Excitation states in type-II ZnSe/BeTe quantum wells
International Nuclear Information System (INIS)
Platonov, A.V.; Kochereshko, V.P.; Yakovlev, D.R.; Zehnder, U.; Ossau, W.; Fisher, F.; Litz, Th.; Waag, A.; Landwehr, G.
1997-01-01
We present an optical investigation of novel heterostructures based on beryllium chalcogenides with a type-I and type-II band alignment. In the type-II quantum well structures (ZnSe/BeTe) we observed a strong exciton transition involving an electron confined in the conduction band well and a hole localized in the valence band barrier (both in ZnSe layer). This transition is drastically broadened by the temperature increase due to enhanced exciton-acoustic phonon interaction. (author)
Interband cascade light emitting devices based on type-II quantum wells
International Nuclear Information System (INIS)
Yang, Rui Q.; Lin, C.H.; Murry, S.J.
1997-01-01
The authors discuss physical processes in the newly developed type-II interband cascade light emitting devices, and review their recent progress in the demonstration of the first type-II interband cascade lasers and the observation of interband cascade electroluminescence up to room temperature in a broad mid-infrared wavelength region (extended to 9 μm)
Exciton in type-II quantum dot
Energy Technology Data Exchange (ETDEWEB)
Sierra-Ortega, J; Escorcia, R A [Universidad del Magdalena, A. A. 731, Santa Marta (Colombia); Mikhailov, I D, E-mail: jsierraortega@gmail.co [Universidad Industrial de Santander, A. A. 678, Bucaramanga (Colombia)
2009-05-01
We study the quantum-size effect and the influence of the external magnetic field on the exciton ground state energy in the type-II InP quantum disk, lens and pyramid deposited on a wetting layer and embedded in a GaInP matrix. We show that the charge distribution over and below quantum dot and wetting layer induced by trapped exciton strongly depends on the quantum dot morphology and the strength of the magnetic field.
Wang, Ruijun; Sprengel, Stephan; Muneeb, Muhammad; Boehm, Gerhard; Baets, Roel; Amann, Markus-Christian; Roelkens, Gunther
2015-10-05
The heterogeneous integration of InP-based type-II quantum well photodiodes on silicon photonic integrated circuits for the 2 µm wavelength range is presented. A responsivity of 1.2 A/W at a wavelength of 2.32 µm and 0.6 A/W at 2.4 µm wavelength is demonstrated. The photodiodes have a dark current of 12 nA at -0.5 V at room temperature. The absorbing active region of the integrated photodiodes consists of six periods of a "W"-shaped quantum well, also allowing for laser integration on the same platform.
Two-colour mid-infrared absorption in an InAs/GaSb-based type II and broken-gap quantum well
International Nuclear Information System (INIS)
Wei, X F; Xu, W; Zeng, Z
2007-01-01
We examine contributions from different transition channels to optical absorption in an InAs/GaSb-based type II and broken-gap quantum well (QW). In such a structure, because both electron and hole subbands are occupied by the conducting carriers, new channels open up for electronic transition via intra- and inter-layer scattering mechanisms. We find that two absorption peaks can be observed through inter-subband transitions within the same material layer. The absorption induced by the inter-layer transition is rather weak due to a small overlap of electron and hole wavefunctions. The results suggest that InAs/GaSb-based type II and broken-gap QWs can be employed as two-colour photodetectors working at mid-infrared bandwidth at relatively high temperatures up to room-temperature
International Nuclear Information System (INIS)
Sfina, N.; Lazzari, J.-L.; Christol, P.; Cuminal, Y.; Said, M.
2006-01-01
We present a numerical modeling of the conduction- and the valence-band diagrams of W designed Si/Si 0.4 Ge 0.6 /Si type II quantum wells. These W structures, strain-compensated on relaxed Si 0.75 Ge 0.25 pseudo-substrates, are potentially interesting for emission and photo-detection around a 1.55μm wavelength. Two main features have been extrapolated by solving self-consistently Schroedinger and Poisson equations, taking into account the electrostatic attraction induced by carrier injection: (i) Coulomb attraction strongly modifies the band profiles and increases the electron probability density at the quantum well interfaces. (ii) The injected carrier concentration enhances the in-plane oscillator strength and the electron-hole wave-function overlap
International Nuclear Information System (INIS)
Sprengel, S.; Andrejew, A.; Federer, F.; Veerabathran, G. K.; Boehm, G.; Amann, M.-C.
2015-01-01
A concept for electrically pumped vertical cavity surface emitting lasers (VCSEL) for emission wavelength beyond 2 μm is presented. This concept integrates type-II quantum wells into InP-based VCSELs with a buried tunnel junction as current aperture. The W-shaped quantum wells are based on the type-II band alignment between GaInAs and GaAsSb. The structure includes an epitaxial GaInAs/InP and an amorphous AlF 3 /ZnS distributed Bragg reflector as bottom and top (outcoupling) mirror, respectively. Continuous-wave operation up to 10 °C at a wavelength of 2.49 μm and a peak output power of 400 μW at −18 °C has been achieved. Single-mode emission with a side-mode suppression ratio of 30 dB for mesa diameters up to 14 μm is presented. The long emission wavelength and current tunability over a wavelength range of more than 5 nm combined with its single-mode operation makes this device ideally suited for spectroscopy applications
Energy Technology Data Exchange (ETDEWEB)
Kawamata, Shuichi, E-mail: s-kawamata@riast.osakafu-u.ac.jp; Kawamura, Yuichi [Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531 (Japan); Research Organization for University-Community Collaborations, Osaka Prefecture University, Sakai 599-8570 (Japan); Hibino, Akira; Tanaka, Sho [Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531 (Japan)
2016-10-14
In order to develop optical devices for 2–3 μm wavelength regions, the InP-based InGaAs/GaAsSb type II multiple quantum well system has been investigated. By doping nitrogen into InGaAs layers, the system becomes effective in creating the optical devices with a longer wavelength. In this report, electrical transport properties are reported on the InGaAsN/GaAsSb type II system. The epitaxial layers with the single hetero or multiple quantum well structure on InP substrates are grown by the molecular beam epitaxy. The electrical resistance of samples with different nitrogen concentrations has been measured as a function of the magnetic field up to 9 Tesla at several temperatures between 2 and 6 K. The oscillation of the resistance due to the Shubnikov-de Haas (SdH) effect has been observed at each temperature. The effective mass is obtained from the temperature dependence of the amplitude of the SdH oscillations. The value of the effective mass increases from 0.048 for N = 0.0% to 0.062 for N = 1.2 and 1.5% as the nitrogen concentration increases. The mass enhancement occurs with corresponding to the reduction of the bandgap energy. These results are consistent with the band anticrossing model.
Dyksik, Mateusz; Motyka, Marcin; Kurka, Marcin; Ryczko, Krzysztof; Misiewicz, Jan; Schade, Anne; Kamp, Martin; Höfling, Sven; Sęk, Grzegorz
2017-11-01
Two designs of active region for an interband cascade laser, based on double or triple GaInSb/InAs type II quantum wells (QWs), were compared with respect to passive mode-locked operation in the mid-infrared range around 4 µm. The layer structure and electron and hole wavefunctions under external electric field were engineered to allow controlling the optical transition oscillator strength and the resulting lifetimes. As a result, the investigated structures can mimic absorber-like and gain-like sections of a mode-locked device when properly polarized with opposite bias. A significantly larger oscillator strength tuning range for triple QWs was experimentally verified by Fourier-transform photoreflectance.
GaAsSb/InGaAs type-II quantum wells for long-wavelength lasers on GaAs substrates
International Nuclear Information System (INIS)
Klem, J. F.; Blum, O.; Kurtz, S. R.; Fritz, I. J.; Choquette, K. D.
2000-01-01
We have investigated the properties of GaAsSb/InGaAs type-II bilayer quantum-well structures grown by molecular-beam epitaxy for use in long-wavelength lasers on GaAs substrates. Structures with layer strains and thicknesses designed to be thermodynamically stable against dislocation formation exhibit room-temperature photoluminescence at wavelengths as long as 1.43 μm. The photoluminescence emission wavelength is significantly affected by growth temperature and the sequence of layer growth (InGaAs/GaAsSb versus GaAsSb/InGaAs), suggesting that Sb and/or In segregation results in nonideal interfaces under certain growth conditions. At low-injection currents, double-heterostructure lasers with GaAsSb/InGaAs bilayer quantum-well active regions display electroluminescence at wavelengths comparable to those obtained in photoluminescence, but at higher currents the electroluminescence shifts to shorter wavelengths. Lasers have been obtained with threshold current densities of 120 A/cm2 at 1.17 μm, and 2.1 kA/cm2 at 1.21 μm. (c) 2000 American Vacuum Society
Type II Quantum Computing With Superconductors
National Research Council Canada - National Science Library
Orlando, Terry
2004-01-01
... for adiabatic quantum computing using these qubits. The major experimental results on single superconducting persistent current qubits have been the observation of the quantum energy level crossings in niobium qubits, and the microwave measurements...
Czech Academy of Sciences Publication Activity Database
Mikhailova, M. P.; Ivanov, E.V.; Moiseev, K. D.; Yakovlev, Yu. P.; Hulicius, Eduard; Hospodková, Alice; Pangrác, Jiří; Šimeček, Tomislav
2010-01-01
Roč. 44, č. 1 (2010), 66-71 ISSN 1063-7826 Institutional research plan: CEZ:AV0Z10100521 Keywords : electroluninescence * MOVPE * GaSb * InAs * quantum well Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.603, year: 2010
Enhanced Materials Based on Submonolayer Type-II Quantum Dots
Energy Technology Data Exchange (ETDEWEB)
Tamargo, Maria C [City College of New York, NY (United States); Kuskovsky, Igor L. [City Univ. (CUNY), NY (United States) Queens College; Meriles, Carlos [City College of New York, NY (United States); Noyan, Ismail C. [Columbia Univ., New York, NY (United States)
2017-04-15
We have investigated a nanostructured material known as sub-monolayer type-II QDs, made from wide bandgap II-VI semiconductors. Our goal is to understand and exploit their tunable optical and electrical properties by taking advantage of the type-II band alignment and quantum confinement effects. Type-II ZnTe quantum dots (QDs) in a ZnSe host are particularly interesting because of their relatively large valence band and conduction band offsets. In the current award we have developed new materials based on sub-monolayer type-II QDs that may be advantageous for photovoltaic and spintronics applications. We have also expanded the structural characterization of these materials by refining the X-ray diffraction methodologies needed to investigate them. In particular, we have 1) demonstrated ZnCdTe/ZnCdSe type-II QDs materials that have ideal properties for the development of novel high efficiency “intermediate band solar cells”, 2) we developed a comprehensive approach to describe and model the growth of these ultra-small type-II QDs, 3) analysis of the evolution of the photoluminescence (PL) emission, combined with other characterization probes allowed us to predict the size and density of the QDs as a function of the growth conditions, 4) we developed and implemented novel sophisticated X-ray diffraction techniques from which accurate size and shape of the buried type-II QDs could be extracted, 5) a correlation of the shape anisotropy with polarization dependent PL was observed, confirming the QDs detailed shape and providing insight about the effects of this shape anisotropy on the physical properties of the type-II QD systems, and 6) a detailed “time-resolved Kerr rotation” investigation has led to the demonstration of enhanced electron spin lifetimes for the samples with large densities of type-II QDs and an understanding of the interplay between the QDs and Te-isoelectroic centers, a defect that forms in the spacer layers that separate the QDs.
Type II InAs/GaAsSb quantum dots: Highly tunable exciton geometry and topology
Energy Technology Data Exchange (ETDEWEB)
Llorens, J. M.; Wewior, L.; Cardozo de Oliveira, E. R.; Alén, B., E-mail: benito.alen@csic.es [IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres Cantos, Madrid (Spain); Ulloa, J. M.; Utrilla, A. D.; Guzmán, A.; Hierro, A. [Institute for Systems based on Optoelectronics and Microtechnology (ISOM), Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain)
2015-11-02
External control over the electron and hole wavefunctions geometry and topology is investigated in a p-i-n diode embedding a dot-in-a-well InAs/GaAsSb quantum structure with type II band alignment. We find highly tunable exciton dipole moments and largely decoupled exciton recombination and ionization dynamics. We also predicted a bias regime where the hole wavefunction topology changes continuously from quantum dot-like to quantum ring-like as a function of the external bias. All these properties have great potential in advanced electro-optical applications and in the investigation of fundamental spin-orbit phenomena.
Photocapacitance study of type-II GaSb/GaAs quantum ring solar cells
Energy Technology Data Exchange (ETDEWEB)
Wagener, M. C.; Botha, J. R. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Carrington, P. J.; Krier, A. [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom)
2014-01-07
In this study, the density of states associated with the localization of holes in GaSb/GaAs quantum rings are determined by the energy selective charging of the quantum ring distribution. The authors show, using conventional photocapacitance measurements, that the excess charge accumulated within the type-II nanostructures increases with increasing excitation energies for photon energies above 0.9 eV. Optical excitation between the localized hole states and the conduction band is therefore not limited to the Γ(k = 0) point, with pseudo-monochromatic light charging all states lying within the photon energy selected. The energy distribution of the quantum ring states could consequently be accurately related from the excitation dependence of the integrated photocapacitance. The resulting band of localized hole states is shown to be well described by a narrow distribution centered 407 meV above the GaAs valence band maximum.
Nuclear Magnetic Resonance Spectrometer Console Upgrade for a Type II Quantum Computer
National Research Council Canada - National Science Library
Cory, David
2003-01-01
...) spectrometer to enable an improved implementation of type II quantum computers (TTQC). This upgrade is fully functional and has permitted our NMR studies to be moved to higher strength magnetic fields for better sensitivity and spectral dispersion...
Two-Photon Quantum Entanglement from Type-II Spontaneous Parametric Down-Conversion
Pittman, Todd Butler
The concept of two (or more) particle entanglement lies at the heart of many fascinating questions concerning the foundations of quantum mechanics. The counterintuitive nonlocal behavior of entangled states led Einstein, Podolsky, and Rosen (EPR) to ask their famous 1935 question, "Can quantum mechanical description of reality be considered complete?". Although the debate has been raging on for more than 60 years, there is still no absolutely conclusive answer to this question. For if entangled states exist and can be observed, then accepting quantum mechanics as a complete theory requires a drastic overhaul of one's physical intuition with regards to the common sense notions of locality and reality put forth by EPR. Contained herein are the results of research investigating various non-classical features of the two-photon entangled states produced in Type-II Spontaneous Parametric Down -Conversion (SPDC). Through a series of experiments we have manifest the nonlocal nature of the quantum mechanical "two-photon effective wavefunction" (or Biphoton) realized by certain photon-counting coincidence measurements performed on these states. In particular, we examine a special double entanglement, in which the states are seen to be simultaneously entangled in both spin and space-time variables. The observed phenomena based on this double entanglement lead to many interesting results which defy classical explanation, but are well described within the framework of quantum mechanics. The implications provide a unique perspective concerning the nature of the photon, and the concept of quantum entanglement.
Spatial carrier distribution in InP/GaAs type II quantum dots and quantum posts
Iikawa, F.; Donchev, V.; Ivanov, Ts; Dias, G. O.; Tizei, L. H. G.; Lang, R.; Heredia, E.; Gomes, P. F.; Brasil, M. J. S. P.; Cotta, M. A.; Ugarte, D.; Martinez Pastor, J. P.; de Lima, M. M., Jr.; Cantarero, A.
2011-02-01
We performed a detailed investigation of the structural and optical properties of multi-layers of InP/GaAs quantum dots, which present a type II interface arrangement. Transmission electronic microscopy analysis has revealed relatively large dots that coalesce forming so-called quantum posts when the GaAs layer between the InP layers is thin. We observed that the structural properties and morphology affect the resulting radiative lifetime of the carriers in our systems. The carrier lifetimes are relatively long, as expected for type II systems, as compared to those observed for single layer InP/GaAs quantum dots. The interface intermixing effect has been pointed out as a limiting factor for obtaining an effective spatial separation of electrons and holes in the case of single layer InP/GaAs quantum-dot samples. In the present case this effect seems to be less critical due to the particular carrier wavefunction distribution along the structures.
Spatial carrier distribution in InP/GaAs type II quantum dots and quantum posts
International Nuclear Information System (INIS)
Iikawa, F; Donchev, V; Dias, G O; Tizei, L H G; Lang, R; Gomes, P F; Brasil, M J S P; Cotta, M A; Ugarte, D; Ivanov, Ts; Heredia, E; Martinez Pastor, J P; De Lima, M M Jr; Cantarero, A
2011-01-01
We performed a detailed investigation of the structural and optical properties of multi-layers of InP/GaAs quantum dots, which present a type II interface arrangement. Transmission electronic microscopy analysis has revealed relatively large dots that coalesce forming so-called quantum posts when the GaAs layer between the InP layers is thin. We observed that the structural properties and morphology affect the resulting radiative lifetime of the carriers in our systems. The carrier lifetimes are relatively long, as expected for type II systems, as compared to those observed for single layer InP/GaAs quantum dots. The interface intermixing effect has been pointed out as a limiting factor for obtaining an effective spatial separation of electrons and holes in the case of single layer InP/GaAs quantum-dot samples. In the present case this effect seems to be less critical due to the particular carrier wavefunction distribution along the structures.
Spatial carrier distribution in InP/GaAs type II quantum dots and quantum posts
Energy Technology Data Exchange (ETDEWEB)
Iikawa, F; Donchev, V; Dias, G O; Tizei, L H G; Lang, R; Gomes, P F; Brasil, M J S P; Cotta, M A; Ugarte, D [Instituto de Fisica ' Gleb Wataghin' , Unicamp, CP-6165, 13083-970, Campinas-SP (Brazil); Ivanov, Ts [Faculty of Physics, Sofia University, 5, Boulevard J.Bourchier, Sofia-1164 (Bulgaria); Heredia, E [Laboratorio Associado de Sensores e Materiais, Instituto Nacional de Pesquisas Espaciais, CP 515, 12245-970, Sao Jose dos Campos-SP (Brazil); Martinez Pastor, J P; De Lima, M M Jr; Cantarero, A, E-mail: iikawa@ifi.unicamp.br [Materials Science Institute, University of Valencia, PO Box 22085, 46071 Valencia (Spain)
2011-02-11
We performed a detailed investigation of the structural and optical properties of multi-layers of InP/GaAs quantum dots, which present a type II interface arrangement. Transmission electronic microscopy analysis has revealed relatively large dots that coalesce forming so-called quantum posts when the GaAs layer between the InP layers is thin. We observed that the structural properties and morphology affect the resulting radiative lifetime of the carriers in our systems. The carrier lifetimes are relatively long, as expected for type II systems, as compared to those observed for single layer InP/GaAs quantum dots. The interface intermixing effect has been pointed out as a limiting factor for obtaining an effective spatial separation of electrons and holes in the case of single layer InP/GaAs quantum-dot samples. In the present case this effect seems to be less critical due to the particular carrier wavefunction distribution along the structures.
Energy Technology Data Exchange (ETDEWEB)
Kushavah, Dushyant [Centre for Research in Nanotechnology and Science, IIT Bombay-400076, Mumbai (India); Mohapatra, P. K.; Vasa, P.; Singh, B. P., E-mail: bhanups@iitb.ac.in [Department of physics, IIT Bombay, Mumbai-400076 (India); Rustagi, K. C. [Indian Institute of Science Education and Research Bhopal-462066, Bhopal (India); Bahadur, D. [Department of Metallurgical Engineering and Materials Science, IIT Bombay, Mumbai-400076 (India)
2015-05-15
We illustrate effect of charge transfer (CT) in type-II quantum confined heterostructure by comparing CdSe quantum dots (QDs), CdSe/CdTe heterostructure quantum dots (HQDs) and CdSe/CdTe/CdSe quantum well-quantum dots (QWQDs) heterostructures. CdSe core QDs were synthesized using a kinetic growth method where QD size depends on reaction time. For shell coating we used modified version of successive ionic layer adsorption and reaction (SILAR). Size of different QDs ∼5 to 7 nm were measured by transmission electron microscopy (TEM). Strong red shift from ∼597 to ∼746 nm in photoluminescence (PL) spectra from QDs to QWQDs shows high tunability which is not possible with single constituent semiconductor QDs. PL spectra have been recorded at different temperatures (10K-300K). Room temperature time correlated single photon counting (TCSPC) measurements for QDs to QWQDs show three exponential radiative decay. The slowest component decay constant in QWQDs comes around eight fold to ∼51 ns as compared to ∼6.5 ns in HQD suggesting new opportunities to tailor the radiative carrier recombination rate of CT excitons.
Polarization anisotropy of the emission from type-II quantum dots
Czech Academy of Sciences Publication Activity Database
Klenovský, P.; Hemzal, D.; Steindl, P.; Zíková, Markéta; Křápek, V.; Humlíček, J.
2015-01-01
Roč. 92, č. 24 (2015), 1-5, č. článku 241302. ISSN 1098-0121 Institutional support: RVO:68378271 Keywords : quantum dot * type II heterostructure * polarization anisotropy * III-V semiconductors Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014
Type II GaSb quantum ring solar cells under concentrated sunlight.
Tsai, Che-Pin; Hsu, Shun-Chieh; Lin, Shih-Yen; Chang, Ching-Wen; Tu, Li-Wei; Chen, Kun-Cheng; Lay, Tsong-Sheng; Lin, Chien-Chung
2014-03-10
A type II GaSb quantum ring solar cell is fabricated and measured under the concentrated sunlight. The external quantum efficiency confirms the extended absorption from the quantum rings at long wavelength coinciding with the photoluminescence results. The short-circuit current of the quantum ring devices is 5.1% to 9.9% more than the GaAs reference's under various concentrations. While the quantum ring solar cell does not exceed its GaAs counterpart in efficiency under one-sun, the recovery of the open-circuit voltages at higher concentration helps to reverse the situation. A slightly higher efficiency (10.31% vs. 10.29%) is reported for the quantum ring device against the GaAs one.
Ultrafast dynamics of type-II GaSb/GaAs quantum dots
International Nuclear Information System (INIS)
Komolibus, K.; Piwonski, T.; Gradkowski, K.; Reyner, C. J.; Liang, B.; Huffaker, D. L.; Huyet, G.; Houlihan, J.
2015-01-01
In this paper, room temperature two-colour pump-probe spectroscopy is employed to study ultrafast carrier dynamics in type-II GaSb/GaAs quantum dots. Our results demonstrate a strong dependency of carrier capture/escape processes on applied reverse bias voltage, probing wavelength and number of injected carriers. The extracted timescales as a function of both forward and reverse bias may provide important information for the design of efficient solar cells and quantum dot memories based on this material. The first few picoseconds of the dynamics reveal a complex behaviour with an interesting feature, which does not appear in devices based on type-I materials, and hence is linked to the unique carrier capture/escape processes possible in type-II structures
Absorption enhancement in type-II coupled quantum rings due to existence of quasi-bound states
Hsieh, Chi-Ti; Lin, Shih-Yen; Chang, Shu-Wei
2018-02-01
The absorption of type-II nanostructures is often weaker than type-I counterpart due to spatially separated electrons and holes. We model the bound-to-continuum absorption of type-II quantum rings (QRs) using a multiband source-radiation approach using the retarded Green function in the cylindrical coordinate system. The selection rules due to the circular symmetry for allowed transitions of absorption are utilized. The bound-tocontinuum absorptions of type-II GaSb coupled and uncoupled QRs embedded in GaAs matrix are compared here. The GaSb QRs act as energy barriers for electrons but potential wells for holes. For the coupled QR structure, the region sandwiched between two QRs forms a potential reservoir of quasi-bound electrons. Electrons in these states, though look like bound ones, would ultimately tunnel out of the reservoir through barriers. Multiband perfectly-matched layers are introduced to model the tunneling of quasi-bound states into open space. Resonance peaks are observed on the absorption spectra of type-II coupled QRs due to the formation of quasi-bound states in conduction bands, but no resonance exist in the uncoupled QR. The tunneling time of these metastable states can be extracted from the resonance and is in the order of ten femtoseconds. Absorption of coupled QRs is significantly enhanced as compared to that of uncoupled ones in certain spectral windows of interest. These features may improve the performance of photon detectors and photovoltaic devices based on type-II semiconductor nanostructures.
Exciton in vertically coupled type II quantum dots in threading magnetic field
Energy Technology Data Exchange (ETDEWEB)
Mendoza-Cantillo, J., E-mail: jhofry@gmail.com [Group of Investigation in Condensed Matter Theory, Universidad del Magdalena, Carrera 32 No 22-08, Santa Marta (Colombia); Universidad de la Guajira, Riohacha (Colombia); Escorcia-Salas, G. Elizabeth, E-mail: elizabethescorcia@gmail.com [Group of Investigation in Condensed Matter Theory, Universidad del Magdalena, Carrera 32 No 22-08, Santa Marta (Colombia); Mikhailov, I.D., E-mail: mikhail2811@gmail.com [Universidad Industrial de Santander, A. A. 678, Bucaramanga (Colombia); Sierra-Ortega, J., E-mail: jsierraortega@gmail.com [Group of Investigation in Condensed Matter Theory, Universidad del Magdalena, Carrera 32 No 22-08, Santa Marta (Colombia)
2014-11-15
We analyze the energy spectrum of a neutral exciton confined in a semiconductor heterostructure formed by two vertically coupled axially symmetrical type II quantum dots located close to each other. The electron in the structure is mainly located inside dots tunneling between them while the hole generally is placed in the exterior region close to the symmetry axis. Solutions of the Schrödinger equation are obtained by a variational separation of variables in the adiabatic limit. Numerical results are presented for the energies of bonding and anti-bonding lowest-lying of the exciton states and for the density of states for different InP/GaInP quantum dots' morphologies and the magnetic field strength values.
Light-Induced Type-II Band Inversion and Quantum Anomalous Hall State in Monolayer FeSe
Wang, Z. F.; Liu, Zhao; Yang, Jinlong; Liu, Feng
2018-04-01
Coupling a quantum anomalous Hall (QAH) state with a superconducting state offers an attractive approach to detect the signature alluding to a topological superconducting state [Q. L. He et al., Science 357, 294 (2017), 10.1126/science.aag2792], but its explanation could be clouded by disorder effects in magnetic doped QAH materials. On the other hand, an antiferromagnetic (AFM) quantum spin Hall (QSH) state is identified in the well-known high-temperature 2D superconductor of monolayer FeSe [Z. F. Wang et al., Nat. Mater. 15, 968 (2016), 10.1038/nmat4686]. Here, we report a light-induced type-II band inversion (BI) and a QSH-to-QAH phase transition in the monolayer FeSe. Depending on the handedness of light, a spin-tunable QAH state with a high Chern number of ±2 is realized. In contrast to the conventional type-I BI resulting from intrinsic spin-orbital coupling (SOC), which inverts the band an odd number of times and respects time reversal symmetry, the type-II BI results from a light-induced handedness-dependent effective SOC, which inverts the band an even number of times and does not respect time reversal symmetry. The interplay between these two SOC terms makes the spin-up and -down bands of an AFM QSH state respond oppositely to a circularly polarized light, leading to the type-II BI and an exotic topological phase transition. Our finding affords an exciting opportunity to detect Majorana fermions in one single material without magnetic doping.
Wave function analysis of type-II self-assembled quantum dot structures using magneto-optics
International Nuclear Information System (INIS)
Godoy, Marcio Peron Franco de; Nakaema, Marcelo K.K.; Gomes, Paulo F.; Iikawa, Fernando; Brasil, Maria Jose S.P.; Bortoleto, Jose Roberto R.; Cotta, Monica A.; Ribeiro, Evaldo; Medeiros-Ribeiro, Gilberto; Marques, Gilmar E.; Bittencourt, A.C.R.
2004-01-01
Full text: Recently, self-assembled quantum dots have attracted considerable attention for their potential for device applications. Type II interface, in particular, present interesting properties due to the space separation of the carriers. One of the carriers is confined at the lower band gap layer and the other remains at the barrier layers and is only localized by the Coulomb attraction. An essential information for using type II quantum wells and quantum dots on technological applications is the localization of the carrier wave function, which is an experimentally difficult parameter to be measured. Some techniques have been proposed to map the wave functions in quantum dots such as magneto-tunneling spectroscopy and near- field scanning optical microscopy. These techniques involve however a very complex experimental apparatus and sample processing. The magneto-exciton transition can be used as an alternative tool to investigate the exciton wave function distribution, since this distribution has a strong influence on the diamagnetic shift and Zeeman splitting. In this work, we present magneto-optical studies of In P/GaAs type II self-assembled quantum dots, where the electron is strongly confined at the In P, while the hole is weakly localized at the GaAs barrier due to the Coulombic attraction from the electrons. This scenery is very distinct from type I systems. The weaker hole confinement should alter the valence band mixing resulting in a different valence band contribution on the Zeeman splitting as compared to type I systems. Based on the results of the magneto-exciton emission from the wetting layer and from the individual dots, we obtained interesting results concerning the wave function distribution in our system. We discuss the localization of the hole wave function along the growth direction based on the measured Zeeman splitting and the in-plane wave function distribution, based on the observed diamagnetic shift. A remarkable result is that the
Kurian, P; Dunston, G; Lindesay, J
2016-02-21
Macroscopic quantum effects in living systems have been studied widely in pursuit of fundamental explanations for biological energy transport and sensing. While it is known that type II endonucleases, the largest class of restriction enzymes, induce DNA double-strand breaks by attacking phosphodiester bonds, the mechanism by which simultaneous cutting is coordinated between the catalytic centers remains unclear. We propose a quantum mechanical model for collective electronic behavior in the DNA helix, where dipole-dipole oscillations are quantized through boundary conditions imposed by the enzyme. Zero-point modes of coherent oscillations would provide the energy required for double-strand breakage. Such quanta may be preserved in the presence of thermal noise by the enzyme's displacement of water surrounding the DNA recognition sequence. The enzyme thus serves as a decoherence shield. Palindromic mirror symmetry of the enzyme-DNA complex should conserve parity, because symmetric bond-breaking ceases when the symmetry of the complex is violated or when physiological parameters are perturbed from optima. Persistent correlations in DNA across longer spatial separations-a possible signature of quantum entanglement-may be explained by such a mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.
Carrier extraction behaviour in type II GaSb/GaAs quantum ring solar cells
International Nuclear Information System (INIS)
Fujita, Hiromi; James, Juanita; Carrington, Peter J; Marshall, Andrew R J; Krier, Anthony; Wagener, Magnus C; Botha, Johannes R
2014-01-01
The introduction of quantum dot (QD) or quantum ring (QR) nanostructures into GaAs single-junction solar cells has shown enhanced photo-response above the GaAs absorption edge, because of sub-bandgap photon absorption. However, to further improve solar cell performance a better understanding of the mechanisms of photogenerated carrier extraction from QDs and QRs is needed. In this work we have used a direct excitation technique to study type II GaSb/GaAs quantum ring solar cells using a 1064 nm infrared laser, which enables us to excite electron–hole pairs directly within the GaSb QRs without exciting the GaAs host material. Temperature and laser intensity dependence of the current–voltage characteristics revealed that the thermionic emission process produced the dominant contribution to the photocurrent and accounts for 98.9% of total photocurrent at 0 V and 300 K. Although the tunnelling process gives only a low contribution to the photocurrent, an enhancement of the tunnelling current was clearly observed when an external electric field was applied. (paper)
Peeters, F M; Varga, K
2002-01-01
The ground-state energy of three-particle systems consisting of electrons and holes as found in semiconducting quantum wells is studied. The degree of confinement is determined by the quantum-well width and we can vary the dimensionality of the system from two to three dimensions. The energy levels of the system can further be altered by the application of an external magnetic field which is directed perpendicular to the well. Refs.5 (author)
Quantum efficiency investigations of type-II InAs/GaSb midwave infrared superlattice photodetectors
Energy Technology Data Exchange (ETDEWEB)
Giard, E., E-mail: edouard.giard@onera.fr; Ribet-Mohamed, I.; Jaeck, J.; Viale, T.; Haïdar, R. [ONERA, DOTA, Chemin de la Hunière, 91761 Palaiseau Cedex (France); Taalat, R.; Delmas, M.; Rodriguez, J.-B.; Christol, P. [Institut d' Electronique du Sud, UMR-CNRS 5214, Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier Cedex 5 (France); Steveler, E.; Bardou, N. [Laboratoire de Photonique et de Nanostructures (LPN-CNRS), Route de Nozay, 91460 Marcoussis (France); Boulard, F. [CEA, LETI, MINATEC Campus, 17 Avenue des martyrs, 38054 Grenoble (France)
2014-07-28
We present in this paper a comparison between different type-II InAs/GaSb superlattice (T2SL) photodiodes and focal plane array (FPA) in the mid-wavelength infrared domain to understand which phenomenon drives the performances of the T2SL structure in terms of quantum efficiency (QE). Our measurements on test photodiodes suggest low minority carrier diffusion length in the “InAs-rich” design, which penalizes carriers' collection in this structure for low bias voltage and front side illumination. This analysis is completed by a comparison of the experimental data with a fully analytic model, which allows to infer a hole diffusion length shorter than 100 nm. In addition, measurements on a FPA with backside illumination are finally presented. Results show an average QE in the 3–4.7 μm window equal to 42% for U{sub bias} = −0.1 V, 77 K operating temperature and no anti-reflection coating. These measurements, completed by modulation transfer function and noise measurements, reveal that the InAs-rich design, despite a low hole diffusion length, is promising for high performance infrared imaging applications.
Zory, Jr, Peter S; Kelley, Paul
1993-01-01
This book provides the information necessary for the reader to achieve a thorough understanding of all aspects of QW lasers - from the basic mechanism of optical gain, through the current technolgoical state of the art, to the future technologies of quantum wires and quantum dots. In view of the growing importance of QW lasers, this book should be read by all those with an active interest in laser science and technology, from the advanced student to the experienced laser scientist.* The first comprehensive book-length treatment of quantum well lasers* Provides a detailed treatment
Fabrication and optical properties of type-II InP/InAs nanowire/quantum-dot heterostructures
Energy Technology Data Exchange (ETDEWEB)
Yan, Xin; Zhang, Xia; Li, Junshuai; Wu, Yao; Li, Bang; Ren, Xiaomin [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 (China)
2016-02-15
The growth and optical properties of InAs quantum dots on a pure zinc blende InP nanowire are investigated. The quantum dots are formed in Stranski-Krastanov mode and exhibit pure zinc blende crystal structure. A substantial blueshift of the dots peak with a cube-root dependence on the excitation power is observed, suggesting a type-II band alignment. The peak position of dots initially red-shifts and then blue-shifts with increasing temperature, which is attributed to the carrier redistribution among the quantum dots. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Energy Technology Data Exchange (ETDEWEB)
Horta-Piñeres, Sindi, E-mail: sdhorta@yahoo.es [Group of Investigation in Condensed Matter Theory, Universidad del Magdalena, Santa Marta (Colombia); Universidad de Sucre, Sincelejo (Colombia); Elizabeth Escorcia-Salas, G., E-mail: elizabethescorcia@gmail.com [Group of Investigation in Condensed Matter Theory, Universidad del Magdalena, Santa Marta (Colombia); Mikhailov, I.D., E-mail: mikhail2811@gmail.com [Universidad Industrial de Santander, Apartado Aereo 678, Bucaramanga (Colombia); Sierra-Ortega, J., E-mail: jsierraortega@gmail.com [Group of Investigation in Condensed Matter Theory, Universidad del Magdalena, Santa Marta (Colombia)
2014-11-15
The energy spectrum of a positively charged exciton confined in vertically coupled type II quantum dots with different morphologies in the presence of the external magnetic field is studied. The effect of the quantum dot morphology on the curves of the lowest energy levels as functions of the magnetic field is analyzed. It is shown that a strong correlation presented in this system generates the Aharonov–Bohm oscillations of the lower energy levels similar to those in wide quantum ring. The novel curves of the trion energies dependences on the external magnetic field for the disk-like, lens-like, and cone-like structures are presented.
Phosphine-free synthesis and characterization of type-II ZnSe/CdS core-shell quantum dots
Ghasemzadeh, Roghayyeh; Armanmehr, Mohammad Hasan; Abedi, Mohammad; Fateh, Davood Sadeghi; Bahreini, Zaker
2018-01-01
A phosphine-free route for synthesis of type-II ZnSe/CdS core-shell quantum dots, using green, low cost and environmentally friendly reagents and phosphine-free solvents such as 1-octadecene (ODE) and liquid paraffin has been reported. Hot-injection technique has been used for the synthesis of ZnSe core quantum dots. The CdS shell quantum dots prepared by reaction of CdO precursor and S powder in 1-octadecene (ODE). The ZnSe/CdS core-shell quantum dots were synthesized via successive ion layer adsorption and reaction (SILAR) technique. The characterization of produced quantum dots were performed by absorption and fluorescence spectroscopy, X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). The results showed the formation of type-II ZnSe/CdS core-shell quantum dots with FWHM 32 nm and uniform size distribution.
Type II GaSb/GaAs quantum dot/ring stacks with extended photoresponse for efficient solar cells
Energy Technology Data Exchange (ETDEWEB)
Carrington, Peter James, E-mail: p.carrington@lancaster.ac.uk [Physics Department, Lancaster University, Lancaster LA1 4YB (United Kingdom); Mahajumi, Abu Syed [Physics Department, Lancaster University, Lancaster LA1 4YB (United Kingdom); Wagener, Magnus C.; Botha, Johannes Reinhardt [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Zhuang Qian; Krier, Anthony [Physics Department, Lancaster University, Lancaster LA1 4YB (United Kingdom)
2012-05-15
We report on the fabrication of GaAs based p-i-n solar cells containing 5 and 10 layers of type II GaSb quantum rings grown by molecular beam epitaxy. Solar cells containing quantum rings show improved efficiency at longer wavelengths into the near-IR extending up to 1500 nm and show enhanced short-circuit current under 1 sun illumination compared to a GaAs control cell. A reduction in the open-circuit voltage is observed due to the build-up of internal strain. The MBE growth, formation and photoluminescence of single and stacked layers of GaSb/GaAs quantum rings are also presented.
Type II GaSb/GaAs quantum dot/ring stacks with extended photoresponse for efficient solar cells
International Nuclear Information System (INIS)
Carrington, Peter James; Mahajumi, Abu Syed; Wagener, Magnus C.; Botha, Johannes Reinhardt; Zhuang Qian; Krier, Anthony
2012-01-01
We report on the fabrication of GaAs based p–i–n solar cells containing 5 and 10 layers of type II GaSb quantum rings grown by molecular beam epitaxy. Solar cells containing quantum rings show improved efficiency at longer wavelengths into the near-IR extending up to 1500 nm and show enhanced short-circuit current under 1 sun illumination compared to a GaAs control cell. A reduction in the open-circuit voltage is observed due to the build-up of internal strain. The MBE growth, formation and photoluminescence of single and stacked layers of GaSb/GaAs quantum rings are also presented.
Optical transition pathways in type-II Ga(As)Sb quantum dots
International Nuclear Information System (INIS)
Gradkowski, Kamil; Ochalski, Tomasz J.; Williams, David P.; Tatebayashi, Jun; Khoshakhlagh, Arezou; Balakrishnan, Ganesh; O'Reilly, Eoin P.; Huyet, Guillaume; Dawson, Larry R.; Huffaker, Diana L.
2009-01-01
We present results of room temperature photoreflectance (PR) and photoluminescence (PL) measurements of molecular-beam epitaxy (MBE)-grown GaAsSb/GaAs quantum dot structures: one with an In 0.14 Ga 0.86 As capping quantum well and one without it. PL was used to determine the structures' ground-state transition energies. This result was employed in an 8-band k.p Hamiltonian to achieve a band structure of the structures, which have different electron confinement. The dot emission energies suggest a large amount of As incorporation into the dots, which is due to enhanced adatom mixing at a higher than normal growth temperature of 510 deg. C. Our calculations indicate a dot composition of 25-50% Sb gives the best fit to experiment. This uncertainty in composition arises due to the fact that different bowing parameters of the ternary alloy could be applied in the calculations. The theoretical analysis accounts well for the main feature in the PR spectra of both samples
Simulation of the diffusion equation on a type-II quantum computer
International Nuclear Information System (INIS)
Berman, G.P.; Kamenev, D.I.; Ezhov, A.A.; Yepez, J.
2002-01-01
A lattice-gas algorithm for the one-dimensional diffusion equation is realized using radio frequency pulses in a one-dimensional spin system. The model is a large array of quantum two-qubit nodes interconnected by the nearest-neighbor classical communication channels. We present a quantum protocol for implementation of the quantum collision operator and a method for initialization and reinitialization of quantum states. Numerical simulations of the quantum-classical dynamics are in good agreement with the analytic solution for the diffusion equation
Directory of Open Access Journals (Sweden)
Dan Alexandru Anghel
2012-01-01
Full Text Available In semiconductor laser modeling, a good mathematical model gives near-reality results. Three methods of modeling solutions from the rate equations are presented and analyzed. A method based on the rate equations modeled in Simulink to describe quantum well lasers was presented. For different signal types like step function, saw tooth and sinus used as input, a good response of the used equations is obtained. Circuit model resulting from one of the rate equations models is presented and simulated in SPICE. Results show a good modeling behavior. Numerical simulation in MathCad gives satisfactory results for the study of the transitory and dynamic operation at small level of the injection current. The obtained numerical results show the specific limits of each model, according to theoretical analysis. Based on these results, software can be built that integrates circuit simulation and other modeling methods for quantum well lasers to have a tool that model and analysis these devices from all points of view.
Wu, Kaifeng; Song, Nianhui; Liu, Zheng; Zhu, Haiming; Rodríguez-Córdoba, William; Lian, Tianquan
2013-08-15
Recent studies of group II-VI colloidal semiconductor heterostuctures, such as CdSe/CdS core/shell quantum dots (QDs) or dot-in-rod nanorods, show that type II and quasi-type II band alignment can facilitate electron transfer and slow down charge recombination in QD-molecular electron acceptor complexes. To explore the general applicability of this wave function engineering approach for controlling charge transfer properties, we investigate exciton relaxation and dissociation dynamics in InP (a group III-V semiconductor) and InP/CdS core/shell (a heterostructure beween group III-V and II-VI semiconductors) QDs by transient absorption spectroscopy. We show that InP/CdS QDs exhibit a quasi-type II band alignment with the 1S electron delocalized throughout the core and shell and the 1S hole confined in the InP core. In InP-methylviologen (MV(2+)) complexes, excitons in the QD can be dissociated by ultrafast electron transfer to MV(2+) from the 1S electron level (with an average time constant of 11.4 ps) as well as 1P and higher electron levels (with a time constant of 0.39 ps), which is followed by charge recombination to regenerate the complex in its ground state (with an average time constant of 47.1 ns). In comparison, InP/CdS-MV(2+) complexes show similar ultrafast charge separation and 5-fold slower charge recombination rates, consistent with the quasi-type II band alignment in these heterostructures. This result demonstrates that wave function engineering in nanoheterostructures of group III-V and II-VI semiconductors provides a promising approach for optimizing their light harvesting and charge separation for solar energy conversion applications.
Dennis, Allison M.; Mangum, Benjamin D.; Piryatinski, Andrei; Park, Young-Shin; Hannah, Daniel C.; Casson, Joanna L.; Williams, Darrick J.; Schaller, Richard D.; Htoon, Han; Hollingsworth, Jennifer A.
2012-01-01
Non-blinking excitonic emission from near-infrared and type-II nanocrystal quantum dots (NQDs) is reported for the first time. To realize this unusual degree of stability at the single-dot level, novel InP/CdS core/shell NQDs were synthesized for a range of shell thicknesses (~1–11 monolayers of CdS). Ensemble spectroscopy measurements (photoluminescence peak position and radiative lifetimes) and electronic structure calculations established the transition from type-I to type-II band alignment in these heterostructured NQDs. More significantly, single-NQD studies revealed clear evidence for blinking suppression that was not strongly shell-thickness dependent, while photobleaching and biexciton lifetimes trended explicitly with extent of shelling. Specifically, very long biexciton lifetimes—up to >7 ns—were obtained for the thickest-shell structures, indicating dramatic suppression of non-radiative Auger recombination. This new system demonstrates that electronic structure and shell thickness can be employed together to effect control over key single-dot and ensemble NQD photophysical properties. PMID:23030497
Gain and Threshold Current in Type II In(AsSb Mid-Infrared Quantum Dot Lasers
Directory of Open Access Journals (Sweden)
Qi Lu
2015-04-01
Full Text Available In this work, we improved the performance of mid-infrared type II InSb/InAs quantum dot (QD laser diodes by incorporating a lattice-matched p-InAsSbP cladding layer. The resulting devices exhibited emission around 3.1 µm and operated up to 120 K in pulsed mode, which is the highest working temperature for this type of QD laser. The modal gain was estimated to be 2.9 cm−1 per QD layer. A large blue shift (~150 nm was observed in the spontaneous emission spectrum below threshold due to charging effects. Because of the QD size distribution, only a small fraction of QDs achieve threshold at the same injection level at 4 K. Carrier leakage from the waveguide into the cladding layers was found to be the main reason for the high threshold current at higher temperatures.
Photoluminescence investigation of type-II GaSb/GaAs quantum dots grown by liquid phase epitaxy
Wang, Yang; Hu, Shuhong; Xie, Hao; Lin, Hongyu; lu, Hongbo; Wang, Chao; Sun, Yan; Dai, Ning
2018-06-01
GaSb quantum dots (QDs) with an areal density of ∼1 × 1010 cm-2 are successfully grown by the modified (rapid slider) liquid phase epitaxy technique. The morphology of the QDs has been investigated by scanning electron microscope (SEM) and atom force microscope (AFM). The power-dependence and temperature-dependence photoluminescence (PL) spectra have been studied. The bright room-temperature PL suggests a good luminescence quality of GaSb QDs/GaAs matrix system. The type-II alignment of the GaSb QDs/GaAs matrix system is verified by the blue-shift of the QDs peak with the increase of excitation power. From the temperature-dependence PL spectra, the activation energy of QDs is determined to be 111 meV.
Quantum-Well Thermophotovoltaic Cells
Freudlich, Alex; Ignatiev, Alex
2009-01-01
Thermophotovoltaic cells containing multiple quantum wells have been invented as improved means of conversion of thermal to electrical energy. The semiconductor bandgaps of the quantum wells can be tailored to be narrower than those of prior thermophotovoltaic cells, thereby enabling the cells to convert energy from longer-wavelength photons that dominate the infrared-rich spectra of typical thermal sources with which these cells would be used. Moreover, in comparison with a conventional single-junction thermophotovoltaic cell, a cell containing multiple narrow-bandgap quantum wells according to the invention can convert energy from a wider range of wavelengths. Hence, the invention increases the achievable thermal-to-electrical energy-conversion efficiency. These thermophotovoltaic cells are expected to be especially useful for extracting electrical energy from combustion, waste-heat, and nuclear sources having temperatures in the approximate range from 1,000 to 1,500 C.
Timm, Rainer; Eisele, Holger; Lenz, Andrea; Ivanova, Lena; Vossebürger, Vivien; Warming, Till; Bimberg, Dieter; Farrer, Ian; Ritchie, David A; Dähne, Mario
2010-10-13
Combined cross-sectional scanning tunneling microscopy and spectroscopy results reveal the interplay between the atomic structure of ring-shaped GaSb quantum dots in GaAs and the corresponding electronic properties. Hole confinement energies between 0.2 and 0.3 eV and a type-II conduction band offset of 0.1 eV are directly obtained from the data. Additionally, the hole occupancy of quantum dot states and spatially separated Coulomb-bound electron states are observed in the tunneling spectra.
International Nuclear Information System (INIS)
Forkl, A.; Kronmueller, H.
1995-01-01
The distribution of the critical current density j c (r) in hard type-II superconductors depends strongly on their sample geometry. Rules are given for the construction of j c (r). Samples with homogeneous thickness are divided into cakelike regions with a unique current direction. The spatial magnetic flux density distribution and the magnetic polarization of such a cakelike unit cell with homogeneous current density are calculated analytically. The magnetic polarization and magnetic flux density distribution of a superconductor in the mixed state is then given by an adequate superposition of the unit cell solutions. The theoretical results show good agreement with magneto-optically determined magnetic flux density distributions of a quadratic thin superconducting YBa 2 Cu 3 O 7-x film. The current density distribution is discussed for several sample geometries
PbSe Quantum Well VECSEL on Si
Fill, M.; Khiar, A.; Rahim, M.; Felder, F.; Zogg, H.
2011-12-01
Vertical external cavity surface emitting lasers in the wavelength region from 3-5 μm are presented. They are based on PbSe quantum wells grown on Si substrates. As host material Pb1-xEuxSe and Pb1-xSrxSe are used. With Pb1-xSrxSe as host material maximum operation temperatures of 325 K are achieved, while with Pb1-xEuxSe an operation temperature of 245 K could not be overcome. This may be explained by a band alignment transition from type I to type II with increasing temperature.
Silicon Germanium Quantum Well Thermoelectrics
Davidson, Anthony Lee, III
Today's growing energy demands require new technologies to provide high efficiency clean energy. Thermoelectrics that convert heat to electrical energy directly can provide a method for the automobile industry to recover waste heat to power vehicle electronics, hence improving fuel economy. If large enough efficiencies can be obtained then the internal combustion engine could even be replaced. Exhaust temperature for automotive application range from 400 to 800 K. In this temperature range the current state of the art materials are bulk Si1-xGex alloys. By alternating layers of Si and Si1-xGex alloy device performance may be enhanced through quantum well effects and variations in material thermal properties. In this study, superlattices designed for in-plane operation with varying period and crystallinity are examined to determine the effect on electrical and thermal properties. In-plane electrical resistivity of these materials was found to be below the bulk material at a similar doping at room temperature, confirming the role of quantum wells in electron transport. As period is reduced in the structures boundary scattering limits electron propagation leading to increased resistivity. The Seebeck coefficient measured at room temperature is higher than the bulk material, additionally lending proof to the effects of quantum wells. When examining cross-plane operation the low doping in the Si layers of the device produce high resistivity resulting from boundary scattering. Thermal conductivity was measured from 77 K up to 674 K and shows little variation due to periodicity and temperature, however an order of magnitude reduction over bulk Si1-xGex is shown in all samples. A model is developed that suggests a combination of phonon dispersion effects and strong boundary scattering. Further study of the phonon dispersion effects was achieved through the examination of the heat capacity by combining thermal diffusivity with thermal conductivity. All superlattices show a
Energy Technology Data Exchange (ETDEWEB)
Kawazu, T., E-mail: KAWAZU.Takuya@nims.go.jp; Noda, T.; Sakuma, Y. [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Sakaki, H. [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, Nagoya 468-8511 (Japan)
2016-04-15
We investigated the excitation power P dependence of photoluminescence (PL) spectra of GaSb type-II quantum dots (QDs) in GaAs grown by droplet epitaxy. We prepared two QD samples annealed at slightly different temperatures (380 {sup o}C and 400 {sup o}C) and carried out PL measurements. The 20 {sup o}C increase of the annealing temperature leads to (1) about 140 and 60 times stronger wetting layer (WL) luminescence at low and high P, (2) about 45% large energy shift of QD luminescence with P, and (3) the different P dependence of the PL intensity ratio between the QD and the WL. These differences of the PL characteristics are explained by the effects of the WL.
Ramiro, I.; Villa, J.; Tablero, C.; Antolín, E.; Luque, A.; Martí, A.; Hwang, J.; Phillips, J.; Martin, A. J.; Millunchick, J.
2017-09-01
Quantum-dot (QD) intermediate-band (IB) materials are regarded as promising candidates for high-efficiency photovoltaics. The sequential two-step two-photon absorption processes that take place in these materials have been proposed to develop high-efficiency solar cells and infrared (IR) photodetectors. In this work, we experimentally and theoretically study the interrelation of the absorptivity with transitions of carriers to and from the IB in type-II GaSb/GaAs QD devices. Our devices exhibit three optical band gaps with: EL=0.49 eV ,EH=1.02 eV , and EG=1.52 eV , with the IB located 0.49 eV above the valence band. These values are well supported by semiempirical calculations of the QDs electronic structure. Through intensity-dependent two-photon photocurrent experiments, we are able to vary the filling state of the IB, thus modifying the absorptivity of the transitions to and from this band. By filling the IB with holes via E =1.32 eV or E =1.93 eV monochromatic illumination, we demonstrate an increase in the EL-related absorptivity of more than two orders of magnitude and a decrease in the EH-related absorptivity of one order of magnitude. The antisymmetrical evolution of those absorptivities is quantitatively explained by a photoinduced shift of the quasi-Fermi level of the IB. Furthermore, we report the observation of a two-photon photovoltage, i.e., the contribution of subband gap two-photon absorption to increase the open-circuit voltage of solar cells. We find that the generation of the two-photon photovoltage is related, in general, to the production of a two-photon photocurrent. However, while photons with energy close to EL participate in the production of the two-photon photocurrent, they are not effective in the production of a two-photon photovoltage. We also report the responsivity of GaSb/GaAs QD devices performing as optically triggered photodetectors. These devices exhibit an amplification factor of almost 400 in the IR spectral region. This high
GaAsSb/InAs/(In)GaAs type II quantum dots for solar cell applications
Czech Academy of Sciences Publication Activity Database
Vyskočil, Jan; Hospodková, Alice; Petříček, Otto; Pangrác, Jiří; Zíková, Markéta; Oswald, Jiří; Vetushka, Aliaksi
2017-01-01
Roč. 464, Apr (2017), s. 64-68 ISSN 0022-0248 R&D Projects: GA ČR(CZ) GP14-21285P; GA MŠk LO1603 Institutional support: RVO:68378271 Keywords : InAs * GaAsSb * InGaAs * quantum dot * solar cells Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.751, year: 2016
Spin Splitting in Different Semiconductor Quantum Wells
International Nuclear Information System (INIS)
Hao Yafei
2012-01-01
We theoretically investigate the spin splitting in four undoped asymmetric quantum wells in the absence of external electric field and magnetic field. The quantum well geometry dependence of spin splitting is studied with the Rashba and the Dresselhaus spin-orbit coupling included. The results show that the structure of quantum well plays an important role in spin splitting. The Rashba and the Dresselhaus spin splitting in four asymmetric quantum wells are quite different. The origin of the distinction is discussed in this work. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Bound states in continuum: Quantum dots in a quantum well
Energy Technology Data Exchange (ETDEWEB)
Prodanović, Nikola, E-mail: elnpr@leeds.ac.uk [Institute of Microwaves and Photonics, School of Electronic and Electrical Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom); Milanović, Vitomir [School of Electrical Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11000 Belgrade (Serbia); Ikonić, Zoran; Indjin, Dragan; Harrison, Paul [Institute of Microwaves and Photonics, School of Electronic and Electrical Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom)
2013-11-01
We report on the existence of a bound state in the continuum (BIC) of quantum rods (QR). QRs are novel elongated InGaAs quantum dot nanostructures embedded in the shallower InGaAs quantum well. BIC appears as an excited confined dot state and energetically above the bottom of a well subband continuum. We prove that high height-to-diameter QR aspect ratio and the presence of a quantum well are indispensable conditions for accommodating the BIC. QRs are unique semiconductor nanostructures, exhibiting this mathematical curiosity predicted 83 years ago by Wigner and von Neumann.
International Nuclear Information System (INIS)
Manna, U.; Noyan, I. C.; Neumark, G. F.; Zhang, Q.; Moug, R.; Salakhutdinov, I. F.; Dunn, K. A.; Novak, S. W.; Tamargo, M. C.; Kuskovsky, I. L.
2012-01-01
We report the structural properties and spatial ordering of multilayer ZnMgTe quantum dots (QDs) embedded in ZnSe, where sub-monolayer quantities of Mg were introduced periodically during growth in order to reduce the valence band offset of ZnTe QDs. The periodicity, period dispersion, individual layer thickness, and the composition of the multilayer structures were determined by comparing the experimental high resolution x-ray diffraction (HRXRD) spectra to simulated ones for the allowed (004) and quasi-forbidden (002) reflections in combination with transmission electron microscopy (TEM) results. Secondary ion mass spectroscopy (SIMS) profiles confirmed the incorporation of Mg inside the QD layers, and the HRXRD analysis revealed that there is approximately 32% Mg in the ZnMgTe QDs. The presence of Mg contributes to higher scattering intensity of the HRXRD, leading to the observation of higher order superlattice peaks in both the (004) and (002) reflections. The distribution of scattered intensity in the reciprocal space map (RSM) shows that the diffuse scattered intensity is elongated along the q x axis, indicating a vertical correlation of the dots, which is found to be less defined for the sample with larger periodicity. The diffuse scattered intensity is also found to be weakly correlated along the q z direction indicating a weak lateral correlation of the dots.
Wave-packet dynamics in quantum wells
DEFF Research Database (Denmark)
Kuznetsov, A. V.; Sanders, G. D.; Stanton, C. J.
