WorldWideScience

Sample records for type yeast strains

  1. Terroir of yeasts? – Application of FTIR spectroscopy and molecular methods for strain typing of yeasts

    Directory of Open Access Journals (Sweden)

    Gerhards Daniel

    2015-01-01

    Full Text Available The site specific influence on wine (Terroir is an often by wine producers, consumers and scientists discussed topic in the world of wine. A study on grapes and (spontaneous fermentations from six different vineyards was done to investigate the biodiversity of yeasts and to answer the question if there is a terroir of yeast and how it could be influenced. Randomly isolated yeasts were identified by FTIR-spectroscopy and molecular methods on species and strain level. Vineyard specific yeast floras would be observed but they are not such important as expected. Only a few overlapping strain patterns would be identified during both vintages. The yeast flora of the winery had a huge impact on the spontaneous fermentations, but is not really constant and influenced by different factors from outside.

  2. Hybrid yeast strains capable of raising an extraordinarily broad range of dough types

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, S.; Zander, I.; Windisch, S.

    1981-01-01

    Over 200 hybrid yeast strains were screened and 11 of these found to have versatile fermentation characteristics. This paper reports the results obtained with these 11 strains compared with a commercially available strain of baker's yeast used for bread making and marketed as 'instant active dry yeast'. In contrast to bakers yeast, the hybrid strains fermented very well in yeast, hard biscuit, shortcake and heavy cake dough without prior sponge formation. The fermentation kinetics were investigated and the technical potential of such hybrid strains discussed on the basis of the fermentation kinetics.

  3. Comparison of the proteomes of three yeast wild type strains: CEN.PK2, FY1679 and W303

    DEFF Research Database (Denmark)

    Rogowska-Wrzesinska, A.; Mose Larsen, P.; Blomberg, A.

    2001-01-01

    Yeast deletion strains created during gene function analysis projects very often show drastic phenotypic differences depending on the genetic background used. These results indicate the existence of important molecular differences between the CEN.PK2, FY1679 and W303 wild type strains...

  4. Yeast strains and methods of use thereof

    OpenAIRE

    Goddard, Matthew Robert; Gardner, Richard Clague; Anfang, Nicole

    2013-01-01

    The present invention relates to yeast strains and, in particular, to yeast stains for use in fermentation processes. The invention also relates to methods of fermentation using the yeast strains of the invention either alone or in combination with other yeast strains. The invention thither relates to methods for the selection of yeast strains suitable for fermentation cultures by screening for various metabolic products and the use of specific nutrient sources.

  5. Impact of apple cultivar, ripening stage, fermentation type and yeast strain on phenolic composition of apple ciders.

    Science.gov (United States)

    Laaksonen, Oskar; Kuldjärv, Rain; Paalme, Toomas; Virkki, Mira; Yang, Baoru

    2017-10-15

    Hydroxycinnamic acids and flavonoids in apple juices and ciders were studied using liquid chromatography. Samples were produced from four different Estonian apple cultivars using unripe, ripe and overripe apples, and six different commercial yeasts including Saccharomyces cerevisiae, Saccharomyces bayanus, and Torulaspora delbrueckii strains. Part of the samples was additionally inoculated with malolactic bacteria, Oenococcus oeni. The most notable difference among the samples was the appearance of phloretin in malolactic ciders in comparison to conventional ciders and the juices. Furthermore, the apple cultivars were significantly different in their phenolic contents and compositions. Additionally, ciders and juices made from unripe apples contained more phenolic compounds than the ripe or overripe, but the effect was dependent on cultivar. The commercial yeast strains differed in the release of free HCAs, especially p-coumaric acid, during the yeast fermentation. In ciders inoculated with S. bayanus, the content was higher than in ciders fermented with S. cerevisiae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Characterization of global yeast quantitative proteome data generated from the wild-type and glucose repression Saccharomyces cerevisiae strains: The comparison of two quantitative methods

    DEFF Research Database (Denmark)

    Usaite, Renata; Wohlschlegel, James; Venable, John D.

    2008-01-01

    The quantitative proteomic analysis of complex protein mixtures is emerging as a technically challenging but viable systems-level approach for studying cellular function. This study presents a large-scale comparative analysis of protein abundances from yeast protein lysates derived from both wild......-type yeast and yeast strains lacking key components of the Snf1 kinase complex. Four different strains were grown under well-controlled chemostat conditions. Multidimensional protein identification technology followed by quantitation using either spectral counting or stable isotope labeling approaches...... labeling strategy. The stable isotope labeling based quantitative approach was found to be highly reproducible among biological replicates when complex protein mixtures containing small expression changes were analyzed. Where poor correlation between stable isotope labeling and spectral counting was found...

  7. New lager yeast strains generated by interspecific hybridization.

    Science.gov (United States)

    Krogerus, Kristoffer; Magalhães, Frederico; Vidgren, Virve; Gibson, Brian

    2015-05-01

    The interspecific hybrid Saccharomyces pastorianus is the most commonly used yeast in brewery fermentations worldwide. Here, we generated de novo lager yeast hybrids by mating a domesticated and strongly flocculent Saccharomyces cerevisiae ale strain with the Saccharomyces eubayanus type strain. The hybrids were characterized with respect to the parent strains in a wort fermentation performed at temperatures typical for lager brewing (12 °C). The resulting beers were analysed for sugar and aroma compounds, while the yeasts were tested for their flocculation ability and α-glucoside transport capability. These hybrids inherited beneficial properties from both parent strains (cryotolerance, maltotriose utilization and strong flocculation) and showed apparent hybrid vigour, fermenting faster and producing beer with higher alcohol content (5.6 vs 4.5 % ABV) than the parents. Results suggest that interspecific hybridization is suitable for production of novel non-GM lager yeast strains with unique properties and will help in elucidating the evolutionary history of industrial lager yeast.

  8. Characterization of a novel yeast species Metschnikowia persimmonesis KCTC 12991BP (KIOM G15050 type strain) isolated from a medicinal plant, Korean persimmon calyx (Diospyros kaki Thumb)

    OpenAIRE

    Kang, Young Min; Choi, Ji Eun; Komakech, Richard; Park, Jeong Hwan; Kim, Dae Wook; Cho, Kye Man; Kang, Seung Mi; Choi, Sang Haeng; Song, Kun Chul; Ryu, Chung Min; Lee, Keun Chul; Lee, Jung-Sook

    2017-01-01

    The yeast strain Metschnikowia persimmonesis Kang and Choi et al., sp. nov. [type strain KIOM_G15050 = Korean Collection for Type Cultures (KCTC) 12991BP] was isolated from the stalk of native persimmon cultivars (Diospyros kaki Thumb) obtained from different regions of South Korea and was characterized phenotypically, genetically, and physiologically. The isolate grew between 4 and 40 °C (optimum temperature: 24–28 °C), pH 3–8 (pH optimum = 6.0), and in 0–4% NaCl solution (with optimal growt...

  9. Development of Industrial Yeast Platform Strains

    DEFF Research Database (Denmark)

    Bergdahl, Basti; Dato, Laura; Förster, Jochen

    2014-01-01

    Most of the current metabolic engineering projects are carried out using laboratory strains as the starting host. Although such strains are easily manipulated genetically, their robustness does not always meet the requirements set by industrial fermentation conditions. In such conditions, the cells...... screening of the 36 industrial and laboratory yeast strains. In addition, progress in the development of molecular biology methods for generating the new strains will be presented....

  10. Characterization of a novel yeast species Metschnikowia persimmonesis KCTC 12991BP (KIOM G15050 type strain) isolated from a medicinal plant, Korean persimmon calyx (Diospyros kaki Thumb).

    Science.gov (United States)

    Kang, Young Min; Choi, Ji Eun; Komakech, Richard; Park, Jeong Hwan; Kim, Dae Wook; Cho, Kye Man; Kang, Seung Mi; Choi, Sang Haeng; Song, Kun Chul; Ryu, Chung Min; Lee, Keun Chul; Lee, Jung-Sook

    2017-11-10

    The yeast strain Metschnikowia persimmonesis Kang and Choi et al., sp. nov. [type strain KIOM_G15050 = Korean Collection for Type Cultures (KCTC) 12991BP] was isolated from the stalk of native persimmon cultivars (Diospyros kaki Thumb) obtained from different regions of South Korea and was characterized phenotypically, genetically, and physiologically. The isolate grew between 4 and 40 °C (optimum temperature: 24-28 °C), pH 3-8 (pH optimum = 6.0), and in 0-4% NaCl solution (with optimal growth in absence of NaCl). It also exhibited strong antibiotic and antimicrobial activities. Morphologically, cells were characterized by the presence of long, needle-shaped ascospores. Based on 18S ribosomal DNA gene sequence analysis, the new species was found to belong to the genus Metschnikowia as a sister clade of Metschnikowia fructicola. We therefore conclude that this yeast isolate from D. kaki is a new member of the genus Metschnikowia and propose the name M. persimmonesis sp. nov. This strain has been deposited in the KCTC for future reference. This discovery provides a basis for future research on M. persimmonesis sp. nov., including its possible contribution to the medicinal properties of the host persimmon plant.

  11. Evidence for three types of x-ray damage repair in yeast and sensitivity of totally repair deficient strains to sunlight

    International Nuclear Information System (INIS)

    Game, J.C.; Schild, D.; Mortimer, R.K.

    1987-01-01

    Mutants of yeast that confer sensitivity to x-rays are known to fall into two epistasis groups, called here the RAD51 and RAD18 groups, which are each thought to control a different type of x-ray repair. They examine here the role of genes in a third repair pathways in x-ray repair. RAD1 and RAD3 are known to be important in the repair of pyrimidine dimers after uv-irradiation. They find that these genes can also play an important role in x-ray repair, but that this role is only exposed when both the other pathways of x-ray repair are blocked. Double mutants blocked in the RAD51 and RAD18 pathways are significantly less x-ray sensitive than triple mutants blocked in these pathways but also mutant in either the RAD1 or RAD3 genes. In a related experiment, they tested the importance of DNA repair in nature by determining the sensitivity to natural unfiltered sunlight of a strain lacking all known DNA repair pathways. They constructed a quadruple mutant strain containing RAD1-1, RAD18-2, RAD51-1 and PHR1-1. The latter mutation blocks the cell's ability to photoreactivate uv damage. They found that this strain was so sensitive to sunlight that less than three seconds' exposure would cause an average of one lethal hit per cell, and survival was less than 2% after ten seconds' exposure. Wild type yeast at sea level showed no killing after thirty minutes. the quadruple mutant is approximately one thousand times more sensitive to sunlight than the related wild type

  12. Triacetic acid lactone production in industrial Saccharomyces yeast strains

    Science.gov (United States)

    Triacetic acid lactone (TAL) is a potential platform chemical that can be produced in yeast. To evaluate the potential for industrial yeast strains to produce TAL, the g2ps1 gene encoding 2-pyrone synthase was transformed into thirteen industrial yeast strains of varied genetic background. TAL produ...

  13. Solving ethanol production problems with genetically modified yeast strains

    Directory of Open Access Journals (Sweden)

    A. Abreu-Cavalheiro

    2013-09-01

    Full Text Available The current world demand for bioethanol is increasing as a consequence of low fossil fuel availability and a growing number of ethanol/gasoline flex-fuel cars. In addition, countries in several parts of the world have agreed to reduce carbon dioxide emissions, and the use of ethanol as a fuel (which produces fewer pollutants than petroleum products has been considered to be a good alternative to petroleum products. The ethanol that is produced in Brazil from the first-generation process is optimized and can be accomplished at low cost. However, because of the large volume of ethanol that is produced and traded each year, any small improvement in the process could represent a savings of billions dollars. Several Brazilian research programs are investing in sugarcane improvement, but little attention has been given to the improvement of yeast strains that participate in the first-generation process at present. The Brazilian ethanol production process uses sugarcane as a carbon source for the yeast Saccharomyces cerevisiae. Yeast is then grown at a high cellular density and high temperatures in large-capacity open tanks with cells recycle. All of these culture conditions compel the yeast to cope with several types of stress. Among the main stressors are high temperatures and high ethanol concentrations inside the fermentation tanks during alcohol production. Moreover, the competition between the desired yeast strains, which are inoculated at the beginning of the process, with contaminants such as wild type yeasts and bacteria, requires acid treatment to successfully recycle the cells. This review is focused on describing the problems and stressors within the Brazilian ethanol production system. It also highlights some genetic modifications that can help to circumvent these difficulties in yeast.

  14. Solving ethanol production problems with genetically modified yeast strains.

    Science.gov (United States)

    Abreu-Cavalheiro, A; Monteiro, G

    2013-01-01

    The current world demand for bioethanol is increasing as a consequence of low fossil fuel availability and a growing number of ethanol/gasoline flex-fuel cars. In addition, countries in several parts of the world have agreed to reduce carbon dioxide emissions, and the use of ethanol as a fuel (which produces fewer pollutants than petroleum products) has been considered to be a good alternative to petroleum products. The ethanol that is produced in Brazil from the first-generation process is optimized and can be accomplished at low cost. However, because of the large volume of ethanol that is produced and traded each year, any small improvement in the process could represent a savings of billions dollars. Several Brazilian research programs are investing in sugarcane improvement, but little attention has been given to the improvement of yeast strains that participate in the first-generation process at present. The Brazilian ethanol production process uses sugarcane as a carbon source for the yeast Saccharomyces cerevisiae. Yeast is then grown at a high cellular density and high temperatures in large-capacity open tanks with cells recycle. All of these culture conditions compel the yeast to cope with several types of stress. Among the main stressors are high temperatures and high ethanol concentrations inside the fermentation tanks during alcohol production. Moreover, the competition between the desired yeast strains, which are inoculated at the beginning of the process, with contaminants such as wild type yeasts and bacteria, requires acid treatment to successfully recycle the cells. This review is focused on describing the problems and stressors within the Brazilian ethanol production system. It also highlights some genetic modifications that can help to circumvent these difficulties in yeast.

