second at low temperatures to thousands of flips per second at high temperatures. Eyring plots show that two of the tyrosines (I and III) have essentially the same activation parameters. Tentative sequence-specific assignments for the tyrosines in reduced iso-2 are suggested by comparison to horse cytochrome c. For oxidized iso-2, five resonances are observed at high temperatures, suggesting flip rates for all five tyrosines sufficient to average static chemical shift differences. At lower temperatures, there is evidence of intermediate and slow flipping for some of the rings

  6. Dopamine D1 and D2 receptor immunoreactivities in the arcuate-median eminence complex and their link to the tubero-infundibular dopamine neurons

    Directory of Open Access Journals (Sweden)

    W. Romero-Fernandez

    2014-07-01

    Full Text Available Dopamine D1 and D2 receptor immunohistochemistry and Golgi techniques were used to study the structure of the adult rat arcuate-median eminence complex, and determine the distribution of the dopamine D1 and D2 receptor immunoreactivities therein, particularly in relation to the tubero-infundibular dopamine neurons. Punctate dopamine D1 and D2 receptor immunoreactivities, likely located on nerve terminals, were enriched in the lateral palisade zone built up of nerve terminals, while the densities were low to modest in the medial palisade zone. A codistribution of dopamine D1 receptor or dopamine D2 receptor immunoreactive puncta with tyrosine hydroxylase immunoreactive nerve terminals was demonstrated in the external layer. Dopamine D1 receptor but not dopamine D2 receptor immnunoreactivites nerve cell bodies were found in the ventromedial part of the arcuate nucleus and in the lateral part of the internal layer of the median eminence forming a continuous cell mass presumably representing neuropeptide Y immunoreactive nerve cell bodies. The major arcuate dopamine/ tyrosine hydroxylase nerve cell group was found in the dorsomedial part. A large number of tyrosine hydroxylase immunoreactive nerve cell bodies in this region demonstrated punctate dopamine D1 receptor immunoreactivity but only a few presented dopamine D2 receptor immunoreactivity which were mainly found in a substantial number of tyrosine hydroxylase cell bodies of the ventral periventricular hypothalamic nucleus, also belonging to the tubero-infundibular dopamine neurons. Structural evidence for projections of the arcuate nerve cells into the median eminence was also obtained. Distal axons formed horizontal axons in the internal layer issuing a variable number of collaterals classified into single or multiple strands located in the external layer increasing our understanding of the dopamine nerve terminal networks in this region.  Dopamine D1 and D2 receptors may therefore directly

  7. Anti-dopamine beta-hydroxylase immunotoxin-induced sympathectomy in adult rats

    Science.gov (United States)

    Picklo, M. J.; Wiley, R. G.; Lonce, S.; Lappi, D. A.; Robertson, D.

    1995-01-01

    Anti-dopamine beta-hydroxylase immunotoxin (DHIT) is an antibody-targeted noradrenergic lesioning tool comprised of a monoclonal antibody against the noradrenergic enzyme, dopamine beta-hydroxylase, conjugated to saporin, a ribosome-inactivating protein. Noradrenergic-neuron specificity and completeness and functionality of sympathectomy were assessed. Adult, male Sprague-Dawley rats were given 28.5, 85.7, 142 or 285 micrograms/kg DHIT i.v. Three days after injection, a 6% to 73% decrease in the neurons was found in the superior cervical ganglia of the animals. No loss of sensory, nodose and dorsal root ganglia, neurons was observed at the highest dose of DHIT. In contrast, the immunotoxin, 192-saporin (142 micrograms/kg), lesioned all three ganglia. To assess the sympathectomy, 2 wk after treatment (285 micrograms/kg), rats were anesthetized with urethane (1 g/kg) and cannulated in the femoral artery and vein. DHIT-treated animals' basal systolic blood pressure and heart rate were significantly lower than controls. Basal plasma norepinephrine levels were 41% lower in DHIT-treated animals than controls. Tyramine-stimulated release of norepinephrine in DHIT-treated rats was 27% of controls. Plasma epinephrine levels of DHIT animals were not reduced. DHIT-treated animals exhibited a 2-fold hypersensitivity to the alpha-adrenergic agonist phenylephrine. We conclude that DHIT selectively delivered saporin to noradrenergic neurons resulting in destruction of these neurons. Anti-dopamine beta-hydroxylase immunotoxin administration produces a rapid, irreversible sympathectomy.

  8. New compounds from acid hydrolyzed products of the fruits of Momordica charantia L. and their inhibitory activity against protein tyrosine phosphatas 1B.

    Science.gov (United States)

    Zeng, Ke; He, Yan-Ni; Yang, Di; Cao, Jia-Qing; Xia, Xi-Chun; Zhang, Shi-Jun; Bi, Xiu-Li; Zhao, Yu-Qing

    2014-06-23

    Four new cucurbitane-type triterpene sapogenins, compounds 1-4, together with other eight known compounds were isolated from the acid-hydrolyzed fruits extract of Momordica charantia L. Their chemical structures were established by NMR, mass spectrometry and X-ray crystallography. Compounds 1-7 and 9-12 were evaluated for their inhibitory activities toward protein tyrosine phosphatase 1B (PTP1B), a tyrosine phosphatase that has been implicated as a key target for therapy against type II diabetes. Compounds 1, 2, 4, 7 and 9 were shown inhibitory activities of 77%, 62%, 62% 60% and 68% against PTP1B, respectively. All of these tested compounds were exhibited higher PTP1B inhibition activities than that of the Na3VO4, a known PTP1B inhibitor used as positive control in present study. Structure activity relationship (SAR) analysis indicated that the inhibition activity of PTP1B was associated with the presence and number of -OH groups. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  9. 21 CFR 862.1730 - Free tyrosine test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Free tyrosine test system. 862.1730 Section 862....1730 Free tyrosine test system. (a) Identification. A free tyrosine test system is a device intended to measure free tyrosine (an amono acid) in serum and urine. Measurements obtained by this device are used in...

  10. Super-resolution microscopy reveals functional organization of dopamine transporters into cholesterol and neuronal activity-dependent nanodomains

    DEFF Research Database (Denmark)

    Rahbek-Clemmensen, Troels; Lycas, Matthew D.; Erlendsson, Simon

    2017-01-01

    is dynamically sequestrated into cholesterol-dependent nanodomains in the plasma membrane of presynaptic varicosities and neuronal projections of dopaminergic neurons. Stochastic optical reconstruction microscopy reveals irregular dopamine transporter nanodomains (∼70 nm mean diameter) that were highly sensitive...... to cholesterol depletion. Live photoactivated localization microscopy shows a similar dopamine transporter membrane organization in live heterologous cells. In neurons, dual-color dSTORM shows that tyrosine hydroxylase and vesicular monoamine transporter-2 are distinctively localized adjacent to...

  11. New tyrosinase inhibitory decapeptide: Molecular insights into the role of tyrosine residues.

    Science.gov (United States)

    Ochiai, Akihito; Tanaka, Seiya; Imai, Yuta; Yoshida, Hisashi; Kanaoka, Takumi; Tanaka, Takaaki; Taniguchi, Masayuki

    2016-06-01

    Tyrosinase, a rate-limiting enzyme in melanin biosynthesis, catalyzes the hydroxylation of l-tyrosine to 3,4-dihydroxy-l-phenylalanine (l-dopa) (monophenolase reaction) and the subsequent oxidation of l-dopa to l-dopaquinone (diphenolase reaction). Thus, tyrosinase inhibitors have been proposed as skin-lightening agents; however, many of the existing inhibitors cannot be widely used in the cosmetic industry due to their high cytotoxicity and instability. On the other hand, some tyrosinase inhibitory peptides have been reported as safe. In this study, we found that the peptide TH10, which has a similar sequence to the characterized inhibitory peptide P4, strongly inhibits the monophenolase reaction with a half-maximal inhibitory concentration of 102 μM. Seven of the ten amino acid residues in TH10 were identical to P4; however, TH10 possesses one N-terminal tyrosine, whereas P4 contains three tyrosine residues located at its N-terminus, center, and C-terminus. Subsequent analysis using sequence-shuffled variants indicated that the tyrosine residues located at the N-terminus and center of P4 have little to no contribution to its inhibitory activity. Furthermore, docking simulation analysis of these peptides with mushroom tyrosinase demonstrated that the active tyrosine residue was positioned close to copper ions, suggesting that TH10 and P4 bind to tyrosinase as a substrate analogue. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Euglena mitochondria and chloroplasts form tyrosine-O-sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Saidha, T.; Hanfstingl, U.; Schiff, J.A. (Brandeis Univ., Waltham, MA (USA))

    1989-04-01

    Mitochondria from light-grown wild-type Euglena gracilis var. bacillaris Cori or dark-grown mutant W{sub 10}BSmL incubated with {sup 35}SO{sub 4}{sup 2{minus}} and ATP, or with {sup 14}C-tyrosine, non-radioactive sulfate and ATP accumulate a labeled compound in the medium. Since this compound shows exact coelectrophoresis with tyrosine-O-sulfate (TOS) at pH 2.0, 5.8 or 8.0., yields sulfate and tyrosine on acid hydrolysis, and treatment with aryl sulfatase from Aerobacter aerogenes yields sulfate and tyrosine but no tyrosine methyl ester, it is identified as TOS. No TOS is found outside purified developing chloroplasts incubated with {sup 35}SO{sub 4}{sup 2{minus}} and ATP, but both chloroplasts and mitochondria form to {sup 35}S externally when incubated with adenosine 3{prime} phosphate 5{prime}phospho({sup 35}S) sulfate (PAP{sup 35}S). Since no tyrosine need be added, tyrosine is provided from endogenous sources. Although TOS is found in the free pool of Euglena cells it cannot be detected in proteins of cells or mucus ruling our sulfation of tyrosine of protein or incorporation of TOS into proteins. The system forming TOS is membrane-bound and may be involved in tyrosine transport.

  13. Characterization of carotenoid hydroxylase gene promoter in Haematococcus pluvialis.

    Science.gov (United States)

    Meng, C X; Wei, W; Su, Z- L; Qin, S

    2006-10-01

    Astaxanthin, a high-value ketocarotenoid is mainly used in fish aquaculture. It also has potential in human health due to its higher antioxidant capacity than beta-carotene and vitamin E. The unicellular green alga Haematococcus pluvialis is known to accumulate astaxanthin in response to environmental stresses, such as high light intensity and salt stress. Carotenoid hydroxylase plays a key role in astaxanthin biosynthesis in H. pluvialis. In this paper, we report the characterization of a promoter-like region (-378 to -22 bp) of carotenoid hydroxylase gene by cloning, sequence analysis and functional verification of its 919 bp 5'-flanking region in H. pluvialis. The 5'-flanking region was characterized using micro-particle bombardment method and transient expression of LacZ reporter gene. Results of sequence analysis showed that the 5'-flanking region might have putative cis-acting elements, such as ABA (abscisic acid)-responsive element (ABRE), C-repeat/dehydration responsive element (C-repeat/DRE), ethylene-responsive element (ERE), heat-shock element (HSE), wound-responsive element (WUN-motif), gibberellin-responsive element (P-box), MYB-binding site (MBS) etc., except for typical TATA and CCAAT boxes. Results of 5' deletions construct and beta-galactosidase assays revealed that a highest promoter-like region might exist from -378 to -22 bp and some negative regulatory elements might lie in the region from -919 to -378 bp. Results of site-directed mutagenesis of a putative C-repeat/DRE and an ABRE-like motif in the promoter-like region (-378 to -22 bp) indicated that the putative C-repeat/DRE and ABRE-like motif might be important for expression of carotenoid hydroxylase gene.

  14. Activated Fps/Fes tyrosine kinase regulates erythroid differentiation and survival.

    Science.gov (United States)

    Sangrar, Waheed; Gao, Yan; Bates, Barbara; Zirngibl, Ralph; Greer, Peter A

    2004-10-01

    A substantial body of evidence implicates the cytoplasmic protein tyrosine kinase Fps/Fes in regulation of myeloid differentiation and survival. In this study we wished to determine if Fps/Fes also plays a role in the regulation of erythropoiesis. Mice tissue-specifically expressing a "gain-of-function" mutant fps/fes transgene (fps(MF)) encoding an activated variant of Fps/Fes (MFps), were used to explore the in vivo biological role of Fps/Fes. Erythropoiesis in these mice was assessed by hematological analysis, lineage marker analysis, bone-marrow colony assays, and biochemical approaches. fps(MF) mice displayed reductions in peripheral red cell counts. However, there was an accumulation of immature erythroid precursors, which displayed increased survival. Fps/Fes and the related Fer kinase were both detected in early erythroid progenitors/blasts and in mature red cells. Fps/Fes was also activated in response to erythropoietin (EPO) and stem cell factor (SCF), two critical factors in erythroid development. In addition, increased Stat5A/B activation and reduced Erk1/2 phosphorylation was observed in fps(MF) primary erythroid cells in response to EPO or SCF, respectively. These data support a role for Fps/Fes in regulating the survival and differentiation of erythroid cells through modulation of Stat5A/B and Erk kinase pathways induced by EPO and SCF. The increased numbers and survival of erythroid progenitors from fps(MF) mice, and their differential responsiveness to SCF and EPO, implicates Fps/Fes in the commitment of multilineage progenitors to the erythroid lineage. The anemic phenotype in fps(MF) mice suggests that downregulation of Fps/Fes activity might be required for terminal erythroid differentiation.

  15. Role of focal adhesion tyrosine kinases in GPVI-dependent platelet activation and reactive oxygen species formation.

    Directory of Open Access Journals (Sweden)

    Naadiya Carrim

    Full Text Available We have previously shown the presence of a TRAF4/p47phox/Hic5/Pyk2 complex associated with the platelet collagen receptor, GPVI, consistent with a potential role of this complex in GPVI-dependent ROS formation. In other cell systems, NOX-dependent ROS formation is facilitated by Pyk2, which along with its closely related homologue FAK are known to be activated and phosphorylated downstream of ligand binding to GPVI.To evaluate the relative roles of Pyk2 and FAK in GPVI-dependent ROS formation and to determine their location within the GPVI signaling pathway.Human and mouse washed platelets (from WT or Pyk2 KO mice were pre-treated with pharmacological inhibitors targeting FAK or Pyk2 (PF-228 and Tyrphostin A9, respectively and stimulated with the GPVI-specific agonist, CRP. FAK, but not Pyk2, was found to be essential for GPVI-dependent ROS production and aggregation. Subsequent human platelet studies with PF-228 confirmed FAK is essential for GPVI-mediated phosphatidylserine exposure, α-granule secretion (P-selectin (CD62P surface expression and integrin αIIbβ3 activation. To determine the precise location of FAK within the GPVI pathway, we analyzed the effect of PF-228 inhibition in CRP-stimulated platelets in conjunction with immunoprecipitation and pulldown analysis to show that FAK is downstream of Lyn, Spleen tyrosine kinase (Syk, PI3-K and Bruton's tyrosine kinase (Btk and upstream of Rac1, PLCγ2, Ca2+ release, PKC, Hic-5, NOX1 and αIIbβ3 activation.Overall, these data suggest a novel role for FAK in GPVI-dependent ROS formation and platelet activation and elucidate a proximal signaling role for FAK within the GPVI pathway.

  16. Structural and Kinetic Studies of Novel Cytochrome P450 Small-Alkane Hydroxylases

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Frances H.

    2012-02-27

    The goals of this project are to investigate (1) the kinetics and stabilities of engineered cytochrome P450 (P450) small alkane hydroxylases and their evolutionary intermediates, (2) the structural basis for catalytic proficiency on small alkanes of these engineered P450s, and (3) the changes in redox control resulting from protein engineering. To reach these goals, we have established new methods for determining the kinetics and stabilities of multicomponent P450s such as CYP153A6. Using these, we were able to determine that CYP153A6 is proficient for hydroxylation of alkanes as small as ethane, an activity that has never been observed previously in any natural P450. To elucidate the structures of the engineered P450s, we obtained x-ray diffraction data for two variants in the P450PMO (propane monooxygenase) lineage and a preliminary structure for the most evolved variant. This structure shows changes in the substrate binding regions of the enzyme and a reduction in active site volume that are consistent with the observed changes in substrate specificity from fatty acids in the native enzyme to small alkanes in P450PMO. We also constructed semi-rational designed libraries mutating only residues in the enzyme active site that in one round of mutagenesis and screening produced variants that achieved nearly half of the activity of the most evolved enzymes of the P450PMO lineage. Finally, we found that changes in redox properties of the laboratory-evolved P450 alkane hydroxylases did not reflect the improvement in their electron transfer efficiency. The heme redox potential remained constant throughout evolution, while activity increased and coupling efficiency improved from 10% to 90%. The lack of correlation between heme redox potential and enzyme activity and coupling efficiency led us to search for other enzyme properties that could be better predictors for activity towards small alkanes, specifically methane. We investigated the oxidation potential of the radical

  17. Environmental Exposures, Genetic Polymorphisms and p53 Mutational Spectra in a Case-Control Study of Breast Cancer

    Science.gov (United States)

    1999-01-01

    activities in alimentary tract. Gastroenterology 1997;112:766-75. 38. Moreno A, Pares A, Ortiz J, Enriquez J, Pares X. Alcohol dehydrogenase from human...preliminary data analysis, Dr. Terri Lehman and Bioserve Biotechnologies (Laurel, MD) for their technical expertise, Drs. Joel Gelernter, David Comings...genes with the tyrosine hydroxylase was performed at Bioserve cigarette smoking. In a recent study of the polymorphic Biotechnologies (Laurel, MD, USA

  18. Selective Sensing of Tyrosine Phosphorylation in Peptides Using Terbium(III Complexes

    Directory of Open Access Journals (Sweden)

    Jun Sumaoka

    2016-01-01

    Full Text Available Phosphorylation of tyrosine residues in proteins, as well as their dephosphorylation, is closely related to various diseases. However, this phosphorylation is usually accompanied by more abundant phosphorylation of serine and threonine residues in the proteins and covers only 0.05% of the total phosphorylation. Accordingly, highly selective detection of phosphorylated tyrosine in proteins is an urgent subject. In this review, recent developments in this field are described. Monomeric and binuclear TbIII complexes, which emit notable luminescence only in the presence of phosphotyrosine (pTyr, have been developed. There, the benzene ring of pTyr functions as an antenna and transfers its photoexcitation energy to the TbIII ion as the emission center. Even in the coexistence of phosphoserine (pSer and phosphothreonine (pThr, pTyr can be efficintly detected with high selectivity. Simply by adding these TbIII complexes to the solutions, phosphorylation of tyrosine in peptides by protein tyrosine kinases and dephosphorylation by protein tyrosine phosphatases can be successfully visualized in a real-time fashion. Furthermore, the activities of various inhibitors on these enzymes are quantitatively evaluated, indicating a strong potential of the method for efficient screening of eminent inhibitors from a number of candidates.

  19. Insulin treatment promotes tyrosine phosphorylation of PKR and inhibits polyIC induced PKR threonine phosphorylation.

    Science.gov (United States)

    Swetha, Medchalmi; Ramaiah, Kolluru V A

    2015-11-01

    Tyrosine phosphorylation of insulin receptor beta (IRβ) in insulin treated HepG2 cells is inversely correlated to ser(51) phosphorylation in the alpha-subunit of eukaryotic initiation factor 2 (eIF2α) that regulates protein synthesis. Insulin stimulates interaction between IRβ and PKR, double stranded RNA-dependent protein kinase, also known as EIF2AK2, and phosphorylation of tyrosine residues in PKR, as analyzed by immunoprecipitation and pull down assays using anti-IRβ and anti-phosphotyrosine antibodies, recombinant IRβ and immunopurified PKR. Further polyIC or synthetic double stranded RNA-induced threonine phosphorylation or activation of immunopurified and cellular PKR is suppressed in the presence of insulin treated purified IRβ and cell extracts. Acute, but not chronic, insulin treatment enhances tyrosine phosphorylation of IRβ, its interaction with PKR and tyrosine phosphorylation of PKR. In contrast, lipopolysaccharide that stimulates threonine phosphorylation of PKR and eIF2α phosphorylation and AG 1024, an inhibitor of the tyrosine kinase activity of IRβ, reduces PKR association with the receptor, IRβ in HepG2 cells. These findings therefore may suggest that tyrosine phosphorylated PKR plays a role in the regulation of insulin induced protein synthesis and in maintaining insulin sensitivity, whereas, suppression of polyIC-mediated threonine phosphorylation of PKR by insulin compromises its ability to fight against virus infection in host cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Phosphorylated c-Mpl tyrosine 591 regulates thrombopoietin-induced signaling.

    Science.gov (United States)

    Sangkhae, Veena; Saur, Sebastian Jonas; Kaushansky, Alexis; Kaushansky, Kenneth; Hitchcock, Ian Stuart

    2014-06-01

    Thrombopoietin (TPO) is the primary regulator of platelet production, affecting cell survival, proliferation, and differentiation through binding to and stimulation of the cell surface receptor the cellular myeloproliferative leukemia virus oncogene (c-Mpl). Activating mutations in c-Mpl constitutively stimulate downstream signaling pathways, leading to aberrant hematopoiesis, and contribute to development of myeloproliferative neoplasms. Several studies have mapped the tyrosine residues within the cytoplasmic domain of c-Mpl that mediate these cellular signals; however, secondary signaling pathways are incompletely understood. In this study, we focused on c-Mpl tyrosine 591 (Y591). We found Y591 of wild-type c-Mpl to be phosphorylated in the presence of TPO. Additionally, eliminating Y591 phosphorylation by mutation to Phe resulted in decreased total receptor phosphorylation. Using a Src homology 2/phosphotyrosine-binding (SH2/PTB) domain binding microarray, we identified novel c-Mpl binding partners for phosphorylated Y591, including Src homology region 2 domain-containing phosphatase-1 (SHP-1), spleen tyrosine kinase (SYK) and Bruton's tyrosine kinase (BTK). The functional significance of binding partners was determined through small interfering RNA treatment of Ba/F3-Mpl cells, confirming that the increase in pERK1/2 resulting from removal of Y591 may be mediated by spleen tyrosine kinase. These findings identify a novel negative regulatory pathway that controls TPO-mediated signaling, advancing our understanding of the mechanisms required for successful maintenance of hematopoietic stem cells and megakaryocyte development. Copyright © 2014 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  1. Synthesis of 2-[18F]fluoro-L-tyrosine via regiospecific fluoro-de-stannylation

    International Nuclear Information System (INIS)

    Hess, E.; Sichler, S.; Kluge, A.; Coenen, H.H.

    2002-01-01

    2-[ 18 F]Fluoro-L-tyrosine is a fluorine labelled amino acid, known to be incorporated into newly synthesised proteins, rendering it a potentially suitable tracer to image protein metabolism in vivo using positron emission tomography. For the electrophilic preparation of 2-[ 18 F]fluoro-L-tyrosine three protected 2-trialkylstannyl tyrosine derivatives have been synthesised for the first time as precursors. While O,N-di-Boc-2-triethylstannyl-L-tyrosine ethylester has proved to be suitable as precursor for radiosynthesis, imidazolidinon-derivatives of 2-triaklylstannyl tyrosine have not because of difficult fast hydrolysis of a phenolic O-methyl protective group. The di-Boc-tin derivative of tyrosine ethylester readily reacted with [ 18 F]F 2 , which was prepared via the 18 O(p,n) 18 F nuclear reaction. 2-[ 18 F]Fluoro-L-tyrosine was isolated after full deprotection with aqueous hydrobromic acid and HPLC purification with activities of 1.41±0.32 GBq. The isomeric and enantiomeric purity is high (both >99%). The preparation procedure is facile and easy to automate. The chemical yields of this fluoro-de-stannylation reaction as well as of the synthesis of 6-[ 18 F]fluoro-L-dopa, determined with an analogous precursor and non-radioactive fluorine under identical conditions, amounted to 42.7±1.6% and 60.2±2.8%, respectively

  2. Neuroprotective effect of Portulaca oleracea extracts against 6-hydroxydopamine-induced lesion of dopaminergic neurons

    Directory of Open Access Journals (Sweden)

    WALESKA B. MARTINS

    2016-01-01

    Full Text Available ABSTRACT The Portulaca oleracea L. (Portulacaceae is a cosmopolitan species with a wide range of biological activities, including antioxidant and neuroprotective actions. We investigated the effects of P. oleracea extracts in a 6-hydroxydopamine rat model of Parkinson's disease, a debilitating disorder without effective treatments. Chemical profiles of aqueous and ethanolic extracts of whole plant were analyzed by thin layer chromatography and the antioxidant activity was assessed by 2,2-diphenyl-1-picrilhidrazila method. Male Wistar rats received intrastriatal 6-hydroxydopamine and were treated with vehicle or extracts (oral, 200 and 400 mg/kg daily for two weeks. The behavioral open field test was conducted at days 1 and 15. Immunohistochemical analysis was performed 4 weeks after surgery to quantify tyrosine-hydroxylase cell counts in the substantia nigra pars compacta. Extracts presented antioxidant activity in concentrations above 300 µg/kg. The chromatographic analysis revealed the presence of Levodopa, alkaloids, flavonoids, saponins, tannins, terpenoids and polysaccharides. Both extracts improved motor recovery 15 days after lesion and protected from tyrosine-hydroxylase cell loss after 4 weeks, but these effects were more evident for the aqueous extract. Because the dopamine precursor is present, in addition to antioxidant compounds and neuroprotective effects, P. oleracea can be considered as potential strategy for treating Parkinson's disease.

  3. Neuroprotective effect of Portulaca oleracea extracts against 6-hydroxydopamine-induced lesion of dopaminergic neurons.

    Science.gov (United States)

    Martins, Waleska B; Rodrigues, Sheyla A; Silva, Hatamy K; Dantas, Camila G; Júnior, Waldecy DE Lucca; Filho, Lauro Xavier; Cardoso, Juliana C; Gomes, Margarete Z

    2016-09-01

    The Portulaca oleracea L. (Portulacaceae) is a cosmopolitan species with a wide range of biological activities, including antioxidant and neuroprotective actions. We investigated the effects of P. oleracea extracts in a 6-hydroxydopamine rat model of Parkinson's disease, a debilitating disorder without effective treatments. Chemical profiles of aqueous and ethanolic extracts of whole plant were analyzed by thin layer chromatography and the antioxidant activity was assessed by 2,2-diphenyl-1-picrilhidrazila method. Male Wistar rats received intrastriatal 6-hydroxydopamine and were treated with vehicle or extracts (oral, 200 and 400 mg/kg) daily for two weeks. The behavioral open field test was conducted at days 1 and 15. Immunohistochemical analysis was performed 4 weeks after surgery to quantify tyrosine-hydroxylase cell counts in the substantia nigra pars compacta. Extracts presented antioxidant activity in concentrations above 300 µg/kg. The chromatographic analysis revealed the presence of Levodopa, alkaloids, flavonoids, saponins, tannins, terpenoids and polysaccharides. Both extracts improved motor recovery 15 days after lesion and protected from tyrosine-hydroxylase cell loss after 4 weeks, but these effects were more evident for the aqueous extract. Because the dopamine precursor is present, in addition to antioxidant compounds and neuroprotective effects, P. oleracea can be considered as potential strategy for treating Parkinson's disease.

  4. Protein tyrosine nitration in the cell cycle

    International Nuclear Information System (INIS)

    Jia, Min; Mateoiu, Claudia; Souchelnytskyi, Serhiy

    2011-01-01

    Highlights: → Enrichment of 3-nitrotyrosine containing proteins from cells synchronized in different phases of the cell cycle. → Identification of 76 tyrosine nitrated proteins that change expression during the cell cycle. → Nineteen identified proteins were previously described as regulators of cell proliferation. -- Abstract: Nitration of tyrosine residues in proteins is associated with cell response to oxidative/nitrosative stress. Tyrosine nitration is relatively low abundant post-translational modification that may affect protein functions. Little is known about the extent of protein tyrosine nitration in cells during progression through the cell cycle. Here we report identification of proteins enriched for tyrosine nitration in cells synchronized in G0/G1, S or G2/M phases of the cell cycle. We identified 27 proteins in cells synchronized in G0/G1 phase, 37 proteins in S phase synchronized cells, and 12 proteins related to G2/M phase. Nineteen of the identified proteins were previously described as regulators of cell proliferation. Thus, our data indicate which tyrosine nitrated proteins may affect regulation of the cell cycle.

  5. A bipolar clamp mechanism for activation of Jak-family protein tyrosine kinases.

    Directory of Open Access Journals (Sweden)

    Dipak Barua

    2009-04-01

    Full Text Available Most cell surface receptors for growth factors and cytokines dimerize in order to mediate signal transduction. For many such receptors, the Janus kinase (Jak family of non-receptor protein tyrosine kinases are recruited in pairs and juxtaposed by dimerized receptor complexes in order to activate one another by trans-phosphorylation. An alternative mechanism for Jak trans-phosphorylation has been proposed in which the phosphorylated kinase interacts with the Src homology 2 (SH2 domain of SH2-B, a unique adaptor protein with the capacity to homo-dimerize. Building on a rule-based kinetic modeling approach that considers the concerted nature and combinatorial complexity of modular protein domain interactions, we examine these mechanisms in detail, focusing on the growth hormone (GH receptor/Jak2/SH2-Bbeta system. The modeling results suggest that, whereas Jak2-(SH2-Bbeta(2-Jak2 heterotetramers are scarcely expected to affect Jak2 phosphorylation, SH2-Bbeta and dimerized receptors synergistically promote Jak2 trans-activation in the context of intracellular signaling. Analysis of the results revealed a unique mechanism whereby SH2-B and receptor dimers constitute a bipolar 'clamp' that stabilizes the active configuration of two Jak2 molecules in the same macro-complex.