1995-01-01
It has been recently recognized that in bulk semiconductors the displacement current caused by ultrafast optical generation of ''polarized pairs'' in the applied de field is an important mechanism of charge transport in addition to the usual transport current. In quantum-well systems, this polari......It has been recently recognized that in bulk semiconductors the displacement current caused by ultrafast optical generation of ''polarized pairs'' in the applied de field is an important mechanism of charge transport in addition to the usual transport current. In quantum-well systems...... that the carriers in a quantum well can behave as an ensemble of classical particles and produce a transport like photocurrent....
Conductance in double quantum well systems
International Nuclear Information System (INIS)
Hasbun, J E
2003-01-01
The object of this paper is to review the electronic conductance in double quantum well systems. These are quantum well structures in which electrons are confined in the z direction by large band gap material barrier layers, yet form a free two-dimensional Fermi gas within the sandwiched low band gap material layers in the x-y plane. Aspects related to the conductance in addition to the research progress made since the inception of such systems are included. While the review focuses on the tunnelling conductance properties of double quantum well devices, the longitudinal conductance is also discussed. Double quantum well systems are a more recent generation of structures whose precursors are the well known double-barrier resonant tunnelling systems. Thus, they have electronic signatures such as negative differential resistance, in addition to resonant tunnelling, whose behaviours depend on the wavefunction coupling between the quantum wells. As such, the barrier which separates the quantum wells can be tailored in order to provide better control of the device's electronic properties over their single well ancestors. (topical review)
Silicon Germanium Quantum Well Solar Cell
National Aeronautics and Space Administration — A single crystal SiGe has enormous potentials for high performance chips and solar cells. This project seeks to fabricate a rudimentary but 1st cut quantum-well...
Quantum wells and the generalized uncertainty principle
International Nuclear Information System (INIS)
Blado, Gardo; Owens, Constance; Meyers, Vincent
2014-01-01
The finite and infinite square wells are potentials typically discussed in undergraduate quantum mechanics courses. In this paper, we discuss these potentials in the light of the recent studies of the modification of the Heisenberg uncertainty principle into a generalized uncertainty principle (GUP) as a consequence of attempts to formulate a quantum theory of gravity. The fundamental concepts of the minimal length scale and the GUP are discussed and the modified energy eigenvalues and transmission coefficient are derived. (paper)
Quantum Well Infrared Photodetectors Physics and Applications
Schneider, Harald
2007-01-01
Addressed to both students as a learning text and scientists/engineers as a reference, this book discusses the physics and applications of quantum-well infrared photodetectors (QWIPs). It is assumed that the reader has a basic background in quantum mechanics, solid-state physics, and semiconductor devices. To make this book as widely accessible as possible, the treatment and presentation of the materials is simple and straightforward. The topics for the book were chosen by the following criteria: they must be well-established and understood; and they should have been, or potentially will be, used in practical applications. The monograph discusses most aspects relevant for the field but omits, at the same time, detailed discussions of specialized topics such as the valence-band quantum wells.
[Optical and electrical properties of NPB/Alq3 organic quantum well].
Huang, Jin-Zhao; Xu, Zheng; Zhao, Su-Ling; Zhang, Fu-Jun; Wang, Yong
2007-04-01
In the present paper, the organic quantum-well device similar to the type-II quantum well of inorganic semiconductor material was prepared by heat evaporation. NPB (N, N'-di-[(1-naphthalenyl)-N, N'-diphenyl]-(1,1'-biphenyl)-4,4'-diamine) and Alq3 (Tris-(8-quinolinolato) aluminum) act as the potential barrier layer and the potential well layer respectively. Besides, the single layer structure of Alq3 was prepared. In the experiments, the Forster nonradiative resonant energy transfer from the barrier layer to the well layer was identified, and the quantum well luminescence device possesses a favorable current-voltage property. The narrowing of spectrum was observed, and the spectrum shifted to blue region continuously when the applied voltage increased.
Spectroscopy of GaAs quantum wells
International Nuclear Information System (INIS)
West, L.C.
1985-07-01
A new type of optical dipole transition in GaAs quantum wells has been observed. The dipole occurs between two envelope states of the conduction band electron wavefunction, and is called a quantum well envelope state transition (QWEST). The QWEST is observed by infrared absorption in three different samples with quantum well thicknesses 65, 82, and 92 A and resonant energies of 152, 121, and 108 MeV, respectively. The oscillator strength is found to have values of over 12, in good agreement with prediction. The linewidths are seen as narrow as 10 MeV at room temperature and 7 MeV at low temperature, thus proving a narrow line resonance can indeed occur between transitions of free electrons. Techniques for the proper growth of these quantum well samples to enable observation of the QWEST have also been found using (AlGa)As compounds. This QWEST is considered to be an ideal material for an all optical digital computer. The QWEST can be made frequency matched to the inexpensive Carbon Dioxide laser with an infrared wavelength of 10 microns. The nonlinearity and fast relaxation time of the QWEST indicate a logic element with a subpicosecond switch time can be built in the near future, with a power level which will eventually be limited only by the noise from a lack of quanta to above approximately 10 microwatts. 64 refs., 35 figs., 6 tabs
Spectroscopy of GaAs quantum wells
Energy Technology Data Exchange (ETDEWEB)
West, L.C.
1985-07-01
A new type of optical dipole transition in GaAs quantum wells has been observed. The dipole occurs between two envelope states of the conduction band electron wavefunction, and is called a quantum well envelope state transition (QWEST). The QWEST is observed by infrared absorption in three different samples with quantum well thicknesses 65, 82, and 92 A and resonant energies of 152, 121, and 108 MeV, respectively. The oscillator strength is found to have values of over 12, in good agreement with prediction. The linewidths are seen as narrow as 10 MeV at room temperature and 7 MeV at low temperature, thus proving a narrow line resonance can indeed occur between transitions of free electrons. Techniques for the proper growth of these quantum well samples to enable observation of the QWEST have also been found using (AlGa)As compounds. This QWEST is considered to be an ideal material for an all optical digital computer. The QWEST can be made frequency matched to the inexpensive Carbon Dioxide laser with an infrared wavelength of 10 microns. The nonlinearity and fast relaxation time of the QWEST indicate a logic element with a subpicosecond switch time can be built in the near future, with a power level which will eventually be limited only by the noise from a lack of quanta to above approximately 10 microwatts. 64 refs., 35 figs., 6 tabs.
Mixed biexcitons in single quantum wells
DEFF Research Database (Denmark)
Wagner, Hans Peter; Langbein, Wolfgang Werner; Hvam, Jørn Märcher
1999-01-01
Biexcitonic complexes in a ZnSe single quantum well are investigated by spectrally resolved four-wave mixing (FWM). The formation of heavy-heavy-hole XXh and of mixed heavy-light-hole XXm biexcitons showing binding energies of Delta(h) = 4.8 meV and Delta(m)= 2.8 meV is identified by polarization...
Quantum wells for optical information processing
International Nuclear Information System (INIS)
Miller, D.A.B.
1989-01-01
Quantum wells, alternate thin layers of two different semiconductor materials, show an exceptional electric field dependence of the optical absorption, called the quantum-confined Stark effect (QCSE), for electric fields perpendicular to the layers. This enables electrically controlled optical modulators and optically controlled self-electro-optic-effect devices that can operate at high speed and low energy density. Recent developments in these QCSE devices are summarized, including new device materials and novel device structures. The variety of sophisticated devices now demonstrated is promising for applications to information processing
Piezoelectric effect in strained quantum wells
International Nuclear Information System (INIS)
Dang, L.S.; Andre, R.; Cibert, J.
1995-01-01
This paper describes some physical aspects of the piezoelectric effect which takes place in strained semiconductor heterostructures grown along a polar axis. First we show how piezoelectric fields can be accurately measured by optical spectroscopy. Then we discuss about the origin of the non-linear piezoelectric effect reported recently for CdTe, and maybe for InAs as well. Finally we compare excitonic effects in piezoelectric and non-piezoelectric quantum wells. (orig.)
Characterization of interfaces in semimagnetic quantum wells
International Nuclear Information System (INIS)
Schmitt, G.; Kuhn-Heinrich, B.; Zehnder, U.; Ossau, W.; Litz, T.; Waag, A.; Landwehr, G.
1995-01-01
The interfaces between nonmagnetic CdTe quantum wells and semimagnetic barriers of Cd 1-x Mn x Te were investigated for several well widths by low temperature photoluminescence and photoluminescence excitation spectroscopy. Specially designed Cd 1-x Mn x /CdTe/Cd 1-y Mg y Te structures enable us to distinguish the quality of semimagnetic normal and inverted interfaces. The normal interface shows to better structural quality than the inverted interface. (author)
Strained quantum well photovoltaic energy converter
Freundlich, Alexandre (Inventor); Renaud, Philippe (Inventor); Vilela, Mauro Francisco (Inventor); Bensaoula, Abdelhak (Inventor)
1998-01-01
An indium phosphide photovoltaic cell is provided where one or more quantum wells are introduced between the conventional p-conductivity and n-conductivity indium phosphide layer. The approach allows the cell to convert the light over a wider range of wavelengths than a conventional single junction cell and in particular convert efficiently transparency losses of the indium phosphide conventional cell. The approach hence may be used to increase the cell current output. A method of fabrication of photovoltaic devices is provided where ternary InAsP and InGaAs alloys are used as well material in the quantum well region and results in an increase of the cell current output.
Fractional Quantum Hall States in a Ge Quantum Well.
Mironov, O A; d'Ambrumenil, N; Dobbie, A; Leadley, D R; Suslov, A V; Green, E
2016-04-29
Measurements of the Hall and dissipative conductivity of a strained Ge quantum well on a SiGe/(001)Si substrate in the quantum Hall regime are reported. We analyze the results in terms of thermally activated quantum tunneling of carriers from one internal edge state to another across saddle points in the long-range impurity potential. This shows that the gaps for different filling fractions closely follow the dependence predicted by theory. We also find that the estimates of the separation of the edge states at the saddle are in line with the expectations of an electrostatic model in the lowest spin-polarized Landau level (LL), but not in the spin-reversed LL where the density of quasiparticle states is not high enough to accommodate the carriers required.
Parallel magnetotransport in multiple quantum well structures
International Nuclear Information System (INIS)
Sheregii, E.M.; Ploch, D.; Marchewka, M.; Tomaka, G.; Kolek, A.; Stadler, A.; Mleczko, K.; Strupinski, W.; Jasik, A.; Jakiela, R.
2004-01-01
The results of investigations of parallel magnetotransport in AlGaAs/GaAs and InGaAs/InAlAs/InP multiple quantum wells structures (MQW's) are presented in this paper. The MQW's were obtained by metalorganic vapour phase epitaxy with different shapes of QW, numbers of QW and levels of doping. The magnetotransport measurements were performed in wide region of temperatures (0.5-300 K) and at high magnetic fields up to 30 T (B is perpendicular and current is parallel to the plane of the QW). Three types of observed effects are analyzed: quantum Hall effect and Shubnikov-de Haas oscillations at low temperatures (0.5-6 K) as well as magnetophonon resonance at higher temperatures (77-300 K)
Chalcopyrite semiconductors for quantum well solar cells
Energy Technology Data Exchange (ETDEWEB)
Afshar, Maziar; Sadewasser, Sascha; Albert, Juergen; Lehmann, Sebastian; Abou-Ras, Daniel; Lux-Steiner, Martha C. [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Berlin (Germany); Marron, David Fuertes [Instituto de Energia Solar - ETSIT, Universidad Politecnica de Madrid, Ciudad Universitaria s.n., 28040 Madrid (Spain); Rockett, Angus A. [Department of Materials Science and Engineering, University of Illinois, 1304 W. Green Street, Urbana, IL 61801 (United States); Raesaenen, Esa [Nanoscience Center, Department of Physics University of Jyvaeskylae, FI-40014 Jyvaeskylae (Finland)
2011-11-15
The possibilities of using highly absorbing chalcopyrite semiconductors of the type Cu(In,Ga)Se{sub 2} in a quantum well solar cell structure are explored. Thin alternating layers of 50 nm CuInSe{sub 2} and CuGaSe{sub 2} were grown epitaxially on a GaAs(100) substrate. The optical properties of a resulting structure of three layers indicate charge carrier confinement in the low band gap CuInSe{sub 2} layer. By compositional analysis interdiffusion of In and Ga at the interfaces was found. The compositional profile was converted into a conduction-band diagram, for which the quantization of energy levels was numerically confirmed using the effective-mass approximation. The results provide a promising basis for the future development of chalcopyrite-type quantum well structures and their application, i.e. in quantum well solar cells. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Spatially indirect excitons in coupled quantum wells
Energy Technology Data Exchange (ETDEWEB)
Lai, Chih-Wei Eddy [Univ. of California, Berkeley, CA (United States)
2004-03-01
Microscopic quantum phenomena such as interference or phase coherence between different quantum states are rarely manifest in macroscopic systems due to a lack of significant correlation between different states. An exciton system is one candidate for observation of possible quantum collective effects. In the dilute limit, excitons in semiconductors behave as bosons and are expected to undergo Bose-Einstein condensation (BEC) at a temperature several orders of magnitude higher than for atomic BEC because of their light mass. Furthermore, well-developed modern semiconductor technologies offer flexible manipulations of an exciton system. Realization of BEC in solid-state systems can thus provide new opportunities for macroscopic quantum coherence research. In semiconductor coupled quantum wells (CQW) under across-well static electric field, excitons exist as separately confined electron-hole pairs. These spatially indirect excitons exhibit a radiative recombination time much longer than their thermal relaxation time a unique feature in direct band gap semiconductor based structures. Their mutual repulsive dipole interaction further stabilizes the exciton system at low temperature and screens in-plane disorder more effectively. All these features make indirect excitons in CQW a promising system to search for quantum collective effects. Properties of indirect excitons in CQW have been analyzed and investigated extensively. The experimental results based on time-integrated or time-resolved spatially-resolved photoluminescence (PL) spectroscopy and imaging are reported in two categories. (i) Generic indirect exciton systems: general properties of indirect excitons such as the dependence of exciton energy and lifetime on electric fields and densities were examined. (ii) Quasi-two-dimensional confined exciton systems: highly statistically degenerate exciton systems containing more than tens of thousands of excitons within areas as small as (10 micrometer)^{2} were
Physics of strained quantum well lasers
Loehr, John P
1998-01-01
When this publisher offered me the opportunity to \\\\Tite a book, some six years ago, I did not hesitate to say yes. I had just spent the last four years of graduate school struggling to understand the physics of strained quantum well lasers, and it seemed to me the whole experience was much more difficult that it should have been. For although many of the results I needed were easy to locate, the underlying physical premises and intervening steps were not. If only I had a book providing the derivations, I could have absorbed them and gone on my way. Such a book lies before you. It provides a unified and self-contained descrip tion of the essential physics of strained quantum well lasers, starting from first principles whenever feasible. The presentation I have chosen requires only the standard introductory background in quantum mechanics, solid state physics, and electromagnetics expected of entering graduate students in physics or elec trical engineering. A single undergraduate course in each of these su...
Spin injection in self-assembled quantum dots coupled with a diluted magnetic quantum well
International Nuclear Information System (INIS)
Murayama, A.; Asahina, T.; Souma, I.; Koyama, T.; Hyomi, K.; Nishibayashi, K.; Oka, Y.
2007-01-01
Spin injection is studied in self-assembled quantum dots (QDs) of CdSe coupled with a diluted magnetic semiconductor quantum well (DMS-QW) of Zn 1- x - y Cd x Mn y Se, by means of time-resolved circularly polarized photoluminescence (PL). Excitonic PL from the CdSe QDs shows σ - -circular polarization in magnetic fields, mainly due to negative g-values of individual dots, when the energy difference of excitons between the QDs and DMS-QW is large as 300 meV. However, when such energy difference is comparable with LO-phonon energy in the QD, we observe an additional PL peak with the long lifetime as 3.5 ns and σ + -polarization in magnetic fields. It can be attributed to a type-II transition between the down-spin electron injected from the DMS-QW into the QDs, via LO-phonon-assisted resonant tunneling, and the down-spin heavy hole in the DMS-QW. In addition, the electron spin-injection is also evidenced by σ + -polarized PL with the fast rise-time of 20 ps in the QDs
Characterization of interfaces in semimagnetic quantum wells
Energy Technology Data Exchange (ETDEWEB)
Schmitt, G.; Kuhn-Heinrich, B.; Zehnder, U.; Ossau, W.; Litz, T.; Waag, A.; Landwehr, G. [Physikalishes Institut der Universitaet Wuerzburg am Hubland, Wuerzburg (Germany)
1995-12-31
The interfaces between nonmagnetic CdTe quantum wells and semimagnetic barriers of Cd{sub 1-x}Mn{sub x}Te were investigated for several well widths by low temperature photoluminescence and photoluminescence excitation spectroscopy. Specially designed Cd{sub 1-x}Mn{sub x}/CdTe/Cd{sub 1-y} Mg{sub y}Te structures enable us to distinguish the quality of semimagnetic normal and inverted interfaces. The normal interface shows to better structural quality than the inverted interface. (author). 5 refs, 2 figs, 1 tab.
The Physics of Quantum Well Infrared Photodetectors
Choi, K K
1999-01-01
In the past, infrared imaging has been used exclusively for military applications. In fact, it can also be useful in a wide range of scientific and commercial applications. However, its wide spread use was impeded by the scarcity of the imaging systems and its high cost. Recently, there is an emerging infrared technology based on quantum well intersubband transition in III-V compound semiconductors. With the new technology, these impedances can be eliminated and a new era of infrared imaging is in sight. This book is designed to give a systematic description on the underlying physics of the ne
Electron Raman scattering in quantum well wires
International Nuclear Information System (INIS)
Zhao Xiangfu; Liu Cuihong
2007-01-01
Electron Raman scattering (ERS) is investigated in a semiconductor quantum well wire (QWW) of cylindrical geometry for T=0K and neglecting phonon-assisted transitions. The differential cross-section (DCS) involved in this process is calculated as a function of a scattering frequency and the cylindrical radius. Electron states are confined within a QWW. Single parabolic conduction and valence bands are assumed. The selection rules are studied. Singularities in the spectra are interpreted for various cylindrical radii. ERS discussed here can provide direct information about the electron band structure of the system
Fiore, A.; Rossetti, M.; Alloing, B.; Paranthoën, C.; Chen, J.X.; Geelhaar, L.; Riechert, H.
2004-01-01
We present a comparative study of carrier diffusion in semiconductor heterostructures with different dimensionality [InGaAs quantum wells (QWs), InAs quantum dots (QDs), and disordered InGaNAs QWs (DQWs)]. In order to evaluate the diffusion length in the active region of device structures, we
Directory of Open Access Journals (Sweden)
Vishnu Jayakumar Sunandhakumari
2018-06-01
Full Text Available For years the pathogenesis of periodontitis was under an immunological Th1/Th2 paradigm. Th1 cells are considered to afford protection against the intracellular pathogens. These cells produce the interferons (IFN that are involved in macrophage activation, which, in turn, plays an important role in phagocytosis, complement fixation, and opsonization. Th2 cells are thought to have evolved as a form of protection against parasitic helminthes. Th17 subset of CD4Not Necessary+ T cells was identified in the year 2005, which added greater complexity to Th function and are pro inflammatory in nature. Interleukins (ILs have the ability to alter immunological changes and they also possess the ability to regulate lymphocyte differentiation and haemopoietic stem cells, cell proliferation, and motility, which are classified as pro-inflammatory and anti-inflammatory. There are numerous studies that reported IL-17 levels associated with chronic periodontitis (CP development. Type II diabetes mellitus (DM is considered a risk factor for the development of periodontal diseases because the incidence, progression, and severity of periodontal diseases are more common with Type II DM than without DM. This study was aimed at evaluating whether non-surgical periodontal therapy had any effect on plasma concentrations of Interleukin-17 in systemically healthy chronic periodontitis patients and in chronic periodontitis patients with well controlled Type II Diabetes mellitus. Patients were divided into the two groups including the chronic periodontitis group (20 subjects and the chronic periodontitis with well-controlled Type II Diabetes mellitus group (20 subjects. The Gingival Index and Plaque Index as well as the clinical Attachment Level (CAL were taken from all the patients of two groups after evaluating fasting blood sugar, post prandial blood sugar, and the Glycated Hemoglobin Level (HbA1c. Then 5 mL blood samples were collected from each patient and plasma was
Spin-orbit interaction in multiple quantum wells
Energy Technology Data Exchange (ETDEWEB)
Hao, Ya-Fei, E-mail: haoyafei@zjnu.cn [Physics Department, Zhejiang Normal University, Zhejiang 321004 (China)
2015-01-07
In this paper, we investigate how the structure of multiple quantum wells affects spin-orbit interactions. To increase the interface-related Rashba spin splitting and the strength of the interface-related Rashba spin-orbit interaction, we designed three kinds of multiple quantum wells. We demonstrate that the structure of the multiple quantum wells strongly affected the interface-related Rashba spin-orbit interaction, increasing the interface-related Rashba spin splitting to up to 26% larger in multiple quantum wells than in a stepped quantum well. We also show that the cubic Dresselhaus spin-orbit interaction similarly influenced the spin relaxation time of multiple quantum wells and that of a stepped quantum well. The increase in the interface-related Rashba spin splitting originates from the relationship between interface-related Rashba spin splitting and electron probability density. Our results suggest that multiple quantum wells can be good candidates for spintronic devices.
Spin-orbit interaction in multiple quantum wells
International Nuclear Information System (INIS)
Hao, Ya-Fei
2015-01-01
In this paper, we investigate how the structure of multiple quantum wells affects spin-orbit interactions. To increase the interface-related Rashba spin splitting and the strength of the interface-related Rashba spin-orbit interaction, we designed three kinds of multiple quantum wells. We demonstrate that the structure of the multiple quantum wells strongly affected the interface-related Rashba spin-orbit interaction, increasing the interface-related Rashba spin splitting to up to 26% larger in multiple quantum wells than in a stepped quantum well. We also show that the cubic Dresselhaus spin-orbit interaction similarly influenced the spin relaxation time of multiple quantum wells and that of a stepped quantum well. The increase in the interface-related Rashba spin splitting originates from the relationship between interface-related Rashba spin splitting and electron probability density. Our results suggest that multiple quantum wells can be good candidates for spintronic devices
Electronic Conduction through Atomic Chains, Quantum Well and Quantum Wire
International Nuclear Information System (INIS)
Sharma, A. C.
2011-01-01
Charge transport is dynamically and strongly linked with atomic structure, in nanostructures. We report our ab-initio calculations on electronic transport through atomic chains and the model calculations on electron-electron and electron-phonon scattering rates in presence of random impurity potential in a quantum well and in a quantum wire. We computed synthesis and ballistic transport through; (a) C and Si based atomic chains attached to metallic electrodes, (b) armchair (AC), zigzag (ZZ), mixed, rotated-AC and rotated-ZZ geometries of small molecules made of 2S, 6C and 4H atoms attaching to metallic electrodes, and (c) carbon atomic chain attached to graphene electrodes. Computed results show that synthesis of various atomic chains are practically possible and their transmission coefficients are nonzero for a wide energy range. The ab-initio calculations on electronic transport have been performed with the use of Landauer-type scattering formalism formulated in terms of Grben's functions in combination with ground-state DFT. The electron-electron and electron-phonon scattering rates have been calculated as function of excitation energy both at zero and finite temperatures for disordered 2D and 1D systems. Our model calculations suggest that electron scattering rates in a disordered system are mainly governed by effective dimensionality of a system, carrier concentration and dynamical screening effects.
Growth and characterization of GaInP unicompositional disorder-order-disorder quantum wells
International Nuclear Information System (INIS)
Schneider, R.P. Jr.; Jones, E.D.; Follstaedt, D.M.
1994-01-01
Metalorganic vapor phase epitaxy (MOVPE) is used to grow unicompositional quantum-well (QW) structures, in which the QW and barrier layers are composed of ordered and disordered GaInP, respectively. Transmission electron dark-field micrographs reveal abrupt interfaces between highly ordered QWs and disordered barriers, with no evidence of defect formation. Low-temperature photoluminescence from the structures exhibits relatively broad emission peaks, with emission energy increasing with decreasing QW thickness. The dependence of emission energy on well thickness can be described by a finite square well model only when a type-II band alignment is taken for the heterostructure, in which the conduction band edge of the ordered GaInP QW lies about 135--150 meV below that of the disordered barrier material. These results demonstrate a high degree of control over the ordering process in MOVPE, such that quantum size effects can be realized solely through disorder-order phenomena. Further, the data provide strong support for a type-II (spatially indirect) recombination transition between ordered and disordered GaInP
Effect of low and staggered gap quantum wells inserted in GaAs tunnel junctions
Louarn, K.; Claveau, Y.; Marigo-Lombart, L.; Fontaine, C.; Arnoult, A.; Piquemal, F.; Bounouh, A.; Cavassilas, N.; Almuneau, G.
2018-04-01
In this article, we investigate the impact of the insertion of either a type I InGaAs or a type II InGaAs/GaAsSb quantum well on the performances of MBE-grown GaAs tunnel junctions (TJs). The devices are designed and simulated using a quantum transport model based on the non-equilibrium Green’s function formalism and a 6-band k.p Hamiltonian. We experimentally observe significant improvements of the peak tunneling current density on both heterostructures with a 460-fold increase for a moderately doped GaAs TJ when the InGaAs QW is inserted at the junction interface, and a 3-fold improvement on a highly doped GaAs TJ integrating a type II InGaAs/GaAsSb QW. Thus, the simple insertion of staggered band lineup heterostructures enables us to reach a tunneling current well above the kA cm‑2 range, equivalent to the best achieved results for Si-doped GaAs TJs, implying very interesting potential for TJ-based components, such as multi-junction solar cells, vertical cavity surface emitting lasers and tunnel-field effect transistors.
Asymmetric quantum well broadband thyristor laser
Liu, Zhen; Wang, Jiaqi; Yu, Hongyan; Zhou, Xuliang; Chen, Weixi; Li, Zhaosong; Wang, Wei; Ding, Ying; Pan, Jiaoqing
2017-11-01
A broadband thyristor laser based on InGaAs/GaAs asymmetric quantum well (AQW) is fabricated by metal organic chemical vapor deposition (MOCVD). The 3-μm-wide Fabry-Perot (FP) ridge-waveguide laser shows an S-shape I-V characteristic and exhibits a flat-topped broadband optical spectrum coverage of ~27 nm (Δ-10 dB) at a center wavelength of ~1090 nm with a total output power of 137 mW under pulsed operation. The AQW structure was carefully designed to establish multiple energy states within, in order to broaden the gain spectrum. An obvious blue shift emission, which is not generally acquired in QW laser diodes, is observed in the broadening process of the optical spectrum as the injection current increases. This blue shift spectrum broadening is considered to result from the prominent band-filling effect enhanced by the multiple energy states of the AQW structure, as well as the optical feedback effect contributed by the thyristor laser structure. Project supported by the National Natural Science Foundation of China (Nos. 61604144, 61504137). Zhen Liu and Jiaqi Wang contributed equally to this work.
Magnetophonon resonance in double quantum wells
Ploch, D.; Sheregii, E. M.; Marchewka, M.; Wozny, M.; Tomaka, G.
2009-05-01
The experimental results obtained for the magnetotransport in pulsed magnetic fields in the InGaAs/InAlAs double quantum well (DQW) structures of two different shapes of wells and different values of the electron density are reported. The magnetophonon resonance (MPR) was observed for both types of structures within the temperature range 77-125 K. Four kinds of LO phonons are taken into account to interpret the MPR oscillations in the DQW and a method of the Landau level calculation in the DQW is elaborated for this aim. The peculiarity of the MPR in the DQW is the large number of the Landau levels caused by SAS splitting of the electron states (splitting on the symmetric and anti-symmetric states) and the large number of the phonon assistance electron transitions between Landau levels. The significant role of the carrier statistics is shown too. The behavior of the electron states in the DQWs at comparably high temperatures has been studied using the MPR. It is shown that the Huang and Manasreh [Manasreh [Phys. Rev. B 54, 2044 (1996)] model involving screening of exchange interaction is confirmed.
Polarization-insensitive quantum-dot coupled quantum-well semiconductor optical amplifier
International Nuclear Information System (INIS)
Huang Lirong; Yu Yi; Tian Peng; Huang Dexiu
2009-01-01
The optical gain of a quantum-dot semiconductor optical amplifier is usually seriously dependent on polarization; we propose a quantum-dot coupled tensile-strained quantum-well structure to obtain polarization insensitivity. The tensile-strained quantum well not only serves as a carrier injection layer of quantum dots but also offers gain to the transverse-magnetic mode. Based on the polarization-dependent coupled carrier rate-equation model, we study carrier competition among quantum well and quantum dots, and study the polarization dependence of the quantum-dot coupled quantum-well semiconductor optical amplifier. We also analyze polarization-dependent photon-mediated carrier distribution among quantum well and quantum dots. It is shown that polarization-insensitive gain can be realized by optimal design
Biexciton binding energy in ZnSe quantum wells and quantum wires
DEFF Research Database (Denmark)
Wagner, Hans-Peter; Langbein, Wolfgang; Hvam, Jørn Märcher
2002-01-01
The biexciton binding energy E-XX is investigated in ZnSe/ZnMgSe quantum wells and quantum wires as a function of the lateral confinement by transient four-wave mixing. In the quantum wells one observes for decreasing well width a significant increase in the relative binding energy, saturating...... for well widths less than 8 nm. In the quantum wires an increase of 30% is found in the smallest quantum wire structures compared to the corresponding quantum well value. A simple analytical model taking into account the quantum confinement in these low-dimensional systems is used to explain...
Solar Type II Radio Bursts and IP Type II Events
Cane, H. V.; Erickson, W. C.
2005-01-01
We have examined radio data from the WAVES experiment on the Wind spacecraft in conjunction with ground-based data in order to investigate the relationship between the shocks responsible for metric type II radio bursts and the shocks in front of coronal mass ejections (CMEs). The bow shocks of fast, large CMEs are strong interplanetary (IP) shocks, and the associated radio emissions often consist of single broad bands starting below approx. 4 MHz; such emissions were previously called IP type II events. In contrast, metric type II bursts are usually narrowbanded and display two harmonically related bands. In addition to displaying complete dynamic spectra for a number of events, we also analyze the 135 WAVES 1 - 14 MHz slow-drift time periods in 2001-2003. We find that most of the periods contain multiple phenomena, which we divide into three groups: metric type II extensions, IP type II events, and blobs and bands. About half of the WAVES listings include probable extensions of metric type II radio bursts, but in more than half of these events, there were also other slow-drift features. In the 3 yr study period, there were 31 IP type II events; these were associated with the very fastest CMEs. The most common form of activity in the WAVES events, blobs and bands in the frequency range between 1 and 8 MHz, fall below an envelope consistent with the early signatures of an IP type II event. However, most of this activity lasts only a few tens of minutes, whereas IP type II events last for many hours. In this study we find many examples in the radio data of two shock-like phenomena with different characteristics that occur simultaneously in the metric and decametric/hectometric bands, and no clear example of a metric type II burst that extends continuously down in frequency to become an IP type II event. The simplest interpretation is that metric type II bursts, unlike IP type II events, are not caused by shocks driven in front of CMEs.
Gheshlaghi, Negar; Pisheh, Hadi Sedaghat; Ünlü, Hilmi
2017-11-01
We investigated the effect of ternary shell alloy composition on the bandgap and diameter of core of ZnSe / Cd1 - x Znx S heterostructure core/shell quantum dots, which were synthesized by using a simple colloidal technique. Characterization by using the x-ray diffraction (XRD), transmission electron microscopy (TEM), UV-Vis absorption and fluorescence emission spectroscopic techniques indicate that (i) there is a transition of ZnSe / Cd0.6 Zn0.4 S Type-I heterostructure (electrons and holes tend to localize in core) to ZnSe / Cd0.75 Zn0.25 S quasi-Type-II heterostructures (holes tend to localized in the core and electrons are delocalized) and (ii) then after large red shift and Stock-shift in PL emission spectra but not a distinct absorption peak in UV spectra become noticeable in ZnSe/Cd0.75Zn0.25 S quasi-Type II and ZnSe/CdS Type II heterostructures (electrons are localized in core and holes are localized in shell). Furthermore, the increase of Cd:S ratio in shell alloy composition shifts the XRD peaks to lower 2θ degrees which corresponds to tensile strain in the ZnSe core. Finally, the hydrostatic interfacial strain has effect on the squeezing or stretching the capped core: A decrease of compressive force on core from ZnSe/ZnS to tensile force in ZnSe/CdS with increase in Cd:S ratio indicates that transition of compressive strain to tensile strain takes place with the transition from Type-I to II heterostructure.
Thermal activation of carriers from semiconductor quantum wells
International Nuclear Information System (INIS)
Johnston, M.B.; Herz, L.M.; Dao, L.V.; Gal, M.; Tan, H.H.; Jagadish, C.
1999-01-01
Full text: We have conducted a systematic investigation of the thermal excitation of carriers in confined states of quantum wells. Carriers may be injected into a sample containing a quantum well electrically or optically, once there they rapidly thermalise and are captured by the confined state of the quantum well. Typically electrons and holes recombine radiatively from their respective quantum well states. As a quantum well sample is heated from low temperatures (∼10K), phonon interactions increase which leads to carriers being excited from the well region into the higher energy, barrier region of the sample. Since carrier recombination from barrier regions is via non-radiative processes, there is strong temperature dependence of photoluminescence from the quantum well region. We measured quantum well photoluminescence as a function of excitation intensity and wavelength over the temperature range from 8K to 300K. In high quality InGaAs quantum wells we found unexpected intensity dependence of the spectrally integrated temperature dependent photoluminescence. We believe that this is evidence for by the existence of saturable states at the interfaces of the quantum wells
Directory of Open Access Journals (Sweden)
A. Jamshidi
2015-01-01
Full Text Available Colloidal Mn-doped ZnSe/CdS core/shell quantum dots (QDs are synthesized for the first time and employed as a strategy to boost the power conversion efficiency of quantum dot sensitized solar cells. By using Mn-doping as a band gap engineering tool for core/shell QDs an effective improvement of absorption spectra could be obtained. The mid-states generated by a proper Mn content alleviate carrier separation and enhance the electron injection rate, thus facilitating electron transport to the TiO2 substrate. It is demonstrated that a device constructed with 0.25% Mn-doped ZnSe/CdS leads to an enhancement of the electron injection rate and power conversion efficiency by 4 times and 1.3, respectively.
Czech Academy of Sciences Publication Activity Database
Hospodková, Alice; Zíková, Markéta; Pangrác, Jiří; Oswald, Jiří; Kubištová, Jana; Kuldová, Karla; Hazdra, P.; Hulicius, Eduard
2013-01-01
Roč. 46, č. 9 (2013), "095103-1"-"095103-9" ISSN 0022-3727 R&D Projects: GA ČR GAP102/10/1201; GA MŠk(CZ) LM2011026 Institutional support: RVO:68378271 Keywords : quantum dot * band alignment * InAs/GaAs * GaAsSb * MOVPE Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.521, year: 2013 http://iopscience.iop.org/0022-3727/46/9/095103/
Design and Analysis of a Multicolor Quantum Well Infrared Photodetector
National Research Council Canada - National Science Library
Alves, Fabio D. P
2005-01-01
.... These characteristics have been found in quantum well infrared photodetectors (QWIP). Driven by these applications, a QWIP photodetector capable of detecting simultaneously infrared emissions within near infrared (NIR...
Elaboration and optical properties of type-II ZnTe on ZnSe heterostructures
Energy Technology Data Exchange (ETDEWEB)
Najjar, Rita, E-mail: rita.najjar@cea.f [CEA-CNRS group ' Nanophysique et semiconducteurs' , Institut NEEL-CNRS, BP166, 25 rue des martyrs, 38042 Grenoble Cedex 9 (France); Andre, Regis; Besombes, Lucien; Bougerol, Catherine; Tatarenko, Serge; Mariette, Henri [CEA-CNRS group ' Nanophysique et semiconducteurs' , Institut NEEL-CNRS, BP166, 25 rue des martyrs, 38042 Grenoble Cedex 9 (France)
2009-11-25
Special growth conditions are presented in this work, in order to produce ZnTe/ZnSe type-II quantum dots and preserve them during the capping stage. A detailed study emphasizes the high sensitivity of the sample structure to Se/Zn ratio as opposed to other growth parameters. It is shown that nominally identical samples can evolve into two-dimensional quantum well or quantum dot plane, depending on which element is in excess. Transmission electron microscopy, atomic force microscopy and optical characterizations evidence this phenomenon.
Electronic properties of electron and hole in type-II semiconductor nano-heterostructures
Energy Technology Data Exchange (ETDEWEB)
Rahul, K. Suseel [Department of Physics, Central University of Kerala, Riverside Transit Campus, Kasaragod, Kerala. India (India); Department of Physics, Sri Vyasa NSS College, Wadakkancheri, Thrissur, Kerala, PIN:680623. India (India); Souparnika, C. [Department of Physics, Sri Vyasa NSS College, Wadakkancheri, Thrissur, Kerala, PIN:680623. India (India); Salini, K.; Mathew, Vincent, E-mail: vincent@cukerala.ac.in [Department of Physics, Central University of Kerala, Riverside Transit Campus, Kasaragod, Kerala. India (India)
2016-05-06
In this project, we record the orbitals of electron and hole in type-II (CdTe/CdSe/CdTe/CdSe) semiconductor nanocrystal using effective mass approximation. In type-II the band edges of both valance and conduction band are higher than that of shell. So the electron and hole get confined in different layers of the hetero-structure. The energy eigen values and eigen functions are calculated by solving Schrodinger equation using finite difference matrix method. Based on this we investigate the effect of shell thickness and well width on energy and probability distribution of ground state (1s) and few excited states (1p,1d,etc). Our results predict that, type-II quantum dots have significant importance in photovoltaic applications.
Electronic properties of electron and hole in type-II semiconductor nano-heterostructures
Rahul, K. Suseel; Souparnika, C.; Salini, K.; Mathew, Vincent
2016-05-01
In this project, we record the orbitals of electron and hole in type-II (CdTe/CdSe/CdTe/CdSe) semiconductor nanocrystal using effective mass approximation. In type-II the band edges of both valance and conduction band are higher than that of shell. So the electron and hole get confined in different layers of the hetero-structure. The energy eigen values and eigen functions are calculated by solving Schrodinger equation using finite difference matrix method. Based on this we investigate the effect of shell thickness and well width on energy and probability distribution of ground state (1s) and few excited states (1p,1d,etc). Our results predict that, type-II quantum dots have significant importance in photovoltaic applications.
Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots
Energy Technology Data Exchange (ETDEWEB)
Cundiff, Steven T. [Univ. of Colorado, Boulder, CO (United States)
2016-05-03
This final report describes the activities undertaken under grant "Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots". The goal of this program was to implement optical 2-dimensional Fourier transform spectroscopy and apply it to electronic excitations, including excitons, in semiconductors. Specifically of interest are quantum wells that exhibit disorder due to well width fluctuations and quantum dots. In both cases, 2-D spectroscopy will provide information regarding coupling among excitonic localization sites.
Quantum-well exciton polariton emission from multi-quantum-well wire structures
Kohl, M.; Heitmann, D.; Grambow, P.; Ploog, K.
The radiative decay of quantum-well exciton (QWE) polaritons in microstructured Al0.3Ga0.7As - GaAs multi-quantum wells (MQW) has been studied by photoluminescence spectroscopy. Periodic wire structures with lateral periodicities a = 250-500 nm and lateral widths t = 100-200 nm have been fabricated by plasma etching. The thickness of the QWs was 13 nm. In the QW wire samples the free-exciton photoluminescence was strongly reduced and the QWE polariton emission was observed as a maximum peaked at a 3 meV higher energy than the free QWE transition. In samples which had only a microstructured cladding layer, the free-exciton photoluminescence was dominant in the spectrum and the QWE polariton emission was observed as a shoulder on the high-energy side of the free QWE transition. In addition, two transitions at the low energy side of the free QWE photoluminescence were present in the microstructured samples, which were related to etching induced states.
Quantum confined Stark effect in Gaussian quantum wells: A tight-binding study
International Nuclear Information System (INIS)
Ramírez-Morales, A.; Martínez-Orozco, J. C.; Rodríguez-Vargas, I.
2014-01-01
The main characteristics of the quantum confined Stark effect (QCSE) are studied theoretically in quantum wells of Gaussian profile. The semi-empirical tight-binding model and the Green function formalism are applied in the numerical calculations. A comparison of the QCSE in quantum wells with different kinds of confining potential is presented
Quantum confined Stark effect in Gaussian quantum wells: A tight-binding study
Energy Technology Data Exchange (ETDEWEB)
Ramírez-Morales, A.; Martínez-Orozco, J. C.; Rodríguez-Vargas, I. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad Esquina Con Paseo La Bufa S/N, 98060 Zacatecas, Zac. (Mexico)
2014-05-15
The main characteristics of the quantum confined Stark effect (QCSE) are studied theoretically in quantum wells of Gaussian profile. The semi-empirical tight-binding model and the Green function formalism are applied in the numerical calculations. A comparison of the QCSE in quantum wells with different kinds of confining potential is presented.
Exciton absorption of entangled photons in semiconductor quantum wells
Rodriguez, Ferney; Guzman, David; Salazar, Luis; Quiroga, Luis; Condensed Matter Physics Group Team
2013-03-01
The dependence of the excitonic two-photon absorption on the quantum correlations (entanglement) of exciting biphotons by a semiconductor quantum well is studied. We show that entangled photon absorption can display very unusual features depending on space-time-polarization biphoton parameters and absorber density of states for both bound exciton states as well as for unbound electron-hole pairs. We report on the connection between biphoton entanglement, as quantified by the Schmidt number, and absorption by a semiconductor quantum well. Comparison between frequency-anti-correlated, unentangled and frequency-correlated biphoton absorption is addressed. We found that exciton oscillator strengths are highly increased when photons arrive almost simultaneously in an entangled state. Two-photon-absorption becomes a highly sensitive probe of photon quantum correlations when narrow semiconductor quantum wells are used as two-photon absorbers. Research funds from Facultad de Ciencias, Universidad de los Andes
Multichannel scattering of charge carriers on quantum well heterostructures
Galiev, V I; Polupanov, A F; Goldis, E M; Tansli, T L
2002-01-01
An efficient numerical analytical method has been developed for finding continuum spectrum states in quantum well systems with arbitrary potential profiles that are described by coupled Schroedinger equations. Scattering states and S matrix have been built for the case of multichannel scattering in one-dimensional systems with quantum wells and their symmetry properties are obtained and analyzed. The method is applied for studying hole scattering by strained GaInAs-InGaAsP quantum wells. Coefficients of the hole transmission and reflection as well as delay time are calculated as functions of the energy of the incident hole for various values of parameters of structures and values of the momentum
Fisher information and quantum potential well model for finance
Energy Technology Data Exchange (ETDEWEB)
Nastasiuk, V.A., E-mail: nasa@i.ua
2015-09-25
The probability distribution function (PDF) for prices on financial markets is derived by extremization of Fisher information. It is shown how on that basis the quantum-like description for financial markets arises and different financial market models are mapped by quantum mechanical ones. - Highlights: • The financial Schrödinger equation is derived using the principle of minimum Fisher information. • Statistical models for price variation are mapped by the quantum models of coupled particle. • The model of quantum particle in parabolic potential well corresponds to Efficient market.
Fisher information and quantum potential well model for finance
International Nuclear Information System (INIS)
Nastasiuk, V.A.
2015-01-01
The probability distribution function (PDF) for prices on financial markets is derived by extremization of Fisher information. It is shown how on that basis the quantum-like description for financial markets arises and different financial market models are mapped by quantum mechanical ones. - Highlights: • The financial Schrödinger equation is derived using the principle of minimum Fisher information. • Statistical models for price variation are mapped by the quantum models of coupled particle. • The model of quantum particle in parabolic potential well corresponds to Efficient market
Students' Conceptual Difficulties in Quantum Mechanics: Potential Well Problems
Ozcan, Ozgur; Didis, Nilufer; Tasar, Mehmet Fatih
2009-01-01
In this study, students' conceptual difficulties about some basic concepts in quantum mechanics like one-dimensional potential well problems and probability density of tunneling particles were identified. For this aim, a multiple choice instrument named Quantum Mechanics Conceptual Test has been developed by one of the researchers of this study…
Tunnelling and relaxation in semiconductor double quantum wells
International Nuclear Information System (INIS)
Ferreira, R.; Bastard, G.
1997-01-01
Double quantum wells are among the simplest semiconductor heterostructures exhibiting tunnel coupling. The existence of a quantum confinement effect for the energy levels of a narrow single quantum well has been largely studied. In double quantum wells, in addition to these confinement effects which characterize the levels of the isolated wells, one faces the problem of describing the eigenstates of systems interacting weakly through a potential barrier. In addition, the actual structures differ from the ideal systems studied in the quantum mechanics textbooks in many aspects. The presence of defects leads, for instance, to an irreversible time evolution for a population of photocreated carriers. This irreversible transfer is now clearly established experimentally. The resonant behaviour of the transfer has also been evidenced, from the study of biased structures. If the existence of an interwell transfer is now clearly established from the experimental point of view, its theoretical description, however, is not fully satisfactory. This review focuses on the theoretical description of the energy levels and of the interwell assisted transfer in double quantum wells. We shall firstly outline the problem of tunnel coupling in semiconductor heterostructures and then discuss the single particle and exciton eigenstates in double quantum wells. In the remaining part of the review we shall present and critically review a few theoretical models used to describe the assisted interwell transfer in these structures. (author)
Diabetes mellitus is characterized by elevated blood glucose levels. It is composed of two types depending on the pathogenesis. Type I diabetes is characterized by insulin deficiency and usually has its onset during childhood or teenage years. This is also called ketosis-prone diabetes. Type II diab...
Soluyanov, Alexey A; Gresch, Dominik; Wang, Zhijun; Wu, QuanSheng; Troyer, Matthias; Dai, Xi; Bernevig, B Andrei
2015-11-26
Fermions--elementary particles such as electrons--are classified as Dirac, Majorana or Weyl. Majorana and Weyl fermions had not been observed experimentally until the recent discovery of condensed matter systems such as topological superconductors and semimetals, in which they arise as low-energy excitations. Here we propose the existence of a previously overlooked type of Weyl fermion that emerges at the boundary between electron and hole pockets in a new phase of matter. This particle was missed by Weyl because it breaks the stringent Lorentz symmetry in high-energy physics. Lorentz invariance, however, is not present in condensed matter physics, and by generalizing the Dirac equation, we find the new type of Weyl fermion. In particular, whereas Weyl semimetals--materials hosting Weyl fermions--were previously thought to have standard Weyl points with a point-like Fermi surface (which we refer to as type-I), we discover a type-II Weyl point, which is still a protected crossing, but appears at the contact of electron and hole pockets in type-II Weyl semimetals. We predict that WTe2 is an example of a topological semimetal hosting the new particle as a low-energy excitation around such a type-II Weyl point. The existence of type-II Weyl points in WTe2 means that many of its physical properties are very different to those of standard Weyl semimetals with point-like Fermi surfaces.
GaSb quantum rings in GaAs/Al{sub x}Ga{sub 1−x}As quantum wells
Energy Technology Data Exchange (ETDEWEB)
Hodgson, P. D., E-mail: pdhodgson@hotmail.co.uk; Hayne, M.; Robson, A. J.; Zhuang, Q. D. [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom); Danos, L. [Department of Chemistry, Lancaster University, Lancaster LA1 4YB (United Kingdom)
2016-01-28
We report the results of continuous and time-resolved photoluminescence measurements on type-II GaSb quantum rings embedded within GaAs/Al{sub x}Ga{sub 1−x}As quantum wells. A range of samples were grown with different well widths, compensation-doping concentrations within the wells, and number of quantum-ring layers. We find that each of these variants have no discernible effect on the radiative recombination, except for the very narrowest (5 nm) quantum well. In contrast, single-particle numerical simulations of the sample predict changes in photoluminescence energy of up to 200 meV. This remarkable difference is explained by the strong Coulomb binding of electrons to rings that are multiply charged with holes. The resilience of the emission to compensation doping indicates that multiple hole occupancy of the quantum rings is required for efficient carrier recombination, regardless of whether these holes come from doping or excitation.
Piezo-Phototronic Effect in a Quantum Well Structure.
Huang, Xin; Du, Chunhua; Zhou, Yongli; Jiang, Chunyan; Pu, Xiong; Liu, Wei; Hu, Weiguo; Chen, Hong; Wang, Zhong Lin
2016-05-24
With enhancements in the performance of optoelectronic devices, the field of piezo-phototronics has attracted much attention, and several theoretical works have been reported based on semiclassical models. At present, the feature size of optoelectronic devices are rapidly shrinking toward several tens of nanometers, which results in the quantum confinement effect. Starting from the basic piezoelectricity equation, Schrödinger equation, Poisson equation, and Fermi's golden rule, a self-consistent theoretical model is proposed to study the piezo-phototronic effect in the framework of perturbation theory in quantum mechanics. The validity and universality of this model are well-proven with photoluminescence measurements in a single GaN/InGaN quantum well and multiple GaN/InGaN quantum wells. This study provides important insight into the working principle of nanoscale piezo-phototronic devices as well as guidance for the future device design.
New method for control over exciton states in quantum wells
International Nuclear Information System (INIS)
Maslov, A Yu; Proshina, O V
2010-01-01
The theoretical study of the exciton states in the quantum well is performed with regard to the distinctions of the dielectric properties of quantum well and barrier materials. The strong exciton-phonon interaction is shown to be possible in materials with high ionicity. This leads to the essential modification of the exciton states. The relationship between the exciton binding energy, along with oscillator strength and the barrier material dielectric properties is found. This suggests the feasibility of the exciton spectrum parameter control by the choice of the barrier material. It is shown that such exciton spectrum engineering also is possible in the quantum wells based on the materials with low ionicity. The reason is the dielectric confinement effect in the quantum wells.
Electron Raman scattering in asymmetrical multiple quantum wells
International Nuclear Information System (INIS)
Betancourt-Riera, R; Rosas, R; Marin-Enriquez, I; Riera, R; Marin, J L
2005-01-01
Optical properties of asymmetrical multiple quantum wells for the construction of quantum cascade lasers are calculated, and expressions for the electronic states of asymmetrical multiple quantum wells are presented. The gain and differential cross-section for an electron Raman scattering process are obtained. Also, the emission spectra for several scattering configurations are discussed, and the corresponding selection rules for the processes involved are studied; an interpretation of the singularities found in the spectra is given. The electron Raman scattering studied here can be used to provide direct information about the efficiency of the lasers
Two color photodetector using an asymmetric quantum well structure
Lantz, Kevin R.
2002-01-01
Approved for public release; distribution is unlimited The past twenty years have seen an explosion in the realm of infrared detection technology fueled by improvements in III-V semiconductor technology and by new semiconductor growth methods. One of the fastest growing areas of this research involves the use of bandgap engineering in order to create artificial quantum wells for use in Quantum Well Infrared Photodetectors (QWIPs). QWIPs have an advantage over other infrared detectors such ...
Quantum Phase Spase Representation for Double Well Potential
Babyuk, Dmytro
2002-01-01
A behavior of quantum states (superposition of two lowest eigenstates, Gaussian wave packet) in phase space is studied for one and two dimensional double well potential. Two dimensional potential is constructed from double well potential coupled linearly and quadratically to harmonic potential. Quantum trajectories are compared with classical ones. Preferable tunneling path in phase space is found. An influence of energy of initial Gaussian wave packet and trajectory initial condition on tunn...
Remote optically-tunable transimpedance amplifiers for quantum well diodes
Energy Technology Data Exchange (ETDEWEB)
Carraresi, L.; Landi, G.; Rocchi, S.; Vignoli, V
1999-08-01
In a previous paper we discussed the advantages in using linear optical transmission systems based on quantum well diodes in modern high energy physics experiments. In this paper, after a short summary of the quantum well theory, the electronics section of the above optical transmission system is presented. In particular the basic configuration of a transimpedance amplifier and the arrangement of an optical remote control system for the amplifier gain and bandwidth tuning are discussed.
Remote optically-tunable transimpedance amplifiers for quantum well diodes
International Nuclear Information System (INIS)
Carraresi, L.; Landi, G.; Rocchi, S.; Vignoli, V.
1999-01-01
In a previous paper we discussed the advantages in using linear optical transmission systems based on quantum well diodes in modern high energy physics experiments. In this paper, after a short summary of the quantum well theory, the electronics section of the above optical transmission system is presented. In particular the basic configuration of a transimpedance amplifier and the arrangement of an optical remote control system for the amplifier gain and bandwidth tuning are discussed
Scalar dark matter with type II seesaw
Directory of Open Access Journals (Sweden)
Arnab Dasgupta
2014-12-01
Full Text Available We study the possibility of generating tiny neutrino mass through a combination of type I and type II seesaw mechanism within the framework of an abelian extension of standard model. The model also provides a naturally stable dark matter candidate in terms of the lightest neutral component of a scalar doublet. We compute the relic abundance of such a dark matter candidate and also point out how the strength of type II seesaw term can affect the relic abundance of dark matter. Such a model which connects neutrino mass and dark matter abundance has the potential of being verified or ruled out in the ongoing neutrino, dark matter, as well as accelerator experiments.
Light echoes - Type II supernovae
International Nuclear Information System (INIS)
Schaefer, B.E.
1987-01-01
Type II supernovae (SNs) light curves show a remarkable range of shapes. Data have been collected for the 12 Type II SNs that have light curve information for more than four months past maximum. Contrary to previous reports, it is found that (1) the decay rate after 100 days past maximum varies by almost an order of magnitude and (2) the light curve shapes are not bimodally distributed, but actually form a continuum. In addition, it is found that the extinctions to the SNs are related to the light curve shapes. This implies that the absorbing dust is local to the SNs. The dust is likely to be part of a circumstellar shell emitted by the SN progenitor that Dwek (1983) has used to explain infrared echoes. The optical depth of the shell can get quite large. In such cases, it is found that the photons scattered and delayed by reflection off dust grains will dominate the light curve several months after peak brightness. This light echo offers a straightforward explanation of the diversity of Type II SN light curves. 22 references
Hydrogenic donor in a quantum well with an electric field
International Nuclear Information System (INIS)
Jayakumar, K.; Balasubramanian, S.; Tomak, M.
1985-08-01
Variational calculations of the binding energy of a hydrogenic donor in a quantum well formed by GaAs and Gasub(1-x)A1sub(x)As with a constant electric field are performed for different electric fields and well widths. A critical electric field is defined and its variation with well width is presented. (author)
The quantum Zeno effect in double well tunnelling
Lerner, L.
2018-05-01
Measurement lies at the heart of quantum theory, and introductory textbooks in quantum mechanics cover the measurement problem in topics such as the Schrödinger’s cat thought experiment, the EPR problem, and the quantum Zeno effect (QZE). In this article we present a new treatment of the QZE suitable for undergraduate students, for the case of a particle tunnelling between two wells while being observed in one of the wells. The analysis shows that as the observation rate increases, the tunnelling rate tends towards zero, in accordance with Zeno’s maxim ‘a watched pot never boils’. The method relies on decoherence theory, which replaces aspects of quantum collapse by the Schrödinger evolution of an open system, and its recently simplified treatment for undergraduates. Our presentation uses concepts familiar to undergraduate students, so that calculations involving many-body theory and the formal properties of the density matrix are avoided.
Crystal Phase Quantum Well Emission with Digital Control
DEFF Research Database (Denmark)
Assali, S.; Laehnemann, J.; Vu, Thi Thu Trang
2017-01-01
One of the major challenges in the growth of quantum well and quantum dot heterostructures is the realization of atomically sharp interfaces. Nanowires provide a new opportunity to engineer the band structure as they facilitate the controlled switching of the crystal structure between the zinc......-blende (ZB) and wurtzite (WZ) phases. Such a crystal phase switching results in the formation of crystal phase quantum wells (CPQWs) and quantum dots (CPQDs). For GaP CPQWs, the inherent electric fields due to the discontinuity of the spontaneous polarization at the WZ/ZB junctions lead to the confinement...... of both types of charge carriers at the opposite interfaces of the WZ/ZB/WZ structure. This confinement leads to a novel type of transition across a ZB flat plate barrier. Here, we show digital tuning of the visible emission of WZ/ZB/WZ CPQWs in a GaP nanowire by changing the thickness of the ZB barrier...
Zero field spin splitting in asymmetric quantum wells
International Nuclear Information System (INIS)
Hao Yafei
2012-01-01
Spin splitting of asymmetric quantum wells is theoretically investigated in the absence of any electric field, including the contribution of interface-related Rashba spin-orbit interaction as well as linear and cubic Dresselhaus spin-orbit interaction. The effect of interface asymmetry on three types of spin-orbit interaction is discussed. The results show that interface-related Rashba and linear Dresselhaus spin-orbit interaction can be increased and cubic Dresselhaus spin-orbit interaction can be decreased by well structure design. For wide quantum wells, the cubic Dresselhaus spin-orbit interaction dominates under certain conditions, resulting in decreased spin relaxation time.