  15. Occurrence of Killer Yeast Strains in Fruit and Berry Wine Yeast Populations

    Directory of Open Access Journals (Sweden)

    Gintare Gulbiniene

    2004-01-01

    Full Text Available Apple, cranberry, chokeberry and Lithuanian red grape wine yeast populations were used for the determination of killer yeast occurrence. According to the tests of the killer characteristics and immunity the isolated strains were divided into seven groups. In this work the activity of killer toxins purified from some typical strains was evaluated. The analysed strains produced different amounts of active killer toxin and some of them possessed new industrially significant killer properties. Total dsRNA extractions in 11 killer strains of yeast isolated from spontaneous fermentations revealed that the molecular basis of the killer phenomenon was not only dsRNAs, but also unidentified genetic determinants.

  16. Study of the role of the covalently linked cell wall protein (Ccw14p) and yeast glycoprotein (Ygp1p) within biofilm formation in a flor yeast strain.

    Science.gov (United States)

    Moreno-García, J; Coi, A L; Zara, G; García-Martínez, T; Mauricio, J C; Budroni, M

    2018-03-01

    Flor yeasts are Saccharomyces cerevisiae strains noted by their ability to create a type of biofilm in the air-liquid interface of some wines, known as 'flor' or 'velum', for which certain proteins play an essential role. Following a proteomic study of a flor yeast strain, we deleted the CCW14 (covalently linked cell wall protein) and YGP1 (yeast glycoprotein) genes-codifying for two cell surface glycoproteins-in a haploid flor yeast strain and we reported that both influence the weight of the biofilm as well as cell adherence (CCW14).

  17. Ethanol production potential of local yeast strains isolated from ripe ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... ... of these studies, the preferred candidate for industrial production of ethanol ... The yeast strains were isolated using the method of Ameh et al. (1989), on ... gas in the Durham tube during the incubation period. Fermentation ...

  18. Improving industrial yeast strains: exploiting natural and artificial diversity.

    Science.gov (United States)

    Steensels, Jan; Snoek, Tim; Meersman, Esther; Picca Nicolino, Martina; Voordeckers, Karin; Verstrepen, Kevin J

    2014-09-01

    Yeasts have been used for thousands of years to make fermented foods and beverages, such as beer, wine, sake, and bread. However, the choice for a particular yeast strain or species for a specific industrial application is often based on historical, rather than scientific grounds. Moreover, new biotechnological yeast applications, such as the production of second-generation biofuels, confront yeast with environments and challenges that differ from those encountered in traditional food fermentations. Together, this implies that there are interesting opportunities to isolate or generate yeast variants that perform better than the currently used strains. Here, we discuss the different strategies of strain selection and improvement available for both conventional and nonconventional yeasts. Exploiting the existing natural diversity and using techniques such as mutagenesis, protoplast fusion, breeding, genome shuffling and directed evolution to generate artificial diversity, or the use of genetic modification strategies to alter traits in a more targeted way, have led to the selection of superior industrial yeasts. Furthermore, recent technological advances allowed the development of high-throughput techniques, such as 'global transcription machinery engineering' (gTME), to induce genetic variation, providing a new source of yeast genetic diversity. © 2014 The Authors. FEMS Microbiology Reviews published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

  19. Improving industrial yeast strains: exploiting natural and artificial diversity

    Science.gov (United States)

    Steensels, Jan; Snoek, Tim; Meersman, Esther; Nicolino, Martina Picca; Voordeckers, Karin; Verstrepen, Kevin J

    2014-01-01

    Yeasts have been used for thousands of years to make fermented foods and beverages, such as beer, wine, sake, and bread. However, the choice for a particular yeast strain or species for a specific industrial application is often based on historical, rather than scientific grounds. Moreover, new biotechnological yeast applications, such as the production of second-generation biofuels, confront yeast with environments and challenges that differ from those encountered in traditional food fermentations. Together, this implies that there are interesting opportunities to isolate or generate yeast variants that perform better than the currently used strains. Here, we discuss the different strategies of strain selection and improvement available for both conventional and nonconventional yeasts. Exploiting the existing natural diversity and using techniques such as mutagenesis, protoplast fusion, breeding, genome shuffling and directed evolution to generate artificial diversity, or the use of genetic modification strategies to alter traits in a more targeted way, have led to the selection of superior industrial yeasts. Furthermore, recent technological advances allowed the development of high-throughput techniques, such as ‘global transcription machinery engineering’ (gTME), to induce genetic variation, providing a new source of yeast genetic diversity. PMID:24724938

  20. A new methodology to obtain wine yeast strains overproducing mannoproteins.

    Science.gov (United States)

    Quirós, Manuel; Gonzalez-Ramos, Daniel; Tabera, Laura; Gonzalez, Ramon

    2010-04-30

    Yeast mannoproteins are highly glycosylated proteins that are covalently bound to the beta-1,3-glucan present in the yeast cell wall. Among their outstanding enological properties, yeast mannoproteins contribute to several aspects of wine quality by protecting against protein haze, reducing astringency, retaining aroma compounds and stimulating growth of lactic-acid bacteria. The development of a non-recombinant method to obtain enological yeast strains overproducing mannoproteins would therefore be very useful. Our previous experience on the genetic determinants of the release of these molecules by Saccharomyces cerevisiae has allowed us to propose a new methodology to isolate and characterize wine yeast that overproduce mannoproteins. The described methodology is based on the resistance of the killer 9 toxin produced by Williopsis saturnus, a feature linked to an altered biogenesis of the yeast cell wall. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Xylitol production from colombian native yeast strains

    Directory of Open Access Journals (Sweden)

    Isleny Andrea Vanegas Córdoba

    2004-07-01

    Full Text Available Xylitol is an alternative sweetener with similar characteristics to sucrose that has become of great interest, due mainly to its safe use in diabetic patients and those deficient in glucose-6-phosphate-dehydrogenase. Its chemical production is expensive and generates undesirable by-products, whereas biotechnological process, which uses different yeasts genera, is a viable production alternative because it is safer and specific. Colombia has a privilege geographic location and offers a great microbial variety, this can be taken advantage of with academic and commercial goals. Because of this, some native microorganisms with potential to produce xylitol were screened in this work. It were isolated 25 yeasts species, from which was possible to identify 84% by the kit API 20C-AUX. Three yeasts: Candida kefyr, C. tropicalis y C. parapsilosis presented greater capacity to degrade xylose compared to the others, therefore they were selected for the later evaluation of its productive capacity. Discontinuous cellular cultures were developed in shaken flasks at 200 rpm and 35°C by 30 hours, using synthetic media with xylose as carbon source. Xylose consumption and xylitol production were evaluated by thin layer chromatography and high performance liquid chromatography. The maximal efficiency were obtained with Candida kefyr and C. tropicalis (Yp/s 0.5 y 0.43 g/g, respectively, using an initial xylose concentration of 20 g/L. Key words: Xylitol, xylose, yeasts, Candida kefyr, C. tropicalis, C. parapsilosis.

  2. New Lager Brewery Strains Obtained by Crossing Techniques Using Cachaça (Brazilian Spirit) Yeasts

    Science.gov (United States)

    Figueiredo, Bruna Inez Carvalho; Saraiva, Margarete Alice Fontes; de Souza Pimenta, Paloma Patrick; de Souza Testasicca, Miriam Conceição; Sampaio, Geraldo Magela Santos; da Cunha, Aureliano Claret; Afonso, Luis Carlos Crocco; Vieira de Queiroz, Marisa; de Miranda Castro, Ieso

    2017-01-01

    ABSTRACT The development of hybrids has been an effective approach to generate novel yeast strains with optimal technological profile for use in beer production. This study describes the generation of a new yeast strain for lager beer production by direct mating between two Saccharomyces cerevisiae strains isolated from cachaça distilleries: one that was strongly flocculent, and the other with higher production of acetate esters. The first step in this procedure was to analyze the sporulation ability and reproductive cycle of strains belonging to a specific collection of yeasts isolated from cachaça fermentation vats. Most strains showed high rates of sporulation, spore viability, and homothallic behavior. In order to obtain new yeast strains with desirable properties useful for lager beer production, we compare haploid-to-haploid and diploid-to-diploid mating procedures. Moreover, an assessment of parental phenotype traits showed that the segregant diploid C2-1d generated from a diploid-to-diploid mating experiment showed good fermentation performance at low temperature, high flocculation capacity, and desirable production of acetate esters that was significantly better than that of one type lager strain. Therefore, strain C2-1d might be an important candidate for the production of lager beer, with distinct fruit traces and originating using a non-genetically modified organism (GMO) approach. IMPORTANCE Recent work has suggested the utilization of hybridization techniques for the generation of novel non-genetically modified brewing yeast strains with combined properties not commonly found in a unique yeast strain. We have observed remarkable traits, especially low temperature tolerance, maltotriose utilization, flocculation ability, and production of volatile aroma compounds, among a collection of Saccharomyces cerevisiae strains isolated from cachaça distilleries, which allow their utilization in the production of beer. The significance of our research is in

  3. Genomics and Biochemistry of Saccharomyces cerevisiae Wine Yeast Strains.

    Science.gov (United States)

    Eldarov, M A; Kishkovskaia, S A; Tanaschuk, T N; Mardanov, A V

    2016-12-01

    Saccharomyces yeasts have been used for millennia for the production of beer, wine, bread, and other fermented products. Long-term "unconscious" selection and domestication led to the selection of hundreds of strains with desired production traits having significant phenotypic and genetic differences from their wild ancestors. This review summarizes the results of recent research in deciphering the genomes of wine Saccharomyces strains, the use of comparative genomics methods to study the mechanisms of yeast genome evolution under conditions of artificial selection, and the use of genomic and postgenomic approaches to identify the molecular nature of the important characteristics of commercial wine strains of Saccharomyces. Succinctly, data concerning metagenomics of microbial communities of grapes and wine and the dynamics of yeast and bacterial flora in the course of winemaking is provided. A separate section is devoted to an overview of the physiological, genetic, and biochemical features of sherry yeast strains used to produce biologically aged wines. The goal of the review is to convince the reader of the efficacy of new genomic and postgenomic technologies as tools for developing strategies for targeted selection and creation of new strains using "classical" and modern techniques for improving winemaking technology.

  4. Yeast strains designed for 2. generation bioethanol production. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Roennow, B.

    2013-04-15

    The aim of the project was to develop a suitable fermentation organism for 2G bioethanol production that would efficiently ferment all of the sugars in lignocellulosic biomass into ethanol at a commercially viable rate (comparable to yeast based 1G ethanol production). More specifically, a yeast strain would be developed with the ability to ferment also the pentoses in lignocellulosic biomass and thereby increase the ethanol yield of the process by 30-45% with a profound positive effect on the total process economy. The project has succeeded in developing a new industrial yeast strain V1. The yeast strain can transform the difficult C5 sugars to ethanol from waste products such as straw and the like from the agricultural sector. The classic issues relating to industrial uses such as inhibitor and ethanol tolerance and high ethanol production is resolved satisfactorily. The potential of the use of the new strain for 2nd generation bioethanol production is that the ethanol yields increase by 30-45%. With the increased ethanol yield follows a marked improvement in the overall process economics. (LN)

  5. Ethanol production potential of local yeast strains isolated from ripe ...

    African Journals Online (AJOL)

    The ability of different yeast strains isolated from ripe banana peels to produce ethanol was investigated. Of the 8 isolates screened for their fermentation ability, 5 showed enhanced performance and were subsequently identified and assessed for important ethanol fermentation attributes such as ethanol producing ability, ...

  6. Molecular and biochemical studies of some yeast strains

    African Journals Online (AJOL)

    user

    2011-02-21

    Feb 21, 2011 ... Kluyveromyces lactis (Y.9) and Pichia jadinii (Y.10) contained almost double the amount of total amino ... Differences between ... biochemical analysis (total protein profile and total amino acids) were used as tools to select the best yeast strains in Saudi Arabia and Egypt as a rich source of animal protein.

  7. Molecular Characterization of Yeast Strains Isolated from Different Sources by Restriction Fragment Length Polymorphism

    International Nuclear Information System (INIS)

    Ali, M. S.; Latif, Z.