  6. Photoinduced electron transfer for an eosin-tyrosine conjugate. Activity of the tyrosinate anion in long-range electron transfer in a protein-like polymer matrix

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G. II; Feng, Z.; Oh, C. [Boston Univ., MA (United States)

    1995-03-23

    The Xanthene dye eosin Y has been modified via a thiohydantoin link to the amine terminus of the amino acid L-tyrosine. Photochemical electron transfer involving the singlet state of the dye and the attached phenol-containing residue led to a reduction in eosin fluorescence quantum yield and lifetime for aqueous solutions at elevated pH. The conjugate provided an electron transfer product of relatively long lifetime (1 {mu}s range) observed by flash photolysis of solutions at pH 12.0, conditions under which the tyrosine moiety is ionized. The effects of binding of the conjugate in the polymer poly(vinylpyrrolidone) (PVP) on the rates of electron transfer of species of different charge type were examined. 30 refs., 5 figs., 1 tab.

  7. Phosphorylation-mediated regulation of the Staphylococcus aureus secreted tyrosine phosphatase PtpA.

    Science.gov (United States)

    Brelle, Solène; Baronian, Grégory; Huc-Brandt, Sylvaine; Zaki, Laila Gannoun; Cohen-Gonsaud, Martin; Bischoff, Markus; Molle, Virginie

    2016-01-15

    Due to the emergence of methicillin-resistant strains, Staphylococcus aureus has become as major public-health threat. Studies aimed at deciphering the molecular mechanism of virulence are thus required to identify new targets and develop efficient therapeutic agents. Protein phosphorylations are known to play key regulatory functions and their roles in pathogenesis are under intense scrutiny. Here we analyzed the protein tyrosine phosphatase PtpA of S. aureus, a member of the family of low molecular weight protein tyrosine phosphatases that are often secreted by pathogenic bacteria. We report for the first time that PtpA is phosphorylated in vitro by the S. aureus tyrosine kinase CapA1B2. A mass spectrometry approach allowed determining that Tyr122 and Tyr123 were the only two residues phosphorylated by this kinase. This result was confirmed by analysis of a double PtpA_Y122A/Y123A mutant that showed no phosphorylation by CapA1B2. Interestingly, PtpA phosphatase activity was abrogated in this mutant, suggesting a key regulatory function for these two tyrosine residues. This was further reinforced by the observation that CapA1B2-mediated phosphorylation significantly increased PtpA phosphatase activity. Moreover, we provide evidence that PtpA is secreted during growth of S. aureus. Together our results suggest that PtpA is an exported S. aureus signaling molecule controlled by tyrosine phosphorylation which may interfere with host cell signaling. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Tyrosine phosphorylation of Grb14 by Tie2

    Directory of Open Access Journals (Sweden)

    Dumont Daniel J

    2010-10-01

    Full Text Available Abstract Background Growth factor receptor bound (Grb proteins 7, 10 and 14 are a family of structurally related multi-domain adaptor proteins involved in a variety of biological processes. Grb7, 10 and 14 are known to become serine and/or threonine phosphorylated in response to growth factor (GF stimulation. Grb7 and 10 have also been shown to become tyrosine phosphorylated under certain conditions. Under experimental conditions Grb7 is tyrosine phosphorylated by the Tie2/Tie-2/Tek angiogenic receptor tyrosine kinase (RTK. Furthermore, Grb14 has also been shown to interact with Tie2, however tyrosine phosphorylation of this Grb family member has yet to be reported. Results Here we report for the first time tyrosine phosphorylation of Grb14. This phosphorylation requires a kinase competent Tie2 as well as intact tyrosines 1100 and 1106 (Y1100 and Y1106 on the receptor. Furthermore, a complete SH2 domain on Grb14 is required for Grb14 tyrosine phosphorylation by Tie2. Grb14 was also able to become tyrosine phosphorylated in primary endothelial cells when treated with a soluble and potent variant of the Tie2 ligand, cartilage oligomeric matrix protein (COMP Ang1. Conclusion Our results show that Grb14, like its family members Grb7 and Grb10, is able to be tyrosine phosphorylated. Furthermore, our data indicate a role for Grb14 in endothelial signaling downstream of the Tie2 receptor.

  9. Tyrosine phosphorylation in signal transduction

    International Nuclear Information System (INIS)

    Roberts, T.M.; Kaplan, D.; Morgan, W.; Keller, T.; Mamon, H.; Piwnica-Worms, H.; Druker, B.; Whitman, M.; Morrison, D.; Cohen, B.; Schaffhausen, B.; Cantley, L.; Rapp, U.

    1988-01-01

    Recent work has focused on the elucidation of the mechanisms by which membrane-bound tyrosine kinases transmit signals within the cell. To examine the role of tyrosine phosphorylation the authors have employed the following strategy. First, they have utilized antibodies to phosphotyrosine (anti-P.Tyr) to identify candidate substrates of various tyrosine kinases, such as pp60 c-src , the CSF- receptor, or the platelet-derived growth factor (PDGF) receptor. Second, they have attempted to characterize the biochemical properties of the putative substrates and to determine in what manner these properties are modified by phosphorylation on tyrosine residues. In this endeavor, they are recapitulating the classic biochemical analysis used to study the effect of kinases on metabolism. The final portion of our work consists of using modern molecular biological strategies to clone the genes or cDNAs for the substrates and overproduce the relevant proteins for studies in vitro in defined systems. This paper describes the first and second aspects of this strategy, the identification and characterization of novel substrate molecules

  10. 2D QSAR studies of the inhibitory activity of a series of substituted purine derivatives against c-Src tyrosine kinase

    Directory of Open Access Journals (Sweden)

    Mukesh C. Sharma

    2016-07-01

    Full Text Available A series of 34 substituted purine analogues derivatives were subjected to quantitative structure-activity relationship analyses as inhibitors of c-Src tyrosine kinase. Partial least squares regression was applied to derive QSAR models, which were further validated for statistical significance by internal and external validation. The best QSAR model developed had a good predictive correlation coefficient (r2 of 0.8319, a significant cross-validated correlation coefficient (q2 of 0.7550, and an r2 for the external test set (pred_r2 of 0.7983. It was developed from the PLS method with descriptors including the SsCH3E-index, H-Donor Count, T_2_Cl_3, and negative correlation with SsOHcount. The current study provides better insight into the future design of more potent c-Src tyrosine kinase inhibitors prior to synthesis.

  11. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    International Nuclear Information System (INIS)

    Li, Bin; Eyer, Peter; Eddleston, Michael; Jiang, Wei; Schopfer, Lawrence M.; Lockridge, Oksana

    2013-01-01

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. - Highlights: • Chlorpyrifos-poisoned patients have adducts on protein tyrosine. • Diethoxyphosphate-tyrosine does not lose an alkyl group. • Proteins in addition to AChE and BChE are modified by organophosphates

  12. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin, E-mail: binli@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States); Eyer, Peter, E-mail: peter.eyer@lrz.uni-muenchen.de [Walther-Straub-Institut Für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, 80336 München (Germany); Eddleston, Michael, E-mail: M.Eddleston@ed.ac.uk [Clinical Pharmacology Unit, University of Edinburgh, Edinburgh (United Kingdom); Jiang, Wei, E-mail: wjiang@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States); Schopfer, Lawrence M., E-mail: lmschopf@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States); Lockridge, Oksana, E-mail: olockrid@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States)

    2013-06-15

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. - Highlights: • Chlorpyrifos-poisoned patients have adducts on protein tyrosine. • Diethoxyphosphate-tyrosine does not lose an alkyl group. • Proteins in addition to AChE and BChE are modified by organophosphates.

  13. A threshold model for receptor tyrosine kinase signaling specificity and cell fate determination [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Allen Zinkle

    2018-06-01

    Full Text Available Upon ligand engagement, the single-pass transmembrane receptor tyrosine kinases (RTKs dimerize to transmit qualitatively and quantitatively different intracellular signals that alter the transcriptional landscape and thereby determine the cellular response. The molecular mechanisms underlying these fundamental events are not well understood. Considering recent insights into the structural biology of fibroblast growth factor signaling, we propose a threshold model for RTK signaling specificity in which quantitative differences in the strength/longevity of ligand-induced receptor dimers on the cell surface lead to quantitative differences in the phosphorylation of activation loop (A-loop tyrosines as well as qualitative differences in the phosphorylation of tyrosines mediating substrate recruitment. In this model, quantitative differences on A-loop tyrosine phosphorylation result in gradations in kinase activation, leading to the generation of intracellular signals of varying amplitude/duration. In contrast, qualitative differences in the pattern of tyrosine phosphorylation on the receptor result in the recruitment/activation of distinct substrates/intracellular pathways. Commensurate with both the dynamics of the intracellular signal and the types of intracellular pathways activated, unique transcriptional signatures are established. Our model provides a framework for engineering clinically useful ligands that can tune receptor dimerization stability so as to bias the cellular transcriptome to achieve a desired cellular output.

  14. Tyrosine phosphorylation of LRP6 by Src and Fer inhibits Wnt/β-catenin signalling

    Science.gov (United States)

    Chen, Qing; Su, Yi; Wesslowski, Janine; Hagemann, Anja I; Ramialison, Mirana; Wittbrodt, Joachim; Scholpp, Steffen; Davidson, Gary

    2014-01-01

    Low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6) function as transmembrane receptors to transduce Wnt signals. A key mechanism for signalling is Wnt-induced serine/threonine phosphorylation at conserved PPPSPxS motifs in the LRP6 cytoplasmic domain, which promotes pathway activation. Conserved tyrosine residues are positioned close to all PPPSPxS motifs, which suggests they have a functional significance. Using a cell culture-based cDNA expression screen, we identified the non-receptor tyrosine kinases Src and Fer as novel LRP6 modifiers. Both Src and Fer associate with LRP6 and phosphorylate LRP6 directly. In contrast to the known PPPSPxS Ser/Thr kinases, tyrosine phosphorylation by Src and Fer negatively regulates LRP6-Wnt signalling. Epistatically, they function upstream of β-catenin to inhibit signalling and in agreement with a negative role in regulating LRP6, MEF cells lacking these kinases show enhanced Wnt signalling. Wnt3a treatment of cells enhances tyrosine phosphorylation of endogenous LRP6 and, mechanistically, Src reduces cell surface LRP6 levels and disrupts LRP6 signalosome formation. Interestingly, CK1γ inhibits Fer-induced LRP6 phosphorylation, suggesting a mechanism whereby CK1γ acts to de-represses inhibitory LRP6 tyrosine phosphorylation. We propose that LRP6 tyrosine phosphorylation by Src and Fer serves a negative regulatory function to prevent over-activation of Wnt signalling at the level of the Wnt receptor, LRP6. Subject Categories Membrane & Intracellular Transport; Post-translational Modifications, Proteolysis & Proteomics PMID:25391905

  15. Raman scattering tensors of tyrosine.

    Science.gov (United States)

    Tsuboi, M; Ezaki, Y; Aida, M; Suzuki, M; Yimit, A; Ushizawa, K; Ueda, T

    1998-01-01

    Polarized Raman scattering measurements have been made of a single crystal of L-tyrosine by the use of a Raman microscope with the 488.0-nm exciting beam from an argon ion laser. The L-tyrosine crystal belongs to the space group P2(1)2(1)2(1) (orthorhombic), and Raman scattering intensities corresponding to the aa, bb, cc, ab and ac components of the crystal Raman tensor have been determined for each prominent Raman band. A similar set of measurements has been made of L-tyrosine-d4, in which four hydrogen atoms on the benzene ring are replaced by deuterium atoms. The effects of NH3-->ND3 and OH-->OD on the Raman spectrum have also been examined. In addition, depolarization ratios of some bands of L-tyrosine in aqueous solutions of pH 13 and pH 1 were examined. For comparison with these experimental results, on the other hand, ab initio molecular orbital calculations have been made of the normal modes of vibration and their associated polarizability oscillations of the L-tyrosine molecule. On the basis of these experimental data and by referring to the results of the calculations, discussions have been presented on the Raman tensors associated to some Raman bands, including those at 829 cm-1 (benzene ring breathing), 642 cm-1 (benzene ring deformation), and 432 cm-1 (C alpha-C beta-C gamma bending).

  16. Structural basis for the regulation mechanism of the tyrosine kinase CapB from Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Vanesa Olivares-Illana

    2008-06-01

    Full Text Available Bacteria were thought to be devoid of tyrosine-phosphorylating enzymes. However, several tyrosine kinases without similarity to their eukaryotic counterparts have recently been identified in bacteria. They are involved in many physiological processes, but their accurate functions remain poorly understood due to slow progress in their structural characterization. They have been best characterized as copolymerases involved in the synthesis and export of extracellular polysaccharides. These compounds play critical roles in the virulence of pathogenic bacteria, and bacterial tyrosine kinases can thus be considered as potential therapeutic targets. Here, we present the crystal structures of the phosphorylated and unphosphorylated states of the tyrosine kinase CapB from the human pathogen Staphylococcus aureus together with the activator domain of its cognate transmembrane modulator CapA. This first high-resolution structure of a bacterial tyrosine kinase reveals a 230-kDa ring-shaped octamer that dissociates upon intermolecular autophosphorylation. These observations provide a molecular basis for the regulation mechanism of the bacterial tyrosine kinases and give insights into their copolymerase function.

  17. Comparative evaluation of bone marrow cells morpho-functional activity in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors of the first and second generation

    Directory of Open Access Journals (Sweden)

    I. O. Zhaleyko

    2014-07-01

    Full Text Available The efficiency of using the culture techniques of research for monitoring the patient’s response to the treatment by tyrosine kinase inhibitors of the first and second generation is shown. Thus, the functional activity of bone marrow cells in patients having the optimal treatment response to inhibitors of tyrosine kinases was significantly lower compared with patients with the acquired resistance to the drug, and patients who had CML diagnosed for first time. Furthermore, for patients with the optimal response to the nilotinib therapy, numbers of colonies in semi-solid agar in vitro was lower, than in patients with the optimal response to imatinib. When the leukaemic cell clone becomes resistant to tyrosine kinase inhibitors, the prevalence of early cells of granulocyte-macrophage hematopoietic stem cells is observed in CFU culture which can be an important prognostic factor for choosing the appropriate treatment strategy.

  18. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying-Nan P.; LaMarche, Matthew J.; Chan, Ho Man; Fekkes, Peter; Garcia-Fortanet, Jorge; Acker, Michael G.; Antonakos, Brandon; Chen, Christine Hiu-Tung; Chen, Zhouliang; Cooke, Vesselina G.; Dobson, Jason R.; Deng, Zhan; Fei, Feng; Firestone, Brant; Fodor, Michelle; Fridrich, Cary; Gao, Hui; Grunenfelder, Denise; Hao, Huai-Xiang; Jacob, Jaison; Ho, Samuel; Hsiao, Kathy; Kang, Zhao B.; Karki, Rajesh; Kato, Mitsunori; Larrow, Jay; La Bonte, Laura R.; Lenoir, Francois; Liu, Gang; Liu, Shumei; Majumdar, Dyuti; Meyer, Matthew J.; Palermo, Mark; Perez, Lawrence; Pu, Minying; Price, Edmund; Quinn, Christopher; Shakya, Subarna; Shultz, Michael D.; Slisz, Joanna; Venkatesan, Kavitha; Wang, Ping; Warmuth, Markus; Williams, Sarah; Yang, Guizhi; Yuan, Jing; Zhang, Ji-Hu; Zhu, Ping; Ramsey, Timothy; Keen, Nicholas J.; Sellers, William R.; Stams, Travis; Fortin , Pascal D. (Novartis)

    2016-06-29

    The non-receptor protein tyrosine phosphatase SHP2, encoded by PTPN11, has an important role in signal transduction downstream of growth factor receptor signalling and was the first reported oncogenic tyrosine phosphatase1. Activating mutations of SHP2 have been associated with developmental pathologies such as Noonan syndrome and are found in multiple cancer types, including leukaemia, lung and breast cancer and neuroblastoma1, 2, 3, 4, 5. SHP2 is ubiquitously expressed and regulates cell survival and proliferation primarily through activation of the RAS–ERK signalling pathway2, 3. It is also a key mediator of the programmed cell death 1 (PD-1) and B- and T-lymphocyte attenuator (BTLA) immune checkpoint pathways6, 7. Reduction of SHP2 activity suppresses tumour cell growth and is a potential target of cancer therapy8, 9. Here we report the discovery of a highly potent (IC50 = 0.071 μM), selective and orally bioavailable small-molecule SHP2 inhibitor, SHP099, that stabilizes SHP2 in an auto-inhibited conformation. SHP099 concurrently binds to the interface of the N-terminal SH2, C-terminal SH2, and protein tyrosine phosphatase domains, thus inhibiting SHP2 activity through an allosteric mechanism. SHP099 suppresses RAS–ERK signalling to inhibit the proliferation of receptor-tyrosine-kinase-driven human cancer cells in vitro and is efficacious in mouse tumour xenograft models. Together, these data demonstrate that pharmacological inhibition of SHP2 is a valid therapeutic approach for the treatment of cancers.

  19. Fasting potentiates the anticancer activity of tyrosine kinase inhibitors by strengthening MAPK signaling inhibition

    Science.gov (United States)

    Caffa, Irene; D'Agostino, Vito; Damonte, Patrizia; Soncini, Debora; Cea, Michele; Monacelli, Fiammetta; Odetti, Patrizio; Ballestrero, Alberto; Provenzani, Alessandro; Longo, Valter D.; Nencioni, Alessio

    2015-01-01

    Tyrosine kinase inhibitors (TKIs) are now the mainstay of treatment in many types of cancer. However, their benefit is frequently short-lived, mandating the search for safe potentiation strategies. Cycles of fasting enhance the activity of chemo-radiotherapy in preclinical cancer models and dietary approaches based on fasting are currently explored in clinical trials. Whether combining fasting with TKIs is going to be potentially beneficial remains unknown. Here we report that starvation conditions increase the ability of commonly administered TKIs, including erlotinib, gefitinib, lapatinib, crizotinib and regorafenib, to block cancer cell growth, to inhibit the mitogen-activated protein kinase (MAPK) signaling pathway and to strengthen E2F-dependent transcription inhibition. In cancer xenografts models, both TKIs and cycles of fasting slowed tumor growth, but, when combined, these interventions were significantly more effective than either type of treatment alone. In conclusion, cycles of fasting or of specifically designed fasting-mimicking diets should be evaluated in clinical studies as a means to potentiate the activity of TKIs in clinical use. PMID:25909220

  20. Defective TCR stimulation in anergized type 2 T helper cells correlates with abrogated p56(lck) and ZAP-70 tyrosine kinase activities.

    Science.gov (United States)

    Faith, A; Akdis, C A; Akdis, M; Simon, H U; Blaser, K

    1997-07-01

    Development of IgE-mediated allergic conditions is dependent on the secretion of a Th2 cytokine pattern, including IL-4, IL-5, and IL-13. The induction of anergy would be one mechanism to abrogate cytokine secretion by Th2 cells, which may be pivotal to the allergic response. We demonstrate here that incubation of cloned human CD4+ phospholipase A2 (PLA)-specific Th2 cells with antigenic peptide, in the absence of professional APC, results in a state of nonresponsiveness. The anergic T cells failed to proliferate or secrete IL-4 in response to optimal stimulation with PLA and autologous, professional APC. Secretion of IL-5 and IL-13, however, was only partially inhibited. The anergic state of the Th2 cells was not associated with CD3 or CD28 down-regulation. However, anergy did appear to be closely related to alterations in signaling pathways, mediated through the TCR, of the cells. In contrast to untreated Th2 cells, anergized Th2 cells failed to respond to anti-CD3 mAb with either increased tyrosine kinase activity or increased levels of tyrosine phosphorylation of p56(lck) or ZAP70. A strong and sustained intracellular calcium flux, observed in untreated Th2 cells in response to anti-CD3 mAb, was absent in anergic Th2 cells. Furthermore, the induction of anergy seems to represent an active process, associated with increased levels of basal tyrosine kinase activity, cytokine production, and CD25 up-regulation in anergic Th2 cells. Together, our results indicate that anergy in Th2 cells is associated with defective transmembrane signaling through the TCR.

  1. Structural basis for the regulation mechanism of the tyrosine kinase CapB from Staphylococcus aureus

    DEFF Research Database (Denmark)

    Olivares-Illana, Vanesa; Meyer, Philippe; Bechet, Emmanuelle

    2008-01-01

    Bacteria were thought to be devoid of tyrosine-phosphorylating enzymes. However, several tyrosine kinases without similarity to their eukaryotic counterparts have recently been identified in bacteria. They are involved in many physiological processes, but their accurate functions remain poorly...... understood due to slow progress in their structural characterization. They have been best characterized as copolymerases involved in the synthesis and export of extracellular polysaccharides. These compounds play critical roles in the virulence of pathogenic bacteria, and bacterial tyrosine kinases can thus...... be considered as potential therapeutic targets. Here, we present the crystal structures of the phosphorylated and unphosphorylated states of the tyrosine kinase CapB from the human pathogen Staphylococcus aureus together with the activator domain of its cognate transmembrane modulator CapA. This first high...

  2. A Novel Mutation in the CYP11B1 Gene Causes Steroid 11β-Hydroxylase Deficient Congenital Adrenal Hyperplasia with Reversible Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Mohammad A. Alqahtani

    2015-01-01

    Full Text Available Congenital adrenal hyperplasia (CAH due to steroid 11β-hydroxylase deficiency is the second most common form of CAH, resulting from a mutation in the CYP11B1 gene. Steroid 11β-hydroxylase deficiency results in excessive mineralcorticoids and androgen production leading to hypertension, precocious puberty with acne, enlarged penis, and hyperpigmentation of scrotum of genetically male infants. In the present study, we reported 3 male cases from a Saudi family who presented with penile enlargement, progressive darkness of skin, hypertension, and cardiomyopathy. The elder patient died due to heart failure and his younger brothers were treated with hydrocortisone and antihypertensive medications. Six months following treatment, cardiomyopathy disappeared with normal blood pressure and improvement in the skin pigmentation. The underlying molecular defect was investigated by PCR-sequencing analysis of all coding exons and intron-exon boundary of the CYP11B1 gene. A novel biallelic mutation c.780 G>A in exon 4 of the CYP11B1 gene was found in the patients. The mutation created a premature stop codon at amino acid 260 (p.W260∗, resulting in a truncated protein devoid of 11β-hydroxylase activity. Interestingly, a somatic mutation at the same codon (c.779 G>A, p.W260∗ was reported in a patient with papillary thyroid cancer (COSMIC database. In conclusion, we have identified a novel nonsense mutation in the CYP11B1 gene that causes classic steroid 11β-hydroxylase deficient CAH. Cardiomyopathy and cardiac failure can be reversed by early diagnosis and treatment.

  3. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    Science.gov (United States)

    Li, Bin; Eyer, Peter; Eddleston, Michael; Jiang, Wei; Schopfer, Lawrence M.; Lockridge, Oksana

    2013-01-01

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. PMID:23566956

  4. Tyrosine phosphorylation of dihydrolipoamide dehydrogenase as a potential cadmium target and its inhibitory role in regulating mouse sperm motility.

    Science.gov (United States)

    Li, Xinhong; Wang, Lirui; Li, Yuhua; Fu, Jieli; Zhen, Linqing; Yang, Qiangzhen; Li, Sisi; Zhang, Yukun

    2016-05-16

    Cadmium (Cd) is reported to reduce sperm motility and functions. However, the molecular mechanisms of Cd-induced toxicity remain largely unknown, presenting a major knowledge gap in research on reproductive toxicology. In the present study, we identified a candidate protein, dihydrolipoamide dehydrogenase (DLD), which is a post-pyruvate metabolic enzyme, exhibiting tyrosine phosphorylation in mouse sperm exposed to Cd both in vivo and in vitro. Immunoprecipitation assay demonstrated DLD was phosphorylated in tyrosine residues without altered expression after Cd treatment, which further confirmed our identified result. However, the tyrosine phosphorylation of DLD did not participate in mouse sperm capacitation and Bovine Serum Albumin (BSA) effectively prevented the tyrosine phosphorylation of DLD. Moreover, Cd-induced tyrosine phosphorylation of DLD lowered its dehydrogenase activity and meanwhile, Nicotinamide Adenine Dinucleotide Hydrogen (NADH) content, Adenosine Triphosphate (ATP) production and sperm motility were all inhibited by Cd. Interestingly, when the tyrosine phosphorylation of DLD was blocked by BSA, the decrease of DLD activity, NADH and ATP content as well as sperm motility was also suppressed simultaneously. These results suggested that Cd-induced tyrosine phosphorylation of DLD inhibited its activity and thus suppressed the tricarboxylic acid (TCA) cycle, which resulted in the reduction of NADH and hence the ATP production generated through oxidative phosphorylation (OPHOXS). Taken together, our results revealed that Cd induced DLD tyrosine phosphorylation, in response to regulate TCA metabolic pathway, which reduced ATP levels and these negative effects led to decreased sperm motility. This study provided new understanding of the mechanisms contributing to the harmful effects of Cd on the motility and function of spermatozoa. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Cloning and Functional Characterization of the Maize (Zea mays L.) Carotenoid Epsilon Hydroxylase Gene

    Science.gov (United States)

    Sheng, Yanmin; Wang, Yingdian; Capell, Teresa; Shi, Lianxuan; Ni, Xiuzhen; Sandmann, Gerhard; Christou, Paul; Zhu, Changfu

    2015-01-01

    The assignment of functions to genes in the carotenoid biosynthesis pathway is necessary to understand how the pathway is regulated and to obtain the basic information required for metabolic engineering. Few carotenoid ε-hydroxylases have been functionally characterized in plants although this would provide insight into the hydroxylation steps in the pathway. We therefore isolated mRNA from the endosperm of maize (Zea mays L., inbred line B73) and cloned a full-length cDNA encoding CYP97C19, a putative heme-containing carotenoid ε hydroxylase and member of the cytochrome P450 family. The corresponding CYP97C19 genomic locus on chromosome 1 was found to comprise a single-copy gene with nine introns. We expressed CYP97C19 cDNA under the control of the constitutive CaMV 35S promoter in the Arabidopsis thaliana lut1 knockout mutant, which lacks a functional CYP97C1 (LUT1) gene. The analysis of carotenoid levels and composition showed that lutein accumulated to high levels in the rosette leaves of the transgenic lines but not in the untransformed lut1 mutants. These results allowed the unambiguous functional annotation of maize CYP97C19 as an enzyme with strong zeinoxanthin ε-ring hydroxylation activity. PMID:26030746

  6. Protein Tyrosine Nitration: Biochemical Mechanisms and Structural Basis of its Functional Effects

    Science.gov (United States)

    Radi, Rafael

    2012-01-01

    , immunochemical and proteomic-based studies indicate that protein tyrosine nitration is a selective process in vitro and in vivo, preferentially directed to a subset of proteins, and within those proteins, typically one or two tyrosine residues are site-specifically modified. The nature and site(s) of formation of the proximal oxidizing/nitrating species, the physico-chemical characteristics of the local microenvironment and also structural features of the protein account for part of this selectivity. Then, how this relatively subtle chemical modification in one tyrosine residue can sometimes cause dramatic changes in protein activity has remained elusive. Herein, I will analyze recent structural biology data of two pure and homogenously nitrated mitochondrial proteins (i.e. cytochrome c and MnSOD) to illustrate regio-selectivity and structural effects of tyrosine nitration, and subsequent impact in protein loss- or even gain-of-function. PMID:23157446

  7. Stat1-Vitamin D Receptor Interactions Antagonize 1,25-Dihydroxyvitamin D Transcriptional Activity and Enhance Stat1-Mediated Transcription

    Science.gov (United States)

    Vidal, Marcos; Ramana, Chilakamarti V.; Dusso, Adriana S.