Crystal Phase Quantum Well Emission with Digital Control.
Assali, S; Lähnemann, J; Vu, T T T; Jöns, K D; Gagliano, L; Verheijen, M A; Akopian, N; Bakkers, E P A M; Haverkort, J E M
2017-10-11
One of the major challenges in the growth of quantum well and quantum dot heterostructures is the realization of atomically sharp interfaces. Nanowires provide a new opportunity to engineer the band structure as they facilitate the controlled switching of the crystal structure between the zinc-blende (ZB) and wurtzite (WZ) phases. Such a crystal phase switching results in the formation of crystal phase quantum wells (CPQWs) and quantum dots (CPQDs). For GaP CPQWs, the inherent electric fields due to the discontinuity of the spontaneous polarization at the WZ/ZB junctions lead to the confinement of both types of charge carriers at the opposite interfaces of the WZ/ZB/WZ structure. This confinement leads to a novel type of transition across a ZB flat plate barrier. Here, we show digital tuning of the visible emission of WZ/ZB/WZ CPQWs in a GaP nanowire by changing the thickness of the ZB barrier. The energy spacing between the sharp emission lines is uniform and is defined by the addition of single ZB monolayers. The controlled growth of identical quantum wells with atomically flat interfaces at predefined positions featuring digitally tunable discrete emission energies may provide a new route to further advance entangled photons in solid state quantum systems.
Autosomal Dominant Growth Hormone Deficiency (Type II).
Alatzoglou, Kyriaki S; Kular, Dalvir; Dattani, Mehul T
2015-06-01
Isolated growth hormone deficiency (IGHD) is the commonest pituitary hormone deficiency resulting from congenital or acquired causes, although for most patients its etiology remains unknown. Among the known factors, heterozygous mutations in the growth hormone gene (GH1) lead to the autosomal dominant form of GHD, also known as type II GHD. In many cohorts this is the commonest form of congenital isolated GHD and is mainly caused by mutations that affect the correct splicing of GH-1. These mutations cause skipping of the third exon and lead to the production of a 17.5-kDa GH isoform that exerts a dominant negative effect on the secretion of the wild type GH. The identification of these mutations has clinical implications for the management of patients, as there is a well-documented correlation between the severity of the phenotype and the increased expression of the 17.5-kDa isoform. Patients with type II GHD have a variable height deficit and severity of GHD and may develop additional pituitary hormone defiencies over time, including ACTH, TSH and gonadotropin deficiencies. Therefore, their lifelong follow-up is recommended. Detailed studies on the effect of heterozygous GH1 mutations on the trafficking, secretion and action of growth hormone can elucidate their mechanism on a cellular level and may influence future treatment options for GHD type II.
Exciton trapping in interface defects/quantum dots in narrow quantum wells: magnetic-field effects
International Nuclear Information System (INIS)
Barticevic, Z.; Pacheco, M.; Duque, C.A.; Oliveira, L.E.
2003-01-01
The effects of applied magnetic fields on excitons trapped in quantum dots/interface defects in narrow GaAs/Ga 1-x Al x As quantum wells are studied within the effective-mass approximation. The magnetic fields are applied in the growth direction of the quantum wells, and exciton trapping is modeled through a quantum dot formed by monolayer fluctuations in the z-direction, together with lateral confinement via a truncated or infinite parabolic potential in the exciton in-plane coordinate. Theoretical results are found in overall agreement with available experimental measurements
Feshbach shape resonance for high Tc pairing in superlattices of quantum stripes and quantum wells
Directory of Open Access Journals (Sweden)
A Bianconi
2006-09-01
Full Text Available The Feshbach shape resonances in the interband pairing in superconducting superlattices of quantum wells or quantum stripes is shown to provide the mechanism for high Tc superconductivity. This mechanism provides the Tc amplification driven by the architecture of material: superlattices of quantum wells (intercalated graphite or diborides and superlattices of quantum stripes (doped high Tc cuprate perovskites where the chemical potential is tuned to a Van Hove-Lifshitz singularity (vHs in the electronic energy spectrum of the superlattice associated with the change of the Fermi surface dimensionality in one of the subbands.
Quantum well electronic states in a tilted magnetic field.
Trallero-Giner, C; Padilha, J X; Lopez-Richard, V; Marques, G E; Castelano, L K
2017-08-16
We report the energy spectrum and the eigenstates of conduction and uncoupled valence bands of a quantum well under the influence of a tilted magnetic field. In the framework of the envelope approximation, we implement two analytical approaches to obtain the nontrivial solutions of the tilted magnetic field: (a) the Bubnov-Galerkin spectral method and b) the perturbation theory. We discuss the validity of each method for a broad range of magnetic field intensity and orientation as well as quantum well thickness. By estimating the accuracy of the perturbation method, we provide explicit analytical solutions for quantum wells in a tilted magnetic field configuration that can be employed to study several quantitative phenomena.
Quantum wave packet revival in two-dimensional circular quantum wells with position-dependent mass
Energy Technology Data Exchange (ETDEWEB)
Schmidt, Alexandre G.M. [Departamento de Ciencias Exatas, Polo Universitario de Volta Redonda-Universidade Federal Fluminense, Av. dos Trabalhadores 420, Volta Redonda RJ, CEP 27255-125 (Brazil)], E-mail: agmschmidt@gmail.com; Azeredo, Abel D. [Departamento de Fisica-Universidade Federal de Roraima, Av. Cap. Ene Garcez 2413, Boa Vista RR, CEP 69304-000 (Brazil)], E-mail: aazeredo@gmail.com; Gusso, A. [Departamento de Ciencias Exatas e Tecnologicas-Universidade Estadual de Santa Cruz, km 16 Rodovia Ilheus-Itabuna, Ilheus BA, CEP 45662-000 (Brazil)], E-mail: agusso@uesc.br
2008-04-14
We study quantum wave packet revivals on two-dimensional infinite circular quantum wells (CQWs) and circular quantum dots with position-dependent mass (PDM) envisaging a possible experimental realization. We consider CQWs with radially varying mass, addressing particularly the cases where M(r){proportional_to}r{sup w} with w=1,2, or -2. The two PDM Hamiltonians currently allowed by theory were analyzed and we were able to construct a strong theoretical argument favoring one of them.
Quantum wave packet revival in two-dimensional circular quantum wells with position-dependent mass
International Nuclear Information System (INIS)
Schmidt, Alexandre G.M.; Azeredo, Abel D.; Gusso, A.
2008-01-01
We study quantum wave packet revivals on two-dimensional infinite circular quantum wells (CQWs) and circular quantum dots with position-dependent mass (PDM) envisaging a possible experimental realization. We consider CQWs with radially varying mass, addressing particularly the cases where M(r)∝r w with w=1,2, or -2. The two PDM Hamiltonians currently allowed by theory were analyzed and we were able to construct a strong theoretical argument favoring one of them
Nanostructure van der Waals interaction between a quantum well and a quantum dot atom
International Nuclear Information System (INIS)
Horing, Norman J Morgenstern
2006-01-01
We examine the van der Waals interaction between mobile plasma electrons in a narrow quantum well nanostructure and a quantum dot atom. This formulation of the van der Waals interaction exhibits it to second order as the correlation energy (self-energy) of the dot-atom electrons mediated by the image potential arising from the dynamic, nonlocal and spatially inhomogeneous polarization of the quantum well plasma electrons. This image potential of the quantum-well plasma is, in turn, determined by the dynamic, nonlocal, inhomogeneous screening function of the quantum well, which involves the space-time matrix inversion of its spatially inhomogeneous, nonlocal and time-dependent dielectric function. The latter matrix inversion is carried out exactly, in closed form, and the van der Waals energy is evaluated in the electrostatic limit to dipole-dipole terms
Quantum-correlated two-photon transitions to excitons in semiconductor quantum wells.
Salazar, L J; Guzmán, D A; Rodríguez, F J; Quiroga, L
2012-02-13
The dependence of the excitonic two-photon absorption on the quantum correlations (entanglement) of exciting biphotons by a semiconductor quantum well is studied. We show that entangled photon absorption can display very unusual features depending on space-time-polarization biphoton parameters and absorber density of states for both bound exciton states as well as for unbound electron-hole pairs. We report on the connection between biphoton entanglement, as quantified by the Schmidt number, and absorption by a semiconductor quantum well. Comparison between frequency-anti-correlated, unentangled and frequency-correlated biphoton absorption is addressed. We found that exciton oscillator strengths are highly increased when photons arrive almost simultaneously in an entangled state. Two-photon-absorption becomes a highly sensitive probe of photon quantum correlations when narrow semiconductor quantum wells are used as two-photon absorbers.
Coherent excitonic nonlinearity versus inhomogeneous broadening in single quantum wells
DEFF Research Database (Denmark)
Langbein, Wolfgang Werner; Borri, Paola; Hvam, Jørn Märcher
1998-01-01
The coherent response of excitons in semiconductor nanostructures, as measured in four wave mixing (FWM) experiments, depends strongly on the inhomogeneous broadening of the exciton transition. We investigate GaAs-AlGaAs single quantum wells (SQW) of 4 nm to 25 nm well width. Two main mechanisms...
Stark-like electron transfer between quantum wells
International Nuclear Information System (INIS)
Dubovis, S.A.; Voronko, A.N.; Basharov, A.M.
2008-01-01
The Stark-like mechanism of electron transfer between two energy subband localized in remote quantum wells is examined theoretically. Estimations of major parameters of the problem in case of delta-function-wells model are adduced. Schematic model allowing experimental study of Stark-like transfer is proposed
An updated Type II supernova Hubble diagram
Gall, E. E. E.; Kotak, R.; Leibundgut, B.; Taubenberger, S.; Hillebrandt, W.; Kromer, M.; Burgett, W. S.; Chambers, K.; Flewelling, H.; Huber, M. E.; Kaiser, N.; Kudritzki, R. P.; Magnier, E. A.; Metcalfe, N.; Smith, K.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.
2018-03-01
We present photometry and spectroscopy of nine Type II-P/L supernovae (SNe) with redshifts in the 0.045 ≲ z ≲ 0.335 range, with a view to re-examining their utility as distance indicators. Specifically, we apply the expanding photosphere method (EPM) and the standardized candle method (SCM) to each target, and find that both methods yield distances that are in reasonable agreement with each other. The current record-holder for the highest-redshift spectroscopically confirmed supernova (SN) II-P is PS1-13bni (z = 0.335-0.012+0.009), and illustrates the promise of Type II SNe as cosmological tools. We updated existing EPM and SCM Hubble diagrams by adding our sample to those previously published. Within the context of Type II SN distance measuring techniques, we investigated two related questions. First, we explored the possibility of utilising spectral lines other than the traditionally used Fe IIλ5169 to infer the photospheric velocity of SN ejecta. Using local well-observed objects, we derive an epoch-dependent relation between the strong Balmer line and Fe IIλ5169 velocities that is applicable 30 to 40 days post-explosion. Motivated in part by the continuum of key observables such as rise time and decline rates exhibited from II-P to II-L SNe, we assessed the possibility of using Hubble-flow Type II-L SNe as distance indicators. These yield similar distances as the Type II-P SNe. Although these initial results are encouraging, a significantly larger sample of SNe II-L would be required to draw definitive conclusions. Tables A.1, A.3, A.5, A.7, A.9, A.11, A.13, A.15 and A.17 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A25
Detection of electromagnetic radiation using micromechanical multiple quantum wells structures
Datskos, Panagiotis G [Knoxville, TN; Rajic, Slobodan [Knoxville, TN; Datskou, Irene [Knoxville, TN
2007-07-17
An apparatus and method for detecting electromagnetic radiation employs a deflectable micromechanical apparatus incorporating multiple quantum wells structures. When photons strike the quantum-well structure, physical stresses are created within the sensor, similar to a "bimetallic effect." The stresses cause the sensor to bend. The extent of deflection of the sensor can be measured through any of a variety of conventional means to provide a measurement of the photons striking the sensor. A large number of such sensors can be arranged in a two-dimensional array to provide imaging capability.
Photo-Induced Spin Dynamics in Semiconductor Quantum Wells.
Miah, M Idrish
2009-01-17
We experimentally investigate the dynamics of spins in GaAs quantum wells under applied electric bias by photoluminescence (PL) measurements excited with circularly polarized light. The bias-dependent circular polarization of PL (P(PL)) with and without magnetic field is studied. The P(PL) without magnetic field is found to be decayed with an enhancement of increasing the strength of the negative bias. However, P(PL) in a transverse magnetic field shows oscillations under an electric bias, indicating that the precession of electron spin occurs in quantum wells. The results are discussed based on the electron-hole exchange interaction in the electric field.
Photo-Induced Spin Dynamics in Semiconductor Quantum Wells
Directory of Open Access Journals (Sweden)
Miah M
2009-01-01
Full Text Available Abstract We experimentally investigate the dynamics of spins in GaAs quantum wells under applied electric bias by photoluminescence (PL measurements excited with circularly polarized light. The bias-dependent circular polarization of PL (P PL with and without magnetic field is studied. TheP PLwithout magnetic field is found to be decayed with an enhancement of increasing the strength of the negative bias. However,P PLin a transverse magnetic field shows oscillations under an electric bias, indicating that the precession of electron spin occurs in quantum wells. The results are discussed based on the electron–hole exchange interaction in the electric field.
Optical manifestation of magnetoexcitons in near-surface quantum wells
Energy Technology Data Exchange (ETDEWEB)
Flores-Desirena, B.; Perez-Rodriguez, F
2003-05-15
The optical response of excitons in quantum wells, close to the sample boundary and under the action of a strong magnetic field perpendicular to their plane, is investigated theoretically. Solving the system of coupled equations for the coherent electron-hole interband amplitude and the electromagnetic field, reflectivity spectra for such nanostructures are calculated. The effect of the interaction of magnetoexcitons with the sample surface on the resonance structure of reflectivity spectra is analyzed. These optical spectra are also affected by the phase change of the electromagnetic wave as it propagates in the cap layer, overlying the quantum well.
DEFF Research Database (Denmark)
Birkedal, Dan; Shah, Jagdeep; Shchegrov, Andrei V.
2000-01-01
Resonant Rayleigh scattering from quantum well excitons is investigated using ultrafast spectral interferometry. We isolate the coherent Rayleigh scattering from incoherent luminescence in a single speckle. Averaging the resonant Rayleigh intensity over several speckles allows us to identify...... features in support of quantum corrections to the classical description of the underlying scattering process....
Exact quantum solutions for some asymmetrical two-well potentials
International Nuclear Information System (INIS)
Ley-Koo, E.
1985-01-01
We discuss several points of interest in the study of two-well potentials in quantum mechanics courses. In particular, we construct the solutions of the Schroedinger equation for rectangular-well, harmonic-oscillator and triangular-well potentials with a delta-function potential superimposed in different positions. The energy spectra and eigenfunctions of such systems are presented and analyzed for different intensities and positions of the delta-function potential. (author)
Electrically Induced Two-Photon Transparency in Semiconductor Quantum Wells
International Nuclear Information System (INIS)
Hayat, Alex; Nevet, Amir; Orenstein, Meir
2009-01-01
We demonstrate experimentally two-photon transparency, achieved by current injection into a semiconductor quantum-well structure which exhibits two-photon emission. The two-photon induced luminescence is progressively reduced by the injected current, reaching the point of two-photon transparency - a necessary condition for semiconductor two-photon gain and lasing. These results agree with our calculations.
Comment on 'Local responsivity in quantum well photodetectors'
International Nuclear Information System (INIS)
Ryzhii, M.; Khmyrova, I.
2001-01-01
The response of multiple quantum well (QW) infrared photodetectors (QW) to the photoexcitation of one QW selected from many identical QWs was recently modeled [M. Ershov, J. Appl. Phys. 86, 7059 (1999)]. We point out here that the presented analysis based on the use of drift-diffusion model for a system with a few electrons is incorrect. [copyright] 2001 American Institute of Physics
Semiconductor-Metal transition in a quantum well
International Nuclear Information System (INIS)
Nithiananthi, P.; Jayakumar, K.
2007-01-01
We demonstrate semiconductor-metal transition through diamagnetic susceptibility of a donor in a GaAs/Al x Ga 1- x As quantum well for both infinite and finite barrier models. We have also considered the non-parabolicity of the conduction band in our calculation. Our results agree with the earlier theoretical result and also with the recent experimental result
Oscillatory magnetoconductance of quantum double-well channels
International Nuclear Information System (INIS)
Rojo, A.G.; Kumar, N.; Balseiro, C.A.
1988-07-01
The recently observed flux-periodic interference effect between parallel quantum double-well channels is theoretically studied in a discrete model that takes into account tunneling between channels. We obtain oscillatory magnetoconductance with small modulations which is attributable to the tunneling. Our treatment includes the effect of evanescent modes. (author). 7 refs, 2 figs
Bose Condensation of Interwell Excitons in Double Quantum Wells
DEFF Research Database (Denmark)
Larionov, A. V.; Timofeev, V. B.; Ni, P. A.
2002-01-01
The luminescence of interwell excitons in double quantum wells GaAs/AlGaAs (n–i–n heterostructures) with large-scale fluctuations of random potential in the heteroboundary planes was studied. The properties of excitons whose photoexcited electron and hole are spatially separated in the neighboring...
Corrugated Quantum Well Infrared Photodetector Focal Plane Array Test Results
Goldberg, A.; Choi, K. K.; Das, N. C.; La, A.; Jhabvala, M.
1999-01-01
The corrugated quantum-well infrared photodetector (C-QWIP) uses total internal reflection to couple normal incident light into the optically active quantum wells. The coupling efficiency has been shown to be relatively independent of the pixel size and wavelength thus making the C-QWIP a candidate for detectors over the entire infrared spectrum. The broadband coupling efficiency of the C-QWIP makes it an ideal candidate for multiwavelength detectors. We fabricated and tested C-QWIP focal plane arrays (FPAs) with cutoff wavelengths of 11.2 and 16.2 micrometers. Each FPA has 256 x 256 pixels that are bump-bonded to a direct injection readout circuit. Both FPAs provided infrared imagery with good aesthetic attributes. For the 11.2-micrometers FPA, background-limited performance (BLIP) was observed at 60 K with f/3 optics. For the 16.2-micrometers FPA, BLIP was observed at 38 K. Besides the reduction of dark current in C-QWIP structures, the measured internal quantum efficiency (eta) remains to be high. The values for responsivity and quantum efficiency obtained from the FPA results agree well with those measured for single devices.
Design rules for modulation doped AlAs quantum wells
Chung, Yoon Jang; Baldwin, K. W.; West, K. W.; Kamburov, D.; Shayegan, M.; Pfeiffer, L. N.
AlxGa1-xAs/AlAs/AlxGa1-xAs quantum wells were grown with various barrier compositions ranging from x =0.26 to x =0.8. We investigate the modulation doping characteristics of the samples by magneto-transport measurements. The carrier concentration in the well peaks near the barrier alloy fraction of x =0.26 in the dark and near x =0.38 after illumination with a red LED. This behavior is consistent with the results in a separate study for AlxGa1-xAs/GaAs/AlxGa1-xAs quantum wells in the range of x =0.26 to x =1.0. We show from a charge transfer model that the calculated energy difference between the conduction band offset at the well interface and the donor energy level, ΔEC-ED, coincides for the two types of wells. This implies that, despite the differing positions of the conduction band minimum for the GaAs and AlAs wells, the doping of either well is governed by the electronic properties of the barrier. Based on this knowledge we designed high quality AlAs quantum wells with low (1 x 1011 cm-2) and high (3 x 1011 cm-2) density, and the magneto-transport data show clear signals of the fractional quantum Hall effect (2/3, 3/5, 4/7 for low density and 5/3, 8/5 for high density). Work supported by the NSF (Grants DMR-1305691, ECCS-1508925, and MRSEC DMR-1420541), the DOE Basic Energy Sciences (Grant DE-FG02-00-ER45841), the Gordon and Betty Moore Foundation (Grant GBMF4420), and the Keck Foundation.
Anomalous Nernst effect in type-II Weyl semimetals
Saha, Subhodip; Tewari, Sumanta
2018-01-01
Topological Weyl semimetals (WSM), a new state of quantum matter with gapless nodal bulk spectrum and open Fermi arc surface states, have recently sparked enormous interest in condensed matter physics. Based on the symmetry and fermiology, it has been proposed that WSMs can be broadly classified into two types, type-I and type-II Weyl semimetals. While the undoped, conventional, type-I WSMs have point like Fermi surface and vanishing density of states (DOS) at the Fermi energy, the type-II Weyl semimetals break Lorentz symmetry explicitly and have tilted conical spectra with electron and hole pockets producing finite DOS at the Fermi level. The tilted conical spectrum and finite DOS at Fermi level in type-II WSMs have recently been shown to produce interesting effects such as a chiral anomaly induced longitudinal magnetoresistance that is strongly anisotropic in direction and a novel anomalous Hall effect. In this work, we consider the anomalous Nernst effect in type-II WSMs in the absence of an external magnetic field using the framework of semi-classical Boltzmann theory. Based on both a linearized model of time-reversal breaking WSM with a higher energy cut-off and a more realistic lattice model, we show that the anomalous Nernst response in these systems is strongly anisotropic in space, and can serve as a reliable signature of type-II Weyl semimetals in a host of magnetic systems with spontaneously broken time reversal symmetry.
Bound magnetic polaron in a semimagnetic double quantum well
Kalpana, P.; Jayakumar, K.
2017-09-01
The effect of different combinations of the concentration of Mn2+ ion in the Quantum well Cd1-xinMnxin Te and the barrier Cd1-xoutMnxout Te on the Bound Magnetic Polaron (BMP) in a Diluted Magnetic Semiconductors (DMS) Double Quantum Well (DQW) has been investigated. The Schrodinger equation is solved variationally in the effective mass approximation through which the Spin Polaronic Shift (SPS) due to the formation of BMP has been estimated for various locations of the donor impurity in the DQW. The results show that the effect of the increase of Mn2+ ion composition with different combinations on SPS is predominant for On Centre Well (OCW) impurity when compared to all other impurity locations when there is no application of magnetic field (γ = 0), γ being a dimensionless parameter for the magnetic field, and the same is predominant for On Centre Barrier (OCB) impurity with the application of external magnetic field (γ = 0.15).
Interaction of a quantum well with squeezed light: Quantum-statistical properties
International Nuclear Information System (INIS)
Sete, Eyob A.; Eleuch, H.
2010-01-01
We investigate the quantum statistical properties of the light emitted by a quantum well interacting with squeezed light from a degenerate subthreshold optical parametric oscillator. We obtain analytical solutions for the pertinent quantum Langevin equations in the strong-coupling and low-excitation regimes. Using these solutions we calculate the intensity spectrum, autocorrelation function, and quadrature squeezing for the fluorescent light. We show that the fluorescent light exhibits bunching and quadrature squeezing. We also show that the squeezed light leads to narrowing of the width of the spectrum of the fluorescent light.
Weak antilocalization and spin precession in quantum wells
Knap, W.; Skierbiszewski, C.; Zduniak, A.; Litwin-Staszewska, E.; Bertho, D.; Kobbi, F.; Robert, J. L.; Pikus, G. E.; Pikus, F. G.; Iordanskii, S. V.; Mosser, V.; Zekentes, K.; Lyanda-Geller, Yu. B.
1996-02-01
The results of magnetoconductivity measurements in GaxIn1-xAs quantum wells are presented. The observed magnetoconductivity appears due to the quantum interference, which lead to the weak localization effect. It is established that the details of the weak localization are controlled by the spin splitting of electron spectra. A theory is developed that takes into account both linear and cubic in electron wave-vector terms in spin splitting, which arise due to the lack of inversion center in the crystal, as well as the linear terms that appear when the well itself is asymmetric. It is established that, unlike spin-relaxation rate, contributions of different terms into magnetoconductivity are not additive. It is demonstrated that in the interval of electron densities under investigation [(0.98-1.85)×1012 cm-2 ] all three contributions are comparable and have to be taken into account to achieve a good agreement between the theory and experiment. The results obtained from comparison of the experiment and the theory have allowed us to determine what mechanisms dominate the spin-relaxation in quantum wells and to improve the accuracy of determination of spin-splitting parameters in A3B5 crystals and two-dimensional structures.
Electron Raman scattering in a HgS/CdS spherical quantum dot quantum well
International Nuclear Information System (INIS)
Zhong Qinghu; Lai Liping
2013-01-01
Electron Raman scattering (ERS) is investigated in a spherical HgS/CdS quantum dot quantum well (QDQW). The differential cross section (DCS) is calculated as a function of the scattering frequency and the sizes of QDQW. Single parabolic conduction and valence bands are assumed. The selection rules for the processes are studied. Singularities in the spectra are found and interpreted. The ERS studied here can be used to provide direct information about the electron band structure of these systems. (semiconductor physics)
Dynamics of spins in semiconductor quantum wells under drift
International Nuclear Information System (INIS)
Idrish Miah, M.
2009-01-01
The dynamics of spins in semiconductor quantum wells under applied electric bias has been investigated by photoluminescence (PL) spectroscopy. The bias-dependent polarization of PL (P PL ) was measured at different temperatures. The P PL was found to decay with an enhancement of increasing the strength of the negative bias, with an exception occurred for a low value of the negative bias. The P PL was also found to depend on the temperature. The P PL in the presence of a transverse magnetic field was also studied. The results showed that P PL in the magnetic field oscillates under an applied bias, demonstrating that the dephasing of electron spin occurs during the drift transport in semiconductor quantum wells.
Dynamics of spins in semiconductor quantum wells under drift
Energy Technology Data Exchange (ETDEWEB)
Idrish Miah, M., E-mail: m.miah@griffith.edu.a [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)
2009-09-15
The dynamics of spins in semiconductor quantum wells under applied electric bias has been investigated by photoluminescence (PL) spectroscopy. The bias-dependent polarization of PL (P{sub PL}) was measured at different temperatures. The P{sub PL} was found to decay with an enhancement of increasing the strength of the negative bias, with an exception occurred for a low value of the negative bias. The P{sub PL} was also found to depend on the temperature. The P{sub PL} in the presence of a transverse magnetic field was also studied. The results showed that P{sub PL} in the magnetic field oscillates under an applied bias, demonstrating that the dephasing of electron spin occurs during the drift transport in semiconductor quantum wells.
High mobility and quantum well transistors design and TCAD simulation
Hellings, Geert
2013-01-01
For many decades, the semiconductor industry has miniaturized transistors, delivering increased computing power to consumers at decreased cost. However, mere transistor downsizing does no longer provide the same improvements. One interesting option to further improve transistor characteristics is to use high mobility materials such as germanium and III-V materials. However, transistors have to be redesigned in order to fully benefit from these alternative materials. High Mobility and Quantum Well Transistors: Design and TCAD Simulation investigates planar bulk Germanium pFET technology in chapters 2-4, focusing on both the fabrication of such a technology and on the process and electrical TCAD simulation. Furthermore, this book shows that Quantum Well based transistors can leverage the benefits of these alternative materials, since they confine the charge carriers to the high-mobility material using a heterostructure. The design and fabrication of one particular transistor structure - the SiGe Implant-Free Qu...
Ferroelectric tunnel junctions with multi-quantum well structures
Energy Technology Data Exchange (ETDEWEB)
Ma, Zhijun; Zhang, Tianjin, E-mail: zhangtj@hubu.edu.cn [Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062 (China); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062 (China); Liang, Kun; Qi, Yajun; Wang, Duofa; Wang, Jinzhao; Jiang, Juan [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062 (China)
2014-06-02
Ferroelectric tunnel junctions (FTJs) with multi-quantum well structures are proposed and the tunneling electroresistance (TER) effect is investigated theoretically. Compared with conventional FTJs with monolayer ferroelectric barriers, FTJs with single-well structures provide TER ratio improvements of one order of magnitude, while FTJs with optimized multi-well structures can enhance this improvement by another order of magnitude. It is believed that the increased resonant tunneling strength combined with appropriate asymmetry in these FTJs contributes to the improvement. These studies may help to fabricate FTJs with large TER ratio experimentally and put them into practice.
Large Format LW Type-II SLS FPAs for Space Applications, Phase I
National Aeronautics and Space Administration — This Phase I SBIR proposes to develop high performance (low dark current, high quantum efficiency, and low NEdT) infrared epitaxy materials based on Type II Strained...
Surface states in thin versus thick organic quantum wells
International Nuclear Information System (INIS)
Nguyen Ba An; Hanamura, E.
1995-08-01
Surface states are studied in dependence on thickness or organic quantum wells within the nearest layer approximation. It is shown that there is a material-dependent critical thickness. Structures, that have thickness thinner or thicker than the critical one, exhibit qualitatively different characteristics of surface states. Criteria for existence and sign rules for location of energy levels of surface states are established which are general and contain the results of the previous works as particular cases. (author). 18 refs, 3 figs
Excitonic effects in the luminescence of quantum wells
International Nuclear Information System (INIS)
Deveaud, B.; Kappei, L.; Berney, J.; Morier-Genoud, F.; Portella-Oberli, M.T.; Szczytko, J.; Piermarocchi, C.
2005-01-01
We report on the origin of the excitonic luminescence in quantum wells. This study is carried out by time-resolved photoluminescence experiments performed on a very high-quality InGaAs quantum well sample in which the photoluminescence contributions at the energy of the exciton and at the band edge can be clearly separated and traced over a broad range of times and densities. This allows us to compare the two conflicting theoretical approaches to the question of the origin of the excitonic luminescence in quantum wells: the model of the exciton population and the model of the Coulomb correlated plasma. We measure the exciton formation time and we show the fast exciton formation and its dependence with carrier density. We are also able to give the boundaries of the Mott transition in our system, and to show the absence of observable renormalization of the gap below the onset of this transition. We detail the characteristics of the trion formation and evidence the possible formation of both positive and negative trions in the absence of any resident free carrier populations
Pump Spectral Bandwidth, Birefringence, and Entanglement in Type-II Parametric Down Conversion
Directory of Open Access Journals (Sweden)
Daniel Erenso
2009-01-01
Full Text Available The twin photons produced by a type-II spontaneous parametric down conversion are well know as a potential source of photons for quantum teleportation due to the strong entanglement in polarization. This strong entanglement in polarization, however, depends on the spectral composition of the pump photon and the nature of optical isotropy of the crystal. By exact numerical calculation of the concurrence, we have shown that how pump photons spectral width and the birefringence nature of the crystal directly affect the degree of polarization entanglement of the twin photons.
Czech Academy of Sciences Publication Activity Database
Mikhailova, M. P.; Berezovets, V.A.; Parfeniev, R.V.; Danilov, L.V.; Safonchik, M.O.; Hospodková, Alice; Pangrác, Jiří; Hulicius, Eduard
2017-01-01
Roč. 51, č. 10 (2017), s. 1343-1349 ISSN 1063-7826 R&D Projects: GA MŠk LM2015087; GA MŠk LO1603 Institutional support: RVO:68378271 Keywords : InAs * GaSb * composite QW * magnetic properties Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.602, year: 2016
Band Structure and Optical Gain of InGaAs/GaAsBi Type-II Quantum Wells Modeled by the k · p Model
Wang, Chang; Pan, Wenwu; Kolokolov, Konstantin; Wang, Shumin
2018-05-01
Not Available Supported by the National Basic Research Program of China under Grant No 2014CB643902, the Key Program of Natural Science Foundation of China under Grant No 61334004, the National Natural Science Foundation of China under Grant No 61404152, and the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDA5-1, the Foundation of National Laboratory for Infrared Physics, the Key Research Program of the Chinese Academy of Sciences under Grant No KGZD-EW-804, and the Creative Research Group Project of Natural Science Foundation of China under Grant No 61321492.
Electron-electron interaction in Multiple Quantum Wells
Zybert, M.; Marchewka, M.; Tomaka, G.; Sheregii, E. M.
2012-07-01
The complex investigation of the magneto-transport effects in structures containing multiple quantum well (MQWs) based on the GaAs/AlGaAs-heterostructures has been performed. The MQWs investigated have different electron densities in QWs. The parameters of 2DEG in MQWs were determined from the data of the Integer Quantum Hall Effect (IQHE) and Shubnikov-de Haas oscillations (SdH) observed at low temperatures (0.6-4.2 K). The method of calculation of the electron states energies in MQWs has been developed which is based on the splitting of these states due to the exchange interaction (SAS-splitting, see D. Płoch et al., Phys. Rev. B 79 (2009) 195434) including the screening of this interaction. The IQHE and SdH observed in these multilayer structures with the third degree of freedom for electrons are interpreted from this.
Suppressing Nonradiative Recombination in Crown-Shaped Quantum Wells
Energy Technology Data Exchange (ETDEWEB)
Park, Kwangwook [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ju, Gunwu [Gwangju Institute of Science and Technology; Korea Institute of Science and Technology; Na, Byung Hoon [Samsung Advanced Institute of Technology; Hwang, Hyeong-Yong [Gwangju Institute of Science and Technology; Jho, Young-Dahl [Gwangju Institute of Science and Technology; Myoung, NoSoung [Gwangju Institute of Science and Technology; Yim, Sang-Youp [Gwangju Institute of Science and Technology; Kim, Hyung-jun [Korea Institute of Science and Technology; Lee, Yong Tak [Gwangju Institute of Science and Technology
2018-02-06
We examined the structural and optical properties of a crown-shaped quantum well (CSQW) to suppress nonradiative recombination. To reduce carrier loss in defect traps at the well/barrier interface, the CSQW was designed to concentrate carriers in the central region by tailoring the bandgap energy. Temperature-dependent photoluminescence measurements showed that the CSQW had a high activation energy and low potential fluctuation. In addition, the long carrier lifetime of the CSQW at high temperatures can be interpreted as indicating a decrease in carrier loss at defect traps.
Anti-Stokes Luminescence in High Quality Quantum Wells
Vinattieri, A.; Bogani, F.; Miotto, A.; Ceccherini, S.
1997-11-01
We present a detailed investigation of the anti-Stokes (AS) luminescence which originates from exciton recombination when below gap excitation is used, in a set of high quality quantum well structures. We observe strong excitonic resonances in the AS signal as measured from photoluminescence and photoluminescence excitation spectra. We demonstrate that neither the electromagnetic coupling between the wells nor the morphological disorder can explain this up-conversion effect. Time-resolved luminescence data after ps excitation and fs correlation spectroscopy results provide clear evidence of the occurrence of a two-step absorption which is assisted by the exciton population resonantly excited by the first photon.
Type II superlattice technology for LWIR detectors
Klipstein, P. C.; Avnon, E.; Azulai, D.; Benny, Y.; Fraenkel, R.; Glozman, A.; Hojman, E.; Klin, O.; Krasovitsky, L.; Langof, L.; Lukomsky, I.; Nitzani, M.; Shtrichman, I.; Rappaport, N.; Snapi, N.; Weiss, E.; Tuito, A.
2016-05-01
SCD has developed a range of advanced infrared detectors based on III-V semiconductor heterostructures grown on GaSb. The XBn/XBp family of barrier detectors enables diffusion limited dark currents, comparable with MCT Rule-07, and high quantum efficiencies. This work describes some of the technical challenges that were overcome, and the ultimate performance that was finally achieved, for SCD's new 15 μm pitch "Pelican-D LW" type II superlattice (T2SL) XBp array detector. This detector is the first of SCD's line of high performance two dimensional arrays working in the LWIR spectral range, and was designed with a ~9.3 micron cut-off wavelength and a format of 640 x 512 pixels. It contains InAs/GaSb and InAs/AlSb T2SLs, engineered using k • p modeling of the energy bands and photo-response. The wafers are grown by molecular beam epitaxy and are fabricated into Focal Plane Array (FPA) detectors using standard FPA processes, including wet and dry etching, indium bump hybridization, under-fill, and back-side polishing. The FPA has a quantum efficiency of nearly 50%, and operates at 77 K and F/2.7 with background limited performance. The pixel operability of the FPA is above 99% and it exhibits a stable residual non uniformity (RNU) of better than 0.04% of the dynamic range. The FPA uses a new digital read-out integrated circuit (ROIC), and the complete detector closely follows the interfaces of SCD's MWIR Pelican-D detector. The Pelican- D LW detector is now in the final stages of qualification and transfer to production, with first prototypes already integrated into new electro-optical systems.
Active locking and entanglement in type II optical parametric oscillators
Ruiz-Rivas, Joaquín; de Valcárcel, Germán J.; Navarrete-Benlloch, Carlos
2018-02-01
Type II optical parametric oscillators are amongst the highest-quality sources of quantum-correlated light. In particular, when pumped above threshold, such devices generate a pair of bright orthogonally-polarized beams with strong continuous-variable entanglement. However, these sources are of limited practical use, because the entangled beams emerge with different frequencies and a diffusing phase difference. It has been proven that the use of an internal wave-plate coupling the modes with orthogonal polarization is capable of locking the frequencies of the emerging beams to half the pump frequency, as well as reducing the phase-difference diffusion, at the expense of reducing the entanglement levels. In this work we characterize theoretically an alternative locking mechanism: the injection of a laser at half the pump frequency. Apart from being less invasive, this method should allow for an easier real-time experimental control. We show that such an injection is capable of generating the desired phase locking between the emerging beams, while still allowing for large levels of entanglement. Moreover, we find an additional region of the parameter space (at relatively large injections) where a mode with well defined polarization is in a highly amplitude-squeezed state.
Recent Developments in Quantum-Well Infrared Photodetectors
Gunapala, S. D.; Bandara, K. M. S. V.
1995-01-01
Intrinsic infrared (IR) detectors in the long wavelength range (8-20 Am) are based on an optically excited interband transition, which promotes an electron across the band gap (E(sub g)) from the valence band to the conduction band as shown. These photoelectrons can be collected efficiently, thereby producing a photocurrent in the external circuit. Since the incoming photon has to promote an electron from the valence band to the conduction band, the energy of the photon (h(sub upsilon)) must be higher than the E(sub g) of the photosensitive material. Therefore, the spectral response of the detectors can be controlled by controlling the E(sub g) of the photosensitive material. Examples for such materials are Hg(1-x), Cd(x), Te, and Pb(1-x), Sn(x), Te, in which the energy gap can be controlled by varying x. This means detection of very-long-wavelength IR radiation up to 20 microns requires small band gaps down to 62 meV. It is well known that these low band gap materials, characterized by weak bonding and low melting points, are more difficult to grow and process than large-band gap semiconductors such as GaAs. These difficulties motivate the exploration of utilizing the intersub-band transitions in multiquantum well (MQW) structures made of more refractory large-band gap semiconductors. The idea of using MQW structures to detect IR radiation can be explained by using the basic principles of quantum mechanics. The quantum well is equivalent to the well-known particle in a box problem in quantum mechanics, which can be solved by the time independent Schroudiner equation.
Band alignment in ZnSe/Zn1-x-yCdxMnySe quantum-well structures
International Nuclear Information System (INIS)
Yu, W.Y.; Salib, M.S.; Petrou, A.; Jonker, B.T.; Warnock, J.
1997-01-01
We present a magneto-optical study of ZnSe/Zn 1-x-y Cd x Mn y Se quantum-well structures in which a suitable choice of the Cd composition leads to a system that is type I at zero magnetic field. When a magnetic field is applied perpendicular to the layers of the structure, the band edges split in such a way as to make the upper σ - (1/2, t 3/2) exciton transition type II, while the ground state σ + (-1/2, -3/2) exciton component remains type I at all field values. This alignment reduces the probability for carrier relaxation from the higher-energy exciton component and opens the possibility of hole-spin population inversion via optical pumping. copyright 1997 The American Physical Society
Resonant Tunneling in Photonic Double Quantum Well Heterostructures
Directory of Open Access Journals (Sweden)
Cox Joel
2010-01-01
Full Text Available Abstract Here, we study the resonant photonic states of photonic double quantum well (PDQW heterostructures composed of two different photonic crystals. The heterostructure is denoted as B/A/B/A/B, where photonic crystals A and B act as photonic wells and barriers, respectively. The resulting band structure causes photons to become confined within the wells, where they occupy discrete quantized states. We have obtained an expression for the transmission coefficient of the PDQW heterostructure using the transfer matrix method and have found that resonant states exist within the photonic wells. These resonant states occur in split pairs, due to a coupling between degenerate states shared by each of the photonic wells. It is observed that when the resonance energy lies at a bound photonic state and the two photonic quantum wells are far away from each other, resonant states appear in the transmission spectrum of the PDQW as single peaks. However, when the wells are brought closer together, coupling between bound photonic states causes an energy-splitting effect, and the transmitted states each have two peaks. Essentially, this means that the system can be switched between single and double transparent states. We have also observed that the total number of resonant states can be controlled by varying the width of the photonic wells, and the quality factor of transmitted peaks can be drastically improved by increasing the thickness of the outer photonic barriers. It is anticipated that the resonant states described here can be used to develop new types of photonic-switching devices, optical filters, and other optoelectronic devices.
Evidence for topological type-II Weyl semimetal WTe2
Li, Peng
2017-12-11
Recently, a type-II Weyl fermion was theoretically predicted to appear at the contact of electron and hole Fermi surface pockets. A distinguishing feature of the surfaces of type-II Weyl semimetals is the existence of topological surface states, so-called Fermi arcs. Although WTe2 was the first material suggested as a type-II Weyl semimetal, the direct observation of its tilting Weyl cone and Fermi arc has not yet been successful. Here, we show strong evidence that WTe2 is a type-II Weyl semimetal by observing two unique transport properties simultaneously in one WTe2 nanoribbon. The negative magnetoresistance induced by a chiral anomaly is quite anisotropic in WTe2 nanoribbons, which is present in b-axis ribbon, but is absent in a-axis ribbon. An extra-quantum oscillation, arising from a Weyl orbit formed by the Fermi arc and bulk Landau levels, displays a two dimensional feature and decays as the thickness increases in WTe2 nanoribbon.
Theoretical study of excitonic complexes in semiconductors quantum wells
International Nuclear Information System (INIS)
Dacal, Luis Carlos Ogando
2001-08-01
A physical system where indistinguishable particles interact with each other creates the possibility of studying correlation and exchange effect. The simplest system is that one with only two indistinguishable particles. In condensed matter physics, these complexes are represented by charged excitons, donors and acceptors. In quantum wells, the valence band is not parabolic, therefore, the negatively charged excitons and donors are theoretically described in a simpler way. Despite the fact that the stability of charged excitons (trions) is known since the late 50s, the first experimental observation occurred only at the early 90s in quantum well samples, where their binding energies are one order of magnitude larger due to the one dimensional carriers confinement. After this, these complexes became the subject of an intense research because the intrinsic screening of electrical interactions in semiconductor materials allows that magnetic fields that are usual in laboratories have strong effects on the trion binding energy. Another rich possibility is the study of trions as an intermediate state between the neutral exciton and the Fermi edge singularity when the excess of doping carriers is increased. In this thesis, we present a theoretical study of charged excitons and negatively charged donors in GaAs/Al 0.3 Ga 0.7 As quantum wells considering the effects of external electric and magnetic fields. We use a simple, accurate and physically clear method to describe these systems in contrast with the few and complex treatments s available in the literature. Our results show that the QW interface defects have an important role in the trion dynamics. This is in agreement with some experimental works, but it disagrees with other ones. (author)
Ordered Dissipative Structures in Exciton Systems in Semiconductor Quantum Wells
Directory of Open Access Journals (Sweden)
Andrey A. Chernyuk
2006-02-01
Full Text Available A phenomenological theory of exciton condensation in conditions of inhomogeneous excitation is proposed. The theory is applied to the study of the development of an exciton luminescence ring and the ring fragmentation at macroscopical distances from the central excitation spot in coupled quantum wells. The transition between the fragmented and the continuous ring is considered. With assumption of a defect in the structure, a possibility of a localized island of the condensed phase in a fixed position is shown. Exciton density distribution is also analyzed in the case of two spatially separated spots of the laser excitation.
Photoluminescence efficiency in AlGaN quantum wells
Energy Technology Data Exchange (ETDEWEB)
Tamulaitis, G.; Mickevičius, J. [Institute of Applied Research and Semiconductor Physics Department, Vilnius University, Sauletekio av. 9-III, Vilnius LT-10222 (Lithuania); Jurkevičius, J., E-mail: jonas.jurkevicius@ff.vu.lt [Institute of Applied Research and Semiconductor Physics Department, Vilnius University, Sauletekio av. 9-III, Vilnius LT-10222 (Lithuania); Shur, M.S. [Department of ECE and CIE, Rensselaer Polytechnic Institute (United States); Shatalov, M.; Yang, J.; Gaska, R. [Sensor Electronic Technology, Inc. (United States)
2014-11-15
Photoluminescence spectroscopy of AlGaN/AlGaN multiple quantum wells under quasi-steady-state conditions in the temperature range from 8 to 300 K revealed a strong dependence of droop onset threshold on temperature that was explained by the influence of carrier delocalization. The delocalization at room temperature results predominantly in enhancement of bimolecular radiative recombination, while being favorable for enhancement of nonradiative recombination at low temperatures. Studies of stimulated emission confirmed the strong influence of carrier localization on droop.
Ionization of deep quantum wells: Optical trampoline effect
Perlin, E. Yu.; Levitskiĭ, R. S.
2007-02-01
A new mechanism of transitions of an electronic system from the ground state to states with excitation energies exceeding many times the energy of a light photon initiating the transitions has been considered. This mechanism is based on the so-called optical “trampoline” effect: one of the interacting electrons receives energy from another electron and, simultaneously absorbing a photon ħω, overcomes the energy gap significantly exceeding ħω. Ionization of deep quantum wells by low-frequency light of moderate intensity due to the optical trampoline effect was calculated.
Quantum-well-driven magnetism in thin films
DEFF Research Database (Denmark)
Mirbt, S.; Johansson, B.; Skriver, Hans Lomholt
1996-01-01
We have performed local spin-density calculations for an fee (100) Ag substrate covered by 1 to 16 monolayers (ML) of Pd. We find that thin films of Pd are magnetic with a moment of the order of 0.3 mu(B) except for films of 1-2 ML and 5-7 ML where magnetism is completely suppressed. We present...... a physically transparent explanation of this behavior in terms of the Stoner picture and magnetic quantum-well states....
Magneto-gyrotropic photogalvanic effects in semiconductor quantum wells
International Nuclear Information System (INIS)
Bel'kov, V V; Ganichev, S D; Ivchenko, E L; Tarasenko, S A; Weber, W; Giglberger, S; Olteanu, M; Tranitz, H-P; Danilov, S N; Schneider, Petra; Wegscheider, W; Weiss, D; Prettl, W
2005-01-01
We show that free-carrier (Drude) absorption of both polarized and unpolarized terahertz radiation in quantum well (QW) structures causes an electric photocurrent in the presence of an in-plane magnetic field. Experimental and theoretical analysis evidences that the observed photocurrents are spin dependent and related to the gyrotropy of the QWs. Microscopic models for the photogalvanic effects in QWs based on asymmetry of photoexcitation and relaxation processes are proposed. In most of the investigated structures the observed magneto-induced photocurrents are caused by spin-dependent relaxation of non-equilibrium carriers
InGaAs/GaAs quantum-dot-quantum-well heterostructure formed by submonolayer deposition
DEFF Research Database (Denmark)
Xu, Zhangcheng; Leosson, K.; Birkedal, Dan
2003-01-01
-dot-quantum-well (QDQW) structure, by using high power PL and selective PL with excitation energies below the band gap of the GaAs barriers and temperature dependent PL. As the temperature is increased from 10 to 300 K, a narrowing of the full width at half-maximum at intermediate temperatures and a sigmoidal behaviour......Discrete emission lines from self-assembled InGaAs quantum dots (QDs) grown in the submonolayer (SML) deposition mode have been observed in micro-photoluminescence (PL) spectra at 10 K. For the first time, the SML-grown InGaAs/GaAs QD heterostructure is verified to be a quantum...
Indium antimonide quantum well structures for electronic device applications
Edirisooriya, Madhavie
The electron effective mass is smaller in InSb than in any other III-V semiconductor. Since the electron mobility depends inversely on the effective mass, InSb-based devices are attractive for field effect transistors, magnetic field sensors, ballistic transport devices, and other applications where the performance depends on a high mobility or a long mean free path. In addition, electrons in InSb have a large g-factor and strong spin orbit coupling, which makes them well suited for certain spin transport devices. The first n-channel InSb high electron mobility transistor (HEMT) was produced in 2005 with a power-delay product superior to HEMTs with a channel made from any other III-V semiconductor. The high electron mobility in the InSb quantum-well channel increases the switching speed and lowers the required supply voltage. This dissertation focuses on several materials challenges that can further increase the appeal of InSb quantum wells for transistors and other electronic device applications. First, the electron mobility in InSb quantum wells, which is the highest for any semiconductor quantum well, can be further increased by reducing scattering by crystal defects. InSb-based heteroepitaxy is usually performed on semi-insulating GaAs (001) substrates due to the lack of a lattice matched semi-insulating substrate. The 14.6% mismatch between the lattice parameters of GaAs and InSb results in the formation of structural defects such as threading dislocations and microtwins which degrade the electrical and optical properties of InSb-based devices. Chapter 1 reviews the methods and procedures for growing InSb-based heterostructures by molecular beam epitaxy. Chapters 2 and 3 introduce techniques for minimizing the crystalline defects in InSb-based structures grown on GaAs substrates. Chapter 2 discusses a method of reducing threading dislocations by incorporating AlyIn1-ySb interlayers in an AlxIn1-xSb buffer layer and the reduction of microtwin defects by growth
Acoustically induced spin transport in (110)GaAs quantum wells
Energy Technology Data Exchange (ETDEWEB)
Couto, Odilon D.D. Jr.
2008-09-29
In this work, we employ surface acoustic waves (SAWs) to transport and manipulate optically generated spin ensembles in (110) GaAs quantum wells (QWs). The strong carrier confinement into the SAW piezoelectric potential allows for the transport of spin-polarized carrier packets along well-defined channels with the propagation velocity of the acoustic wave. In this way, spin transport over distances exceeding 60 m is achieved, corresponding to spin lifetimes longer than 20 ns. The demonstration of such extremely long spin lifetimes is enabled by three main factors: (i) Suppression of the D'yakonov-Perel' spin relaxation mechanism for z-oriented spins in (110) IIIV QWs; (ii) Suppression of the Bir-Aronov-Pikus spin relaxation mechanism caused by the type-II SAW piezoelectric potential; (iii) Suppression of spin relaxation induced by the mesoscopic carrier confinement into narrow stripes along the SAW wave front direction. A spin transport anisotropy under external magnetic fields (B{sub ext}) is demonstrated for the first time. Employing the well-defined average carrier momentum impinged by the SAW, we analyze the spin dephasing dynamics during transport along the [001] and [1 anti 10] in-plane directions. For transport along [001], fluctuations of the internal magnetic field (B{sub int}), which arises from the spin-orbit interaction associated with the bulk inversion asymmetry of the crystal, lead to decoherence within 2 ns as the spins precess around B{sub ext}. In contrast, for transport along the [1 anti 10] direction, the z-component of the spin polarization is maintained for times one order of magnitude longer due to the non-zero average value of B{sub int}. The dephasing anisotropy between the two directions is fully understood in terms of the dependence of the spin-orbit coupling on carrier momentum direction, as predicted by the D'yakonov-Perel' mechanism for the (110) system. (orig.)
Size-dependent electronic eigenstates of multilayer organic quantum wells
International Nuclear Information System (INIS)
Nguyen Ba An; Hanamura, E.
1995-09-01
A detailed theoretical treatment is given eigenfunctions and eigenenergies of a multilayer organic quantum well sandwiched between two different dielectric media. The abrupt change of dielectric constants at the interfaces distorts the wave function and results in possible surface states in addition to propagating states. The proper boundary conditions are accounted for by the method of image charges. Analytic criteria for existence of surface states are established using the nearest layers approximation, which depend not only on the intralayer parameters but also on the number of layers. The size dependence together with the dependence on signs and relative magnitudes of the structure parameters fully determine the energy spectrum of propagating states as well as the number and the location of surface states. (author). 28 refs, 10 figs, 2 tabs
Barrier penetration effects on thermopower in semiconductor quantum wells
International Nuclear Information System (INIS)
Vaidya, R. G.; Sankeshwar, N. S.; Mulimani, B. G.
2014-01-01
Finite confinement effects, due to the penetration of the electron wavefunction into the barriers of a square well potential, on the low–temperature acoustic-phonon-limited thermopower (TP) of 2DEG are investigated. The 2DEG is considered to be scattered by acoustic phonons via screened deformation potential and piezoelectric couplings. Incorporating the barrier penetration effects, the dependences of diffusion TP and phonon drag TP on barrier height are studied. An expression for phonon drag TP is obtained. Numerical calculations of temperature dependences of mobility and TP for a 10 nm InN/In x Ga 1−x N quantum well for different values of x show that the magnitude and behavior of TP are altered. A decrease in the barrier height from 500 meV by a factor of 5, enhances the mobility by 34% and reduces the TP by 58% at 20 K. Results are compared with those of infinite barrier approximation
Capacitance-voltage characteristics of quantum well structures
Moon, C R; Choe, B D
1999-01-01
The characteristics of the apparent carrier distribution (ACD) of quantum well (QW) structures are investigated using the self-consistent simulation and the capacitance-voltage (C-V) profiling techniques. The simulation results on the differential carrier distribution show that the change of position expectation value of two-dimensional electrons determines the full width at half maximum of 100 K ACD peaks when conduction band offset is DELTA E sub c = 160 meV and the QW width t sub w is greater than 120 A. The contribution of Debye averaging effects to the ACD peaks becomes important as t sub w and DELTA E sub c values decrease and the temperature is increased. The influence of Debye averaging effects on ACD peaks appears differently according to the location of each well in multiple QWs. These results indicate that the extraction of QW parameters from the C-V profile should be done with caution.
Kohl, M.; Heitmann, D.; Grambow, P.; Ploog, K.
1988-06-01
Periodic multiple-quantum-well wires have been prepared by etching five-layer quantum-well structures through a holographically prepared mask. The periodicity was 380 nm, the lateral confinement 180 nm, and the quantum-well width 13, nm. The luminescence from these microstructured systems in the frequency regime of the one-electron-one-heavy-hole transition was strongly polarized with the electric field perpendicular to the periodic structure. This effect was caused by the resonantly enhanced emission of quantum-well-exciton (QWE) polaritons. Excitation of QWE polaritons was also observed in reflection measurements on the microstructured samples.
Leon, R.; Swift, G. M.; Magness, B.; Taylor, W. A.; Tang, Y. S.; Wang, K. L.; Dowd, P.; Zhang, Y. H.
2000-01-01
The photoluminescence emission from InGaAs/GaAs quantum-well and quantum-dot (QD) structures are compared after controlled irradiation with 1.5 MeV proton fluxes. Results presented here show a significant enhancement in radiation tolerance with three-dimensional quantum confinement.
Crystal orientation effects on wurtzite quantum well electromechanical fields
DEFF Research Database (Denmark)
Duggen, Lars; Willatzen, Morten
2010-01-01
in the literature for semiconductors, is inaccurate for ZnO/MgZnO heterostructures where shear-strain components play an important role. An interesting observation is that a growth direction apart from [1̅ 21̅ 0] exists for which the electric field in the quantum well region becomes zero. This is important for, e......A one-dimensional continuum model for calculating strain and electric field in wurtzite semiconductor heterostructures with arbitrary crystal orientation is presented and applied to GaN/AlGaN and ZnO/MgZnO heterostructure combinations. The model is self-consistent involving feedback couplings...... of spontaneous polarization, strain, and electric field. Significant differences between fully coupled and semicoupled models are found for the longitudinal and shear-strain components as a function of the crystal-growth direction. In particular, we find that the semicoupled model, typically used...
Color center lasers passively mode locked by quantum wells
International Nuclear Information System (INIS)
Islam, M.N.; Soccolich, C.E.; Bar-Joseph, I.; Sauer, N.; Chang, T.Y.; Miller, B.I.
1989-01-01
This paper describes how, using multiple quantum well (MQW) saturable absorbers, the authors passively mode locked a NaCl color center laser to produce 275 fs transform-limited, pedestal-free pulses with as high as 3.7 kW peak power. The pulses are tunable from λ = 1.59 to 1.7 μm by choosing MQW's with different bandgaps. They shortened the output pulses from the laser to 25 fs using the technique of soliton compression in a fiber. The steady-state operation of the laser requires the combination of a fast saturable absorber and gain saturation. In addition to the NaCl laser, they passively mode locked a Tl 0 (1):KCl color center laser and produced -- 22 ps pulses. Although the 275 fs pulses from the NaCl laser are Gaussian, when broadened, the pulses acquire an asymmetric spectrum because of carrier-induced refractive index changes
Transport studies in p-type double quantum well samples
International Nuclear Information System (INIS)
Hyndman, R.J.