    2016-01-01

    Various molecular techniques like analysis of the amplified rDNA internal transcribed spacers (ITS), intragenic spacers and total ITS region analysis by restriction fragment length polymorphism (RFLP) has been introduced for yeast identification but there are limited databases to identify yeast species on the basis of 5.8S rDNA. In this study, twenty nine yeast strains from various sources including spoiled fruits, vegetables, foodstuffs, and concentrated juices were characterized by PCR-RFLP. PCR-RFLP has been used to characterize yeasts present in different spoiled food samples after isolation of the yeasts. By using this technique, the isolated yeast strains were characterized by direct 5.8S-ITS rDNA region amplification. RFLP analysis was applied to each of the amplification products (varied from 400bp to 800bp) detected, and the corresponding yeast identifications were made according to each specific restriction patterns obtained after treatment with two endonucleases TaqI and HaeIII which yielded a specific banding pattern for each species. For further confirmation amplified products of eleven selected isolates were sequenced and blast on NCBI. Both RFLP and sequence analyses of the strains with accession nos. KF472163, KF472164, KF472165, KF472166, KF472167, KF472168, KF472169, KF472170, KF472171, KF472172, KF472173 gave significantly similar results. The isolates were found to belong five different yeast species including; Candida spp., Pichia spp., Kluyveromyces spp., Clavispora spp. and Hanseniaspora spp. This method provides a fast, easy, reliable and authentic way for determining yeast population present in different type of samples, as compared to traditional characterization technique. (author)

  8. Development of intra-strain self-cloning procedure for breeding baker's yeast strains.

    Science.gov (United States)

    Nakagawa, Youji; Ogihara, Hiroyuki; Mochizuki, Chisato; Yamamura, Hideki; Iimura, Yuzuru; Hayakawa, Masayuki

    2017-03-01

    Previously reported self-cloning procedures for breeding of industrial yeast strains require DNA from other strains, plasmid DNA, or mutagenesis. Therefore, we aimed to construct a self-cloning baker's yeast strain that exhibits freeze tolerance via an improved self-cloning procedure. We first disrupted the URA3 gene of a prototrophic baker's yeast strain without the use of any marker gene, resulting in a Δura3 homozygous disruptant. Then, the URA3 gene of the parental baker's yeast strain was used as a selection marker to introduce the constitutive TDH3 promoter upstream of the PDE2 gene encoding high-affinity cyclic AMP phosphodiesterase. This self-cloning procedure was performed without using DNA from other Saccharomyces cerevisiae strains, plasmid DNA, or mutagenesis and was therefore designated an intra-strain self-cloning procedure. Using this self-cloning procedure, we succeeded in producing self-cloning baker's yeast strains that harbor the TDH3p-PDE2 gene heterozygously and homozygously, designated TDH3p-PDE2 hetero and TDH3p-PDE2 homo strains, respectively. These self-cloning strains expressed much higher levels of PDE2 mRNA than the parental strain and exhibited higher viability after freeze stress, as well as higher fermentation ability in frozen dough, when compared with the parental strain. The TDH3p-PDE2 homo strain was genetically more stable than the TDH3p-PDE2 hetero strain. These results indicate that both heterozygous and homozygous strains of self-cloning PDE2-overexpressing freeze-tolerant strains of industrial baker's yeast can be prepared using the intra-strain self-cloning procedure, and, from a practical viewpoint, the TDH3p-PDE2 homo strain constructed in this study is preferable to the TDH3p-PDE2 hetero strain for frozen dough baking. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Metabolic engineering of a haploid strain derived from a triploid industrial yeast for producing cellulosic ethanol.

    Science.gov (United States)

    Kim, Soo Rin; Skerker, Jeffrey M; Kong, In Iok; Kim, Heejin; Maurer, Matthew J; Zhang, Guo-Chang; Peng, Dairong; Wei, Na; Arkin, Adam P; Jin, Yong-Su

    2017-03-01

    Many desired phenotypes for producing cellulosic biofuels are often observed in industrial Saccharomyces cerevisiae strains. However, many industrial yeast strains are polyploid and have low spore viability, making it difficult to use these strains for metabolic engineering applications. We selected the polyploid industrial strain S. cerevisiae ATCC 4124 exhibiting rapid glucose fermentation capability, high ethanol productivity, strong heat and inhibitor tolerance in order to construct an optimal yeast strain for producing cellulosic ethanol. Here, we focused on developing a general approach and high-throughput screening method to isolate stable haploid segregants derived from a polyploid parent, such as triploid ATCC 4124 with a poor spore viability. Specifically, we deleted the HO genes, performed random sporulation, and screened the resulting segregants based on growth rate, mating type, and ploidy. Only one stable haploid derivative (4124-S60) was isolated, while 14 other segregants with a stable mating type were aneuploid. The 4124-S60 strain inherited only a subset of desirable traits present in the parent strain, same as other aneuploids, suggesting that glucose fermentation and specific ethanol productivity are likely to be genetically complex traits and/or they might depend on ploidy. Nonetheless, the 4124-60 strain did inherit the ability to tolerate fermentation inhibitors. When additional genetic perturbations known to improve xylose fermentation were introduced into the 4124-60 strain, the resulting engineered strain (IIK1) was able to ferment a Miscanthus hydrolysate better than a previously engineered laboratory strain (SR8), built by making the same genetic changes. However, the IIK1 strain showed higher glycerol and xylitol yields than the SR8 strain. In order to decrease glycerol and xylitol production, an NADH-dependent acetate reduction pathway was introduced into the IIK1 strain. By consuming 2.4g/L of acetate, the resulting strain (IIK1A

  10. Yeast transformation mediated by Agrobacterium strains harboring an Ri plasmid: comparative study between GALLS of an Ri plasmid and virE of a Ti plasmid.

    Science.gov (United States)

    Kiyokawa, Kazuya; Yamamoto, Shinji; Sato, Yukari; Momota, Naoto; Tanaka, Katsuyuki; Moriguchi, Kazuki; Suzuki, Katsunori

    2012-07-01

    Agrobacterium strains containing a Ti plasmid can transfer T-DNA not only to plants but also to fungi, including the yeast Saccharomyces cerevisiae. However, no Agrobacterium strain harboring an Ri plasmid has been evaluated in fungal transformation. Some Ri plasmids have GALLS , instead of virE1 and virE2. GALLS protein can functionally substitute in plant transformation for a structurally different protein VirE2. In this study, we compared the yeast transformation ability among Agrobacterium donors: a strain containing a Ti plasmid, strains harboring either an agropine-type or a mikimopine-type Ri plasmid, and a strain having a modified Ri plasmid supplemented with a Ti plasmid type virE operon. Agrobacterium strains possessing GALLS transformed yeast cells far less efficiently than the strain containing virE operon. Production of GALLS in recipient yeast cells improved the yeast transformation mediated by an Agrobacterium strain lacking neither GALLS nor virE operon. A reporter assay to detect mobilization of the proteins fused with Cre recombinase revealed that VirE2 protein is much more abundant in yeast cells than GALLS. Based on these results, we concluded that the low yeast transformability mediated by Agrobacterium strains having the Ri plasmid is because of low amount of mobilized GALLS in yeast cells. © 2012 The Authors Journal compilation © 2012 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  11. Improving yeast strains using recyclable integration cassettes, for the production of plant terpenoids

    Directory of Open Access Journals (Sweden)

    Johnson Christopher B

    2011-01-01

    Full Text Available Abstract Background Terpenoids constitute a large family of natural products, attracting commercial interest for a variety of uses as flavours, fragrances, drugs and alternative fuels. Saccharomyces cerevisiae offers a versatile cell factory, as the precursors of terpenoid biosynthesis are naturally synthesized by the sterol biosynthetic pathway. Results S. cerevisiae wild type yeast cells, selected for their capacity to produce high sterol levels were targeted for improvement aiming to increase production. Recyclable integration cassettes were developed which enable the unlimited sequential integration of desirable genetic elements (promoters, genes, termination sequence at any desired locus in the yeast genome. The approach was applied on the yeast sterol biosynthetic pathway genes HMG2, ERG20 and IDI1 resulting in several-fold increase in plant monoterpene and sesquiterpene production. The improved strains were robust and could sustain high terpenoid production levels for an extended period. Simultaneous plasmid-driven co-expression of IDI1 and the HMG2 (K6R variant, in the improved strain background, maximized monoterpene production levels. Expression of two terpene synthase enzymes from the sage species Salvia fruticosa and S. pomifera (SfCinS1, SpP330 in the modified yeast cells identified a range of terpenoids which are also present in the plant essential oils. Co-expression of the putative interacting protein HSP90 with cineole synthase 1 (SfCinS1 also improved production levels, pointing to an additional means to improve production. Conclusions Using the developed molecular tools, new yeast strains were generated with increased capacity to produce plant terpenoids. The approach taken and the durability of the strains allow successive rounds of improvement to maximize yields.

  12. Pyruvate Decarboxylase Activity Assay in situ of Different Industrial Yeast Strains

    Directory of Open Access Journals (Sweden)

    Dorota Kręgiel

    2009-01-01

    Full Text Available Cytoplasmic pyruvate decarboxylase (PDC, EC 4.1.1.1 is one of the key enzymes of yeast fermentative metabolism. PDC is the first enzyme which, under anaerobic conditions, leads to decarboxylation of pyruvate with acetaldehyde as the end product. The aim of this study is to develop a suitable method for PDC activity assay in situ for different industrial yeast strains. Saccharomyces sp. and Debaryomyces sp. yeast strains grew in fermentative medium with 12 % of glucose. Enzymatic assay was conducted in cell suspension treated with digitonin as permeabilisation agent, and with sodium pyruvate as a substrate, at temperature of 30 °C. Metabolites of PDC pathway were detected using gas chromatographic (GC technique. Various parameters like type and molar concentration of the substrate, minimal effective mass fraction of digitonin, cell concentration, reaction time and effect of pyrazole (alcohol dehydrogenase inhibitor were monitored to optimize PDC enzymatic assay in situ. In the concentration range of yeast cells from 1⋅10^7 to 1⋅10^8 per mL, linear correlation between the produced acetaldehyde and cell density was noticed. Only pyruvate was the specific substrate for pyruvate decarboxylase. In the presence of 0.05 M sodium pyruvate and 0.05 % digitonin, the enzymatic reaction was linear up to 20 min of the assay. During incubation, there was no formation of ethanol and, therefore, pyrazole was not necessary for the assay.

  13. New hybrids between Saccharomyces sensu stricto yeast species found among wine and cider production strains

    DEFF Research Database (Denmark)

    Masneuf, I; Hansen, J.; Groth, C

    1998-01-01

    Two yeast isolates, a wine-making yeast first identified as a Mel(+) strain (ex. S. uvarum) and a cider-making yeast, were characterized for their nuclear and mitochondrial genomes, Electrophoretic karyotyping analyses, restriction fragment length polymorphism maps of PCR-amplified MET2 gene...

  14. Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: effects of yeast assimilable nitrogen on two model strains.

    Science.gov (United States)

    Carrau, Francisco M; Medina, Karina; Farina, Laura; Boido, Eduardo; Henschke, Paul A; Dellacassa, Eduardo

    2008-11-01

    The contribution of yeast fermentation metabolites to the aromatic profile of wine is well documented; however, the biotechnological application of this knowledge, apart from strain selection, is still rather limited and often contradictory. Understanding and modeling the relationship between nutrient availability and the production of desirable aroma compounds by different strains must be one of the main objectives in the selection of industrial yeasts for the beverage and food industry. In order to overcome the variability in the composition of grape juices, we have used a chemically defined model medium for studying yeast physiological behavior and metabolite production in response to nitrogen supplementation so as to identify an appropriate yeast assimilable nitrogen level for strain differentiation. At low initial nitrogen concentrations, strain KU1 produced higher quantities of esters and fatty acids whereas M522 produced higher concentrations of isoacids, gamma-butyrolactone, higher alcohols and 3-methylthio-1-propanol. We propose that although strains KU1 and M522 have a similar nitrogen consumption profile, they represent useful models for the chemical characterization of wine strains in relation to wine quality. The differential production of aroma compounds by the two strains is discussed in relation to their capacity for nitrogen usage and their impact on winemaking. The results obtained here will help to develop targeted metabolic footprinting methods for the discrimination of industrial yeasts.

  15. MALDI-TOF MS typing enables the classification of brewing yeasts of the genus Saccharomyces to major beer styles.

    Science.gov (United States)

    Lauterbach, Alexander; Usbeck, Julia C; Behr, Jürgen; Vogel, Rudi F

    2017-01-01

    Brewing yeasts of the genus Saccharomyces are either available from yeast distributor centers or from breweries employing their own "in-house strains". During the last years, the classification and characterization of yeasts of the genus Saccharomyces was achieved by using biochemical and DNA-based methods. The current lack of fast, cost-effective and simple methods to classify brewing yeasts to a beer type, may be closed by Matrix Assisted Laser Desorption/Ionization-Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) upon establishment of a database based on sub-proteome spectra from reference strains of brewing yeasts. In this study an extendable "brewing yeast" spectra database was established including 52 brewing yeast strains of the most important types of bottom- and top-fermenting strains as well as beer-spoiling S. cerevisiae var. diastaticus strains. 1560 single spectra, prepared with a standardized sample preparation method, were finally compared against the established database and investigated by bioinformatic analyses for similarities and distinctions. A 100% separation between bottom-, top-fermenting and S. cerevisiae var. diastaticus strains was achieved. Differentiation between Alt and Kölsch strains was not achieved because of the high similarity of their protein patterns. Whereas the Ale strains show a high degree of dissimilarity with regard to their sub-proteome. These results were supported by MDS and DAPC analysis of all recorded spectra. Within five clusters of beer types that were distinguished, and the wheat beer (WB) cluster has a clear separation from other groups. With the establishment of this MALDI-TOF MS spectra database proof of concept is provided of the discriminatory power of this technique to classify brewing yeasts into different major beer types in a rapid, easy way, and focus brewing trails accordingly. It can be extended to yeasts for specialty beer types and other applications including wine making or baking.

  16. MALDI-TOF MS typing enables the classification of brewing yeasts of the genus Saccharomyces to major beer styles.

    Directory of Open Access Journals (Sweden)

    Alexander Lauterbach

    Full Text Available Brewing yeasts of the genus Saccharomyces are either available from yeast distributor centers or from breweries employing their own "in-house strains". During the last years, the classification and characterization of yeasts of the genus Saccharomyces was achieved by using biochemical and DNA-based methods. The current lack of fast, cost-effective and simple methods to classify brewing yeasts to a beer type, may be closed by Matrix Assisted Laser Desorption/Ionization-Time-Of-Flight Mass Spectrometry (MALDI-TOF MS upon establishment of a database based on sub-proteome spectra from reference strains of brewing yeasts. In this study an extendable "brewing yeast" spectra database was established including 52 brewing yeast strains of the most important types of bottom- and top-fermenting strains as well as beer-spoiling S. cerevisiae var. diastaticus strains. 1560 single spectra, prepared with a standardized sample preparation method, were finally compared against the established database and investigated by bioinformatic analyses for similarities and distinctions. A 100% separation between bottom-, top-fermenting and S. cerevisiae var. diastaticus strains was achieved. Differentiation between Alt and Kölsch strains was not achieved because of the high similarity of their protein patterns. Whereas the Ale strains show a high degree of dissimilarity with regard to their sub-proteome. These results were supported by MDS and DAPC analysis of all recorded spectra. Within five clusters of beer types that were distinguished, and the wheat beer (WB cluster has a clear separation from other groups. With the establishment of this MALDI-TOF MS spectra database proof of concept is provided of the discriminatory power of this technique to classify brewing yeasts into different major beer types in a rapid, easy way, and focus brewing trails accordingly. It can be extended to yeasts for specialty beer types and other applications including wine making or baking.