    2002-01-01

    The cytokine gamma interferon (IFN-γ) and the calcitropic steroid hormone 1,25-dihydroxyvitamin D (1,25D) are activators of macrophage immune function. In sarcoidosis, tuberculosis, and several granulomatoses, IFN-γ induces 1,25D synthesis by macrophages and inhibits 1,25D induction of 24-hydroxylase, a key enzyme in 1,25D inactivation, causing high levels of 1,25D in serum and hypercalcemia. This study delineates IFN-γ-1,25D cross talk in human monocytes-macrophages. Nuclear accumulation of Stat1 and vitamin D receptor (VDR) by IFN-γ and 1,25D promotes protein-protein interactions between Stat1 and the DNA binding domain of the VDR. This prevents VDR-retinoid X receptor (RXR) binding to the vitamin D-responsive element, thus diverting the VDR from its normal genomic target on the 24-hydroxylase promoter and antagonizing 1,25D-VDR transactivation of this gene. In contrast, 1,25D enhances IFN-γ action. Stat1-VDR interactions, by preventing Stat1 deactivation by tyrosine dephosphorylation, cooperate with IFN-γ/Stat1-induced transcription. This novel 1,25D-IFN-γ cross talk explains the pathogenesis of abnormal 1,25D homeostasis in granulomatous processes and provides new insights into 1,25D immunomodulatory properties. PMID:11909970

  8. RNAi down-regulation of cinnamate-4-hydroxylase increases artemisinin biosynthesis in Artemisia annua.

    Science.gov (United States)

    Kumar, Ritesh; Vashisth, Divya; Misra, Amita; Akhtar, Md Qussen; Jalil, Syed Uzma; Shanker, Karuna; Gupta, Madan Mohan; Rout, Prashant Kumar; Gupta, Anil Kumar; Shasany, Ajit Kumar

    2016-05-25

    Cinnamate-4-hydroxylase (C4H) converts trans-cinnamic acid (CA) to p-coumaric acid (COA) in the phenylpropanoid/lignin biosynthesis pathway. Earlier we reported increased expression of AaCYP71AV1 (an important gene of artemisinin biosynthesis pathway) caused by CA treatment in Artemisia annua. Hence, AaC4H gene was identified, cloned, characterized and silenced in A. annua with the assumption that the elevated internal CA due to knock down may increase the artemisinin yield. Accumulation of trans-cinnamic acid in the plant due to AaC4H knockdown was accompanied with the reduction of p-coumaric acid, total phenolics, anthocyanin, cinnamate-4-hydroxylase (C4H) and phenylalanine ammonia lyase (PAL) activities but increase in salicylic acid (SA) and artemisinin. Interestingly, feeding trans-cinnamic acid to the RNAi line increased the level of artemisinin along with benzoic (BA) and SA with no effect on the downstream metabolites p-coumaric acid, coniferylaldehyde and sinapaldehyde, whereas p-coumaric acid feeding increased the content of downstream coniferylaldehyde and sinapaldehyde with no effect on BA, SA, trans-cinnamic acid or artemisinin. SA is reported earlier to be inducing the artemisinin yield. This report demonstrates the link between the phenylpropanoid/lignin pathway with artemisinin pathway through SA, triggered by accumulation of trans-cinnamic acid because of the blockage at C4H.

  9. Conversion of p-tyrosine to p-tyramine in the isolated perfused rat kidney: Modulation by perfusate concentrations of p-tyrosine

    International Nuclear Information System (INIS)

    Brier, M.E.; Bowsher, R.R.; Henry, D.P.; Mayer, P.R.

    1991-01-01

    The authors used the isolated perfused rat kidney to evaluate the role of renal decarboxylation of p-tyrosine as the source of urinary p-tyramine. Kidneys were perfused with concentrations of p-tyrosine ranging from 0.02 mM to 2.0 mM. p-Tyramine was measured by a sensitive and specific radioenzymatic assay. An increase in the perfusate concentration of p-tyrosine resulted in a significant increase in p-tyramine production that was blocked by the addition of NSD-1015, an inhibitor of aromatic-1-amino decarboxylase (AADC). They conclude p-tyrosine is the precursor for the renal production of p-tyramine, renal AADC catalyzes the formation of urinary p-tyramine, synthesized p-tyramine is predominantly excreted in the urine, and p-tyramine synthesis is modulated by the arterial delivery of p-tyrosine to the kidney

  10. Kinetic mechanism and isotope effects of Pseudomonas cepacia 3-hydroxybenzoate-t-hydroxylase

    International Nuclear Information System (INIS)

    Wang, L.H.; Yu, Y.; Hamzah, R.Y.; Tu, S.C.

    1986-01-01

    The kinetic mechanism of Pseudomonas cepacia 3-hydroxybenzoate-6-hydroxylase has been delineated. Double reciprocal plots of initial rate versus m-hydroxybenzoate concentration at a constant level of oxygen and several fixed concentrations of NADH yielded a set of converging lines. Similar reciprocal plots of velocity versus NADH concentration at a constant oxygen level and several fixed m-hydroxybenzoate concentrations also showed converging lines. In contrast, double reciprocal plots of initial rate versus NADH concentration at a fixed m-hydroxybenzoate level and several oxygen concentrations showed a series of parallel lines. Parallel lines were also obtained from double reciprocal plots of initial rate versus m-hydroxybenzoate concentration at a fixed NADH level and varying oxygen concentrations. These results suggest a sequential binding of m-hydroxybenzoate and NADH by the hydroxylase. The enzyme-bound FAD is reduced and NAD is released. The reduced enzyme subsequently reacts with oxygen leading to the formation of other products. This hydroxylase exhibited a primary isotope effect of /sup D/V = 3.5 for (4R)-[4- 2 H] NADH but no isotope effect was observed with (4S)-[4- 2 H]NADH. An isotope effect of /sup T/V/K = 5.0 was also observed using (4R)-[4- 3 H]NADH. This tritium isotope effect was apparently independent of m-hydroxybenzoate concentration

  11. Large daily fluctuations in plasma tyrosine in treated patients with phenylketonuria

    NARCIS (Netherlands)

    vanSpronsen, FJ; vanDijk, T; Smit, GPA; vanRijn, M; Reijngoud, DJ; Berger, Ruud; Heymans, HSA

    1996-01-01

    In patients with phenylketonuria (PKU), extra tyrosine supplementation is advocated in addition to tyrosine-enriched amino acid mixtures. PKU patients have low fasting plasma tyrosine concentrations, but little is known about tyrosine fluctuations during the day. Plasma tyrosine concentrations were

  12. Interactions between Type III receptor tyrosine phosphatases and growth factor receptor tyrosine kinases regulate tracheal tube formation in Drosophila

    Directory of Open Access Journals (Sweden)

    Mili Jeon

    2012-04-01

    The respiratory (tracheal system of the Drosophila melanogaster larva is an intricate branched network of air-filled tubes. Its developmental logic is similar in some ways to that of the vertebrate vascular system. We previously described a unique embryonic tracheal tubulogenesis phenotype caused by loss of both of the Type III receptor tyrosine phosphatases (RPTPs, Ptp4E and Ptp10D. In Ptp4E Ptp10D double mutants, the linear tubes in unicellular and terminal tracheal branches are converted into bubble-like cysts that incorporate apical cell surface markers. This tube geometry phenotype is modulated by changes in the activity or expression of the epidermal growth factor receptor (Egfr tyrosine kinase (TK. Ptp10D physically interacts with Egfr. Here we demonstrate that the Ptp4E Ptp10D phenotype is the consequence of the loss of negative regulation by the RPTPs of three growth factor receptor TKs: Egfr, Breathless and Pvr. Reducing the activity of any of the three kinases by tracheal expression of dominant-negative mutants suppresses cyst formation. By competing dominant-negative and constitutively active kinase mutants against each other, we show that the three RTKs have partially interchangeable activities, so that increasing the activity of one kinase can compensate for the effects of reducing the activity of another. This implies that SH2-domain downstream effectors that are required for the phenotype are likely to be able to interact with phosphotyrosine sites on all three receptor TKs. We also show that the phenotype involves increases in signaling through the MAP kinase and Rho GTPase pathways.

  13. A p130Cas tyrosine phosphorylated substrate domain decoy disrupts v-Crk signaling

    Directory of Open Access Journals (Sweden)

    Hanafusa Hidesaburo

    2002-07-01

    Full Text Available Abstract Background The adaptor protein p130Cas (Cas has been shown to be involved in different cellular processes including cell adhesion, migration and transformation. This protein has a substrate domain with up to 15 tyrosines that are potential kinase substrates, able to serve as docking sites for proteins with SH2 or PTB domains. Cas interacts with focal adhesion plaques and is phosphorylated by the tyrosine kinases FAK and Src. A number of effector molecules have been shown to interact with Cas and play a role in its function, including c-crk and v-crk, two adaptor proteins involved in intracellular signaling. Cas function is dependent on tyrosine phosphorylation of its substrate domain, suggesting that tyrosine phosphorylation of Cas in part regulates its control of adhesion and migration. To determine whether the substrate domain alone when tyrosine phosphorylated could signal, we have constructed a chimeric Cas molecule that is phosphorylated independently of upstream signals. Results We found that a tyrosine phosphorylated Cas substrate domain acts as a dominant negative mutant by blocking Cas-mediated signaling events, including JNK activation by the oncogene v-crk in transient and stable lines and v-crk transformation. This block was the result of competition for binding partners as the chimera competed for binding to endogenous c-crk and exogenously expressed v-crk. Conclusion Our approach suggests a novel method to study adaptor proteins that require phosphorylation, and indicates that mere tyrosine phosphorylation of the substrate domain of Cas is not sufficient for its function.

  14. Pharmacological profile of the abeorphine 201-678, a potent orally active and long lasting dopamine agonist

    Energy Technology Data Exchange (ETDEWEB)

    Jaton, A.L.; Giger, R.K.A.; Vigouret, J.M.; Enz, A.; Frick, W.; Closse, A.; Markstein, R.

    1986-01-13

    The central dopaminergic effects of an abeorphine derivative 201-678 were compared to those of apomorphine and bromocriptine in different model systems. After oral administration, this compound induced contralateral turning in rats with 6-hydroxydopamine induced nigral lesions and exhibited strong anti-akinetic properties in rats with 6-hydroxydopamine induced hypothalamic lesions. It decreased dopamine metabolism in striatum and cortex, but did not modify noradrenaline and serotonin metabolism in the rat brain. 201-678 counteracted the in vivo increase of tyrosine hydroxylase activity induced by ..gamma..-butyrolactone. In vitro it stimulated DA-sensitive adenylate cyclase and inhibited acetylcholine release from rat striatal slices. This compound had high affinity for /sup 3/H-dopamine and /sup 3/H-clonidine binding sites. These results indicate that 201-678 is a potent, orally active dopamine agonist with a long duration of action. Furthermore it appears more selective than other dopaminergic drugs. 29 references, 5 figures, 3 tables.

  15. Levels of active tyrosine kinase receptor determine the tumor response to Zalypsis

    International Nuclear Information System (INIS)

    Moneo, Victoria; Serelde, Beatriz G; Blanco-Aparicio, Carmen; Diaz-Uriarte, Ramon; Avilés, Pablo; Santamaría, Gemma; Tercero, Juan C; Cuevas, Carmen; Carnero, Amancio

    2014-01-01

    Zalypsis® is a marine compound in phase II clinical trials for multiple myeloma, cervical and endometrial cancer, and Ewing’s sarcoma. However, the determinants of the response to Zalypsis are not well known. The identification of biomarkers for Zalypsis activity would also contribute to broaden the spectrum of tumors by selecting those patients more likely to respond to this therapy. Using in vitro drug sensitivity data coupled with a set of molecular data from a panel of sarcoma cell lines, we developed molecular signatures that predict sensitivity to Zalypsis. We verified these results in culture and in vivo xenograft studies. Zalypsis resistance was dependent on the expression levels of PDGFRα or constitutive phosphorylation of c-Kit, indicating that the activation of tyrosine kinase receptors (TKRs) may determine resistance to Zalypsis. To validate our observation, we measured the levels of total and active (phosphorylated) forms of the RTKs PDGFRα/β, c-Kit, and EGFR in a new panel of diverse solid tumor cell lines and found that the IC50 to the drug correlated with RTK activation in this new panel. We further tested our predictions about Zalypsis determinants for response in vivo in xenograft models. All cells lines expressing low levels of RTK signaling were sensitive to Zalypsis in vivo, whereas all cell lines except two with high levels of RTK signaling were resistant to the drug. RTK activation might provide important signals to overcome the cytotoxicity of Zalypsis and should be taken into consideration in current and future clinical trials

  16. Tyrosine Sulfation as a Protein Post-Translational Modification

    Directory of Open Access Journals (Sweden)

    Yuh-Shyong Yang

    2015-01-01

    Full Text Available Integration of inorganic sulfate into biological molecules plays an important role in biological systems and is directly involved in the instigation of diseases. Protein tyrosine sulfation (PTS is a common post-translational modification that was first reported in the literature fifty years ago. However, the significance of PTS under physiological conditions and its link to diseases have just begun to be appreciated in recent years. PTS is catalyzed by tyrosylprotein sulfotransferase (TPST through transfer of an activated sulfate from 3'-phosphoadenosine-5'-phosphosulfate to tyrosine in a variety of proteins and peptides. Currently, only a small fraction of sulfated proteins is known and the understanding of the biological sulfation mechanisms is still in progress. In this review, we give an introductory and selective brief review of PTS and then summarize the basic biochemical information including the activity and the preparation of TPST, methods for the determination of PTS, and kinetics and reaction mechanism of TPST. This information is fundamental for the further exploration of the function of PTS that induces protein-protein interactions and the subsequent biochemical and physiological reactions.

  17. Characterization and Two-Dimensional Crystallization of Membrane Component AlkB of the Medium-Chain Alkane Hydroxylase System from Pseudomonas putida GPo1

    OpenAIRE

    Alonso, Hernan; Roujeinikova, Anna

    2012-01-01

    The alkane hydroxylase system of Pseudomonas putida GPo1 allows it to use alkanes as the sole source of carbon and energy. Bacterial alkane hydroxylases have tremendous potential as biocatalysts for the stereo- and regioselective transformation of a wide range of chemically inert unreactive alkanes into valuable reactive chemical precursors. We have produced and characterized the first 2-dimensional crystals of the integral membrane component of the P. putida alkane hydroxylase system, the no...

  18. The Buecherer-Strecker synthesis of D- and L-(1-11C)tyrosine and the in vivo study of 0100L-(1-11C)tyrosine in human brain using positron emission tomography

    International Nuclear Information System (INIS)

    Halldin, C.; Wiesel, F.A.

    1987-01-01

    The synthesis of D- and L-(1- 11 C)tyrosine, starting with 11 C-cyanide, is reported. DL-(1- 11 C)tyrosine was prepared by the Buecherer-Strecker reaction, from carrier added 11 C-cyanide with an incorporation of 80% in 20 min. The isolation of the pure D- and L-amino acid isomers from the enantiomeric mixture was accomplished within 15 min by preparative HPLC using a chiral stationary phase and a phosphate buffer as the mobile phase. Typically, the total synthesis time was 50 min (including purification) from end of trapping of 11 C-cyanide, with a radiochemical yield of D- and L-amino acid of 40%-60%. The D- and L-(1- 11 C)tyrosine were both obtained optically pure, with a carrier added specific activity of 0.3-0.5 Ci/mmol and a radiochemical purity better than 99%. The 11 C labelled L-tyrosine was used in an in vivo study in the human brain using positron emission tomography (PET). (orig.)

  19. Cooperation of imipramine blue and tyrosine kinase blockade demonstrates activity against chronic myeloid leukemia

    Science.gov (United States)

    Laidlaw, Kamilla M.E.; Berhan, Samuel; Liu, Suhu; Silvestri, Giovannino; Holyoake, Tessa L.; Frank, David A.; Aggarwal, Bharat; Bonner, Michael Y.; Perrotti, Danilo

    2016-01-01

    The use of tyrosine kinase inhibitors (TKI), including nilotinib, has revolutionized the treatment of chronic myeloid leukemia (CML). However current unmet clinical needs include combating activation of additional survival signaling pathways in persistent leukemia stem cells after long-term TKI therapy. A ubiquitous signaling alteration in cancer, including CML, is activation of reactive oxygen species (ROS) signaling, which may potentiate stem cell activity and mediate resistance to both conventional chemotherapy and targeted inhibitors. We have developed a novel nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, imipramine blue (IB) that targets ROS generation. ROS levels are known to be elevated in CML with respect to normal hematopoietic stem/progenitor cells and not corrected by TKI. We demonstrate that IB has additive benefit with nilotinib in inhibiting proliferation, viability, and clonogenic function of TKI-insensitive quiescent CD34+ CML chronic phase (CP) cells while normal CD34+ cells retained their clonogenic capacity in response to this combination therapy in vitro. Mechanistically, the pro-apoptotic activity of IB likely resides in part through its dual ability to block NF-κB and re-activate the tumor suppressor protein phosphatase 2A (PP2A). Combining BCR-ABL1 kinase inhibition with NADPH oxidase blockade may be beneficial in eradication of CML and worthy of further investigation. PMID:27438151

  20. Mechanisms underlying the inhibitory effects of arsenic compounds on protein tyrosine phosphatase (PTP)

    International Nuclear Information System (INIS)

    Rehman, Kanwal; Chen, Zhe; Wang, Wen Wen; Wang, Yan Wei; Sakamoto, Akira; Zhang, Yan Fang; Naranmandura, Hua; Suzuki, Noriyuki

    2012-01-01

    Arsenic binding to biomolecules is considered one of the major toxic mechanisms, which may also be related to the carcinogenic risks of arsenic in humans. At the same time, arsenic is also known to activate the phosphorylation-dependent signaling pathways including the epidermal growth factor receptor, the mitogen-activated protein kinase and insulin/insulin-like growth factor-1 pathways. These signaling pathways originate at the level of receptor tyrosine kinases whose phosphorylation status is regulated by opposing protein tyrosine phosphatase (PTP) activity. Reversible tyrosine phosphorylation, which is governed by the balanced action of protein tyrosine kinases and phosphatases, regulates important signaling pathways that are involved in the control of cell proliferation, adhesion and migration. In the present study, we have focused on the interaction of cellular PTPs with toxic trivalent arsenite (iAs III ) and its intermediate metabolites such as monomethylarsonous acid (MMA III ) and dimethylarsinous acid (DMA III ) in vitro, and then determined the arsenic binding site in PTP by the use of recombinant PTPs (e.g., PTP1B and CD45). Interestingly, the activities of PTP1B (cytoplasm-form) or CD45 (receptor-linked form) were observed to be strongly inhibited by both methylated metabolites (i.e., MMA III and DMA III ) but not by iAs III . Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) has clearly confirmed that the organic intermediate, DMA III directly bound to the active site cysteine residue of PTP1B (e.g., Cys215), resulting in inhibition of enzyme activity. These results suggest that arsenic exposure may disturb the cellular signaling pathways through PTP inactivation. Highlights: ► This study focused on the interaction of PTPs with trivalent arsenicals in vitro. ► We for the first time confirmed that DMA III strongly inhibited activity of PTP1B. ► DMA III directly bound to PTP1B, resulting in inhibition of

  1. The ducky(2J) mutation in Cacna2d2 results in reduced spontaneous Purkinje cell activity and altered gene expression.

    Science.gov (United States)

    Donato, Roberta; Page, Karen M; Koch, Dietlind; Nieto-Rostro, Manuela; Foucault, Isabelle; Davies, Anthony; Wilkinson, Tonia; Rees, Michele; Edwards, Frances A; Dolphin, Annette C

    2006-11-29

    The mouse mutant ducky and its allele ducky(2J) represent a model for absence epilepsy characterized by spike-wave seizures and cerebellar ataxia. These mice have mutations in Cacna2d2, which encodes the alpha2delta-2 calcium channel subunit. Of relevance to the ataxic phenotype, alpha2delta-2 mRNA is strongly expressed in cerebellar Purkinje cells (PCs). The Cacna2d2(du2J) mutation results in a 2 bp deletion in the coding region and a complete loss of alpha2delta-2 protein. Here we show that du(2J)/du(2J) mice have a 30% reduction in somatic calcium current and a marked fall in the spontaneous PC firing rate at 22 degrees C, accompanied by a decrease in firing regularity, which is not affected by blocking synaptic input to PCs. At 34 degrees C, du(2J)/du(2J) PCs show no spontaneous intrinsic activity. Du(2J)/du(2J) mice also have alterations in the cerebellar expression of several genes related to PC function. At postnatal day 21, there is an elevation of tyrosine hydroxylase mRNA and a reduction in tenascin-C gene expression. Although du(2J)/+ mice have a marked reduction in alpha2delta-2 protein, they show no fall in PC somatic calcium currents or increase in cerebellar tyrosine hydroxylase gene expression. However, du(2J)/+ PCs do exhibit a significant reduction in firing rate, correlating with the reduction in alpha2delta-2. A hypothesis for future study is that effects on gene expression occur as a result of a reduction in somatic calcium currents, whereas effects on PC firing occur as a long-term result of loss of alpha2delta-2 and/or a reduction in calcium currents and calcium-dependent processes in regions other than the soma.

  2. Tyrosine kinome sequencing of pediatric acute lymphoblastic leukemia: a report from the Children's Oncology Group TARGET Project | Office of Cancer Genomics

    Science.gov (United States)

    TARGET researchers sequenced the tyrosine kinome and downstream signaling genes in 45 high-risk pediatric ALL cases with activated kinase signaling, including Ph-like ALL, to establish the incidence of tyrosine kinase mutations in this cohort. The study confirmed previously identified somatic mutations in JAK and FLT3, but did not find novel alterations in any additional tyrosine kinases or downstream genes. The mechanism of kinase signaling activation in this high-risk subgroup of pediatric ALL remains largely unknown.

  3. PTB domain-directed substrate targeting in a tyrosine kinase from the unicellular choanoflagellate Monosiga brevicollis.

    Directory of Open Access Journals (Sweden)

    Victoria Prieto-Echagüe

    2011-04-01

    Full Text Available Choanoflagellates are considered to be the closest living unicellular relatives of metazoans. The genome of the choanoflagellate Monosiga brevicollis contains a surprisingly high number and diversity of tyrosine kinases, tyrosine phosphatases, and phosphotyrosine-binding domains. Many of the tyrosine kinases possess combinations of domains that have not been observed in any multicellular organism. The role of these protein interaction domains in M. brevicollis kinase signaling is not clear. Here, we have carried out a biochemical characterization of Monosiga HMTK1, a protein containing a putative PTB domain linked to a tyrosine kinase catalytic domain. We cloned, expressed, and purified HMTK1, and we demonstrated that it possesses tyrosine kinase activity. We used immobilized peptide arrays to define a preferred ligand for the third PTB domain of HMTK1. Peptide sequences containing this ligand sequence are phosphorylated efficiently by recombinant HMTK1, suggesting that the PTB domain of HMTK1 has a role in substrate recognition analogous to the SH2 and SH3 domains of mammalian Src family kinases. We suggest that the substrate recruitment function of the noncatalytic domains of tyrosine kinases arose before their roles in autoinhibition.

  4. Selective WGA uptake in the hippocampus from the locus coeruleus of DBH-WGA transgenic mice

    Directory of Open Access Journals (Sweden)

    Susan G eWalling

    2012-05-01

    Full Text Available We generated transgenic mice in which a transsynaptic tracer, wheat germ agglutinin (WGA, was specifically expressed in the locus coeruleus neurons under the control of the dopamine-β-hydroxylase gene promoter. WGA protein was produced in more than 95% of the tyrosine hydroxylase-positive locus coeruleus neurons sampled. Transynaptic transfer of WGA was most evident in CA3 neurons of the hippocampus, but appeared absent in CA1 neurons. Faint but significant WGA immunoreactivity was observed surrounding the nuclei of dentate granule cells. Putative hilar mossy cells, identified by the presence of calretinin in the ventral hippocampus, appeared uniformly positive for transynaptically transferred WGA protein. GAD67-positive interneurons in the hilar and CA3 regions tended to be WGA-positive, although a subset of them did not show WGA co-localization. The same mixed WGA uptake profile was apparent when examining co-localization with parvalbumin. The selective uptake of WGA by dentate granule cells, mossy cells and CA3 pyramidal neurons is consistent with evidence for a large proportion of conventional synapses adjacent to locus coeruleus axonal varicosities in these regions. The lack of WGA uptake in the CA1 region and its relatively sparse innervation by dopamine-β-hydroxylase-positive fibers suggest that a majority of the tyrosine hydroxylase-positive classical synapses revealed by electron microscopy in that region may be producing dopamine. The overall pattern of WGA uptake in these transgenic mice suggests a selective role for the granule cell-mossy cell-CA3 network in processing novelty or the salient environmental contingency changes signaled by locus coeruleus activity.

  5. Receptor-like protein-tyrosine phosphatase alpha specifically inhibits insulin-increased prolactin gene expression

    DEFF Research Database (Denmark)

    Jacob, K K; Sap, J; Stanley, F M

    1998-01-01

    A physiologically relevant response to insulin, stimulation of prolactin promoter activity in GH4 pituitary cells, was used as an assay to study the specificity of protein-tyrosine phosphatase function. Receptor-like protein-tyrosine phosphatase alpha (RPTPalpha) blocks the effect of insulin...... is specific by two criteria. A number of potential RPTPalpha targets were ruled out by finding (a) that they are not affected or (b) that they are not on the pathway to insulin-increased prolactin-CAT activity. The negative effect of RPTPalpha on insulin activation of the prolactin promoter is not due...... to reduced phosphorylation or kinase activity of the insulin receptor or to reduced phosphorylation of insulin receptor substrate-1 or Shc. Inhibitor studies suggest that insulin-increased prolactin gene expression is mediated by a Ras-like GTPase but is not mitogen-activated protein kinase dependent...

  6. Protein tyrosine phosphatase-PEST (PTP-PEST) regulates mast cell-activating signals in PTP activity-dependent and -independent manners.

    Science.gov (United States)

    Motohashi, Satoru; Koizumi, Karen; Honda, Reika; Maruyama, Atsuko; Palmer, Helen E F; Mashima, Keisuke

    2014-01-01

    Aggregation of the high-affinity IgE receptor (FcεRI) in mast cells leads to degranulation and production of numerous cytokines and lipid mediators that promote allergic inflammation. Tyrosine phosphorylation of proteins in response to FcεRI aggregation has been implicated in mast cell activation. Here, we determined the role of PTP-PEST (encoded by PTPN12) in the regulation of mast cell activation using the RBL-2H3 rat basophilic leukemia cell line as a model. PTP-PEST expression was significantly induced upon FcεRI-crosslinking, and aggregation of FcεRI induced the phosphorylation of PTP-PEST at Ser39, thus resulting in the suppression of PTP activity. By overexpressing a phosphatase-dead mutant (PTP-PEST CS) and a constitutively active mutant (PTP-PEST SA) in RBL-2H3 cells, we showed that PTP-PEST decreased degranulation and enhanced IL-4 and IL-13 transcription in FcεRI-crosslinked RBL-2H3 cells, but PTP activity of PTP-PEST was not necessary for this regulation. However, FcεRI-induced TNF-α transcription was increased by the overexpression of PTP-PEST SA and suppressed by the overexpression of PTP-PEST CS. Taken together, these results suggest that PTP-PEST is involved in the regulation of FcεRI-mediated mast cell activation through at least two different processes represented by PTP activity-dependent and -independent pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Vulnerability to glutamate toxicity of dopaminergic neurons is dependent on endogenous dopamine and MAPK activation.

    Science.gov (United States)

    Izumi, Yasuhiko; Yamamoto, Noriyuki; Matsuo, Takaaki; Wakita, Seiko; Takeuchi, Hiroki; Kume, Toshiaki; Katsuki, Hiroshi; Sawada, Hideyuki; Akaike, Akinori

    2009-07-01

    Dopaminergic neurons are more vulnerable than other types of neurons in cases of Parkinson disease and ischemic brain disease. An increasing amount of evidence suggests that endogenous dopamine plays a role in the vulnerability of dopaminergic neurons. Although glutamate toxicity contributes to the pathogenesis of these disorders, the sensitivity of dopaminergic neurons to glutamate toxicity has not been clarified. In this study, we demonstrated that dopaminergic neurons were preferentially affected by glutamate toxicity in rat mesencephalic cultures. Glutamate toxicity in dopaminergic neurons was blocked by inhibiting extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase, and p38 MAPK. Furthermore, depletion of dopamine by alpha-methyl-dl-p-tyrosine methyl ester (alpha-MT), an inhibitor of tyrosine hydroxylase (TH), protected dopaminergic neurons from the neurotoxicity. Exposure to glutamate facilitated phosphoryration of TH at Ser31 by ERK, which contributes to the increased TH activity. Inhibition of ERK had no additive effect on the protection offered by alpha-MT, whereas alpha-MT and c-jun N-terminal kinase or p38 MAPK inhibitors had additive effects and yielded full protection. These data suggest that endogenous dopamine is responsible for the vulnerability to glutamate toxicity of dopaminergic neurons and one of the mechanisms may be an enhancement of dopamine synthesis mediated by ERK.

  8. SH3 domain tyrosine phosphorylation--sites, role and evolution.

    Directory of Open Access Journals (Sweden)

    Zuzana Tatárová

    Full Text Available BACKGROUND: SH3 domains are eukaryotic protein domains that participate in a plethora of cellular processes including signal transduction, proliferation, and cellular movement. Several studies indicate that tyrosine phosphorylation could play a significant role in the regulation of SH3 domains. RESULTS: To explore the incidence of the tyrosine phosphorylation within SH3 domains we queried the PhosphoSite Plus database of phosphorylation sites. Over 100 tyrosine phosphorylations occurring on 20 different SH3 domain positions were identified. The tyrosine corresponding to c-Src Tyr-90 was by far the most frequently identified SH3 domain phosphorylation site. A comparison of sequences around this tyrosine led to delineation of a preferred sequence motif ALYD(Y/F. This motif is present in about 15% of human SH3 domains and is structurally well conserved. We further observed that tyrosine phosphorylation is more abundant than serine or threonine phosphorylation within SH3 domains and other adaptor domains, such as SH2 or WW domains. Tyrosine phosphorylation could represent an important regulatory mechanism of adaptor domains. CONCLUSIONS: While tyrosine phosphorylation typically promotes signaling protein interactions via SH2 or PTB domains, its role in SH3 domains is the opposite - it blocks or prevents interactions. The regulatory function of tyrosine phosphorylation is most likely achieved by the phosphate moiety and its charge interfering with binding of polyproline helices of SH3 domain interacting partners.