2000-01-01
The motivation for the study of double quantum well samples is that the extra spatial degree of freedom can modify the ground state energies of the system, leading to new and interesting many body effects. Electron bi-layers have been widely studied but the work presented here is the first systematic study of transport properties of a p-type, double quantum well system. The samples, grown on the 311 plane, consisted of two 100A GaAs wells separated by a 30A AlAs barrier. The thin barrier in our structures, gives rise to very strong inter-layer Coulombic interactions but in contrast to electron double quantum well samples, tunnelling between the two wells is very weak. This is due to the large effective mass of holes compared with electrons. It is possible to accurately control the total density of a sample and the relative occupancy of each well using front and back gates. A systematic study of the magnetoresistance properties of the p-type bi-layers, was carried out at low temperatures and in high magnetic fields, for samples covering a range of densities. Considerable care was required to obtain reliable results as the samples were extremely susceptible to electrical shock and were prone to drift in density slowly over time. With balanced wells, the very low tunnelling in the p-type bi-layer leads to a complete absence of all odd integers in both resistance and thermopower except for the v=1 state, ( v 1/2 in each layer) where v is the total Landau level filling factor. Unlike other FQHE features the v=1 state strengthens with increased density as inter-layer interactions increase in strength over intra-layer interactions. The state is also destroyed at a critical temperature, which is much lower than the measured activation temperature. This is taken as evidence for a finite temperature phase transition predicted for the bi-layer v=1. From the experimental observations, we construct a phase diagram for the state, which agree closely with theoretical predictions
Strong quantum-confined stark effect in germanium quantum-well structures on silicon
International Nuclear Information System (INIS)
Kuo, Y.; Lee, Y. K.; Gei, Y.; Ren, S; Roth, J. E.; Miller, D. A.; Harris, J. S.
2006-01-01
Silicon is the dominant semiconductor for electronics, but there is now a growing need to integrate such component with optoelectronics for telecommunications and computer interconnections. Silicon-based optical modulators have recently been successfully demonstrated but because the light modulation mechanisms in silicon are relatively weak, long (for example, several millimeters) devices or sophisticated high-quality-factor resonators have been necessary. Thin quantum-well structures made from III-V semiconductors such as GaAs, InP and their alloys exhibit the much stronger Quantum-Confined Stark Effect (QCSE) mechanism, which allows modulator structures with only micrometers of optical path length. Such III-V materials are unfortunately difficult to integrate with silicon electronic devices. Germanium is routinely integrated with silicon in electronics, but previous silicon-germanium structures have also not shown strong modulation effects. Here we report the discovery of the QCSE, at room temperature, in thin germanium quantum-well structures grown on silicon. The QCSE here has strengths comparable to that in III-V materials. Its clarity and strength are particularly surprising because germanium is an indirect gap semiconductor, such semiconductors often display much weak optical effects than direct gap materials (such as the III-V materials typically used for optoelectronics). This discovery is very promising for small, high-speed, low-power optical output devices fully compatible with silicon electronics manufacture. (author)
Nonlinear optical rectification in semiparabolic quantum wells with an applied electric field
International Nuclear Information System (INIS)
Karabulut, ibrahim; Safak, Haluk
2005-01-01
The optical rectification (OR) in a semiparabolic quantum well with an applied electric field has been theoretically investigated. The electronic states in a semiparabolic quantum well with an applied electric field are calculated exactly, within the envelope function and the displaced harmonic oscillator approach. Numerical results are presented for the typical Al x Ga 1- x As/GaAs quantum well. These results show that the applied electric field and the confining potential frequency of the semiparabolic quantum well have a great influence on the OR coefficient. Moreover, the OR coefficient also depends sensitively on the relaxation rate of the semiparabolic quantum well system
Energy Technology Data Exchange (ETDEWEB)
Netzel, Carsten; Hoffmann, Veit; Wernicke, Tim; Knauer, Arne; Weyers, Markus [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin (Germany); Kneissl, Michael [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin (Germany); Institut fuer Festkoerperphysik, Technische Universitaet Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany)
2010-07-15
To determine relevant processes affecting the internal quantum efficiency in GaInN quantum well structures, we have studied the temperature and excitation power dependent photoluminescence intensity for quantum wells with different well widths on (0001) c-plane GaN and for quantum wells on nonpolar (11-20) a-plane GaN. In thick polar quantum wells, the quantum confined Stark effect (QCSE) causes a stronger intensity decrease with increasing temperature as long as the radiative recombination dominates. At higher temperatures, when the nonradiative recombination becomes more important, thick polar quantum wells feature a lower relative intensity decrease than thinner polar or nonpolar quantum wells. Excitation power dependent photoluminescence points to a transition from a recombination of excitons to a bimolecular recombination of uncorrelated charge carriers for thick polar quantum wells in the same temperature range. This transition might contribute to the limitation of nonradiative recombination by a reduced diffusivity of charge carriers. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Efficiency droop in nonpolar InGaN quantum wells
Energy Technology Data Exchange (ETDEWEB)
Schade, Lukas; Schwarz, Ulrich [Fraunhofer Institut fuer Angewandte Festkoerperphysik (IAF), Freiburg im Breisgau (Germany); Institut fuer Mikrosystemtechnik (IMTEK), Universitaet Freiburg, Freiburg im Breisgau (Germany); Wernicke, Tim; Rass, Jens; Ploch, Simon [Institut fuer Festkoerperphysik, Technische Universitaet Berlin (Germany); Weyers, Markus [Ferdinand-Braun-Institut (FBH), Berlin (Germany); Kneissl, Michael [Institut fuer Festkoerperphysik, Technische Universitaet Berlin (Germany); Ferdinand-Braun-Institut (FBH), Berlin (Germany)
2012-07-01
InGaN quantum wells (QWs) exhibit a decline of the internal efficiency at high charge carrier excitation. This has been observed for polar as well as for semipolar and nonpolar oriented QWs. Polar stands for the (0001) growth direction with strong piezoelectric fields. Due to the vanishing fields, the orthogonal growth directions (a or m) are called nonpolar, while all directions between are merged as semipolar orientations. In contrast to the polar and many semipolar QWs, nonpolar InGaN QWs provide a special property: optical polarization of the radiative transitions, which is a result of the anisotropic strain within pseudomorphic grown nonpolar QWs. Using this property, the broadened effective emission can be resolved into two fundamental transitions. They are spectrally separated by a defined energy which corresponds to the energy distance of the valence subbands. We studied nonpolar InGaN/InGaN Multi-QWs grown on low defect density GaN substrates with a setup for confocal microscopy. To reach high excitation densities of charge carriers, we use either a combination of an UV laser and highly focusing objectives or an electric pulse generator. The emission is spectrally analysed and compared to established models.
Quantum equivalence of a driven triple-well Van der Pol oscillator: A QTM study
International Nuclear Information System (INIS)
Chakraborty, Debdutta; Chattaraj, Pratim Kumar
2014-01-01
Highlights: • Quantum–classical correspondence is manifested at strong external coupling regime. • Suppression of classical chaos takes place in quantum domain. • Quantum chaos promotes quantum diffusion. • Quantum localisation is realised when interference effects are dominant. - Abstract: A quantum mechanical analogue of the classically chaotic triple-well oscillator under the influence of an external field and parametric excitation has been studied by using the quantum theory of motion. The on the fly calculations show the correspondence between some dynamical aspects of the classical and quantum oscillators along with a strictly quantum mechanical behaviour in case of diffusion and tunneling. Suitable external conditions have been obtained which can either assist or suppress the movement of quantum particles from one well to another. Quantum interference effects play a critical role in determining the nature of the quantum dynamics and in the presence of strong coupling to the external forces, quantum interference effects reduce drastically leading to decoherence of the quantum wave packet. In such situations, quantum dynamical features qualitatively resemble the corresponding classical dynamical behaviour and a correspondence between classical and quantum dynamics is obtained
Hybridization of electron states in a step quantum well in a magnetic field
International Nuclear Information System (INIS)
Barseghyan, M.G.; Kirakosyan, A.A.
2005-01-01
The quantum states and energy levels of an electrion in a rectangular step quantum well in a magnetic field parallel to the plane of two-dimentional electron gas are investigated. It is shown that the joint effect of the magnetic field and confining potential of the quantum well results in redical change of the electron spectrum. The dependence of the electron energy levels on the quantum well parameters, magnetic field induction and projection of the wave-vector along the magnetic field induction are calculated. Numerical calculations are carried out for a AlAs/GaAlAs/GaAs/AlAs step quantum well
Intermixing effects on emission properties of InGaN/GaN coupled Quantum wells
Susilo, Tri B.; Alsunaidi, M. A.; Shen, Chao; Ooi, Boon S.
2015-01-01
Intermixing processes in quantum wells have been extensively studied in order to modify characteristic of semiconductor devices such as LEDs. Controlling the band gap of material by introducing intermixing process can be used to enable broadband and controllable emission of LEDs. Quantum well intermixing (QWI) in InGaN/GaN double quantum well (DQW) is discussed in this paper. By varying the interdiffusion and separation lengths, the effects of intermixing process on the quantum eigen energies of the wells are studied. The investigation is carried out using a homegrown Quantum-FDTD simulator. © 2015 IEEE.
Intermixing effects on emission properties of InGaN/GaN coupled Quantum wells
Susilo, Tri B.
2015-02-01
Intermixing processes in quantum wells have been extensively studied in order to modify characteristic of semiconductor devices such as LEDs. Controlling the band gap of material by introducing intermixing process can be used to enable broadband and controllable emission of LEDs. Quantum well intermixing (QWI) in InGaN/GaN double quantum well (DQW) is discussed in this paper. By varying the interdiffusion and separation lengths, the effects of intermixing process on the quantum eigen energies of the wells are studied. The investigation is carried out using a homegrown Quantum-FDTD simulator. © 2015 IEEE.
Blue and green electroluminescence from CdSe nanocrystal quantum-dot-quantum-wells
International Nuclear Information System (INIS)
Lu, Y. F.; Cao, X. A.
2014-01-01
CdS/CdSe/ZnS quantum dot quantum well (QDQW) nanocrystals were synthesized using the successive ion layer adsorption and reaction technique, and their optical properties were tuned by bandgap and strain engineering. 3-monolayer (ML) CdSe QWs emitted blue photoluminescence at 467 nm with a spectral full-width-at-half-maximum of ∼30 nm. With a 3 ML ZnS cladding layer, which also acts as a passivating and strain-compensating layer, the QDQWs acquired a ∼35% quantum yield of the QW emission. Blue and green electroluminescence (EL) was obtained from QDQW light-emitting devices with 3–4.5 ML CdSe QWs. It was found that as the peak blueshifted, the overall EL was increasingly dominated by defect state emission due to poor hole injection into the QDQWs. The weak EL was also attributed to strong field-induced charge separation resulting from the unique QDQW geometry, weakening the oscillator strength of optical transitions
Emergence of the persistent spin helix in semiconductor quantum wells
International Nuclear Information System (INIS)
Koralek, Jake; Weber, Chris; Orenstein, Joe; Bernevig, Andrei; Zhang, Shoucheng; Mack, Shawn; Awschalom, David
2008-01-01
According to Noether's theorem, for every symmetry in nature there is a corresponding conservation law. For example, invariance with respect to spatial translation corresponds to conservation of momentum. In another well-known example, invariance with respect to rotation of the electron's spin, or SU(2) symmetry, leads to conservation of spin polarization. For electrons in a solid, this symmetry is ordinarily broken by spin-orbit (SO) coupling, allowing spin angular momentum to flow to orbital angular momentum. However, it has recently been predicted that SU(2) can be recovered in a two-dimensional electron gas (2DEG), despite the presence of SO coupling. The corresponding conserved quantities include the amplitude and phase of a helical spin density wave termed the 'persistent spin helix' (PSH) .2 SU(2) is restored, in principle, when the strength of two dominant SO interactions, the Rashba (alpha) and linear Dresselhaus (beta 1), are equal. This symmetry is predicted to be robust against all forms of spin-independent scattering, including electron-electron interactions, but is broken by the cubic Dresselhaus term (beta 3) and spin-dependent scattering. When these terms are negligible, the distance over which spin information can propagate is predicted to diverge as alpha approaches beta 1. Here we observe experimentally the emergence of the PSH in GaAs quantum wells (QW's) by independently tuning alpha and beta 1. Using transient spin-grating spectroscopy (TSG), we find a spin-lifetime enhancement of two orders of magnitude near the symmetry point. Excellent quantitative agreement with theory across a wide range of sample parameters allows us to obtain an absolute measure of all relevant SO terms, identifying beta 3 as the main SU(2) violating term in our samples. The tunable suppression of spin-relaxation demonstrated in this work is well-suited for application to spintronics
Emergence of the Persistent Spin Helix in Semiconductor Quantum Wells
International Nuclear Information System (INIS)
Koralek, Jake
2011-01-01
According to Noether's theorem, for every symmetry in nature there is a corresponding conservation law. For example, invariance with respect to spatial translation corresponds to conservation of momentum. In another well-known example, invariance with respect to rotation of the electron's spin, or SU(2) symmetry, leads to conservation of spin polarization. For electrons in a solid, this symmetry is ordinarily broken by spin-orbit (SO) coupling, allowing spin angular momentum to flow to orbital angular momentum. However, it has recently been predicted that SU(2) can be recovered in a two-dimensional electron gas (2DEG), despite the presence of SO coupling. The corresponding conserved quantities include the amplitude and phase of a helical spin density wave termed the 'persistent spin helix' (PSH). SU(2) is restored, in principle, when the strength of two dominant SO interactions, the Rashba (α) and linear Dresselhaus (β 1 ), are equal. This symmetry is predicted to be robust against all forms of spin-independent scattering, including electron-electron interactions, but is broken by the cubic Dresselhaus term (β 3 ) and spin-dependent scattering. When these terms are negligible, the distance over which spin information can propagate is predicted to diverge as α → β 1 . Here we observe experimentally the emergence of the PSH in GaAs quantum wells (QW's) by independently tuning α and β 1 . Using transient spin-grating spectroscopy (TSG), we find a spin-lifetime enhancement of two orders of magnitude near the symmetry point. Excellent quantitative agreement with theory across a wide range of sample parameters allows us to obtain an absolute measure of all relevant SO terms, identifying β 3 as the main SU(2) violating term in our samples. The tunable suppression of spin-relaxation demonstrated in this work is well-suited for application to spintronics.
Studies of quantum levels in GaInNAs single quantum wells
International Nuclear Information System (INIS)
Shirakata, Sho; Kondow, Masahiko; Kitatani, Takeshi
2006-01-01
Spectroscopic studies have been carried out on the quantum levels in GaInNAs/GaAs single quantum wells (SQWs). Photoluminescence (PL), PL excitation (PLE), photoreflectance (PR), and high-density-excited PL (HDE-PL) were measured on high quality GaInNAs SQWs, Ga 0.65 In 0.35 N 0.01 As 0.99 /GaAs (well thickness: l z =10 nm) and Ga 0.65 In 0.35 N 0.005 As 0.995 /GaAs (l z =3∝10 nm), grown by molecular-beam epitaxy. For Ga 0.65 In 0.35 N 0.01 As 0.99 /GaAs (l z =10 nm), PL at 8 K exhibited a peak at 1.07 eV due to the exciton-related transition between quantum levels of ground states (e1-hh1). Both PR and PLE exhibited three transitions (1.17, 1.20 and 1.32 eV), and the former two transitions were assigned to as either of e1-lh1 and e2-hh2 transitions, while the transition at 1.32 eV was assigned to as the e2-lh2 transition. For HDE-PL, a new PL peak was observed at about 1.2 eV, and it was assigned to the unresolved e1-lh1 and e2-hh2 transitions. Similar optical measurements have been done on the Ga 0.65 In 0.35 N 0.005 As 0.995 /GaAs with various l z (3∝10 nm). Dependence of optical spectra and energies of quantum levels on l z have been studied. It has been found that HDE-PL in combination with PLE is a good tool for the study of the quantum level of GaInNAs SQW. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)
Theory of the Franz-Keldysh effect in quantum wells
International Nuclear Information System (INIS)
Trallero Giner, C.
1986-09-01
We use the effective-mass approximation to obtain the imaginary part, ε 2 , of the dielectric constant of a quantum well in an applied electric field for direct transitions at a normal (M O ) threshold. The calculations of ε 2 are used to evaluate the real part, ε 1 , of the dielectric constant through the Kramers-Kronig relations. The changes in ε 1 and ε 2 due to the electric field are expressed in terms of the corresponding electrooptic functions. All magnitudes are obtained, neglecting excitonic effects, for electric fields both perpendicular to and in the plane of the layers. We show that for fields parallel to the layers the electrooptic functions turn out to be a superposition of two-dimensional Franz-Keldysh ones. The electrooptic functions for fields perpendicular to the layers show a qualitatively different behaviour from those observed in bulk semiconductors. Analytic expressions for the Lorentzian broadening of ε 1 and ε 2 are given in terms of complex valued electrooptic functions of complex argument. (author)
DO GIANT PLANETS SURVIVE TYPE II MIGRATION?
International Nuclear Information System (INIS)
Hasegawa, Yasuhiro; Ida, Shigeru
2013-01-01
Planetary migration is one of the most serious problems to systematically understand the observations of exoplanets. We clarify that the theoretically predicted type II, migration (like type I migration) is too fast, by developing detailed analytical arguments in which the timescale of type II migration is compared with the disk lifetime. In the disk-dominated regime, the type II migration timescale is characterized by a local viscous diffusion timescale, while the disk lifetime is characterized by a global diffusion timescale that is much longer than the local one. Even in the planet-dominated regime where the inertia of the planet mass reduces the migration speed, the timescale is still shorter than the disk lifetime except in the final disk evolution stage where the total disk mass decays below the planet mass. This suggests that most giant planets plunge into the central stars within the disk lifetime, and it contradicts the exoplanet observations that gas giants are piled up at r ∼> 1 AU. We examine additional processes that may arise in protoplanetary disks: dead zones, photoevaporation of gas, and gas flow across a gap formed by a type II migrator. Although they make the type II migration timescale closer to the disk lifetime, we show that none of them can act as an effective barrier for rapid type II migration with the current knowledge of these processes. We point out that gas flow across a gap and the fraction of the flow accreted onto the planets are uncertain and they may have the potential to solve the problem. Much more detailed investigation for each process may be needed to explain the observed distribution of gas giants in extrasolar planetary systems
Genetic heterogeneity of Usher syndrome type II.
Pieke Dahl, S; Kimberling, WJ; Gorin, MB; Weston, MD; Furman, JM; Pikus, A; Moller, C
1993-01-01
Usher syndrome is an autosomal recessive disorder characterised by retinitis pigmentosa and congenital sensorineural hearing loss. A gene for Usher syndrome type II (USH2) has been localised to chromosome 1q32-q41. DNA from a family with four of seven sibs affected with clinical characteristics of Usher syndrome type II was genotyped using markers spanning the 1q32-1q41 region. These included D1S70 and D1S81, which are believed to flank USH2. Genotypic results and subsequent linkage analysis ...
Physics of frequency-modulated comb generation in quantum-well diode lasers
Dong, Mark; Cundiff, Steven T.; Winful, Herbert G.
2018-05-01
We investigate the physical origin of frequency-modulated combs generated from single-section semiconductor diode lasers based on quantum wells, isolating the essential physics necessary for comb generation. We find that the two effects necessary for comb generation—spatial hole burning (leading to multimode operation) and four-wave mixing (leading to phase locking)—are indeed present in some quantum-well systems. The physics of comb generation in quantum wells is similar to that in quantum dot and quantum cascade lasers. We discuss the nature of the spectral phase and some important material parameters of these diode lasers.
High Efficiency Quantum Well Waveguide Solar Cells, Phase I
National Aeronautics and Space Administration — The long-term objective of this program is to develop flexible, lightweight, single-junction solar cells using quantum structured designs that can achieve ultra-high...
Wu, Feng; Sun, Haiding; Ajia, Idris A.; Roqan, Iman S.; Zhang, Daliang; Dai, Jiangnan; Chen, Changqing; Feng, Zhe Chuan; Li, Xiaohang
2017-01-01
Significant internal quantum efficiency (IQE) enhancement of GaN/AlGaN multiple quantum wells (MQWs) emitting at similar to 350 nm was achieved via a step quantum well (QW) structure design. The MQW structures were grown on AlGaN/AlN/sapphire templates by metal-organic chemical vapor deposition (MOCVD). High resolution x-ray diffraction (HR-XRD) and scanning transmission electron microscopy (STEM) were performed, showing sharp interface of the MQWs. Weak beam dark field imaging was conducted, indicating a similar dislocation density of the investigated MQWs samples. The IQE of GaN/AlGaN MQWs was estimated by temperature dependent photoluminescence (TDPL). An IQE enhancement of about two times was observed for the GaN/AlGaN step QW structure, compared with conventional QW structure. Based on the theoretical calculation, this IQE enhancement was attributed to the suppressed polarization-induced field, and thus the improved electron-hole wave-function overlap in the step QW.
Wu, Feng
2017-05-03
Significant internal quantum efficiency (IQE) enhancement of GaN/AlGaN multiple quantum wells (MQWs) emitting at similar to 350 nm was achieved via a step quantum well (QW) structure design. The MQW structures were grown on AlGaN/AlN/sapphire templates by metal-organic chemical vapor deposition (MOCVD). High resolution x-ray diffraction (HR-XRD) and scanning transmission electron microscopy (STEM) were performed, showing sharp interface of the MQWs. Weak beam dark field imaging was conducted, indicating a similar dislocation density of the investigated MQWs samples. The IQE of GaN/AlGaN MQWs was estimated by temperature dependent photoluminescence (TDPL). An IQE enhancement of about two times was observed for the GaN/AlGaN step QW structure, compared with conventional QW structure. Based on the theoretical calculation, this IQE enhancement was attributed to the suppressed polarization-induced field, and thus the improved electron-hole wave-function overlap in the step QW.
Wang, Z. H.; Zheng, Q.; Wang, Xiaoguang; Li, Yong
2016-03-01
We study the energy-level crossing behavior in a two-dimensional quantum well with the Rashba and Dresselhaus spin-orbit couplings (SOCs). By mapping the SOC Hamiltonian onto an anisotropic Rabi model, we obtain the approximate ground state and its quantum Fisher information (QFI) via performing a unitary transformation. We find that the energy-level crossing can occur in the quantum well system within the available parameters rather than in cavity and circuit quantum eletrodynamics systems. Furthermore, the influence of two kinds of SOCs on the QFI is investigated and an intuitive explanation from the viewpoint of the stationary perturbation theory is given.
Quantum Hall effect in InAs/AlSb double quantum well
International Nuclear Information System (INIS)
Yakunin, M.V.; Podgornykh, S.M.; Sadof'ev, Yu.G.
2009-01-01
Double quantum wells (DQWs) were first implemented in the InAs/AlSb heterosystem, which is characterized by a large Lande g factor |g|=15 of the InAs layers forming the well, much larger than the bulk g factor |g|=0.4 of the GaAs in conventional GaAs/AlGaAs DQWs. The quality of the samples is good enough to permit observation of a clear picture of the quantum Hall effect (QHE). Despite the small tunneling gap, which is due to the large barrier height (1.4 eV), features with odd filling factors ν=3,5,7, ... are present in the QHE, due to collectivized interlayer states of the DQW. When the field is rotated relative to the normal to the layers, the ν=3 state is suppressed, confirming the collectivized nature of that state and denying that it could owe its existence to a strong asymmetry of the DQW. Previously the destruction of the collectivized QHE states by a parallel field had been observed only for the ν=1 state. The observation of a similar effect for ν=3 in an InAs/AlSb DQW may be due to the large bulk g factor of InAs
Energy Technology Data Exchange (ETDEWEB)
Khan, Salahuddin; Jayabalan, J., E-mail: jjaya@rrcat.gov.in; Chari, Rama; Pal, Suparna [Laser Physics Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Porwal, Sanjay; Sharma, Tarun Kumar; Oak, S. M. [Semiconductor Physics and Devices Lab., Solid State Laser Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)
2014-08-18
We report tunneling assisted beating of carriers in a near-surface single GaAsP/AlGaAs quantum well using transient reflectivity measurement. The observed damped oscillating signal has a period of 120 ± 6 fs which corresponds to the energy difference between lh1 and hh2 hole states in the quantum well. Comparing the transient reflectivity signal at different photon energies and with a buried quantum well sample, we show that the beating is caused by the coherent coupling between surface state and the hole states (lh1 and hh2) in the near-surface quantum well. The dependence of decay of coherence of these tunneling carriers on the excitation fluence is also reported. This observation on the coherent tunneling of carrier is important for future quantum device applications.
International Nuclear Information System (INIS)
Khan, Salahuddin; Jayabalan, J.; Chari, Rama; Pal, Suparna; Porwal, Sanjay; Sharma, Tarun Kumar; Oak, S. M.
2014-01-01
We report tunneling assisted beating of carriers in a near-surface single GaAsP/AlGaAs quantum well using transient reflectivity measurement. The observed damped oscillating signal has a period of 120 ± 6 fs which corresponds to the energy difference between lh1 and hh2 hole states in the quantum well. Comparing the transient reflectivity signal at different photon energies and with a buried quantum well sample, we show that the beating is caused by the coherent coupling between surface state and the hole states (lh1 and hh2) in the near-surface quantum well. The dependence of decay of coherence of these tunneling carriers on the excitation fluence is also reported. This observation on the coherent tunneling of carrier is important for future quantum device applications.
Electrical transport in strained silicon quantum wells on vicinal substrates
International Nuclear Information System (INIS)
Kaya, S.
1999-01-01
This thesis deals with the electrical transport studies of strained Si quantum wells grown on tilted Si substrates. Magnetotransport measurements at very low temperatures are used to investigate the high electron mobility, scattering processes and modified band structure for four different substrate orientations (2, 4, 6 and 10 deg.) and in two different directions of transport. We first discuss the morphology of the tilted system with the aid of, atomic force and optical microscopy. A clear change of surface morphology of tilted layers in comparison with the (001) type surfaces is explained by the degree of tilt in the system. The electron mobility and in-plane effective mass becomes anisotropic, which scale roughly with the tilt angle. The mobility anisotropy is shown to be the result of extra scattering when electrons travel across the steps common to vicinal surfaces. The extra scattering has characteristics similar to interface roughness scattering, as inferred from the trend that the transport (τ t ) and quantum scattering (τ q ) times follow. As the tilt angle grows, it is found that τ t /τ q →1 in the direction perpendicular to the steps. Electrons in tilted channels of multivalley semiconductors can involve a new interband scattering mechanism due to a one dimensional minigap opening in the conduction band. This effect, known from bulk Si MOSFETs, is investigated in strained Si for the first time in this thesis. First, the effect of applied electric fields on electron conduction is considered. Shubnikov-de Haas oscillations in the magnetoresistance data indicate a remarkably different electron scattering behaviour in tilted samples with increasing fields in directions parallel and perpendicular to the tilt direction. An FFT analysis of the data produces extra peaks in the electron density spectra. By clear contrast, flat samples grown under similar conditions do not show any unusual features. The difference is attributed to the existence of a minigap
Type II supernovae: How do they explode?
International Nuclear Information System (INIS)
Baron, E.
1988-01-01
I discuss what has been learned from the neutrino observations of Supernova 1987A. The neutrino detections confirmed our basic theoretical scenario that Type II supernovae involve the gravitational collapse of a massive star. The small number of events makes it difficult to infer details about the actual mechanism of collapse. I discuss the current theoretical situation on the mechanism of explosion
Positron Survival in Type II Supernovae
1989-05-01
B: Computer Program and Flow Diagram 53 References 59 I. Introduction Since the discovery of Supernova 1987A (a Type II supernova) in February of 1987...the fewer number of decays depositing energy within the supernova. The rate of this cooling is unknown because it is uncertain whether a pulsar was
Effect of interface roughness on Auger recombination in semiconductor quantum wells
Tan, Chee-Keong; Sun, Wei; Wierer, Jonathan J.; Tansu, Nelson
2017-03-01
Auger recombination in a semiconductor is a three-carrier process, wherein the energy from the recombination of an electron and hole pair promotes a third carrier to a higher energy state. In semiconductor quantum wells with increased carrier densities, the Auger recombination becomes an appreciable fraction of the total recombination rate and degrades luminescence efficiency. Gaining insight into the variables that influence Auger recombination in semiconductor quantum wells could lead to further advances in optoelectronic and electronic devices. Here we demonstrate the important role that interface roughness has on Auger recombination within quantum wells. Our computational studies find that as the ratio of interface roughness to quantum well thickness is increased, Auger recombination is significantly enhanced. Specifically, when considering a realistic interface roughness for an InGaN quantum well, the enhancement in Auger recombination rate over a quantum well with perfect heterointerfaces can be approximately four orders of magnitude.
Picosecond intersubband hole relaxation in p-type quantum wells
International Nuclear Information System (INIS)
Xu, Z.; Fauchet, P.M.; Rella, C.W.; Schwettman, H.A.
1995-01-01
We report the first direct measurement of the relaxation time of holes in p-type quantum wells using tunable, subpicosecond mid-infrared laser pulses in a pump-probe arrangement. The QW layers consisted of 50 In 0.5 Ga 0.5 As/Al 0.5 Ga 0.5 As periods. The In 0.5 Ga 0.5 As well was 4 nm wide and the Al 0.5 Ga 0.5 As barrier was 8 nm wide. The dopant concentration was 10 19 CM -3 which corresponds to a sheet density of 1.2 x 10 13 CM -2 . The room temperature IR spectrum showed a 50 meV wide absorption peak at 5.25 μm (220 meV). This energy agrees with the calculated n=1 heavy hole to n=1 light hole transition energy of 240 meV (150 meV for strain and 90 meV for confinement). The large absorption width results from hole-hole scattering and the difference in dispersion relations between the two subbands. The equal-wavelength pump-probe transmission measurements were performed using the Stanford free electron laser (FEL). The FEL pulses were tuned between 4 and 6 μ m and their duration was less than 1 ps. The measurements were performed as a function of temperature, pump wavelength and intensity (from 0.3 to 10 GW/cm 2 ). In all our experiments, we find an increase of transmission (decrease of absorption or bleaching) following photopumping, which recovers as a single exponential with a time constant (relaxation time) of the order of 1 picosecond. The maximum change in transmission is linear with pump 2 intensity below 1 GW/cm 2 and saturates to ∼3% with a saturation intensity I sat of 3 GW/cm 2 . As the saturation regime is entered, the relaxation time increases from 0.8 ps to 1.8 ps. This relaxation time depends on the temperature T: it increases from 0.8 ps to 1.3 ps as T decreases from 300 K to 77 K. Finally, when we tune the laser through the absorption band, the magnitude of the signal changes but its temporal behavior does not change, within the accuracy of the measurements
Magneto-transport study of quantum phases in wide GaAs quantum wells
Liu, Yang
In this thesis we study several quantum phases in very high quality two-dimensional electron systems (2DESs) confined to GaAs single wide quantum wells (QWs). In these systems typically two electric subbands are occupied. By controlling the electron density as well as the QW symmetry, we can fine tune the cyclotron and subband separation energies, so that Landau levels (LLs) belonging to different subbands cross at the Fermi energy EF. The additional subband degree of freedom enables us to study different quantum phases. Magneto-transport measurements at fixed electron density n and various QW symmetries reveal a remarkable pattern for the appearance and disappearance of fractional quantum Hall (FQH) states at LL filling factors nu = 10/3, 11/3, 13/3, 14/3, 16/3, and 17/3. These q/3 states are stable and strong as long as EF lies in a ground-state (N = 0) LL, regardless of whether that level belongs to the symmetric or the anti-symmetric subband. We also observe subtle and distinct evolutions near filling factors nu = 5/2 and 7/2, as we change the density n, or the symmetry of the charge distribution. The even-denominator FQH states are observed at nu = 5/2, 7/2, 9/2 and 11/2 when EF lies in the N= 1 LLs of the symmetric subband (the S1 levels). As we increase n, the nu = 5/2 FQH state suddenly disappears and turns into a compressible state once EF moves to the spin-up, N = 0, anti-symmetric LL (the A0 ↑ level). The sharpness of this disappearance suggests a first-order transition from a FQH to a compressible state. Moreover, thanks to the renormalization of the susbband energy separation in a well with asymmetric change distribution, two LLs can get pinned to each other when they are crossing at E F. We observe a remarkable consequence of such pinning: There is a developing FQH state when the LL filling factor of the symmetric subband nuS equals 5/2 while the antisymmetric subband has filling 1 < nuA <2. Next, we study the evolution of the nu=5/2 and 7/2 FQH
Strong coupling and polariton lasing in Te based microcavities embedding (Cd,Zn)Te quantum wells
Energy Technology Data Exchange (ETDEWEB)
Rousset, J.-G., E-mail: j-g.rousset@fuw.edu.pl; Piętka, B.; Król, M.; Mirek, R.; Lekenta, K.; Szczytko, J.; Borysiuk, J.; Suffczyński, J.; Kazimierczuk, T.; Goryca, M.; Smoleński, T.; Kossacki, P.; Nawrocki, M.; Pacuski, W. [Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warszawa (Poland)
2015-11-16
We report on properties of an optical microcavity based on (Cd,Zn,Mg)Te layers and embedding (Cd,Zn)Te quantum wells. The key point of the structure design is the lattice matching of the whole structure to MgTe, which eliminates the internal strain and allows one to embed an arbitrary number of unstrained quantum wells in the microcavity. We evidence the strong light-matter coupling regime already for the structure containing a single quantum well. Embedding four unstrained quantum wells results in further enhancement of the exciton-photon coupling and the polariton lasing in the strong coupling regime.
Direct observation of free-exciton thermalization in quantum-well structures
DEFF Research Database (Denmark)
Umlauff, M.; Hoffmann, J.; Kalt, H.
1998-01-01
We report on a direct observation of free-exciton thermalization in quantum-well structures. A narrow energy distribution of free 1s excitons is created in ZnSe-based quantum wells by emission of one LO phonon after optical excitation of the continuum stales with picosecond laser pulses. The subs......We report on a direct observation of free-exciton thermalization in quantum-well structures. A narrow energy distribution of free 1s excitons is created in ZnSe-based quantum wells by emission of one LO phonon after optical excitation of the continuum stales with picosecond laser pulses...
Bandgap Engineering of 1300 nm Quantum Dots/Quantum Well Nanostructures Based Devices
Alhashim, Hala H.
2016-05-29
The main objectives of this thesis are to develop viable process and/or device technologies for bandgap tuning of 1300-nm InGaAs/GaAs quantum-dot (QD) laser structures, and broad linewidth 1300-nm InGaAsP/InP quantum well (QW) superluminescent diode structures. The high performance bandgap-engineered QD laser structures were achieved by employing quantum-dot intermixing (QDI) based on impurity free vacancy diffusion (IFVD) technique for eventual seamless active-passive integration, and bandgap-tuned lasers. QDI using various dielectric-capping materials, such as HfO2, SrTiO3, TiO2, Al2O3 and ZnO, etc, were experimented in which the resultant emission wavelength can be blueshifted to ∼ 1100 nm ─ 1200 nm range depending on process conditions. The significant results extracted from the PL characterization were used to perform an extensive laser characterization. The InAs/GaAs quantum-dot lasers with QDs transition energies were blueshifted by ~185 nm, and lasing around ~1070 – 1190 nm was achieved. Furthermore, from the spectral analysis, a simultaneous five-state lasing in the InAs/InGaAs intermixed QD laser was experimentally demonstrated for the first time in the very important wavelength range from 1030 to 1125 nm. The QDI methodology enabled the facile formation of a plethora of devices with various emission wavelengths suitable for a wide range of applications in the infrared. In addition, the wavelength range achieved is also applicable for coherent light generation in the green – yellow – orange visible wavelength band via frequency doubling, which is a cost-effective way of producing compact devices for pico-projectors, semiconductor laser based solid state lighting, etc. [1, 2] In QW-based superluminescent diode, the problem statement lies on achieving a flat-top and ultra-wide emission bandwidth. The approach was to design an inhomogeneous active region with a comparable simultaneous emission from different transition states in the QW stacks, in
Non-square quantum well growth for reduced threshold current in ...
African Journals Online (AJOL)
This paper presents calculations demonstrating that non-square quantum well growth (well shaping) can result in reduced threshold current for tensilely strained quantum well bipolar diode lasers operating at 1.52ìm m. Calculations of subband structure, optical matrix elements and laser gain are performed for arbitrarily ...
International Nuclear Information System (INIS)
Sęk, Grzegorz; Andrzejewski, Janusz; Ryczko, Krzysztof; Poloczek, Przemysław; Misiewicz, Jan; Semenova, Elizaveta S; Lemaitre, Aristide; Patriarche, Gilles; Ramdane, Aberrahim
2009-01-01
We report on the electronic properties of GaAs-substrate-based structures designed as a tunnel-injection system composed of self-assembled InAs quantum dots and an In 0.3 Ga 0.7 As quantum well separated by a GaAs barrier. We have performed photoluminescence and photoreflectance measurements which have allowed the determination of the optical transitions in the QW–QD tunnel structure and its respective references with just quantum dots or a quantum well. The effective mass calculations of the band structure dependence on the tunnelling barrier thickness have shown that in spite of an expected significant tunnelling between both parts of the system, its strong asymmetry and the strain distribution cause that the quantum-mechanical-coupling-induced energy shift of the optical transitions is almost negligible for the lowest energy states and weakly sensitive to the width of the barrier, which finds confirmation in the existing experimental data
Type II first branchial cleft anomaly.
Al-Mahdi, Akmam H; Al-Khurri, Luay E; Atto, Ghada Z; Dhaher, Ameer
2013-01-01
First branchial cleft anomaly is a rare disease of the head and neck. It accounts for less than 8% of all branchial abnormalities. It is classified into type I, which is thought to arise from the duplication of the membranous external ear canal and are composed of ectoderm only, and type II that have ectoderm and mesoderm. Because of its rarity, first branchial cleft anomaly is often misdiagnosed and results in inappropriate management. A 9-year-old girl presented to us with fistula in the submandibular region and discharge in the external ear. Under general anesthesia, complete surgical excision of the fistula tract was done through step-ladder approach, and the histopathologic examination confirmed the diagnosis of type II first branchial cleft anomaly.
Photometric properties of type II supernovae
Energy Technology Data Exchange (ETDEWEB)
Barbon, R [Osservatorio Astrofisico, Asiago (Italy); Trieste Univ. (Italy). Instituto di Matematica); Ciatti, F; Rosino, L [Osservatorio Astrofisico, Asiago (Italy); Pavia Univ. (Italy))
1979-02-01
An analysis of the available photometric observations for type II supernovae is presented. The possibility of drawing average curves by the fitting method, as previously done for type I supernovae, is indicated. Two basic shapes have been put into evidence, the first one (2/3 of the objects) is characterized by the presence of a plateau at intermediate phase, the second one by an almost linear decline. Average curves have been also built for the intrinsic color indices. Peculiar cases are discussed, including the unusual objects of types III-IV. The mean absolute magnitude at maximum for type II supernovae has been determined about Msub(B) = -16.45 (sigma=0.78), as a calibration for their use as distance indicators. The distribution in different morphological types and luminosity classes of the parent galaxies is briefly discussed.
[Mania associated with Usher syndrome type II].
Praharaj, Samir Kumar; Acharya, Mahima; Sarvanan, Arul; Kongasseri, Sreejayan; Behere, Rishikesh V; Sharma, P S V N
2012-01-01
Usher syndrome (or Hallgren syndrome) is an autosomal recessive genetic disorder characterized by sensorineural deafness, retinitis pigmentosa, and variable vestibular deficit; Usher syndrome type II is the most common form. Various neuropsychiatric disorders have been reported to occur in those with Usher syndrome, including schizophrenia-like disorder, atypical psychosis, recurrent depressive illness, neurotic disorder, and mental retardation; however, bipolar disorder is not common in those with Usher syndrome. Herein we describe a 30-year-old male with Usher syndrome type II that developed features indicative of a probable manic episode. The patient had complete remission of symptoms in response to treatment with olanzapine 20 mg d-1. In persons with dual sensory impairment there are inherent problems with assessment and diagnosis is difficult due to their limited communication abilities. The diagnosis of Usher syndrome depends heavily on behavioral observation and disturbances in vegetative functions.
Chiari Type II malformation: Prenatal sonographic findings
Directory of Open Access Journals (Sweden)
Sadhanandham Shrinuvasan
2015-01-01
Full Text Available Chiari malformations (CM are a group of defects associated with the congenital caudal displacement of the cerebellum and brainstem. A thorough understanding of the sonographic findings is necessary for the diagnosis of CM in the developing fetus. Here, we present the classical imaging findings of CM Type II detected in a 25-year-old primigravida at 26 weeks of gestation by routine sonographic screening.
International Nuclear Information System (INIS)
Soker, Murat; Ayyildiz, Orhan; Isikdogan, Abdurrahman
2004-01-01
Aase-Smith syndrome type II is a rare in childhood and there a few reported cases. Here, we report an 8-months-old boy with congenital red cell aplasia and triphalangeal thumbs. In addition to thumb anomalies. He presented with growth failure, hypertelorism and novel osseous radiologic abnormalities, large fontanelles and micrognathia as extraordinary. Some clinical symptoms had complete clinical remission with deflazacort treatment. (author)
The Double-Well Potential in Quantum Mechanics: A Simple, Numerically Exact Formulation
Jelic, V.; Marsiglio, F.
2012-01-01
The double-well potential is arguably one of the most important potentials in quantum mechanics, because the solution contains the notion of a state as a linear superposition of "classical" states, a concept which has become very important in quantum information theory. It is therefore desirable to have solutions to simple double-well potentials…
Collective Behavior of a Spin-Aligned Gas of Interwell Excitons in Double Quantum Wells
DEFF Research Database (Denmark)
Larionov, A. V.; Bayer, M.; Hvam, Jørn Märcher
2005-01-01
The kinetics of a spin-aligned gas of interwell excitons in GaAs/AlGaAs double quantum wells (n–i–n heterostructure) is studied. The temperature dependence of the spin relaxation time for excitons, in which a photoexcited electron and hole are spatially separated between two adjacent quantum wells...
International Nuclear Information System (INIS)
Yelin, S.F.; Hemmer, P.R.
2002-01-01
A novel class of coherent nonlinear optical phenomena, involving induced transparency in semiconductor quantum wells, is considered in the context of a particular application to sensitive long-wavelength infrared detection. It is shown that the strongest decoherence mechanisms can be suppressed or mitigated, resulting in substantial enhancement of nonlinear optical effects in semiconductor quantum wells
Analytic methods for ﬁeld induced tunneling in quantum wells
Indian Academy of Sciences (India)
Analytic methods for ﬁeld induced tunneling in quantum wells with arbitrary potential proﬁles ... Electric ﬁeld induced tunneling is studied in three different types of quantum wells by solving time-independent effective mass ... Current Issue : Vol.
Electroreflectance investigations of quantum confined Stark effect in GaN quantum wells
International Nuclear Information System (INIS)
Drabinska, A; Pakula, K; Baranowski, J M; Wysmolek, A
2010-01-01
In this paper we present room temperature electroreflectance studies of GaN quantum wells (QWs) with different well width. The electroreflectance measurements were performed with external voltage applied to the structure therefore it was possible to tune the electric field inside QW up to its completely screening and furthermore even reversing it. The analysis of QW spectral lines showed the Stark shift dependence on applied voltage and well width reaching about 35 meV for highest voltage and widest well width. It was possible to obtain the condition of zero electric field in QW. Both broadening and amplitude of QW lines are minimal for zero electric field and increases for increasing electric field in QW. The energy transition is maximum for zero electric field and for increasing electric field it decreases due to Stark effect. Neither amplitude and broadening parameter nor energy transition does not depend on the direction of electric field. Only parameter that depends on the direction of electric field in QW is phase of the signal. The analysis of Franz-Keldysh oscillations (FKOs) from AlGaN barriers allowed to calculate the real electric field dependence on applied voltage and therefore to obtain the Stark shift dependence on electric field. The Stark shift reached from -12 meV to -35 meV for 450 kV/cm depending on the well width. This conditions were established for highest forward voltages therefore this is the value of electric field and Stark shift caused only by the intrinsic polarization of nitrides.
Quantum square-well with logarithmic central spike
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav; Semorádová, Iveta
2018-01-01
Roč. 33, č. 2 (2018), č. článku 1850009. ISSN 0217-7323 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : state-dependence of interactions * effective Hamiltonians * logarithmic nonlinearities * linearized quantum toy model Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics ( physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.165, year: 2016
Design and Fabrication of Multi Quantum well based GaN/InGaN Blue LED
Meel, K.; Mahala, P.; Singh, S.
2018-03-01
This paper presents the optimization of the multi-quantum well based Light Emitting Diode (LED) structure. We investigate the electrical and optical properties of the device on several factors like well width, barrier width, the number of quantum wells and then optimize the structure. The device is optimized for a well width and barrier width of 3nm and 6nm respectively, consisting of five quantum wells. Simulations were carried out using Silvaco ATLAS TCAD simulation program (Silvaco International, USA). The optimized structure was grown by MOCVD and fabricated. The I-V characteristic was also measured.
Low field Monte-Carlo calculations in heterojunctions and quantum wells
Hall, van P.J.; Rooij, de R.; Wolter, J.H.
1990-01-01
We present results of low-field Monte-Carlo calculations and compare them with experimental results. The negative absolute mobility of minority electrons in p-type quantum wells, as found in recent experiments, is described quite well.
The over-barrier resonant states and multi-channel scattering by a quantum well
Directory of Open Access Journals (Sweden)
Alexander F. Polupanov
2008-06-01
Full Text Available We demonstrate an explicit numerical method for accurate calculation ofthe analytic continuation of the scattering matrix, describing the multichannelscattering by a quantum well, to the unphysical region of complexvalues of the energy. Results of calculations show that one or severalpoles of the S-matrix exist, corresponding to the over-barrier resonantstates that are critical for the effect of the absolute reflection at scatteringof the heavy hole by a quantum well in the energy range where only theheavy hole may propagate over barriers in a quantum-well structure.Light- and heavy-hole states are described by the Luttinger Hamiltonianmatrix. The qualitative behaviour of the over-barrier scattering andresonant states is the same at variation of the shape of the quantum-wellpotential, however lifetimes of resonant states depend drastically on theshape and depth of a quantum well.
Study of hot carrier relaxation in quantum wells by subpicosecond Raman scattering
International Nuclear Information System (INIS)
Kim, Dai-sik; Yu, P.Y.
1990-03-01
Relaxation of hot carriers excited by subpicosecond laser pulses has been studied by Raman scattering in GaAs/AlAs multiple quantum wells with well widths varying between 100 and 1000 Angstrom. The hot phonon population observed by Raman scattering is found to decrease with the well width despite the fact that the hot electron temperature remains constant. The results are explained in terms of confinement of both electrons and optical phonons in quantum wells
Measuring type II stresses using 3DXRD
DEFF Research Database (Denmark)
Oddershede, Jette; Schmidt, Søren; Poulsen, Henning Friis
2010-01-01
An algorithm is presented for characterization of the grain resolved (type II) stress states in a polycrystalline sample based on monochromatic X-ray diffraction data. The algorithm is a robust 12-parameter-per-grain fit of the centre-of-mass grain positions, orientations and stress tensors...... including error estimation and outlier rejection. As examples of use results from two experiments – one on interstitial free (IF) steel and one on copper – will be presented. In the first experiment 96 grains in one layer of IF steel were monitored during elastic loading and unloading. Very consistent...
Leon, R.; Swift, G.; Magness, B.; Taylor, W.; Tang, Y.; Wang, K.; Dowd, P.; Zhang, Y.
2000-01-01
Successful implementation of technology using self-forming semiconductor Quantum Dots (QDs) has already demonstrated that temperature independent Dirac-delta density of states can be exploited in low current threshold QD lasers and QD infrared photodetectors.
Anisotropic emission and photon-recycling in strain-balanced quantum well solar cells
International Nuclear Information System (INIS)
Cabrera, C. I.; Enciso, A.; Contreras-Solorio, D. A.; Rimada, J. C.; Hernandez, L.; Connolly, J. P.
2014-01-01
Strain-balanced quantum well solar cells (SB-QWSCs) extend the photon absorption edge beyond that of bulk GaAs by incorporation of quantum wells in the i-region of a p–i–n device. Anisotropy arises from a splitting of the valence band due to compressive strain in the quantum wells, suppressing a transition which contributes to emission from the edge of the quantum wells. We have studied both the emission light polarized in the plane perpendicular (TM) to the quantum well which couples exclusively to the light hole transition and the emission polarized in the plane of the quantum wells (TE) which couples mainly to the heavy hole transition. It was found that the spontaneous emission rates TM and TE increase when the quantum wells are deeper. The addition of a distributed Bragg reflector can substantially increase the photocurrent while decreasing the radiative recombination current. We have examined the impact of the photon recycling effect on SB-QWSC performance. We have optimized SB-QWSC design to achieve single junction efficiencies above 30%
Anisotropic emission and photon-recycling in strain-balanced quantum well solar cells
Energy Technology Data Exchange (ETDEWEB)
Cabrera, C. I.; Enciso, A.; Contreras-Solorio, D. A. [Academic Unit of Physics, Autonomous University of Zacatecas, Czda. Solidaridad y Paseo La Bufa S/N, 98060 Zacatecas, Zac. (Mexico); Rimada, J. C. [Solar Cell Laboratory, Institute of Materials Science and Technology (IMRE), University of Havana, Zapata y G, 10400 La Habana (Cuba); Hernandez, L., E-mail: luisman@fisica.uh.cu [Faculty of Physics, University of Havana, Colina Universitaria. 10400 La Habana (Cuba); Connolly, J. P. [Nanophotonics Technology Center, Universidad Politécnica de Valencia, 46022 Valencia (Spain)
2014-04-28
Strain-balanced quantum well solar cells (SB-QWSCs) extend the photon absorption edge beyond that of bulk GaAs by incorporation of quantum wells in the i-region of a p–i–n device. Anisotropy arises from a splitting of the valence band due to compressive strain in the quantum wells, suppressing a transition which contributes to emission from the edge of the quantum wells. We have studied both the emission light polarized in the plane perpendicular (TM) to the quantum well which couples exclusively to the light hole transition and the emission polarized in the plane of the quantum wells (TE) which couples mainly to the heavy hole transition. It was found that the spontaneous emission rates TM and TE increase when the quantum wells are deeper. The addition of a distributed Bragg reflector can substantially increase the photocurrent while decreasing the radiative recombination current. We have examined the impact of the photon recycling effect on SB-QWSC performance. We have optimized SB-QWSC design to achieve single junction efficiencies above 30%.
Effect of quantum well position on the distortion characteristics of transistor laser
Piramasubramanian, S.; Ganesh Madhan, M.; Radha, V.; Shajithaparveen, S. M. S.; Nivetha, G.
2018-05-01
The effect of quantum well position on the modulation and distortion characteristics of a 1300 nm transistor laser is analyzed in this paper. Standard three level rate equations are numerically solved to study this characteristics. Modulation depth, second order harmonic and third order intermodulation distortion of the transistor laser are evaluated for different quantum well positions for a 900 MHz RF signal modulation. From the DC analysis, it is observed that optical power is maximum, when the quantum well is positioned near base-emitter interface. The threshold current of the device is found to increase with increasing the distance between the quantum well and the base-emitter junction. A maximum modulation depth of 0.81 is predicted, when the quantum well is placed at 10 nm from the base-emitter junction, under RF modulation. The magnitude of harmonic and intermodulation distortion are found to decrease with increasing current and with an increase in quantum well distance from the emitter base junction. A minimum second harmonic distortion magnitude of -25.96 dBc is predicted for quantum well position (230 nm) near to the base-collector interface for 900 MHz modulation frequency at a bias current of 20 Ibth. Similarly, a minimum third order intermodulation distortion of -38.2 dBc is obtained for the same position and similar biasing conditions.
Enhancement of Radiative Efficiency with Staggered InGaN Quantum Well Light Emitting Diodes
Energy Technology Data Exchange (ETDEWEB)
Tansu, Nelson; Dierolf, Volkmar; Huang, Gensheng; Penn, Samson; Zhao, Hongping; Liu, Guangyu; Li, Xiaohang; Poplawsky, Jonathan
2011-07-14
The technology on the large overlap InGaN QWs developed in this program is currently implemented in commercial technology in enhancing the internal quantum efficiency in major LED industry in US and Asia. The scientific finding from this work supported by the DOE enabled the implementation of this step-like staggered quantum well in the commercial LEDs.
International Nuclear Information System (INIS)
Javanainen, Juha
2010-01-01
We study theoretically an atomic Bose-Einstein condensate in a double-well trap, both quantum-mechanically and classically, under conditions such that in the classical model an unstable equilibrium dissolves into large-scale oscillations of the atoms between the potential wells. Quantum mechanics alone does not exhibit such nonlinear dynamics, but measurements of the atom numbers in the potential wells may nevertheless cause the condensate to behave essentially classically.
Shallow acceptors in strained Ge/Ge1-xSix heterostructures with quantum wells
International Nuclear Information System (INIS)
Aleshkin, V.Ya.; Andreev, B.A.; Gavrilenko, V.I.; Erofeeva, I.V.; Kozlov, D.V.; Kuznetsov, O.A.
2000-01-01
Dependence of acceptor localized state energies in quantum wells (strained layers of Ge in heterostructures Ge/Ge 1-x Si x ) on the width of quantum well and position in it was studied theoretically. Spectrum of impurity absorption in the far infrared range was calculated. Comparison of the results calculated and observed photoconductivity spectra permits estimating acceptor distribution over quantum well and suggesting conclusion that acceptors can be largely concentrated near heteroboundaries. Absorption spectrum was calculated bearing in mind resonance impurity states, which permits explaining the observed specific features in the photoconductivity spectrum short-wave range by transition to resonance energy levels, bound to upper subzones of dimensional quantization [ru
Simulation of a broadband nano-biosensor based on an onion-like quantum dot–quantum well structure
International Nuclear Information System (INIS)
Absalan, H; SalmanOgli, A; Rostami, R
2013-01-01
The fluorescence resonance energy transfer is studied between modified quantum-dots and quantum-wells used as a donor and an acceptor. Because of the unique properties of quantum dots, including diverse surface modification flexibility, bio-compatibility, high quantum yields and wide absorption, their use as nano-biosensors and bio-markers used in diagnosis of cancer is suggested. The fluorescence resonance energy transfer is simulated in a quantum dot–quantum well system, where the energy can flow from donor to acceptor. If the energy transfer can be either turned on or off by a specific interaction, such as interaction with any dyes, a molecular binding event or a cleavage reaction, a sensor can be designed (under assumption that the healthy cells have a known effect or unyielding effect on output parameters while cancerous cells, due to their pandemic optical properties, can impact the fluorescence resonance energy transfer parameters). The developed nano-biosensor can operate in a wide range of wavelengths (310 – 760 nm). (laser applications in biology and medicine)
Simulation of a broadband nano-biosensor based on an onion-like quantum dot-quantum well structure
Energy Technology Data Exchange (ETDEWEB)
Absalan, H; SalmanOgli, A; Rostami, R
2013-07-31
The fluorescence resonance energy transfer is studied between modified quantum-dots and quantum-wells used as a donor and an acceptor. Because of the unique properties of quantum dots, including diverse surface modification flexibility, bio-compatibility, high quantum yields and wide absorption, their use as nano-biosensors and bio-markers used in diagnosis of cancer is suggested. The fluorescence resonance energy transfer is simulated in a quantum dot-quantum well system, where the energy can flow from donor to acceptor. If the energy transfer can be either turned on or off by a specific interaction, such as interaction with any dyes, a molecular binding event or a cleavage reaction, a sensor can be designed (under assumption that the healthy cells have a known effect or unyielding effect on output parameters while cancerous cells, due to their pandemic optical properties, can impact the fluorescence resonance energy transfer parameters). The developed nano-biosensor can operate in a wide range of wavelengths (310 - 760 nm). (laser applications in biology and medicine)
Fabrication of InN/InGaN multiple quantum well structures by RF-MBE
Energy Technology Data Exchange (ETDEWEB)
Kurouchi, M.; Muto, D.; Takado, S.; Araki, T.; Nanishi, Y. [Department of Photonics, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577 (Japan); Na, H.; Naoi, H. [Center for Promotion of The 21st Century COE Program, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577 (Japan); Miyajima, T. [Optoelectronics Laboratory, Materials Laboratories, Sony Corporation, 4-14-1 Asahi, Atsugi, Kanagawa 243-0014 (Japan)
2006-06-15
InN/InGaN multiple quantum well structures have been fabricated on InN templates grown on (0 0 0 1) sapphire substrates by radio-frequency plasma-assisted molecular beam epitaxy. The structures were confirmed by X-ray diffraction, and satellite peaks up to the 3rd order were observed. From InN/InGaN multiple quantum well structures with different well widths, photoluminescence (PL) emission from the well layers was observed at 77 K, and the PL peak energy slightly blueshifted with decreasing the well width. This dependence can be explained by combined effects of quantum size effect, quantum confined Stark effect, and band filling effect. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Intraband light absorption by holes in InGaAsP/InP quantum wells
Pavlov, N. V.; Zegrya, G. G.