  17. Quality parameters and RAPD-PCR differentiation of commercial baker's yeast and hybrid strains.

    Science.gov (United States)

    El-Fiky, Zaki A; Hassan, Gamal M; Emam, Ahmed M

    2012-06-01

    Baker's yeast, Saccharomyces cerevisiae, is a key component in bread baking. Total of 12 commercial baker's yeast and 2 hybrid strains were compared using traditional quality parameters. Total of 5 strains with high leavening power and the 2 hybrid strains were selected and evaluated for their alpha-amylase, maltase, glucoamylase enzymes, and compared using random amplified polymorphic DNA (RAPD). The results revealed that all selected yeast strains have a low level of alpha-amylase and a high level of maltase and glucoamylase enzymes. Meanwhile, the Egyptian yeast strain (EY) had the highest content of alpha-amylase and maltase enzymes followed by the hybrid YH strain. The EY and YH strains have the highest content of glucoamylase enzyme almost with the same level. The RAPD banding patterns showed a wide variation among commercial yeast and hybrid strains. The closely related Egyptian yeast strains (EY and AL) demonstrated close similarity of their genotypes. The 2 hybrid strains were clustered to Turkish and European strains in 1 group. The authors conclude that the identification of strains and hybrids using RAPD technique was useful in determining their genetic relationship. These results can be useful not only for the basic research, but also for the quality control in baking factories. © 2012 Institute of Food Technologists®

  18. Studies on microbiological treatment and utilization of cane molasses distillery wastes. Part 1. Screening of useful yeast strains

    Energy Technology Data Exchange (ETDEWEB)

    Akaki, M.; Takahashi, T.; Ishiguro, K.

    1981-01-01

    Cane molasses distillation slops were used as substrate for the cultivation of 203 strains of yeast. Most yeast strains, especially Hansenula, Debaryomyces, and Rhodotorula, assimilated the molasses distillation wastes. Yeast cell dry weight reached 0.9 grams/100 mL, and yeasts removed greater than 30% of the COD of the waste material.

  19. Induction of pure and sectored mutant clones in excision-proficient and deficient strains of yeast.

    Science.gov (United States)

    Eckardt, F; Haynes, R H

    1977-06-01

    We have found that UV-induced mutation frequency in a forward non-selective assay system (scoring white adex ade2 double auxotroph mutants among the red pigmented ade2 clones) increases linearly with dose up to a maximum frequency of about 3 X 10(-3) mutants per survivor and then declines in both RAD wild-type and rad2 excision deficient strains of Saccharomyces cerevisiae. Mutation frequencies of the RAD and the rad2 strains plotted against survival are nearly identical over the entire survival range. On this basis we conclude that unexcised pyrimidine dimers are the predominant type of pre-mutational lesions in both strains. In the RAD wild-type strain pure mutant clones outnumber sectors in a 10:1 ratio at all doses used; in rad2 this ratio varies from 1:1 at low doses up to 10:1 at high doses. As others have concluded for wild-type strains we find also in the rad2 strain that pure clone formation cannot be accounted for quantitatively by lethal sectoring events alone. We conclude that heteroduplex repair is a crucial step in pure mutant clone formation and we examine the plausibility of certain macromolecular mechanisms according to which heteroduplex repair may be coupled with replication, repair and sister strand exchange in yeast mutagenesis.

  20. Induction of pure and sectored mutant clones in excision-proficient and deficient strains of yeast

    International Nuclear Information System (INIS)

    Eckardt, F.; Haynes, R.H.

    1977-01-01

    It was found that UV-induced mutation frequency in a forward non-selective assay system (scoring white adex ade2 double auxotroph mutants among the red pigmented ade2 clones) increases linearly with dose up to a maximum frequency of about 3 x 10 -3 mutants per survivor and then declines in both RAD wild-type and rad2 excision deficient strains of Saccharomyces cerevisiae. Mutation frequencies of the RAD and the rad2 strains plotted against survival are nearly identical over the entire survival range. On this basis it is concluded that unexcised pyrimidine dimers are the predominant type of pre-mutational lesions in both strains. In the RAD wild-type strain pure mutant clones outnumber sectors in a 10:1 ratio at all doses used; in rad2 this ratio varies from 1:1 at low doses up to 10:1 at high doses. In agreement with conclusions of others, it was also found that for wild-type strains in the rad2 strain pure clone formation cannot be accounted for quantitatively by lethal sectoring events alone. It is concluded that heteroduplex repair is a crucial step in pure mutant clone formation and the plausibility of certain macromolecular mechanisms according to which heteroduplex repair may be coupled with replication, repair and sister strand exchange in yeast mutagenesis is examined

  1. The impact of different ale brewer’s yeast strains on the proteome of immature beer

    DEFF Research Database (Denmark)

    Berner, Torben Sune; Jacobsen, Susanne; Arneborg, Nils

    2013-01-01

    BACKGROUND: It is well known that brewer’s yeast affects the taste and aroma of beer. However, the influence of brewer’s yeast on the protein composition of beer is currently unknown. In this study, changes of the proteome of immature beer, i.e. beer that has not been matured after fermentation......, by ale brewer’s yeast strains with different abilities to degrade fermentable sugars were investigated. RESULTS: Beers were fermented from standard hopped wort (13° Plato) using two ale brewer’s yeast (Saccharomyces cerevisiae) strains with different attenuation degrees. Both immature beers had the same....... These three proteins, all derived from yeast, were identified as cell wall associated proteins, that is Exg1 (an exo-β-1,3-glucanase), Bgl2 (an endo-β-1,2-glucanase), and Uth1 (a cell wall biogenesis protein). CONCLUSION: Yeast strain dependent changes in the immature beer proteome were identified, i.e. Bgl2...

  2. Study on the IAA (Indole acetic acid) Productivity of Soil Yeast Strain Isolats

    International Nuclear Information System (INIS)

    Nwe Nwe Soe Hlaing; Swe Zin Yu; San San Yu

    2011-12-01

    Twelve isolated soil yeast were tested in IAA production in peptone yeast glucose broth (PYG). All strains were screened for the Indole Acetic Acid (IAA) producing activity in PYG broth supplemented with or without L-Tryptophan (L-TRP) as precusor. IAA production was assayed calorimetrically using Salkowski's reagent. The concentration of IAA produced by yeast strains was measured by spectrophotometric method at 530nm. Y6 strain was the highest IAA producer (79ppm) at 9 days incubation period without tryptophan. Y3, Y10 and Y12 strains that were incubated without L-TRP also had the higher ability in the production of IAA than other yeast isolates. The selected yeasts having high IAA production activity were characterized by morphological study and biochemical tests including sugar assimilation and fermentation tests.

  3. Substrate-Limited Saccharomyces cerevisiae Yeast Strains Allow Control of Fermentation during Bread Making.

    Science.gov (United States)

    Struyf, Nore; Laurent, Jitka; Verspreet, Joran; Verstrepen, Kevin J; Courtin, Christophe M

    2017-04-26

    Identification and use of yeast strains that are unable to consume one or more otherwise fermentable substrate types could allow a more controlled fermentation process with more flexibility regarding fermentation times. In this study, Saccharomyces cerevisiae strains with different capacities to consume substrates present in wheat were selected to investigate the impact of substrate limitation on dough fermentation and final bread volume. Results show that fermentation of dough with maltose-negative strains relies on the presence of fructan and sucrose as fermentable substrates and can be used for regular bread making. Levels of fructan and sucrose, endogenously present or added, hence determine the extent of fermentation and timing at the proofing stage. Whole meal is inherently more suitable for substrate-limited fermentation than white flour due to the presence of higher native levels of these substrates. Bread making protocols with long fermentation times are accommodated by addition of substrates such as sucrose.

  4. Fission yeast mating-type switching: programmed damage and repair

    DEFF Research Database (Denmark)

    Egel, Richard

    2005-01-01

    Mating-type switching in fission yeast follows similar rules as in budding yeast, but the underlying mechanisms are entirely different. Whilst the initiating double-strand cut in Saccharomyces cerevisiae requires recombinational repair for survival, the initial damage in Schizosaccharomyces pombe...

  5. Phenotypic evaluation and characterization of 21 industrial Saccharomyces cerevisiae yeast strains.

    Science.gov (United States)

    Kong, In Iok; Turner, Timothy Lee; Kim, Heejin; Kim, Soo Rin; Jin, Yong-Su

    2018-02-01

    Microorganisms have been studied and used extensively to produce value-added fuels and chemicals. Yeasts, specifically Saccharomyces cerevisiae, receive industrial attention because of their well-known ability to ferment glucose and produce ethanol. Thousands of natural or genetically modified S. cerevisiae have been found in industrial environments for various purposes. These industrial strains are isolated from industrial fermentation sites, and they are considered as potential host strains for superior fermentation processes. In many cases, industrial yeast strains have higher thermotolerance, increased resistances towards fermentation inhibitors and increased glucose fermentation rates under anaerobic conditions when compared with laboratory yeast strains. Despite the advantages of industrial strains, they are often not well characterized. Through screening and phenotypic characterization of commercially available industrial yeast strains, industrial fermentation processes requiring specific environmental conditions may be able to select an ideal starting yeast strain to be further engineered. Here, we have characterized and compared 21 industrial S. cerevisiae strains under multiple conditions, including their tolerance to varying pH conditions, resistance to fermentation inhibitors, sporulation efficiency and ability to ferment lignocellulosic sugars. These data may be useful for the selection of a parental strain for specific biotechnological applications of engineered yeast. © FEMS 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. MALDI-TOF MS typing enables the classification of brewing yeasts of the genus Saccharomyces to major beer styles

    Science.gov (United States)

    Lauterbach, Alexander; Usbeck, Julia C.; Behr, Jürgen

    2017-01-01

    Brewing yeasts of the genus Saccharomyces are either available from yeast distributor centers or from breweries employing their own “in-house strains”. During the last years, the classification and characterization of yeasts of the genus Saccharomyces was achieved by using biochemical and DNA-based methods. The current lack of fast, cost-effective and simple methods to classify brewing yeasts to a beer type, may be closed by Matrix Assisted Laser Desorption/Ionization–Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) upon establishment of a database based on sub-proteome spectra from reference strains of brewing yeasts. In this study an extendable “brewing yeast” spectra database was established including 52 brewing yeast strains of the most important types of bottom- and top-fermenting strains as well as beer-spoiling S. cerevisiae var. diastaticus strains. 1560 single spectra, prepared with a standardized sample preparation method, were finally compared against the established database and investigated by bioinformatic analyses for similarities and distinctions. A 100% separation between bottom-, top-fermenting and S. cerevisiae var. diastaticus strains was achieved. Differentiation between Alt and Kölsch strains was not achieved because of the high similarity of their protein patterns. Whereas the Ale strains show a high degree of dissimilarity with regard to their sub-proteome. These results were supported by MDS and DAPC analysis of all recorded spectra. Within five clusters of beer types that were distinguished, and the wheat beer (WB) cluster has a clear separation from other groups. With the establishment of this MALDI-TOF MS spectra database proof of concept is provided of the discriminatory power of this technique to classify brewing yeasts into different major beer types in a rapid, easy way, and focus brewing trails accordingly. It can be extended to yeasts for specialty beer types and other applications including wine making or baking. PMID

  7. Biofortification of folates in white wheat bread by selection of yeast strain and process.

    Science.gov (United States)

    Hjortmo, Sofia; Patring, Johan; Jastrebova, Jelena; Andlid, Thomas

    2008-09-30

    We here demonstrate that folate content in yeast fermented food can be dramatically increased by using a proper (i) yeast strain and (ii) cultivation procedure for the selected strain prior to food fermentation. Folate levels were 3 to 5-fold higher in white wheat bread leavened with a Saccharomyces cerevisiae strain CBS7764, cultured in defined medium and harvested in the respiro-fermentative phase of growth prior to dough preparation (135-139 microg/100 dry matter), compared to white wheat bread leavened with commercial Baker's yeast (27-43 microg/100 g). The commercial Baker's yeast strain had been industrially produced, using a fed-batch process, thereafter compressed and stored in the refrigerator until bakings were initiated. This strategy is an attractive alternative to fortification of bread with synthetically produced folic acid. By using a high folate producing strain cultured a suitable way folate levels obtained were in accordance with folic acid content in fortified cereal products.

  8. Using Microsatellites to Identify Yeast Strains in Beer

    OpenAIRE

    Bruke, Alexandria; Van Brocklin, Jennifer; Rivest, Jason; Prenni, Jessica E.; Ibrahim, Hend

    2012-01-01

    Yeast is an integral part of the brewing process and is responsible for much of the taste and characteristics of beer. During the brewing process, yeast is subject to ageing and stress factors that can result in growth inhibition, decreased genetic stability, and changes in cell membrane stability. Characterization of yeast species used in industrial fermentation (e.g. S. cerevisiae) is of great importance to the brewing industry. The objective of this study was to develop an assay to identif...

  9. Selection of yeast starter culture strains for the production of marula fruit wines and distillates.

    Science.gov (United States)

    Fundira, M; Blom, M; Pretorius, I S; van Rensburg, P

    2002-03-13

    Juice of the Sclerocarya birrea subsp. caffra (marula) fruit was fermented by indigenous microflora and different commercial Saccharomyces cerevisiae yeast strains at different temperatures, namely, 15 and 30 degrees C. Volatile acids, esters, and higher alcohols were quantified in the wine and distillates, and the results were interpreted using a multivariate analysis of variance and an average linkage cluster analysis. Significant differences between 15 and 30 degrees C and also among yeasts with respect to volatile compounds were observed. Yeast strains VIN7 and FC consistently produced wines and final distillates significantly different from the other strains. A panel of tasters and marula and brandy producers was asked to select wines and distillates that had an acceptable and typical marula "nose". They were also asked to detect the differences among wines and distillates fermented with the same yeast strain at different temperatures.