  9. Regulation of phase I and phase II steroid metabolism enzymes by PPARα activators

    International Nuclear Information System (INIS)

    Fan Liqun; You Li; Brown-Borg, Holly; Brown, Sherri; Edwards, Robert J.; Corton, J. Christopher

    2004-01-01

    Peroxisome proliferators (PP) are a large class of structurally diverse chemicals that mediate their effects in the liver mainly through the peroxisome proliferator-activated receptor α (PPARα). Exposure to some PP results in alterations of steroid levels that may be mechanistically linked to adverse effects in reproductive organs. We hypothesized that changes in steroid levels after PP exposure are due to alterations in the levels of P450 enzymes that hydroxylate testosterone and estrogen. In testosterone hydroxylase assays, exposure to the PP, WY-14,643 (WY), gemfibrozil or di-n-butyl phthalate (DBP) led to compound-specific increases in 6β and 16β-testosterone and androstenedione hydroxylase activities and decreases in 16α, 2α-hydroxylase activities by all three PP. The decreases in 16α and 2α-testosterone hydroxylase activity can be attributed to a 2α and 16α- testosterone hydroxylase, CYP2C11, which we previously showed was dramatically down-regulated in these same tissues (Corton et al., 1998; Mol. Pharmacol. 54, 463-473). To explain the increases in 6β- and 16β-testosterone hydroxylase activities, we examined the expression of P450 family members known to carry out these functions. Alterations in the 6β-testosterone hydroxylases CYP3A1, CYP3A2 and the 16β-testosterone hydroxylase, CYP2B1 were observed after exposure to some PP. The male-specific estrogen sulfotransferase was down-regulated in rat liver after exposure to all PP. The mouse 6β-testosterone hydroxylase, Cyp3a11 was down-regulated by WY in wild-type but not PPARα-null mice. In contrast, DEHP increased Cyp3a11 in both wild-type and PPARα-null mice. These studies demonstrate that PP alter the expression and activity of a number of enzymes which regulate levels of sex steroids. The changes in these enzymes may help explain why exposure to some PP leads to adverse effects in endocrine tissues that produce or are the targets of sex hormones

  10. Structure determination of T-cell protein-tyrosine phosphatase

    DEFF Research Database (Denmark)

    Iversen, L.F.; Møller, K. B.; Pedersen, A.K.

    2002-01-01

    Protein-tyrosine phosphatase 1B (PTP1B) has recently received much attention as a potential drug target in type 2 diabetes. This has in particular been spurred by the finding that PTP1B knockout mice show increased insulin sensitivity and resistance to diet-induced obesity. Surprisingly, the highly...... homologous T cell protein-tyrosine phosphatase (TC-PTP) has received much less attention, and no x-ray structure has been provided. We have previously co-crystallized PTP1B with a number of low molecular weight inhibitors that inhibit TC-PTP with similar efficiency. Unexpectedly, we were not able to co...... the high degree of functional and structural similarity between TC-PTP and PTP1B, we have been able to identify areas close to the active site that might be addressed to develop selective inhibitors of each enzyme....

  11. ZDHHC3 Tyrosine Phosphorylation Regulates Neural Cell Adhesion Molecule Palmitoylation

    Science.gov (United States)

    Lievens, Patricia Marie-Jeanne; Kuznetsova, Tatiana; Kochlamazashvili, Gaga; Cesca, Fabrizia; Gorinski, Natalya; Galil, Dalia Abdel; Cherkas, Volodimir; Ronkina, Natalia; Lafera, Juri; Gaestel, Matthias

    2016-01-01

    The neural cell adhesion molecule (NCAM) mediates cell-cell and cell-matrix adhesion. It is broadly expressed in the nervous system and regulates neurite outgrowth, synaptogenesis, and synaptic plasticity. Previous in vitro studies revealed that palmitoylation of NCAM is required for fibroblast growth factor 2 (FGF2)-stimulated neurite outgrowth and identified the zinc finger DHHC (Asp-His-His-Cys)-containing proteins ZDHHC3 and ZDHHC7 as specific NCAM-palmitoylating enzymes. Here, we verified that FGF2 controlled NCAM palmitoylation in vivo and investigated molecular mechanisms regulating NCAM palmitoylation by ZDHHC3. Experiments with overexpression and pharmacological inhibition of FGF receptor (FGFR) and Src revealed that these kinases control tyrosine phosphorylation of ZDHHC3 and that ZDHHC3 is phosphorylated by endogenously expressed FGFR and Src proteins. By site-directed mutagenesis, we found that Tyr18 is an FGFR1-specific ZDHHC3 phosphorylation site, while Tyr295 and Tyr297 are specifically phosphorylated by Src kinase in cell-based and cell-free assays. Abrogation of tyrosine phosphorylation increased ZDHHC3 autopalmitoylation, enhanced interaction with NCAM, and upregulated NCAM palmitoylation. Expression of ZDHHC3 with tyrosine mutated in cultured hippocampal neurons promoted neurite outgrowth. Our findings for the first time highlight that FGFR- and Src-mediated tyrosine phosphorylation of ZDHHC3 modulates ZDHHC3 enzymatic activity and plays a role in neuronal morphogenesis. PMID:27247265

  12. Mechanisms of mercurial and arsenical inhibition of tyrosine absorption in intestine of the winter flounder Pseudopleuronectus americanus

    International Nuclear Information System (INIS)

    Musch, M.W.; Chauncey, B.; Schmid, E.C.; Kinne, R.K.; Goldstein, L.

    1990-01-01

    Effects of HgCl2 (100 microM) para-chloromercuribenzene sulfonate (PCMBS) (1 mM), and oxophenylarsine (OPA) (250 microM) were determined on (a) the rate of Na pump activity in intact winter flounder intestine; (b) activity of Na-K-ATPase in tissue homogenates; and (c) Na-dependent and Na-independent uptake of tyrosine in brush border membrane vesicles. Initial rate of uptake (influx) of 86Rb from the serosal solution of tissues mounted in Ussing chambers, a measure of Na-K-ATPase activity in the intact cell, was inhibited by all three agents with differing time courses. Rapidly permeating HgCl2 inhibited influx to the same degree as ouabain at 30 min, whereas the effects of PCMBS and OPA required 90 min. Cell potassium was also measured as an indirect indicator of ATPase activity and cell membrane permeability. All three agents decreased cell K, although effects on cell K lagged behind those for inhibition of the ATPase. At the concentrations used in the Ussing chamber (or at one-tenth concentration), all agents completely inhibited Na-K-ATPase activity in enzyme assays performed with tissue homogenates. In contrast, only HgCl2 decreased Na-dependent uptake of tyrosine by brush border membrane vesicles. These results suggest that mercurial and arsenical effects on tyrosine absorption are due to inhibition of the Na-K-ATPase thus decreasing the driving force for the cellular uptake by the Na-tyrosine cotransport system. Direct effects on Na-tyrosine cotransport may play a role in the inhibition observed with HgCl2, but not for PCMBS or OPA

  13. MHC class I ligation of human T cells activates the ZAP70 and p56lck tyrosine kinases, leads to an alternative phenotype of the TCR/CD3 zeta-chain, and induces apoptosis

    DEFF Research Database (Denmark)

    Skov, S; Bregenholt, S; Claesson, Mogens Helweg

    1997-01-01

    Cross-linking of MHC class I (MHC-I) molecules on human T cells induces signal-transduction events, including activation of tyrosine kinases, tyrosine phosphorylation of phospholipase C-gamma 1, and elevation of the intracellular free calcium concentration. In this study, we demonstrate...... that the ZAP70 tyrosine kinase is tyrosine phosphorylated in Jurkat T cells and in purified peripheral T cells after MHC-I ligation. The tyrosine-phosphorylated ZAP70 kinase exhibits a particular phenotype with low affinities for proteins at 21, 40, 60, and 120 kDa, proteins normally co-precipitated with ZAP70...... after TCR/CD3 stimulation. The phosphorylation of ZAP70 after MHC-I ligation was dependent on TCR/CD3 surface expression. One of the natural substrates for ZAP70 is the zeta-chain dimer of the TCR/CD3 complex. MHC-I cross-linking induces a phosphorylated zeta-protein that migrates as a dimer at 42 k...

  14. Nogo-receptor 1 antagonization in combination with neurotrophin-4/5 is not superior to single factor treatment in promoting survival and morphological complexity of cultured dopaminergic neurons.

    Science.gov (United States)

    Seiler, Stefanie; Di Santo, Stefano; Sahli, Sebastian; Andereggen, Lukas; Widmer, Hans Rudolf

    2017-08-01

    Cell transplantation using ventral mesencephalic tissue is an experimental approach to treat Parkinson's disease. This approach is limited by poor survival of the transplants and the high number of dopaminergic neurons needed for grafting. Increasing the yield of dopaminergic neurons in donor tissue is of great importance. We have previously shown that antagonization of the Nogo-receptor 1 by NEP1-40 promoted survival of cultured dopaminergic neurons and exposure to neurotrophin-4/5 increased dopaminergic cell densities in organotypic midbrain cultures. We investigated whether a combination of both treatments offers a novel tool to further improve dopaminergic neuron survival. Rat embryonic ventral mesencephalic neurons grown as organotypic free-floating roller tube or primary dissociated cultures were exposed to neurotrophin-4/5 and NEP1-40. The combined and single factor treatment resulted in significantly higher numbers of tyrosine hydroxylase positive neurons compared to controls. Significantly stronger tyrosine hydroxylase signal intensity was detected by Western blotting in the combination-treated cultures compared to controls but not compared to single factor treatments. Neurotrophin-4/5 and the combined treatment showed significantly higher signals for the neuronal marker microtubule-associated protein 2 in Western blots compared to control while no effects were observed for the astroglial marker glial fibrillary acidic protein between groups, suggesting that neurotrophin-4/5 targets mainly neuronal cells. Finally, NEP1-40 and the combined treatment significantly augmented tyrosine hydroxylase positive neurite length. Summarizing, our findings substantiate that antagonization of the Nogo-receptor 1 promotes dopaminergic neurons but does not further increase the yield of dopaminergic neurons and their morphological complexity when combined with neurotrophin-4/5 hinting to the idea that these treatments might exert their effects by activating common

  15. Engineering of kinase-based protein interacting devices: active expression of tyrosine kinase domains

    KAUST Repository

    Diaz Galicia, Miriam Escarlet

    2018-05-01

    Protein-protein interactions modulate cellular processes in health and disease. However, tracing weak or rare associations or dissociations of proteins is not a trivial task. Kinases are often regulated through interaction partners and, at the same time, themselves regulate cellular interaction networks. The use of kinase domains for creating a synthetic sensor device that reads low concentration protein-protein interactions and amplifies them to a higher concentration interaction which is then translated into a FRET (Fluorescence Resonance Energy Transfer) signal is here proposed. To this end, DNA constructs for interaction amplification (split kinases), positive controls (intact kinase domains), scaffolding proteins and phosphopeptide - SH2-domain modules for the reading of kinase activity were assembled and expression protocols for fusion proteins containing Lyn, Src, and Fak kinase domains in bacterial and in cell-free systems were optimized. Also, two non-overlapping methods for measuring the kinase activity of these proteins were stablished and, finally, a protein-fragment complementation assay with the split-kinase constructs was tested. In conclusion, it has been demonstrated that features such as codon optimization, vector design and expression conditions have an impact on the expression yield and activity of kinase-based proteins. Furthermore, it has been found that the defined PURE cell-free system is insufficient for the active expression of catalytic kinase domains. In contrast, the bacterial co-expression with phosphatases produced active kinase fusion proteins for two out of the three tested Tyrosine kinase domains.

  16. Synthesis of 14C-labelled α-methyl tyrosine

    International Nuclear Information System (INIS)

    Rajagopal, S.; Venkatachalam, T.K.; Conway, T.; Diksic, M.

    1992-01-01

    A new route for the preparation of radioactively labelled α-methyl L-tyrosine is described. The labelling at the α position has been successfully achieved with 14 C-, 11 C- (very preliminary, unpublished), and 3 H-labelled methyl iodide. A detailed report on 14 C-labelling at the α position and the hydrolysis of 4-methoxy α-methyl phenylalanine is presented. The alkylation proceeds via the methylation of the carbanion of N-benzylidene 4-methoxy phenylalanine methyl ester 2. Hydrolysis of 4-O methyl tyrosine to tyrosine by HBr and HI were analysed and used in the optimization of the hydrolysis conditions of 4. Enantiomeric purity of the isolated L-isomer has been found to be 99% as judged by HPLC. Pseudo first-order rate constant for the hydrolysis of 14 C-labelled α-methyl 4-methoxy phenyl alanine methyl ester was determined. Preliminary findings of the 3 H- and 11 C-radiolabelled α-methyl tyrosine (methyl labelled) are also mentioned. For the first time it was shown that α-methyl D,L-tyrosine can be separated into enantiomerically pure α-methyl D- and L-tyrosine using a CHIRALPAK WH column. (author)

  17. Characterization and two-dimensional crystallization of membrane component AlkB of the medium-chain alkane hydroxylase system from Pseudomonas putida GPo1.

    Science.gov (United States)

    Alonso, Hernan; Roujeinikova, Anna

    2012-11-01

    The alkane hydroxylase system of Pseudomonas putida GPo1 allows it to use alkanes as the sole source of carbon and energy. Bacterial alkane hydroxylases have tremendous potential as biocatalysts for the stereo- and regioselective transformation of a wide range of chemically inert unreactive alkanes into valuable reactive chemical precursors. We have produced and characterized the first 2-dimensional crystals of the integral membrane component of the P. putida alkane hydroxylase system, the nonheme di-iron alkane monooxygenase AlkB. Our analysis reveals for the first time that AlkB reconstituted into a lipid bilayer forms trimers. Addition of detergents that do not disrupt the AlkB oligomeric state (decyl maltose neopentyl glycol [DMNG], lauryl maltose neopentyl glycol [LMNG], and octaethylene glycol monododecyl ether [C(12)E(8)]) preserved its activity at a level close to that of the detergent-free control sample. In contrast, the monomeric form of AlkB produced by purification in n-decyl-β-D-maltopyranoside (DM), n-dodecyl-β-D-maltopyranoside (DDM), octyl glucose neopentyl glycol (OGNG), and n-dodecyl-N,N-dimethylamine-N-oxide (LDAO) was largely inactive. This is the first indication that the physiologically active form of membrane-embedded AlkB may be a multimer. We present for the first time experimental evidence that 1-octyne acts as a mechanism-based inhibitor of AlkB. Therefore, despite the lack of any significant full-length sequence similarity with members of other monooxygenase classes that catalyze the terminal oxidation of alkanes, AlkB is likely to share a similar catalytic mechanism.

  18. Redox-Regulated Pathway of Tyrosine Phosphorylation Underlies NF-κB Induction by an Atypical Pathway Independent of the 26S Proteasome

    Science.gov (United States)

    Cullen, Sarah; Ponnappan, Subramaniam; Ponnappan, Usha

    2015-01-01

    Alternative redox stimuli such as pervanadate or hypoxia/reoxygenation, induce transcription factor NF-κB by phospho-tyrosine-dependent and proteasome-independent mechanisms. While considerable attention has been paid to the absence of proteasomal regulation of tyrosine phosphorylated IκBα, there is a paucity of information regarding proteasomal regulation of signaling events distinct from tyrosine phosphorylation of IκBα. To delineate roles for the ubiquitin-proteasome pathway in the phospho-tyrosine dependent mechanism of NF-κB induction, we employed the proteasome inhibitor, Aclacinomycin, and the phosphotyrosine phosphatase inhibitor, pervanadate (PV). Results from these studies demonstrate that phospho-IκBα (Tyr-42) is not subject to proteasomal degradation in a murine stromal epithelial cell line, confirming results previously reported. Correspondingly, proteasome inhibition had no discernable effect on the key signaling intermediaries, Src and ERK1/2, involved in the phospho-tyrosine mechanisms regulating PV-mediated activation of NF-κB. Consistent with previous reports, a significant redox imbalance leading to the activation of tyrosine kinases, as occurs with pervanadate, is required for the induction of NF-κB. Strikingly, our studies demonstrate that proteasome inhibition can potentiate oxidative stress associated with PV-stimulation without impacting kinase activation, however, other cellular implications for this increase in intracellular oxidation remain to be fully delineated. PMID:25671697

  19. PPARα activators down-regulate CYP2C7, a retinoic acid and testosterone hydroxylase

    International Nuclear Information System (INIS)

    Fan Liqun; Brown-Borg, Holly; Brown, Sherri; Westin, Stefan; Mode, Agneta; Corton, J. Christopher

    2004-01-01

    Peroxisome proliferators (PP) are a large class of structurally diverse chemicals that mediate their effects in the liver mainly through the peroxisome proliferator-activated receptor α (PPARα). Exposure to PP results in down-regulation of CYP2C family members under control of growth hormone and sex steroids including CYP2C11 and CYP2C12. We hypothesized that PP exposure would also lead to similar changes in CYP2C7, a retinoic acid and testosterone hydroxylase. CYP2C7 gene expression was dramatically down-regulated in the livers of rats treated for 13 weeks by WY-14,643 (WY; 500 ppm) or gemfibrozil (GEM; 8000 ppm). In the same tissues, exposure to WY and GEM and to a lesser extent di-n-butyl phthalate (20 000 ppm) led to decreases in CYP2C7 protein levels in both male and female rats. An examination of the time and dose dependence of CYP2C7 protein changes after PP exposure revealed that CYP2C7 was more sensitive to compound exposure compared to other CYP2C family members. Protein expression was decreased after 1, 5 and 13 weeks of PP treatment. CYP2C7 protein expression was completely abolished at 5 ppm WY, the lowest dose tested. GEM and DBP exhibited dose-dependent decreases in CYP2C7 protein expression, becoming significant at 1000 ppm or 5000 ppm and above, respectively. These results show that PP exposure leads to changes in CYP2C7 mRNA and protein levels. Thus, in addition to known effects on steroid metabolism, exposure to PP may alter retinoic acid metabolism

  20. Analog kefir production with a low phenylalanine for Phenylketonuria

    OpenAIRE

    Amir Yari; Yousef Ramezan

    2017-01-01

    Phenylketonuria (PKU) is one of the most prevalent types of hereditary metabolic disorders which is caused due to an absence or reduction of the activity of the Phenylalanine hydroxylase enzyme in the liver which in turn, inhibits the transformation of phenylalanine (Phe) to tyrosine. In clinical terms, this disorder is displayed with severe, permanent and irreversible mental retardation. This research was aimed at development of a highly nutrient and acceptable suitable analogue Kefir drink ...

  1. Lack of tryptophan hydroxylase-1 in mice results in gait abnormalities.

    Science.gov (United States)

    Suidan, Georgette L; Duerschmied, Daniel; Dillon, Gregory M; Vanderhorst, Veronique; Hampton, Thomas G; Wong, Siu Ling; Voorhees, Jaymie R; Wagner, Denisa D

    2013-01-01

    The role of peripheral serotonin in nervous system development is poorly understood. Tryptophan hydroxylase-1 (TPH1) is expressed by non-neuronal cells including enterochromaffin cells of the gut, mast cells and the pineal gland and is the rate-limiting enzyme involved in the biosynthesis of peripheral serotonin. Serotonin released into circulation is taken up by platelets via the serotonin transporter and stored in dense granules. It has been previously reported that mouse embryos removed from Tph1-deficient mothers present abnormal nervous system morphology. The goal of this study was to assess whether Tph1-deficiency results in behavioral abnormalities. We did not find any differences between Tph1-deficient and wild-type mice in general motor behavior as tested by rotarod, grip-strength test, open field and beam walk. However, here we report that Tph1 (-/-) mice display altered gait dynamics and deficits in rearing behavior compared to wild-type (WT) suggesting that tryptophan hydroxylase-1 expression has an impact on the nervous system.

  2. Formation of tyrosine isomers in aqueous phenylalanine solutions by gamma irradiation

    International Nuclear Information System (INIS)

    Aflaki, F.; Salahinejad, M.; Roozbehani, A.

    2009-01-01

    Ortho-tyrosine detection method can be used for detection of irradiated protein rich foods. Tyrosine isomers produced by gamma radiation of aqueous phenylalanine solutions at wide dose levels (0.1-50 k Gy) were examined to obtain basic information for o-tyrosine detection method of irradiated foods. Determination of tyrosines produced in aqueous phenylalanine solutions were carried out by high performance liquid chromatography and fluorescence detection. The detection limit of o-tyrosine was 0.01 ppm and the linear range of calibration and the relative standard deviation of analysis was 50 ng and 4-13%, respectively. The amounts of the tyrosines increased with the irradiation level up to 10 k Gy and no further tyrosine formation was observed when the dose level was increased. At a constant dose level, the yield of tyrosines initially increased with the phenylalanine concentration, while with further increase of phenylalanine concentration no effect on increase of tyrosine yield was observed. When the dose rate was varying from 2.3 k Gy/h to 1.2 k Gy/h with a total amount of 10 k Gy in each case, there was no significant effect on tyrosine isomers formation was observed. Also the results showed that tyrosine yield was affected by temperature, p H and the presence of oxygen

  3. Biochemical evaluation of a parsley tyrosine decarboxylase results in a novel 4-hydroxyphenylacetaldehyde synthase enzyme.

    Science.gov (United States)

    Torrens-Spence, Michael P; Gillaspy, Glenda; Zhao, Bingyu; Harich, Kim; White, Robert H; Li, Jianyong

    2012-02-10

    Plant aromatic amino acid decarboxylases (AAADs) are effectively indistinguishable from plant aromatic acetaldehyde syntheses (AASs) through primary sequence comparison. Spectroscopic analyses of several characterized AASs and AAADs were performed to look for absorbance spectral identifiers. Although this limited survey proved inconclusive, the resulting work enabled the reevaluation of several characterized plant AAS and AAAD enzymes. Upon completion, a previously reported parsley AAAD protein was demonstrated to have AAS activity. Substrate specificity tests demonstrate that this novel AAS enzyme has a unique substrate specificity towards tyrosine (km 0.46mM) and dopa (km 1.40mM). Metabolite analysis established the abundance of tyrosine and absence of dopa in parsley extracts. Such analysis indicates that tyrosine is likely to be the sole physiological substrate. The resulting information suggests that this gene is responsible for the in vivo production of 4-hydroxyphenylacetaldehyde (4-HPAA). This is the first reported case of an AAS enzyme utilizing tyrosine as a primary substrate and the first report of a single enzyme capable of producing 4-HPAA from tyrosine. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Activation of Bacillus subtilis Ugd by the BY-Kinase PtkA Proceeds via Phosphorylation of Its Residue Tyrosine 70

    DEFF Research Database (Denmark)

    Petranovic, Dina; Grangeasse, C.; Macek, B.

    2009-01-01

    -specific phosphoproteomic study indicated that tyrosine 70 is phosphorylated in the Bacillus subtilis UDP-glucose dehydrogenase Ugd. In this study we confirm that this tyrosine 70 is indeed the main residue phosphorylated by the cognate BY-kinase PtkA. Homology-based modeling of the Ugd structure using structures from UDP...

  5. Amelioration of behavioral abnormalities in BH(4-deficient mice by dietary supplementation of tyrosine.

    Directory of Open Access Journals (Sweden)

    Sang Su Kwak

    Full Text Available This study reports an amelioration of abnormal motor behaviors in tetrahydrobiopterin (BH4-deficient Spr (-/- mice by the dietary supplementation of tyrosine. Since BH4 is an essential cofactor for the conversion of phenylalanine into tyrosine as well as the synthesis of dopamine neurotransmitter within the central nervous system, the levels of tyrosine and dopamine were severely reduced in brains of BH4-deficient Spr (-/- mice. We found that Spr (-/- mice display variable 'open-field' behaviors, impaired motor functions on the 'rotating rod', and dystonic 'hind-limb clasping'. In this study, we report that these aberrant motor deficits displayed by Spr (-/- mice were ameliorated by the therapeutic tyrosine diet for 10 days. This study also suggests that dopamine deficiency in brains of Spr (-/- mice may not be the biological feature of aberrant motor behaviors associated with BH4 deficiency. Brain levels of dopamine (DA and its metabolites in Spr (-/- mice were not substantially increased by the dietary tyrosine therapy. However, we found that mTORC1 activity severely suppressed in brains of Spr (-/- mice fed a normal diet was restored 10 days after feeding the mice the tyrosine diet. The present study proposes that brain mTORC1 signaling pathway is one of the potential targets in understanding abnormal motor behaviors associated with BH4-deficiency.

  6. Tyrosine phosphorylation of WW proteins

    Science.gov (United States)

    Reuven, Nina; Shanzer, Matan

    2015-01-01

    A number of key regulatory proteins contain one or two copies of the WW domain known to mediate protein–protein interaction via proline-rich motifs, such as PPxY. The Hippo pathway components take advantage of this module to transduce tumor suppressor signaling. It is becoming evident that tyrosine phosphorylation is a critical regulator of the WW proteins. Here, we review the current knowledge on the involved tyrosine kinases and their roles in regulating the WW proteins. PMID:25627656

  7. Specific oncogenic activity of the Src-family tyrosine kinase c-Yes in colon carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Florence Sancier

    Full Text Available c-Yes, a member of the Src tyrosine kinase family, is found highly activated in colon carcinoma but its importance relative to c-Src has remained unclear. Here we show that, in HT29 colon carcinoma cells, silencing of c-Yes, but not of c-Src, selectively leads to an increase of cell clustering associated with a localisation of β-catenin at cell membranes and a reduction of expression of β-catenin target genes. c-Yes silencing induced an increase in apoptosis, inhibition of growth in soft-agar and in mouse xenografts, inhibition of cell migration and loss of the capacity to generate liver metastases in mice. Re-introduction of c-Yes, but not c -Src, restores transforming properties of c-Yes depleted cells. Moreover, we found that c-Yes kinase activity is required for its role in β-catenin localisation and growth in soft agar, whereas kinase activity is dispensable for its role in cell migration. We conclude that c-Yes regulates specific oncogenic signalling pathways important for colon cancer progression that is not shared with c-Src.

  8. Pharmacogenetics of telatinib, a VEGFR-2 and VEGFR-3 tyrosine kinase inhibitor, used in patients with solid tumors

    NARCIS (Netherlands)

    N. Steeghs (Neeltje); A.J. Gelderblom (Hans); J.A.M. Wessels (Judith); F.A.L.M. Eskens (Ferry); N. de Bont (Natasja); J.W. Nortier (Johan); H.J. Guchelaar (Henk Jan)

    2011-01-01

    textabstractSummary: Purpose Telatinib is an orally active small-molecule tyrosine kinase inhibitor of kinase insert domain receptor (KDR; VEGFR-2) and fms-related tyrosine kinase 4 (FLT4; VEGFR-3). This study aims at the identification of relationships between single nucleotide polymorphisms (SNPs)

  9. Differential feedback regulation of cholesterol 7α-hydroxylase mRNA and transcriptional activity by rat bile acids in primary monolayer cultures of rat hepatocytes

    NARCIS (Netherlands)

    Twisk, J.; Lehmann, E.M.; Princen, H.M.G.

    1993-01-01

    We have used primary monolayer cultures of rat hepatocytes to study the effects of physiological concentrations of various bile acids, commonly found in bile of normal rats, on the mechanism of regulation of cholesterol 7α-hydroxylase and bile acid synthesis. Addition of taurocholic acid, the most

  10. Phenylketonuria : tyrosine supplementation in phenylalanine-restricted diets

    NARCIS (Netherlands)

    van Spronsen, FJ; van Rijn, M; Bekhof, J; Koch, R; Smit, PGA

    Treatment of phenylketonuria (PKU) consists of restriction of natural protein and provision of a protein substitute that lacks phenylalanine but is enriched in tyrosine. Large and unexplained differences exist, however, in the tyrosine enrichment of the protein substitutes. Furthermore, some

  11. Tumor suppressor function of Bruton tyrosine kinase is independent of its catalytic activity

    NARCIS (Netherlands)

    S. Middendorp; A.J.E. Zijlstra (Esther); R. Kersseboom (Rogier); G.M. Dingjan (Gemma); H. Jumaa; R.W. Hendriks (Rudi)

    2005-01-01

    textabstractDuring B-cell development in the mouse, Bruton tyrosine kinase (Btk) and the adaptor protein SLP-65 (Src homology 2 [SH2] domain-containing leukocyte protein of 65 kDa) limit the expansion and promote the differentiation of pre-B cells. Btk is thought to mainly function

  12. Site-directed Mutagenesis Switching a Dimethylallyl Tryptophan Synthase to a Specific Tyrosine C3-Prenylating Enzyme*

    Science.gov (United States)

    Fan, Aili; Zocher, Georg; Stec, Edyta; Stehle, Thilo; Li, Shu-Ming

    2015-01-01

    The tryptophan prenyltransferases FgaPT2 and 7-DMATS (7-dimethylallyl tryptophan synthase) from Aspergillus fumigatus catalyze C4- and C7-prenylation of the indole ring, respectively. 7-DMATS was found to accept l-tyrosine as substrate as well and converted it to an O-prenylated derivative. An acceptance of l-tyrosine by FgaPT2 was also observed in this study. Interestingly, isolation and structure elucidation revealed the identification of a C3-prenylated l-tyrosine as enzyme product. Molecular modeling and site-directed mutagenesis led to creation of a mutant FgaPT2_K174F, which showed much higher specificity toward l-tyrosine than l-tryptophan. Its catalytic efficiency toward l-tyrosine was found to be 4.9-fold in comparison with that of non-mutated FgaPT2, whereas the activity toward l-tryptophan was less than 0.4% of that of the wild-type. To the best of our knowledge, this is the first report on an enzymatic C-prenylation of l-tyrosine as free amino acid and altering the substrate preference of a prenyltransferase by mutagenesis. PMID:25477507

  13. 2D QSAR studies of the inhibitory activity of a series of substituted purine derivatives against c-Src tyrosine kinase

    OpenAIRE

    Mukesh C. Sharma

    2016-01-01

    A series of 34 substituted purine analogues derivatives were subjected to quantitative structure-activity relationship analyses as inhibitors of c-Src tyrosine kinase. Partial least squares regression was applied to derive QSAR models, which were further validated for statistical significance by internal and external validation. The best QSAR model developed had a good predictive correlation coefficient (r2) of 0.8319, a significant cross-validated correlation coefficient (q2) of 0.7550, and ...