2018-03-01
A microscopic analysis of the mechanism of intraband radiation absorption by holes with their transition to a spin-split band for quantum wells based on InGaAsP/InP solid solutions is performed within the framework of the four-band Kane model. The calculation is made for two polarizations of the incident radiation: along the crystal growth axis and in the plane of the quantum well. It is shown that this process can be the main mechanism of internal radiation losses for quantum well lasers. It is also shown that the dependence of the absorption coefficient on the width of the quantum well has a maximum at a well width from 40 to 60 A.
Binding energy of impurity states in an inverse parabolic quantum well under magnetic field
International Nuclear Information System (INIS)
Kasapoglu, E.; Sari, H.; Soekmen, I.
2007-01-01
We have investigated the effects of the magnetic field which is directed perpendicular to the well on the binding energy of the hydrogenic impurities in an inverse parabolic quantum well (IPQW) with different widths as well as different Al concentrations at the well center. The Al concentration at the barriers was always x max =0.3. The calculations were performed within the effective mass approximation, using a variational method. We observe that IPQW structure turns into parabolic quantum well with the inversion effect of the magnetic field and donor impurity binding energy in IPQW strongly depends on the magnetic field, Al concentration at the well center and well dimensions
DEFF Research Database (Denmark)
Lyssenko, V. G.; Østergaard, John Erland; Hvam, Jørn Märcher
1999-01-01
Summary form only given. We focus on the ability to control the electronic coupling in coupled quantum wells with external E-fields leading to a strong modification of the coherent light emission, in particular at a bias where a superlattice-like miniband is formed. More specifically, we investig......Summary form only given. We focus on the ability to control the electronic coupling in coupled quantum wells with external E-fields leading to a strong modification of the coherent light emission, in particular at a bias where a superlattice-like miniband is formed. More specifically, we...... investigate a MBE-grown GaAs sample with a sequence of 15 single quantum wells having a successive increase of 1 monolayer in width ranging from 62 A to 102 A and with AlGaAs barriers of 17 Å....
Floquet Weyl semimetals in light-irradiated type-II and hybrid line-node semimetals
Chen, Rui; Zhou, Bin; Xu, Dong-Hui
2018-04-01
Type-II Weyl semimetals have recently attracted intensive research interest because they host Lorentz-violating Weyl fermions as quasiparticles. The discovery of type-II Weyl semimetals evokes the study of type-II line-node semimetals (LNSMs) whose linear dispersion is strongly tilted near the nodal ring. We present here a study on the circularly polarized light-induced Floquet states in type-II LNSMs, as well as those in hybrid LNSMs that have a partially overtilted linear dispersion in the vicinity of the nodal ring. We illustrate that two distinct types of Floquet Weyl semimetal (WSM) states can be induced in periodically driven type-II and hybrid LNSMs, and the type of Floquet WSMs can be tuned by the direction and intensity of the incident light. We construct phase diagrams of light-irradiated type-II and hybrid LNSMs which are quite distinct from those of light-irradiated type-I LNSMs. Moreover, we show that photoinduced Floquet type-I and type-II WSMs can be characterized by the emergence of different anomalous Hall conductivities.
Achalasia in a Patient with Polyglandular Autoimmune Syndrome Type II
Directory of Open Access Journals (Sweden)
Bashar S. Amr
2015-05-01
Full Text Available Achalasia is a rare disease characterized by aperistalsis of the esophageal body and failure of the lower esophageal sphincter to relax. The etiology of this disease remains unknown. Polyglandular autoimmune syndrome type II is a well-identified disease characterized by the occurrence of autoimmune Addison's disease in combination with autoimmune thyroid disease and/or type 1 diabetes mellitus. We report a case that suggests autoimmunity and immunogenicity as a probable contributing factor for association of these two rare disorders.
Stretchable Persistent Spin Helices in GaAs Quantum Wells
Dettwiler, Florian; Fu, Jiyong; Mack, Shawn; Weigele, Pirmin J.; Egues, J. Carlos; Awschalom, David D.; Zumbühl, Dominik M.
2017-07-01
the extracted spin-diffusion lengths and decay times show a significant enhancement near α =β . Since within the continuous-locking regime quantum transport is diffusive (2D) for charge while ballistic (1D) for spin and thus amenable to coherent spin control, stretchable PSHs could provide the platform for the much heralded long-distance communication ˜8 - 25 μ m between solid-state spin qubits, where the spin diffusion length for α ≠β is an order of magnitude smaller.
Stretchable Persistent Spin Helices in GaAs Quantum Wells
Directory of Open Access Journals (Sweden)
Florian Dettwiler
2017-07-01
sufficiently weak so that the extracted spin-diffusion lengths and decay times show a significant enhancement near α=β. Since within the continuous-locking regime quantum transport is diffusive (2D for charge while ballistic (1D for spin and thus amenable to coherent spin control, stretchable PSHs could provide the platform for the much heralded long-distance communication ∼8–25 μm between solid-state spin qubits, where the spin diffusion length for α≠β is an order of magnitude smaller.
National Aeronautics and Space Administration — We propose to develop a SPECTRALLY-TUNABLE INFRARED CAMERA based on quantum well infrared photodetector (QWIP) focal plane array (FPA) technology. This will build on...
National Aeronautics and Space Administration — We propose to develop a compact handheld longwave infrared camera based on quantum well infrared photodetector (QWIP) focal plane array (FPA) technology. Based on...
International Workshop on "Intersubband Transitions in Quantum Wells : Physics and Applications"
Su, Yan-Kuin
1998-01-01
The International Workshop on "Intersubband Transitions in Quantum Wells:: Physics and Applications," was held at National Cheng Kung University, in Tainan, Taiwan, December 15-18, 1997. The objective of the Workshop is to facilitate the presentation and discussion of the recent results in theoretical, experimental, and applied aspects of intersubband transitions in quantum wells and dots. The program followed the tradition initiated at the 1991 conference in Cargese-France, the 1993 conference in Whistler, B. C. Canada, and the 1995 conference in Kibbutz Ginosar, Israel. Intersubband transitions in quantum wells and quantum dots have attracted considerable attention in recent years, mainly due to the promise of various applications in the mid- and far-infrared regions (2-30 J. lm). Over 40 invited and contributed papers were presented in this four-day workshop, with topics covered most aspects of the intersubband transition phenomena including: the basic intersubband transition processes, multiquantum well i...
Broadband tunability of gain-flattened quantum-well semiconductor lasers with an external grating
International Nuclear Information System (INIS)
Mittelstein, M.; Mehuys, D.; Yariv, A.; Sarfaty, R.; Ungar, J.E.
1989-01-01
Semiconductor injection lasers are known to be tunable over a range of order kΒ · T. Quantum-well lasers, in particular, are shown to exhibit flattened, broadband gain spectra at a particular pumping condition. The gain requirement for a grating-tuned external cavity configuration is examined and is applied to a semiconductor quantum-well laser with an optimized length of gain region. The coupled-cavity formalism is employed to examine the conditions for continuous tuning. The possible tuning range of double-heterostructure lasers is compared to that of quantum-well lasers. The predicted broadband tunability of quantum-well lasers is confirmed experimentally by grating-tuning of uncoated lasers exceeding 120 nm, with single, longitudinal mode output power exceeding 300 mW
Intense laser field effects on a Woods-Saxon potential quantum well
Restrepo, R. L.; Morales, A. L.; Akimov, V.; Tulupenko, V.; Kasapoglu, E.; Ungan, F.; Duque, C. A.
2015-11-01
This paper presents the results of the theoretical study of the effects of non-resonant intense laser field and electric and magnetic fields on the optical properties in an quantum well (QW) make with Woods-Saxon potential profile. The electric field and intense laser field are applied along the growth direction of the Woods-Saxon quantum well and the magnetic field is oriented perpendicularly. To calculate the energy and the wave functions of the electron in the Woods-Saxon quantum well, the effective mass approximation and the method of envelope wave function are used. The confinement in the Woods-Saxon quantum well is changed drastically by the application of intense laser field or either the effect of electric and magnetic fields. The optical properties are calculated using the compact density matrix.
National Research Council Canada - National Science Library
Huang, Danhong
2001-01-01
...), the authors explained the experimentally observed zero-bias residual tunneling current A. Singh and D. A. Cardimona, Opt. Eng., v38, 1424 (1999) in quantum-well photodetectors biased by an ac voltage...
Hole subbands in quantum wells: exact solution for six-dimensional Luttinger–Kohn Hamiltonian
International Nuclear Information System (INIS)
Belykh, V G; Tulupenko, V N
2009-01-01
The exact solution for wavefunctions of six-dimensional Luttinger–Kohn Hamiltonian, describing the valence band of cubic semiconductors in the effective mass approximation, is derived. The problem of space quantization for a rectangular quantum well with finite depth is solved. The wavefunctions of carriers in the quantum well are built up of a complete set of exact wavefunctions for the bulk materials constituting the heterojunction. Obtained formulae for wavefunctions permit one to derive the analytical expression for a determinant, which nulls give the allowed energy values. Comparison of the energy spectra for the Si/Si 0.88 Ge 0.12 quantum well obtained in the framework of the developed technique, and using four-dimensional Luttinger–Kohn Hamiltonian allows us to trace clearly the impact of the spin–orbit interaction on the formation of the energy spectrum for the quantum well
Two-dimensional electron gas in monolayer InN quantum wells
International Nuclear Information System (INIS)
Pan, W.; Wang, G. T.; Dimakis, E.; Moustakas, T. D.; Tsui, D. C.
2014-01-01
We report in this letter experimental results that confirm the two-dimensional nature of the electron systems in a superlattice structure of 40 InN quantum wells consisting of one monolayer of InN embedded between 10 nm GaN barriers. The electron density and mobility of the two-dimensional electron system (2DES) in these InN quantum wells are 5 × 10 15 cm −2 (or 1.25 × 10 14 cm −2 per InN quantum well, assuming all the quantum wells are connected by diffused indium contacts) and 420 cm 2 /Vs, respectively. Moreover, the diagonal resistance of the 2DES shows virtually no temperature dependence in a wide temperature range, indicating the topological nature of the 2DES
Modelling and characterization of colliding-pulse mode-locked (CPM) quantum well lasers. [MPS1
DEFF Research Database (Denmark)
Bischoff, Svend; Brorson, S.D.; Franck, T.
1996-01-01
A theoretical and experimental study of passive colliding pulse mode-locked quantum well lasers is presented. The theoretical model for the gain dynamics is based on semi-classical density matrixequations. The gain dynamics are characterized exp...
Chang, Shu-Wei; Chang-Hasnain, Connie J.; Wang, Hailin
2005-03-01
The electromagnetically induced transparency from spin coherence has been proposed in [001] quantum wells recently. [1] The spin coherence is a potential candidate to demonstrate semiconductor-based slow light at room temperature. However, the spin coherence time is not long enough to demonstrate a significant slowdown factor in [001] quantum wells. Further, the required transition of light-hole excitons lies in the absorption of heavy-hole continuum states. The extra dephasing and absorption from these continuum states are drawbacks for slow light. Here, we propose to use [110] strained quantum wells instead of [001] quantum wells. The long spin relaxation time in [110] quantum wells at room temperature, and thus more robust spin coherence, [2] as well as the strain-induced separation [3, 4] of the light-hole exciton transition from the heavy-hole continuum absorption can help to slow down light in quantum wells. [1] T. Li, H. Wang, N. H. Kwong, and R. Binder, Opt. Express 11, 3298 (2003). [2] Y. Ohno, R. Terauchi, T. Adachi, F. Matsukura, and H. Ohno, Phys. Rev. Lett. 83, 4196 (1999). [3] C. Y. P. Chao and S. L. Chuang, Phys. Rev. B 46, 4110 (1992). [4] C. Jagannath, E. S. Koteles, J. Lee, Y. J. Chen, B. S. Elman, and J. Y. Chi, Phys. Rev. B 34, 7027 (1986).
Ultrafast and band-selective Auger recombination in InGaN quantum wells
International Nuclear Information System (INIS)
Williams, Kristopher W.; Monahan, Nicholas R.; Zhu, X.-Y.; Koleske, Daniel D.; Crawford, Mary H.
2016-01-01
In InGaN quantum well based light-emitting diodes, Auger recombination is believed to limit the quantum efficiency at high injection currents. Here, we report the direct observation of carrier loss from Auger recombination on a sub-picosecond timescale in a single InGaN quantum well using time-resolved photoemission. Selective excitations of different valence sub-bands reveal that the Auger rate constant decreases by two orders of magnitude as the effective hole mass decreases, confirming the critical role of momentum conservation.
Modeling of carrier dynamics in quantum-well electroabsorption modulators
DEFF Research Database (Denmark)
Højfeldt, Sune; Mørk, Jesper
2002-01-01
We present a comprehensive drift-diffusion-type electroabsorption modulator (EAM) model. The model allows us to investigate both steady-state properties and to follow the sweep-out of carriers after pulsed optical excitation. Furthermore, it allows for the investigation of the influence that vari...... in the field near each well affect the escape of carriers from that well. Finally, we look at the influence that the separate-confinement heterostructure barriers have on the carrier sweep-out....... that various design parameters have on the device properties, in particular how they affect the carrier dynamics and the corresponding field dynamics. A number of different types of results are presented. We calculate absorption spectra and steady-state field screening due to carrier pile-up at the separate......-confinement heterobarriers. We then move on to look at carrier sweep-out upon short-pulse optical excitation. For a structure with one well, we analyze how the well position affects the carrier sweep-out and the absorption recovery. We calculate the field dynamics in a multiquantum-well structure and discuss how the changes...
Novel High Power Type-I Quantum Well Cascade Diode Lasers
2017-08-30
Novel High Power Type-I Quantum Well Cascade Diode Lasers The views, opinions and/or findings contained in this report are those of the author(s...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6... High Power Type-I Quantum Well Cascade Diode Lasers Report Term: 0-Other Email: leon.shterengas@stonybrook.edu Distribution Statement: 1-Approved
Energy Technology Data Exchange (ETDEWEB)
Duc, Huynh Thanh; Foerstner, Jens; Meier, Torsten [Department of Physics and CeOPP, University Paderborn (Germany); Priyadarshi, Shekar; Racu, Ana Maria; Pierz, Klaus; Siegner, Uwe; Bieler, Mark [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)
2010-07-01
We compute photocurrents generated by femtosecond single-color laser pulses in non-centrosymmetric semiconductor quantum wells by combining a 14 x 14 k.p band structure theory with multi-band semiconductor Bloch equations. The transient photocurrents are investigated experimentally by measuring the associated Terahertz emission. The dependencies of the photocurrent and the Terahertz emission on the excitation conditions are discussed for (110)-oriented GaAs quantum wells. The comparison between theory and experiment shows a good agreement.
Accentuated hyperparathyroidism in type II Bartter syndrome.
Landau, Daniel; Gurevich, Evgenia; Sinai-Treiman, Levana; Shalev, Hannah
2016-07-01
Bartter syndrome (BS) may be associated with different degrees of hypercalciuria, but marked parathyroid hormone (PTH) abnormalities have not been described. We compared clinical and laboratory data of patients with either ROMK-deficient type II BS (n = 14) or Barttin-deficient type IV BS (n = 20). Only BS-IV patients remained mildly hypokalemic in spite of a higher need for potassium supplementation. Estimated glomerular filtration rate (eGFR) was mildly decreased in only four BS-IV patients. Average PTH values were significantly higher in BS-II (160.6 ± 85.8 vs. 92.5 ± 48 pg/ml in BS-IV, p = 0.006). In both groups, there was a positive correlation between age and log(PTH). Levels of 25(OH) vitamin D were not different. Total serum calcium was lower (within normal limits) and age-related serum phosphate (Pi)-SDS was increased in BS-II (1.19 ± 0.71 vs. 0.01 ± 1.04 in BS-IV, p < 0.001). The GFR threshold for Pi reabsorption was higher in BS-II (5.63 ± 1.25 vs. 4.36 ± 0.98, p = 0.002). Spot urine calcium/creatinine ratio and nephrocalcinosis rate (100 vs. 16 %) were higher in the BS-II group. PTH, serum Pi levels, and urinary threshold for Pi reabsorption are significantly elevated in type II vs. type IV BS, suggesting a PTH resistance state. This may be a response to more severe long-standing hypercalciuria, leading to a higher rate of nephrocalcinosis in BS-II.
Characterisation of intermixed quantum well material by measurements of spontaneous emission
International Nuclear Information System (INIS)
Blay, C.
2000-01-01
The purpose of this thesis is to present experimental techniques and results of the characterisation of intermixed GaAs/AlGaAs quantum well material, specifically gain spectra and carrier lifetime measurements. Relationships are established between intermixing and internal scattering loss, quantum efficiency, quantum well gain coefficient, peak modal gain, and radiative and non-radiative recombination rates. The process of quantum well intermixing, to engineer the bandgap of quantum well material, is now a well understood and reproducible technique. It can be used in producing extended cavity lasers, multi wavelength lasers and photonic integrated circuits. However, little work has been carried out to quantify the effects of intermixing on material parameters. Until now device optimisation has been carried out by a trial and error technique. One of the most fundamental aspects of laser behaviour concerns the gain characteristics of the amplifying medium. An understanding of these characteristics is necessary if one is to make meaningful estimates of steady state or transient laser output intensity and frequency. Optimisation of these fundamental parameters allows the last bit of performance such as optical power, spectral width and modulation speeds, to be squeezed from intermixed quantum well devices. (author)
Electronic properties in a quantum well structure of Weyl semimetal
International Nuclear Information System (INIS)
You, Wen-Long; Zhou, Jiao-Jiao; Wang, Xue-Feng; Oleś, Andrzej M.
2016-01-01
We investigate the confined states and transport of three-dimensional Weyl electrons around a one-dimensional external rectangular electrostatic potential. The confined states with finite transverse wave vector exist at energies higher than the half well depth or lower than the half barrier height. The rectangular potential appears completely transparent to the normal incident electrons but not otherwise. The tunneling transmission coefficient is sensitive to their incident angle and shows resonant peaks when their energy coincides with the confined spectra. In addition, for the electrons in the conduction (valence) band through a potential barrier (well), the transmission spectrum has a gap of width increasing with the incident angle. Interestingly, the electron linear zero-temperature conductance over the potential can approach zero when the Fermi energy is aligned to the top and bottom energies of the potential, when only electron beams normal to the potential interfaces can pass through. The considered structure can be used to collimate the Weyl electron beams.
Nonadiabatic quantum state control of many bosons in few wells
DEFF Research Database (Denmark)
Tichy, Malte C.; Kock Pedersen, Mads; Mølmer, Klaus
2013-01-01
We present a fast scheme for arbitrary unitary control of interacting bosonic atoms in a double well. Assuming fixed interwell tunneling rate and intrawell interaction strength, we control the many-atom state by a discrete sequence of shifts of the single-well energies. For strong interactions......, resonant tunneling transitions implement beam-splitter U(2) rotations among atom number eigenstates, which can be combined and, thus, permit full controllability. By numerically optimizing such sequences of couplings at avoided level crossings, we extend the realm of full controllability to a wide range...... of realistic interaction parameters, while we remain in the simple control space. We demonstrate the efficiency and the high achievable fidelity of our proposal with nonadiabatic population transfer, NOON-state creation, a cnot gate, and a transistorlike, conditional evolution of several atoms....
Quantum infinite square well with an oscillating wall
International Nuclear Information System (INIS)
Glasser, M.L.; Mateo, J.; Negro, J.; Nieto, L.M.
2009-01-01
A linear matrix equation is considered for determining the time dependent wave function for a particle in a one-dimensional infinite square well having one moving wall. By a truncation approximation, whose validity is checked in the exactly solvable case of a linearly contracting wall, we examine the cases of a simple harmonically oscillating wall and a non-harmonically oscillating wall for which the defining parameters can be varied. For the latter case, we examine in closer detail the dependence on the frequency changes, and we find three regimes: an adiabatic behabiour for low frequencies, a periodic one for high frequencies, and a chaotic behaviour for an intermediate range of frequencies.
Exact quantum solution for some symmetrical two-well potentials
International Nuclear Information System (INIS)
Ley-Koo, E.
1985-01-01
We construct the solutions of the Schroedinger equation for the rectangular-well, harmonic-oscillator and symmetric-linear potentials with a delta-function potential superimposed in their central positions. The odd-parity states are not affected by the presence of the delta-function potential. The even-parity states are determined by the condition that their wave functions have in the central position a fixed logarithmic derivative, which is proportional to the intensity the delta-function potential. (author)
Breakdown of the quantum Hall effect in InAs/AlSb quantum wells due to counterflowing edge channels
Wees, B.J. van; Meijer, G.I.; Kuipers, J.J.; Klapwijk, T.M.; Graaf, W. van de; Borghs, G.
1995-01-01
We investigated magnetotransport in the two-dimensional electron gas (2DEG) present in InAs/AlSb quantum wells. The filling factor Ng underneath a gate electrode was reduced relative to the bulk filling factor Nb. For Ng
International Nuclear Information System (INIS)
Jermakov, V.M.
1997-01-01
In the case of low transparency of barriers, tunneling of electrons through a double barrier system with account their Coulomb interaction in the inter barrier space (quantum well) is considered. The quantum state of the well is supposed to be triply degenerated. It was shown that the dependence of quantum well accupation on the applied bias has a step like character at low temperatures, and there is a threshold value in the region of small applied bias. These properties can be explained by splitting of states in the well due to the electron interaction. The considered system also has bistability properties. This is due to the possibility for electrons to occupy upper levels in the well while lower levels remain empty. Charge fluctuations in the well are also discussed
Quantum information entropies for a squared tangent potential well
Energy Technology Data Exchange (ETDEWEB)
Dong, Shishan [Information and Engineering College, DaLian University, 116622 (China); Sun, Guo-Hua, E-mail: sunghdb@yahoo.com [Centro Universitario Valle de Chalco, Universidad Autónoma del Estado de México, Valle de Chalco Solidaridad, Estado de México, 56615 (Mexico); Dong, Shi-Hai, E-mail: dongsh2@yahoo.com [Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Edificio 9, México D.F. 07738 (Mexico); Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States); Draayer, J.P., E-mail: draayer@sura.org [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States)
2014-01-10
The particle in a symmetrical squared tangent potential well is studied by examining its Shannon information entropy and standard deviations. The position and momentum information entropy densities ρ{sub s}(x), ρ{sub s}(p) and probability densities ρ(x), ρ(p) are illustrated with different potential range L and potential depth U. We present analytical position information entropies S{sub x} for the lowest two states. We observe that the sum of position and momentum entropies S{sub x} and S{sub p} expressed by Bialynicki-Birula–Mycielski (BBM) inequality is satisfied. Some eigenstates exhibit entropy squeezing in the position. The entropy squeezing in position will be compensated by an increase in momentum entropy. We also note that the S{sub x} increases with the potential range L, while decreases with the potential depth U. The variation of S{sub p} is contrary to that of S{sub x}.
Quantum information entropies for a squared tangent potential well
International Nuclear Information System (INIS)
Dong, Shishan; Sun, Guo-Hua; Dong, Shi-Hai; Draayer, J.P.
2014-01-01
The particle in a symmetrical squared tangent potential well is studied by examining its Shannon information entropy and standard deviations. The position and momentum information entropy densities ρ s (x), ρ s (p) and probability densities ρ(x), ρ(p) are illustrated with different potential range L and potential depth U. We present analytical position information entropies S x for the lowest two states. We observe that the sum of position and momentum entropies S x and S p expressed by Bialynicki-Birula–Mycielski (BBM) inequality is satisfied. Some eigenstates exhibit entropy squeezing in the position. The entropy squeezing in position will be compensated by an increase in momentum entropy. We also note that the S x increases with the potential range L, while decreases with the potential depth U. The variation of S p is contrary to that of S x .
Quantum square-well with logarithmic central spike
Znojil, Miloslav; Semorádová, Iveta
2018-01-01
Singular repulsive barrier V (x) = -gln(|x|) inside a square-well is interpreted and studied as a linear analog of the state-dependent interaction ℒeff(x) = -gln[ψ∗(x)ψ(x)] in nonlinear Schrödinger equation. In the linearized case, Rayleigh-Schrödinger perturbation theory is shown to provide a closed-form spectrum at sufficiently small g or after an amendment of the unperturbed Hamiltonian. At any spike strength g, the model remains solvable numerically, by the matching of wave functions. Analytically, the singularity is shown regularized via the change of variables x = expy which interchanges the roles of the asymptotic and central boundary conditions.
Efficiency dip observed with InGaN-based multiple quantum well solar cells
Lai, Kunyu; Lin, G. J.; Wu, Yuhrenn; Tsai, Menglun; He, Jr-Hau
2014-01-01
The dip of external quantum efficiency (EQE) is observed on In0.15Ga0.85N/GaN multiple quantum well (MQW) solar cells upon the increase of incident optical power density. With indium composition increased to 25%, the EQE dip becomes much less noticeable. The composition dependence of EQE dip is ascribed to the competition between radiative recombination and photocurrent generation in the active region, which are dictated by quantum-confined Stark effect (QCSE) and composition fluctuation in the MQWs.
A Comparison of the recombination efficiency in green-emitting InGaN quantum dots and quantum wells
International Nuclear Information System (INIS)
Park, Il-Kyu; Kwon, Min-Ki; Park, Seong-Ju
2012-01-01
A comparative investigation of the recombination efficiency of green-emitting InGaN quantum dots (QDs) and quantum wells (QWs) is reported in this paper. Optical investigations using temperature dependent photoluminescence (PL) results showed that the internal quantum efficiency of InGaN QDs at room temperature was 8.7 times larger than that found for InGaN QWs because they provided dislocation-free recombination sites for the electrical charge carriers. The excitation power-dependent PL and electroluminescence results showed that the effect of the polarization induced electric field on the recombination process of electrical charge carriers in the QDs was negligibly small whereas it was dominant in the QWs. These results indicate that InGaN QDs are more beneficial than QWs in improving the luminescence efficiency of LEDs in the green spectral range.
International Nuclear Information System (INIS)
Cox, H.M.; Morais, P.C.; Hwang, D.M.; Bastos, P.; Gmitter, T.J.; Nazar, L.; Worlock, J.M.; Yablonovitch, E.; Hummel, S.G.
1988-09-01
A variety of InGaAs/InP quantum structures have been grown by vapor levitation epitaxy (VLE) and investigated by low temperature photoluminescence (PL). Excellent long-range uniformity of QW peak positions across a two-inch diameter wafer is achieved. Monolayer thickness variations in single QW's are used to establish an essentially unambiguous correlation of QW thickness with energy upshift for ultra-thin quantum wells. PL evidence is presented of the growth, for the first time by any technique, of an InGaAs/InP QW of single monolayer thickness (2.93 (angstrom)). Quantum wires were fabricated entirely by VLE as thin as one monolayer and estimated to be three unit cells wide. (author) [pt
Visualizing the solutions for the circular infinite well in quantum and classical mechanics
International Nuclear Information System (INIS)
Robinett, R.W.
1996-01-01
The classical and quantum mechanical problem of a particle in the infinite circular well has recently surfaced in two quite different manifestations: (i) the observation of open-quote open-quote electron standing waves close-quote close-quote in circular open-quote open-quote corrals close-quote close-quote of atoms adsorbed on surfaces and (ii) as a benchmark example of an integrable system for comparison to the classical and quantum chaotic behavior of the open-quote open-quote stadium billiards close-quote close-quote problem. Motivated by this, we review the quantum and classical probability distributions for both position and momentum for this familiar problem, focusing on the visualization of the quantum wave functions and classical trajectories as well as the semiclassical connections between the two. copyright 1996 American Association of Physics Teachers
Spinor-electron wave guided modes in coupled quantum wells structures by solving the Dirac equation
International Nuclear Information System (INIS)
Linares, Jesus; Nistal, Maria C.
2009-01-01
A quantum analysis based on the Dirac equation of the propagation of spinor-electron waves in coupled quantum wells, or equivalently coupled electron waveguides, is presented. The complete optical wave equations for Spin-Up (SU) and Spin-Down (SD) spinor-electron waves in these electron guides couplers are derived from the Dirac equation. The relativistic amplitudes and dispersion equations of the spinor-electron wave-guided modes in a planar quantum coupler formed by two coupled quantum wells, or equivalently by two coupled slab electron waveguides, are exactly derived. The main outcomes related to the spinor modal structure, such as the breaking of the non-relativistic degenerate spin states, the appearance of phase shifts associated with the spin polarization and so on, are shown.
Energy Technology Data Exchange (ETDEWEB)
Morrison, C., E-mail: c.morrison.2@warwick.ac.uk; Casteleiro, C.; Leadley, D. R.; Myronov, M. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)
2016-09-05
The complex quantum transport of a strained Ge quantum well (QW) modulation doped heterostructure with two types of mobile carriers has been observed. The two dimensional hole gas (2DHG) in the Ge QW exhibits an exceptionally high mobility of 780 000 cm{sup 2}/Vs at temperatures below 10 K. Through analysis of Shubnikov de-Haas oscillations in the magnetoresistance of this 2DHG below 2 K, the hole effective mass is found to be 0.065 m{sub 0}. Anomalous conductance peaks are observed at higher fields which deviate from standard Shubnikov de-Haas and quantum Hall effect behaviour due to conduction via multiple carrier types. Despite this complex behaviour, analysis using a transport model with two conductive channels explains this behaviour and allows key physical parameters such as the carrier effective mass, transport, and quantum lifetimes and conductivity of the electrically active layers to be extracted. This finding is important for electronic device applications, since inclusion of highly doped interlayers which are electrically active, for enhancement of, for example, room temperature carrier mobility, does not prevent analysis of quantum transport in a QW.
Morrison, C.; Casteleiro, C.; Leadley, D. R.; Myronov, M.
2016-09-01
The complex quantum transport of a strained Ge quantum well (QW) modulation doped heterostructure with two types of mobile carriers has been observed. The two dimensional hole gas (2DHG) in the Ge QW exhibits an exceptionally high mobility of 780 000 cm2/Vs at temperatures below 10 K. Through analysis of Shubnikov de-Haas oscillations in the magnetoresistance of this 2DHG below 2 K, the hole effective mass is found to be 0.065 m0. Anomalous conductance peaks are observed at higher fields which deviate from standard Shubnikov de-Haas and quantum Hall effect behaviour due to conduction via multiple carrier types. Despite this complex behaviour, analysis using a transport model with two conductive channels explains this behaviour and allows key physical parameters such as the carrier effective mass, transport, and quantum lifetimes and conductivity of the electrically active layers to be extracted. This finding is important for electronic device applications, since inclusion of highly doped interlayers which are electrically active, for enhancement of, for example, room temperature carrier mobility, does not prevent analysis of quantum transport in a QW.
Wide bandgap, strain-balanced quantum well tunnel junctions on InP substrates
International Nuclear Information System (INIS)
Lumb, M. P.; Yakes, M. K.; Schmieder, K. J.; Affouda, C. A.; Walters, R. J.; González, M.; Bennett, M. F.; Herrera, M.; Delgado, F. J.; Molina, S. I.
2016-01-01
In this work, the electrical performance of strain-balanced quantum well tunnel junctions with varying designs is presented. Strain-balanced quantum well tunnel junctions comprising compressively strained InAlAs wells and tensile-strained InAlAs barriers were grown on InP substrates using solid-source molecular beam epitaxy. The use of InAlAs enables InP-based tunnel junction devices to be produced using wide bandgap layers, enabling high electrical performance with low absorption. The impact of well and barrier thickness on the electrical performance was investigated, in addition to the impact of Si and Be doping concentration. Finally, the impact of an InGaAs quantum well at the junction interface is presented, enabling a peak tunnel current density of 47.6 A/cm 2 to be realized.
Optical properties of the Tietz-Hua quantum well under the applied external fields
Kasapoglu, E.; Sakiroglu, S.; Ungan, F.; Yesilgul, U.; Duque, C. A.; Sökmen, I.
2017-12-01
In this study, the effects of the electric and magnetic fields as well as structure parameter- γ on the total absorption coefficient, including linear and third order nonlinear absorption coefficients for the optical transitions between any two subband in the Tietz-Hua quantum well have been investigated. The optical transitions were investigated by using the density matrix formalism and the perturbation expansion method. The Tietz-Hua quantum well becomes narrower (wider) when the γ - structure parameter increases (decreases) and so the energies of the bound states will be functions of this parameter. Therefore, we can provide the red or blue shift in the peak position of the absorption coefficient by changing the strength of the electric and magnetic fields as well as the structure parameters and these results can be used to adjust and control the optical properties of the Tietz-Hua quantum well.
Wide bandgap, strain-balanced quantum well tunnel junctions on InP substrates
Energy Technology Data Exchange (ETDEWEB)
Lumb, M. P. [The George Washington University, Washington, DC 20037 (United States); US Naval Research Laboratory, Washington, DC 20375 (United States); Yakes, M. K.; Schmieder, K. J.; Affouda, C. A.; Walters, R. J. [US Naval Research Laboratory, Washington, DC 20375 (United States); González, M.; Bennett, M. F. [Sotera Defense Solutions, Annapolis Junction, Maryland 20701 (United States); US Naval Research Laboratory, Washington, DC 20375 (United States); Herrera, M.; Delgado, F. J.; Molina, S. I. [University of Cádiz, 11510, Puerto Real, Cádiz (Spain)
2016-05-21
In this work, the electrical performance of strain-balanced quantum well tunnel junctions with varying designs is presented. Strain-balanced quantum well tunnel junctions comprising compressively strained InAlAs wells and tensile-strained InAlAs barriers were grown on InP substrates using solid-source molecular beam epitaxy. The use of InAlAs enables InP-based tunnel junction devices to be produced using wide bandgap layers, enabling high electrical performance with low absorption. The impact of well and barrier thickness on the electrical performance was investigated, in addition to the impact of Si and Be doping concentration. Finally, the impact of an InGaAs quantum well at the junction interface is presented, enabling a peak tunnel current density of 47.6 A/cm{sup 2} to be realized.
International Nuclear Information System (INIS)
Chaisakul, Papichaya; Marris-Morini, Delphine; Vakarin, Vladyslav; Vivien, Laurent; Frigerio, Jacopo; Chrastina, Daniel; Isella, Giovanni
2014-01-01
We report an O-band optical modulator from a Ge/Si 0.15 Ge 0.85 multiple quantum well (MQW). Strong O-band optical modulation in devices commonly operating within E-band wavelength range can be achieved by simply decreasing the quantum well thickness. Both spectral photocurrent and optical transmission studies are performed to evaluate material characteristics and device performance from a surface-illuminated diode and a waveguide modulator, respectively. These results demonstrate the potential of using Ge/Si 0.15 Ge 0.85 MQWs for the realization of future on-chip wavelength-division multiplexing systems with optical modulators operating at different wavelengths over a wide spectral range
Maricic, Igor; Girardi, Enrico; Zajonc, Dirk M; Kumar, Vipin
2014-11-01
Lipids presented by the MHC class I-like molecule, CD1d, are recognized by NK T (NKT) cells, which can be broadly categorized into two subsets. The well-characterized type I NKT cells express a semi-invariant TCR and can recognize both α- and β-linked glycolipids, whereas type II NKT cells are less well studied, express a relatively diverse TCR repertoire, and recognize β-linked lipids. Recent structural studies have shown a distinct mode of recognition of a self-glycolipid sulfatide bound to CD1d by a type II NKT TCR. To further characterize Ag recognition by these cells, we have used the structural data and screened other small molecules able to bind to CD1d and activate type II NKT cells. Using plate-bound CD1d and APC-based Ag presentation assay, we found that phospholipids such as lysophosphatidylcholine (LPC) can stimulate the sulfatide-reactive type II NKT hybridoma Hy19.3 in a CD1d-dependent manner. Using plasmon resonance studies, we found that this type II NKT TCR binds with CD1d-bound LPC with micromolar affinities similar to that for sulfatide. Furthermore, LPC-mediated activation of type II NKT cells leads to anergy induction in type I NKT cells and affords protection from Con A-induced hepatitis. These data indicate that, in addition to self-glycolipids, self-lysophospholipids are also recognized by type II NKT cells. Because lysophospholipids are involved during inflammation, our findings have implications for not only understanding activation of type II NKT cells in physiological settings, but also for the development of immune intervention in inflammatory diseases. Copyright © 2014 by The American Association of Immunologists, Inc.
Magneto-Gyrotropic Photogalvanic Effects in Semiconductor Quantum Wells
Ganichev, S. D.
gas a charge current, the anomalous Hall effect, can be observed. As both magnetic fields and gyrotropic mechanisms were used authors introduced the notation "magneto-gyrotropic photogalvanic effects" for this class of phenomena. The effect is observed in GaAs and InAs low dimensional structures at free-carrier absorption of terahertz radiation in a wide range of temperatures from liquid helium temperature up to room temperature. The results are well described by the phenomenological description based on the symmetry. Experimental and theoretical analysis evidences unumbiguously that the observed photocurrents are spin-dependent. Microscopic theory of this effect based on asymmetry of photoexcitation and relaxation processes are developed being in a good agreement with experimental data. Note from Publisher: This article contains the abstract only.
The Over-Barrier Resonant States and Multi-Channel Scattering in Multiple Quantum Wells
Directory of Open Access Journals (Sweden)
A Polupanov
2016-09-01
Full Text Available We demonstrate an explicit numerical method for accurate calculation of the scattering matrix and its poles, and apply this method to describe the multi-channel scattering in the multiple quantum-wells structures. The S-matrix is continued analytically to the unphysical region of complex energy values. Results of calculations show that there exist one or more S-matrix poles, corresponding to the over-barrier resonant states critical for the effect of the absolute reflection of holes in the energy range where only the heavy ones may propagate over barriers in a structure. Light- and heavy-hole states are described by the Luttinger Hamiltonian matrix. In contrast to the single quantum-well case, at some parameters of a multiple quantum-wells structure the number of S-matrix poles may exceed that of the absolute reflection peaks, and at different values of parameters the absolute reflection peak corresponds to different resonant states. The imaginary parts of the S-matrix poles and hence the lifetimes of resonant states as well as the widths of resonant peaks of absolute reflection depend drastically on the quantum-well potential depth. In the case of shallow quantum wells there is in fact a long-living over-barrier resonant hole state.
Controlled release of stored pulses in a double-quantum-well structure
International Nuclear Information System (INIS)
Carreno, F; Anton, M A
2009-01-01
We show that an asymmetric double-quantum-well structure can operate as an optical memory. The double quantum wells are modelled like an atomic ensemble of four-level atoms in the Λ-V-type configuration with vacuum-induced coherence arising from resonant tunnelling through the ultra-thin potential energy barrier between the wells. A weak quantum field connects the ground level with the two upper levels and an auxiliary classical control field connects the intermediate level with the upper levels. The quantum field can be mapped into two channels. One channel results from the adiabatic change of the control field which maps the incoming quantum field into the coherence of the two lower levels like in a Λ-type atomic ensemble. The other channel results from the mapping of the quantum field into a combination of coherences between the two upper levels and the ground level, and it is allowed by the adiabatic change of the upper level splitting via an external voltage. The possibility of releasing multiple pulses from the medium resulting from the existence of a non-evolving component of the two-channel memory is shown. A physical picture has been developed providing an explanation of the performance of the device.
Type II supernovae modelisation: neutrinos transport simulation
International Nuclear Information System (INIS)
Mellor, P.
1988-10-01
A modelisation of neutrino transport in type II supernovae is presented. The first part is a description of hydrodynamics and radiative processes responsible of supernovae explosions. Macroscopic aspects of these are displayed in part two. Neutrino transport theory and usual numerical methods are also developed. A new technic of coherent scattering of neutrinos on nuclei or free nucleons is proposed in the frame work of the Lorentz bifluid approximation. This method deals with all numerical artifices (flux limiting schemes, closure relationship of Eddington moments) and allows a complete and consistent determination of the time-dependent neutrino distribution function for any value of the opacity, gradient of opacity and for all (relativistic) velocity fields of the diffusive medium. Part three is dedicated to microscopic phenomena (electronic capture, chimical composition, etc) which rule neutrinos emission-absorption mechanisms. The numerical treatments of those are presented, and some applications are useful for their parametrization. Finally, an extension of the method to inelastic scattering on light particules (electrons) is described in view to study neutrinos thermalization mechanism [fr
Prompt mechanism of type II supernovae
International Nuclear Information System (INIS)
Burrows, A.; Lattimer, J.M.
1985-01-01
We report in this Letter on an extensive set of hydrodynamical simulations of the stellar collapse of the cores of massive stars. A new hydro technique and a series of state-of-the art equations of state were employed. The purpose of this project was to understand in detail core implosion and immediate postbounce behavior (first 25 ms) and to investigate the viability of the hydrodynamic mechanism for Type II supernovae. We find that the bounce-shock always stalls upon encountering the massive infalling outer core for the calculated cores of stars between 8 and 25 M/sub sun/ and the standard input physics. In particular, it is found that Nomoto's 8l8 m/sub sun/ star and Woosley, Weaver, and Taam's 10 M/sub sun/ star do not explode via the prompt mechanism. Our conclusions appear to depend not on the details of the progenitor structure calculated by others but rather on the generic nature of these structures
Edaravone suppresses degradation of type II collagen.
Huang, Chen; Liao, Guangjun; Han, Jian; Zhang, Guofeng; Zou, Benguo
2016-05-13
Osteoarthritis (OA) is a degenerative joint disease affecting millions of people. The degradation and loss of type II collagen induced by proinflammatory cytokines secreted by chondrocytes, such as factor-α (TNF-α) is an important pathological mechanism to the progression of OA. Edaravone is a potent free radical scavenger, which has been clinically used to treat the neuronal damage following acute ischemic stroke. However, whether Edaravone has a protective effect in articular cartilage hasn't been reported before. In this study, we investigated the chondrocyte protective effects of Edaravone on TNF-α induced degradation of type Ⅱ collagen. And our results indicated that TNF-α treatment resulted in degradation of type Ⅱ collagen, which can be ameliorated by treatment with Edaravone in a dose dependent manner. Notably, it was found that the inhibitory effects of Edaravone on TNF-α-induced reduction of type Ⅱ collagen were mediated by MMP-3 and MMP-13. Mechanistically, we found that Edaravone alleviated TNF-α induced activation of STAT1 and expression of IRF-1. These findings suggest a potential protective effect of Edaravone in OA. Copyright © 2016. Published by Elsevier Inc.
Peripheral artery disease in type II diabetes
International Nuclear Information System (INIS)
Ali, Z.; Ahmed, S.M.; Bhutto, A.R.; Chaudhry, A.; Munir, S.M.
2012-01-01
Objective: To determine the frequency of peripheral arterial disease (PAD) in type 2 diabetic patients. Study Design: Cross-sectional observational study. Place and Duration of Study: Diabetes Clinic, Medical Unit III, Jinnah Postgraduate Medical Centre, Karachi, from January to June 2010. Methodology:Three hundred and eighty seven (387) type II diabetic patients of either gender and any age were included. Patients with a previous history of trauma to the arterial vasculature, pregnancy and those who underwent in the study arterial graft procedures were excluded. Non-purposive convenient sampling technique was used to enroll patients in the study. PAD was diagnosed when ankle-brachial index (ABI) was less than 0.9. Ap-value of less than 0.05 was considered statistically significant. Results: Out of 387 studied patients, 128 were males (33.1%) and 259 were females (66.9%). Mean age was 52.22 +- 6.39 years. PAD was detected in 152 9.671 (22 - 76) years in the entire cohort. Mean duration of diabetes was 9.38 +- (39.28%) of the total study subjects. Thirty-one of 128 male patients (24.22%) had PAD disease while 121 out of 259 female patients (46.71%) had evidence of PAD (p = 0.001). Hypertension was a significantly associated factor (p = 0.002). Conclusion: A high frequency of PAD was observed in the diabetic population particularly with hypertension and more prevalent in females. (author)
The hydrodynamics of Type II supernove
International Nuclear Information System (INIS)
Chevalier, R.A.
1976-01-01
Observations of Type II supernovae indicate the presence of a moderately cool expanding photosphere. This situation can result from an explosion in a star with an extended envelope. The evolutionary phases of an explosion are described. Information on the propagation of the shock wave through the star can be obtained from γ=4/3 blast wave solutions. If the photon mean free path becomes large compared to the length scales of the flow, a thermal wave moves out from the shock wave and a dense shell is formed behind the shock. The arrival of the shock wave at the photosphere is accompanied by ultraviolet and X-ray burst. As the star expands, a rarefaction wave converts internal energy into kinetic energy. Detailed hydrodynamic models have been calculated, assuming an initial radius compatible with stellar evolution and an energy compatible with the observed velocities. The observed values of photospheric radius and temperature near maximum light are reproduced. Features of the models which are consistent with observation are: the ejection of a detached shell; the cooling of the photosphere from 10,000 K to 6000 K in tens of days after maximum visual light; the shape of the light curve around maximum; the decrease in the velocity of the gas at the photosphere in tens of days after maximum; and a photospheric radius of about 10/sup 14/ cm after several hundred days
Current Understanding of Usher Syndrome Type II
Yang, Jun; Wang, Le; Song, Hongman; Sokolov, Maxim
2012-01-01
Usher syndrome is the most common deafness-blindness caused by genetic mutations. To date, three genes have been identified underlying the most prevalent form of Usher syndrome, the type II form (USH2). The proteins encoded by these genes are demonstrated to form a complex in vivo. This complex is localized mainly at the periciliary membrane complex in photoreceptors and the ankle-link of the stereocilia in hair cells. Many proteins have been found to interact with USH2 proteins in vitro, suggesting that they are potential additional components of this USH2 complex and that the genes encoding these proteins may be the candidate USH2 genes. However, further investigations are critical to establish their existence in the USH2 complex in vivo. Based on the predicted functional domains in USH2 proteins, their cellular localizations in photoreceptors and hair cells, the observed phenotypes in USH2 mutant mice, and the known knowledge about diseases similar to USH2, putative biological functions of the USH2 complex have been proposed. Finally, therapeutic approaches for this group of diseases are now being actively explored. PMID:22201796
Late-onset Bartter syndrome type II.
Gollasch, Benjamin; Anistan, Yoland-Marie; Canaan-Kühl, Sima; Gollasch, Maik
2017-10-01
Mutations in the ROMK1 potassium channel gene ( KCNJ1 ) cause antenatal/neonatal Bartter syndrome type II (aBS II), a renal disorder that begins in utero , accounting for the polyhydramnios and premature delivery that is typical in affected infants, who develop massive renal salt wasting, hypokalaemic metabolic alkalosis, secondary hyperreninaemic hyperaldosteronism, hypercalciuria and nephrocalcinosis. This BS type is believed to represent a disorder of the infancy, but not in adulthood. We herein describe a female patient with a remarkably late-onset and mild clinical manifestation of BS II with compound heterozygous KCNJ1 missense mutations, consisting of a novel c.197T > A (p.I66N) and a previously reported c.875G > A (p.R292Q) KCNJ1 mutation. We implemented and evaluated the performance of two different bioinformatics-based approaches of targeted massively parallel sequencing [next generation sequencing (NGS)] in defining the molecular diagnosis. Our results demonstrate that aBS II may be suspected in patients with a late-onset phenotype. Our experimental approach of NGS-based mutation screening combined with Sanger sequencing proved to be a reliable molecular approach for defining the clinical diagnosis in our patient, and results in important differential diagnostic and therapeutic implications for patients with BS. Our results could have a significant impact on the diagnosis and methodological approaches of genetic testing in other patients with clinical unclassified phenotypes of nephrocalcinosis and congenital renal electrolyte abnormalities.
Gravitational Field Shielding by Scalar Field and Type II Superconductors
Directory of Open Access Journals (Sweden)
Zhang B. J.
2013-01-01
Full Text Available The gravitational field shielding by scalar field and type II superconductors are theoret- ically investigated. In accord with the well-developed five-dimensional fully covariant Kaluza-Klein theory with a scalar field, which unifies the Einsteinian general relativity and Maxwellian electromagnetic theory, the scalar field cannot only polarize the space as shown previously, but also flatten the space as indicated recently. The polariza- tion of space decreases the electromagnetic field by increasing the equivalent vacuum permittivity constant, while the flattening of space decreases the gravitational field by decreasing the equivalent gravitational constant. In other words, the scalar field can be also employed to shield the gravitational field. A strong scalar field significantly shield the gravitational field by largely decreasing the equivalent gravitational constant. According to the theory of gravitational field shielding by scalar field, the weight loss experimentally detected for a sample near a rotating ceramic disk at very low tempera- ture can be explained as the shielding of the Earth gravitational field by the Ginzburg- Landau scalar field, which is produced by the type II superconductors. The significant shielding of gravitational field by scalar field produced by superconductors may lead to a new spaceflight technology in future.
Vitamin D - Dependent Rickets, Type II Case Report
Azemi, Mehmedali; Berisha, Majlinda; Ismaili-Jaha, Vlora; Kolgeci, Selim; Hoxha, Rina; Grajçevci-Uka, Violeta; Hoxha-Kamberi, Teuta
2014-01-01
Aim: The aim of this work the report of one case with vitamin D-dependent rickets, type II. Methods: Diagnosis has been established based on anamnesis, physical examination, laboratory findings and radiological examination. Results: A female child (age 25 months) has been hospitalized due to bone deformity, bone pain, alopecia and walking difficulties. The laboratory findings have revealed that the calcium values was low (1.20 mmol/L), phosphates in the reference value (1.30 mmol/L) the alkaline phosphatase value was quite high (852 IU/L), high value of parathyroid hormone (9.21 pmol/L), normal value of 25- hydroxyvitamin D, whereas the values of 1,25-dihydroxyvitamin D was high (185 μmol/L). Radiographic changes were evident and typical in the distal metaphysis of radius and ulna as well as in the bones of lower limbs (distal metaphysis of femur and proximal metaphysis of tibia and fibula). After treatment with calcium and calcitriol, the above mentioned clinical manifestations, laboratory test values and the radiographic changes in bones withdrew. Conclusions: Vitamin D-dependent rickets, type II is a rare genetic recessive disease, and its treatment includes a constant use of calcium and calcitriol. PMID:24757409
Hot electron and real space transfer in double-quantum-well structures
International Nuclear Information System (INIS)
Okuno, Eiichi; Sawaki, Nobuhiko; Akasaki, Isamu; Kano, Hiroyuki; Hashimoto, Masafumi.
1991-01-01
The hot electron phenomena and real space transfer (RST) effect are studied in GaAs/AlGaAs double-quantum-well (DQW) structures, in which we have two kind of quantum wells with different widths. The drift velocity and the electron temperature at liquid helium temperature are investigated as a function of the external electric field applied parallel to the heterointerface. By increasing the field, the electron temperature rises and reaches a plateau in the intermediate region, followed by further rise in the high-field region. The appearance of the plateau is attributed to the RST effect between the two quantum wells. The threshold field for the appearance of the plateau is determined by the difference energy between the quantized levels in two wells. The energy loss rate as a function of the electron temperature indicates that the RST is assisted by LO phonon scattering. (author)
Recombination kinetics of photogenerated electrons in InGaAs/InP quantum wells
Tito, M. A.; Pusep, Yu. A.; Gold, A.; Teodoro, M. D.; Marques, G. E.; LaPierre, R. R.
2016-03-01
The electron transport and recombination processes of photoexcited electron-hole pairs were studied in InGaAs/InP single quantum wells. Comprehensive transport data analysis reveals a asymmetric shape of the quantum well potential where the electron mobility was found to be dominated by interface-roughness scattering. The low-temperature time-resolved photoluminescence was employed to investigate recombination kinetics of photogenerated electrons. Remarkable modification of Auger recombination was observed with variation of the electron mobility. In high mobility quantum wells, the increasing pump power resulted in a new and unexpected phenomenon: a considerably enhanced Auger non-radiative recombination time. We propose that the distribution of the photoexcited electrons over different conduction band valleys might account for this effect. In low mobility quantum wells, disorder-induced relaxation of the momentum conservation rule causes inter-valley transitions to be insignificant; as a consequence, the non-radiative recombination time is reduced with the increase in pump power. Thus, interface-roughness scattering was found responsible for both transport properties and dynamic optical response in InGaAs/InP quantum wells.
THE QUANTUM-WELL STRUCTURES OF SELF ELECTROOPTIC-EFFECT DEVICES AND GALLIUM-ARSENIDE
Directory of Open Access Journals (Sweden)
Mustafa TEMİZ
1996-02-01
Full Text Available Multiple quantum-well (MQW electroabsorptive self electro optic-effect devices (SEEDs are being extensively studied for use in optical switching and computing. The self electro-optic-effect devices which has quantum-well structures is a new optoelectronic technology with capability to obtain both optical inputs and outputs for Gallium-Arsenide/Aluminum Gallium-Arsenide (GaAs/AlGaAs electronic circuits. The optical inputs and outputs are based on quantum-well absorptive properties. These quantum-well structures consist of many thin layers of semiconductors materials of GaAs/AlGaAs which have emerged some important directions recently. The most important advance in the physics of these materials since the early days has been invention of the heterojunction structures which is based at present on GaAs technology. GaAs/AlGaAs structures present some important advantages to relevant band gap and index of refraction which allow to form the quantum-well structures and also to make semiconductor lasers, dedectors and waveguide optical switches.
Directory of Open Access Journals (Sweden)
Mustafa Kemal BAHAR
2010-06-01
Full Text Available In this study, the effects of applied electric field on the isolated square quantum well was investigated by analytic and perturbative method. The energy eigen values and wave functions in quantum well were found by perturbative method. Later, the electric field effects were investigated by analytic method, the results of perturbative and analytic method were compared. As well as both of results fit with each other, it was observed that externally applied electric field changed importantly electronic properties of the system.
Investigation of resonant Raman scattering in type II GaAs/AlAs superlattices
International Nuclear Information System (INIS)
Choi, H.
2001-01-01
As a consequence of the band alignment in GaAs/AIAs superlattices (SLs) and the indirect nature of bulk AIAs, quantum confinement can be used to engineer a Type II system. This produces an electron population in the AIAs longitudinal (X z ) or transverse (X xy ) zone-edge states, which is separated in both direct and reciprocal space from the hole population in the GaAs zone-centre (Γ) states. This thesis is an investigation of the electronic and vibrational structure of Type II GaAs/AIAs SLs using theoretical models and spectroscopic techniques, with special emphasis on Type II resonant Raman (RR) scattering. The majority of this thesis concerns short-period GaAs/AIAs SLs with X z as the lowest conduction band state. A model of the SL electronic band structure is presented, including the effects of interband Γ-X z mixing and the X-point camel's back structure. Interband mixing makes Γ-X z radiative transitions observable in photoluminescence (PL) and RR experiments. Phonon-assisted transitions from the X z state are also observed in PL experiments. Several of the participating phonon modes are unambiguously identified, in good agreement with recent reports. This thesis presents the first detailed experimental and theoretical study of Type II RR scattering from the incoming channel of the X z -related Type II bandgap. The X z - related Type II incoming RR spectra in the GaAs optic phonon region are compared with the Γ-related Type I outgoing RR spectra within several theoretical models. Thereby, the mechanisms of the Type II RR scattering, the origins of the RR lineshape and the polarisation dependence, are fully explained, clarifying the spectral features observed in the GaAs zone-centre optic phonon region. The Type II resonance also allows the observation of zone boundary (X-point) phonons from intervalley (IV) scattering. A model of the IV electron-phonon interaction involving X conduction band electrons and zone boundary phonons in Type II SLs is presented
Membrane potential and ion transport in lung epithelial type II cells
International Nuclear Information System (INIS)
Gallo, R.L.
1986-01-01
The alveolar type II pneumocyte is critically important to the function and maintenance of pulmonary epithelium. To investigate the nature of the response of type II cells to membrane injury, and describe a possible mechanism by which these cells regulate surfactant secretion, the membrane potential of isolated rabbit type II cells was characterized. This evaluation was accomplished by measurements of the accumulation of the membrane potential probes: [ 3 H]triphenylmethylphosphonium ([ 3 H]TPMP + ), rubidium 86, and the fluorescent dye DiOC 5 . A compartmental analysis of probe uptake into mitochondrial, cytoplasmic, and non-membrane potential dependent stores was made through the use of selective membrane depolarizations with carbonycyanide M-chlorophenylhydrazone (CCCP), and lysophosphatidylcholine (LPC). These techniques and population analysis with flow cytometry, permitted the accurate evaluation of type II cell membrane potential under control conditions and under conditions which stimulated cell activity. Further analysis of ion transport by cells exposed to radiation or adrenergic stimulation revealed a common increase in Na + /K + ATPase activity, and an increase in sodium influx across the plasma membrane. This sodium influx was found to be a critical step in the initiation of surfactant secretion. It is concluded that radiation exposure as well as other pulmonary toxicants can directly affect the membrane potential and ionic regulation of type II cells. Ion transport, particularly of sodium, plays an important role in the regulation of type II cell function
The velocities of type II solar radio bursts
International Nuclear Information System (INIS)
Tlamicha, A.; Karlicky, M.