  10. Isolation and molecular identification of yeast strains from “Rabilé” a ...

    African Journals Online (AJOL)

    Isolation and molecular identification of yeast strains from “Rabilé” a starter of local fermented drink. Ibrahim Keita, Marius K Somda, Aly Savadogo, Iliassou Mogmenga, Ousmane Koita, Alfred S Traore ...

  11. Non-Conventional Yeast Strains Increase the Aroma Complexity of Bread

    Science.gov (United States)

    Rezaei, Mohammad Naser; Steensels, Jan; Courtin, Christophe M.; Verstrepen, Kevin J.

    2016-01-01

    Saccharomyces cerevisiae is routinely used yeast in food fermentations because it combines several key traits, including fermentation efficiency and production of desirable flavors. However, the dominance of S. cerevisiae in industrial fermentations limits the diversity in the aroma profiles of the end products. Hence, there is a growing interest in non-conventional yeast strains that can help generate the diversity and complexity desired in today’s diversified and consumer-driven markets. Here, we selected a set of non-conventional yeast strains to examine their potential for bread fermentation. Here, we tested ten non-conventional yeasts for bread fermentation, including two Saccharomyces species that are not currently used in bread making and 8 non-Saccharomyces strains. The results show that Torulaspora delbrueckii and Saccharomyces bayanus combine satisfactory dough fermentation with an interesting flavor profile. Sensory analysis and HS-SPME-GC-MS analysis confirmed that these strains produce aroma profiles that are very different from that produced by a commercial bakery strain. Moreover, bread produced with these yeasts was preferred by a majority of a trained sensory panel. These results demonstrate the potential of T. delbrueckii and S. bayanus as alternative yeasts for bread dough leavening, and provide a general experimental framework for the evaluation of more yeasts and bacteria. PMID:27776154

  12. Non-Conventional Yeast Strains Increase the Aroma Complexity of Bread.

    Science.gov (United States)

    Aslankoohi, Elham; Herrera-Malaver, Beatriz; Rezaei, Mohammad Naser; Steensels, Jan; Courtin, Christophe M; Verstrepen, Kevin J

    2016-01-01

    Saccharomyces cerevisiae is routinely used yeast in food fermentations because it combines several key traits, including fermentation efficiency and production of desirable flavors. However, the dominance of S. cerevisiae in industrial fermentations limits the diversity in the aroma profiles of the end products. Hence, there is a growing interest in non-conventional yeast strains that can help generate the diversity and complexity desired in today's diversified and consumer-driven markets. Here, we selected a set of non-conventional yeast strains to examine their potential for bread fermentation. Here, we tested ten non-conventional yeasts for bread fermentation, including two Saccharomyces species that are not currently used in bread making and 8 non-Saccharomyces strains. The results show that Torulaspora delbrueckii and Saccharomyces bayanus combine satisfactory dough fermentation with an interesting flavor profile. Sensory analysis and HS-SPME-GC-MS analysis confirmed that these strains produce aroma profiles that are very different from that produced by a commercial bakery strain. Moreover, bread produced with these yeasts was preferred by a majority of a trained sensory panel. These results demonstrate the potential of T. delbrueckii and S. bayanus as alternative yeasts for bread dough leavening, and provide a general experimental framework for the evaluation of more yeasts and bacteria.

  13. Non-Conventional Yeast Strains Increase the Aroma Complexity of Bread.

    Directory of Open Access Journals (Sweden)

    Elham Aslankoohi

    Full Text Available Saccharomyces cerevisiae is routinely used yeast in food fermentations because it combines several key traits, including fermentation efficiency and production of desirable flavors. However, the dominance of S. cerevisiae in industrial fermentations limits the diversity in the aroma profiles of the end products. Hence, there is a growing interest in non-conventional yeast strains that can help generate the diversity and complexity desired in today's diversified and consumer-driven markets. Here, we selected a set of non-conventional yeast strains to examine their potential for bread fermentation. Here, we tested ten non-conventional yeasts for bread fermentation, including two Saccharomyces species that are not currently used in bread making and 8 non-Saccharomyces strains. The results show that Torulaspora delbrueckii and Saccharomyces bayanus combine satisfactory dough fermentation with an interesting flavor profile. Sensory analysis and HS-SPME-GC-MS analysis confirmed that these strains produce aroma profiles that are very different from that produced by a commercial bakery strain. Moreover, bread produced with these yeasts was preferred by a majority of a trained sensory panel. These results demonstrate the potential of T. delbrueckii and S. bayanus as alternative yeasts for bread dough leavening, and provide a general experimental framework for the evaluation of more yeasts and bacteria.

  14. Co-fermentation using Recombinant Saccharomyces cerevisiae Yeast Strains Hyper-secreting Different Cellulases for the Production of Cellulosic Bioethanol.

    Science.gov (United States)

    Lee, Cho-Ryong; Sung, Bong Hyun; Lim, Kwang-Mook; Kim, Mi-Jin; Sohn, Min Jeong; Bae, Jung-Hoon; Sohn, Jung-Hoon

    2017-06-30

    To realize the economical production of ethanol and other bio-based chemicals from lignocellulosic biomass by consolidated bioprocessing (CBP), various cellulases from different sources were tested to improve the level of cellulase secretion in the yeast Saccharomyces cerevisiae by screening an optimal translational fusion partner (TFP) as both a secretion signal and fusion partner. Among them, four indispensable cellulases for cellulose hydrolysis, including Chaetomium thermophilum cellobiohydrolase (CtCBH1), Chrysosporium lucknowense cellobiohydrolase (ClCBH2), Trichoderma reesei endoglucanase (TrEGL2), and Saccharomycopsis fibuligera β-glucosidase (SfBGL1), were identified to be highly secreted in active form in yeast. Despite variability in the enzyme levels produced, each recombinant yeast could secrete approximately 0.6-2.0 g/L of cellulases into the fermentation broth. The synergistic effect of the mixed culture of the four strains expressing the essential cellulases with the insoluble substrate Avicel and several types of cellulosic biomass was demonstrated to be effective. Co-fermentation of these yeast strains produced approximately 14 g/L ethanol from the pre-treated rice straw containing 35 g/L glucan with 3-fold higher productivity than that of wild type yeast using a reduced amount of commercial cellulases. This process will contribute to the cost-effective production of bioenergy such as bioethanol and biochemicals from cellulosic biomass.

  15. Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Boutheina Gargouri

    2015-01-01

    Full Text Available Two yeast strains are enriched and isolated from industrial refinery wastewater. These strains were observed for their ability to utilize several classes of petroleum hydrocarbons substrates, such as n-alkanes and aromatic hydrocarbons as a sole carbon source. Phylogenetic analysis based on the D1/D2 variable domain and the ITS-region sequences indicated that strains HC1 and HC4 were members of the genera Candida and Trichosporon, respectively. The mechanism of hydrocarbon uptaking by yeast, Candida, and Trichosporon has been studied by means of the kinetic analysis of hydrocarbons-degrading yeasts growth and substrate assimilation. Biodegradation capacity and biomass quantity were daily measured during twelve days by gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. Removal of n-alkanes indicated a strong ability of hydrocarbon biodegradation by the isolated yeast strains. These two strains grew on long-chain n-alkane, diesel oil, and crude oil but failed to grow on short-chain n-alkane and aromatic hydrocarbons. Growth measurement attributes of the isolates, using n-hexadecane, diesel oil, and crude oil as substrates, showed that strain HC1 had better degradation for hydrocarbon substrates than strain HC4. In conclusion, these yeast strains can be useful for the bioremediation process and decreasing petroleum pollution in wastewater contaminated with petroleum hydrocarbons.

  16. Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater

    Science.gov (United States)

    Gargouri, Boutheina; Mhiri, Najla; Karray, Fatma; Aloui, Fathi; Sayadi, Sami

    2015-01-01

    Two yeast strains are enriched and isolated from industrial refinery wastewater. These strains were observed for their ability to utilize several classes of petroleum hydrocarbons substrates, such as n-alkanes and aromatic hydrocarbons as a sole carbon source. Phylogenetic analysis based on the D1/D2 variable domain and the ITS-region sequences indicated that strains HC1 and HC4 were members of the genera Candida and Trichosporon, respectively. The mechanism of hydrocarbon uptaking by yeast, Candida, and Trichosporon has been studied by means of the kinetic analysis of hydrocarbons-degrading yeasts growth and substrate assimilation. Biodegradation capacity and biomass quantity were daily measured during twelve days by gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. Removal of n-alkanes indicated a strong ability of hydrocarbon biodegradation by the isolated yeast strains. These two strains grew on long-chain n-alkane, diesel oil, and crude oil but failed to grow on short-chain n-alkane and aromatic hydrocarbons. Growth measurement attributes of the isolates, using n-hexadecane, diesel oil, and crude oil as substrates, showed that strain HC1 had better degradation for hydrocarbon substrates than strain HC4. In conclusion, these yeast strains can be useful for the bioremediation process and decreasing petroleum pollution in wastewater contaminated with petroleum hydrocarbons. PMID:26339653

  17. Brewing characteristics of haploid strains isolated from sake yeast Kyokai No. 7.

    Science.gov (United States)

    Katou, Taku; Kitagaki, Hiroshi; Akao, Takeshi; Shimoi, Hitoshi

    2008-11-01

    Sake yeast exhibit various characteristics that make them more suitable for sake brewing compared to other yeast strains. Since sake yeast strains are Saccharomyces cerevisiae heterothallic diploid strains, it is likely that they have heterozygous alleles on homologous chromosomes (heterozygosity) due to spontaneous mutations. If this is the case, segregation of phenotypic traits in haploid strains after sporulation and concomitant meiosis of sake yeast strains would be expected to occur. To examine this hypothesis, we isolated 100 haploid strains from Kyokai No. 7 (K7), a typical sake yeast strain in Japan, and compared their brewing characteristics in small-scale sake-brewing tests. Analyses of the resultant sake samples showed a smooth and continuous distribution of analytical values for brewing characteristics, suggesting that K7 has multiple heterozygosities that affect brewing characteristics and that these heterozygous alleles do segregate after sporulation. Correlation and principal component analyses suggested that the analytical parameters could be classified into two groups, indicating fermentation ability and sake flavour. (c) 2008 John Wiley & Sons, Ltd.

  18. Bio-Technological Characterization of the Saccharomyces bayanus Yeast Strains in Order to Preserve the Local Specificity

    Directory of Open Access Journals (Sweden)

    Enikő Gaspar

    2011-05-01

    Full Text Available The wine yeasts have multiple and important applications in the industry, aiming to obtain pure cultures and the selection of those strains which, according to the lab investigations, present superior bio-technological properties. In this study we monitored three types of Saccharomyces bayanus yeast strains, isolated from indigenous grapes varieties, Apold Iordana, Italian Blaj Riesling and Royal Feteasca from Jidvei area, which are present in the collection of the Biotechnologies and Microbiology Research Center of SAIAPM University. The yeast strains were subject to alcoholic fermentation in malt must at different temperatures, in the presence of alcohol, sugar and SO2 in various concentrations. The obtained results led to selecting of those strains which had best results regarding the alcoholic tolerance, osmo-tolerance, fermentation speed under stress conditions and resistance to SO2. These results can have practical applications in using the indigenous strains, isolated from grapes which are from inside the country, so that we preserve the local specificity, and reduce imports regarding this area.

  19. Relationship of trehalose accumulation with ethanol fermentation in industrial Saccharomyces cerevisiae yeast strains.

    Science.gov (United States)

    Wang, Pin-Mei; Zheng, Dao-Qiong; Chi, Xiao-Qin; Li, Ou; Qian, Chao-Dong; Liu, Tian-Zhe; Zhang, Xiao-Yang; Du, Feng-Guang; Sun, Pei-Yong; Qu, Ai-Min; Wu, Xue-Chang

    2014-01-01

    The protective effect and the mechanisms of trehalose accumulation in industrial Saccharomyces cerevisiae strains were investigated during ethanol fermentation. The engineered strains with more intercellular trehalose achieved significantly higher fermentation rates and ethanol yields than their wild strain ZS during very high gravity (VHG) fermentation, while their performances were not different during regular fermentation. The VHG fermentation performances of these strains were consistent with their growth capacity under osmotic stress and ethanol stress, the key stress factors during VHG fermentation. These results suggest that trehalose accumulation is more important for VHG fermentation of industrial yeast strains than regular one. The differences in membrane integrity and antioxidative capacity of these strains indicated the possible mechanisms of trehalose as a protectant under VHG condition. Therefore, trehalose metabolic engineering may be a useful strategy for improving the VHG fermentation performance of industrial yeast strains. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Selection of yeast strains for the production of alcohol from lactoserum

    Energy Technology Data Exchange (ETDEWEB)

    Laham-Guillaume, M; Moulin, G; Galzy, P

    1979-01-01

    Five of 11 yeast strains tested fermented 85 g lactose/L to approximately 5% EtOH. Four of these strains, Candida pseudotropicalis CBS 19384 and IP 513, and Kluyveromyces fragilis CBS 397, and CBS 5795, anaerobically fermented deproteinized whey to EtOH.

  1. Energy metabolism after U.V.-irradiation in a sensitive yeast strain

    International Nuclear Information System (INIS)

    Kiefer, J.