  14. Manipulation of dopamine metabolism contributes to attenuating innate high locomotor activity in ICR mice.

    Science.gov (United States)

    Yamaguchi, Takeshi; Nagasawa, Mao; Ikeda, Hiromi; Kodaira, Momoko; Minaminaka, Kimie; Chowdhury, Vishwajit S; Yasuo, Shinobu; Furuse, Mitsuhiro

    2017-06-15

    Attention-deficit hyperactivity disorder (ADHD) is defined as attention deficiency, restlessness and distraction. The main characteristics of ADHD are hyperactivity, impulsiveness and carelessness. There is a possibility that these abnormal behaviors, in particular hyperactivity, are derived from abnormal dopamine (DA) neurotransmission. To elucidate the mechanism of high locomotor activity, the relationship between innate activity levels and brain monoamines and amino acids was investigated in this study. Differences in locomotor activity between ICR, C57BL/6J and CBA/N mice were determined using the open field test. Among the three strains, ICR mice showed the greatest amount of locomotor activity. The level of striatal and cerebellar DA was lower in ICR mice than in C57BL/6J mice, while the level of L-tyrosine (L-Tyr), a DA precursor, was higher in ICR mice. These results suggest that the metabolic conversion of L-Tyr to DA is lower in ICR mice than it is in C57BL/6J mice. Next, the effects of intraperitoneal injection of (6R)-5, 6, 7, 8-tetrahydro-l-biopterin dihydrochloride (BH 4 ) (a co-enzyme for tyrosine hydroxylase) and L-3,4-dihydroxyphenylalanine (L-DOPA) on DA metabolism and behavior in ICR mice were investigated. The DA level in the brain was increased by BH 4 administration, but the increased DA did not influence behavior. However, L-DOPA administration drastically lowered locomotor activity and increased DA concentration in several parts of the brain. The reduced locomotor activity may have been a consequence of the overproduction of DA. In conclusion, the high level of locomotor activity in ICR mice may be explained by a strain-specific DA metabolism. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Rapid enzymatic analysis of plasma for tyrosine.

    Science.gov (United States)

    Shimizu, H; Taniguchi, K; Sugiyama, M; Kanno, T

    1990-01-01

    In this rapid, simple, and convenient enzymatic method for measurement of tyrosine in plasma, tyrosine is converted to tyramine by action of tyrosine decarboxylase (EC 4.1.1.25) and the tyramine produced is oxidized to p-hydroxybenzyl aldehyde and hydrogen peroxide by action of tyramine oxidase (EC 1.4.3.9). The hydrogen peroxide is reacted with 4-aminoantipyrine and N-ethyl-N-(2-hydroxy-3-sulfopropyl)-m-toluidine in the presence of peroxidase (EC 1.11.1.7) to obtain quinoneimine dye, the absorbance of which is measured at 570 nm. Thus tyrosine is measured in the visible range. The CV was 4.6% or less, and the measurement was unaffected by other amino acids, except for phenylalanine. The values obtained (y) correlated well with those obtained with an amino acid analyzer (x): y = 0.902x + 3.92 mumol/L (Syx = 12.3; r = 0.985; n = 54).

  16. Tyrosine kinase fusion genes in pediatric BCR-ABL1-like acute lymphoblastic leukemia

    Science.gov (United States)

    Boer, Judith M.; Steeghs, Elisabeth M.P.; Marchante, João R.M.; Boeree, Aurélie; Beaudoin, James J.; Berna Beverloo, H.; Kuiper, Roland P.; Escherich, Gabriele; van der Velden, Vincent H.J.; van der Schoot, C. Ellen; de Groot-Kruseman, Hester A.; Pieters, Rob; den Boer, Monique L.

    2017-01-01

    Approximately 15% of pediatric B cell precursor acute lymphoblastic leukemia (BCP-ALL) is characterized by gene expression similar to that of BCR-ABL1-positive disease and unfavorable prognosis. This BCR-ABL1-like subtype shows a high frequency of B-cell development gene aberrations and tyrosine kinase-activating lesions. To evaluate the clinical significance of tyrosine kinase gene fusions in children with BCP-ALL, we studied the frequency of recently identified tyrosine kinase fusions, associated genetic features, and prognosis in a representative Dutch/German cohort. We identified 14 tyrosine kinase fusions among 77 BCR-ABL1-like cases (18%) and none among 76 non-BCR-ABL1-like B-other cases. Novel exon fusions were identified for RCSD1-ABL2 and TERF2-JAK2. JAK2 mutation was mutually exclusive with tyrosine kinase fusions and only occurred in cases with high CRLF2 expression. The non/late response rate and levels of minimal residual disease in the fusion-positive BCR-ABL1-like group were higher than in the non-BCR-ABL1-like B-others (p<0.01), and also higher, albeit not statistically significant, compared with the fusion-negative BCR-ABL1-like group. The 8-year cumulative incidence of relapse in the fusion-positive BCR-ABL1-like group (35%) was comparable with that in the fusion-negative BCR-ABL1-like group (35%), and worse than in the non-BCR-ABL1-like B-other group (17%, p=0.07). IKZF1 deletions, predominantly other than the dominant-negative isoform and full deletion, co-occurred with tyrosine kinase fusions. This study shows that tyrosine kinase fusion-positive cases are a high-risk subtype of BCP-ALL, which warrants further studies with specific kinase inhibitors to improve outcome. PMID:27894077

  17. Evaluation of o-[11C]methyl-L-tyrosine and o-[18F]fluoromethyl-L-tyrosine as tumor imaging tracers by PET

    International Nuclear Information System (INIS)

    Ishiwata, Kiichi; Kawamura, Kazunori; Wang Weifang; Furumoto, Shozo; Kubota, Kazuo; Pascali, Claudio; Bogni, Anna; Iwata, Ren

    2004-01-01

    We investigated the potential of O-[ 11 C]methyl-L-tyrosine and O-[ 18 F]fluoromethyl-L-tyrosine as positron-emitting tracers for tumor imaging. The two tracers had similar distribution patterns in rats bearing AH109A hepatoma, with pancreas and, on a lesser extent, AH109A showing the highest uptake. Uptake of both tracers in the AH109A and uptake ratios of AH109A-to-tissues (with the exception of AH109A-to-bone) gradually increased for 60 min. O-[ 11 C]methyl-L-tyrosine was metabolically stable, whereas a negligible low amount of metabolites was observed for O-[ 18 F]fluoromethyl-L-tyrosine. Both tracers showed the potential for tumor imaging

  18. Tyrosine glycosylation is involved in muscle-glycogen synthesis

    International Nuclear Information System (INIS)

    Rodriguez, I.R.; Tandecarz, J.S.; Kirkman, B.R.; Whelan, W.J.

    1986-01-01

    Rabbit-muscle glycogen contains a covalently bound protein having Mr 37,000 that the authors will henceforth refer to as glycogenin. It is completely insoluble in water at pH 5, and may be generated as a precipitate as a result of the combined action on glycogen of α-amylase and glucoamylase, or by treatment with anhydrous hydrogen fluoride. In the former case the protein still carries some of the glucose residues of glycogen (10-30 per mole of glycogenin). The linkage between glycogen and glycogenin has been identified as a novel glycosidic-amino acid bond. The authors demonstrated glucosylation with UDP[/sup 14/C]glucose by a muscle extract of two rabbit-muscle proteins contained in the same extract. The relation of these proteins to glycogenin, and whether the amino acid undergoing glucosylation is tyrosine, remains to be explored. The discovery of glycogenin is, the authors believe, an important clue to the mechanism of biogenesis of glycogen and may represent a previously unsuspected means of metabolic control of the glycogen content of the cell and the location of glycogen within the cell. The facts that the linkage between glycogen and glycogenin is via tyrosine, that insulin stimulates glycogen synthesis, and acts on its receptor by causing it to become an active tyrosine kinase, may be linked by a common thread

  19. Interaction between O-GlcNAc modification and tyrosine phosphorylation of prohibitin: implication for a novel binary switch.

    Directory of Open Access Journals (Sweden)

    Sudharsana R Ande

    Full Text Available Prohibitin (PHB or PHB1 is an evolutionarily conserved, multifunctional protein which is present in various cellular compartments including the plasma membrane. However, mechanisms involved in various functions of PHB are not fully explored yet. Here we report for the first time that PHB interacts with O-linked beta-N-acetylglucosamine transferase (O-GlcNAc transferase, OGT and is O-GlcNAc modified; and also undergoes tyrosine phosphorylation in response to insulin. Tyrosine 114 (Tyr114 and tyrosine 259 (Tyr259 in PHB are in the close proximity of potential O-GlcNAc sites serine 121 (Ser121 and threonine 258 (Thr258 respectively. Substitution of Tyr114 and Tyr259 residues in PHB with phenylalanine by site-directed mutagenesis results in reduced tyrosine phosphorylation as well as reduced O-GlcNAc modification of PHB. Surprisingly, this also resulted in enhanced tyrosine phosphorylation and activity of OGT. This is attributed to the presence of similar tyrosine motifs in PHB and OGT. Substitution of Ser121 and Thr258 with alanine and isoleucine respectively resulted in attenuation of O-GlcNAc modification and increased tyrosine phosphorylation of PHB suggesting an association between these two dynamic modifications. Sequence analysis of O-GlcNAc modified proteins having known O-GlcNAc modification site(s or known tyrosine phosphorylation site(s revealed a strong potential association between these two posttranslational modifications in various proteins. We speculate that O-GlcNAc modification and tyrosine phosphorylation of PHB play an important role in tyrosine kinase signaling pathways including insulin, growth factors and immune receptors signaling. In addition, we propose that O-GlcNAc modification and tyrosine phosphorylation is a novel previously unidentified binary switch which may provide new mechanistic insights into cell signaling pathways and is open for direct experimental examination.

  20. Tyrosine phosphorylation of a 66KD soluble protein and augmentation of lectin induced mitogenesis by DMSO in human T lymphocytes

    International Nuclear Information System (INIS)

    Wedner, H.J.; Bass, G.

    1986-01-01

    The authors have demonstrated that induction of mitogenesis in human T lymphocytes is associated with the tyrosine phosphorylation of a 66KD soluble substrate-TPP 66. Since DMSO has been shown to be a non-specific stimulator of tyrosine protein kinases they have examined the effect of DMSO on both activation and tyrosine phosphorylation in human T cells. Human peripheral blood T lymphocytes were isolated by dextran sedimentation, Ficol/Paque centrifugation and nylon wool filtration. Phosphorylation was performed in cells incubated with [ 32 P] orthophosphate followed by DMSO for 30 min. TPP 66 was identified by 2-D PAGE, autoradiography, and HV electrophoresis of the hydrolyzed protein. Concentrations of DMSO from 1% to 50% induced the tyrosine phosphorylation of TPP 66 with maximal stimulation seen at 20%. DMSO alone did not activate the T cells (measured by [ 3 H] thymidine incorporation) when tested at high concentrations for 30 sec to 10 min. (longer incubations were markedly toxic) or low concentrations for 12 to 48 hrs. Low concentrations of DMSO 0.1%-0.5% did however, markedly augment [ 3 H] thymidine incorporation induced by PHA or Con A. These data suggest that tyrosine phosphorylation of TPP 66 alone may not constitute sufficient signal for the activation sequence to begin but the phosphorylation of this soluble substrate may be a critical factor in the propagation of the activation sequence

  1. Requirements for superoxide-dependent tyrosine hydroperoxide formation in peptides

    DEFF Research Database (Denmark)

    Winterbourn, Christine C; Parsons-Mair, Helena N; Gebicki, Silvia

    2004-01-01

    Superoxide reacts rapidly with other radicals, but these reactions have received little attention in the context of oxidative stress. For tyrosyl radicals, reaction with superoxide is 3-fold faster than dimerization, and forms the addition product tyrosine hydroperoxide. We have explored structural...... requirements for hydroperoxide formation using tyrosine analogues and di- and tri-peptides. Superoxide and phenoxyl radicals were generated using xanthine oxidase, peroxidase and the respective tyrosine derivative, or by gamma-radiation. Peroxides were measured using FeSO4/Xylenol Orange. Tyrosine and tyramine...... formed stable hydroperoxides, but N-acetyltyrosine and p-hydroxyphenylacetic acid did not, demonstrating a requirement for a free amino group. Using [14C]tyrosine, the hydroperoxide and dityrosine were formed at a molar ratio of 1.8:1. Studies with pre-formed hydroperoxides, and measurements of substrate...

  2. Inhibiting Src family tyrosine kinase activity blocks glutamate signalling to ERK1/2 and Akt/PKB but not JNK in cultured striatal neurones.

    Science.gov (United States)

    Crossthwaite, Andrew J; Valli, Haseeb; Williams, Robert J

    2004-03-01

    Glutamate receptor activation of mitogen-activated protein (MAP) kinase signalling cascades has been implicated in diverse neuronal functions such as synaptic plasticity, development and excitotoxicity. We have previously shown that Ca2+-influx through NMDA receptors in cultured striatal neurones mediates the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt/protein kinase B (PKB) through a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathway. Exposing neurones to the Src family tyrosine kinase inhibitor PP2, but not the inactive analogue PP3, inhibited NMDA receptor-induced phosphorylation of ERK1/2 and Akt/PKB in a concentration-dependent manner, and reduced cAMP response element-binding protein (CREB) phosphorylation. To establish a link between Src family tyrosine kinase-mediated phosphorylation and PI 3-kinase signalling, affinity precipitation experiments were performed with the SH2 domains of the PI 3-kinase regulatory subunit p85. This revealed a Src-dependent phosphorylation of a focal adhesion kinase (FAK)-p85 complex on glutamate stimulation. Demonstrating that PI3-kinase is not ubiquitously involved in NMDA receptor signal transduction, the PI 3-kinase inhibitors wortmannin and LY294002 did not prevent NMDA receptor Ca2+-dependent phosphorylation of c-Jun N-terminal kinase 1/2 (JNK1/2). Further, inhibiting Src family kinases increased NMDA receptor-dependent JNK1/2 phosphorylation, suggesting that Src family kinase-dependent cascades may physiologically limit signalling to JNK. These results demonstrate that Src family tyrosine kinases and PI3-kinase are pivotal regulators of NMDA receptor signalling to ERK/Akt and JNK in striatal neurones.

  3. Molecular mechanism of ERK dephosphorylation by striatal-enriched protein tyrosine phosphatase (STEP)

    Science.gov (United States)

    Li, Hui; Li, Kang-shuai; Su, Jing; Chen, Lai-Zhong; Xu, Yun-Fei; Wang, Hong-Mei; Gong, Zheng; Cui, Guo-Ying; Yu, Xiao; Wang, Kai; Yao, Wei; Xin, Tao; Li, Min-Yong; Xiao, Kun-Hong; An, Xiao-fei; Huo, Yuqing; Xu, Zhi-gang; Sun, Jin-Peng; Pang, Qi

    2013-01-01

    Striatal-enriched tyrosine phosphatase (STEP) is an important regulator of neuronal synaptic plasticity, and its abnormal level or activity contributes to cognitive disorders. One crucial downstream effector and direct substrate of STEP is extracellular signal-regulated protein kinase (ERK), which has important functions in spine stabilisation and action potential transmission. The inhibition of STEP activity toward phospho-ERK has the potential to treat neuronal diseases, but the detailed mechanism underlying the dephosphorylation of phospho-ERK by STEP is not known. Therefore, we examined STEP activity toward pNPP, phospho-tyrosine-containing peptides, and the full-length phospho-ERK protein using STEP mutants with different structural features. STEP was found to be a highly efficient ERK tyrosine phosphatase that required both its N-terminal regulatory region and key residues in its active site. Specifically, both KIM and KIS of STEP were required for ERK interaction. In addition to the N-terminal KIS region, S245, hydrophobic residues L249/L251, and basic residues R242/R243 located in the KIM region were important in controlling STEP activity toward phospho-ERK. Further kinetic experiments revealed subtle structural differences between STEP and HePTP that affected the interactions of their KIMs with ERK. Moreover, STEP recognised specific positions of a phospho-ERK peptide sequence through its active site, and the contact of STEP F311 with phospho-ERK V205 and T207 were crucial interactions. Taken together, our results not only provide the information for interactions between ERK and STEP, but will also help in the development of specific strategies to target STEP-ERK recognition, which could serve as a potential therapy for neurological disorders. PMID:24117863

  4. Overexpression of parkin in rat nigrostriatal dopamine system protects against methamphetamine neurotoxicity

    Science.gov (United States)

    Liu, Bin; Traini, Roberta; Killinger, Bryan; Schneider, Bernard; Moszczynska, Anna

    2013-01-01

    Methamphetamine (METH) is a central nervous system psychostimulant with a high potential for abuse. At high doses, METH causes a selective degeneration of dopaminergic terminals in the striatum, sparing other striatal terminals and cell bodies. We previously detected a deficit in parkin after binge METH in rat striatal synaptosomes. Parkin is an ubiquitin-protein E3 ligase capable of protecting dopamine neurons from diverse cellular insults. Whether the deficit in parkin mediates the toxicity of METH and whether parkin can protect from toxicity of the drug is unknown. The present study investigated whether overexpression of parkin attenuates degeneration of striatal dopaminergic terminals exposed to binge METH. Parkin overexpression in rat nigrostriatal dopamine system was achieved by microinjection of adeno-associated viral transfer vector 2/6 encoding rat parkin (AAV2/6-parkin) into the substantia nigra pars compacta. The microinjections of AAV2/6-parkin dose-dependently increased parkin levels in both the substantia nigra pars compacta and striatum. The levels of dopamine synthesizing enzyme, tyrosine hydroxylase, remained at the control levels; therefore, tyrosine hydroxylase immunoreactivity was used as an index of dopaminergic terminal integrity. In METH-exposed rats, the increase in parkin levels attenuated METH-induced decreases in striatal tyrosine hydroxylase immunoreactivity in a dose-dependent manner, indicating that parkin can protect striatal dopaminergic terminals against METH neurotoxicity. PMID:23313192

  5. The neurotropic parasite Toxoplasma gondii increases dopamine metabolism.

    Directory of Open Access Journals (Sweden)

    Emese Prandovszky

    Full Text Available The highly prevalent parasite Toxoplasma gondii manipulates its host's behavior. In infected rodents, the behavioral changes increase the likelihood that the parasite will be transmitted back to its definitive cat host, an essential step in completion of the parasite's life cycle. The mechanism(s responsible for behavioral changes in the host is unknown but two lines of published evidence suggest that the parasite alters neurotransmitter signal transduction: the disruption of the parasite-induced behavioral changes with medications used to treat psychiatric disease (specifically dopamine antagonists and identification of a tyrosine hydroxylase encoded in the parasite genome. In this study, infection of mammalian dopaminergic cells with T. gondii enhanced the levels of K+-induced release of dopamine several-fold, with a direct correlation between the number of infected cells and the quantity of dopamine released. Immunostaining brain sections of infected mice with dopamine antibody showed intense staining of encysted parasites. Based on these analyses, T. gondii orchestrates a significant increase in dopamine metabolism in neural cells. Tyrosine hydroxylase, the rate-limiting enzyme for dopamine synthesis, was also found in intracellular tissue cysts in brain tissue with antibodies specific for the parasite-encoded tyrosine hydroxylase. These observations provide a mechanism for parasite-induced behavioral changes. The observed effects on dopamine metabolism could also be relevant in interpreting reports of psychobehavioral changes in toxoplasmosis-infected humans.

  6. Insulin growth factors regulate the mitotic cycle in cultured rat sympathetic neuroblasts

    International Nuclear Information System (INIS)

    DiCicco-Bloom, E.; Black, I.B.

    1988-01-01

    While neuronal mitosis is uniquely restricted to early development, the underlying regulation remains to be defined. The authors have now developed a dissociated, embryonic sympathetic neuron culture system that uses fully defined medium in which cells enter the mitotic cycle. The cultured cells expressed two neuronal traits, tyrosine hydroxylase and the neuron-specific 160-kDa neurofilament subunit protein, but were devoid of glial fibrillary acidic protein, a marker for non-myelin-forming Schwann cells in ganglia. Approximately one-third of the tyrosine hydroxylase-positive cells synthesized DNA in culture, specifically incorporating [ 3 H]thymidine into their nuclei. They used this system to define factors regulating the mitotic cycle in sympathetic neuroblasts. Members of the insulin family of growth factors, including insulin and insulin-like growth factors I and II, regulated DNA synthesis in the presumptive neuroblasts. Insulin more than doubled the proportion of tyrosine hydroxylase-positive cells entering the mitotic cycle, as indicated by autoradiography of [ 3 H]thymidine incorporation into nuclei. Scintillation spectrometry was an even more sensitive index of DNA synthesis. In contrast, the trophic protein nerve growth factor exhibited no mitogenic effect, suggesting that the mitogenic action of insulin growth factors is highly specific. The observations are discussed in the context of the detection of insulin growth factors and receptors in the developing brain

  7. AAV-mediated gene transfer of the obesity-associated gene Etv5 in rat midbrain does not affect energy balance or motivated behavior.

    Directory of Open Access Journals (Sweden)

    Arjen J Boender

    Full Text Available Several genome-wide association studies have implicated the transcription factor E-twenty- six version 5 (Etv5 in the regulation of body mass index. Further substantiating the role of Etv5 in feeding behavior are the findings that targeted disruption of Etv5 in mice leads to decreased body weight gain and that expression of Etv5 is decreased in the ventral tegmental area and substantia nigra pars compacta (VTA/SNpc after food restriction. As Etv5 has been suggested to influence dopaminergic neurotransmission by driving the expression of genes that are responsible for the synthesis and release of dopamine, we investigated if expression levels of Etv5 are dependent on nutritional state and subsequently influence the expression levels of tyrosine hydroxylase. While it was shown that Etv5 expression in the VTA/SNpc increases after central administration of leptin and that Etv5 was able to drive expression of tyrosine hydroxylase in vitro, AAV-mediated gene transfer of Etv5 into the VTA/SNpc of rats did not alter expression of tyrosine hydroxylase in vivo. Moreover, AAV-mediated gene transfer of Etv5 in the VTA/SNpc did not affect measures of energy balance or performances in a progressive ratio schedule. Thus, these data do not support a role for increased expression of Etv5 in the VTA/SNpc in the regulation of feeding behavior.

  8. Loss of ferulate 5-hydroxylase leads to Mediator-dependent inhibition of soluble phenylpropanoid biosynthesis in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Nickolas; Bonawitz, Nicholas D.; Nyffeler, Kayleigh E.; Chapple, Clint

    2015-06-05

    Phenylpropanoids are phenylalanine-derived specialized metabolites and include important structural components of plant cell walls, such as lignin and hydroxycinnamic acids, as well as ultraviolet and visible light-absorbing pigments, such as hydroxycinnamate esters (HCEs) and anthocyanins. Previous work has revealed a remarkable degree of plasticity in HCE biosynthesis, such that most Arabidopsis (Arabidopsis thaliana) mutants with blockages in the pathway simply redirect carbon flux to atypical HCEs. In contrast, the ferulic acid hydroxylase1 (fah1) mutant accumulates greatly reduced levels of HCEs, suggesting that phenylpropanoid biosynthesis may be repressed in response to the loss of FERULATE 5-HYDROXYLASE (F5H) activity. Here, we show that in fah1 mutant plants, the activity of HCE biosynthetic enzymes is not limiting for HCE accumulation, nor is phenylpropanoid flux diverted to the synthesis of cell wall components or flavonol glycosides. We further show that anthocyanin accumulation is also repressed in fah1 mutants and that this repression is specific to tissues in which F5H is normally expressed. Finally, we show that repression of both HCE and anthocyanin biosynthesis in fah1 mutants is dependent on the MED5a/5b subunits of the transcriptional coregulatory complex Mediator, which are similarly required for the repression of lignin biosynthesis and the stunted growth of the phenylpropanoid pathway mutant reduced epidermal fluorescence8. Taken together, these observations show that the synthesis of HCEs and anthocyanins is actively repressed in a MEDIATOR-dependent manner in Arabidopsis fah1 mutants and support an emerging model in which MED5a/5b act as central players in the homeostatic repression of phenylpropanoid metabolism.

  9. Inhibition of receptor tyrosine kinase signalling by small molecule agonist of T-cell protein tyrosine phosphatase

    International Nuclear Information System (INIS)

    Mattila, Elina; Marttila, Heidi; Sahlberg, Niko; Kohonen, Pekka; Tähtinen, Siri; Halonen, Pasi; Perälä, Merja; Ivaska, Johanna

    2010-01-01

    T-cell protein tyrosine phosphatase (TCPTP/TC45) is a ubiquitously expressed intra-cellular non-receptor protein tyrosine phosphatase involved in the negative regulation of several cancer relevant cellular signalling pathways. We have previously shown that interaction between the α-cytoplasmic tail of α1β1 integrin and TCPTP activates TCPTP by disrupting an inhibitory intra-molecular bond in TCPTP. Thus, inhibition of the regulatory interaction in TCPTP is a desirable strategy for TCPTP activation and attenuation of oncogenic RTK signalling. However, this is challenging with low molecular weight compounds. We developed a high-throughput compatible assay to analyse activity of recombinant TCPTP in vitro. Using this assay we have screened 64280 small molecules to identify novel agonists for TCPTP. Dose-dependent response to TCPTP agonist was performed using the in vitro assay. Inhibition effects and specificity of TCPTP agonists were evaluated using TCPTP expressing and null mouse embryonic fibroblasts. Western blot analysis was used to evaluate attenuation of PDGFRβ and EGFR phosphorylation. Inhibition of VEGF signalling was analysed with VEGF-induced endothelial cell sprouting assays. From the screen we identified six TCPTP agonists. Two compounds competed with α1-cytoplasmic domain for binding to TCPTP, suggesting that they activate TCPTP similar to α1-cyt by disrupting the intra-molecular bond in TCPTP. Importantly, one of the compounds (spermidine) displayed specificity towards TCPTP in cells, since TCPTP -/- cells were 43-fold more resistant to the compound than TCPTP expressing cells. This compound attenuates PDGFRβ and VEGFR2 signalling in cells in a TCPTP-dependent manner and functions as a negative regulator of EGFR phosphorylation in cancer cells. In this study we showed that small molecules mimicking TCPTP-α1 interaction can be used as TCPTP agonists. These data provide the first proof-of-concept description of the use of high-throughput screening

  10. Tyrosine metabolic enzymes from insects and mammals: a comparative perspective.

    Science.gov (United States)

    Vavricka, Christopher John; Han, Qian; Mehere, Prajwalini; Ding, Haizhen; Christensen, Bruce M; Li, Jianyong

    2014-02-01

    Differences in the metabolism of tyrosine between insects and mammals present an interesting example of molecular evolution. Both insects and mammals possess fine-tuned systems of enzymes to meet their specific demands for tyrosine metabolites; however, more homologous enzymes involved in tyrosine metabolism have emerged in many insect species. Without knowledge of modern genomics, one might suppose that mammals, which are generally more complex than insects and require tyrosine as a precursor for important catecholamine neurotransmitters and for melanin, should possess more enzymes to control tyrosine metabolism. Therefore, the question of why insects actually possess more tyrosine metabolic enzymes is quite interesting. It has long been known that insects rely heavily on tyrosine metabolism for cuticle hardening and for innate immune responses, and these evolutionary constraints are likely the key answers to this question. In terms of melanogenesis, mammals also possess a high level of regulation; yet mammalian systems possess more mechanisms for detoxification whereas insects accelerate pathways like melanogenesis and therefore must bear increased oxidative pressure. Our research group has had the opportunity to characterize the structure and function of many key proteins involved in tyrosine metabolism from both insects and mammals. In this mini review we will give a brief overview of our research on tyrosine metabolic enzymes in the scope of an evolutionary perspective of mammals in comparison to insects. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  11. Study of RNA interference inhibiting rat ovarian androgen biosynthesis by depressing 17alpha-hydroxylase/17, 20-lyase activity in vivo

    Directory of Open Access Journals (Sweden)

    Yang Xing

    2009-07-01

    Full Text Available Abstract Background 17alpha-hydroxylase/17, 20-lyase encoded by CYP17 is the key enzyme in androgen biosynthesis pathway. Previous studies demonstrated the accentuation of the enzyme in patients with polycystic ovary syndrome (PCOS was the most important mechanism of androgen excess. We chose CYP17 as the therapeutic target, trying to suppress the activity of 17alpha-hydroxylase/17, 20-lyase and inhibit androgen biosynthesis by silencing the expression of CYP17 in the rat ovary. Methods Three CYP17-targeting and one negative control oligonucleotides were designed and used in the present study. The silence efficiency of lentivirus shRNA was assessed by qRT-PCR, Western blotting and hormone assay. After subcapsular injection of lentivirus shRNA in rat ovary, the delivery efficiency was evaluated by GFP fluorescence and qPCR. Total RNA was extracted from rat ovary for CYP17 mRNA determination and rat serum was collected for hormone measurement. Results In total, three CYP17-targeting lentivirus shRNAs were synthesized. The results showed that all of them had a silencing effect on CYP17 mRNA and protein. Moreover, androstenedione secreted by rat theca interstitial cells (TIC in the RNAi group declined significantly compared with that in the control group. Two weeks after rat ovarian subcapsular injection of chosen CYP17 shRNA, the GFP fluorescence of frozen ovarian sections could be seen clearly under fluorescence microscope. It also showed that the GFP DNA level increased significantly, and its relative expression level was 7.42 times higher than that in the control group. Simultaneously, shRNA treatment significantly decreased CYP17 mRNA and protein levels at 61% and 54%, respectively. Hormone assay showed that all the levels of androstenedione, 17-hydroxyprogesterone and testosterone declined to a certain degree, but progesterone levels declined significantly. Conclusion The present study proves for the first time that ovarian androgen

  12. Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Macek, B

    2006-01-01

    for phosphotyrosine-containing proteins in Streptomyces griseus by immunoaffinity chromatography identified bacterial SSBs as a novel target of bacterial tyrosine kinases. Since genes encoding protein-tyrosine kinases (PTKs) have not been recognized in streptomycetes, and SSBs from Streptomyces coelicolor (Sc......SSB) and Bacillus subtilis (BsSSB) share 38.7% identity, we used a B.subtilis protein-tyrosine kinase YwqD to phosphorylate two cognate SSBs (BsSSB and YwpH) in vitro. We demonstrate that in vivo phosphorylation of B.subtilis SSB occurs on tyrosine residue 82, and this reaction is affected antagonistically...... by kinase YwqD and phosphatase YwqE. Phosphorylation of B.subtilis SSB increased binding almost 200-fold to single-stranded DNA in vitro. Tyrosine phosphorylation of B.subtilis, S.coelicolor and Escherichia coli SSBs occured while they were expressed in E.coli, indicating that tyrosine phosphorylation...