1976-01-01
A list is presented of type II radio bursts identified at Ondrejov between January 1973 and December 1974 in the frequency range of the dynamic spectrum 70 to 810 MHz. The velocities of shock waves in the individual cases of type II bursts are given using the fourfold Newkirk model. Some problems associated with type II radio bursts and with the propagation of the shock wave into the interplanetary space and into the region of the Earth are also discussed. (author)
Efficiency studies on semipolar GaInN-GaN quantum well structures
Energy Technology Data Exchange (ETDEWEB)
Scholz, Ferdinand; Meisch, Tobias; Elkhouly, Karim [Institute of Optoelectronics, Ulm University (Germany)
2016-12-15
In order to clarify the reasons for the fairly poor electroluminescence (EL) performance of semipolar LED structures grown on patterned sapphire wafers, we have analyzed both, pure photoluminescence (PL) test structures without doping only containing 5 GaInN quantum wells and full EL test structures, all emitting at a wavelength of about 510 nm. Evaluating the PL intensity over a wide range of temperatures and excitation powers, we conclude that such quantum wells possess a fairly large internal quantum efficiency of about 20%. However, on EL test structures containing nominally the same quantum wells, we obtained an optical output power of only about 150μW at an applied current of 20 mA. This may be due partly to some thermal destruction of the quantum wells by the overgrowth with p-GaN. Even more important seems to be the not yet finally optimized p-doping of these structures. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Nonlocal conductivity in type-II superconductors
International Nuclear Information System (INIS)
Mou, C.; Wortis, R.; Dorsey, A.T.; Huse, D.A.
1995-01-01
Multiterminal transport measurements on YBa 2 Cu 2 O 7 crystals in the vortex liquid regime have shown nonlocal conductivity on length scales up to 50 microns. Motivated by these results we explore the wave vector (k) dependence of the dc conductivity tensor, σ μν (k), in the Meissner, vortex lattice, and disordered phases of a type-II superconductor. Our results are based on time-dependent Ginzburg-Landau (TDGL) theory and on phenomenological arguments. We find four qualitatively different types of behavior. First, in the Meissner phase, the conductivity is infinite at k=0 and is a continuous function of k, monotonically decreasing with increasing k. Second, in the vortex-lattice phase, in the absence of pinning, the conductivity is finite (due to flux flow) at k=0; it is discontinuous there and remains qualitatively like the Meissner phase for k>0. Third, in the vortex liquid regime in a magnetic field and at low temperature, the conductivity is finite, smooth and nonmonotonic, first increasing with k at small k and then decreasing at larger k. This third behavior is expected to apply at temperatures just above the melting transition of the vortex lattice, where the vortex liquid shows strong short-range order and a large viscosity. Finally, at higher temperatures in the disordered phase, the conductivity is finite, smooth and again monotonically decreasing with k. This last, monotonic behavior applies in zero magnetic field for the entire disordered phase, i.e., at all temperatures above T c , while in a field the nonmonotonic behavior may occur in a low-temperature portion of the disordered phase
Self-dual nonsupersymmetric Type II String Compactifications
International Nuclear Information System (INIS)
Kachru, Shamit; Silverstein, Eva
1998-01-01
It has recently been proposed that certain nonsupersymmetric type II orbifolds have vanishing perturbative contributions to the cosmological constant. We show that techniques of Sen and Vafa allow one to construct dual type II descriptions of these models (some of which have no weakly coupled heterotic dual). The dual type II models are given by the same orbifolds with the string coupling S and a T 2 volume T exchanged. This allows us to argue that in various strongly coupled limits of the original type II models, there are weakly coupled duals which exhibit the same perturbative cancellations as the original models
Optical and structural properties of MOVPE-grown GaInSb/GaSb quantum wells
Energy Technology Data Exchange (ETDEWEB)
Wagener, Viera, E-mail: viera.wagener@nmmu.ac.z [Physics Department, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Olivier, E.J.; Botha, J.R. [Physics Department, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa)
2009-12-15
This paper reports on the optical and structural properties of strained type-I Ga{sub 1-x}In{sub x}Sb quantum wells embedded in GaSb from a metal-organic vapour phase epitaxial growth perspective. Photoluminescence measurements and transmission electron microscopy were used to evaluate the effect of the growth temperature on the quality of Ga{sub 1-x}In{sub x}Sb strained layers with varied alloy compositions and thicknesses. Although the various factors contributing to the overall quality of the strained layers are difficult to separate, the quantum well characteristics are significantly altered by the growth temperature. Despite the high growth rates (approx2 nm/s), quantum wells grown at 607 deg. C display photoluminescence emissions with full-width at half-maximum of 3.5-5.0 meV for an indium solid content (x) up to 0.15.
Study of GeSn Alloy for Low Cost Monolithic Mid Infrared Quantum Well Sensor
Directory of Open Access Journals (Sweden)
Prakash PAREEK
2017-02-01
Full Text Available This paper focuses on theoretical study of Tin incorporated group IV alloys particularly GeSn and design of quantum well sensor for mid infrared sensing applications. Initially, the physics behind the selection of material for midinfrared sensor is explained. The importance of controlling strain in GeSn alloy is also explained. The physical background and motivation for incorporation of Tin(Sn in Germanium is briefly narrated. Eigen energy states for different Sn concentrations are obtained for strain compensated quantum well in G valley conduction band (GCB, heavy hole (HH band and light hole (LH band by solving coupled Schrödinger and Poisson equations simultaneously. Sn concentration dependent absorption spectra for HH- GCB transition reveals that significant absorption observed in mid infrared range (3-5 µm. So, Ge1-x Snx quantum well can be used for mid infrared sensing applications.
InGaAs Quantum Well Grown on High-Index Surfaces for Superluminescent Diode Applications
Directory of Open Access Journals (Sweden)
Wu Jiang
2010-01-01
Full Text Available Abstract The morphological and optical properties of In0.2Ga0.8As/GaAs quantum wells grown on various substrates are investigated for possible application to superluminescent diodes. The In0.2Ga0.8As/GaAs quantum wells are grown by molecular beam epitaxy on GaAs (100, (210, (311, and (731 substrates. A broad photoluminescence emission peak (~950 nm with a full width at half maximum (FWHM of 48 nm is obtained from the sample grown on (210 substrate at room temperature, which is over four times wider than the quantum well simultaneously grown on (100 substrate. On the other hand, a very narrow photoluminescence spectrum is observed from the sample grown on (311 with FWHM = 7.8 nm. The results presented in this article demonstrate the potential of high-index GaAs substrates for superluminescent diode applications.
Effect of interface disorder on quantum well excitons and microcavity polaritons
International Nuclear Information System (INIS)
Savona, Vincenzo
2007-01-01
The theory of the linear optical response of excitons in quantum wells and polaritons in planar semiconductor microcavities is reviewed, in the light of the existing experiments. For quantum well excitons, it is shown that disorder mainly affects the exciton centre-of-mass motion and is modelled by an effective Schroedinger equation in two dimensions. For polaritons, a unified model accounting for quantum well roughness and fluctuations of the microcavity thickness is developed. Numerical results confirm that polaritons are mostly affected by disorder acting on the photon component, thus confirming existing studies on the influence of exciton disorder. The polariton localization length is estimated to be in the few-micrometres range, depending on the amplitude of disorder, in agreement with recent experimental findings
InGaAsP/InP quantum well buried heterostructure waveguides produced by ion implantation
International Nuclear Information System (INIS)
Zucker, J.E.; Jones, K.L.; Tell, B.; Brown-Goebeler, K.; Joyner, C.H.; Miller, B.I.; Young, M.G.
1992-01-01
Formation of buried InGaAsP/InP quantum well wave-guides by means of phosphorus ion implantation and thermal annealing during regrowth is demonstrated. Absorption spectra of implanted and unimplanted regions are used to estimate the induced index difference, which is of the order of 1% at 1.55μm. Calculated mode intensities are in good agreement with the observed near field intensity patterns. With this etchless implant technique, we achieve a significant reduction in propagation loss for singlemode pin waveguides relative to etched semi-insulating planar buried heterostructure waveguides fabricated from the same quantum well structure. In addition to reduced scattering loss, buried quantum well waveguides produced by ion implantation are more manufacturable because fewer and less-critical processing steps are involved. (author)
Optical and structural properties of MOVPE-grown GaInSb/GaSb quantum wells
International Nuclear Information System (INIS)
Wagener, Viera; Olivier, E.J.; Botha, J.R.
2009-01-01
This paper reports on the optical and structural properties of strained type-I Ga 1-x In x Sb quantum wells embedded in GaSb from a metal-organic vapour phase epitaxial growth perspective. Photoluminescence measurements and transmission electron microscopy were used to evaluate the effect of the growth temperature on the quality of Ga 1-x In x Sb strained layers with varied alloy compositions and thicknesses. Although the various factors contributing to the overall quality of the strained layers are difficult to separate, the quantum well characteristics are significantly altered by the growth temperature. Despite the high growth rates (∼2 nm/s), quantum wells grown at 607 deg. C display photoluminescence emissions with full-width at half-maximum of 3.5-5.0 meV for an indium solid content (x) up to 0.15.
Exciton dynamics in near-surface InGaN quantum wells coupled to colloidal nanocrystals
DEFF Research Database (Denmark)
Kopylov, Oleksii; Shirazi, Roza; Yvind, Kresten
2013-01-01
We study non-radiative energy transfer between InGaN quantum wells and colloidal InP nanocrystals separated by sub-10nm distance. A significant non-radiative energy transfer between the two layers is accompanied by reduced surface recombination in InGaN.......We study non-radiative energy transfer between InGaN quantum wells and colloidal InP nanocrystals separated by sub-10nm distance. A significant non-radiative energy transfer between the two layers is accompanied by reduced surface recombination in InGaN....
International Nuclear Information System (INIS)
Wu, Jinghe; Guo, Kangxian; Liu, Guanghui
2014-01-01
Polaron effects on nonlinear optical rectification in asymmetrical Gaussian potential quantum wells are studied by the effective mass approximation and the perturbation theory. The numerical results show that nonlinear optical rectification coefficients are strongly dependent on the barrier hight V 0 of the Gaussian potential quantum wells, the range L of the confinement potential and the electric field F. Besides, the numerical results show that no matter how V 0 , L and F change, taking into consideration polaron effects, the optical rectification coefficients χ 0 (2) get greatly enhanced.
Pseudo-square AlGaN/GaN quantum wells for terahertz absorption
International Nuclear Information System (INIS)
Beeler, M.; Bellet-Amalric, E.; Monroy, E.; Bougerol, C.
2014-01-01
THz intersubband transitions are reported down to 160 μm within AlGaN/GaN heterostructures following a 4-layer quantum well design. In such a geometry, the compensation of the polarization-induced internal electric field is obtained through creating a gradual increase in polarization field throughout the quantum “trough” generated by three low-Al-content layers. The intersubband transitions show tunable absorption with respect to doping level as well as geometrical variations which can be regulated from 53 to 160 μm. They also exhibit tunnel-friendly designs which can be easily integrated into existing intersubband device architectures.
Electron-electron interaction in p-SiGe/Ge quantum wells
International Nuclear Information System (INIS)
Roessner, Benjamin; Kaenel, Hans von; Chrastina, Daniel; Isella, Giovanni; Batlogg, Bertram
2005-01-01
The temperature dependent magnetoresistance of high mobility p-SiGe/Ge quantum wells is studied with hole densities ranging from 1.7 to 5.9 x 10 11 cm -2 . At magnetic fields below the onset of quantum oscillations that reflect the high mobility values (up to 75000 cm 2 /Vs), we observe the clear signatures of electron-electron interaction. We compare our experiment with the theory of electron-electron interaction including the Zeeman band splitting. The observed magnetoresistance is well explained as a superposition of band structure induced positive magnetoresistance and the negative magntoresistance due to the electron-electron interaction effect
Optical transitions in Ge/SiGe multiple quantum wells with Ge-rich barriers
Bonfanti, M.; Grilli, E.; Guzzi, M.; Virgilio, M.; Grosso, G.; Chrastina, D.; Isella, G.; von Känel, H.; Neels, A.
2008-07-01
Direct-gap and indirect-gap transitions in strain-compensated Ge/SiGe multiple quantum wells with Ge-rich SiGe barriers have been studied by optical transmission spectroscopy and photoluminescence experiments. An sp3d5s∗ tight-binding model has been adopted to interpret the experimental results. Photoluminescence spectra and their comparison with theoretical calculations prove the existence of type-I band alignment in compressively strained Ge quantum wells grown on relaxed Ge-rich SiGe buffers. The high quality of the transmission spectra opens up other perspectives for application of these structures in near-infrared optical modulators.
Exciton polaritons and their one-dimensional localization in disordered structure with quantum wells
International Nuclear Information System (INIS)
Kosobukin, V.A.
2003-01-01
The Anderson light localization theory by disordered ultrathin layers (quantum wells), uniform in lateral directions and featuring intrinsic optical resonances, is presented. A model of the layers with delta-function resonance dielectric polarization is suggested for solution of the multiple scattering problem. Allowance made for interlayer disorder, one- and two-phoron characteristics of electromagnetic transfer, i.e. average energy density and the length of the Anderson light localization were calculated in analytical form. It is shown that in disordered structure average electromagnetic field is propagated as polaritons formed due to excessive emission of excitons between the quantum wells [ru
International Nuclear Information System (INIS)
Wang Hongmei; Xu Huaizhe; Zhang Yafei
2005-01-01
A few of mistakes made in transfer matrix method of Airy functions in previous literatures have been identified and corrected in this work. By using our improved transfer matrix method of Airy functions, quasi-bound level dependence upon carrier effective masses, bias, well width, barrier width and height has been investigated systematically for several biased/unbiased double/triple-barrier quantum well structures. Its validity and accuracy has been proved by comparisons with other currently used techniques. It is shown that our improved transfer matrix method of Airy functions is more promising for evaluating and designing intra-band transition far-infrared detectors and quantum cascade lasers
Subband structure comparison between n- and p- type double delta-doped Ga As quantum wells
International Nuclear Information System (INIS)
Rodriguez V, I.; Gaggero S, L.M.
2004-01-01
We compute the electron level structure (n-type) and the hole subband structure (p-type) of double -doped GaAs (DDD) quantum wells, considering exchange effects. The Thomas-Fermi (TF), and Thomas-Fermi-Dirac (TFD) approximations have been applied in order to describe the bending of the conduction and valence band, respectively. The electron and the hole subband structure study indicates that exchange effects are more important in p-type DDD quantum wells than in n-type DDD Also our results agree with the experimental data available. (Author) 33 refs., 2 tabs., 5 figs
International Nuclear Information System (INIS)
Christian, George M.; Hammersley, Simon; Davies, Matthew J.; Dawson, Philip; Kappers, Menno J.; Massabuau, Fabien C.P.; Oliver, Rachel A.; Humphreys, Colin J.
2016-01-01
We report on the effects of varying the number of quantum wells (QWs) in an InGaN/GaN multiple QW (MQW) structure containing a 23 nm thick In0.05Ga0.95N prelayer doped with Si. The calculated conduction and valence bands for the structures show an increasing total electric field across the QWs with increasing number of QWs. This is due to the reduced strength of the surface polarisation field, which opposes the built-in field across the QWs, as its range is increased over thicker samples. Low temperature photoluminescence (PL) measurements show a red shifted QW emission peak energy, which is attributed to the enhanced quantum confined Stark effect with increasing total field strength across the QWs. Low temperature PL time decay measurements and room temperature internal quantum efficiency (IQE) measurements show decreasing radiative recombination rates and decreasing IQE, respectively, with increasing number of QWs. These are attributed to the increased spatial separation of the electron and hole wavefunctions, consistent with the calculated band profiles. It is also shown that, for samples with fewer QWs, the reduction of the total field across the QWs makes the radiative recombination rate sufficiently fast that it is competitive with the efficiency losses associated with the thermal escape of carriers. (copyright 2016 The Authors. Phys. Status Solidi C published by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Interfacial properties at the organic-metal interface probed using quantum well states
Lin, Meng-Kai; Nakayama, Yasuo; Wang, Chin-Yung; Hsu, Jer-Chia; Pan, Chih-Hao; Machida, Shin-ichi; Pi, Tun-Wen; Ishii, Hisao; Tang, S.-J.
2012-10-01
Using angle-resolved photoemission spectroscopy, we investigated the interfacial properties between the long-chain normal-alkane molecule n-CH3(CH2)42CH3 [tetratetracontane (TTC)] and uniform Ag films using the Ag quantum well states. The entire quantum well state energy band dispersions were observed to shift toward the Fermi level with increasing adsorption coverage of TTC up to 1 monolayer (ML). However, the energy shifts upon deposition of 1 ML of TTC are approximately inversely dependent on the Ag film thickness, indicating a quantum-size effect. In the framework of the pushback and image-force models, we applied the Bohr-Sommerfeld quantization rule with the modified Coulomb image potential for the phase shift at the TTC/Ag interface to extract the dielectric constant for 1 ML of TTC.
Spin-related transport phenomena in HgTe-based quantum well structures
International Nuclear Information System (INIS)
Koenig, Markus
2007-12-01
Within the scope of this thesis, spin related transport phenomena have been investigated in HgTe/Hg 0.3 Cd 0.7 Te quantum well structures. In our experiments, the existence of the quantum spin Hall (QSH) state was successfully demonstrated for the first time and the presented results provide clear evidence for the charge transport properties of the QSH state. Our experiments provide the first direct observation of the Aharonov-Casher (AC) effect in semiconductor structures. In conclusion, HgTe quantum well structures have proven to be an excellent template for studying spin-related transport phenomena: The QSH relies on the peculiar band structure of the material and the existence of both the spin Hall effect and the AC effect is a consequence of the substantial spin-orbit interaction. (orig.)
Spin-related transport phenomena in HgTe-based quantum well structures
Energy Technology Data Exchange (ETDEWEB)
Koenig, Markus
2007-12-15
Within the scope of this thesis, spin related transport phenomena have been investigated in HgTe/Hg{sub 0.3}Cd{sub 0.7}Te quantum well structures. In our experiments, the existence of the quantum spin Hall (QSH) state was successfully demonstrated for the first time and the presented results provide clear evidence for the charge transport properties of the QSH state. Our experiments provide the first direct observation of the Aharonov-Casher (AC) effect in semiconductor structures. In conclusion, HgTe quantum well structures have proven to be an excellent template for studying spin-related transport phenomena: The QSH relies on the peculiar band structure of the material and the existence of both the spin Hall effect and the AC effect is a consequence of the substantial spin-orbit interaction. (orig.)
Faraday rotation in multiple quantum wells of GaAs/AlGaAs
International Nuclear Information System (INIS)
Dudziak, E.; Bozym, J.; Prochnik, D.; Wasilewski, Z.R.
1996-01-01
We report on the results of first measurements on the Faraday rotation of modulated n-doped multiple quantum wells of GaAs/Al x Ga 1-x As (x = 0.312). The measurements have been performed in the magnetic fields up to 13 T at the temperature of 2 K, in the spectral region of interband transitions. A rich structure of magneto-excitons has been found in the measured spectra. Faraday rotation (phase) measurements are proposed as an alternative method to the photoluminescence excitation for investigations of magneto-excitons in quantum wells. The dependence of measured Faraday rotation on magnetic field and hypothetical connections with quantum Hall effect are also discussed. (author)
Effective one-band approach for the spin splittings in quantum wells
Alekseev, P. S.; Nestoklon, M. O.
2017-03-01
The spin-orbit interaction of two-dimensional electrons in quantum wells grown from the III-V semiconductors consists of two parts with different symmetry: the Bychkov-Rashba and the Dresselhaus terms. The last term is usually attributed to the bulk spin-orbit Hamiltonian which reflects the Td symmetry of the zincblende lattice. While it is known that the quantum well interfaces may also contribute to the Dresselhaus term, the exact structure and relative importance of the interface and bulk contributions are not well understood. To deal with this problem, we perform tight-binding calculations of the spin splittings of the electron levels in [100] GaAs/AlGaAs quantum wells. We show that the obtained spin splittings can be adequately described within the one-band electron Hamiltonian containing, together with the bulk contribution, the two interface contributions to the Dresselhaus term. The magnitude of the interface contribution to the spin-orbit interaction for sufficiently narrow quantum wells is of the same order as the bulk contribution.
Microcephalic Osteodysplastic Primordial Dwarfism, Type II: a Clinical Review.
Bober, Michael B; Jackson, Andrew P
2017-04-01
This review will provide an overview of the microcephalic primordial dwarfism (MPD) class of disorders and provide the reader comprehensive clinical review with suggested care guidelines for patients with microcephalic osteodysplastic primordial dwarfism, type II (MOPDII). Over the last 15 years, significant strides have been made in the diagnosis, natural history, and management of MOPDII. MOPDII is the most common and well described form of MPD. The classic features of the MPD group are severe pre- and postnatal growth retardation, with marked microcephaly. In addition to these features, individuals with MOPDII have characteristic facies, skeletal dysplasia, abnormal dentition, and an increased risk for cerebrovascular disease and insulin resistance. Biallelic loss-of-function mutations in the pericentrin gene cause MOPDII, which is inherited in an autosomal recessive manner.
Evidence for topological type-II Weyl semimetal WTe2
Li, Peng; Wen, Yan; He, Xin; Zhang, Qiang; Xia, Chuan; Yu, Zhi-Ming; Yang, Shengyuan A.; Zhu, Zhiyong; Alshareef, Husam N.; Zhang, Xixiang
2017-01-01
-called Fermi arcs. Although WTe2 was the first material suggested as a type-II Weyl semimetal, the direct observation of its tilting Weyl cone and Fermi arc has not yet been successful. Here, we show strong evidence that WTe2 is a type-II Weyl semimetal
Evaluation of Type II Fast Packs for Electrostatic Discharge Properties.
1983-08-01
34 x 8" x 1 3/4") consisting of a reclosable cushioned carrier which mates into an outer fiberboard sleeve. A cushioning insert is used consisting of a... RECLOSABLE CUSHIONED CARRIER TEST LOAD FIGURE 1: Cancel Caddy Pack * CONVOLUTED 4* CUSHIONED I FIGURE 2: Type II Fast Pack (PPP-B-1672) TYPE II FAST PACK
The prevalence of microalbuminuria among patients with type II ...
African Journals Online (AJOL)
This cross-sectional community-based study was carried out to determine the prevalence of microalbuminuria among patients with type II diabetes mellitus in a primary care setting, and to study the association between various risk factors and the presence of microalbuminuria. All patients with type II diabetes mellitus who ...
Cartilage turnover reflected by metabolic processing of type II collagen
DEFF Research Database (Denmark)
Gudmann, Karoline Natasja Stæhr; Wang, Jianxia; Hoielt, Sabine
2014-01-01
The aim of this study was to enable measurement of cartilage formation by a novel biomarker of type II collagen formation. The competitive enzyme-linked immunosorbent assay (ELISA) Pro-C2 was developed and characterized for assessment of the beta splice variant of type II procollagen (PIIBNP). Th...
Effect of the quantum well thickness on the performance of InGaN photovoltaic cells
Energy Technology Data Exchange (ETDEWEB)
Redaelli, L.; Mukhtarova, A.; Valdueza-Felip, S.; Ajay, A.; Durand, C.; Eymery, J.; Monroy, E. [Université Grenoble Alpes, 38000 Grenoble (France); CEA-CNRS Group «Nanophysique et semiconducteurs», CEA-Grenoble, INAC/SP2M, 17 avenue des Martyrs, 38054 Grenoble cedex 9 (France); Bougerol, C.; Himwas, C. [Université Grenoble Alpes, 38000 Grenoble (France); CEA-CNRS Group «Nanophysique et semiconducteurs», Institut Néel-CNRS, 25 avenue des Martyrs, 38042 Grenoble cedex 9 (France); Faure-Vincent, J. [Université Grenoble Alpes, 38000 Grenoble (France); CNRS, INAC-SPRAM, F-38000 Grenoble (France); CEA, INAC-SPRAM, F-38000 Grenoble (France)
2014-09-29
We report on the influence of the quantum well thickness on the effective band gap and conversion efficiency of In{sub 0.12}Ga{sub 0.88}N/GaN multiple quantum well solar cells. The band-to-band transition can be redshifted from 395 to 474 nm by increasing the well thickness from 1.3 to 5.4 nm, as demonstrated by cathodoluminescence measurements. However, the redshift of the absorption edge is much less pronounced in absorption: in thicker wells, transitions to higher energy levels dominate. Besides, partial strain relaxation in thicker wells leads to the formation of defects, hence degrading the overall solar cell performance.
Luminescence and ultrafast phenomena in InGaN multiple quantum wells
International Nuclear Information System (INIS)
Viswanath, Annamraju Kasi; Lee, J.I.; Kim, S.T.; Yang, G.M.; Lee, H.J.; Kim, Dongho
2007-01-01
High quality In 0.13 Ga 0.87 N/GaN multiple quantum wells (MQWs) on (0001) sapphire substrate were fabricated by MOCVD method. The quantum well thickness is as thin as 10 A, and the barrier thickness is 50 A. We have investigated these ultrathin MQWs by continuous wave (cw) and time-resolved spectroscopy in the picosecond time scales in a wide temperature range from 10 to 290 K. In the luminescence spectrum at 10 K, we observed a broad peak at 3.134 eV which was attributed to the quantum wells emission of InGaN. The full width at half maximum of this peak was 129 meV at 10 K and the broadening at low temperatures which was mostly inhomogeneous was thought to be due to compositional fluctuations and interfacial disorder in the alloy. We also observed an intense and narrow peak at 3.471 eV due to the GaN barrier. The temperature dependence of the luminescence was studied and the peak positions and the intensities of the different peaks were obtained. The activation energy of the InGaN quantum well emission peak was estimated as 69 meV. From the measurements of luminescence intensities and lifetimes at various temperatures, radiative and non-radiative recombination lifetimes were deduced. The results were explained by considering only the localization of the excitons due to potential fluctuations
Improvement of temperature-stability in a quantum well laser with asymmetric barrier layers
DEFF Research Database (Denmark)
Zhukov, Alexey E.; Kryzhanovskaya, Natalia V.; Zubov, Fedor I.
2012-01-01
We fabricated and tested a quantum well laser with asymmetric barrier layers. Such a laser has been proposed earlier to suppress bipolar carrier population in the optical confinement layer and thus to improve temperature-stability of the threshold current. As compared to the conventional reference...
International Nuclear Information System (INIS)
Chemla, D.S.
1993-01-01
This article reviews recent investigations of nonlinear optical processes in semiconductors. Section II discusses theory of coherent wave mixing in semiconductors, with emphasis on resonant excitation with only one exciton state. Section III reviews recent experimental investigations of amplitude and phase of coherent wave-mixing resonant with quasi-2d excitons in GaAs quantum wells
International Nuclear Information System (INIS)
Helgesen, P.
1992-04-01
In this work the author investigate the subband nature of multiple quantum well structures by photoconductance spectroscopy, optical absorption measurements and tunneling experiments. Both interband and intraband transitions have been studied. The work is aimed at making an infrared detector using wide band gap semiconductors. 14 refs
Polarisation of the spontaneous emission from nonpolar and semipolar InGaN quantum wells
Energy Technology Data Exchange (ETDEWEB)
Schade, Lukas; Schwarz, Ulrich [Department of Microsystems Engineering, University of Freiburg (IMTEK) (Germany); Fraunhofer Institute for Applied Solid State Physics (IAF) (Germany); Ploch, Simon; Wernicke, Tim [Institute of Solid State Physics, Technical University Berlin (Germany); Knauer, Arne; Hoffmann, Veit; Weyers, Markus [Ferdinand-Braun-Institute (FBH) (Germany); Kneissl, Michael [Institute of Solid State Physics, Technical University Berlin (Germany); Ferdinand-Braun-Institute (FBH) (Germany)
2011-07-01
Spontaneously emitted light stemming from semipolar and nonpolar InGaN quantum wells is polarized. This property is a consequence of the broken in-plane symmetry of non c-plane wurtzite quantum wells. We studied the polarized photoluminescence of semipolar and nonpolar InGaN/InGaN multi quantum wells grown on low defect density GaN substrates with a setup for confocal microscopy. For excitation of charge carriers we use a 375 nm diode laser. The photoluminescence is collected with an objective of small NA, to avoid polarisation scrambling, and analyzed with a broadband polarizer and a spectrometer. The experimental results are compared to k.p band structure calculations for semipolar and nonpolar InGaN quantum wells. These simulations provide the polarisation degree of the confined states of the valence band and their energetic splitting. Next, from the thermal occupation the polarized spectra are calculated. The comparison with experimental results allows the determination of the valence subband splitting. Our experiments show a splitting of the two topmost valence subbands in nonpolar direction which is larger than predicted.
DEFF Research Database (Denmark)
Zubov, F. I.; Zhukov, A. E.; Shernyakov, Yu M.
2014-01-01
The effect of asymmetric barriers on the light-current characteristic (LCC) of a quantum well laser was studied theoretically and experimentally. It is shown that the utilization of asymmetric barriers in a waveguide prevents the nonlinearity of LCC and, consequently, allows rising of the maximum...
Thermalization of Hot Free Excitons in ZnSe-Based Quantum Wells
DEFF Research Database (Denmark)
Hoffmann, J.; Umlauff, M.; Kalt, H.
1997-01-01
Thermalization of hot-exciton populations in ZnSe quantum wells occurs on a time scale of 100 ps. Strong exciton-phonon coupling in II-VI semiconductors leads to a direct access to the thermalization dynamics via time-resolved spectroscopy of phonon-assisted luminescence. The experimental spectra...
Room-temperature near-field reflection spectroscopy of single quantum wells
DEFF Research Database (Denmark)
Langbein, Wolfgang Werner; Hvam, Jørn Marcher; Madsen, Steen
1997-01-01
. This technique suppresses efficiently the otherwise dominating far-field background and reduces topographic artifacts. We demonstrate its performance on a thin, strained near-surface CdS/ZnS single quantum well at room temperature. The optical structure of these topographically flat samples is due to Cd...
Can Hall drag be observed in Coulomb coupled quantum wells in a magnetic field?
DEFF Research Database (Denmark)
Hu, Ben Yu-Kuang
1997-01-01
We study the transresistivity rho(21) (or equivalently, the drag rate) of two Coulomb-coupled quantum wells in the presence of a perpendicular magnetic field, using semi-classical transport theory. Elementary arguments seem to preclude any possibility of observation of ''Hall drag'' (i.e., a non...
Ultrafast carrier dynamics in InGaN/GaN multiple quantum wells
DEFF Research Database (Denmark)
Porte, Henrik; Turchinovich, Dmitry; Cooke, David
We studied the THz conductivity of InGaN/GaN multiple quantum wells (MQWs)by time-resolved terahertz spectroscopy. A nonexponential carrier density decay is observed due to the restoration of a built-in piezoelectric field. Terahertz conductivity spectra show a nonmetallic behavior of the carriers....
Collective Behavior of Interwell Excitons in GaAs/AlGaAs Double Quantum Wells
DEFF Research Database (Denmark)
Larionov, A. V.; Timofeev, V. B.; Hvam, Jørn Märcher
2000-01-01
Photoluminescence spectra of interwell excitons in double GaAs/AlGaAs quantum wells (n-i-n structures) have been investigated (an interwell excition in these systems is an electron-hole pair spatially separated by a narrow AlAs barrier). Under resonance excitation by circular polarized light...
Spin injection from Co2MnGa into an InGaAs quantum well
DEFF Research Database (Denmark)
Hickey, M. C.; Damsgaard, Christian Danvad; Holmes, S. N.
2008-01-01
We have demonstrated spin injection from a full Heusler alloy Co2MnGa thin film into a (100) InGaAs quantum well in a semiconductor light-emitting diode structure at a temperature of 5 K. The detection is performed in the oblique Hanle geometry, allowing quantification of the effective spin lifet...
Correlation Effects on the Coupled Plasmon Modes of a Double Quantum Well
DEFF Research Database (Denmark)
Hill, N. P. R.; Nicholls, J. T.; Linfield, E. H.
1997-01-01
At temperatures comparable to the Fermi temperature, we have measured a plasmon enhanced Coulomb drag in a GaAs/AlGaAs double quantum well electron system. This measurement provides a probe of the many-body corrections to the coupled plasmon modes, and we present a detailed comparison between exp...
Localized excitons in quantum wells show spin relaxation without coherence loss
DEFF Research Database (Denmark)
Zimmermann, R.; Langbein, W.; Runge, E.
2001-01-01
The coherence in the secondary emission from quantum well excitons is studied using the speckle method. Analysing the different polarization channels allows to conclude that (i) no coherence loss occurs in the cross-polarized emission, favouring spin beating instead of spin dephasing, and that (i...
Intensity-dependent nonlinear optical properties in a modulation-doped single quantum well
International Nuclear Information System (INIS)
Ungan, F.
2011-01-01
In the present work, the changes in the intersubband optical absorption coefficients and the refractive index in a modulation-doped quantum well have been investigated theoretically. Within the envelope function approach and the effective mass approximation, the electronic structure of the quantum well is calculated from the self-consistent numerical solution of the coupled Schroedinger-Poisson equations. The analytical expressions of optical properties are obtained by using the compact density-matrix approach. The numerical results GaAs/Al x Ga 1-x As are presented for typical modulation-doped quantum well system. The linear, third-order nonlinear and total absorption and refractive index changes depending on the doping concentration are investigated as a function of the incident optical intensity and structure parameters, such as quantum well width and stoichiometric ratio. The results show that the doping concentration, the structure parameters and the incident optical intensity have a great effect on the optical characteristics of these structures. - Highlights: → The doping concentration has a great effect on the optical characteristics of these structures. → The structure parameters have a great effect on the optical properties of these structures. → The total absorption coefficients reduced as the incident optical intensity increases. → The RICs reduced as the incident optical intensity increases.
Excitonic spectrum of the ZnO/ZnMgO quantum wells
Energy Technology Data Exchange (ETDEWEB)
Bobrov, M. A., E-mail: largaseal@gmail.com; Toropov, A. A.; Ivanov, S. V. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); El-Shaer, A.; Bakin, A.; Waag, A. [TU Braunschweig, Institute of Semiconductor Technology (Germany)
2011-06-15
Excitonic spectrum of the wurtzite ZnO/Zn{sub 1-x}Mg{sub x}O quantum wells with a width on the order of or larger than the Bohr radius of the exciton has been studied; the quantum wells have been grown by the method of molecular beam epitaxy (with plasma-assisted activation of oxygen) on substrates of sapphire (0001). Low-temperature (25 K) spectra of photoluminescence excitation (PLE) have been experimentally measured, making it possible to resolve the peaks of exciton absorption in the quantum well. The spectrum of excitons in the quantum well is theoretically determined as a result of numerical solution of the Schroedinger equation by the variational method. The value of elastic stresses in the structure (used in calculations) has been determined from theoretical simulation of measured spectra of optical reflection. A comparison of experimental data with the results of calculations makes it possible to relate the observed features in the PLE spectra to excitons, including the lower level of dimensional quantization for electrons and two first levels of holes for the A and B valence bands of the wurtzite crystal. The values of the electron and hole masses in ZnO are refined, and the value of the built-in electric field introduced by spontaneous and piezoelectric polarizations is estimated.
Ultrafast interfeometric investigation of resonant secondary emission from quantum well excitons
DEFF Research Database (Denmark)
Birkedal, Dan; Shah, Jagdeep; Pfeiffer, L. N.
1999-01-01
Coherent Rayleigh scattering and incoherent luminescence comprise the secondary emission from quantum well exciton following ultrafast resonant excitation. We show that coherent Rayleigh scattering forms a time-dependent speckle pattern and isolate in a single speckle the Rayleigh component from...
Monolithic integration of a resonant tunneling diode and a quantum well semiconductor laser
Grave, I.; Kan, S. C.; Griffel, G.; Wu, S. W.; Sa'Ar, A.
1991-01-01
A monolithic integration of a double barrier AlAs/GaAs resonant tunneling diode and a GaAs/AlGaAs quantum well laser is reported. Negative differential resistance and negative differential optical response are observed at room temperature. The device displays bistable electrical and optical characteristics which are voltage controlled. Operation as a two-state optical memory is demonstrated.
Frequency doubling of an InGaAs multiple quantum wells semiconductor disk laser
Lidan, Jiang; Renjiang, Zhu; Maohua, Jiang; Dingke, Zhang; Yuting, Cui; Peng, Zhang; Yanrong, Song
2018-01-01
We demonstrate a good beam quality 483 nm blue coherent radiation from a frequency doubled InGaAs multiple quantum wells semiconductor disk laser. The gain chip is consisted of 6 repeats of strain uncompensated InGaAs/GaAs quantum wells and 25 pairs of GaAs/AlAs distributed Bragg reflector. A 4 × 4 × 7 mm3 type I phase-matched BBO nonlinear crystal is used in a V-shaped laser cavity for the second harmonic generation, and 210 mW blue output power is obtained when the absorbed pump power is 3.5 W. The M2 factors of the laser beam in x and y directions are about 1.04 and 1.01, respectively. The output power of the blue laser is limited by the relatively small number of the multiple quantum wells, and higher power can be expected by increasing the number of the multiple quantum wells and improving the heat management of the laser.
Intrinsic optical confinement for ultrathin InAsN quantum well superlattices
Energy Technology Data Exchange (ETDEWEB)
Sakri, A.; Robert, C.; Pedesseau, L.; Cornet, C.; Durand, O.; Even, J.; Jancu, J.-M. [Université Europeenne de Bretagne, INSA Rennes,France and CNRS, UMR 6082, Foton, 20 avenues des Buttes de Coësmes, 35708 Rennes (France)
2013-12-04
We study energy-band engineering with InAsN monolayer in GaAs/GaP quantum well structure. A tight-binding calculation indicates that both type I alignment along with direct band-gap behavior can be obtained. We show that the optical transitions are less sensitive to the position of the probe.
DEFF Research Database (Denmark)
Dery, H.; Tromborg, Bjarne; Eisenstein, G.
2003-01-01
We describe carrier-carrier scattering dynamics in an inverted quantum well structure including the nonparabolic nature of the valance band. A solution of the semiconductor Bloch equations yields strong evidence to a large change in the temporal evolution of the carrier distributions compared to ...
Quantum-well states and induced magnetism in Fe/CuN/Fe bcc (001) trilayers
DEFF Research Database (Denmark)
Niklasson, A.M.N.; Mirbt, S.; Skriver, Hans Lomholt
1996-01-01
profiles of two single Fe/Cu interfaces. The small deviations from this simple superposition are shown to be a consequence of quantum-well states confined within the paramagnetic spacer. This connection is confirmed by direct calculation of the state density. The results are of conceptual interest...
InAlGaAs/AlGaAs quantum wells: line widths, transition energies and segregation
DEFF Research Database (Denmark)
Jensen, Jacob Riis; Hvam, Jørn Märcher; Langbein, Wolfgang
2000-01-01
We investigate the optical properties of InAlCaAs/AlGaAs quantum wells pseudomorphically grown on GaAs using molecular beam epitaxy (MBE). The transition energies, measured with photoluminescence (PL), are modelled solving the Schrodinger equation, and taking into account segregation in the group...
Exciton dynamics in GaAs/AlxGa1-xAs quantum wells
DEFF Research Database (Denmark)
Litvinenko, K.; Birkedal, Dan; Lyssenko, V. G.
1999-01-01
The changes induced in the optical absorption spectrum of a GaAs/AlxGa1-xAs multiple quantum well due to a photoexcited carrier distribution are reexamined. We use a femtosecond pump-probe technique to excite excitons and free electron-hole pairs. We find that for densities up to 10(11) cm(-2...
Interaction-induced effects in the nonlinear coherent response of quantum-well excitons
DEFF Research Database (Denmark)
Wagner, Hans Peter; Schätz, A.; Langbein, Wolfgang Werner
1999-01-01
Interaction-induced processes are studied using the third-order nonlinear polarization created in polarization-dependent four-wave-mixing experiments (FWM) on a ZnSe single quantum well. We discuss their influence by a comparison of the experimental FWM with calculations based on extended optical...
Optical properties of ZnO/MgZnO quantum wells with graded thickness
International Nuclear Information System (INIS)
Lv, X Q; Liu, W J; Hu, X L; Chen, M; Zhang, B P; Zhang, J Y
2011-01-01
The optical properties of ZnO/Mg 0.1 Zn 0.9 O single quantum wells with graded well width were studied using temperature-dependent photoluminescence (PL) spectroscopy. The ratio of emission intensity between the well and barrier layers was found to increase monotonically when the sample temperature was increased from 78 to 210 K, indicating an efficient carrier transfer from the barrier to the well. The emission peak of the Mg 0.1 Zn 0.9 O barrier exhibited a blueshift first and then a redshift with increasing temperature, which was attributed to the repopulation of localized carriers in energy-tail states induced by alloy composition fluctuations. Such an anomalous temperature dependence of PL energy contributed to the carrier transfer. On the other hand, the emission from the well layer exhibited a transition behaviour from localized to free excitons with increasing temperature. A further analysis of the temperature-dependent emission peaks of different well widths revealed that the localization energy of excitons was related to the potential variation induced mainly by well width fluctuations. Moreover, by comparing experimental results with calculation, the separation between the quantum confinement regime and quantum-confined Stark regime was found to occur at a well width of about 3 nm.
Inefficiency of intervalley transfer in narrow InGaAs/AlAsSb quantum wells
International Nuclear Information System (INIS)
Tribuzy, C.V.B.; Ohser, S.; Priegnitz, M.; Winnerl, S.; Schneider, H.; Helm, M.; Neuhaus, J.; Dekorsy, T.; Biermann, K.; Kuenzel, H.
2008-01-01
By using femtosecond pump-probe spectroscopy we investigate the intersubband relaxation dynamics in narrow InGaAs/AlAsSb quantum wells. A biexponential behavior is an indication of intervalley scattering, which is, however, much slower than known from bulk material. This may be the reason why quantum cascade lasers at wavelengths as short as 3 μm are actually functioning In addition, when pumping slightly below resonance we observe an induced transient absorption, which can be interpreted in terms of electron heating within the first subband. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Generic mechanisms of decoherence of quantum oscillations in magnetic double-well systems
International Nuclear Information System (INIS)
Chudnovsky, Eugene M.
2004-01-01
Fundamental conservation laws mandate parameter-free generic mechanisms of decoherence of quantum oscillations in double-well systems. We consider two examples: tunneling of the magnetic moment in nanomagnets and tunneling between macroscopic current states in SQUIDs. In both cases the decoherence occurs via emission of phonons and photons at the oscillation frequency. We also show that in a system of identical qubits the decoherence greatly increases due to the superradiance of electromagnetic and sound waves. Our findings have important implications for building elements of quantum computers based upon nanomagnets and SQUIDs
Generic mechanisms of decoherence of quantum oscillations in magnetic double-well systems
Energy Technology Data Exchange (ETDEWEB)
Chudnovsky, Eugene M. E-mail: chudnov@lehman.cuny.edu
2004-05-01
Fundamental conservation laws mandate parameter-free generic mechanisms of decoherence of quantum oscillations in double-well systems. We consider two examples: tunneling of the magnetic moment in nanomagnets and tunneling between macroscopic current states in SQUIDs. In both cases the decoherence occurs via emission of phonons and photons at the oscillation frequency. We also show that in a system of identical qubits the decoherence greatly increases due to the superradiance of electromagnetic and sound waves. Our findings have important implications for building elements of quantum computers based upon nanomagnets and SQUIDs.
Energy Technology Data Exchange (ETDEWEB)
Slavcheva, G., E-mail: gsk23@bath.ac.uk [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Kavokin, A.V., E-mail: A.Kavokin@soton.ac.uk [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Spin Optics Laboratory, St. Petersburg State University, 1, Ulyanovskaya 198504 (Russian Federation)
2014-11-15
Optical pumping of excited exciton states in a semiconductor quantum well embedded in a microcavity is a tool for realisation of ultra-compact terahertz (THz) lasers based on stimulated optical transition between excited (2p) and ground (1s) exciton state. We show that the probability of two-photon absorption by a 2p-exciton is strongly dependent on the polarisation of both pumping photons. Five-fold variation of the threshold power for terahertz lasing by switching from circular to co-linear pumping is predicted. We identify photon polarisation configurations for achieving maximum THz photon generation quantum efficiency.
Super-resolution with a positive epsilon multi-quantum-well super-lens
International Nuclear Information System (INIS)
Bak, A. O.; Giannini, V.; Maier, S. A.; Phillips, C. C.
2013-01-01
We design an anisotropic and dichroic quantum metamaterial that is able to achieve super-resolution without the need for a negative permittivity. When exploring the parameters of the structure, we take into account the limits of semiconductor fabrication technology based on quantum well stacks. By heavily doping the structure with free electrons, we infer an anisotropic effective medium with a prolate ellipsoid dispersion curve which allows for near-diffractionless propagation of light (similar to an epsilon-near-zero hyperbolic lens). This, coupled with low absorption, allows us to resolve images at the sub-wavelength scale at distances 6 times greater than equivalent natural materials
Efficiency enhancement of InGaN/GaN multiple quantum wells with graphene layer
International Nuclear Information System (INIS)
Deng, Zhen; Li, Zishen; Jiang, Yang; Ma, Ziguang; Fang, Yutao; Li, Yangfeng; Wang, Wenxin; Jia, Haiqiang; Chen, Hong
2015-01-01
In this work, a novel hybrid graphene/InGaN-based multiple quantum wells (MQWs) structure has been fabricated. Compared to the sample conventional structure (CS), the utilization of graphene transferred on top GaN layer significantly enhances the internal quantum efficiency and relatively photoluminescence intensity. Furthermore, the excitons in the MQWs of sample hybrid structure (HS) have a shorter decay lifetime of 3.4 ns than that of 6.7 ns for sample CS. These results are probably attributed to the free carriers in the graphene layer, which can screen the piezoelectric field in the active region and thus present a free quantum-confined Stark effect-like behavior. Our work demonstrates that the graphene on the top GaN layer can effectively increase the recombination rate in sample HS, which may further improve LEDs' performance. (orig.)
Hu, Gangyi; Wijesinghe, Udumbara; Naquin, Clint; Maggio, Ken; Edwards, H. L.; Lee, Mark
2017-10-01
Intrinsic gain (AV) measurements on Si quantum well (QW) n-channel metal-oxide-semiconductor (NMOS) transistors show that these devices can have |AV| > 1 in quantum transport negative transconductance (NTC) operation at room temperature. QW NMOS devices were fabricated using an industrial 45 nm technology node process incorporating ion implanted potential barriers to define a lateral QW in the conduction channel under the gate. While NTC at room temperature arising from transport through gate-controlled QW bound states has been previously established, it was unknown whether the quantum NTC mechanism could support gain magnitude exceeding unity. Bias conditions were found giving both positive and negative AV with |AV| > 1 at room temperature. This result means that QW NMOS devices could be useful in amplifier and oscillator applications.
High-harmonic generation in a quantum electron gas trapped in a nonparabolic and anisotropic well
Hurst, Jérôme; Lévêque-Simon, Kévin; Hervieux, Paul-Antoine; Manfredi, Giovanni; Haas, Fernando
2016-05-01
An effective self-consistent model is derived and used to study the dynamics of an electron gas confined in a nonparabolic and anisotropic quantum well. This approach is based on the equations of quantum hydrodynamics, which incorporate quantum and nonlinear effects in an approximate fashion. The effective model consists of a set of six coupled differential equations (dynamical system) for the electric dipole and the size of the electron gas. Using this model we show that: (i) high harmonic generation is related to the appearance of chaos in the phase space, as attested to by related Poincaré sections; (ii) higher order harmonics can be excited efficiently and with relatively weak driving fields by making use of chirped electromagnetic waves.
International Nuclear Information System (INIS)
Baranowski, M; Kudrawiec, R; Latkowska, M; Syperek, M; Misiewicz, J; Sarmiento, T; Harris, J S
2013-01-01
In this study we apply time resolved photoluminescence and contactless electroreflectance to study the carrier collection efficiency of a GaInNAsSb/GaAs quantum well (QW). We show that the enhancement of photoluminescence from GaInNAsSb quantum wells annealed at different temperatures originates not only from (i) the improvement of the optical quality of the GaInNAsSb material (i.e., removal of point defects, which are the source of nonradiative recombination) but it is also affected by (ii) the improvement of carrier collection by the QW region. The total PL efficiency is the product of these two factors, for which the optimal annealing temperatures are found to be ∼700 °C and ∼760 °C, respectively, whereas the optimal annealing temperature for the integrated PL intensity is found to be between the two temperatures and equals ∼720 °C. We connect the variation of the carrier collection efficiency with the modification of the band bending conditions in the investigated structure due to the Fermi level shift in the GaInNAsSb layer after annealing.
Quantum double-well chain: Ground-state phases and applications to hydrogen-bonded materials
International Nuclear Information System (INIS)
Wang, X.; Campbell, D.K.; Gubernatis, J.E.
1994-01-01
Extrapolating the results of hybrid quantum Monte Carlo simulations to the zero temperature and infinite-chain-length limits, we calculate the ground-state phase diagram of a system of quantum particles on a chain of harmonically coupled, symmetric, quartic double-well potentials. We show that the ground state of this quantum chain depends on two parameters, formed from the ratios of the three natural energy scales in the problem. As a function of these two parameters, the quantum ground state can exhibit either broken symmetry, in which the expectation values of the particle's coordinate are all nonzero (as would be the case for a classical chain), or restored symmetry, in which the expectation values of the particle's coordinate are all zero (as would be the case for a single quantum particle). In addition to the phase diagram as a function of these two parameters, we calculate the ground-state energy, an order parameter related to the average position of the particle, and the susceptibility associated with this order parameter. Further, we present an approximate analytic estimate of the phase diagram and discuss possible physical applications of our results, emphasizing the behavior of hydrogen halides under pressure
Plasmonic photocatalytic reactions enhanced by hot electrons in a one-dimensional quantum well
Directory of Open Access Journals (Sweden)
H. J. Huang
2015-11-01
Full Text Available The plasmonic endothermic oxidation of ammonium ions in a spinning disk reactor resulted in light energy transformation through quantum hot charge carriers (QHC, or quantum hot electrons, during a chemical reaction. It is demonstrated with a simple model that light of various intensities enhance the chemical oxidization of ammonium ions in water. It was further observed that light illumination, which induces the formation of plasmons on a platinum (Pt thin film, provided higher processing efficiency compared with the reaction on a bare glass disk. These induced plasmons generate quantum hot electrons with increasing momentum and energy in the one-dimensional quantum well of a Pt thin film. The energy carried by the quantum hot electrons provided the energy needed to catalyze the chemical reaction. The results indicate that one-dimensional confinement in spherical coordinates (i.e., nanoparticles is not necessary to provide an extra excited state for QHC generation; an 8 nm Pt thin film for one-dimensional confinement in Cartesian coordinates can also provide the extra excited state for the generation of QHC.
Glycogen storage disease type II (Pompe disease in children
Directory of Open Access Journals (Sweden)
A. N. Semyachkina
2014-01-01
Full Text Available The paper gives the data available in the literature, which reflect the manifestations, diagnosis, and current treatments of the rare (orphan inherited disease glycogen storage disease type II or Pomp disease in children, as well as its classification. The infant form is shown to be most severe, resulting in death from cardiovascular or pulmonary failure generally within the first year of a child’s life. Emphasis is laid on major difficulties in the differential and true diagnosis of this severe disease. Much attention is given to the new pathogenetic treatment — genetically engineered enzyme replacement drug Myozyme®. The authors describe their clinical case of a child with the juvenile form of glycogen storage disease type II (late-onset Pompe disease. Particular emphasis is laid on the clinical symptoms of the disease and its diagnostic methods, among which the morphological analysis of a muscle biopsy specimen by light and electron microscopies, and enzyme and DNA diagnoses are of most importance. The proband was found to have significant lysosomal glycogen accumulation in the muscle biopsy specimen, reduced lymphocyte acid α-1,4-glucosidase activity to 4,2 nM/mg/h (normal value, 13,0—53,6 nM/mg/h, described in the HGMD missense mutation database from 1000 G>A p.Gly334er of the GAA in homozygous state, which verified the diagnosis of Pompe disease.
Mechanistic studies of thioxanthone–carbazole as a one-component type II photoinitiator
Energy Technology Data Exchange (ETDEWEB)
Karaca, Nurcan; Karaca Balta, Demet; Ocal, Nuket; Arsu, Nergis, E-mail: nergisarsu@gmail.com
2014-02-15
A mechanistic study concerning photoinitiated free radical polymerization using Thioxanthone–Carbazole (TX–Cz) as a one-component Type II photoinitiator was performed. TX–Cz presented visible initiator characteristics with absorptions at 434 and 414 nm where the molar absorption coefficients were 2014 and 1754 L mol{sup −1} cm{sup −1}, respectively. Fluorescence and phosphorescence spectroscopy, as well as laser flash photolysis was employed to study the photophysical properties of TX–Cz. In addition, photopolymerization of methyl methacrylate (MMA) showed that TX–Cz is efficient photoinitiator. To explain the initiation mechanism of TX–Cz, fluorescence and phosphorescence emission spectra of poly (methyl methacrylate) (PMMA) were also taken to see whether the initiator covalently bonded to the polymer. The postulated mechanism is based on inter- molecular reaction of the triplet, {sup 3}(TX–Cz){sup ⁎} with the carbazole moiety at ground state, TX–Cz. The photoinitiation efficiency of TX–Cz during gelation of multifunctional acrylates was also investigated by Photo-Differential Scanning Calorimetry (Photo-DSC) technique and high polymerization rates were obtained. -- Highlights: • Thioxanthone–Carbazole was used as visible light photoinitiator for radical polymerization of meth(acrylates). • The detailed photophysical properties of TX–Cz was reported. • Fluorescence quantum yield, phosphorescence lifetime , triplet energy and triplet lifetime were determined. • Photo-DSC was used to follow photopolymerizatin kinetics of acrylates.
Numerical solution of multiband k.p model for tunnelling in type-II heterostructures
Directory of Open Access Journals (Sweden)
A.E. Botha
2010-01-01
Full Text Available A new and very general method was developed for calculating the charge and spin-resolved electron tunnelling in type-II heterojunctions. Starting from a multiband k.p description of the bulk energy-band structure, a multiband k.p Riccati equation was derived. The reflection and transmission coefficients were obtained for each channel by integrating the Riccati equation over the entire heterostructure. Numerical instability was reduced through this method, in which the multichannel log-derivative of the envelope function matrix, rather than the envelope function itself, was propagated. As an example, a six-band k.p Hamiltonian was used to calculate the current-voltage characteristics of a 10-nm wide InAs/ GaSb/InAs single quantum well device which exhibited negative differential resistance at room temperature. The calculated current as a function of applied (bias voltage was found to be in semiquantitative agreement with the experiment, a result which indicated that inelastic transport mechanisms do not contribute significantly to the valley currents measured in this particular device.
Scanning capacitance microscopy investigations of InGaAs/InP quantum wells
International Nuclear Information System (INIS)
Douheret, O.; Maknys, K.; Anand, S.
2004-01-01
In this work, cross-sectional scanning capacitance microscopy (SCM) is used to investigate InGaAs/InP (latticed matched) quantum wells grown by metal-organic vapor phase epitaxy. Using n-doped InP as barriers with different doping levels, different InGaAs wells structures (5, 10 and 20 nm) were investigated. The capability of SCM to detect electrons in the quantum wells is demonstrated, showing in addition, a systematic and consistent trend for the different well widths and barrier doping levels. The SCM results are qualitatively consistent with electron distribution obtained for 1D Poisson/Schroedinger simulation. Finally, resolution issues in SCM are discussed in terms of tip averaging effects
Modeling of carrier transport in multi-quantum-well p-i-n modulators
DEFF Research Database (Denmark)
Højfeldt, Sune; Mørk, Jesper
2002-01-01
The dynamical properties of InGaAsP multi-quantum-well electroabsorption modulators are investigated using a comprehensive numerical device model. We calculate the time-dependent sweep-out of photo-generated carriers and the corresponding time-dependent absorption change. The sweep-out is influen......The dynamical properties of InGaAsP multi-quantum-well electroabsorption modulators are investigated using a comprehensive numerical device model. We calculate the time-dependent sweep-out of photo-generated carriers and the corresponding time-dependent absorption change. The sweep......-out is influenced by carriers being recaptured into subsequent wells as they move towards the contacts. This process drastically increases the sweep-out time in our ten-well structure (similar to25 ps) compared to the pure drift-time (similar to1 ps). We also compare the saturation properties of two components...