    1976-01-01

    Stationary-phase cells of an excision-repair deficient diploid yeast (strain 2094) were UV-irradiated at exposures of up to 440 erg mm -2 and then resuspended in fresh medium. Measurements of energy metabolism per cell at periods of up to 6 hours after irradiation showed that cellular respiration was increased for all doses tested from about 3 hours after exposure, whereas fermentation did not start before about 2 hours after irradiation, never significantly exceeded control values and was markedly inhibited by the higher doses. The results suggest that respiration is under nuclear control, since a mutation in one gene is thought to be the only difference between this strain and the wild-type. The D 0 value of about 360 erg mm -2 found for the relative cellular fermentation at 2 hours after irradiation was used to give an estimate of the size of the structural gene involved, of about 3000 nucleotides, or a protein with 1000 amino-acid residues, compatible with the molecular weight of alcohol dehydrogenase. Fermentation can therefore be inhibited in this sensitive strain by lesions in the structural gene of a key enzyme. Since respiration was increased even more in repair-deficient than in repair-proficient strains, it must be assumed that higher energy metabolism is not linked to the repair process, but rather reflects a general disturbance in cellular regulation. (U.K.)

  2. Isolation and molecular genetic characterization of a yeast strain ...

    African Journals Online (AJOL)

    The yeast was identified by molecular genetics technique based on sequence analysis of the variable D1/D2 domain of the large subunit (26S) ribosomal DNA. Subsequent 26S rRNA gene sequencing showed 100% base sequence homology and it was identified as Candida viswanathii. The degradation of PAHs

  3. Selection of non-Saccharomyces yeast strains for reducing alcohol levels in wine by sugar respiration.

    Science.gov (United States)

    Quirós, Manuel; Rojas, Virginia; Gonzalez, Ramon; Morales, Pilar

    2014-07-02

    Respiration of sugars by non-Saccharomyces yeasts has been recently proposed for lowering alcohol levels in wine. Development of industrial fermentation processes based on such an approach requires, amongst other steps, the identification of yeast strains which are able to grow and respire under the relatively harsh conditions found in grape must. This work describes the characterization of a collection of non-Saccharomyces yeast strains in order to identify candidate yeast strains for this specific application. It involved the estimation of respiratory quotient (RQ) values under aerated conditions, at low pH and high sugar concentrations, calculation of yields of ethanol and other relevant metabolites, and characterization of growth responses to the main stress factors found during the first stages of alcoholic fermentation. Physiological features of some strains of Metschnikowia pulcherrima or two species of Kluyveromyces, suggest they are suitable for lowering ethanol yields by respiration. The unsuitability of Saccharomyces cerevisiae strains for this purpose was not due to ethanol yields (under aerated conditions they are low enough for a significant reduction in final ethanol content), but to the high acetic acid yields under these growth conditions. According to results from controlled aeration fermentations with one strain of M. pulcherrima, design of an aeration regime allowing for lowering ethanol yields though preserving grape must components from excessive oxidation, would be conceivable. Copyright © 2014. Published by Elsevier B.V.

  4. The use of lactic acid-producing, malic acid-producing, or malic acid-degrading yeast strains for acidity adjustment in the wine industry.

    Science.gov (United States)

    Su, Jing; Wang, Tao; Wang, Yun; Li, Ying-Ying; Li, Hua

    2014-03-01

    In an era of economic globalization, the competition among wine businesses is likely to get tougher. Biotechnological innovation permeates the entire world and intensifies the severity of the competition of the wine industry. Moreover, modern consumers preferred individualized, tailored, and healthy and top quality wine products. Consequently, these two facts induce large gaps between wine production and wine consumption. Market-orientated yeast strains are presently being selected or developed for enhancing the core competitiveness of wine enterprises. Reasonable biological acidity is critical to warrant a high-quality wine. Many wild-type acidity adjustment yeast strains have been selected all over the world. Moreover, mutation breeding, metabolic engineering, genetic engineering, and protoplast fusion methods are used to construct new acidity adjustment yeast strains to meet the demands of the market. In this paper, strategies and concepts for strain selection or improvement methods were discussed, and many examples based upon selected studies involving acidity adjustment yeast strains were reviewed. Furthermore, the development of acidity adjustment yeast strains with minimized resource inputs, improved fermentation, and enological capabilities for an environmentally friendly production of healthy, top quality wine is presented.

  5. Different commercial yeast strains affecting the volatile and sensory profile of cava base wine.

    Science.gov (United States)

    Torrens, Jordi; Urpí, Pilar; Riu-Aumatell, Montserrat; Vichi, Stefania; López-Tamames, Elvira; Buxaderas, Susana

    2008-05-10

    36 semi-industrial fermentations were carried out with 6 different yeast strains in order to assess differences in the wines' chemical and volatile profile. Two of the tested strains (Y3 and Y6) showed the fastest fermentation rates throughout 3 harvests and on 2 grape varieties. The wines fermented by three of the tested strains (Y5, Y3 and Y4) stand out for their high amounts of esters and possessed the highest fruity character. Wines from strains producing low amounts of esters and high concentrations of medium chain fatty acids, higher alcohols and six-carbon alcohols were the least appreciated at the sensory analysis. The data obtained in the present study show how the yeast strain quantitatively affects the final chemical and volatile composition of cava base wines and have repercussions on their sensory profile, independently of must variety and harvest year.

  6. Brewer's Yeast Improves Glycemic Indices in Type 2 Diabetes Mellitus.

    Science.gov (United States)

    Hosseinzadeh, Payam; Javanbakht, Mohammad Hassan; Mostafavi, Seyed-Ali; Djalali, Mahmoud; Derakhshanian, Hoda; Hajianfar, Hossein; Bahonar, Ahmad; Djazayery, Abolghassem

    2013-10-01

    Brewer's yeast may have beneficial effects on insulin receptors because of itsglucose tolerance factor in diabetic patients. This study was conducted to investigate the effects of brewer's yeast supplementation on glycemic indices in patients with type 2 diabetes mellitus. In a randomized double-blind controlled clinical trial, 84 adults (21 men and 63 women) aged 46.3 ± 6.1 years old with type 2 diabetes mellitus were recruited and divided randomly into two groups: Supplement group receiving brewer's yeast (six 300mg tablets/day, total 1800 mg) and control group receiving placebo (six 300mg tablets/day) for 12 weeks. Body weight, height, body mass index, food consumption (based on 24h food record), fasting blood sugar (FBS), glycosylated hemoglobin, insulin sensitivity, and insulin resistance were measured before and after the intervention. Data analysis was performed using the Statistical Package for Social Sciences (version 18.0). The changes in FBS, glycosylated hemoglobin, and insulin sensitivity were significantly different between the two groups during the study (respectively P brewer›s yeast besides the usual treatment of diabetes can ameliorate blood glucose variables in type 2 diabetes mellitus.

  7. Engineered CRISPR/Cas9 system for multiplex genome engineering of polyploid industrial yeast strains.

    Science.gov (United States)

    Lian, Jiazhang; Bao, Zehua; Hu, Sumeng; Zhao, Huimin

    2018-06-01

    The CRISPR/Cas9 system has been widely used for multiplex genome engineering of Saccharomyces cerevisiae. However, its application in manipulating industrial yeast strains is less successful, probably due to the genome complexity and low copy numbers of gRNA expression plasmids. Here we developed an efficient CRISPR/Cas9 system for industrial yeast strain engineering by using our previously engineered plasmids with increased copy numbers. Four genes in both a diploid strain (Ethanol Red, 8 alleles in total) and a triploid strain (ATCC 4124, 12 alleles in total) were knocked out in a single step with 100% efficiency. This system was used to construct xylose-fermenting, lactate-producing industrial yeast strains, in which ALD6, PHO13, LEU2, and URA3 were disrupted in a single step followed by the introduction of a xylose utilization pathway and a lactate biosynthetic pathway on auxotrophic marker plasmids. The optimized CRISPR/Cas9 system provides a powerful tool for the development of industrial yeast based microbial cell factories. © 2018 Wiley Periodicals, Inc.

  8. Use of non-saccharomyces Torulaspora delbrueckii yeast strains in winemaking and brewing

    Directory of Open Access Journals (Sweden)

    Tataridis Panagiotis

    2013-01-01

    Full Text Available Selected Saccharomyces yeast strains have been used for more than 150 years in brewing and for several decades in winemaking. They are necessary in brewing because of the boiling of the wort, which results in the death of all yeast cells, with the exception of some Belgian style beers (ex. Lambic, where the wort is left to be colonized by indigenous yeast and bacteria from the environment and ferment naturally. In winemaking their use is also pertinent because they provide regular and timely fermentations, inhibit the growth of indigenous spoilage microorganisms and contribute to the desired sensory characters. Even though the use of selected Saccharomyces strains provides better quality assurance in winemaking in comparison to the unknown microbial consortia in the must, it has been debated for a long time now whether the use of selected industrial Saccharomyces strains results in wines with less sensory complexity and “terroir” character. In previous decades, non-Saccharomyces yeasts were mainly considered as spoilage/problematic yeast, since they exhibited low fermentation ability and other negative traits. In the last decades experiments have shown that there are some non-Saccharomyces strains (Candida, Pichia, Kluyveromyces, Torulaspora, etc which, even though they are not able to complete the fermentation they can still be used in sequential inoculation-fermentation with Saccharomyces to increase sensory complexity of the wines. Through fermentation in a laboratory scale, we have observed that the overall effects of selected Torulaspora delbrueckii yeast strains, is highly positive, leading to products with pronounced sensory complexity and floral/fruity aroma in winemaking and brewing.

  9. Comparison of DNA-based techniques for differentiation of production strains of ale and lager brewing yeast.

    Science.gov (United States)

    Kopecká, J; Němec, M; Matoulková, D

    2016-06-01

    Brewing yeasts are classified into two species-Saccharomyces pastorianus and Saccharomyces cerevisiae. Most of the brewing yeast strains are natural interspecies hybrids typically polyploids and their identification is thus often difficult giving heterogenous results according to the method used. We performed genetic characterization of a set of the brewing yeast strains coming from several yeast culture collections by combination of various DNA-based techniques. The aim of this study was to select a method for species-specific identification of yeast and discrimination of yeast strains according to their technological classification. A group of 40 yeast strains were characterized using PCR-RFLP analysis of ITS-5·8S, NTS, HIS4 and COX2 genes, multiplex PCR, RAPD-PCR of genomic DNA, mtDNA-RFLP and electrophoretic karyotyping. Reliable differentiation of yeast to the species level was achieved by PCR-RFLP of HIS4 gene. Numerical analysis of the obtained RAPD-fingerprints and karyotype revealed species-specific clustering corresponding with the technological classification of the strains. Taxonomic position and partial hybrid nature of strains were verified by multiplex PCR. Differentiation among species using the PCR-RFLP of ITS-5·8S and NTS region was shown to be unreliable. Karyotyping and RFLP of mitochondrial DNA evinced small inaccuracies in strain categorization. PCR-RFLP of HIS4 gene and RAPD-PCR of genomic DNA are reliable and suitable methods for fast identification of yeast strains. RAPD-PCR with primer 21 is a fast and reliable method applicable for differentiation of brewing yeasts with only 35% similarity of fingerprint profile between the two main technological groups (ale and lager) of brewing strains. It was proved that PCR-RFLP method of HIS4 gene enables precise discrimination among three technologically important Saccharomyces species. Differentiation of brewing yeast to the strain level can be achieved using the RAPD-PCR technique. © 2016 The

  10. Whole-Genome Analysis of Three Yeast Strains Used for Production of Sherry-Like Wines Revealed Genetic Traits Specific to Flor Yeasts

    Science.gov (United States)

    Eldarov, Mikhail A.; Beletsky, Alexey V.; Tanashchuk, Tatiana N.; Kishkovskaya, Svetlana A.; Ravin, Nikolai V.; Mardanov, Andrey V.

    2018-01-01

    Flor yeast strains represent a specialized group of Saccharomyces cerevisiae yeasts used for biological wine aging. We have sequenced the genomes of three flor strains originated from different geographic regions and used for production of sherry-like wines in Russia. According to the obtained phylogeny of 118 yeast strains, flor strains form very tight cluster adjacent to the main wine clade. SNP analysis versus available genomes of wine and flor strains revealed 2,270 genetic variants in 1,337 loci specific to flor strains. Gene ontology analysis in combination with gene content evaluation revealed a complex landscape of possibly adaptive genetic changes in flor yeast, related to genes associated with cell morphology, mitotic cell cycle, ion homeostasis, DNA repair, carbohydrate metabolism, lipid metabolism, and cell wall biogenesis. Pangenomic analysis discovered the presence of several well-known “non-reference” loci of potential industrial importance. Events of gene loss included deletions of asparaginase genes, maltose utilization locus, and FRE-FIT locus involved in iron transport. The latter in combination with a flor-yeast-specific mutation in the Aft1 transcription factor gene is likely to be responsible for the discovered phenotype of increased iron sensitivity and improved iron uptake of analyzed strains. Expansion of the coding region of the FLO11 flocullin gene and alteration of the balance between members of the FLO gene family are likely to positively affect the well-known propensity of flor strains for velum formation. Our study provides new insights in the nature of genetic variation in flor yeast strains and demonstrates that different adaptive properties of flor yeast strains could have evolved through different mechanisms of genetic variation. PMID:29867869

  11. Relationship between ethanol and oxidative stress in laboratory and brewing yeast strains.

    Science.gov (United States)

    Bleoanca, Iulia; Silva, Ana Rita Courelas; Pimentel, Catarina; Rodrigues-Pousada, Claudina; Menezes, Regina de Andrade

    2013-12-01

    Ethanol is a chemical stress factor that inhibits cellular growth and determines metabolic changes leading to reduction of cell viability during fermentation and yeast storage. To determine the effect of time, temperature and ethanol during storage of brewing yeasts we have monitored viability of cells stored for 72 h, at 6 °C or 12 °C, in the presence of various ethanol concentrations. Under the conditions tested, 6 °C is the most favourable temperature to store brewing yeast creams emphasizing the importance of a tight temperature control in the storage vessels. Because W210 is less resistant to storage in the presence of ethanol than W34/70, the optimal storage parameters obtained under our laboratory conditions vary significantly. The ale strain is sensitive to storage under ethanol concentrations higher than 5% (v/v) for more than 48 h at 6 °C whereas at the same temperature the lager strain tolerates ethanol up to 7.5% (v/v) for 72 h. Also, the viability assays indicate that the antioxidant protein Yap1 is an important factor to storage resistance of BY4741 laboratory strain. To investigate the molecular mechanisms underlying tolerance of brewing yeast strains to ethanol, we have performed phenotypic analysis, localization studies and have monitored the activation of antioxidant and protection genes as well as the intracellular contents of glycogen and trehalose. Overall, our data suggest that the ale strain W210 has a defective antioxidant defence system and that ethanol may induce the antioxidant defences as well as glycogen and trehalose protection mechanisms in laboratory and brewing yeast strains. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Effect of menadione and hydrogen peroxide on catalase activity in Saccharomyces yeast strains

    Directory of Open Access Journals (Sweden)

    Nadejda EFREMOVA

    2013-05-01

    Full Text Available It has been studied the possibility of utilization of two important oxidant factors as regulators of catalase activity in Saccharomyces yeasts. In this paper results of the screening of some Saccharomyces yeast strains for potential producers of catalase are presented. Results of the screening for potential catalase producer have revealed that Saccharomyces cerevisiae CNMN-Y-11 strain possesses the highest catalase activity (2900 U/mg protein compared with other samples. Maximum increase of catalase activity with 50-60% compared to the reference sample was established in the case of hydrogen peroxide and menadione utilization in optimal concentrations of 15 and 10 mM. This research has been demonstrated the potential benefits of application of hydrogen peroxide and menadione as stimulatory factors of catalase activity in Saccharomyces yeasts.