  13. Engagement of CD81 induces ezrin tyrosine phosphorylation and its cellular redistribution with filamentous actin

    Energy Technology Data Exchange (ETDEWEB)

    Coffey, Greg P.; Rajapaksa, Ranjani; Liu, Raymond; Sharpe, Orr; Kuo, Chiung-Chi; Wald Krauss, Sharon; Sagi, Yael; Davis, R. Eric; Staudt, Louis M.; Sharman, Jeff P.; Robinson, William H.; Levy, Shoshana

    2009-06-09

    CD81 is a tetraspanin family member involved in diverse cellular interactions in the immune and nervous systems and in cell fusion events. However, the mechanism of action of CD81 and of other tetraspanins has not been defined. We reasoned that identifying signaling molecules downstream of CD81 would provide mechanistic clues. We engaged CD81 on the surface of Blymphocytes and identified the induced tyrosine-phosphorylated proteins by mass spectrometry. This analysis showed that the most prominent tyrosine phosphorylated protein was ezrin, an actin binding protein and a member of the ezrin-radixin-moesin family. We also found that CD81 engagement induces spleen tyrosine kinase (Syk) and that Syk was involved in tyrosine phosphorylation of ezrin. Ezrin colocalized with CD81 and F-actin upon stimulation and this association was disrupted when Syk activation was blocked. Taken together, these studies suggest a model in which CD81 interfaces between the plasma membrane and the cytoskeleton by activating Syk, mobilizing ezrin, and recruiting F-actin to facilitate cytoskeletal reorganization and cell signaling. This may be a mechanism explaining the pleiotropic effects induced in response to stimulating cells by anti-CD81 antibodies or by the hepatitis C virus, which uses this molecule as its key receptor.

  14. δ-Tocopherol inhibits receptor tyrosine kinase-induced AKT activation in prostate cancer cells.

    Science.gov (United States)

    Wang, Hong; Hong, Jungil; Yang, Chung S

    2016-11-01

    The cancer preventive activity of vitamin E is suggested by epidemiological studies and supported by animal studies with vitamin E forms, γ-tocopherol and δ-tocopherol (δ-T). Several recent large-scale cancer prevention trials with high dose of α-tocopherol, however, yielded disappointing results. Whether vitamin E prevents or promotes cancer is a serious concern. A better understanding of the molecular mechanisms of action of the different forms of tocopherols would enhance our understanding of this topic. In this study, we demonstrated that δ-T was the most effective tocopherol form in inhibiting prostate cancer cell growth, by inducing cell cycle arrest and apoptosis. By profiling the effects of δ-T on the cell signaling using the phospho-kinase array, we found that the most inhibited target was the phosphorylation of AKT on T308. Further study on the activation of AKT by EGFR and IGFR revealed that δ-T attenuated the EGF/IGF-induced activation of AKT (via the phosphorylation of AKT on T308 induced by the activation of PIK3). Expression of dominant active PIK3 and AKT in prostate cancer cell line DU145 in which PIK3, AKT, and PTEN are wild type caused the cells to be reflectory to the inhibition of δ-T, supporting that δ-T inhibits the PIK3-mediated activation of AKT. Our data also suggest that δ-T interferes with the EGF-induced EGFR internalization, which leads to the inhibition of the receptor tyrosine kinase-dependent activation of AKT. In summary, our results revealed a novel mechanism of δ-T in inhibiting prostate cancer cell growth, supporting the cancer preventive activity δ-T. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  15. Expression and purification of the metal-containing monooxygenases tryptophan hydroxylase and dopamine β-hydroxylase

    DEFF Research Database (Denmark)

    Karlsen, Pernille Efferbach

    -hyperactive disorder (ADHD) among others. Since all these diseases are the cause of huge economical and personal costs it is very important to gain more knowledge of TPH and DβH since these two enzymes could be possible targets for medicine against the diseases mentioned above. TPH a three-domain, iron......-containing enzyme which belongs to the aromatic amino acid hydroxylase (AAAH) family. It exist in two isoforms, TPH1 and TPH2, which are expressed in different tissues and have different properties. TPH is known as a very diffcult protein to work with especially due to instability and only truncated forms of TPH1...... have been purified and crystallized. This project concern the human neuronal TPH or TPH2. In an attempt to overcome the problems with recombinant TPH two stability and solubility optimized variants of TPH2 are designed. Escherichia coli (E. coli) expression strains for these variants and full length...

  16. Origin and characterization of retrograde labeled neurons supplying the rat urethra using fiberoptic confocal fluorescent microscopy in vivo and immunohistochemistry.

    Science.gov (United States)

    Lee, Keon-Cheol; Sharma, Seema; Tuttle, Jeremy B; Steers, William D

    2010-10-01

    Autonomic innervation of urethral smooth muscle may influence urinary continence after prostatectomy. It is unclear whether the cavernous nerves carry fibers that influence continence. Using a retrograde axonal tracer combined with real-time in vivo imaging and ex vivo immunohistochemistry we determined the course and type of neurons supplying urethral smooth muscle distal to the prostate in the rat. We injected the retrograde axonal tracers cholera toxin B fragment-Alexa Fluor 488 and Fast Blue in the distal urethral smooth muscle in 10 rats each. Five days later the cavernous nerves and pelvic ganglion were imaged using fiberoptic confocal fluorescence microscopy (cholera toxin B fragment-Alexa Fluor 488) or harvested for immunohistochemistry (Fast Blue). Dual immunofluorescence of Fast Blue neurons with tyrosine hydroxylase or neuronal nitric oxide synthase was done to characterize neurons as noradrenergic or nitrergic. To ascertain whether the cavernous nerves contain fibers to the urethra that originate in the pelvic ganglia we cut the cavernous nerves with their ancillary branches in 3 rats and imaged them for Fast Blue. Fluorescent neurons and axons were detected in cavernous nerves and the pelvic ganglion. Few neurons were seen in rats with cavernous nerve section. Of urethral neurons 53.1% showed neuronal nitric oxide synthase positivity while 40.6% were immunoreactive for tyrosine hydroxylase. About 6.2% of urethral neurons failed to show tyrosine hydroxylase or neuronal nitric oxide synthase immunoreactivity. Most of the autonomic innervation to the urethra beyond the prostatic apex travels in the cavernous nerves. Many nerves may be parasympathetic based on neuronal nitric oxide synthase immunoreactivity. Nerves supplying the urethra outside the cavernous nerves may course posterior to the prostate. Along with afferent fibers, tyrosine hydroxylase immunoreactivity expressing neuron fibers, ie noradrenergic nerves, traveling in the cavernous nerves may

  17. Protein Tyrosine Nitration : Selectivity, Physicochemical and Biological Consequences, Denitration, and Proteomics Methods for the Identification of Tyrosine-Nitrated Proteins

    NARCIS (Netherlands)

    Abello, Nicolas; Kerstjens, Huib A. M.; Postma, Dirkje S.; Bischoff, Rainer

    Protein tyrosine nitration (PTN) is a post-translational modification occurring under the action of a nitrating agent. Tyrosine is modified in the 3-position of the phenolic ring through the addition of a nitro group (NO(2)). In the present article, we review the main nitration reactions and

  18. Characterizing tyrosine phosphorylation signaling in lung cancer using SH2 profiling.

    Directory of Open Access Journals (Sweden)

    Kazuya Machida

    2010-10-01

    Full Text Available Tyrosine kinases drive the proliferation and survival of many human cancers. Thus profiling the global state of tyrosine phosphorylation of a tumor is likely to provide a wealth of information that can be used to classify tumors for prognosis and prediction. However, the comprehensive analysis of tyrosine phosphorylation of large numbers of human cancer specimens is technically challenging using current methods.We used a phosphoproteomic method termed SH2 profiling to characterize the global state of phosphotyrosine (pTyr signaling in human lung cancer cell lines. This method quantifies the phosphorylated binding sites for SH2 domains, which are used by cells to respond to changes in pTyr during signaling. Cells could be grouped based on SH2 binding patterns, with some clusters correlated with EGF receptor (EGFR or K-RAS mutation status. Binding of specific SH2 domains, most prominently RAS pathway activators Grb2 and ShcA, correlated with EGFR mutation and sensitivity to the EGFR inhibitor erlotinib. SH2 binding patterns also reflected MET activation and could identify cells driven by multiple kinases. The pTyr responses of cells treated with kinase inhibitors provided evidence of distinct mechanisms of inhibition.This study illustrates the potential of modular protein domains and their proteomic binding profiles as powerful molecular diagnostic tools for tumor classification and biomarker identification.

  19. Role of Mitochondrial DNA Mutations in Cellular Vulnerability to Mitochondria-Specific Environmental Toxins

    National Research Council Canada - National Science Library

    Hirsch, Etienne C

    2005-01-01

    .... To test such a hypothesis in Parkinson's disease we proposed to: 1) develop an animal model with accumulated mtDNA mutations in catecholaminergic neurons by creating a transgenic mouse containing a tyrosine hydroxylase (TH...

  20. Determination of o-tyrosine in irradiated chicken

    International Nuclear Information System (INIS)

    Zoller, O.; Schoeni, D.; Zimmerli, B.

    1991-01-01

    The author explains his method to determine O-Tyrosine in irradiated chickens with a high-performance liquid chromatography. The method is simple and fast, but a proper chromatographic separation is difficult. The detection limit with a high sensitive detector is about 0.05-0.1 mg O-Tyrosine/kg meat (9 refs)

  1. Tetrahydrobiopterin precursor sepiapterin provides protection against neurotoxicity of 1-methyl-4-phenylpyridinium in nigral slice cultures

    DEFF Research Database (Denmark)

    Madsen, Jakob Torp; Jansen, Pernille; Hesslinger, Christian

    2003-01-01

    Complex-I inhibition and oxidative processes have been implicated in the loss of nigral dopamine neurones in Parkinson's disease and the toxicity of MPTP and its metabolite MPP+. Tetrahydrobiopterin, an essential cofactor for tyrosine hydroxylase, may act as an antioxidant in dopaminergic neurones...... and protects against the toxic consequences of glutathione depletion. Here we studied the effects of manipulating tetrahydrobiopterin levels on MPP+ toxicity in organotypic, rat ventral mesencephalic slice cultures. In cultures exposed to 30 micro m MPP+ for 2 days, followed by 8 days 'recovery' in control...... medium, we measured dopamine and its metabolites in the tissue and culture medium by HPLC, lactate dehydrogenase release to the culture medium, cellular uptake of propidium iodide and counted the tyrosine hydroxylase-immunoreactive neurones. Inhibition of tetrahydrobiopterin synthesis by 2,4-diamino-6...

  2. Putative tyrosine kinases expressed in K-562 human leukemia cells

    International Nuclear Information System (INIS)

    Partanen, J.; Maekelae, T.P.; Lehvaeslaiho, H.; Alitalo, K.; Alitalo, R.

    1990-01-01

    Tyrosine phosphorylation is important in the transmission of growth and differentiation signals; known tyrosine kinases include several oncoproteins and growth factor receptors. Interestingly, some differentiated cell types, such as erythrocytes and platelets contain high amounts of phosphotyrosine. The authors analyzed tyrosine kinases expressed in the K-562 chronic myelogenous leukemia cell line, which has a bipotential erythroid and megakaryoblastoid differentiation capacity. Analysis of 359 polymerase chain reaction-amplified cDNA clones led to the identification of 14 different tyrosine kinase-related sequences (JTK1-14). Two of the clones (JTK2 and JTK4) represent unusual members of the fibroblast growth factor receptor gene family, and the clones JTK5, JTK11, and JTK14 may also belong to the family of receptor tyrosine kinases but lack a close relationship to any known tyrosine kinase. Each of these different genes has its own characteristic expression pattern in K-562 cells and several other human tumor cell lines. In addition, the JTK11 and JTK14 mRNAs are induced during the megakaryoblastoid differentiation of K-562 cells. These tyrosine kinases may have a role in the differentiation of megakaryoblasts or in the physiology of platelets

  3. Tyrosine kinase inhibitors: Multi-targeted or single-targeted?

    Science.gov (United States)

    Broekman, Fleur; Giovannetti, Elisa; Peters, Godefridus J

    2011-02-10

    Since in most tumors multiple signaling pathways are involved, many of the inhibitors in clinical development are designed to affect a wide range of targeted kinases. The most important tyrosine kinase families in the development of tyrosine kinase inhibitors are the ABL, SCR, platelet derived growth factor, vascular endothelial growth factor receptor and epidermal growth factor receptor families. Both multi-kinase inhibitors and single-kinase inhibitors have advantages and disadvantages, which are related to potential resistance mechanisms, pharmacokinetics, selectivity and tumor environment. In different malignancies various tyrosine kinases are mutated or overexpressed and several resistance mechanisms exist. Pharmacokinetics is influenced by interindividual differences and differs for two single targeted inhibitors or between patients treated by the same tyrosine kinase inhibitor. Different tyrosine kinase inhibitors have various mechanisms to achieve selectivity, while differences in gene expression exist between tumor and stromal cells. Considering these aspects, one type of inhibitor can generally not be preferred above the other, but will depend on the specific genetic constitution of the patient and the tumor, allowing personalized therapy. The most effective way of cancer treatment by using tyrosine kinase inhibitors is to consider each patient/tumor individually and to determine the strategy that specifically targets the consequences of altered (epi)genetics of the tumor. This strategy might result in treatment by a single multi kinase inhibitor for one patient, but in treatment by a couple of single kinase inhibitors for other patients.

  4. Structural stability of human protein tyrosine phosphatase ρ catalytic domain: effect of point mutations.

    Directory of Open Access Journals (Sweden)

    Alessandra Pasquo

    Full Text Available Protein tyrosine phosphatase ρ (PTPρ belongs to the classical receptor type IIB family of protein tyrosine phosphatase, the most frequently mutated tyrosine phosphatase in human cancer. There are evidences to suggest that PTPρ may act as a tumor suppressor gene and dysregulation of Tyr phosphorylation can be observed in diverse diseases, such as diabetes, immune deficiencies and cancer. PTPρ variants in the catalytic domain have been identified in cancer tissues. These natural variants are nonsynonymous single nucleotide polymorphisms, variations of a single nucleotide occurring in the coding region and leading to amino acid substitutions. In this study we investigated the effect of amino acid substitution on the structural stability and on the activity of the membrane-proximal catalytic domain of PTPρ. We expressed and purified as soluble recombinant proteins some of the mutants of the membrane-proximal catalytic domain of PTPρ identified in colorectal cancer and in the single nucleotide polymorphisms database. The mutants show a decreased thermal and thermodynamic stability and decreased activation energy relative to phosphatase activity, when compared to wild- type. All the variants show three-state equilibrium unfolding transitions similar to that of the wild- type, with the accumulation of a folding intermediate populated at ~4.0 M urea.

  5. Tyrosine kinase inhibition: A therapeutic target for the management of chronic-phase chronic myeloid leukemia

    Science.gov (United States)

    Jabbour, Elias J; Cortes, Jorge E; Kantarjian, Hagop M

    2014-01-01

    Chronic myeloid leukemia (CML) is a hematologic neoplasm with a progressive, ultimately terminal, disease course. In most cases, CML arises owing to the aberrant formation of a chimeric gene for a constitutively active tyrosine kinase. Inhibition of the signaling activity of this kinase has proved to be a highly successful treatment target transforming the prognosis of patients with CML. New tyrosine kinase inhibitors (TKIs) continue to improve the management of CML, offering alternative options for those resistant to or intolerant of standard TKIs. Here we review the pathobiology of CML and explore emerging strategies to optimize the management of chronic-phase CML, particularly first-line treatment. PMID:24236822

  6. Concomitant tumor resistance: the role of tyrosine isomers in the mechanisms of metastases control.

    Science.gov (United States)

    Ruggiero, Raúl A; Bruzzo, Juan; Chiarella, Paula; Bustuoabad, Oscar D; Meiss, Roberto P; Pasqualini, Christiane D

    2012-03-01

    Concomitant tumor resistance (CR) is a phenomenon in which a tumor-bearing host is resistant to the growth of secondary tumor implants and metastasis. Although previous studies indicated that T-cell-dependent processes mediate CR in hosts bearing immunogenic small tumors, manifestations of CR induced by immunogenic and nonimmunogenic large tumors have been associated with an elusive serum factor. In a recently published study, we identified this factor as meta-tyrosine and ortho-tyrosine, 2 isomers of tyrosine that would not be present in normal proteins. In 3 different murine models of cancer that generate CR, both meta- and ortho-tyrosine inhibited tumor growth. Additionally, we showed that both isoforms of tyrosine blocked metastasis in a fourth model that does not generate CR but is sensitive to CR induced by other tumors. Mechanistic studies showed that the antitumor effects of the tyrosine isomers were mediated in part by early inhibition of the MAP/ERK pathway and inactivation of STAT3, potentially driving tumor cells into a state of dormancy in G(0)-phase. Other mechanisms, putatively involving the activation of an intra-S-phase checkpoint, would also inhibit tumor proliferation by accumulating cells in S-phase. By revealing a molecular basis for the classical phenomenon of CR, our findings may stimulate new generalized approaches to limit the development of metastases that arise after resection of primary tumors or after other stressors that may promote the escape of metastases from dormancy, an issue that is of pivotal importance to oncologists and their patients.

  7. Effect of acute maternal starvation on tyrosine metabolism and protein synthesis in fetal sheep

    International Nuclear Information System (INIS)

    Krishnamurti, C.R.; Schaefer, A.L.

    1984-01-01

    To determine the effects of acute maternal starvation on intrauterine growth, tyrosine concentration and specific activity values in plasma, intracellular free and protein bound pools were determined in catheterized ovine fetuses following an 8 h continuous infusion of L-[2,3,5,6 3 H] or L-[U- 14 C] tyrosine into the ewe and fetus respectively at 115-125 days of gestation. From the kinetic data the rates of whole body and tissue fractional protein synthesis were calculated. Although placental protein synthesis was not significantly changed as a result of acute maternal starvation, fetal whole body protein synthesis was reduced from 63 g/d/kg in the fed to 25 g/d/kg in the starved condition. There was also a 10 fold reduction in the net placental transfer of tyrosine to the fetus in the starved ewes. In addition, a three fold increase was observed in the quantity of tyrosine used for oxidation by the fetuses of starved ewes, changing from 5.2% of tyrosine net utilization in the fed to 13.7% in the starved condition. Significant reductions in tissue fractional protein synthesis rates were also seen in the liver, brain, lung kidney and GIT tissues from 78, 37, 65, 45 and 71%/d respectively in the fed to 12, 10, 23, 22 and 35%/d in the fetuses of starved ewes. The data indicate that during acute maternal starvation the sheep fetus utilizes more tyrosine for oxidation and less for anabolic purposes which is reflected in a decrease both in whole body and tissue fractional rates of protein synthesis

  8. Hydroxyl radical induced cross-linking of cytosine and tyrosine in nucleohistone

    International Nuclear Information System (INIS)

    Gajewski, E.; Dizdaroglu, M.

    1990-01-01

    Hydroxyl radical induced formation of a DNA-protein cross-link involving cytosine and tyrosine in nucleohistone in buffered aqueous solution is reported. The technique of gas chromatography-mass spectrometry was used for this investigation. A γ-irradiated aqueous mixture of cytosine and tyrosine was first investigated in order to obtain gas chromatographic-mass spectrometric properties of possible cytosine-tyrosine cross-links. One cross-link was observed, and its structure was identified as the product from the formation of a covalent bond between carbon 6 of cytosine and carbon 3 of tyrosine. With the use of gas chromatography-mass spectrometry with selected-ion monitoring, this cytosine-tyrosine cross-link was identified in acidic hydrolysates of calf thymus nucleohistone γ-irradiated in N 2 O-saturated aqueous solution. The yield of this DNA-protein cross-link in nucleohistone was found to be a linear function of the radiation dose in the range of 100-500 Gy (J·kg -1 ). This yield amounted to 0.05 nmol·J -1 . Mechanisms underlying the formation of the cytosine-tyrosine cross-link in nucleohistone were proposed to involve radical-radical and/or radical addition reactions of hydroxyl adduct radicals of cytosine and tyrosine moieties, forming a covalent bond between carbon 6 of cytosine and carbon 3 of tyrosine. When oxygen was present in irradiated solutions, no cytosine-tyrosine cross-links were observed

  9. Double labelling immunohistochemical characterization of autonomic sympathetic neurons innervating the sow retractor clitoridis muscle

    Directory of Open Access Journals (Sweden)

    L Ragionieri

    2009-08-01

    Full Text Available Retrograde neuronal tracing and immunohistochemical methods were used to define the neurochemical content of sympathetic neurons projecting to the sow retractor clitoridis muscle (RCM. Differently from the other smooth muscles of genital organs, the RCM is an isolated muscle that is tonically contracted in the rest phase and relaxed in the active phase. This peculiarity makes it an interesting experimental model. The fluorescent tracer fast blue was injected into the RCM of three 50 kg subjects. After a one-week survival period, the ipsilateral paravertebral ganglion S1, that in a preliminary study showed the greatest number of cells projecting to the muscle, was collected from each animal. The co-existence of tyrosine hydroxylase with choline acetyltransferase, neuronal nitric oxide synthase, calcitonin gene-related peptide, leuenkephalin, neuropeptide Y, substance P and vasoactive intestinal polypeptide was studied under a fluorescent microscope on cryostat sections. Tyrosine hydroxylase was present in about 58% of the neurons projecting to the muscle and was found to be co-localized with each of the other tested substances.Within fast blue-labelled cells negative to the adrenergic marker, small populations of neurons singularly containing each of the other enzymatic markers or peptides were also observed. The present study documents the complexity of the neurochemical interactions that regulate the activity of the smooth myocytes of the RCM and their vascular components.

  10. Eating to stop: Tyrosine supplementation enhances inhibitory control but not response execution

    NARCIS (Netherlands)

    Colzato, L.S.; Jongkees, B.J.; Sellaro, R.; van den Wildenberg, W.P.M.; Hommel, B.

    2014-01-01

    Animal studies and research in humans have shown that the supplementation of tyrosine, or tyrosine-containing diets, increase the plasma tyrosine and enhance brain dopamine (DA). However, the strategy of administering tyrosine (and the role of DA therein) to enhance cognition is unclear and heavily

  11. Tyrosine kinase receptor status in endometrial stromal sarcoma: an immunohistochemical and genetic-molecular analysis.

    Science.gov (United States)

    Cossu-Rocca, Paolo; Contini, Marcella; Uras, Maria Gabriela; Muroni, Maria Rosaria; Pili, Francesca; Carru, Ciriaco; Bosincu, Luisanna; Massarelli, Giovannino; Nogales, Francisco F; De Miglio, Maria Rosaria

    2012-11-01

    Endometrial stromal sarcomas (ESS) are rare uterine malignant mesenchymal neoplasms, which are currently treated by surgery, as effective adjuvant therapies have not yet been established. Tyrosine kinase inhibitors have rarely been applied in ESS therapy, with few reports describing imatinib responsivity. The aim of this study was to analyze the status of different tyrosine kinase receptors in an ESS series, in order to evaluate their potential role as molecular targets. Immunohistochemistry was performed for EGFR, c-KIT, PDGFR-α, PDGFR-β, and ABL on 28 ESS. EGFR, PDGFR-α, and PDGFR-β gene expression was investigated by real-time polymerase chain reaction (qRT-PCR) on selected cases. "Hot-spot" mutations were screened for on EGFR, c-KIT, PDGFR-α, and PDGFR-β genes, by sequencing. All analysis was executed from formalin-fixed, paraffin-embedded specimens. Immunohistochemical overexpression of 2 or more tyrosine kinase receptors was observed in 18 of 28 tumors (64%), whereas only 5 tumors were consistently negative. Gene expression profiles were concordant with immunohistochemical overexpression in only 1 tumor, which displayed both high mRNA levels and specific immunoreactivity for PDGFR-α, and PDGFR-β. No activating mutations were found on the tumors included in the study. This study confirms that TKRs expression is frequently observed in ESS. Considering that the responsiveness to tyrosine kinase inhibitors is known to be related to the presence of specific activating mutations or gene over-expression, which are not detectable in ESS, TKRs immunohistochemical over-expression alone should not be considered as a reliable marker for targeted therapies in ESS. Specific post-translational abnormalities, responsible for activation of TKRs, should be further investigated.

  12. FAK tyrosine phosphorylation is regulated by AMPK and controls metabolism in human skeletal muscle

    DEFF Research Database (Denmark)

    Lassiter, David G; Nylén, Carolina; Sjögren, Rasmus J O

    2018-01-01

    the FAK gene, PTK2. RESULTS: AMPK activation reduced tyrosine phosphorylation of FAK in skeletal muscle. AICAR reduced p-FAKY397in isolated human skeletal muscle and cultured myotubes. Insulin stimulation did not alter FAK phosphorylation. Serum starvation increased AMPK activation, as demonstrated...

  13. Receptor-type Protein Tyrosine Phosphatase β Regulates Met Phosphorylation and Function in Head and Neck Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Yiru Xu

    2012-11-01

    Full Text Available Head and neck squamous cell carcinoma (HNSCC is the sixth most common cancer and has a high rate of mortality. Emerging evidence indicates that hepatocyte growth factor receptor (or Met pathway plays a pivotal role in HNSCC metastasis and resistance to chemotherapy. Met function is dependent on tyrosine phosphorylation that is under direct control by receptor-type protein tyrosine phosphatase β (RPTP-β. We report here that RPTP-β expression is significantly downregulated in HNSCC cells derived from metastatic tumors compared to subject-matched cells from primary tumors. Knockdown of endogenous RPTP-β in HNSCC cells from primary tumor potentiated Met tyrosine phosphorylation, downstream mitogen-activated protein (MAP kinase pathway activation, cell migration, and invasion. Conversely, restoration of RPTP-β expression in cells from matched metastatic tumor decreased Met tyrosine phosphorylation and downstream functions. Furthermore, we observed that six of eight HNSCC tumors had reduced levels of RPTP-β protein in comparison with normal oral tissues. Collectively, the results demonstrate the importance of RPTP-β in tumor biology of HNSCC through direct dephosphorylation of Met and regulation of downstream signal transduction pathways. Reduced RPTP-β levels, with or without Met overexpression, could promote Met activation in HNSCC tumors.