Enhanced UV luminescence from InAlN quantum well structures using two temperature growth
International Nuclear Information System (INIS)
Zubialevich, Vitaly Z.; Sadler, Thomas C.; Dinh, Duc V.; Alam, Shahab N.; Li, Haoning; Pampili, Pietro; Parbrook, Peter J.
2014-01-01
InAlN/AlGaN multiple quantum wells (MQWs) emitting between 300 and 350 nm have been prepared by metalorganic chemical vapor deposition on planar AlN templates. To obtain strong room temperature luminescence from InAlN QWs a two temperature approach was required. The intensity decayed weakly as the temperature was increased to 300 K, with ratios I PL (300 K)/I PL (T) max up to 70%. This high apparent internal quantum efficiency is attributed to the exceptionally strong carrier localization in this material, which is also manifested by a high Stokes shift (0.52 eV) of the luminescence. Based on these results InAlN is proposed as a robust alternative to AlGaN for ultraviolet emitting devices. - Highlights: • InAlN quantum wells with AlGaN barriers emitting in near UV successfully grown using quasi-2T approach. • 1 nm AlGaN capping of InAlN quantum wells used to avoid In desorption during temperature ramp to barrier growth conditions. • Strong, thermally resilient luminescence obtained as a result of growth optimization. • Promise of InAlN as an alternative active region for UV emitters demonstrated
Self-consistent electronic structure of spin-polarized dilute magnetic semiconductor quantum wells
International Nuclear Information System (INIS)
Hong, S. P.; Yi, K. S.; Quinn, J. J.
2000-01-01
The electronic properties of spin-symmetry-broken dilute magnetic semiconductor quantum wells are investigated self-consistently at zero temperature. The spin-split subband structure and carrier concentration of modulation-doped quantum wells are examined in the presence of a strong magnetic field. The effects of exchange and correlations of electrons are included in a local-spin-density-functional approximation. We demonstrate that exchange correlation of electrons decreases the spin-split subband energy but enhances the carrier density in a spin-polarized quantum well. We also observe that as the magnetic field increases, the concentration of spin-down (majority) electrons increases but that of spin-up (minority) electrons decreases. The effect of orbital quantization on the in-plane motion of electrons is also examined and shows a sawtoothlike variation in subband electron concentrations as the magnetic-field intensity increases. The latter variation is attributed to the presence of ionized donors acting as the electron reservoir, which is partially responsible for the formation of the integer quantum Hall plateaus. (c) 2000 The American Physical Society
Tailoring the spin polarization in Ge/SiGe multiple quantum wells
International Nuclear Information System (INIS)
Giorgioni, Anna; Pezzoli, Fabio; Gatti, Eleonora; Grilli, Emanuele; Guzzi, Mario; Bottegoni, Federico; Cecchi, Stefano; Ciccacci, Franco; Isella, Giovanni; Trivedi, Dhara; Song, Yang; Li, Pengki; Dery, Hanan
2013-01-01
We performed spin-resolved photoluminescence measurements on Ge/SiGe multiple quantum wells with different well thickness and using different exciting power densities. The polarization of the direct emission strongly depends on the relative weight of electrons photoexcited from the light and the heavy hole subbands. The study of the polarization as a function of the exciting power highlights the role of the carrier-carrier interactions in determining spin depolarization
Green's function for electrons in a narrow quantum well in a parallel magnetic field
International Nuclear Information System (INIS)
Horing, Norman J. Morgenstern; Glasser, M. Lawrence; Dong Bing
2005-01-01
Electron dynamics in a narrow quantum well in a parallel magnetic field of arbitrary strength are examined here. We derive an explicit analytical closed-form solution for the Green's function of Landau-quantized electrons in skipping states of motion between the narrow well walls coupled with in-plane translational motion and hybridized with the zero-field lowest subband energy eigenstate. Such Landau-quantized modes are not uniformly spaced
Energy Technology Data Exchange (ETDEWEB)
Yablonsky, A. N., E-mail: yablonsk@ipmras.ru; Zhukavin, R. Kh.; Bekin, N. A.; Novikov, A. V.; Yurasov, D. V.; Shaleev, M. V. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)
2016-12-15
For SiGe/Si(001) epitaxial structures with two nonequivalent SiGe quantum wells separated by a thin Si barrier, the spectral and time characteristics of interband photoluminescence corresponding to the radiative recombination of excitons in quantum wells are studied. For a series of structures with two SiGe quantum wells different in width, the characteristic time of tunneling of charge carriers (holes) from the narrow quantum well, distinguished by a higher exciton recombination energy, to the wide quantum well is determined as a function of the Si barrier thickness. It is shown that the time of tunneling of holes between the Si{sub 0.8}5Ge{sub 0.15} layers with thicknesses of 3 and 9 nm steadily decreases from ~500 to <5 ns, as the Si barrier thickness is reduced from 16 to 8 nm. At intermediate Si barrier thicknesses, an increase in the photoluminescence signal from the wide quantum well is observed, with a characteristic time of the same order of magnitude as the luminescence decay time of the narrow quantum well. This supports the observation of the effect of the tunneling of holes from the narrow to the wide quantum well. A strong dependence of the tunneling time of holes on the Ge content in the SiGe layers at the same thickness of the Si barrier between quantum wells is observed, which is attributed to an increase in the effective Si barrier height.
Origins of efficient green light emission in phase-separated InGaN quantum wells
International Nuclear Information System (INIS)
Lai, Y-L; Liu, C-P; Lin, Y-H; Hsueh, T-H; Lin, R-M; Lyu, D-Y; Peng, Z-X; Lin, T-Y
2006-01-01
Green-light-emitting InGaN/GaN multiple quantum wells (MQWs) with high luminescent efficiency were grown by metalorganic chemical vapour deposition (MOCVD). The microstructure of the sample was studied by high-resolution transmission electron microscopy (HRTEM) and high-resolution x-ray diffraction, while its optical behaviour was analysed in great detail by a variety of photoluminescence methods. Two InGaN-related peaks that were clearly found in the photoluminescence (PL) spectrum are assigned to quasi-quantum dots (516 nm) and the InGaN matrix (450 nm), respectively, due to a strong phase separation observed by HRTEM. Except for the strong indium aggregation regions (511 meV of Stokes shift), slight composition fluctuations were also observed in the InGaN matrix, which were speculated from an 'S-shaped' transition and a Stokes shift of 341 meV. Stronger carrier localization and an internal quantum efficiency of the dot-related emission (21.5%), higher than the InGaN-matrix related emission (7.5%), was demonstrated. Additionally, a shorter lifetime and 'two-component' PL decay were found for the low-indium-content regions (matrix). Thus, the carrier transport process within quantum wells is suggested to drift from the low-In-content matrix to the high-In-content dots, resulting in the enhanced luminescence efficiency of the green light emission
International Nuclear Information System (INIS)
Kannan, E S; Karamad, M; Kim, Gil-Ho; Farrer, I; Ritchie, D A
2010-01-01
Magnetotransport measurements were performed in two widely separated double quantum well systems with different starting disorders. In the weak magnetic field regime, a crossover from negative to positive magnetoresistance in the longitudinal resistivity was observed in the system with weak disorder when the electron densities in the neighboring wells were significantly unbalanced. The crossover was found to be the result of the exchange-energy-assisted interactions between the electrons occupying the lowest subbands in the neighboring wells. In the case of the system with strong disorder short range scattering dominated the scattering process and no such transition in longitudinal resistivity in the low magnetic field regime was observed. However, at high magnetic fields, sharp peaks were observed in the Hall resistance due to the interaction between the edge states in the quantum Hall regime.
Directory of Open Access Journals (Sweden)
Dhaneshwar Mishra
2017-07-01
Full Text Available Exact closed-form expressions have been derived for the stresses and the electric fields induced in piezoelectric multilayers deposited on a substrate with lattice misfit and thermal expansion coefficient mismatch. The derived formulations can model any number of layers using recursive relations that minimize the computation time. A proper rotation matrix has been utilized to generalize the expressions so that they can be used for various growth orientations with each layer having hexagonal crystal symmetry. As an example, the influence of lattice misfit and thermal expansion coefficient mismatch on the state of electroelastic fields in different layers of GaN multi quantum wells has been examined. A comparison with the finite element analysis results showed very close agreement. The analytical expressions developed herein will be useful in designing optoelectronic devices as well as in predicting defect density in multi quantum wells.
Directory of Open Access Journals (Sweden)
Zonneveld Bas JGL
2008-12-01
Full Text Available Abstract Background With an incidence of less than 5%, type II paraesophageal hernias are one of the less common types of hiatal hernias. We report a case of a perforated prepyloric gastric ulcer which, due to a type II hiatus hernia, drained into the mediastinum. Case presentation A 61-year old Caucasian man presented with acute abdominal pain. On a conventional x-ray of the chest a large mediastinal air-fluid collection and free intra-abdominal air was seen. Additional computed tomography revealed a large intra-thoracic air-fluid collection with a type II paraesophageal hernia. An emergency upper midline laparotomy was performed and a perforated pre-pyloric gastric ulcer was treated with an omental patch repair. The patient fully recovered after 10 days and continues to do well. Conclusion Type II paraesophageal hernia is an uncommon diagnosis. The main risk is gastric volvulus and possible gastric torsion. Intrathoracic perforation of gastric ulcers due to a type II hiatus hernia is extremely rare and can be a diagnostic and treatment challenge.
Energy Technology Data Exchange (ETDEWEB)
Wang, Liancheng, E-mail: wanglc@semi.ac.cn, E-mail: lzq@semi.ac.cn, E-mail: zh.zhang@hebut.edu.cn [Engineering Product Development Pillar (EPD), Singapore University of Technology & Design (SUTD), 8 Somapah Road, Singapore 487372 (Singapore); Semiconductor Lighting Technology Research and Development Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Mind Star (Beijing) Technology Co., Ltd., Zhongguancun South Street, Haidian District, No. 45 Hing Fat Building 1001, Beijing 100872 (China); Liu, Zhiqiang, E-mail: wanglc@semi.ac.cn, E-mail: lzq@semi.ac.cn, E-mail: zh.zhang@hebut.edu.cn; Tian, Ying Dong; Yi, Xiaoyan; Wang, Junxi; Li, Jinmin; Wang, Guohong [Semiconductor Lighting Technology Research and Development Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Zhang, Zi-Hui, E-mail: wanglc@semi.ac.cn, E-mail: lzq@semi.ac.cn, E-mail: zh.zhang@hebut.edu.cn [Key Laboratory of Electronic Materials and Devices of Tianjin, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401 (China)
2016-04-14
The effects of graphene on the optical properties of active system, e.g., the InGaN/GaN multiple quantum wells, are thoroughly investigated and clarified. Here, we have investigated the mechanisms accounting for the photoluminescence reduction for the graphene covered GaN/InGaN multiple quantum wells hybrid structure. Compared to the bare multiple quantum wells, the photoluminescence intensity of graphene covered multiple quantum wells showed a 39% decrease after excluding the graphene absorption losses. The responsible mechanisms have been identified with the following factors: (1) the graphene two dimensional hole gas intensifies the polarization field in multiple quantum wells, thus steepening the quantum well band profile and causing hole-electron pairs to further separate; (2) a lower affinity of graphene compared to air leading to a weaker capability to confine the excited hot electrons in multiple quantum wells; and (3) exciton transfer through non-radiative energy transfer process. These factors are theoretically analysed based on advanced physical models of semiconductor devices calculations and experimentally verified by varying structural parameters, such as the indium fraction in multiple quantum wells and the thickness of the last GaN quantum barrier spacer layer.
Simulation and optimization of deep violet InGaN double quantum well laser
Alahyarizadeh, Gh.; Ghazai, A. J.; Rahmani, R.; Mahmodi, H.; Hassan, Z.
2012-03-01
The performance characteristics of a deep violet InGaN double quantum well laser diode (LD) such as threshold current ( Ith), external differential quantum efficiency (DQE) and output power have been investigated using the Integrated System Engineering Technical Computer Aided Design (ISE-TCAD) software. As well as its operating parameters such as internal quantum efficiency ( ηi), internal loss ( αi) and transparency threshold current density ( J0) have been studied. Since, we are interested to investigate the mentioned characteristics and parameters independent of well and barrier thickness, therefore to reach a desired output wavelength, the indium mole fraction of wells and barriers has been varied consequently. The indium mole fractions of well and barrier layers have been considered 0.08 and 0.0, respectively. Some important parameters such as Al mole fraction of the electronic blocking layer (EBL) and cavity length which affect performance characteristics were also investigated. The optimum values of the Al mole fraction and cavity length in this study are 0.15 and 400 μm, respectively. The lowest threshold current, the highest DQE and output power which obtained at the emission wavelength of 391.5 nm are 43.199 mA, 44.99% and 10.334 mW, respectively.
Quantum-Carnot engine for particle confined to 2D symmetric potential well
International Nuclear Information System (INIS)
Belfaqih, Idrus Husin; Sutantyo, Trengginas Eka Putra; Prayitno, T. B.; Sulaksono, Anto
2015-01-01
Carnot model of heat engine is the most efficient cycle consisting of isothermal and adiabatic processes which are reversible. Although ideal gas usually used as a working fluid in the Carnot engine, Bender used quantum particle confined in 1D potential well as a working fluid. In this paper, by following Bender we generalize the situation to 2D symmetric potential well. The efficiency is express as the ratio of the initial length of the system to the final length of the compressed system. The result then is shown that for the same ratio, 2D potential well is more efficient than 1D potential well
Quantum-Carnot engine for particle confined to 2D symmetric potential well
Energy Technology Data Exchange (ETDEWEB)
Belfaqih, Idrus Husin, E-mail: idrushusin21@gmail.com; Sutantyo, Trengginas Eka Putra, E-mail: trengginas.eka@gmail.com; Prayitno, T. B., E-mail: teguh-budi@unj.ac.id [Department of Physics, Universitas Negeri Jakarta, Jl. Pemuda Rawamangun, Jakarta Timur, 13220 (Indonesia); Sulaksono, Anto, E-mail: anto.sulaksono@sci.ui.ac.id [Department of Physics, Universitas Indonesia, Depok, Jawa Barat, 164242 (Indonesia)
2015-09-30
Carnot model of heat engine is the most efficient cycle consisting of isothermal and adiabatic processes which are reversible. Although ideal gas usually used as a working fluid in the Carnot engine, Bender used quantum particle confined in 1D potential well as a working fluid. In this paper, by following Bender we generalize the situation to 2D symmetric potential well. The efficiency is express as the ratio of the initial length of the system to the final length of the compressed system. The result then is shown that for the same ratio, 2D potential well is more efficient than 1D potential well.
Chains of N=2, D=4 heterotic type II duals
Aldazabal, G; Font, A; Quevedo, Fernando
1996-01-01
We report on a search for N=2 heterotic strings that are dual candidates of type II compactifications on Calabi-Yau threefolds described as K3 fibrations. We find many new heterotic duals by using standard orbifold techniques. The associated type II compactifications fall into chains in which the proposed duals are heterotic compactifications related one another by a sequential Higgs mechanism. This breaking in the heterotic side typically involves the sequence SU(4)\\rightarrow SU(3)\\rightarrow SU(2)\\rightarrow 0, while in the type II side the weights of the complex hypersurfaces and the structure of the K3 quotient singularities also follow specific patterns.
(110) oriented GaAs/Al0.3Ga0.7As quantum wells for optimized T-shaped quantum wires
DEFF Research Database (Denmark)
Gislason, Hannes; Sørensen, Claus Birger; Hvam, Jørn Märcher
1996-01-01
High control of (110) oriented GaAs/Al0.3Ga0.7As quantum wells is very important for the growth of optimized T-shaped GaAs/AlGaAs quantum wires, We investigate theoretically and experimentally 20-200 Angstrom wide (110) oriented GaAs quantum wells grown on (110) oriented substrates and cleaved...... edges. Photoluminescence transition energies are found to be in good agreement with theory for all well widths. The mean well width is controllable to 1 monolayer accuracy and an effective well width fluctuation of 3.7 Angstrom is derived from the photoluminescence linewidths. The growth rate...
Directory of Open Access Journals (Sweden)
Mostafa Wanees Ahmed El husseny
2017-01-01
Full Text Available Adipokines are bioactive molecules that regulate several physiological functions such as energy balance, insulin sensitization, appetite regulation, inflammatory response, and vascular homeostasis. They include proinflammatory cytokines such as adipocyte fatty acid binding protein (A-FABP and anti-inflammatory cytokines such as adiponectin, as well as vasodilator and vasoconstrictor molecules. In obesity and type II diabetes mellitus (DM, insulin resistance causes impairment of the endocrine function of the perivascular adipose tissue, an imbalance in the secretion of vasoconstrictor and vasodilator molecules, and an increased production of reactive oxygen species. Recent studies have shown that targeting plasma levels of adipokines or the expression of their receptors can increase insulin sensitivity, improve vascular function, and reduce the risk of cardiovascular morbidity and mortality. Several reviews have discussed the potential of adipokines as therapeutic targets for type II DM and obesity; however, this review is the first to focus on their therapeutic potential for vascular dysfunction in type II DM and obesity.
Nemirovskiy, O V; Sunyer, T; Aggarwal, P; Abrams, M; Hellio Le Graverand, M P; Mathews, W R
2008-12-01
Progression of joint damage in osteoarthritis (OA) is likely to result from an imbalance between cartilage degradation and synthesis processes. Markers reflecting these two components appear to be promising in predicting the rate of OA progression. Both N- and C-terminal propeptides of type II collagen reflect the rates of collagen type II synthesis. The ability to quantify the procollagen peptides in biological fluids would enable a better understanding of OA disease pathology and provide means for assessing the proof of mechanism of anabolic disease modifying OA drugs (DMOADs). A polyclonal antibody that recognizes the sequence GPKGQKGEPGDIKDI in the propeptide region of rat, dog, and human type II collagen was raised in chicken and peptide-affinity purified. The immunoaffinity liquid chromatography mass spectrometry (LC-MS/MS) was used to extensively characterize N-terminal procollagen type II (NPII) peptides found in biological fluids. The novel competition enzyme-linked immunosorbent assay (ELISA) assay was developed to quantitatively measure the NPII peptides. Several peptides ranging from 17 to 41 amino acids with various modifications including hydroxylations on proline and lysine residues, oxidation of lysines to allysines, and attachments of glucose and galactose moieties to hydroxylysines were identified in a simple system such as ex vivo cultures of human articular cartilage (HAC) explants as well as in more complex biological fluids such as human urine and plasma. A competitive ELISA assay has been developed and applied to urine, plasma, and synovial fluid matrices in human, rat and dog samples. A novel NPII assay has been developed and applied to OA and normal human subjects to understand the changes in collagen type II synthesis related to the pathology of OA.
Energy Technology Data Exchange (ETDEWEB)
Bergbauer, Werner [OSRAM Opto Semiconductors GmbH, Regensburg (Germany); FH Deggendorf (Germany); Laubsch, Ansgar; Peter, Matthias; Mayer, Tobias; Bader, Stefan; Oberschmid, Raimund; Hahn, Berthold [OSRAM Opto Semiconductors GmbH, Regensburg (Germany); Benstetter, Guenther [FH Deggendorf (Germany)
2008-07-01
As the efficiency and the luminous flux have been increased enormously in the last few years, today Light Emitting Diodes (LEDs) are even pushed to applications like general lighting and Home Cinema Projection. Still, InGaN/GaN heterostructure based LEDs suffer from loss-mechanisms like non-radiative defect and Auger recombination, carrier leakage and piezo-field induced carrier separation. To optimize the high current efficiency we evaluated the benefit of Multiple Quantum Well (MQW) compared to Single Quantum Well (SQW) LEDs. Temperature dependent electroluminescence of colour-coded structures with different Indium content in certain Quantum Wells was measured. The experiments demonstrated a strong temperature and current dependence of the MQW operation. The comparison between different LED structures showed effectively the increased LED performance of those structures which operate with a well adjusted MQW active area. Due to the enhanced carrier distribution in the high current range, these LEDs show a higher light output and additionally a reduced wavelength shift.
International Nuclear Information System (INIS)
Bergbauer, Werner; Laubsch, Ansgar; Peter, Matthias; Mayer, Tobias; Bader, Stefan; Oberschmid, Raimund; Hahn, Berthold; Benstetter, Guenther
2008-01-01
As the efficiency and the luminous flux have been increased enormously in the last few years, today Light Emitting Diodes (LEDs) are even pushed to applications like general lighting and Home Cinema Projection. Still, InGaN/GaN heterostructure based LEDs suffer from loss-mechanisms like non-radiative defect and Auger recombination, carrier leakage and piezo-field induced carrier separation. To optimize the high current efficiency we evaluated the benefit of Multiple Quantum Well (MQW) compared to Single Quantum Well (SQW) LEDs. Temperature dependent electroluminescence of colour-coded structures with different Indium content in certain Quantum Wells was measured. The experiments demonstrated a strong temperature and current dependence of the MQW operation. The comparison between different LED structures showed effectively the increased LED performance of those structures which operate with a well adjusted MQW active area. Due to the enhanced carrier distribution in the high current range, these LEDs show a higher light output and additionally a reduced wavelength shift
Carrier dynamics in InAs quantum dots embedded in InGaAs/GaAs multi quantum well structures
International Nuclear Information System (INIS)
Espinola, J L Casas; Dybic, M; Ostapenko, S; Torchynska, T V; Polupan, G
2007-01-01
Ground and multi excited state photoluminescence, as well as its temperature dependence, in InAs quantum dots embedded in symmetric In x Ga 1-x As/GaAs (x = 0.15) quantum wells (DWELL) have been investigated. The solution of the set of rate equations for exciton dynamics (relaxation into QWs or QDs and thermal escape) solved by us earlier is used for analysis the variety of thermal activation energies of photoluminescence thermal quenching for ground and multi excited states of InAs QDs. The obtained solutions were used at the discussion of the variety of activation energies of PL thermal quenching in InAs QDs. It is revealed three different regimes of thermally activated quenching of the QD PL intensity. These three regimes were attributed to thermal escape of excitons: i) from the high energy excited states of InAs QDs into the WL with follows exciton re-localization; ii) from the In x Ga 1-x As QWs into the GaAs barrier and iii) from the WL into the GaAs barrier with their subsequent nonradiative recombination in GaAs barrier
Electron-electron scattering and mobilities in semiconductors and quantum wells
International Nuclear Information System (INIS)
Lyo, S.K.
1986-01-01
The effect of electron-electron scattering on the mobility in semiconductors and semiconductor quantum wells is examined. A general exact formula is derived for the mobility, when the electron-electron collision rate is much faster than other scattering rates such as those by ionized impurities and phonons. In this limit, the transport relaxation rate is independent of the carrier's energy and contributions to the inverse mobility from individual scattering mechanism add up. The mobility becomes significantly reduced from its value in the absence of electron-electron scattering. When the collision rates are not necessarily dominated by electron-electron scattering, the mobility is calculated by the Kohler-Sondheimer variational method in the presence of ionized-impurity scattering and acoustic-phonon scattering in a nondegenerate two-dimensional quantum well
Spin-orbit interaction in a dual gated InAs/GaSb quantum well
Beukman, Arjan J. A.; de Vries, Folkert K.; van Veen, Jasper; Skolasinski, Rafal; Wimmer, Michael; Qu, Fanming; de Vries, David T.; Nguyen, Binh-Minh; Yi, Wei; Kiselev, Andrey A.; Sokolich, Marko; Manfra, Michael J.; Nichele, Fabrizio; Marcus, Charles M.; Kouwenhoven, Leo P.
2017-12-01
The spin-orbit interaction is investigated in a dual gated InAs/GaSb quantum well. Using an electric field, the quantum well can be tuned between a single-carrier regime with exclusively electrons as carriers and a two-carrier regime where electrons and holes coexist. The spin-orbit interaction in both regimes manifests itself as a beating in the Shubnikov-de Haas oscillations. In the single-carrier regime the linear Dresselhaus strength is characterized by β =28.5 meV Å and the Rashba coefficient α is tuned from 75 to 53 meV Å by changing the electric field. In the two-carrier regime a quenching of the spin splitting is observed and attributed to a crossing of spin bands.
Quantum wells, wires and dots theoretical and computational physics of semiconductor nanostructures
Harrison, Paul
2016-01-01
Quantum Wells, Wires and Dots provides all the essential information, both theoretical and computational, to develop an understanding of the electronic, optical and transport properties of these semiconductor nanostructures. The book will lead the reader through comprehensive explanations and mathematical derivations to the point where they can design semiconductor nanostructures with the required electronic and optical properties for exploitation in these technologies. This fully revised and updated 4th edition features new sections that incorporate modern techniques and extensive new material including: - Properties of non-parabolic energy bands - Matrix solutions of the Poisson and Schrodinger equations - Critical thickness of strained materials - Carrier scattering by interface roughness, alloy disorder and impurities - Density matrix transport modelling -Thermal modelling Written by well-known authors in the field of semiconductor nanostructures and quantum optoelectronics, this user-friendly guide is pr...
Excitonic recombination dynamics in non-polar GaN/AlGaN quantum wells
Energy Technology Data Exchange (ETDEWEB)
Rosales, D.; Gil, B.; Bretagnon, T.; Guizal, B. [CNRS, Laboratoire Charles Coulomb, UMR 5221, F-34095 Montpellier (France); Université Montpellier 2, Laboratoire Charles Coulomb, UMR 5221, F-34095 Montpellier (France); Zhang, F.; Okur, S.; Monavarian, M.; Izyumskaya, N.; Avrutin, V.; Özgür, Ü.; Morkoç, H. [Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, Virginia 23238 (United States); Leach, J. H. [Kyma Technologies, Raleigh, North Carolina 27617 (United States)
2014-02-21
The optical properties of GaN/Al{sub 0.15}Ga{sub 0.85}N multiple quantum wells are examined in 8 K–300 K temperature range. Both polarized CW and time resolved temperature-dependent photoluminescence experiment are performed so that we can deduce the relative contributions of the non-radiative and radiative recombination processes. From the calculation of the proportion of the excitonic population having wave vector in the light cone, we can deduce the variation of the radiative decay time with temperature. We find part of the excitonic population to be localized in concert with the report of Corfdir et al. (Jpn. J. Appl. Phys., Part 2 52, 08JC01 (2013)) in case of a-plane quantum wells.
Excitonic recombination dynamics in non-polar GaN/AlGaN quantum wells
Rosales, D.; Gil, B.; Bretagnon, T.; Guizal, B.; Zhang, F.; Okur, S.; Monavarian, M.; Izyumskaya, N.; Avrutin, V.; Özgür, Ü.; Morkoç, H.; Leach, J. H.
2014-02-01
The optical properties of GaN/Al0.15Ga0.85N multiple quantum wells are examined in 8 K-300 K temperature range. Both polarized CW and time resolved temperature-dependent photoluminescence experiment are performed so that we can deduce the relative contributions of the non-radiative and radiative recombination processes. From the calculation of the proportion of the excitonic population having wave vector in the light cone, we can deduce the variation of the radiative decay time with temperature. We find part of the excitonic population to be localized in concert with the report of Corfdir et al. (Jpn. J. Appl. Phys., Part 2 52, 08JC01 (2013)) in case of a-plane quantum wells.
Excitonic recombination dynamics in non-polar GaN/AlGaN quantum wells
International Nuclear Information System (INIS)
Rosales, D.; Gil, B.; Bretagnon, T.; Guizal, B.; Zhang, F.; Okur, S.; Monavarian, M.; Izyumskaya, N.; Avrutin, V.; Özgür, Ü.; Morkoç, H.; Leach, J. H.
2014-01-01
The optical properties of GaN/Al 0.15 Ga 0.85 N multiple quantum wells are examined in 8 K–300 K temperature range. Both polarized CW and time resolved temperature-dependent photoluminescence experiment are performed so that we can deduce the relative contributions of the non-radiative and radiative recombination processes. From the calculation of the proportion of the excitonic population having wave vector in the light cone, we can deduce the variation of the radiative decay time with temperature. We find part of the excitonic population to be localized in concert with the report of Corfdir et al. (Jpn. J. Appl. Phys., Part 2 52, 08JC01 (2013)) in case of a-plane quantum wells
Phase-dependent optical bistability and multistability in a semiconductor quantum well system
International Nuclear Information System (INIS)
Wang Zhiping; Fan Hongyi
2010-01-01
We theoretically investigate the hybrid absorptive-dispersive optical bistability and multistability in a four-level inverted-Y quantum well system inside a unidirectional ring cavity. We find that the coupling field, the pumping field as well as the cycling field can affect the optical bistability and multistability dramatically, which can be used to manipulate efficiently the threshold intensity and the hysteresis loop. The effects of the relative phase and the electronic cooperation parameter on the OB and OM are also studied. Our study is much more practical than its atomic counterpart due to its flexible design and the wide adjustable parameters. Thus, it may provide some new possibilities for technological applications in optoelectronics and solid-state quantum information science.
Optical and electrical characteristics of GaAs/InGaAs quantum-well device
International Nuclear Information System (INIS)
Hsu, K.C.; Ho, C.H.; Lin, Y.S.; Wu, Y.H.; Hsu, R.T.; Huang, K.W.
2009-01-01
A GaAs/InGaAs quantum-well structure was grown by low-pressure metalorganic chemical vapor deposition (LP-MOCVD). The quantum well was graded from 25% to 15% indium (from the bottom to the top of the channel). Hall measurements were made to characterize the concentration and mobility of the two-dimensional electron gas (2DEG). The temperature-dependent photoluminescence (PL) and photoreflectance (PR) spectra of the structure of interest were obtained. Various intersuband features were observed in the PR spectra. Furthermore, a 1.5 μm gate-length high-electron mobility transistor (HEMT), fabricated on these layers, had an extrinsic transconductance of 127 mS/mm. The optical and electrical characteristics were determined simultaneously
Effect of Phonon Drag on the Thermopower in a Parabolic Quantum Well
Energy Technology Data Exchange (ETDEWEB)
Hasanov, Kh. A., E-mail: xanlarhasanli@rambler.ru; Huseynov, J. I. [Azerbaijan State Pedagogical University (Azerbaijan); Dadashova, V. V. [Baku State University (Azerbaijan); Aliyev, F. F. [National Academy of Sciences of Azerbaijan, Abdullaev Institute of Physics (Azerbaijan)
2016-03-15
The theory of phonon-drag thermopower resulting from a temperature gradient in the plane of a two-dimensional electron gas layer in a parabolic quantum well is developed. The interaction mechanisms between electrons and acoustic phonons are considered, taking into account potential screening of the interaction. It is found that the effect of electron drag by phonons makes a significant contribution to the thermopower of the two-dimensional electron gas. It is shown that the consideration of screening has a significant effect on the drag thermopower. For the temperature dependence of the thermopower in a parabolic GaAs/AlGaAs quantum well in the temperature range of 1–10 K, good agreement between the obtained theoretical results and experiments is shown.
International Nuclear Information System (INIS)
Wu, B H; Cao, J C
2004-01-01
A selected intersubband transition in the asymmetric quantum well is theoretically proposed by using the superposition of two identical time delayed and phase shifted broadband pulses. Three conduction subbands in the semiconductor quantum well structure are optically coupled with the ultrafast infrared pulses. By adjusting the delay between these two pulses, the carriers at ground level can be selectively pumped to one of the upper levels, while the other upper level remains unoccupied. Thus selective transitions in the three level model can be manipulated by optical interference. At the same time, terahertz radiation will be emitted by coherent controlled charge oscillations. The phase and amplitude of THz radiation is found to be sensitive to the optical interference of the coupling pulses
International Nuclear Information System (INIS)
Luna, E.; Hopkinson, M.; Ulloa, J. M.; Guzman, A.; Munoz, E.
2003-01-01
Near-infrared detection is reported for a double-barrier quantum-well infrared photodetector based on a 30-A GaAs 1-y N y (y≅0.01) quantum well. The growth procedure using plasma-assisted molecular-beam epitaxy is described. The as-grown sample exhibits a detection wavelength of 1.64 μm at 25 K. The detection peak strengthens and redshifts to 1.67 μm following rapid thermal annealing at 850 deg. C for 30 s. The detection peak position is consistent with the calculated band structure based on the band-anticrossing model for nitrogen incorporation into GaAs
Magnetospectroscopy of symmetric and anti-symmetric states in double quantum wells
Marchewka, M.; Sheregii, E. M.; Tralle, I.; Ploch, D.; Tomaka, G.; Furdak, M.; Kolek, A.; Stadler, A.; Mleczko, K.; Zak, D.; Strupinski, W.; Jasik, A.; Jakiela, R.
2008-02-01
The experimental results obtained for magnetotransport in the InGaAs/InAlAs double quantum well (DQW) structures of two different shapes of wells are reported. A beating effect occurring in the Shubnikov-de Haas (SdH) oscillations was observed for both types of structures at low temperatures in the parallel transport when the magnetic field was perpendicular to the layers. An approach for the calculation of the Landau level energies for DQW structures was developed and then applied to the analysis and interpretation of the experimental data related to the beating effect. We also argue that in order to account for the observed magnetotransport phenomena (SdH and integer quantum Hall effect), one should introduce two different quasi-Fermi levels characterizing two electron subsystems regarding the symmetry properties of their states, symmetric and anti-symmetric ones, which are not mixed by electron-electron interaction.
Prediction of CMEs and Type II Bursts from Sun to Earth
Cairns, I. H.; Schmidt, J. M.; Gopalswamy, N.; van der Holst, B.
2017-12-01
Most major space weather events are due to fast CMEs and their shocks interacting with Earth's magnetosphere. SImilarly, type II solar radio bursts are well-known signatures of CMEs and their shocks moving through the corona and solar wind. The properties of the space weather events and the type II radio bursts depend sensitively on the CME velocity, shape, and evolution as functions of position and time, as well as on the magnetic field vector in the coronal and solar wind plasma, downstream of the CME shock, and inside the CME. We report simulations of CMEs and type II bursts from the Sun to Earth with the Space Weather Modelling Framework (2015 and 2016 versions), set up carefully using relevant data, and a kinetic radio emission theory. Excellent agreement between observations, simulations, and theory are found for the coronal (metric) type II burst of 7 September 2014 and associated CME, including the lack of radio emission in the solar wind beyond about 10 solar radii. Similarly, simulation of a CME and type II burst from the Sun to 1 AU over the period 29 November - 1 December 2013 yield excellent agreement for the radio burst from 10 MHz to 30 kHz for STEREO A and B and Wind, arrival of the CME at STEREO A within 1 hour reported time, deceleration of the CME in agreement with the Gopalswamy et al. [2011] observational analyses, and Bz rotations at STEREO A from upstream of the CME shock to within the CME. These results provide strong support for the type II theory and also that the Space WeatherModeling Framework can accurately predict the properties and evolution of CMEs and the interplanetary magnetic field and plasma from the Sun to 1 AU when sufficiently carefully initialized.
Electrodiagnostic evaluation of median nerve conduction in Type II ...
African Journals Online (AJOL)
MJP
2015-12-29
Dec 29, 2015 ... Type II diabetes mellitus patients that were asymptomatic for peripheral neuropathy: a case control study. Owolabi LF 1*, Adebisi S2, ... degree of abnormality and monitoring the clinical course of the disease. Symptoms of DN ...
Cardiovascular risk markers in type II diabetes and hypertension at ...
African Journals Online (AJOL)
Cardiovascular risk markers in type II diabetes and hypertension at the Battor Catholic ... either precedes or is a consequence of the development of these diseases. ... The control group consisted of 62 age-matched healthy individuals.
The decline and fall of Type II error rates
Steve Verrill; Mark Durst
2005-01-01
For general linear models with normally distributed random errors, the probability of a Type II error decreases exponentially as a function of sample size. This potentially rapid decline reemphasizes the importance of performing power calculations.
CT appearance of liver and gallbladder in type II diabetics
International Nuclear Information System (INIS)
Li Jingshan; Li Wei; Zhang Yuzhong; Zhao Xiuyi; Zhang Xuelin
2005-01-01
Objective: To evaluate CT findings of liver and gallbladder in type II diabetics and to discuss diabetic, and investigate the correlation between type II diabetics, and investigate the correlation between the diabetes and the lesions found in the liver or gallbladder. Methods: Retrospective analysis was made on the CT findings of hepatic and gallbladder lesions in 586 cases of II diabetes. Results: In total 586 type II diabetics, cholecystitis and/or gallstone were revealed in 33.45% patients; and hepatic alteration was noted in 20.48% cases. Hepatic abnormalities were found in 58.67% cases in the cholecystitis/gallstone group, significantly different from the group with unremarkable gallbladder, in which hepatic lesions were found only in 1.28% cases. Conclusion: The hepatic alteration is secondary to the gallbladder lesions in type II diabetics. (authors)
Larmor precession and dwell time of a relativistic particle scattered by a rectangular quantum well
Li, Z J; Liang, J J; Liang, J Q
2003-01-01
The Larmor precession of a relativistic neutral spin particle in a uniform constant magnetic field confined to the region of a one-dimensional rectangular potential well is investigated. The spin precession serves as a clock to measure the time spent by a quantum particle dwelling at a potential well. With the help of a general spin coherent state it is explicitly shown that the spin precession time is equal to the dwell time in the first-order approximation of the infinitesimal field limit. The comparison of the time in a potential well with that in free space shows apparent superluminality.
Gain and index measurements in GaAlAs quantum well lasers
Energy Technology Data Exchange (ETDEWEB)
Kesler, M.P.; Harder, C. (IBM Research Division, Zurich Research Lab., 8803 Ruschlikon (CH))
1990-07-01
Measurements of the modal gain and group index in GaAlAs single quantum well (SQW) lasers are presented. The elimination of substrate emission has allowed accurate results to be obtained even in the near bandgap and below spectral regions. Substantial lifetime broadening is observed, and the gain smoothly goes to zero as the bandgap is approached. The group velocity index measurements indicate a dispersion of {minus} 3.44 {mu}m{sup {minus}}.
Temperature dependence of active photonic band gap in bragg-spaced quantum wells
International Nuclear Information System (INIS)
Hu Zhiqiang; Wang Tao; Yu Chunchao; Xu Wei
2011-01-01
A novel all-optical polarization switch of active photonic band gap structure based on non-resonant optical Stark effect bragg-spaced quantum wells was investigated and it could be compatible with the optical communication system. The theory is based on InGaAsP/InP Bragg-spaced quantum wells (BSQWs). Mainly through the design of the InGaAsP well layer component and InP barrier thickness to make the quantum-period cycle meet the bragg condition and the bragg frequency is equal to re-hole exciton resonance frequency. When a spectrally narrow control pulse is tuned within the forbidden gap, such BSQWs have been shown to exhibit large optical nonlinearities and ps recovery times, which can form T hz switch. However, the exciton binding energy of InGaAsP will be automatically separate at room temperature, so the effect of all-optical polarization switching of active photonic band gap bragg structure quantum wells can only be studied at low temperature. By a large number of experiments, we tested part of the material parameters of BSQWs in the temperature range 10-300K. On this basis, the InGaAsP and InP refractive index changes with wavelength, InP thermal expansion coefficient are studied and a relationship equation is established. Experimental results show that the bragg reflection spectra with temperature mainly is effected by InP refractive index changes with temperature. Our theoretical study and experiment are an instruction as a reference in the designs and experiments of future practical optical switches.
Temperature dependence of active photonic band gap in bragg-spaced quantum wells
Energy Technology Data Exchange (ETDEWEB)
Hu Zhiqiang; Wang Tao; Yu Chunchao; Xu Wei, E-mail: huzhiqianghzq@163.com [Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China)
2011-02-01
A novel all-optical polarization switch of active photonic band gap structure based on non-resonant optical Stark effect bragg-spaced quantum wells was investigated and it could be compatible with the optical communication system. The theory is based on InGaAsP/InP Bragg-spaced quantum wells (BSQWs). Mainly through the design of the InGaAsP well layer component and InP barrier thickness to make the quantum-period cycle meet the bragg condition and the bragg frequency is equal to re-hole exciton resonance frequency. When a spectrally narrow control pulse is tuned within the forbidden gap, such BSQWs have been shown to exhibit large optical nonlinearities and ps recovery times, which can form T hz switch. However, the exciton binding energy of InGaAsP will be automatically separate at room temperature, so the effect of all-optical polarization switching of active photonic band gap bragg structure quantum wells can only be studied at low temperature. By a large number of experiments, we tested part of the material parameters of BSQWs in the temperature range 10-300K. On this basis, the InGaAsP and InP refractive index changes with wavelength, InP thermal expansion coefficient are studied and a relationship equation is established. Experimental results show that the bragg reflection spectra with temperature mainly is effected by InP refractive index changes with temperature. Our theoretical study and experiment are an instruction as a reference in the designs and experiments of future practical optical switches.
Ultrafast spectral interferometry of resonant secondary emmission from semiconductor quantum wells
DEFF Research Database (Denmark)
Birkedal, Dan; Shah, Jagdeep
1999-01-01
Recent investigations of secondary emission from quantum well excitons follwing resonant excitation have demonstrated an intricate interplay of coherent Rayleigh scattering and incoherent luminescence. We have very recently demonstrated that it is possible to isolate and time resolve the coherent...... field associated with the Rayleigh component using ultrafast spectral interferometry, thus, obtaining substantial and new information of the nature of resonant secondary emission. Our findings demonstrate that Rayleigh scattering from static disorder is inherently a non-ergodic process invalidating...
Periodic dark pulse emission induced by delayed feedback in a quantum well semiconductor laser
Directory of Open Access Journals (Sweden)
L. Li
2012-12-01
Full Text Available We report the experimental observation of periodic dark pulse emission in a quantum-well semiconductor laser with delayed optical feedback. We found that under appropriate operation conditions the laser can also emit a stable train of dark pulses. The repetition frequency of the dark pulse is determined by the external cavity length. Splitting of the dark pulse was also observed. We speculate that the observed dark pulse is a kind of temporal cavity soliton formed in the laser.
Closed form solution for a double quantum well using Groebner basis
Energy Technology Data Exchange (ETDEWEB)
Acus, A [Institute of Theoretical Physics and Astronomy, Vilnius University, A Gostauto 12, LT-01108 Vilnius (Lithuania); Dargys, A, E-mail: dargys@pfi.lt [Center for Physical Sciences and Technology, Semiconductor Physics Institute, A Gostauto 11, LT-01108 Vilnius (Lithuania)
2011-07-01
Analytical expressions for the spectrum, eigenfunctions and dipole matrix elements of a square double quantum well (DQW) are presented for a general case when the potential in different regions of the DQW has different heights and the effective masses are different. This was achieved by using a Groebner basis algorithm that allowed us to disentangle the resulting coupled polynomials without explicitly solving the transcendental eigenvalue equation.
Circuit simulation model multi-quantum well laser diodes inducing transport and capture/escape
International Nuclear Information System (INIS)
Zhuber-Okrog, K.
1996-04-01
This work describes the development of world's first circuit simulation model for multi-quantum well (MQW) semiconductor lasers comprising caier transport and capture/escape effects. This model can be seen as the application of a new semiconductor device simulator for quasineutral structures including MQW layers with an extension for simple single mode modeling of optical behavior. It is implemented in a circuit simulation program. The model is applied to Fabry-Perot laser diodes and compared to measured data. (author)
Duality symmetries and the Type II string effective action
International Nuclear Information System (INIS)
Bergshoeff, E.
1996-01-01
We discuss the duality symmetries of Type II string effective actions in nine, ten and eleven dimensions. As a by-product we give a covariant action underlying the ten-dimensional Type IIB supergravity theory. We apply duality symmetries to construct dyonic Type II string solutions in six dimensions and their reformulation as solutions of the ten-dimensional Type IIB theory in ten dimensions. (orig.)
Cascade Type-I Quantum Well GaSb-Based Diode Lasers
Directory of Open Access Journals (Sweden)
Leon Shterengas
2016-05-01
Full Text Available Cascade pumping of type-I quantum well gain sections was utilized to increase output power and efficiency of GaSb-based diode lasers operating in a spectral region from 1.9 to 3.3 μm. Carrier recycling between quantum well gain stages was realized using band-to-band tunneling in GaSb/AlSb/InAs heterostructure complemented with optimized electron and hole injector regions. Coated devices with an ~100-μm-wide aperture and a 3-mm-long cavity demonstrated continuous wave (CW output power of 1.96 W near 2 μm, 980 mW near 3 μm, 500 mW near 3.18 μm, and 360 mW near 3.25 μm at 17–20 °C—a nearly or more than twofold increase compared to previous state-of-the-art diode lasers. The utilization of the different quantum wells in the cascade laser heterostructure was demonstrated to yield wide gain lasers, as often desired for tunable laser spectroscopy. Double-step etching was utilized to minimize both the internal optical loss and the lateral current spreading penalties in narrow-ridge lasers. Narrow-ridge cascade diode lasers operate in a CW regime with ~100 mW of output power near and above 3 μm and above 150 mW near 2 μm.
Magnetoconductance in InN/GaN quantum wells in topological insulator phase
Bardyszewski, W.; Rodak, D.; Łepkowski, S. P.
2017-04-01
We present a theoretical study of the magnetic-field effect on the electronic properties of the two-dimensional, hypothetical topological insulator based on the InN/GaN quantum well system. Using the effective two-dimensional Hamiltonian, we have modelled magneto-transport in mesoscopic, symmetric samples of such materials. It turns out that, as in the case of the other two-dimensional topological insulators, the magnetoconductance in such samples is quantized due to the presence of helical edge states for magnetic fields below a certain critical value and for fairly small disorder strength. However, in our case the helical edge transport is much more prone to the disorder than, for example, in the case of topological insulators based on the HgTe/CdTe quantum wells. At low enough level of disorder and for the Fermi energy located in the energy gap of an infinite planar quantum well, we may expect an interesting phenomenon of non-monotonic dependence of the conductance on the magnetic field caused by the complicated interplay of couplings between the heavy hole, light hole and conduction subbands.
Scattering mechanisms in shallow undoped Si/SiGe quantum wells
Directory of Open Access Journals (Sweden)
D. Laroche
2015-10-01
Full Text Available We report the magneto-transport study and scattering mechanism analysis of a series of increasingly shallow Si/SiGe quantum wells with depth ranging from ∼ 100 nm to ∼ 10 nm away from the heterostructure surface. The peak mobility increases with depth, suggesting that charge centers near the oxide/semiconductor interface are the dominant scattering source. The power-law exponent of the electron mobility versus density curve, μ ∝ nα, is extracted as a function of the depth of the Si quantum well. At intermediate densities, the power-law dependence is characterized by α ∼ 2.3. At the highest achievable densities in the quantum wells buried at intermediate depth, an exponent α ∼ 5 is observed. We propose and show by simulations that this increase in the mobility dependence on the density can be explained by a non-equilibrium model where trapped electrons smooth out the potential landscape seen by the two-dimensional electron gas.
Influence of hydrostatic pressure on the built-in electric field in ZnO/ZnMgO quantum wells
Energy Technology Data Exchange (ETDEWEB)
Teisseyre, Henryk, E-mail: teiss@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Institute of High Pressure, Polish Academy of Sciences, Sokołowska 29/37, 01-142 Warsaw (Poland); Kaminska, Agata; Suchocki, Andrzej; Kozanecki, Adrian [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Birner, Stefan [nextnano GmbH, Südmährenstr. 21, 85586 Poing (Germany); Young, Toby D. [Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego, 5b, 02-106 Warsaw (Poland)
2016-06-07
We used high hydrostatic pressure to perform photoluminescence measurements on polar ZnO/ZnMgO quantum well structures. Our structure oriented along the c-direction (polar direction) was grown by plasma-assisted molecular beam epitaxy on a-plane sapphire. Due to the intrinsic electric field, which exists in polar wurtzite structure at ambient pressure, we observed a red shift of the emission related to the quantum-confined Stark effect. In the high hydrostatic pressure experiment, we observed a strong decrease of the quantum well pressure coefficients with increased thickness of the quantum wells. Generally, a narrower quantum well gave a higher pressure coefficient, closer to the band-gap pressure coefficient of bulk material 20 meV/GPa for ZnO, while for wider quantum wells it is much lower. We observed a pressure coefficient of 19.4 meV/GPa for a 1.5 nm quantum well, while for an 8 nm quantum well the pressure coefficient was equal to 8.9 meV/GPa only. This is explained by taking into account the pressure-induced increase of the strain in our structure. The strain was calculated taking in to account that in-plane strain is not equal (due to fact that we used a-plane sapphire as a substrate) and the potential distribution in the structure was calculated self-consistently. The pressure induced increase of the built-in electric field is the same for all thicknesses of quantum wells, but becomes more pronounced for thicker quantum wells due to the quantum confined Stark effect lowering the pressure coefficients.
Internal quantum efficiency enhancement of GaInN/GaN quantum-well structures using Ag nanoparticles
DEFF Research Database (Denmark)
Iida, Daisuke; Fadil, Ahmed; Chen, Yuntian
2015-01-01
We report internal quantum efficiency enhancement of thin p-GaN green quantumwell structure using self-assembled Ag nanoparticles. Temperature dependent photoluminescence measurements are conducted to determine the internal quantum efficiency. The impact of excitation power density on the enhance......We report internal quantum efficiency enhancement of thin p-GaN green quantumwell structure using self-assembled Ag nanoparticles. Temperature dependent photoluminescence measurements are conducted to determine the internal quantum efficiency. The impact of excitation power density...
DEFF Research Database (Denmark)
Thirstrup, Carsten
1995-01-01
The effect of excitons in GaInAs-InP coupled asymmetric quantum wells on the refractive index modulation, is analyzed numerically using a model based on the effective mass approximation. It is shown that two coupled quantum wells brought in resonance by an applied electric field will, due...
DEFF Research Database (Denmark)
Steffensen, O. M.; Birkedal, Dan; Hanberg, J.
1995-01-01
The effects of CH4/H2 reactive ion etching (RIE) on the optical properties of an InP/InGaAs multiple-quantum-well structure have been investigated by low-temperature photoluminescence (PL). The structure consisted of eight InGaAs quantum wells, lattice matched to InP, with nominal thicknesses of 0...
Squeezing and entanglement in doubly resonant, type II, second-harmonic generation
DEFF Research Database (Denmark)
Andersen, Ulrik Lund; Buchhave, Preben
2003-01-01
We investigate, theoretically, the generation of bright and vacuum-squeezed light as well as entanglement in intracavity, type II, phase-matched second-harmonic generation. The cavity in which the crystal is embedded is resonant at the fundamental frequency but not at the second-harmonic frequenc...
Salivary glucose as a diagnostic tool in Type II diabetes mellitus: A ...
African Journals Online (AJOL)
2015-11-02
Nov 2, 2015 ... glucose level is the key to both diagnosis and management of ... diagnostic, as well as a monitoring tool to assess the glycemic status of Type II ..... Priya SS, Bharani GO, Nagalingam M, Jayanthi M, Kanagavalli U. Potential of ... Agrawal RP, Sharma N, Rathore MS, Gupta VB, Jain S, Agarwal V, et al.
International Nuclear Information System (INIS)
Chan, C.H.; Wu, J.D.; Huang, Y.S.; Hsu, H.P.; Tiong, K.K.; Su, Y.K.
2010-01-01
Photoluminescence (PL) and surface photovoltage spectroscopy (SPS) are used to characterize a series of highly strained In x Ga 1-x As/GaAs quantum well (QW) structures grown by metal organic vapor phase epitaxy with different indium compositions (0.395 ≤ x ≤ 0.44) in the temperature range of 20 K ≤ T ≤ 300 K. The PL features show redshift in peak positions and broadened lineshape with increasing indium composition. The S-shaped temperature dependent PL spectra have been attributed to carrier localization effect resulting from the presence of indium clusters at QW interfaces. A lineshape fit of features in the differential surface photovoltage (SPV) spectra has been used to determine the transition energies accurately. At temperature below 100 K, the light-hole (LH) related feature shows a significant phase difference as compared to that of heavy-hole (HH) related features. The phase change of the LH feature can be explained by the existence of type-II configuration for the LH valence band and the process of separation of carriers within the QWs together with possible capture by the interface defect traps. A detailed analysis of the observed phenomena enables the identification of spectral features and to evaluate the band lineup of the QWs. The results demonstrate the usefulness of PL and SPS for the contactless and nondestructive characterization of highly strained InGaAs/GaAs QW structures.
Yakunin, M.V.; Galistu, G.; de Visser, A.
2008-01-01
Rich patterns of transformations in the structure of quantum Hall (QH) effect and magnetoresistivity under tilted magnetic fields were obtained in the InxGa1-xAs/GaAs double quantum well at mK temperatures. Local features correspond to the calculated intersections of Landau levels from different
Balneotherapy and platelet glutathione metabolism in type II diabetic patients
Ohtsuka, Yoshinori; Yabunaka, Noriyuki; Watanabe, Ichiro; Noro, Hiroshi; Agishi, Yuko
1996-09-01
Effects of balneotherapy on platelet glutathione metabolism were investigated in 12 type II (non-insulin-dependent) diabetic patients. Levels of the reduced form of glutathione (GSH) on admission were well correlated with those of fasting plasma glucose (FPG; r=0.692, Pbalneotherapy, the mean level of GSH showed no changes; however, in well-controlled patients (FPG 150 mg/dl), the value decreased ( Pbalneotherapy, the activity increased in 5 patients, decreased in 3 patients and showed no changes (alteration within ±3%) in all the other patients. From these findings in diabetic patients we concluded: (1) platelet GSH synthesis appeared to be induced in response to oxidative stress; (2) lowered GPX activities indicated that the antioxidative defense system was impaired; and (3) platelet glutathione metabolism was partially improved by 4 weeks balneotherapy, an effect thought to be dependent on the control status of plasma glucose levels. It is suggested that balneotherapy is beneficial for patients whose platelet antioxidative defense system is damaged, such as those with diabetes mellitus and coronary heart disease.
Energy Technology Data Exchange (ETDEWEB)
Hammersley, S.; Dawson, P. [School of Physics and Astronomy, Photon Science Institute, University of Manchester, Manchester M13 9PL (United Kingdom); Kappers, M. J.; Massabuau, F. C.-P.; Sahonta, S.-L.; Oliver, R. A.; Humphreys, C. J. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)
2015-09-28
InGaN-based light emitting diodes and multiple quantum wells designed to emit in the green spectral region exhibit, in general, lower internal quantum efficiencies than their blue-emitting counter parts, a phenomenon referred to as the “green gap.” One of the main differences between green-emitting and blue-emitting samples is that the quantum well growth temperature is lower for structures designed to emit at longer wavelengths, in order to reduce the effects of In desorption. In this paper, we report on the impact of the quantum well growth temperature on the optical properties of InGaN/GaN multiple quantum wells designed to emit at 460 nm and 530 nm. It was found that for both sets of samples increasing the temperature at which the InGaN quantum well was grown, while maintaining the same indium composition, led to an increase in the internal quantum efficiency measured at 300 K. These increases in internal quantum efficiency are shown to be due reductions in the non-radiative recombination rate which we attribute to reductions in point defect incorporation.
International Nuclear Information System (INIS)
Hammersley, S.; Dawson, P.; Kappers, M. J.; Massabuau, F. C.-P.; Sahonta, S.-L.; Oliver, R. A.; Humphreys, C. J.
2015-01-01
InGaN-based light emitting diodes and multiple quantum wells designed to emit in the green spectral region exhibit, in general, lower internal quantum efficiencies than their blue-emitting counter parts, a phenomenon referred to as the “green gap.” One of the main differences between green-emitting and blue-emitting samples is that the quantum well growth temperature is lower for structures designed to emit at longer wavelengths, in order to reduce the effects of In desorption. In this paper, we report on the impact of the quantum well growth temperature on the optical properties of InGaN/GaN multiple quantum wells designed to emit at 460 nm and 530 nm. It was found that for both sets of samples increasing the temperature at which the InGaN quantum well was grown, while maintaining the same indium composition, led to an increase in the internal quantum efficiency measured at 300 K. These increases in internal quantum efficiency are shown to be due reductions in the non-radiative recombination rate which we attribute to reductions in point defect incorporation
The discretized Schroedinger equation and simple models for semiconductor quantum wells
International Nuclear Information System (INIS)
Boykin, Timothy B; Klimeck, Gerhard
2004-01-01
The discretized Schroedinger equation is one of the most commonly employed methods for solving one-dimensional quantum mechanics problems on the computer, yet many of its characteristics remain poorly understood. The differences with the continuous Schroedinger equation are generally viewed as shortcomings of the discrete model and are typically described in purely mathematical terms. This is unfortunate since the discretized equation is more productively viewed from the perspective of solid-state physics, which naturally links the discrete model to realistic semiconductor quantum wells and nanoelectronic devices. While the relationship between the discrete model and a one-dimensional tight-binding model has been known for some time, the fact that the discrete Schroedinger equation admits analytic solutions for quantum wells has gone unnoted. Here we present a solution to this new analytically solvable problem. We show that the differences between the discrete and continuous models are due to their fundamentally different bandstructures, and present evidence for our belief that the discrete model is the more physically reasonable one
Hart, Sean; Ren, Hechen; Kosowsky, Michael; Ben-Shach, Gilad; Leubner, Philipp; Bruene, Christoph; Buhmann, Hartmut; Molenkamp, Laurens; Halperin, Bertrand; Yacoby, Amir
Conventional s-wave superconductivity arises from singlet pairing of electrons with opposite Fermi momenta, forming Cooper pairs with zero net momentum. Recent studies have focused on coupling s-wave superconductors to systems with an unusual configuration of electronic spin and momentum at the Fermi surface, where the nature of the paired state can be modified and the system may even undergo a topological phase transition. Here we present measurements on Josephson junctions based on HgTe quantum wells coupled to aluminum or niobium superconductors, and subject to a magnetic field in the plane of the quantum well. We observe that the in-plane magnetic field modulates the Fraunhofer interference pattern, and that this modulation depends both on electron density and on the direction of the in-plane field with respect to the junction. However, the orientation of the junction with respect to the underlying crystal lattice does not impact the measurements. These findings suggest that spin-orbit coupling plays a role in the observed behavior, and that measurements of Josephson junctions in the presence of an in-plane field can elucidate the Fermi surface properties of the weak link material. NSF DMR-1206016; STC Center for Integrated Quantum Materials under NSF Grant No. DMR-1231319; NSF GRFP under Grant DGE1144152, Microsoft Corporation Project Q.