  13. Genome sequence of the oleaginous yeast Rhodotorula toruloides strain CGMCC 2.1609

    Directory of Open Access Journals (Sweden)

    Christine Sambles

    2017-09-01

    Full Text Available Most eukaryotic oleaginous species are yeasts and among them the basidiomycete red yeast, Rhodotorula (Rhodosporidium toruloides (Pucciniomycotina is known to produce high quantities of lipids when grown in nitrogen-limiting media, and has potential for biodiesel production. The genome of the CGMCC 2.1609 strain of this oleaginous red yeast was sequenced using a hybrid of Roche 454 and Illumina technology generating 13× coverage. The de novo assembly was carried out using MIRA and scaffolded using MAQ and BAMBUS. The sequencing and assembly resulted in 365 scaffolds with total genome size of 33.4 Mb. The complete genome sequence of this strain was deposited in GenBank and the accession number is LKER00000000. The annotation is available on Figshare (doi:10.6084/m9.figshare.4754251.

  14. Effect of Agave tequilana age, cultivation field location and yeast strain on tequila fermentation process.

    Science.gov (United States)

    Pinal, L; Cornejo, E; Arellano, M; Herrera, E; Nuñez, L; Arrizon, J; Gschaedler, A

    2009-05-01

    The effect of yeast strain, the agave age and the cultivation field location of agave were evaluated using kinetic parameters and volatile compound production in the tequila fermentation process. Fermentations were carried out with Agave juice obtained from two cultivation fields (CF1 and CF2), as well as two ages (4 and 8 years) and two Saccharomyces cerevisiae yeast strains (GU3 and AR5) isolated from tequila fermentation must. Sugar consumption and ethanol production varied as a function of cultivation field and agave age. The production of ethyl acetate, 1-propanol, isobutanol and amyl alcohols were influenced in varying degrees by yeast strain, agave age and cultivation field. Methanol production was only affected by the agave age and 2-phenylethanol was influenced only by yeast strain. This work showed that the use of younger Agave tequilana for tequila fermentation resulted in differences in sugar consumption, ethanol and volatile compounds production at the end of fermentation, which could affect the sensory quality of the final product.

  15. Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production

    NARCIS (Netherlands)

    Mans, R.; Daran, J.G.; Pronk, J.T.

    2018-01-01

    Evolutionary engineering, which uses laboratory evolution to select for industrially relevant traits, is a popular strategy in the development of high-performing yeast strains for industrial production of fuels and chemicals. By integrating whole-genome sequencing, bioinformatics, classical

  16. Genomic Sequence of Saccharomyces cerevisiae BAW-6, a Yeast Strain Optimal for Brewing Barley Shochu.

    Science.gov (United States)

    Kajiwara, Yasuhiro; Mori, Kazuki; Tashiro, Kosuke; Higuchi, Yujiro; Takegawa, Kaoru; Takashita, Hideharu

    2018-04-05

    Here, we report the draft genome sequence of Saccharomyces cerevisiae strain BAW-6, which is used for the production of barley shochu, a traditional Japanese spirit. This genomic information can be used to elucidate the genetic basis underlying the high alcohol production capacity and citric acid tolerance of shochu yeast. Copyright © 2018 Kajiwara et al.

  17. Raspberry wine fermentation with suspended and immobilized yeast cells of two strains of Saccharomyces cerevisiae.

    Science.gov (United States)

    Djordjević, Radovan; Gibson, Brian; Sandell, Mari; de Billerbeck, Gustavo M; Bugarski, Branko; Leskošek-Čukalović, Ida; Vunduk, Jovana; Nikićević, Ninoslav; Nedović, Viktor

    2015-01-01

    The objectives of this study were to assess the differences in fermentative behaviour of two different strains of Saccharomyces cerevisiae (EC1118 and RC212) and to determine the differences in composition and sensory properties of raspberry wines fermented with immobilized and suspended yeast cells of both strains at 15 °C. Analyses of aroma compounds, glycerol, acetic acid and ethanol, as well as the kinetics of fermentation and a sensory evaluation of the wines, were performed. All fermentations with immobilized yeast cells had a shorter lag phase and faster utilization of sugars and ethanol production than those fermented with suspended cells. Slower fermentation kinetics were observed in all the samples that were fermented with strain RC212 (suspended and immobilized) than in samples fermented with strain EC1118. Significantly higher amounts of acetic acid were detected in all samples fermented with strain RC212 than in those fermented with strain EC1118 (0.282 and 0.602 g/l, respectively). Slightly higher amounts of glycerol were observed in samples fermented with strain EC1118 than in those fermented with strain RC212. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Transcriptional Regulation and the Diversification of Metabolism in Wine Yeast Strains

    Science.gov (United States)

    Rossouw, Debra; Jacobson, Dan; Bauer, Florian F.

    2012-01-01

    Transcription factors and their binding sites have been proposed as primary targets of evolutionary adaptation because changes to single transcription factors can lead to far-reaching changes in gene expression patterns. Nevertheless, there is very little concrete evidence for such evolutionary changes. Industrial wine yeast strains, of the species Saccharomyces cerevisiae, are a geno- and phenotypically diverse group of organisms that have adapted to the ecological niches of industrial winemaking environments and have been selected to produce specific styles of wine. Variation in transcriptional regulation among wine yeast strains may be responsible for many of the observed differences and specific adaptations to different fermentative conditions in the context of commercial winemaking. We analyzed gene expression profiles of wine yeast strains to assess the impact of transcription factor expression on metabolic networks. The data provide new insights into the molecular basis of variations in gene expression in industrial strains and their consequent effects on metabolic networks important to wine fermentation. We show that the metabolic phenotype of a strain can be shifted in a relatively predictable manner by changing expression levels of individual transcription factors, opening opportunities to modify transcription networks to achieve desirable outcomes. PMID:22042577

  19. Hyphal-like extension and pseudohyphal formation in industrial strains of yeasts induced by isoamyl alcohol

    Directory of Open Access Journals (Sweden)

    Ceccato-Antonini Sandra Regina

    2002-01-01

    Full Text Available Yeasts can produce pseudohyphae and hyphal-like extensions under certain growth conditions like isoamyl alcohol (IAA induction, a chief constituent of fusel oil, which is a subproduct from the ethanolic fermentation. The morphology switch from yeast to a filamentous form can be troublesome to the process. In this work it was studied the influence of fusel alcohols, nitrogen sources (ammonium sulphate and leucine and glifosate (a chemical maturator for sugar cane added to a complex medium on some industrial strains of yeasts isolated from the fermentative process. Two industrial strains showed transition to hyphal-like extensions or pseudohyphae (clusters of cells upon addition of IAA from 0.3 to 0.9% /v. The alterations were reversible when the yeasts were reinoculated in YEPD without IAA. Although pseudohyphae are a result of nitrogen-limited medium, we observed them as a result of IAA addition. No influence of the nitrogen source or isopropilic alcohol or glifosate was detected for any strain studied in the concentrations used.

  20. Isolation of a yeast strain able to produce a polygalacturonase with maceration activity of cassava roots

    Directory of Open Access Journals (Sweden)

    María Alicia Martos

    2013-06-01

    Full Text Available The objective of the present study was the isolation of a yeast strain, from citrus fruit peels, able to produce a polygalacturonase by submerged fermentation with maceration activity of raw cassava roots. Among 160 yeast strains isolated from citrus peels, one strain exhibited the strongest pectinolytic activity. This yeast was identified as Wickerhamomyces anomalus by 5.8S-ITS RFLP analysis and confirmed by amplification of the nucleotide sequence. The yeast produced a polygalacturonase (PG in Erlenmeyer shake flasks containing YNB, glucose, and citrus pectin. PG synthesis occurred during exponential growth phase, reaching 51 UE.mL-1 after 8 hours of fermentation. A growth yield (Yx/s of 0.43 gram of cell dry weight per gram of glucose consumed was obtained, and a maximal specific growth rate (µm of 0.346 h-1 was calculated. The microorganism was unable to assimilate sucrose, galacturonic acid, polygalacturonic acid, or citrus pectin, but it required glucose as carbon and energy source and polygalacturonic acid or citrus pectin as inducers of enzyme synthesis. The crude enzymatic extract of Wickerhamomyces anomalus showed macerating activity of raw cassava. This property is very important in the production of dehydrated mashed cassava, a product of regional interest in the province of Misiones, Argentina.

  1. Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production.

    Science.gov (United States)

    Mans, Robert; Daran, Jean-Marc G; Pronk, Jack T

    2018-04-01

    Evolutionary engineering, which uses laboratory evolution to select for industrially relevant traits, is a popular strategy in the development of high-performing yeast strains for industrial production of fuels and chemicals. By integrating whole-genome sequencing, bioinformatics, classical genetics and genome-editing techniques, evolutionary engineering has also become a powerful approach for identification and reverse engineering of molecular mechanisms that underlie industrially relevant traits. New techniques enable acceleration of in vivo mutation rates, both across yeast genomes and at specific loci. Recent studies indicate that phenotypic trade-offs, which are often observed after evolution under constant conditions, can be mitigated by using dynamic cultivation regimes. Advances in research on synthetic regulatory circuits offer exciting possibilities to extend the applicability of evolutionary engineering to products of yeasts whose synthesis requires a net input of cellular energy. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. A set of haploid strains available for genetic studies of Saccharomyces cerevisiae flor yeasts.

    Science.gov (United States)

    Coi, Anna Lisa; Legras, Jean-Luc; Zara, Giacomo; Dequin, Sylvie; Budroni, Marilena

    2016-09-01

    Flor yeasts of Saccharomyces cerevisiae have been extensively studied for biofilm formation, however the lack of specific haploid model strains has limited the application of genetic approaches such as gene knockout, allelic replacement and Quantitative Trait Locus mapping for the deciphering of the molecular basis of velum formation under biological ageing. The aim of this work was to construct a set of flor isogenic haploid strains easy to manipulate genetically. The analysis of the allelic variations at 12 minisatellite loci of 174 Saccharomyces cerevisiae strains allowed identifying three flor parental strains with different phylogenic positions. These strains were characterized for sporulation efficiency, growth on galactose, adherence to polystyrene, agar invasion, growth on wine and ability to develop a biofilm. Interestingly, the inability to grow on galactose was found associated with a frameshift in GAL4 gene that seems peculiar of flor strains. From these wild flor strains, isogenic haploid strains were constructed by deleting HO gene with a loxP-KanMX-loxP cassette followed by the removal of the kanamycin cassette. Haploid strains obtained were characterized for their phenotypic and genetic properties and compared with the parental strains. Preliminary results showed that the haploid strains represent new tools for genetic studies and breeding programs on biofilm formation. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Influence of yeast strain, priming solution and temperature on beer bottle conditioning.

    Science.gov (United States)

    Marconi, Ombretta; Rossi, Serena; Galgano, Fernanda; Sileoni, Valeria; Perretti, Giuseppe

    2016-09-01

    Recently, there has been a significant increase in the number of microbreweries. Usually, craft beers are bottle conditioned; however, few studies have investigated beer refermentation. One of the objectives of this study was to evaluate the impacts of different experimental conditions, specifically yeast strain, priming solution and temperature, on the standard quality attributes, the volatile compounds and the sensory profile of the bottle-conditioned beer. The other aim was to monitor the evolution of volatile compounds and amino acids consumption throughout the refermentation process to check if it is possible to reduce the time necessary for bottle conditioning. The results indicate that the volatile profile was mainly influenced by the strain of yeast, and this may have obscured the possible impacts of the other parameters. Our results also confirm that the two yeast strains showed different metabolic activity, particularly with respect to esters production. Moreover, we found the Safbrew S-33® strain when primed with Siromix® and refermented at 30 °C yielded the fastest formation of higher alcohols while maintaining low production of off-flavours. These results suggest a formulation that may reduce the time needed for bottle conditioning without affecting the quality of the final beer which may simultaneously improve efficiency and economic profits. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Yeast strains role on the sulphur dioxyde combinations of wines obtained from noble rot and raisining grapes

    Directory of Open Access Journals (Sweden)

    Isabelle Masneuf-Pomarède

    2000-03-01

    Full Text Available The influence of four industrial and indigenous yeast strains on the sulphur dioxide combinations of wines obtained from noble rot and raisining grapes is studied in different growth of the Sauternes area and one growth in the Jurançon area. The analysis of ketonic compounds (pyruvic acid and 2-oxo-glutaric acid, acetaldehyde and PC50 on the wines clearly showed significant statistical difference between the yeast strains for the sulphur dioxide combination. By adding the same dosage of sulphiting, the free SO2 levels are variable depending on the yeast strain used. One strain (Zymaflore ST, isolated from a spontaneous fermentation of a botrytised must, giving wines with low PC50 values, is well adapted for the noble rot must vinification. The choice of the yeast strain is a parameter of importance to limit the sulphur dioxide amount in the wines.