  14. Oral l-tyrosine supplementation augments the vasoconstriction response to whole-body cooling in older adults.

    Science.gov (United States)

    Lang, James A; Smaller, Kevin A

    2017-07-01

    What is the central question of this study? Ageing is associated with altered sympathetic responses to stress, which are explained in part by reduced noradrenergic function. The impact of supplementation with oral l-tyrosine, the amino acid precursor for catecholamine synthesis, on the effector responses to cold and exercise stress has yet to be examined. What is the main finding and its importance? Oral l-tyrosine ingestion augmented the sympathetically mediated vasoconstriction response to cold exposure in aged skin. This suggests that l-tyrosine supplementation might improve thermoregulatory function in older adults. l-Tyrosine is the primary substrate for noradrenaline biosynthesis within sympathetic axon terminals. In stressful conditions requiring increased catecholamine production, the axonal l-tyrosine concentration may limit the full expression of the sympathetic effector response and this may be particularly evident in older adults. We hypothesize that oral l-tyrosine supplementation will increase the sympathetic response to whole-body cooling and muscle metaboreflex activation. In a randomized, double-blind design, 11 young (Y = 24 ± 1 years) and 11 older participants (O = 68 ± 4 years) ingested either 150 mg kg -1 of l-tyrosine or placebo before commencing 30 min of whole-body cooling to induce a gradual decline in skin temperature from 34 to 30.5°C. Laser Doppler flux (LDF) was measured at the ventral forearm, and cutaneous vascular conductance (CVC) was calculated as CVC = LDF/mean arterial pressure and expressed as a percentage change from baseline (%ΔCVC). Two minutes of static hand-grip exercise (35% maximal voluntary contraction) followed by 3 min of postexercise ischaemia were implemented before and toward the end of the cooling bout. l-Tyrosine supplementation did not affect blood pressure or heart rate responses to exercise or postexercise ischaemia. However, the blunted vasoconstriction response to whole-body cooling in

  15. Ibrutinib: a first in class covalent inhibitor of Bruton's tyrosine kinase.

    Science.gov (United States)

    Davids, Matthew S; Brown, Jennifer R

    2014-05-01

    Ibrutinib (formerly PCI-32765) is a potent, covalent inhibitor of Bruton's tyrosine kinase, a kinase downstream of the B-cell receptor that is critical for B-cell survival and proliferation. In preclinical studies, ibrutinib bound to Bruton's tyrosine kinase with high affinity, leading to inhibition of B-cell receptor signaling, decreased B-cell activation and induction of apoptosis. In clinical studies, ibrutinib has been well-tolerated and has demonstrated profound anti-tumor activity in a variety of hematologic malignancies, most notably chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL), leading to US FDA approval for relapsed CLL and MCL. Ongoing studies are evaluating ibrutinib in other types of non-Hodgkin's lymphoma, such as diffuse large B-cell lymphoma and Waldenström's macrogobulinemia, in larger Phase III studies in CLL and MCL, and in combination studies with monoclonal antibodies and chemotherapy. Future studies will combine ibrutinib with other promising novel agents currently in development in hematologic malignancies.

  16. A role for the tyrosine kinase ACK1 in neurotrophin signaling and neuronal extension and branching

    Science.gov (United States)

    La Torre, A; del Mar Masdeu, M; Cotrufo, T; Moubarak, R S; del Río, J A; Comella, J X; Soriano, E; Ureña, J M

    2013-01-01

    Neurotrophins are involved in many crucial cellular functions, including neurite outgrowth, synapse formation, and plasticity. Although these events have long been known, the molecular determinants underlying neuritogenesis have not been fully characterized. Ack1 (activated Cdc42-associated tyrosine kinase) is a non-receptor tyrosine kinase that is highly expressed in the brain. Here, we demonstrate that Ack1 is a molecular constituent of neurotrophin signaling cascades in neurons and PC12 cells. We report that Ack1 interacts with Trk receptors and becomes tyrosine phosphorylated and its kinase activity is increased in response to neurotrophins. Moreover, our data indicate that Ack1 acts upstream of the Akt and MAPK pathways. We show that Ack1 overexpression induces neuritic outgrowth and promotes branching in neurotrophin-treated neuronal cells, whereas the expression of Ack1 dominant negatives or short-hairpin RNAs counteract neurotrophin-stimulated differentiation. Our results identify Ack1 as a novel regulator of neurotrophin-mediated events in primary neurons and in PC12 cells. PMID:23598414

  17. Ret function in muscle stem cells points to tyrosine kinase inhibitor therapy for facioscapulohumeral muscular dystrophy.

    Science.gov (United States)

    Moyle, Louise A; Blanc, Eric; Jaka, Oihane; Prueller, Johanna; Banerji, Christopher Rs; Tedesco, Francesco Saverio; Harridge, Stephen Dr; Knight, Robert D; Zammit, Peter S

    2016-11-14

    Facioscapulohumeral muscular dystrophy (FSHD) involves sporadic expression of DUX4, which inhibits myogenesis and is pro-apoptotic. To identify target genes, we over-expressed DUX4 in myoblasts and found that the receptor tyrosine kinase Ret was significantly up-regulated, suggesting a role in FSHD. RET is dynamically expressed during myogenic progression in mouse and human myoblasts. Constitutive expression of either RET9 or RET51 increased myoblast proliferation, whereas siRNA-mediated knockdown of Ret induced myogenic differentiation. Suppressing RET activity using Sunitinib, a clinically-approved tyrosine kinase inhibitor, rescued differentiation in both DUX4-expressing murine myoblasts and in FSHD patient-derived myoblasts. Importantly, Sunitinib also increased engraftment and differentiation of FSHD myoblasts in regenerating mouse muscle. Thus, DUX4-mediated activation of Ret prevents myogenic differentiation and could contribute to FSHD pathology by preventing satellite cell-mediated repair. Rescue of DUX4-induced pathology by Sunitinib highlights the therapeutic potential of tyrosine kinase inhibitors for treatment of FSHD.

  18. Molecular characterization of ferulate 5-hydroxylase gene from kenaf (Hibiscus cannabinus L.)

    Science.gov (United States)

    The purpose of this research was to clone and characterize the expression pattern of a kenaf (Hibiscus cannabinus L.) F5H gene that encodes ferulate 5-hydroxylase in the phenylpropanoid pathway. Kenaf is well known as a fast growing dicotyledonous plant, which makes it a valuable biomass plant. The ...

  19. Suppression of bcr-abl synthesis by siRNAs or tyrosine kinase activity by Glivec alters different oncogenes, apoptotic/antiapoptotic genes and cell proliferation factors (microarray study).

    Science.gov (United States)

    Zhelev, Zhivko; Bakalova, Rumiana; Ohba, Hideki; Ewis, Ashraf; Ishikawa, Mitsuru; Shinohara, Yasuo; Baba, Yoshinobu

    2004-07-16

    Short 21-mer double-stranded/small-interfering RNAs (ds/siRNAs) were designed to target bcr-abl mRNA in chronic myelogenous leukemia. The ds/siRNAs were transfected into bcr-abl-positive K-562 (derived from blast crisis chronic myelogenous leukemia), using lipofectamine. Penetrating of ds/siRNAs into the cells was detected by fluorescent confocal microscopy, using fluorescein-labeled ds/siRNAs. The cells were treated with mix of three siRNA sequences (3 x 60 nM) during 6 days with three repetitive transfections. The siRNA-treatment was accompanied with significant reduction of bcr-abl mRNA, p210, protein tyrosine kinase activity and cell proliferation index. Treatment of cells with Glivec (during 8 days with four repetitive doses, 180 nM single dose) resulted in analogous reduction of cell proliferation activity, stronger suppression of protein tyrosine kinase activity, and very low reduction of p210. siRNA-mix and Glivec did not affect significantly the viability of normal lymphocytes. Microarray analysis of siRNA- and Glivec-treated K-562 cells demonstrated that both pathways of bcr-abl suppression were accompanied with overexpression and suppression of many different oncogenes, apoptotic/antiapoptotic and cell proliferation factors. The following genes of interest were found to decrease in relatively equal degree in both siRNA- and Glivec-treated cells: Bcd orf1 and orf2 proto-oncogene, chromatin-specific transcription elongation factor FACT 140-kDa subunit mRNA, gene encoding splicing factor SF1, and mRNA for Tec protein tyrosine kinase. siRNA-mix and Glivec provoked overexpression of the following common genes: c-jun proto-oncogene, protein kinase C-alpha, pvt-1 oncogene homologue (myc activator), interleukin-6, 1-8D gene from interferon-inducible gene family, tumor necrosis factor receptor superfamily (10b), and STAT-induced STAT inhibitor.

  20. {delta}-Opioid receptor-stimulated Akt signaling in neuroblastoma x glioma (NG108-15) hybrid cells involves receptor tyrosine kinase-mediated PI3K activation

    Energy Technology Data Exchange (ETDEWEB)

    Heiss, Anika; Ammer, Hermann [Institute of Pharmacology, Toxicology and Pharmacy Ludwig-Maximilians-University of Munich Koeniginstrasse 16 80539 Muenchen Federal Republic of Germany (Germany); Eisinger, Daniela A., E-mail: eisinger@pharmtox.vetmed.uni-muenchen.de [Institute of Pharmacology, Toxicology and Pharmacy Ludwig-Maximilians-University of Munich Koeniginstrasse 16 80539 Muenchen Federal Republic of Germany (Germany)

    2009-07-15

    {delta}-Opioid receptor (DOR) agonists possess cytoprotective properties, an effect associated with activation of the 'pro-survival' kinase Akt. Here we delineate the signal transduction pathway by which opioids induce Akt activation in neuroblastoma x glioma (NG108-15) hybrid cells. Exposure of the cells to both [D-Pen{sup 2,5}]enkephalin and etorphine resulted in a time- and dose-dependent increase in Akt activity, as measured by means of an activation-specific antibody recognizing phosphoserine-473. DOR-mediated Akt signaling is blocked by the opioid antagonist naloxone and involves inhibitory G{sub i/o} proteins, because pre-treatment with pertussis toxin, but not over-expression of the G{sub q/11} scavengers EBP50 and GRK2-K220R, prevented this effect. Further studies with Wortmannin and LY294002 revealed that phophoinositol-3-kinase (PI3K) plays a central role in opioid-induced Akt activation. Opioids stimulate Akt activity through transactivation of receptor tyrosine kinases (RTK), because pre-treatment of the cells with inhibitors for neurotrophin receptor tyrosine kinases (AG879) and the insulin-like growth factor receptor IGF-1 (AG1024), but not over-expression of the G{beta}{gamma} scavenger phosducin, abolished this effect. Activated Akt translocates to the nuclear membrane, where it promotes GSK3 phosphorylation and prevents caspase-3 cleavage, two key events mediating inhibition of cell apoptosis and enhancement of cell survival. Taken together, these results demonstrate that in NG108-15 hybrid cells DOR agonists possess cytoprotective properties mediated by activation of the RTK/PI3K/Akt signaling pathway.

  1. δ-Opioid receptor-stimulated Akt signaling in neuroblastoma x glioma (NG108-15) hybrid cells involves receptor tyrosine kinase-mediated PI3K activation

    International Nuclear Information System (INIS)

    Heiss, Anika; Ammer, Hermann; Eisinger, Daniela A.

    2009-01-01

    δ-Opioid receptor (DOR) agonists possess cytoprotective properties, an effect associated with activation of the 'pro-survival' kinase Akt. Here we delineate the signal transduction pathway by which opioids induce Akt activation in neuroblastoma x glioma (NG108-15) hybrid cells. Exposure of the cells to both [D-Pen 2,5 ]enkephalin and etorphine resulted in a time- and dose-dependent increase in Akt activity, as measured by means of an activation-specific antibody recognizing phosphoserine-473. DOR-mediated Akt signaling is blocked by the opioid antagonist naloxone and involves inhibitory G i/o proteins, because pre-treatment with pertussis toxin, but not over-expression of the G q/11 scavengers EBP50 and GRK2-K220R, prevented this effect. Further studies with Wortmannin and LY294002 revealed that phophoinositol-3-kinase (PI3K) plays a central role in opioid-induced Akt activation. Opioids stimulate Akt activity through transactivation of receptor tyrosine kinases (RTK), because pre-treatment of the cells with inhibitors for neurotrophin receptor tyrosine kinases (AG879) and the insulin-like growth factor receptor IGF-1 (AG1024), but not over-expression of the Gβγ scavenger phosducin, abolished this effect. Activated Akt translocates to the nuclear membrane, where it promotes GSK3 phosphorylation and prevents caspase-3 cleavage, two key events mediating inhibition of cell apoptosis and enhancement of cell survival. Taken together, these results demonstrate that in NG108-15 hybrid cells DOR agonists possess cytoprotective properties mediated by activation of the RTK/PI3K/Akt signaling pathway.

  2. Water molecule network and active site flexibility of apo protein tyrosine phosphatase 1B

    DEFF Research Database (Denmark)

    Pedersen, A.K.; Peters, Günther H.J.; Møller, K.B.

    2004-01-01

    Protein tyrosine phosphatase 1B (PTP1B) plays a key role as a negative regulator of insulin and leptin signalling and is therefore considered to be an important molecular target for the treatment of type 2 diabetes and obesity. Detailed structural information about the structure of PTP1B, including...

  3. Behavioral and cognitive effects of tyrosine intake in healthy human adults

    NARCIS (Netherlands)

    Hase, Adrian; Jung, Sophie E.; aan het Rot, Marije

    2015-01-01

    The amino acid tyrosine is the precursor to the catecholamine neurotransmitters dopamine and norepinephrine. Increasing tyrosine uptake may positively influence catecholamine-related psychological functioning. We conducted a systematic review to examine the effects of tyrosine on behavior and

  4. Crystal structure and putative substrate identification for the Entamoeba histolytica low molecular weight tyrosine phosphatase.

    Science.gov (United States)

    Linford, Alicia S; Jiang, Nona M; Edwards, Thomas E; Sherman, Nicholas E; Van Voorhis, Wesley C; Stewart, Lance J; Myler, Peter J; Staker, Bart L; Petri, William A

    2014-01-01

    Entamoeba histolytica is a eukaryotic intestinal parasite of humans, and is endemic in developing countries. We have characterized the E. histolytica putative low molecular weight protein tyrosine phosphatase (LMW-PTP). The structure for this amebic tyrosine phosphatase was solved, showing the ligand-induced conformational changes necessary for binding of substrate. In amebae, it was expressed at low but detectable levels as detected by immunoprecipitation followed by immunoblotting. A mutant LMW-PTP protein in which the catalytic cysteine in the active site was replaced with a serine lacked phosphatase activity, and was used to identify a number of trapped putative substrate proteins via mass spectrometry analysis. Seven of these putative substrate protein genes were cloned with an epitope tag and overexpressed in amebae. Five of these seven putative substrate proteins were demonstrated to interact specifically with the mutant LMW-PTP. This is the first biochemical study of a small tyrosine phosphatase in Entamoeba, and sets the stage for understanding its role in amebic biology and pathogenesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Structure-activity relationships of N-beta-phenylpropionyl-L-tyrosine and its derivatives on the inhibition of an identifiable giant neurone of an African giant snail (Achatina fulica Férussac).

    Science.gov (United States)

    Ariyoshi, Y.; Takeuchi, H.

    1982-01-01

    1 Inhibitory effects of N-beta-phenylpropionyl-L-tyrosine, N-beta-phenylpropionyl-L-tryptophan and their derivatives on an identifiable giant neurone, TAN (tonically autoactive neurone) of an African giant snail (Achatina fulica Férussac) were examined in an attempt to elucidate which structural features are necessary to produce the effect. 2 Of the compounds examined, N-beta-cyclohexylpropionyl-L-tyrosine showed the strongest effect. Its critical concentration (c.c.) was 3 X 10(-8)-10(-7)M, about ten times lower than that of N-beta-phenylpropionyl-L-tyrosine (c.c., 3 X 10(-7)-10(-6)M). N-beta-cyclohexylpropionyl-L-tryptophan (c.c., 10(-6)M) had an effect almost similar to that of N-beta-phenylpropionyl-L-tryptophan (c.c., 10(-6)M). 3 N-beta-Phenylpropionyl-N-methyl-L-tyrosine had no effect at a high concentration. 4 Effects of N-beta-phenylpropionyl-L-tyrosine amide (c.c., 3 X 10(-7)-10(-6)M) and N-beta-phenylpropionyl-L-tryptophan amide (c.c., 10(-6)M) were very similar to those of N-beta-phenylpropionyl-L-tyrosine and N-beta-phenylpropionyl-L-tryptophan respectively. 5 N-beta-Phenylpropionyl-p-amino-L-phenylalanine (c.c., 3 X 10(-5)-10(-4)M) and N-beta-phenylpropionyl-p-chloro-L-phenylalanine (c.c., 10(-4)M) had only a weak effect. 6 It is proposed that the structural features producing the effect are as follows: the active compound has a phenyl or a cyclohexyl group (hydrophobic binding group), after a suitable distance a peptide bond (proton donor and proton acceptor), adjacently a carbonyl group (proton acceptor), and a phenolic hydroxyl or an indolyl imino group (proton donor) in the molecule. PMID:7150871

  6. SUBSTRATE-SPECIFICITY OF THE ALKANE HYDROXYLASE SYSTEM OF PSEUDOMONAS-OLEOVORANS GPO1

    NARCIS (Netherlands)

    van Beilen, J.B.; Kingma, Jacob; Witholt, Bernard

    1994-01-01

    We have studied the hydroxylation of a wide range of linear, branched and cyclic alkanes and alkylbenzenes by the alkane hydroxylase system of Pseudomonas oleovorans GPo1 in vivo and in vitro. In vivo hydroxylation was determined with whole cells of the recombinant PpS8141; P. putida PpS81 carrying

  7. Adrenal scan in 17-alpha-hydroxylase deficiency: false indication of adrenal adenoma

    International Nuclear Information System (INIS)

    Shore, R.M.; Lieberman, L.M.; Newman, T.J.; Friedman, A.; Bargman, G.J.

    1981-01-01

    A patient who was thought to have testicular feminization syndrome and primary aldosteronism had an adrenal scan that suggested an adrenal adenoma. After later diagnosis of 17-alpha-hydroxylase deficiency, she was treated with glucocorticoids rather than surgery. Her clinical course and a repeat adrenal scan confirmed she did not have a tumor

  8. Tyrosine kinase chromosomal translocations mediate distinct and overlapping gene regulation events

    International Nuclear Information System (INIS)

    Kim, Hani; Gillis, Lisa C; Jarvis, Jordan D; Yang, Stuart; Huang, Kai; Der, Sandy; Barber, Dwayne L

    2011-01-01

    Leukemia is a heterogeneous disease commonly associated with recurrent chromosomal translocations that involve tyrosine kinases including BCR-ABL, TEL-PDGFRB and TEL-JAK2. Most studies on the activated tyrosine kinases have focused on proximal signaling events, but little is known about gene transcription regulated by these fusions. Oligonucleotide microarray was performed to compare mRNA changes attributable to BCR-ABL, TEL-PDGFRB and TEL-JAK2 after 1 week of activation of each fusion in Ba/F3 cell lines. Imatinib was used to control the activation of BCR-ABL and TEL-PDGFRB, and TEL-JAK2-mediated gene expression was examined 1 week after Ba/F3-TEL-JAK2 cells were switched to factor-independent conditions. Microarray analysis revealed between 800 to 2000 genes induced or suppressed by two-fold or greater by each tyrosine kinase, with a subset of these genes commonly induced or suppressed among the three fusions. Validation by Quantitative PCR confirmed that eight genes (Dok2, Mrvi1, Isg20, Id1, gp49b, Cxcl10, Scinderin, and collagen Vα1(Col5a1)) displayed an overlapping regulation among the three tested fusion proteins. Stat1 and Gbp1 were induced uniquely by TEL-PDGFRB. Our results suggest that BCR-ABL, TEL-PDGFRB and TEL-JAK2 regulate distinct and overlapping gene transcription profiles. Many of the genes identified are known to be involved in processes associated with leukemogenesis, including cell migration, proliferation and differentiation. This study offers the basis for further work that could lead to an understanding of the specificity of diseases caused by these three chromosomal translocations

  9. Immunochemically identical hydrophilic and amphiphilic forms of the bovine adrenomedullary dopamine beta-hydroxylase

    DEFF Research Database (Denmark)

    Bjerrum, Ole Jannik; Helle, K B; Bock, Elisabeth Marianne

    1979-01-01

    . The dopamine beta-hydroxylases of the buffer and membrane fractions were antigenically identical, but differed in their amphiphilicity, as demonstrated by the change in precipitation patterns on removal of Triton X-100 from the gel, on charge-shift crossed immunoelectrophoresis and on crossed hydrophobic...

  10. Keratinocyte-derived laminin-332 protein promotes melanin synthesis via regulation of tyrosine uptake.

    Science.gov (United States)

    Chung, Heesung; Jung, Hyejung; Lee, Jung-Hyun; Oh, Hye Yun; Kim, Ok Bin; Han, Inn-Oc; Oh, Eok-Soo

    2014-08-01

    Melanocytes, which produce the pigment melanin, are known to be closely regulated by neighboring keratinocytes. However, how keratinocytes regulate melanin production is unclear. Here we report that melanin production in melanoma cells (B16F10 and MNT-1) was increased markedly on a keratinocyte-derived extracellular matrix compared with a melanoma cell-derived extracellular matrix. siRNA-mediated reduction of keratinocyte-derived laminin-332 expression decreased melanin synthesis in melanoma cells, and laminin-332, but not fibronectin, enhanced melanin content and α-melanocyte-stimulating hormone-regulated melanin production in melanoma cells. Similar effects were observed in human melanocytes. Interestingly, however, laminin-332 did not affect the expression or activity of tyrosinase. Instead, laminin-332 promoted the uptake of extracellular tyrosine and, subsequently, increased intracellular levels of tyrosine in both melanocytes and melanoma cells. Taken together, these data strongly suggest that keratinocyte-derived laminin-332 contributes to melanin production by regulating tyrosine uptake. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Tyrosine transport in winter flounder intestine: Interaction with Na+-K+-2Cl- cotransport

    International Nuclear Information System (INIS)

    Musch, M.W.; McConnell, F.M.; Goldstein, L.; Field, M.

    1987-01-01

    Tyrosine absorption across the brush border of the intestinal epithelium of the winter flounder Pseudopleuronectes americanus was studied in Ussing chambers modified to determine early rates of uptake. At 0.1 mM tyrosine, the 4-min rate of uptake (influx) of tyrosine across the brush border averaged 37.5 nmol·cm -2 ·h -1 . Omission of Na decreased influx by 60%, indicting that tyrosine influx occurs, at least in part, by a Na-coupled process. Ouabain inhibited influx by 80%. Inhibition of brush border Na + -K + -2Cl - cotransport by bumetanide, 8-bromo-cyclic GMP, or Cl replacement stimulated tyrosine influx 2.5- to 4-fold. However, atriopeptin III, which also inhibits Na + -K + -2Cl - cotransport, did not stimulate tyrosine influx. Cyclic AMP, which does not appear to inhibit ion cotransport, did not stimulate tyrosine influx. Both cyclic GMP and bumetanide also stimulated the net mucosa-to-serosa tyrosine flux (43 and 29%, respectively) and increased the cellular concentration of tyrosine by 50%. Thus tyrosine's influx is increased to a greater extent than is its transmural flux or its cellular concentration, suggesting that the main change occurs at the brush border and represents large increases in both influx and efflux of tyrosine across this membrane

  12. Interleukin-2 induces tyrosine phosphorylation and nuclear translocation of stat3 in human T lymphocytes

    DEFF Research Database (Denmark)

    Nielsen, M; Svejgaard, A; Skov, S

    1994-01-01

    that stimulation through the IL-2R induced tyrosine phosphorylation and subsequent nuclear translocation of stat3, a newly identified member of the signal transducers and activators of transcription (STAT) family of proteins. In contrast, stat1 proteins were not tyrosine phosphorylated after IL-2 ligation, whereas...... an apparent molecular mass of 84 kDa and was not recognized by stat3 or stat1 mAb or antisera. Since IL-2 induced nuclear translocation of the 84 kDa protein and stat3 followed identical kinetics, p84 is a candidate for a new, yet undefined, member of the STAT family. Taken together, we report that IL-2...... induces tyrosine phosphorylation and subsequent nuclear translocation of stat3 and an as yet undefined 84-kDa protein in antigen-specific human T cell lines....

  13. Functional interaction between nonreceptor tyrosine kinase c-Abl and SR-Rich protein RBM39

    International Nuclear Information System (INIS)

    Mai, Sanyue; Qu, Xiuhua; Li, Ping; Ma, Qingjun; Liu, Xuan; Cao, Cheng

    2016-01-01

    RBM39, also known as splicing factor HCC1.4, acts as a transcriptional coactivator for the steroid nuclear receptors JUN/AP-1, ESR1/ER-α and ESR2/ER-β. RBM39 is involved in the regulation of the transcriptional responses of these steroid nuclear receptors and promotes transcriptional initiation. In this paper, we report that RBM39 interacts with the nonreceptor tyrosine kinase c-Abl. Both the Src homology (SH) 2 and SH3 domains of c-Abl interact with RBM39. The major tyrosine phosphorylation sites on RBM39 that are phosphorylated by c-Abl are Y95 and Y99, as demonstrated by liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) and mutational analysis. c-Abl was shown boost the transcriptional coactivation activity of RBM39 for ERα and PRβ in a tyrosine kinase-dependent manner. The results suggest that mammalian c-Abl plays an important role in steroid hormone receptor-mediated transcription by regulating RBM39. - Highlights: • c-Abl interacts with RBM39. • RBM39 is phosphorylated by c-Abl. • c-Abl regulates transcriptional coactivation activity of RBM39 on the ERα and PRβ.

  14. Functional interaction between nonreceptor tyrosine kinase c-Abl and SR-Rich protein RBM39

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Sanyue [Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850 (China); Qu, Xiuhua [General Navy Hospital of PLA, 6 Fucheng Rd, Haidian District, Beijing 100037 (China); Li, Ping; Ma, Qingjun [Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850 (China); Liu, Xuan, E-mail: liux931932@163.com [Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850 (China); Cao, Cheng, E-mail: cao_c@sohu.com [Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850 (China)

    2016-04-22

    RBM39, also known as splicing factor HCC1.4, acts as a transcriptional coactivator for the steroid nuclear receptors JUN/AP-1, ESR1/ER-α and ESR2/ER-β. RBM39 is involved in the regulation of the transcriptional responses of these steroid nuclear receptors and promotes transcriptional initiation. In this paper, we report that RBM39 interacts with the nonreceptor tyrosine kinase c-Abl. Both the Src homology (SH) 2 and SH3 domains of c-Abl interact with RBM39. The major tyrosine phosphorylation sites on RBM39 that are phosphorylated by c-Abl are Y95 and Y99, as demonstrated by liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) and mutational analysis. c-Abl was shown boost the transcriptional coactivation activity of RBM39 for ERα and PRβ in a tyrosine kinase-dependent manner. The results suggest that mammalian c-Abl plays an important role in steroid hormone receptor-mediated transcription by regulating RBM39. - Highlights: • c-Abl interacts with RBM39. • RBM39 is phosphorylated by c-Abl. • c-Abl regulates transcriptional coactivation activity of RBM39 on the ERα and PRβ.

  15. The tyrosine phosphatase Shp2 interacts with NPM-ALK and regulates anaplastic lymphoma cell growth and migration

    DEFF Research Database (Denmark)

    Voena, Claudia; Conte, Chiara; Ambrogio, Chiara

    2007-01-01

    Anaplastic large cell lymphomas (ALCL) are mainly characterized by the reciprocal translocation t(2;5)(p23;q35) that involves the anaplastic lymphoma kinase (ALK) gene and generates the fusion protein NPM-ALK with intrinsic tyrosine kinase activity. NPM-ALK triggers several signaling cascades......, leading to increased cell growth, resistance to apoptosis, and changes in morphology and migration of transformed cells. To search for new NPM-ALK interacting molecules, we developed a mass spectrometry-based proteomic approach in HEK293 cells expressing an inducible NPM-ALK and identified the tyrosine...... phosphatase Shp2 as a candidate substrate. We found that NPM-ALK was able to bind Shp2 in coprecipitation experiments and to induce its phosphorylation in the tyrosine residues Y542 and Y580 both in HEK293 cells and ALCL cell lines. In primary lymphomas, antibodies against the phosphorylated tyrosine Y542...

  16. RPTPα-mediated activation of Src

    NARCIS (Netherlands)

    Vacaru, A.M.

    2010-01-01

    One of the main signal transduction mechanisms in all eukaryotic organisms is tyrosine phosphorylation. The cellular levels of tyrosine phosphorylation are tightly controlled by the activity of two classes of enzymes with opposing activities: the protein-tyrosine kinases (PTKs) and the

  17. Catechol estrogen formation by brain tissue: characterization of a direct product isolation assay for estrogen-2- and 4-hydroxylase activity and its application to studies of 2- and 4-hydroxyestradiol formation by rabbit hypothalamus

    International Nuclear Information System (INIS)

    Hersey, R.M.; Williams, K.I.; Weisz, J.

    1981-01-01

    A direct product isolation assay for quantifying the formation of 2- and 4-hydroxyestradiol (2-OHE2 and 4-OHE2) from [6,7-3H]estradiol by rabbit hypothalami in vitro was developed, and the assay was used to characterize some properties of estrogen-2- and 4-hydroxylase activity in this tissue. The reaction was carried out under conditions that minimized further metabolism of enzymatically formed catechol estrogens. A simple two-step separation procedure, involving the use of a neutral alumina column, followed by thin layer chromatography, was developed to isolate the enzymatically formed catechol estrogens in a radiochemically homogeneous form. The detergent, Tween-80, was found to activate the enzyme and was used routinely at a concentration of 0.1% in the assay. The formation of 2-OHE2 was linear up to 10 min and with increasing protein concentrations up to 150 micrograms/incubation. Similar values were obtained for 4-OHE2. Maximum velocities (Vmax) for the formation of 2- and 4-OHE2 were 190 and 270 pmol/mg protein . 10 min, respectively. The apparent Km values with respect to estradiol for 2-OHE2 and 4-OHE2 were 125 and 150 microM, respectively. The highest specific activity for the enzyme was present in the 100,000 X g supernatant (S3), while the activity in the microsomal fraction (P3) was less than that in the original homogenate. Enzyme activity depended on the presence of NADPH and oxygen and was inhibited by CO as well as by high concentrations of SKF-525A. Estrogen-2- and 4-hydroxylase activity in rabbit hypothalamus differed from that in rat liver in two respects. In the liver, enzyme activity was localized in the microsomal fraction and was virtually abolished by Tween-80. In contrast, enzyme activity in rabbit hypothalamus was maximal in the soluble fraction (100,000 X g supernatant)and was stimulated by the detergent

  18. Association between A218C polymorphism of the tryptophan-hydroxylase-1 gene, harm avoidance and binge eating behavior in bulimia nervosa.