Emergence of localized states in narrow GaAs/AlGaAs nanowire quantum well tubes.
Shi, Teng; Jackson, Howard E; Smith, Leigh M; Jiang, Nian; Gao, Qiang; Tan, H Hoe; Jagadish, Chennupati; Zheng, Changlin; Etheridge, Joanne
2015-03-11
We use low-temperature photoluminescence, photoluminescence excitation, and photoluminescence imaging spectroscopy to explore the optical and electronic properties of GaAs/AlGaAs quantum well tube (QWT) heterostructured nanowires (NWs). We find that GaAs QWTs with widths >5 nm have electronic states which are delocalized and continuous along the length of the NW. As the NW QWT width decreases from 5 to 1.5 nm, only a single electron state is bound to the well, and no optical excitations to a confined excited state are present. Simultaneously, narrow emission lines (fwhm points along the length of the NW. We find that these quantum-dot-like states broaden at higher temperatures and quench at temperatures above 80 K. The lifetimes of these localized states are observed to vary from dot to dot from 160 to 400 ps. The presence of delocalized states and then localized states as the QWTs become more confined suggests both opportunities and challenges for possible incorporation into quantum-confined device structures.
InGaNAs/GaAs multi-quantum wells and superlattices solar cells
International Nuclear Information System (INIS)
Courel Piedrahita, Maykel; Rimada Herrera, Julio Cesar; Hernandez Garcia, Luis
2011-01-01
A theoretical study of the GaAs/InGaNAs solar cells based on a multi-quantum wells (MQWSC) and superlattices (SLSC) configuration is presented for the first time. The conversion efficiency as a function of wells width and depth is modeled. The photon absorption increases with the well levels incorporation and therefore the photocurrent as well. It is shown that the MQWSC efficiency overcomes the solar cells without wells about 25%. A study of the SLSC viability is also presented. The conditions for resonant tunneling are established by the matrix transfer method for a superlattice with variable quantum wells width. The effective density of states and the absorption coefficients for SL structure are calculated in order to determinate the JV characteristic. The influence of the superlattice or cluster width in the cell efficiency is researched showing a better performance when width and the number of cluster are increased. The SLSC efficiency is compared with the optimum efficiency obtained for the MQWSC showing that it is reached an amazing increment of 27%. (author)
International Nuclear Information System (INIS)
Toropov, A.A.; Sorokin, S.V.; Shubina, T.V.; Nekrutkina, O.V.; Solnyshkov, D.D.; Ivanov, S.V.; Waag, A.; Landwehr, G.
2003-01-01
We report on the investigations of in-plane optical anisotropy in non-common-atom heterostructures: ZnSe/BeTe perfect quantum wells (QWs) and CdSe/BeTe rough QWs and quantum dots. A noticeable linear polarization of photoluminescence (PL) with respect to the in-plane [1-10] and [110] crystal axes was observed in the ZnSe/BeTe QWs with equivalent ZnTe-type interfaces due to the reduction of QW symmetry, induced by unintentional formation of BeSe chemical bonds at a ''BeTe-ZnSe'' interface. The BeSe bond concentration and, hence, the polarization degree depend on the Te/Be flux ratio during molecular beam epitaxy growth of the samples. Strongly linearly polarized (up to 80%) PL was detected in the CdSe/BeTe structures, evidencing QW-like flat symmetry of the emitting sites of carrier localization. (Abstract Copyright [2003], Wiley Periodicals, Inc.)
Quantum well saturable absorber mirror with electrical control of modulation depth
DEFF Research Database (Denmark)
Liu, Xiaomin; Rafailov, Edik U.; Livshits, Daniil
2010-01-01
in the range 2.5–0.5%, as measured by nonlinear reflectivity of 450 fs long laser pulses with 1065 nm central wavelength, in the pump fluence range 1.6–26.7 J /cm2. This electrical control of the modulation depth is achieved by controlling the small-signal loss of the SESAM via quantum-confined Stark effect......We demonstrate a quantum well QW semiconductor saturable absorber mirror SESAM comprising low-temperature grown InGaAs/GaAs QWs incorporated into a p-i-n structure. By applying the reverse bias voltage in the range 0–2 V to the p-i-n structure, we were able to change the SESAM modulation depth...
Spin-polarized spin-orbit-split quantum-well states in a metal film
Energy Technology Data Exchange (ETDEWEB)
Varykhalov, Andrei; Sanchez-Barriga, Jaime; Gudat, Wolfgang; Eberhardt, Wolfgang; Rader, Oliver [BESSY Berlin (Germany); Shikin, Alexander M. [St. Petersburg State University (Russian Federation)
2008-07-01
Elements with high atomic number Z lead to a large spin-orbit coupling. Such materials can be used to create spin-polarized electronic states without the presence of a ferromagnet or an external magnetic field if the solid exhibits an inversion asymmetry. We create large spin-orbit splittings using a tungsten crystal as substrate and break the structural inversion symmetry through deposition of a gold quantum film. Using spin- and angle-resolved photoelectron spectroscopy, it is demonstrated that quantum-well states forming in the gold film are spin-orbit split and spin polarized up to a thickness of at least 10 atomic layers. This is a considerable progress as compared to the current literature which reports spin-orbit split states at metal surfaces which are either pure or covered by at most a monoatomic layer of adsorbates.
Electrically injected GaAsBi/GaAs single quantum well laser diodes
Directory of Open Access Journals (Sweden)
Juanjuan Liu
2017-11-01
Full Text Available We present electrically injected GaAs/GaAsBi single quantum well laser diodes (LDs emitting at a record long wavelength of 1141 nm at room temperature grown by molecular beam epitaxy. The LDs have excellent device performances with internal quantum efficiency of 86%, internal loss of 10 cm-1 and transparency current density of 196 A/cm2. The LDs can operate under continuous-wave mode up to 273 K. The characteristic temperature are extracted to be 125 K in the temperature range of 77∼150 K, and reduced to 90 K in the range of 150∼273 K. The temperature coefficient of 0.3 nm/K is extracted in the temperature range of 77∼273 K.
Impurity-induced tuning of quantum-well States in spin-dependent resonant tunneling.
Kalitsov, Alan; Coho, A; Kioussis, Nicholas; Vedyayev, Anatoly; Chshiev, M; Granovsky, A
2004-07-23
We report exact model calculations of the spin-dependent tunneling in double magnetic tunnel junctions in the presence of impurities in the well. We show that the impurity can tune selectively the spin channels giving rise to a wide variety of interesting and novel transport phenomena. The tunneling magnetoresistance, the spin polarization, and the local current can be dramatically enhanced or suppressed by impurities. The underlying mechanism is the impurity-induced shift of the quantum well states (QWSs), which depends on the impurity potential, impurity position, and the symmetry of the QWS. Copyright 2004 The American Physical Society
Terahertz study of ultrafast carrier dynamics in InGa/GaN multiple quantum wells
DEFF Research Database (Denmark)
Porte, Henrik; Turchinovich, Dmitry; Cooke, David
2009-01-01
Ultrafast carrier dynamics in InGaN/GaN multiple quantum wells is measured by time-resolved terahertz spectroscopy. The built-in piezoelectric field is initially screened by photoexcited, polarized carriers, and is gradullay restored as the carriers recombine. We observe a nonexponential decay...... of the carrier density. Time-integrated photoluminescence spectra have shown a complete screening of the built-in piezoelectric field at high excitation fluences. We also observe that the terahertz conductivity spectra differs from simple Drude conductivity, describing the response of free carriers, and are well...
Impurity States and diamagnetic susceptibility of a donor in a triangular quantum well
Kalpana, P.; Reuben, A. Merwyn Jasper D.; Nithiananthi, P.; Jayakumar, K.
2017-05-01
We have calculated the binding energy and the diamagnetic susceptibility(χdia) of the ground (1s) and few low lying excited states (2s and 2p±) in a GaAs/AlxGa1-xAs Triangular Quantum Well (TQW) for the Al composition of x = 0.3. Since the estimation of gives the carrier localization in nanostructured systems and also the calculation of (χdia) involves the , the same has also been estimated as a function of well width. The Schrodinger equation has been solved using variational technique involving Airy functions in the effective mass approximation. The results are presented and discussed.
Resonant Rayleigh scattering of exciton-polaritons in multiple quantum wells
DEFF Research Database (Denmark)
Malpuech, Guillaume; Kavokin, Alexey; Langbein, Wolfgang Werner
2000-01-01
A theoretical concept of resonant Rayleigh scattering (RRS) of exciton-polaritons in multiple quantum wells (QWs) is presented. The optical coupling between excitons in different QWs can strongly affect the RRS dynamics, giving rise to characteristic temporal oscillations on a picosecond scale....... Bragg and anti-Bragg arranged QW structures with the same excitonic parameters are predicted to have drastically different RRS spectra. Experimental data on the RRS from multiple QWs show the predicted strong temporal oscillations at small scattering angles, which are well explained by the presented...
Energy Technology Data Exchange (ETDEWEB)
Biermann, Mark L [Physics Department, 566 Brownson Rd., U.S. Naval Academy, Annapolis, MD 21402 (United States); Walters, Matthew [Physics Department, 566 Brownson Rd., U.S. Naval Academy, Annapolis, MD 21402 (United States); Diaz-Barriga, James [Physics Department, 566 Brownson Rd., U.S. Naval Academy, Annapolis, MD 21402 (United States); Rabinovich, W S [Naval Research Laboratory, Code 5652, 4555 Overlook Ave. SW, Washington, DC 20375-5320 (United States)
2003-10-21
Anisotropic in-plane strain in quantum wells leads to an optical polarization anisotropy that can be exploited for device applications. We have determined that for many anisotropic compressive strain cases, the dependence of the optical anisotropy is linear in the strain anisotropy. This result holds for a variety of well and barrier materials and widths and for various overall strain conditions. Further, the polarization anisotropy per strain anisotropy varies as the reciprocal of the energy separation of the relevant hole sub-bands. Hence, a general result for the polarization anisotropy per strain anisotropy is available for cases of compressive anisotropic in-plane strain.
International Nuclear Information System (INIS)
Biermann, Mark L; Walters, Matthew; Diaz-Barriga, James; Rabinovich, W S
2003-01-01
Anisotropic in-plane strain in quantum wells leads to an optical polarization anisotropy that can be exploited for device applications. We have determined that for many anisotropic compressive strain cases, the dependence of the optical anisotropy is linear in the strain anisotropy. This result holds for a variety of well and barrier materials and widths and for various overall strain conditions. Further, the polarization anisotropy per strain anisotropy varies as the reciprocal of the energy separation of the relevant hole sub-bands. Hence, a general result for the polarization anisotropy per strain anisotropy is available for cases of compressive anisotropic in-plane strain
Terahertz emission from CdHgTe/HgTe quantum wells with an inverted band structure
Energy Technology Data Exchange (ETDEWEB)
Vasilyev, Yu. B., E-mail: Yu.Vasilyev@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Mikhailov, N. N. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Vasilyeva, G. Yu.; Ivánov, Yu. L.; Zakhar’in, A. O.; Andrianov, A. V. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Vorobiev, L. E.; Firsov, D. A. [Peter the Great Saint-Petersburg Polytechnic University (Russian Federation); Grigoriev, M. N. [Ustinov Baltic State Technical University “VOENMEKh” (Russian Federation); Antonov, A. V.; Ikonnikov, A. V.; Gavrilenko, V. I. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)
2016-07-15
The terahertz electroluminescence from Cd{sub 0.7}Hg{sub 0.3}Te/HgTe quantum wells with an inverted band structure in lateral electric fields is experimentally detected and studied. The emission-spectrum maximum for wells 6.5 and 7 nm wide is near 6 meV which corresponds to interband optical transitions. The emission is explained by state depletion in the valence band and conduction band filling due to Zener tunneling, which is confirmed by power-law current–voltage characteristics.
Spin transport dynamics of excitons in CdTe/Cd1-xMnxTe quantum wells
International Nuclear Information System (INIS)
Kayanuma, Kentaro; Shirado, Eiji; Debnath, Mukul C.; Souma, Izuru; Chen, Zhanghai; Oka, Yasuo
2001-01-01
Transport properties of spin-polarized excitons were studied in the double quantum well system composed of Cd 0.95 Mn 0.05 Te and CdTe wells. Circular polarization degrees of the time resolved exciton photoluminescence in magnetic field showed that the spin-polarized excitons diffused from the magnetic quantum well and injected to the non-magnetic quantum well by conserving their spins. The spin-polarized excitons injected into the nonmagnetic well reaches 18% of the nonmagnetic well excitons. From the circular polarization degree and the lifetime of the magnetic quantum well excitons, the spin relaxation time of the excitons in the Cd 0.95 Mn 0.05 Te well was determined as 275 - 10 ps depending on the magnetic field strength. [copyright] 2001 American Institute of Physics
Interfacial sharpness and intermixing in a Ge-SiGe multiple quantum well structure
Bashir, A.; Gallacher, K.; Millar, R. W.; Paul, D. J.; Ballabio, A.; Frigerio, J.; Isella, G.; Kriegner, D.; Ortolani, M.; Barthel, J.; MacLaren, I.
2018-01-01
A Ge-SiGe multiple quantum well structure created by low energy plasma enhanced chemical vapour deposition, with nominal well thickness of 5.4 nm separated by 3.6 nm SiGe spacers, is analysed quantitatively using scanning transmission electron microscopy. Both high angle annular dark field imaging and electron energy loss spectroscopy show that the interfaces are not completely sharp, suggesting that there is some intermixing of Si and Ge at each interface. Two methods are compared for the quantification of the spectroscopy datasets: a self-consistent approach that calculates binary substitutional trends without requiring experimental or computational k-factors from elsewhere and a standards-based cross sectional calculation. Whilst the cross section approach is shown to be ultimately more reliable, the self-consistent approach provides surprisingly good results. It is found that the Ge quantum wells are actually about 95% Ge and that the spacers, whilst apparently peaking at about 35% Si, contain significant interdiffused Ge at each side. This result is shown to be not just an artefact of electron beam spreading in the sample, but mostly arising from a real chemical interdiffusion resulting from the growth. Similar results are found by use of X-ray diffraction from a similar area of the sample. Putting the results together suggests a real interdiffusion with a standard deviation of about 0.87 nm, or put another way—a true width defined from 10%-90% of the compositional gradient of about 2.9 nm. This suggests an intrinsic limit on how sharp such interfaces can be grown by this method and, whilst 95% Ge quantum wells (QWs) still behave well enough to have good properties, any attempt to grow thinner QWs would require modifications to the growth procedure to reduce this interdiffusion, in order to maintain a composition of ≥95% Ge.
Yang, M C; Lin, C L; Su, W B; Lin, S P; Lu, S M; Lin, H Y; Chang, C S; Hsu, W K; Tsong, Tien T
2009-05-15
We use scanning tunneling spectroscopy to explore the quantum well states in the Pb islands grown on a Cu(111) surface. Our observation demonstrates that the empty quantum well states, whose energy levels lie beyond 1.2 eV above the Fermi level, are significantly affected by the image potential. As the quantum number increases, the energy separation between adjacent states is shrinking rather than widening, contrary to the prediction for a square potential well. By simply introducing a phase factor to reckon the effect of the image potential, the shrinking behavior of the energy separation can be reasonably explained with the phase accumulation model. The model also reveals that there exists a quantum regime above the Pb surface in which the image potential is vanished. Moreover, the quasi-image-potential state in the tunneling gap is quenched because of the existence of the quantum well states.
Weng, Xiufang; He, Ying; Visvabharathy, Lavanya; Liao, Chia-Min; Tan, Xiaosheng; Balakumar, Arjun; Wang, Chyung-Ru
2017-10-01
Natural killer T (NKT) cells are CD1d-restricted innate-like T cells that modulate innate and adaptive immune responses. Unlike the well-characterized invariant/type I NKT cells, type II NKT cells with a diverse T cell receptor repertoire are poorly understood. This study defines the pathogenic role of type II NKT cells in the etiology of chronic liver inflammation. Transgenic mice with the Lck promoter directing CD1d overexpression on T cells in Jα18 wild-type (Lck-CD1dTgJα18 + ; type I NKT cell sufficient) and Jα18-deficient (Lck-CD1dTgJα18 o , type I NKT cell deficient) mice were analyzed for liver pathology and crosstalk between type II NKT cells and conventional T cells. CD1d expression on T cells in peripheral blood samples and liver sections from autoimmune hepatitis patients and healthy individuals were also examined. Lck-CD1dTgJα18 o and Lck-CD1dTgJα18 + mice developed similar degrees of liver pathology resembling chronic autoimmune hepatitis in humans. Increased CD1d expression on T cells promoted the activation of type II NKT cells and other T cells. This resulted in T h 1-skewing and impaired T h 2 cytokine production in type II NKT cells. Dysfunction of type II NKT cells was accompanied by conventional T cell activation and pro-inflammatory cytokine production, leading to a hepatic T/B lymphocyte infiltration, elevated autoantibodies and hepatic injury in Lck-CD1dTg mice. A similar mechanism could be extended to humans as CD1d expression is upregulated on activated human T cells and increased presence of CD1d-expressing T cells was observed in autoimmune hepatitis patients. Our data reveals enhanced crosstalk between type II NKT cells and conventional T cells, leading to a T h 1-skewed inflammatory milieu, and consequently, to the development of chronic autoimmune liver disease. Lay summary: CD1d overexpression on T cells enhances crosstalk between type II NKT cells and T cells, resulting in their aberrant activation and leading to the
Psycho-neuro-endocrine-immune mechanisms of action of yoga in type II diabetes.
Singh, Vijay Pratap; Khandelwal, Bidita; Sherpa, Namgyal T
2015-01-01
Yoga has been found to benefit all the components of health viz. physical, mental, social and spiritual well being by incorporating a wide variety of practices. Pathophysiology of Type II DM and co-morbidities in Type II DM has been correlated with stress mechanisms. Stress suppresses body's immune system and neuro-humoral actions thereby aff ecting normal psychological state. It would not be wrong to state that correlation of diabetes with stress, anxiety and other psychological factors are bidirectional and lead to difficulty in understanding the interrelated mechanisms. Type II DM cannot be understood in isolation with psychological factors such as stress, anxiety and depression, neuro-endocrine and immunological factors. There is no review which tries to understand these mechanisms exclusively. The present literature review aims to understand interrelated Psycho-Neuro-Endocrine and Immunological mechanisms of action of Yoga in Type II Diabetes Mellitus. Published literature concerning mechanisms of action of Yoga in Type II DM emphasizing psycho-neuro-endocrine or immunological relations was retrieved from Pubmed using key words yoga, Type II diabetes mellitus, psychological, neural, endocrine, immune and mechanism of action. Those studies which explained the psycho-neuroendocrine and immune mechanisms of action of yoga were included and rest were excluded. Although primary aim of this study is to explain these mechanisms in Type II DM, some studies in non-diabetic population which had a similar pathway of stress mechanism was included because many insightful studies were available in that area. Search was conducted using terms yoga OR yogic AND diabetes OR diabetic IN title OR abstract for English articles. Of the 89 articles, we excluded non-English articles (22), editorials (20) and letters to editor (10). 37 studies were considered for this review. The postulated mechanism of action of yoga is through parasympathetic activation and the associated anti
DEFF Research Database (Denmark)
Turchinovich, Dmitry; Monozon, B. S.; Jepsen, Peter Uhd
2006-01-01
In this work we describe the ultrafast excitation kinetics of biased quantum well, arising from the optically induced dynamical screening of a bias electric field. The initial bia electric field inside the quantum well is screened by the optically excited polarized electron-hole pairs. This leads...... wells are in good agreement with our experimental observations [Turchinovich et al., Phys. Rev. B 68, 241307(R) (2003)], as well as in perfect compliance with qualitative considerations. ©2006 American Institute of Physics...
[Cochlear implantation in patients with Waardenburg syndrome type II].
Wan, Liangcai; Guo, Menghe; Chen, Shuaijun; Liu, Shuangriu; Chen, Hao; Gong, Jian
2010-05-01
To describe the multi-channel cochlear implantation in patients with Waardenburg syndrome including surgeries, pre and postoperative hearing assessments as well as outcomes of speech recognition. Multi-channel cochlear implantation surgeries have been performed in 12 cases with Waardenburg syndrome type II in our department from 2000 to 2008. All the patients received multi-channel cochlear implantation through transmastoid facial recess approach. The postoperative outcomes of 12 cases were compared with 12 cases with no inner ear malformation as a control group. The electrodes were totally inserted into the cochlear successfully, there was no facial paralysis and cerebrospinal fluid leakage occurred after operation. The hearing threshold in this series were similar to that of the normal cochlear implantation. After more than half a year of speech rehabilitation, the abilities of speech discrimination and spoken language of all the patients were improved compared with that of preoperation. Multi-channel cochlear implantation could be performed in the cases with Waardenburg syndrome, preoperative hearing and images assessments should be done.
Control of photon correlations in type II parametric down-conversion
International Nuclear Information System (INIS)
Andrews, R; Joseph, A T; Pike, E R; Sarkar, Sarben
2005-01-01
In this paper we describe theoretically quantum control of temporal correlations of entangled photons produced by collinear type II spontaneous parametric down-conversion. We examine the effect of spectral phase modulation of the signal or idler photons arriving at a 50/50 beam splitter on the temporal shape of the entangled-photon wavepacket. The coincidence count rate is calculated analytically for photon pairs in terms of the modulation depth applied to either the signal or idler beam with a spectral phase filter. It is found that the two-photon coincidence rate can be controlled by varying the modulation depth of the spectral filter
[Rational therapy of Type II diabetes].
Hanefeld, M; Fischer, S
1996-12-01
Noninsulin-dependent diabetes mellitus is a genetically determined form of diabetes, due to impaired insulin secretion by the B-cells as well as to insulin resistance of the peripheral tissues. According to the glucose toxicity theory hyperglycemia and hyperinsulinemia exist in a vicious circle. Therefore, it is a major therapeutical aim to put the B-cell to rest and improve insulin sensitivity by a strict control of fasting blood glucose and of postprandial hyperglycemia. Furthermore, associated abnormalities within the metabolic syndrome, such as hypertension, dyslipoproteinemia and hemostatic disorders should be corrected to avoid vessel complications. Therefore, it should be started with basic measures as body weight reduction, carbohydrate-rich and fat-poor diet and exercise. If these measures fail to achieve acceptable glycemic control, antihyperglycemic drugs (acarbose, metformin) are indicated, eventually in a combination with small doses of short-acting sulfonylureas. Further impairment of insulin secretion is the indication for sulfonylurea and/or insulin application. HbA1c of 7 to 7.5% should be the goal of antidiabetic therapy, also for patients in advanced age. The main criterion for the choice of antidiabetics is the present insulin secretion capacity. Simple indicators in this respect are changes of body weight, plasma triglycerides and C-Peptide after i.v. glucagon stimulation. Application of insulin in combination with other antidiabetics or in the form of intensified insulin therapy should not be too much postponed.
High intensity mid infra-red spectroscopy of intersubband transitions in semiconductor quantum wells
International Nuclear Information System (INIS)
Serapiglia, G.B.
2000-01-01
High intensity (10 8 Wcm -2 ) mid-infrared spectroscopy has been used to study the optical response of intersubband transitions in InGaAs/InAlAs quantum wells with three conduction subbands. Steady state optical pumping of 2 x 10 11 cm -2 electrons into the excited vertical bar2> subband and subsequent electron relaxation (via phonon emission) back to the ground vertical bar1> subband creates a non-equilibrium phonon population (phonon occupancy∼1 at T=30K). Phonon re-absorption leads to a non-thermal electron distribution where electron-phonon scattering rates ∼200-500fs -1 are much faster than electron-electron scattering. In this regime, the intersubband absorption is inhomogeneously broadened. For substantially weaker optical pumping (∼1 saturation intensity) however, the electron distribution is able to thermalise and the absorption is homogeneously broadened. The phenomenon of electromagnetically-induced quantum coherence is demonstrated between 3 confined electron subband levels in a quantum well which are almost equally spaced in energy. Applying a strong coupling field, two-photon-resonant with the 1-3 intersubband transition, produces a pronounced narrow transparency feature in the 1-2 absorption line. This result can be understood in terms of all 3 states being simultaneously driven into ''phase-locked'' quantum coherence by a single coupling field. We describe the effect theoretically with a density matrix method and an adapted linear response theory. Efficient (∼1%) second harmonic generation, resonantly enhanced near λ=8.6μm, has been observed in asymmetric double multi-quantum well (ADQW) structures. Both waveguide mode and 45 deg. wedge multi-bounce geometries were used. The phase matching in the waveguide mode was achieved by incorporating a separate multiple QW region which modifies (via Kramers-Kronig relation) the dispersion of light. In the case of the 45 deg. wedge geometry, the phases of second harmonic waves generated at sequential
Charge confinements in CdSe-ZnSe symmetric double quantum wells
International Nuclear Information System (INIS)
Tit, Nacir; Obaidat, Ihab M
2008-01-01
The bound states in the (CdSe) N w (ZnSe) N b (CdSe) N w -ZnSe(001) symmetric double quantum wells are investigated versus the well width (N w ) and the barrier thickness (N b ). A calculation based on the sp 3 s * tight-binding method which includes the spin-orbit interactions is employed to calculate the bandgap energy, quantum-confinement energy, and band structures. The studied systems possess a vanishing valence-band offset (VBO = 0) in consistency with the well known common-anion rule, and a large conduction-band offset (CBO ≅ 1 eV), which plays an essential role in the confinement of electrons within the CdSe wells. The biaxial strain, on the other hand, plays another role in confining the holes at the interfaces (within the well regions) and thus enhancing the radiative efficiency. The induced-strain energy is estimated to be ∼35 meV. More importantly, the results show that, for a fixed barrier thickness, the double wells are able to confine a pair of bound states when they are very thin. By increasing the wells' width (N w ), further, a new pair of states from the conduction-band continuum falls into the wells every time N w hits a multiple of four monolayers (more specifically, for 4n w ≤4(n+1), the number of bound states is 2(n+1), where n is an integer). On the other hand, the barrier thickness (N b ) is shown to have no effect on the number of bound states, but it solely controls their well-to-well interactions. A critical barrier thickness to switch off these latter interactions is estimated to occur at about N crit b ≅ 9 (L crit b ≅ 25∼AA. Rules governing the variation of the quantum-confinement energy versus both barrier thickness (N b ) and well width (N w ) have been derived. Our theoretical results are also shown to have excellent agreement with the available experimental photoluminescence data
Type II NKT Cells in Inflammation, Autoimmunity, Microbial Immunity, and Cancer.
Marrero, Idania; Ware, Randle; Kumar, Vipin
2015-01-01
Natural killer T cells (NKT) recognize self and microbial lipid antigens presented by non-polymorphic CD1d molecules. Two major NKT cell subsets, type I and II, express different types of antigen receptors (TCR) with distinct mode of CD1d/lipid recognition. Though type II NKT cells are less frequent in mice and difficult to study, they are predominant in human. One of the major subsets of type II NKT cells reactive to the self-glycolipid sulfatide is the best characterized and has been shown to induce a dominant immune regulatory mechanism that controls inflammation in autoimmunity and in anti-cancer immunity. Recently, type II NKT cells reactive to other self-glycolipids and phospholipids have been identified suggesting both promiscuous and specific TCR recognition in microbial immunity as well. Since the CD1d pathway is highly conserved, a detailed understanding of the biology and function of type II NKT cells as well as their interplay with type I NKT cells or other innate and adaptive T cells will have major implications for potential novel interventions in inflammatory and autoimmune diseases, microbial immunity, and cancer.
International Nuclear Information System (INIS)
Zhai Zehui; Li Yongming; Gao Jiangrui
2004-01-01
Quantum fluctuation and quantum entanglement of the pump fields reflected from an optical cavity for type-II second-harmonic generation are theoretically analyzed. The correlation spectra of quadrature components between the reflected subharmonic fields are interpreted in terms of pump parameter, intracavity losses, and normalized frequency. High correlation of both amplitude and phase quadratures can be accessed in a triple resonant cavity before the pitchfork bifurcation occurs. The two reflected subharmonic fields are in an entangled state with quantum correlation of phase quadratures and anticorrelation of amplitude quadratures. The proposed system can be exploited as a source for generating entangled states of continuous variables
Higher-Order Statistical Correlations and Mutual Information Among Particles in a Quantum Well
International Nuclear Information System (INIS)
Yépez, V. S.; Sagar, R. P.; Laguna, H. G.
2017-01-01
The influence of wave function symmetry on statistical correlation is studied for the case of three non-interacting spin-free quantum particles in a unidimensional box, in position and in momentum space. Higher-order statistical correlations occurring among the three particles in this quantum system is quantified via higher-order mutual information and compared to the correlation between pairs of variables in this model, and to the correlation in the two-particle system. The results for the higher-order mutual information show that there are states where the symmetric wave functions are more correlated than the antisymmetric ones with same quantum numbers. This holds in position as well as in momentum space. This behavior is opposite to that observed for the correlation between pairs of variables in this model, and the two-particle system, where the antisymmetric wave functions are in general more correlated. These results are also consistent with those observed in a system of three uncoupled oscillators. The use of higher-order mutual information as a correlation measure, is monitored and examined by considering a superposition of states or systems with two Slater determinants. (author)
Higher-Order Statistical Correlations and Mutual Information Among Particles in a Quantum Well
Yépez, V. S.; Sagar, R. P.; Laguna, H. G.
2017-12-01
The influence of wave function symmetry on statistical correlation is studied for the case of three non-interacting spin-free quantum particles in a unidimensional box, in position and in momentum space. Higher-order statistical correlations occurring among the three particles in this quantum system is quantified via higher-order mutual information and compared to the correlation between pairs of variables in this model, and to the correlation in the two-particle system. The results for the higher-order mutual information show that there are states where the symmetric wave functions are more correlated than the antisymmetric ones with same quantum numbers. This holds in position as well as in momentum space. This behavior is opposite to that observed for the correlation between pairs of variables in this model, and the two-particle system, where the antisymmetric wave functions are in general more correlated. These results are also consistent with those observed in a system of three uncoupled oscillators. The use of higher-order mutual information as a correlation measure, is monitored and examined by considering a superposition of states or systems with two Slater determinants.
Directory of Open Access Journals (Sweden)
P. Chen
2017-03-01
Full Text Available The hole distribution and electroluminescence property improvement by adjusting the relative position between quantum wells and p-doped region in InGaN/GaN multiple-quantum-well structures are experimentally and theoretically investigated. Five designed samples with different barrier layer parameters of multiple-quantum-well structure are grown by MOCVD and then fabricated into devices. The electroluminescence properties of these samples are measured and compared. It is found that the output electroluminescence intensity of samples is enhanced if the position of quantum wells shifts towards p-side, while the output power is reduced if their position is shifted towards the n-side. The theoretical calculation of characteristics of these devices using the simulation program APSYS agrees well with the experimental data, illustrating that the effect of relative position between p-doped region and quantum wells on the improvement of hole distribution and electroluminescence performance is significant, especially for InGaN/GaN multiple-quantum-well devices operated under high injection condition.
Prevalence of Gastroesophageal Reflux Disease in Type II Diabetes Mellitus
Directory of Open Access Journals (Sweden)
Huihui Sun
2014-01-01
Full Text Available Background/Aims. Patients with type II diabetes mellitus (DM were known to have higher prevalence of gastroesophageal reflux disease (GERD in the Western countries, but data on the impact of GERD on DM patients in our country are scarce. The aim of this study was to evaluate the prevalence of GERD in type II DM patients in Shanghai, China, and to explore its possible risk factors. Methods. 775 type II DM cases were randomly collected. Reflux Disease Questionnaire (RDQ was used to check the presence of GERD. Patients’ characteristics, laboratory data, face-to-face interview, nerve conduction study, and needle electromyogram (EMG test were analyzed. Results. 16% patients were found with typical GERD symptoms. Pathophysiological factors such as peripheral neuropathy, metabolism syndrome, and obesity were found to have no significant differences between GERD and non-GERD type II DM patients in the present study. Conclusion. The prevalence of GERD in type II DM patients is higher than that in adult inhabitants in Shanghai, China. No difference in pathophysiological factors, such as peripheral neuropathy, and metabolism syndrome was found in DM-GERD patients, suggesting that further study and efforts are needed to explore deeper the potential risk factors for the high prevalence rate of GERD in DM patients.
A Statistical Study of Interplanetary Type II Bursts: STEREO Observations
Krupar, V.; Eastwood, J. P.; Magdalenic, J.; Gopalswamy, N.; Kruparova, O.; Szabo, A.
2017-12-01
Coronal mass ejections (CMEs) are the primary cause of the most severe and disruptive space weather events such as solar energetic particle (SEP) events and geomagnetic storms at Earth. Interplanetary type II bursts are generated via the plasma emission mechanism by energetic electrons accelerated at CME-driven shock waves and hence identify CMEs that potentially cause space weather impact. As CMEs propagate outward from the Sun, radio emissions are generated at progressively at lower frequencies corresponding to a decreasing ambient solar wind plasma density. We have performed a statistical study of 153 interplanetary type II bursts observed by the two STEREO spacecraft between March 2008 and August 2014. These events have been correlated with manually-identified CMEs contained in the Heliospheric Cataloguing, Analysis and Techniques Service (HELCATS) catalogue. Our results confirm that faster CMEs are more likely to produce interplanetary type II radio bursts. We have compared observed frequency drifts with white-light observations to estimate angular deviations of type II burst propagation directions from radial. We have found that interplanetary type II bursts preferably arise from CME flanks. Finally, we discuss a visibility of radio emissions in relation to the CME propagation direction.
Glutathione synthesis and homeostasis in isolated type II alveolar cells
International Nuclear Information System (INIS)
Saito, K.; Warshaw, J.B.; Prough, R.A.
1986-01-01
After isolation of Type II cells from neonatal rat lung, the glutathione (GSH) levels in these cells were greatly depressed. The total glutathione content could be increased 5-fold within 12-24 h by incubating the cells in media containing sulfur amino acids. Similarly, the activity of γ-glutamyltranspeptidase was low immediately after isolation, but was increased 2-fold during the first 24 h culture. Addition of either GSH or GSSG to the culture media increased the GSH content of Type II cells 2-2.5-fold. Buthionine sulfoximine and NaF prevented this replenishment of GSH during 24 h culture. When the rates of de novo synthesis of GSH and GSSG from 35 S-cysteine were measured, the amounts of newly formed GSH decreased to 80% in the presence of GSH or GSSG. This suggests that exogenous GSH/GSSG can be taken up by the Type II cells to replenish the intracellular pool of GSH. Methionine was not as effective as cysteine in the synthesis of GSH. These results suggest that GSH levels in the isolated Type II cell can be maintained by de novo synthesis or uptake of exogenous GSH. Most of the GSH synthesized from cysteine, however, was excreted into the media of the cultured cells indicative of a potential role for the type II cell in export of the non-protein thiol
Jumping magneto-electric states of electrons in semiconductor multiple quantum wells
International Nuclear Information System (INIS)
Pfeffer, Pawel; Zawadzki, Wlodek
2011-01-01
Orbital and spin electron states in semiconductor multiple quantum wells in the presence of an external magnetic field transverse to the growth direction are considered. Rectangular wells of GaAs/GaAlAs and InAs/AlSb are taken as examples. It is shown that, in addition to magneto-electric states known from one-well systems, there appear magneto-electric states having a much stronger dependence of energies on a magnetic field and exhibiting an interesting anti-crossing behavior. The origin of these states is investigated and it is shown that the strong field dependence of the energies is related to an unusual 'jumping' behavior of their wavefunctions between quantum wells as the field increases. The ways of investigating the jumping states by means of interband magneto-luminescence transitions or intraband cyclotron-like transitions are considered and it is demonstrated that the jumping states can be observed. The spin g factors of electrons in the jumping states are calculated using the real values of the spin–orbit interaction and bands' nonparabolicity for the semiconductors in question. It is demonstrated that the jumping states offer a wide variety of the spin g factors
Exciton spectrum of surface-corrugated quantum wells: the adiabatic self-consistent approach
International Nuclear Information System (INIS)
Atenco A, N.; Perez R, F.; Makarov, N.M.
2005-01-01
A theory for calculating the relaxation frequency ν and the shift δ ω of exciton resonances in quantum wells with finite potential barriers and adiabatic surface disorder is developed. The adiabaticity implies that the correlation length R C for the well width fluctuations is much larger than the exciton radius a 0 (R C >> a 0 ). Our theory is based on the self-consistent Green's function method, and therefore takes into account the inherent action of the exciton scattering on itself. The self-consistent approach is shown to describe quantitatively the sharp exciton resonance. It also gives the qualitatively correct resonance picture for the transition to the classical limit, as well as within the domain of the classical limit itself. We present and analyze results for h h-exciton in a GaAs quantum well with Al 0.3 Ga 0.7 As barriers. It is established that the self-consistency and finite height of potential barriers significantly influence on the line-shape of exciton resonances, and make the values of ν and δ ω be quite realistic. In particular, the relaxation frequency ν for the ground-state resonance has a broad, almost symmetric maximum near the resonance frequency ω 0 , while the surface-induced resonance shift δ ω vanishes near ω 0 , and has different signs on the sides of the exciton resonance. (Author) 43 refs., 4 figs
International Nuclear Information System (INIS)
Solaimani, M.; Morteza, Izadifard; Arabshahi, H.; Reza, Sarkardehi Mohammad
2013-01-01
In this work, we have studied the effect of the number of the wells, in a multiple quantum wells structure with constant total effective length, on the optical properties of multiple quantum wells like the absorption coefficient and the refractive index by means of compact density matrix approach. GaAs/Al x Ga (1−x) As multiple quantum wells systems was selected as an example. Besides, the effect of varying number of wells on the subband energies, wave functions, number of bound states, and the Fermi energy have been also investigated. Our calculation revealed that the number of wells in a multiple quantum well is a criterion with which we can control the amount of nonlinearity. This study showed that for the third order refractive index change there is two regimes of variations and the critical well number was six. In our calculations, we have used the same wells and barrier thicknesses to construct the multiple quantum wells system. - Highlights: ► OptiOptical Non-Linear. ► Total Effective Length. ► Multiple Quantum Wells System - genetic algorithm ► Schrödinger equation solution. ► Nanostructure.
Wigner Transport Simulation of Resonant Tunneling Diodes with Auxiliary Quantum Wells
Lee, Joon-Ho; Shin, Mincheol; Byun, Seok-Joo; Kim, Wangki
2018-03-01
Resonant-tunneling diodes (RTDs) with auxiliary quantum wells ( e.g., emitter prewell, subwell, and collector postwell) are studied using a Wigner transport equation (WTE) discretized by a thirdorder upwind differential scheme. A flat-band potential profile is used for the WTE simulation. Our calculations revealed functions of the auxiliary wells as follows: The prewell increases the current density ( J) and the peak voltage ( V p ) while decreasing the peak-to-valley current ratio (PVCR), and the postwell decreases J while increasing the PVCR. The subwell affects J and PVCR, but its main effect is to decrease V p . When multiple auxiliary wells are used, each auxiliary well contributes independently to the transport without producing side effects.
Excitons in undoped AlGaAs/GaAs wide parabolic quantum wells
Energy Technology Data Exchange (ETDEWEB)
Tabata, A; Oliveira, J B B [Departamento de Fisica, Universidade Estadual Paulista, 17033-360, Bauru (Brazil); Silva, E C F da; Lamas, T E; Duarte, C A; Gusev, G M, E-mail: tabata@fc.unesp.b [Instituto de Fisica, Universidade de Sao Paulo, 05315-970, Sao Paulo (Brazil)
2010-02-01
In this work the electronic structure of undoped AlGaAs/GaAs wide parabolic quantum wells (PQWs) with different well widths (1000 A and 3000 A) were investigated by means of photoluminescence (PL) measurements. Due to the particular potential shape, the sample structure confines photocreated carriers with almost three-dimensional characteristics. Our data show that depending on the well width thickness it is possible to observe very narrow structures in the PL spectra, which were ascribed to emissions associated to the recombination of confined 1s-excitons of the parabolic potential wells. From our measurements, the exciton binding energies (of a few meV) were estimated. Besides the exciton emission, we have also observed PL emissions associated to electrons in the excited subbands of the PQWs.
New models for the numerical treatment of magnetotransport in quantum wells
International Nuclear Information System (INIS)
Homer, A.
1999-03-01
In this thesis, numerical simulations of magnetotransport properties of wide parabolic quantum wells (WPQW's) are presented. The existence of edge channel (EC) transport is a key point for describing the magnetotransport properties and is therefore used as the basis for the simulation program. The magnetotransport model is based on a new formulation of backscattering between an edge channel pair. The first part of this work is devoted to the question how the magnetotransport properties change if the two dimensional (2D) confinement, where the standard Quantum Hall effect occurs, changes gradually to a three dimensional (3D) one. This is done with WQW's realized from PbTe. Within this part, the question about the similarities between the transition of the quantum Hall liquid to the Hall insulator (HI) in 2D systems and the magnetic field induced metal-to-insulator transition (MIT) in quasi 3D wide quantum wells is considered. The insulating regime of WPQW's at high magnetic fields is favored either by a low sheet carrier density n 2D or a low carrier mobility μ. Systematic numerical calculations are performed in this context and a sort of phase diagram, in terms of n 2D and the Landau level broadening A E, which is related to μ, is obtained. A phase boundary occurs in this diagram which separates calculated 'samples', showing either insulating like or metallic like temperature dependence in the considered magnetic field range. The main argument of the explanation is that the physical mechanism for the transition is the same in both the quasi-3D WQW's and 2D systems. It occurs if the Fermi energy reaches the low energy tail of the lowest Landau level (LL). In this context, the MIT in quasi-3D WQW's is explained as a transition to the Hall insulator which, due to the weak subband splitting in WQW's, takes place in several individual Landau subband levels at once. In the second part of this work a novel network model for the simulation of the standard quantum Hall
Emission and elastic strain in InGaAs/GaAs quantum wells with embedded InAs quantum dots
Energy Technology Data Exchange (ETDEWEB)
Vega-Macotela, L.G.; Polupan, G. [ESIME - Instituto Politecnico Nacional, Mexico D.F. 07738 (Mexico); Shcherbyna, Ye. [National Technical University-' ' KPI' ' , Kiev 03057 (Ukraine)
2012-07-15
Photoluminescence (PL) spectra have been studied in the symmetric GaAs/In{sub 0.15}Ga{sub 0.85}As/GaAs quantum wells (QWs) with embedded InAs quantum dots (QDs), grown at different temperatures from the range 470-535 C. The increase of QD growth temperature is accompanied by decreasing the QD surface density and the enlargement of QD lateral diameters. Simultaneously the variation of the PL intensity and PL peak positions none monotonously have been detected. To understand the reason of the variation of PL intensity and peak positions the PL temperature dependences and the X-ray diffraction (XRD) at low angles (1.75-1.92 ) have been studied. The fitting procedure is applied to analysis the temperature shift of PL peak positions. Fitting has been done on the base of empirical expression for the band gap shrinkage that uses the Einstein temperature parameter. The character non monotonous for the Ga/In inter diffusion versus QD growth temperatures has been revealed. The XRD study has detected the high intensity peaks that corresponds to the diffraction of X-ray beam from the (311) crystal planes in GaAs QWs. The position of XRD peaks in the structures with QD grown at 490-510 C is very close to the angles related to the diffraction from (311) planes in the bulk GaAs. In QD structures with QD grown at 470 and 525-535 C the (311) XRD peaks shift to the higher diffraction angles that testifies on the essential compressive strains in these structures. The reason of the variation non monotonously of elastic strain versus QD densities has been discussed (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Position sensitive photon detectors using epitaxial InGaAs/InAlAs quantum wells
International Nuclear Information System (INIS)
Ganbold, T.; Antonelli, M.; Cautero, G.; Jark, H.; Eichert, D.M.; Cucini, R.; Menk, R.H.; Biasiol, G.
2014-01-01
This work deals with the investigation of novel position-sensitive devices based on InGaAs/InAlAs quantum wells, which could be applied to several applications of either synchrotron or conventional light sources. Such devices may be used as fast and efficient detectors due to the direct, low-energy band gap and high electron mobility at room temperature. Metamorphic In 0.75 Ga 0.25 As/In 0.75 Al 0.25 As quantum wells containing a two-dimensional electron gas were grown by molecular beam epitaxy. Two devices with size of 5 × 5 mm 2 were prepared by using optical lithography. In the first, the active layers were segmented into four electrically insulated quadrants. Indium ohmic contacts were realized on the corner of each quadrant (for readout) and on the back surface (for bias). In the second, the quantum well was left unsegmented and covered by 400 nm of Al providing a single bias electrode, while four readout electrodes were fabricated on the back side by depositing and segmenting a Ni/Ge/Au layer. Photo-generated carriers can be collected at the readout electrodes by biasing from either the QW side or the back side of the devices during beam exposure. Individual currents obtained from each electrode allow monitoring of both the position and the intensity of the impinging beam for photon energies ranging from visible to hard X-ray. Such detector prototypes were tested with synchrotron radiation. Moreover, the position of the beam can be estimated with a precision of 800 nm in the segmented QW. A lower precision of 10 μm was recorded in the unsegmented QW due to the charge diffusion through the 500-μm-thick wafer, with however a lower electronic noise due to the better uniformity of the contacts
Excitonic effects in gain and index in GaAlAs quantum well lasers
Energy Technology Data Exchange (ETDEWEB)
Kesler, M.P.; Harder, C. (IBM Research Division, Zurich Research Laboratory, 8803 Rueschlikon (Switzerland))
1990-07-09
Spontaneous emission and gain measurements in GaAlAs single quantum well lasers are presented. The gain is derived from the spontaneous emission detected through an opening in the top metallic contact of the lasers. Excitonic effects are seen in the gain (absorption) spectra for low carrier densities, and the step-like nature of the two-dimensional density of states is evident. From the gain spectra, refractive index changes are derived via a Kramers--Kronig transformation, and this is used to evaluate the linewidth enhancement factor as a function of photon energy.
Theory of resonant donor-impurity magnetopolaron in semiconductor quantum wells
International Nuclear Information System (INIS)
Osorio, F.A.P.; Maialle, M.Z.; Hipolito, O.
1989-11-01
We report for the first time a theoretical calculation for the resonant donor impurity magnetopolaron in GaAs-GA 1-x Al x As quantum-well structures. The intra donor 1s → 2p, transition frequencies are calculated as a function of the magnetic field, by taking into account the polaron effects and nonparabolicity of the conduction band. We found a pinning behaviour due to interaction with LO phonons as suggested by the experimentalists. Our results for the peak positions of those transitions are in very good agreement with recent experimental data. (author). 18 refs, 1 fig
Spin Dynamics in (111) GaAs/AlGaAs Undoped Asymmetric Quantum Wells
International Nuclear Information System (INIS)
Wang Gang; Ye Hui-Qi; Shi Zhen-Wu; Wang Wen-Xin; Liu Bao-Li; Xavier Marie; Andrea Balocchi; Thierry Amand
2012-01-01
The electron spin dynamics is investigated by the time-resolved Kerr rotation technique in a pair of special GaAs/AlGaAs asymmetric quantum well samples grown on (111)-oriented substrates, whose structures are the same except for their opposite directions of potential asymmetry. A large difference of spin lifetimes between the two samples is observed at low temperature. This difference is interpreted in terms of a cancellation effect between the Dresselhaus spin-splitting term in the conduction band and another term induced by interface inversion asymmetry. The deviation decreases with the increasing temperature, and almost disappears when T > 100 K because the cubic Dresselhaus term becomes more important
Fermi surface and quantum well states of V(110) films on W(110)
Energy Technology Data Exchange (ETDEWEB)
Krupin, Oleg [MS 6-2100, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Rotenberg, Eli [MS 6-2100, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kevan, S D [Department of Physics, University of Oregon, Eugene, OR 97403 (United States)
2007-09-05
Using angle-resolved photoemission spectroscopy, we have measured the Fermi surface of V(110) films epitaxially grown on a W(110) substrate. We compare our results for thicker films to existing calculations and measurements for bulk vanadium and find generally very good agreement. For thinner films, we observe and analyse a diverse array of quantum well states that split and distort the Fermi surface segments. We have searched unsuccessfully for a thickness-induced topological transition associated with contact between the zone-centre jungle gym and zone-boundary hole ellipsoid Fermi surface segments. We also find no evidence for ferromagnetic splitting of any bands on this surface.
Pressure study on the semiconductor-metal transition in a quantum well
Energy Technology Data Exchange (ETDEWEB)
Nithiananthi, P.; Jayakumar, K. [Department of Physics, Gandhigram Rural University, Tamilnadu (India)
2009-06-15
The effect of {gamma}-X band crossing due to the applied hydrostatic pressure on the semiconductor-metal transition in a quasi-two-dimensional system like GaAs/Al{sub x}Ga{sub 1-x}As quantum well has been shown through the drastic change in diamagnetic susceptibility of donors at critical concentration in the effective mass approximation using the variational principle. The nonparabolicity of the conduction band has been taken into account in the calculation. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Ultrafast dynamics in ZnO/ZnMgO multiple quantum wells
International Nuclear Information System (INIS)
Wen, X M; Davis, J A; McDonald, D; Dao, L V; Hannaford, P; Coleman, V A; Tan, H H; Jagadish, C; Koike, K; Sasa, S; Inoue, M; Yano, M
2007-01-01
We have investigated carrier relaxation and exciton recombination dynamics in ZnO/ZnMgO multiple quantum wells using femtosecond pump-probe techniques at room temperature. For a probe energy above the band gap, the hot carriers exhibit an effective relaxation by longitudinal optical phonon scattering with a cooling time of 700-850 fs. By detecting the emission near the band-gap, a longer decay time of a few picoseconds was observed which is attributed to acoustic phonon scattering. As the probe energy is decreased further, the decay time continues to increase due to the transitions of exciton recombination or localized carrier recombination
Photoluminescence and magnetophotoluminescence studies in GaInNAs/GaAs quantum wells
Segura, J.; Garro, N.; Cantarero, A.; Miguel-Sánchez, J.; Guzmán, A.; Hierro, A.
2007-04-01
We investigate the effects of electron and hole localization in the emission of a GaInNAs/GaAs single quantum well at low temperatures. Photoluminescence measurements varying the excitation density and under magnetic fields up to 14 T have been carried out. The results indicate that electrons are strongly localized in these systems due to small fluctuations in the nitrogen content of the quaternary alloy. The low linear diamagnetic shift of the emission points out the weakness of the Coulomb correlation between electrons and holes and suggests an additional partial localization of the holes.
Optical studies of 2DEGs in Zinc Selenide quantum wells in high magnetic fields
International Nuclear Information System (INIS)
Ossau, Wolfgang J.; Astakhov, G.V.; Yakovlev, D.R.; Crooker, Scott A.; Waag, A.
2002-01-01
Optical properties of a two-dimensional electron gas in ZnSe/(Zn,Be,Mg)Se quantum well structures have been examined by means of photoluminescence and reflectivity techniques in external magnetic fields up to 50 T. For these structures the Fermi energy of the two-dimensional electron gas is falling in the range between the trion binding energy and the exciton binding energy, which keeps the dominating role of Coulombic interaction between electrons and photoexcited holes. Characteristic peculiarities of optical spectra are discussed.
Optical studies of 2DEGs in ZnSe quantum wells in high magnetic fields.
Energy Technology Data Exchange (ETDEWEB)
Ossau, Wolfgang J.; Astakhov, G. V.; Yakovlev, D. R.; Crooker, S. A. (Scott A.); Waag, A.
2002-01-01
Optical properties of a two-dimensional electron gas in ZnSe/(Zn,Be,Mg)Se quantum well structures have been examined by means of photoluminescence and reflectivity techniques in external magnetic fields up to 50 T. For these structures the Fermi energy of the two-dimensional electron gas is falling in the range between the trion binding energy and the exciton binding energy, which keeps the dominating role of Coulombic interaction between electrons and photoexcited holes. Characteristic peculiarities of optical spectra are discussed.
Suppression of bulk conductivity in InAs/GaSb broken gap composite quantum wells
Energy Technology Data Exchange (ETDEWEB)
Charpentier, Christophe; Fält, Stefan; Reichl, Christian; Nichele, Fabrizio; Nath Pal, Atindra; Pietsch, Patrick; Ihn, Thomas; Ensslin, Klaus; Wegscheider, Werner [Laboratory for Solid State Physics, ETH Zürich, 8093 Zürich (Switzerland)
2013-09-09
The two-dimensional topological insulator state in InAs/GaSb quantum wells manifests itself by topologically protected helical edge channel transport relying on an insulating bulk. This work investigates a way of suppressing bulk conductivity by using gallium source materials of different degrees of impurity concentrations. While highest-purity gallium is accompanied by clear conduction through the sample bulk, intentional impurity incorporation leads to a bulk resistance over 1 MΩ, independent of applied magnetic fields. In addition, ultra high electron mobilities for GaAs/AlGaAs structures fabricated in a molecular beam epitaxy system used for the growth of Sb-based samples are reported.
Fermi surface and quantum well states of V(110) films on W(110)
International Nuclear Information System (INIS)
Krupin, Oleg; Rotenberg, Eli; Kevan, S D
2007-01-01
Using angle-resolved photoemission spectroscopy, we have measured the Fermi surface of V(110) films epitaxially grown on a W(110) substrate. We compare our results for thicker films to existing calculations and measurements for bulk vanadium and find generally very good agreement. For thinner films, we observe and analyse a diverse array of quantum well states that split and distort the Fermi surface segments. We have searched unsuccessfully for a thickness-induced topological transition associated with contact between the zone-centre jungle gym and zone-boundary hole ellipsoid Fermi surface segments. We also find no evidence for ferromagnetic splitting of any bands on this surface
Energy Technology Data Exchange (ETDEWEB)
Chen, Yuan; Deng, Li [Department of Applied Physics, East China Jiaotong University, Nanchang, 330013 (China); Chen, Aixi, E-mail: aixichen@ecjtu.jx.cn [Department of Applied Physics, East China Jiaotong University, Nanchang, 330013 (China); Institute for Quantum Computing, University of Waterloo, Ontario N2L 3G1 (Canada)
2015-02-15
We investigate the nonlinear optical phenomena of the optical bistability and multistability via spontaneously generated coherence in an asymmetric double quantum well structure coupled by a weak probe field and a controlling field. It is shown that the threshold and hysteresis cycle of the optical bistability can be conveniently controlled only by adjusting the intensity of the SGC or the controlling field. Moreover, switching between optical bistability and multistability can be achieved. These studies may have practical significance for the preparation of optical bistable switching device.
International Nuclear Information System (INIS)
Chen, Yuan; Deng, Li; Chen, Aixi
2015-01-01
We investigate the nonlinear optical phenomena of the optical bistability and multistability via spontaneously generated coherence in an asymmetric double quantum well structure coupled by a weak probe field and a controlling field. It is shown that the threshold and hysteresis cycle of the optical bistability can be conveniently controlled only by adjusting the intensity of the SGC or the controlling field. Moreover, switching between optical bistability and multistability can be achieved. These studies may have practical significance for the preparation of optical bistable switching device
Hybrid single quantum well InP/Si nanobeam lasers for silicon photonics.
Fegadolli, William S; Kim, Se-Heon; Postigo, Pablo Aitor; Scherer, Axel
2013-11-15
We report on a hybrid InP/Si photonic crystal nanobeam laser emitting at 1578 nm with a low threshold power of ~14.7 μW. Laser gain is provided from a single InAsP quantum well embedded in a 155 nm InP layer bonded on a standard silicon-on-insulator wafer. This miniaturized nanolaser, with an extremely small modal volume of 0.375(λ/n)(3), is a promising and efficient light source for silicon photonics.