    Science.gov (United States)

    Monteleone, Palmiero; Tortorella, Alfonso; Martiadis, Vassilis; Serino, Ismene; Di Filippo, Carmela; Maj, Mario

    2007-06-21

    Genes involved in serotonin transmission are likely involved in the biological predisposition to bulimia nervosa. We investigated whether the A218C polymorphism of the tryptophan-hydroxylase-1 gene was associated to bulimia nervosa and/or to some phenotypic aspects of the disorder. One hundred eighty Caucasian women (91 patients with bulimia nervosa and 89 healthy controls) were enrolled into the study. They underwent a blood sample collection for A218C polymorphism of the tryptophan-hydroxylase-1 genotyping and a clinical evaluation assessing comorbidity for Axis I and II psychiatric disorders, harm avoidance personality dimension and bulimic symptoms. The distribution of both tryptophan-hydroxylase-1 A218C genotypes and alleles did not significantly differ between patients and controls. Bulimic women with the AA genotype exhibited a more severe binge eating behavior and higher harm avoidance scores than those with CC genotype. These findings support the idea that tryptophan-hydroxylase-1 A218C polymorphism does not play a part in the genetic susceptibility to bulimia nervosa, but it seems to be involved in predisposing bulimic patients to a more disturbed eating behavior and higher harm avoidance.

  19. Crystal Structure of Human Dual-Specificity Tyrosine-Regulated Kinase 3 Reveals New Structural Features and Insights into its Auto-phosphorylation.

    Science.gov (United States)

    Kim, Kuglae; Cha, Jeong Seok; Cho, Yong-Soon; Kim, Hoyoung; Chang, Nienping; Kim, Hye-Jung; Cho, Hyun-Soo

    2018-04-07

    Dual-specificity tyrosine-regulated kinases (DYRKs) auto-phosphorylate a critical tyrosine residue in their activation loop and phosphorylate their substrate on serine and threonine residues. The auto-phosphorylation occurs intramolecularly and is a one-off event. DYRK3 is selectively expressed at a high level in hematopoietic cells and attenuates erythroblast development, leading to anemia. In the present study, we determined the crystal structure of the mature form of human DYRK3 in complex with harmine, an ATP competitive inhibitor. The crystal structure revealed a phosphorylation site, residue S350, whose phosphorylation increases the stability of DYRK3 and enhances its kinase activity. In addition, our structural and biochemical assays suggest that the N-terminal auto-phosphorylation accessory domain stabilizes the DYRK3 protein, followed by auto-phosphorylation of the tyrosine of the activation loop, which is important for kinase activity. Finally, our docking analysis provides information for the design of novel and potent therapeutics to treat anemia. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Investigations into potential extrasynaptic communication between the dopaminergic and nitrergic systems

    Directory of Open Access Journals (Sweden)

    Miso eMitkovski

    2012-09-01

    Full Text Available Nitric oxide is unconstrained by cell membranes and can therefore act along a broad distance as a volume transmitter. Spillover of nitric oxide between neurons may have a major impact on central nervous system diseases and particularly on neurodegeneration. There is evidence whereby communication between nitrergic and dopaminergic systems plays an essential role in the control of the nigrostriatal pathway. However, there is sparse information for either the coexistence or overlap of nitric oxide and dopaminergic structures. The present study used double-labeling immunofluorescent microscopy to investigate the degree of cellular co-localization between nitric oxide synthase and tyrosine hydroxylase, enzymes responsible for the synthesis of nitric oxide and dopamine, respectively, was examined in neurons of the nigrostriatal pathway regions in the rat brain. After perfusional fixation, the brains were cut and double immunostained. A proximity analysis of tyrosine hydroxylase and nitric oxide synthase structures was made using confocal laser scanning microscopy, in nigrostriatal regions of the rat brain. We used image acquired at the optical limit and generated binary masks at 2µm-wide margin from the respective maximum projections. Co-localization between the two antigens was infrequent (<10% in most areas examined. However, tyrosine hydroxylase labeling was particularly concentrated close to nitric oxide synthase dendrites/axons and the cell bodies. These results further substantiate an extrasynaptic substrate for interaction between nitrergic and dopaminergic systems, thereby modulating sensitivity to neural inputs and its gene expression.

  1. Nigral dopaminergic neuron replenishment in adult mice through VE-cadherin-expressing neural progenitor cells

    Directory of Open Access Journals (Sweden)

    Abir A Rahman

    2017-01-01

    Full Text Available The function of dopaminergic neurons in the substantia nigra is of central importance to the coordination of movement by the brain's basal ganglia circuitry. This is evidenced by the loss of these neurons, resulting in the cardinal motor deficits associated with Parkinson's disease. In order to fully understand the physiology of these key neurons and develop potential therapies for their loss, it is essential to determine if and how dopaminergic neurons are replenished in the adult brain. Recent work has presented evidence for adult neurogenesis of these neurons by Nestin+/Sox2– neural progenitor cells. We sought to further validate this finding and explore a potential atypical origin for these progenitor cells. Since neural progenitor cells have a proximal association with the vasculature of the brain and subsets of endothelial cells are Nestin+, we hypothesized that dopaminergic neural progenitors might share a common cell lineage. Therefore, we employed a VE-cadherin promoter-driven CREERT2:THlox/THlox transgenic mouse line to ablate the tyrosine hydroxylase gene from endothelial cells in adult animals. After 26 weeks, but not 13 weeks, following the genetic blockade of tyrosine hydroxylase expression in VE-cadherin+ cells, we observed a significant reduction in tyrosine hydroxylase+ neurons in the substantia nigra. The results from this genetic lineage tracing study suggest that dopaminergic neurons are replenished in adult mice by a VE-cadherin+ progenitor cell population potentially arising from an endothelial lineage.

  2. Permissive effect of dexamethasone on the increase of proenkephalin mRNA induced by depolarization of chromaffin cells

    International Nuclear Information System (INIS)

    Naranjo, J.R.; Mocchetti, I.; Schwartz, J.P.; Costa, E.

    1986-01-01

    In cultured bovine chromaffin cells, changes in the dynamic state of enkephalin stores elicited experimentally were studied by measuring cellular proenkephalin mRNA, as well as enkephalin precursors and authentic enkephalin content of cells and culture media. In parallel, tyrosine hydroxylase mRNA and catecholamine cell content were also determined. Low concentrations (0.5-100 pM) of dexamethasone increased the cell contents of proenkephalin mRNA and enkephalin-containing peptides. High concentrations of the hormone(1 μM) were required to increase the cell contents of tyrosine hydroxylase mRNA and catecholamines. Depolarization of the cells with 10 μM veratridine resulted in a depletion of enkephalin and catecholamine stores after 24 hr. The enkephalin, but not the catecholamine, content was restored by 48 hr. An increase in proenkephalin mRNA content might account for the recovery; this increase was curtailed by tetrodotoxin and enhanced by 10 pM dexamethasone. Tyrosine hydroxylase mRNA content was not significantly modified by depolarization, even in the presence of 1 μM dexamethasone. Aldosterone, progesterone, testosterone, or estradiol (1 μM) failed to change proenkephalin mRNA. Hence, dexamethasone appears to exert a specific permissive action on the stimulation of the proenkephalin gene elicited by depolarization. Though the catecholamines and enkephalins are localized in the same chromaffin granules and are coreleased by depolarization, the genes coding for the processes that are rate limiting in the production of these neuromodulators can be differentially regulated

  3. Vomeronasal inputs to the rodent ventral striatum.

    Science.gov (United States)

    Ubeda-Bañon, I; Novejarque, A; Mohedano-Moriano, A; Pro-Sistiaga, P; Insausti, R; Martinez-Garcia, F; Lanuza, E; Martinez-Marcos, A

    2008-03-18

    Vertebrates sense chemical signals through the olfactory and vomeronasal systems. In squamate reptiles, which possess the largest vomeronasal system of all vertebrates, the accessory olfactory bulb projects to the nucleus sphericus, which in turn projects to a portion of the ventral striatum known as olfactostriatum. Characteristically, the olfactostriatum is innervated by neuropeptide Y, tyrosine hydroxylase and serotonin immunoreactive fibers. In this study, the possibility that a structure similar to the reptilian olfactostriatum might be present in the mammalian brain has been investigated. Injections of dextran-amines have been aimed at the posteromedial cortical amygdaloid nucleus (the putative mammalian homologue of the reptilian nucleus sphericus) of rats and mice. The resulting anterograde labeling includes the olfactory tubercle, the islands of Calleja and sparse terminal fields in the shell of the nucleus accumbens and ventral pallidum. This projection has been confirmed by injections of retrograde tracers into the ventral striato-pallidum that render retrograde labeling in the posteromedial cortical amygdaloid nucleus. The analysis of the distribution of neuropeptide Y, tyrosine hydroxylase, serotonin and substance P in the ventral striato-pallidum of rats, and the anterograde tracing of the vomeronasal amygdaloid input in the same material confirm that, similar to reptiles, the ventral striatum of mammals includes a specialized vomeronasal structure (olfactory tubercle and islands of Calleja) displaying dense neuropeptide Y-, tyrosine hydroxylase- and serotonin-immunoreactive innervations. The possibility that parts of the accumbens shell and/or ventral pallidum could be included in the mammalian olfactostriatum cannot be discarded.

  4. Protein-Tyrosine Phosphorylation in Bacillus subtilis

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Bottini, N.

    2005-01-01

    phosphorylation, indicating that this post-translational modifi cation could regulate physiological processes ranging from stress response and exopolysaccharide synthesis to DNA metabolism. Some interesting work in this fi eld was done in Bacillus subtilis , and we here present the current state of knowledge...... on protein-tyrosine phosphorylation in this gram-positive model organism. With its two kinases, two kinase modulators, three phosphatases and at least four different tyrosine-phosphorylated substrates, B. subtilis is the bacterium with the highest number of presently known participants in the global network...

  5. 25-Hydroxyvitamin D depletion does not exacerbate MPTP-induced dopamine neuron damage in mice.

    Directory of Open Access Journals (Sweden)

    E Danielle Dean

    Full Text Available Recent clinical evidence supports a link between 25-hydroxyvitamin D insufficiency (serum 25-hydroxyvitamin D [25(OHD] levels <30 ng/mL and Parkinson's disease. To investigate the effect of 25(OHD depletion on neuronal susceptibility to toxic insult, we induced a state of 25(OHD deficiency in mice and then challenged them with the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP. We found there was no significant difference between control and 25(OHD-deficient animals in striatal dopamine levels or dopamine transporter and tyrosine hydroxylase expression after lesioning with MPTP. Additionally, we found no difference in tyrosine hydroxylase expression in the substantia nigra pars compacta. Our data suggest that reducing 25(OHD serum levels in mice has no effect on the vulnerability of nigral dopaminergic neurons in vivo in this model system of parkinsonism.

  6. Role of Receptor Tyrosine Kinase Signaling in Renal Fibrosis

    Directory of Open Access Journals (Sweden)

    Feng Liu

    2016-06-01

    Full Text Available Renal fibrosis can be induced in different renal diseases, but ultimately progresses to end stage renal disease. Although the pathophysiologic process of renal fibrosis have not been fully elucidated, it is characterized by glomerulosclerosis and/or tubular interstitial fibrosis, and is believed to be caused by the proliferation of renal inherent cells, including glomerular epithelial cells, mesangial cells, and endothelial cells, along with defective kidney repair, renal interstitial fibroblasts activation, and extracellular matrix deposition. Receptor tyrosine kinases (RTKs regulate a variety of cell physiological processes, including metabolism, growth, differentiation, and survival. Many studies from in vitro and animal models have provided evidence that RTKs play important roles in the pathogenic process of renal fibrosis. It is also showed that tyrosine kinases inhibitors (TKIs have anti-fibrotic effects in basic research and clinical trials. In this review, we summarize the evidence for involvement of specific RTKs in renal fibrosis process and the employment of TKIs as a therapeutic approach for renal fibrosis.

  7. rse, a novel receptor-type tyrosine kinase with homology to Axl/Ufo, is expressed at high levels in the brain.

    Science.gov (United States)

    Mark, M R; Scadden, D T; Wang, Z; Gu, Q; Goddard, A; Godowski, P J

    1994-04-08

    We have isolated cDNA clones that encode the human and murine forms of a novel receptor-type tyrosine kinase termed Rse. Sequence analysis indicates that human Rse contains 890 amino acids, with an extracellular region composed of two immunoglobulin-like domains followed by two fibronectin type III domains. Murine Rse contains 880 amino acids and shares 90% amino acid identity with its human counterpart. Rse is structurally similar to the receptor-type tyrosine kinase Axl/Ufo, and the two proteins have 35 and 63% sequence identity in their extracellular and intracellular domains, respectively. To study the synthesis and activation of this putative receptor-type tyrosine kinase, we constructed a version of Rse (termed gD-Rse, where gD represents glycoprotein D) that contains an NH2-terminal epitope tag. NIH3T3 cells were engineered to express gD-Rse, which could be detected at the cell surface by fluorescence-activated cell sorting. Moreover, gD-Rse was rapidly phosphorylated on tyrosine residues upon incubation of the cells with an antibody directed against the epitope tag, suggesting that rse encodes an active tyrosine kinase. In the human tissues we examined, the highest level of expression of rse mRNA was observed in the brain; rse mRNA was also detected in the premegakaryocytopoietic cell lines CMK11-5 and Dami. The gene for rse was localized to human chromosome 15.

  8. Physical and functional interactions between SH2 and SH3 domains of the Src family protein tyrosine kinase p59fyn

    NARCIS (Netherlands)

    Panchamoorthy, G.; Fukazawa, T.; Stolz, L.; Payne, G.; Reedquist, K.; Shoelson, S.; Songyang, Z.; Cantley, L.; Walsh, C.; Band, H.

    1994-01-01

    The Src family protein tyrosine kinases participate in signalling through cell surface receptors that lack intrinsic tyrosine kinase domains. All nine members of this family possess adjacent Src homology (SH2 and SH3) domains, both of which are essential for repression of the enzymatic activity. The

  9. Tyrosine Phosphorylation of Rac1: A Role in Regulation of Cell Spreading

    Science.gov (United States)

    Chang, Fumin; Lemmon, Christopher; Lietha, Daniel; Eck, Michael; Romer, Lewis

    2011-01-01

    Rac1 influences a multiplicity of vital cellular- and tissue-level control functions, making it an important candidate for targeted therapeutics. The activity of the Rho family member Cdc42 has been shown to be modulated by tyrosine phosphorylation at position 64. We therefore investigated consequences of the point mutations Y64F and Y64D in Rac1. Both mutations altered cell spreading from baseline in the settings of wild type, constitutively active, or dominant negative Rac1 expression, and were accompanied by differences in Rac1 targeting to focal adhesions. Rac1-Y64F displayed increased GTP-binding, increased association with βPIX, and reduced binding with RhoGDI as compared with wild type Rac1. Rac1-Y64D had less binding to PAK than Rac1-WT or Rac1-64F. In vitro assays demonstrated that Y64 in Rac1 is a target for FAK and Src. Taken together, these data suggest a mechanism for the regulation of Rac1 activity by non-receptor tyrosine kinases, with consequences for membrane extension. PMID:22163037

  10. Estimation of in vitro activity of tuberoinfundibular dopaminergic neurons by measurement of DOPA synthesis in the median eminence of hypothalamic slices.

    Science.gov (United States)

    Arita, J; Kimura, F

    1984-12-01

    A new method for estimation of in vitro neurosecretory activity of tuberoinfundibular dopaminergic (TIDA) neurons was developed by measuring the rate of synthesis of dihydroxyphenylalanine (DOPA) in the median eminence of hypothalamic slices. Sagittal hypothalamic slices of ovariectomized rats were incubated in a medium containing 3-hydroxybenzylhydrazine (NSD 1015), an inhibitor of DOPA decarboxylase. DOPA accumulated in the median eminence following incubation with NSD 1015 was determined by high-performance liquid chromatography with electro-chemical detection. The amount of DOPA accumulated in vitro in the median eminence was maximal in a medium containing 10 mM NSD 1015 and linear up to 120 min at 37 degrees C. Increasing the concentration of tyrosine in medium stimulated the synthesis of DOPA in the median eminence. The synthesis of DOPA was blocked by 1 mM alpha-methyltyrosine, an inhibitor of tyrosine hydroxylase. The rate of in vitro synthesis of DOPA in the median eminence was 33% of that of in vivo synthesis. Incubation in a medium containing 50 mM K+ to depolarize neurons caused a 2.4-fold increase in DOPA synthesis in the median eminence. The high K+-induced increase in DOPA synthesis was blocked by omission of Ca2+ and addition of 1 mM EGTA into the medium, suggesting Ca2+ dependency of depolarization-activated DOPA synthesis. These results indicate that this in vitro assay is a useful means to study the regulatory mechanisms of TIDA neurons.

  11. Contribution of Protein Tyrosine Phosphateses to the Ontogeny and Progression of Chronic Myeloid Leukemia

    National Research Council Canada - National Science Library

    Tremblay, Michel

    2006-01-01

    ...). Inappropriate STAT1 and STAT5 activation have been observed in the Philadelphia chromosome-positive CML cell lines K562 and BV17, yet low levels of JAK1 tyrosine phosphorylation were observed...

  12. Ror receptor tyrosine kinases: orphans no more

    OpenAIRE

    Green, Jennifer L.; Kuntz, Steven G.; Sternberg, Paul W.

    2008-01-01

    Receptor tyrosine kinase-like orphan receptor (Ror) proteins are a conserved family of tyrosine kinase receptors that function in developmental processes including skeletal and neuronal development, cell movement and cell polarity. Although Ror proteins were originally named because the associated ligand and signaling pathway were unknown, recent studies in multiple species have now established that Ror proteins are Wnt receptors. Depending on the cellular context, Ror proteins can either act...

  13. Protein tyrosine phosphatase SAP-1 protects against colitis through regulation of CEACAM20 in the intestinal epithelium.

    Science.gov (United States)

    Murata, Yoji; Kotani, Takenori; Supriatna, Yana; Kitamura, Yasuaki; Imada, Shinya; Kawahara, Kohichi; Nishio, Miki; Daniwijaya, Edwin Widyanto; Sadakata, Hisanobu; Kusakari, Shinya; Mori, Munemasa; Kanazawa, Yoshitake; Saito, Yasuyuki; Okawa, Katsuya; Takeda-Morishita, Mariko; Okazawa, Hideki; Ohnishi, Hiroshi; Azuma, Takeshi; Suzuki, Akira; Matozaki, Takashi

    2015-08-04

    Intestinal epithelial cells contribute to regulation of intestinal immunity in mammals, but the detailed molecular mechanisms of such regulation have remained largely unknown. Stomach-cancer-associated protein tyrosine phosphatase 1 (SAP-1, also known as PTPRH) is a receptor-type protein tyrosine phosphatase that is localized specifically at microvilli of the brush border in gastrointestinal epithelial cells. Here we show that SAP-1 ablation in interleukin (IL)-10-deficient mice, a model of inflammatory bowel disease, resulted in a marked increase in the severity of colitis in association with up-regulation of mRNAs for various cytokines and chemokines in the colon. Tyrosine phosphorylation of carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 20, an intestinal microvillus-specific transmembrane protein of the Ig superfamily, was greatly increased in the intestinal epithelium of the SAP-1-deficient animals, suggesting that this protein is a substrate for SAP-1. Tyrosine phosphorylation of CEACAM20 by the protein tyrosine kinase c-Src and the consequent association of CEACAM20 with spleen tyrosine kinase (Syk) promoted the production of IL-8 in cultured cells through the activation of nuclear factor-κB (NF-κB). In addition, SAP-1 and CEACAM20 were found to form a complex through interaction of their ectodomains. SAP-1 and CEACAM20 thus constitute a regulatory system through which the intestinal epithelium contributes to intestinal immunity.

  14. Chlorinated tyrosine derivatives in insect cuticle

    DEFF Research Database (Denmark)

    Andersen, Svend Olav

    2004-01-01

    A method for quantitative measurement of 3-monochlorotyrosine and 3,5-dichlorotyrosine in insect cuticles is described, and it is used for determination of their distribution in various cuticular regions in nymphs and adults of the desert locust, Schistocerca gregaria. The two chlorinated tyrosine......, not-yet sclerotized cuticle of adult femur and tibia, the amounts increased rapidly during the first 24 h after ecdysis and more slowly during the next two weeks. Control analyses using stable isotope dilution mass spectrometry have confirmed that the chlorinated tyrosines are not artifacts formed...

  15. The function of Shp2 tyrosine phosphatase in the dispersal of acetylcholine receptor clusters

    Directory of Open Access Journals (Sweden)

    Madhavan Raghavan

    2008-07-01

    Full Text Available Abstract Background A crucial event in the development of the vertebrate neuromuscular junction (NMJ is the postsynaptic enrichment of muscle acetylcholine (ACh receptors (AChRs. This process involves two distinct steps: the local clustering of AChRs at synapses, which depends on the activation of the muscle-specific receptor tyrosine kinase MuSK by neural agrin, and the global dispersal of aneural or "pre-patterned" AChR aggregates, which is triggered by ACh or by synaptogenic stimuli. We and others have previously shown that tyrosine phosphatases, such as the SH2 domain-containing phosphatase Shp2, regulate AChR cluster formation in muscle cells, and that tyrosine phosphatases also mediate the dispersal of pre-patterned AChR clusters by synaptogenic stimuli, although the specific phosphatases involved in this latter step remain unknown. Results Using an assay system that allows AChR cluster assembly and disassembly to be studied separately and quantitatively, we describe a previously unrecognized role of the tyrosine phosphatase Shp2 in AChR cluster disassembly. Shp2 was robustly expressed in embryonic Xenopus muscle in vivo and in cultured myotomal muscle cells, and treatment of the muscle cultures with an inhibitor of Shp2 (NSC-87877 blocked the dispersal of pre-patterned AChR clusters by synaptogenic stimuli. In contrast, over-expression in muscle cells of either wild-type or constitutively active Shp2 accelerated cluster dispersal. Significantly, forced expression in muscle of the Shp2-activator SIRPα1 (signal regulatory protein α1 also enhanced the disassembly of AChR clusters, whereas the expression of a truncated SIRPα1 mutant that suppresses Shp2 signaling inhibited cluster disassembly. Conclusion Our results suggest that Shp2 activation by synaptogenic stimuli, through signaling intermediates such as SIRPα1, promotes the dispersal of pre-patterned AChR clusters to facilitate the selective accumulation of AChRs at developing NMJs.

  16. Towards the conception of an amperometric sensor of L-tyrosine based on Hemin/PAMAM/MWCNT modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Ma Qiang; Ai Shiyun; Yin Huanshun; Chen Quanpeng; Tang Tiantian

    2010-01-01

    A novel amperometric sensor was fabricated based on the immobilization of hemin onto the poly (amidoamine)/multi-walled carbon nanotube (PAMAM/MWCNT) nanocomposite film modified glassy carbon electrode (GCE). Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and ultraviolet visible (UV-vis) adsorption spectroscopy were used to investigate the possible state and electrochemical activity of the immobilized hemin. In the Hemin/PAMAM/MWCNT nanocomposite film, MWCNT layer possessed excellent inherent conductivity to enhance the electron transfer rate, while the layer of PAMAM greatly enlarged the surface average concentration of hemin (Γ) on the modified electrode. Therefore, the nanocomposite film showed enhanced electrocatalytical activity towards the oxidation of L-tyrosine. The kinetic parameters of the modified electrode were investigated. In pH 7.0 phosphate buffer solution (PBS), the sensor exhibits a wide linear range from 0.1 μM to 28.8 μM L-tyrosine with a detection limit of 0.01 μM and a high sensitivity of 0.31 μA μM -1 cm -2 . In addition, the response time of the L-tyrosine sensor is less than 5 s. The excellent performance of the sensor is largely attributed to the electro-generated high reactive oxoiron (IV) porphyrin (O = Fe IV -P) which effectively catalyzed the oxidation of L-tyrosine. A mechanism was herein proposed for the catalytic oxidation of L-tyrosine by oxoiron (IV) porphyrin complexes.

  17. Binding of a diphosphorylated-ITAM peptide to spleen tyrosine kinase (Syk) induces distal conformational changes : a hydrogen exchange mass spectrometry study

    NARCIS (Netherlands)

    Catalina, M Isabel; Fischer, Marcel J E; Liskamp, Rob M J; Heck, Albert J R; Dekker, Frank

    Structural flexibility plays a crucial role in protein function. To assess whether specific structural changes are associated with the binding of an immunoreceptor tyrosine-based activation motif (ITAM) to the tandem Src homology-2 domains (tSH2) of the spleen tyrosine kinase [EC 2.7.7.112] (Syk),

  18. Recent Advances in Developing Inhibitors for Hypoxia-Inducible Factor Prolyl Hydroxylases and Their Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    So Yeon Kim

    2015-11-01

    Full Text Available Hypoxia-inducible factor (HIF prolyl hydroxylases (PHDs are members of the 2-oxoglutarate dependent non-heme iron dioxygenases. Due to their physiological roles in regulation of HIF-1α stability, many efforts have been focused on searching for selective PHD inhibitors to control HIF-1α levels for therapeutic applications. In this review, we first describe the structure of PHD2 as a molecular basis for structure-based drug design (SBDD and various experimental methods developed for measuring PHD activity. We further discuss the current status of the development of PHD inhibitors enabled by combining SBDD approaches with high-throughput screening. Finally, we highlight the clinical implications of small molecule PHD inhibitors.

  19. Role of Tyrosine Isomers in Acute and Chronic Diseases Leading to Oxidative Stress - A Review.

    Science.gov (United States)

    Molnár, Gergő A; Kun, Szilárd; Sélley, Eszter; Kertész, Melinda; Szélig, Lívia; Csontos, Csaba; Böddi, Katalin; Bogár, Lajos; Miseta, Attila; Wittmann, István

    2016-01-01

    Oxidative stress plays a major role in the pathogenesis of a variety of acute and chronic diseases. Measurement of the oxidative stress-related end products may be performed, e.g. that of structural isomers of the physiological para-tyrosine, namely meta- and ortho-tyrosine, that are oxidized derivatives of phenylalanine. Recent data suggest that in sepsis, serum level of meta-tyrosine increases, which peaks on the 2(nd) and 3(rd) days (ptyrosine excretion correlated with both need of daily insulin dose and the insulin-glucose product in non-diabetic septic cases (ptyrosine excretion, urinary meta-tyrosine/para-tyrosine, urinary ortho-tyrosine/para-tyrosine and urinary (meta- + orthotyrosine)/ para-tyrosine proved to be markers of carbohydrate homeostasis. In a chronic rodent model, we tried to compensate the abnormal tyrosine isomers using para-tyrosine, the physiological amino acid. Rats were fed a standard high cholesterol-diet, and were given para-tyrosine or vehicle orally. High-cholesterol feeding lead to a significant increase in aortic wall meta-tyrosine content and a decreased vasorelaxation of the aorta to insulin and the glucagon-like peptide-1 analogue, liraglutide, that both could be prevented by administration of para-tyrosine. Concluding, these data suggest that meta- and ortho-tyrosine are potential markers of oxidative stress in acute diseases related to oxidative stress, and may also interfere with insulin action in septic humans. Competition of meta- and ortho-tyrosine by supplementation of para-tyrosine may exert a protective role in oxidative stress-related diseases.

  20. Ibrutinib: a first in class covalent inhibitor of Bruton’s tyrosine kinase

    Science.gov (United States)

    Davids, Matthew S; Brown, Jennifer R

    2015-01-01

    Ibrutinib (formerly PCI-32765) is a potent, covalent inhibitor of Bruton’s tyrosine kinase, a kinase downstream of the B-cell receptor that is critical for B-cell survival and proliferation. In preclinical studies, ibrutinib bound to Bruton’s tyrosine kinase with high affinity, leading to inhibition of B-cell receptor signaling, decreased B-cell activation and induction of apoptosis. In clinical studies, ibrutinib has been well-tolerated and has demonstrated profound anti-tumor activity in a variety of hematologic malignancies, most notably chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL), leading to US FDA approval for relapsed CLL and MCL. Ongoing studies are evaluating ibrutinib in other types of non-Hodgkin’s lymphoma, such as diffuse large B-cell lymphoma and Waldenström’s macrogobulinemia, in larger Phase III studies in CLL and MCL, and in combination studies with monoclonal antibodies and chemotherapy. Future studies will combine ibrutinib with other promising novel agents currently in development in hematologic malignancies. PMID:24941982