  5. Typing of lymphogranuloma venereum Chlamydia trachomatis strains

    NARCIS (Netherlands)

    Christerson, Linus; de Vries, Henry J. C.; de Barbeyrac, Bertille; Gaydos, Charlotte A.; Henrich, Birgit; Hoffmann, Steen; Schachter, Julius; Thorvaldsen, Johannes; Vall-Mayans, Martí; Klint, Markus; Herrmann, Björn; Morré, Servaas A.

    2010-01-01

    We analyzed by multilocus sequence typing 77 lymphogranuloma venereum Chlamydia trachomatis strains from men who have sex with men in Europe and the United States. Specimens from an outbreak in 2003 in Europe were monoclonal. In contrast, several strains were in the United States in the 1980s,

  6. Typing of Lymphogranuloma Venereum Chlamydia trachomatis Strains

    Science.gov (United States)

    Christerson, Linus; de Vries, Henry J.C.; de Barbeyrac, Bertille; Gaydos, Charlotte A.; Henrich, Birgit; Hoffmann, Steen; Schachter, Julius; Thorvaldsen, Johannes; Vall-Mayans, Martí; Klint, Markus; Morré, Servaas A.

    2010-01-01

    We analyzed by multilocus sequence typing 77 lymphogranuloma venereum Chlamydia trachomatis strains from men who have sex with men in Europe and the United States. Specimens from an outbreak in 2003 in Europe were monoclonal. In contrast, several strains were in the United States in the 1980s, including a variant from Europe. PMID:21029543

  7. Biomass production by Antarctic yeast strains: an investigation on the lipid composition

    International Nuclear Information System (INIS)

    Zlatanov, M.; Antova, G.; Angelova-Romova, M.; Pavlova, K.; Georgieva, K.; Rousenova-Videva, S.

    2010-01-01

    Psychrophilic yeast strains Rhodotorula glutinis AL_1_0_7, Sporobolomyces roseus AL_1_0_8, Cryptococcus albidus AL_5_5, Cryptococcus laurentii AL_5_6 and Cryptococcus laurentii AL_5_8 isolated from soil sample taken from the region of the Bulgarien base on Livingston Island, Antarctica, were studied. The biomass production was followed after cultivation of the yeasts in a medium with pH 5.3 at 15°C for 120 h. The biomass concentration by psychrophilic yeast strains was: R. glutinis AL_1_0_7-6.05 g/l, S. roseus AL108-5.78 g/l, Cr. albidus AL_5_5, Cr. laurentii AL_5_6 and Cr. laurentii AL_5_8-6.52 g/l, 6.84 g/l and 6.24 g/l, respectively. The extracted and separated lipids from the samples were supplied to analysis and the compositions of fatty acids, phospholipids, sterols as well as tocopherols were determined. Unsaturated fatty acids, mainly oleic (58.6-63.5%) and of saturated palmitic (18.2-24.5%), predominated in triacylglycerols. Sterols (0.1-0.3%) were valued in the dry yeast biomass. The content of phospholipids, mainly phosphatidylcholine, phosphatidylinositole and phosphatidylethanolamine was found to be in the range of 0.2-1.6%. The quantity of tocopherols was 0-26.3 mg/kg. All of tocopherol classes were established.

  8. Differential Proteome Analysis of a Flor Yeast Strain under Biofilm Formation.

    Science.gov (United States)

    Moreno-García, Jaime; Mauricio, Juan Carlos; Moreno, Juan; García-Martínez, Teresa

    2017-03-28

    Several Saccharomyces cerevisiae strains (flor yeasts) form a biofilm (flor velum) on the surface of Sherry wines after fermentation, when glucose is depleted. This flor velum is fundamental to biological aging of these particular wines. In this study, we identify abundant proteins in the formation of the biofilm of an industrial flor yeast strain. A database search to enrich flor yeast "biological process" and "cellular component" according to Gene Ontology Terminology (GO Terms) and, "pathways" was carried out. The most abundant proteins detected were largely involved in respiration, translation, stress damage prevention and repair, amino acid metabolism (glycine, isoleucine, leucine and arginine), glycolysis/gluconeogenesis and biosynthesis of vitamin B9 (folate). These proteins were located in cellular components as in the peroxisome, mitochondria, vacuole, cell wall and extracellular region; being these two last directly related with the flor formation. Proteins like Bgl2p, Gcv3p, Hyp2p, Mdh1p, Suc2p and Ygp1p were quantified in very high levels. This study reveals some expected processes and provides new and important information for the design of conditions and genetic constructions of flor yeasts for improving the cellular survival and, thus, to optimize biological aging of Sherry wine production.

  9. Key role of lipid management in nitrogen and aroma metabolism in an evolved wine yeast strain.

    Science.gov (United States)

    Rollero, Stéphanie; Mouret, Jean-Roch; Sanchez, Isabelle; Camarasa, Carole; Ortiz-Julien, Anne; Sablayrolles, Jean-Marie; Dequin, Sylvie

    2016-02-09

    Fermentative aromas play a key role in the organoleptic profile of young wines. Their production depends both on yeast strain and fermentation conditions. A present-day trend in the wine industry consists in developing new strains with aromatic properties using adaptive evolution approaches. An evolved strain, Affinity™ ECA5, overproducing esters, was recently obtained. In this study, dynamics of nitrogen consumption and of the fermentative aroma synthesis of the evolved and its ancestral strains were compared and coupled with a transcriptomic analysis approach to better understand the metabolic reshaping of Affinity™ ECA5. Nitrogen assimilation was different between the two strains, particularly amino acids transported by carriers regulated by nitrogen catabolite repression. We also observed differences in the kinetics of fermentative aroma production, especially in the bioconversion of higher alcohols into acetate esters. Finally, transcriptomic data showed that the enhanced bioconversion into acetate esters by the evolved strain was associated with the repression of genes involved in sterol biosynthesis rather than an enhanced expression of ATF1 and ATF2 (genes coding for the enzymes responsible for the synthesis of acetate esters from higher alcohols). An integrated approach to yeast metabolism-combining transcriptomic analyses and online monitoring data-showed differences between the two strains at different levels. Differences in nitrogen source consumption were observed suggesting modifications of NCR in the evolved strain. Moreover, the evolved strain showed a different way of managing the lipid source, which notably affected the production of acetate esters, likely because of a greater availability of acetyl-CoA for the evolved strain.

  10. Integrative Expression of Glucoamylase Gene in a Brewer’s Yeast Saccharomyces pastorianus Strain

    Directory of Open Access Journals (Sweden)

    Guangyi Zhang

    2008-01-01

    Full Text Available The recombinant brewer’s yeast Saccharomyces pastorianus strain was constructed byintroducing the ilv2:GLA fragment released from pMGI6, carrying glucoamylase gene (GLA and using the yeast α-acetolactate synthase gene (ILV2 as the recombination sequence. The strain was able to utilise starch as the sole carbon source, its glucoamylase activity was 6.3 U/mL and its α-acetolactate synthase activity was lowered by 33.3 %. The introduced GLA gene was integrated at the recipient genomic ILV2 gene, one copy of ILV2 gene was disrupted and the other copy remained intact. Primary wort fermentation test confirmed that the diacetyl and residual sugar concentration in the wort fermented by the recombinant strain were reduced by 65.6 and 34.2 % respectively, compared to that of the recipient strain. Under industrial operating conditions, the maturation time of beer fermented by the recombinant strain was reduced from 7 to 4 days, there were no significant differences in the appearance and mouthfeel, and the beer satisfied the high quality demands. That is why the strain could be used in beer production safely.

  11. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain

    Energy Technology Data Exchange (ETDEWEB)

    Katahira, Satoshi; Fukuda, Hideki [Kobe Univ. (Japan). Div. of Molecular Science; Mizuike, Atsuko; Kondo, Akihiko [Kobe Univ. (Japan). Dept. of Chemical Science and Engineering

    2006-10-15

    The sulfuric acid hydrolysate of lignocellulosic biomass, such as wood chips, from the forest industry is an important material for fuel bioethanol production. In this study, we constructed a recombinant yeast strain that can ferment xylose and cellooligosaccharides by integrating genes for the intercellular expressions of xylose reductase and xylitol dehydrogenase from Pichia stipitis, and xylulokinase from Saccharomyces cerevisiae and a gene for displaying ss-glucosidase from Aspergillus acleatus on the cell surface. In the fermentation of the sulfuric acid hydrolysate of wood chips, xylose and cellooligosaccharides were completely fermented after 36 h by the recombinant strain, and then about 30 g/l ethanol was produced from 73 g/l total sugar added at the beginning. In this case, the ethanol yield of this recombinant yeast was much higher than that of the control yeast. These results demonstrate that the fermentation of the lignocellulose hydrolysate is performed efficiently by the recombinant Saccharomyces strain with abilities for xylose assimilation and cellooligosaccharide degradation. (orig.)

  12. Enhancing adhesion of yeast brewery strains to chamotte carriers through aminosilane surface modification.

    Science.gov (United States)

    Berlowska, Joanna; Kregiel, Dorota; Ambroziak, Wojciech

    2013-07-01

    The adhesion of cells to solid supports is described as surface-dependent, being largely determined by the properties of the surface. In this study, ceramic surfaces modified using different organosilanes were tested for proadhesive properties using industrial brewery yeast strains in different physiological states. Eight brewing strains were tested: bottom-fermenting Saccharomyces pastorianus and top-fermenting Saccharomyces cerevisiae. To determine adhesion efficiency light microscopy, scanning electron microscopy and the fluorymetric method were used. Modification of chamotte carriers by 3-(3-anino-2-hydroxy-1-propoxy) propyldimethoxysilane and 3-(N, N-dimethyl-N-2-hydroxyethyl) ammonium propyldimethoxysilane groups increased their biomass load significantly.

  13. Melanin production by a yeast strain XJ5-1 of Aureobasidium melanogenum isolated from the Taklimakan desert and its role in the yeast survival in stress environments.

    Science.gov (United States)

    Jiang, Hong; Liu, Nan-Nan; Liu, Guang-Lei; Chi, Zhe; Wang, Jian-Ming; Zhang, Ly-Ly; Chi, Zhen-Ming

    2016-07-01

    The yeast strain XJ5-1 isolated from the Taklimakan desert soil was identified to be a strain of Aureobasdium melanogenum and could produce a large amount of melanin when it was grown in the PDA medium, but its melanin biosynthesis and expression of the PKS gene responsible for the melanin biosynthesis was significantly repressed in the presence of (NH4)2SO4. However, A. melanogenum P5 strain isolated from a mangrove ecosystem grown in both the presence and the absence of (NH4)2SO4 did not produce any melanin. The cell size of A. melanogenum XJ5-1 strain was much higher than that of A. melanogenum P5 strain. The melanized cells of the yeast strain XJ5-1 had higher tolerance to UV radiation, oxidation (200.0 mM H2O2), heat treatment (40 °C), salt shock (200.0 g/L NaCl), desiccation and strong acid hydrolysis (6.0 M HCl) at high temperature (80 °C) than the non-melanized cells of the same yeast strain XJ5-1. At the same time, the melanized cells of the yeast strain XJ5-1 also had higher tolerance to UV radiation, oxidation (200.0 mM H2O2), desiccation and strong acid hydrolysis (6.0 M HCl) at high temperature (80 °C) than A. melanogenum P5 strain, but had similar resistance to heat treatment (40 °C) and salt shock (200.0 g/L NaCl) compared to those of A. melanogenum P5 strain. All the results revealed that many characteristics of A. melanogenum XJ5-1 isolated from the Taklimakan desert soil was different from those of A. melanogenum P5 strain isolated from the mangrove ecosystem.

  14. Filtration, haze and foam characteristics of fermented wort mediated by yeast strain.

    Science.gov (United States)

    Douglas, P; Meneses, F J; Jiranek, V

    2006-01-01

    To investigate the influence of the choice of yeast strain on the haze, shelf life, filterability and foam quality characteristics of fermented products. Twelve strains were used to ferment a chemically defined wort and hopped ale or stout wort. Fermented products were assessed for foam using the Rudin apparatus, and filterability and haze characteristics using the European Brewing Convention methods, to reveal differences in these parameters as a consequence of the choice of yeast strain and growth medium. Under the conditions used, the choice of strain of Saccharomyces cerevisiae effecting the primary fermentation has an impact on all of the parameters investigated, most notably when the fermentation medium is devoid of macromolecular material. The filtration of fermented products has a large cost implication for many brewers and wine makers, and the haze of the resulting filtrate is a key quality criterion. Also of importance to the quality of beer and some wines is the foaming and head retention of these beverages. The foam characteristics, filterability and potential for haze formation in a fermented product have long been known to be dependant on the raw materials used, as well as other production parameters. The choice of Saccharomyces cerevisiae strain used to ferment has itself been shown here to influence these parameters.

  15. Adaptive mutations in sugar metabolism restore growth on glucose in a pyruvate decarboxylase negative yeast strain

    DEFF Research Database (Denmark)

    Zhang, Yiming; Liu, Guodong; Engqvist, Martin K. M.

    2015-01-01

    Background: A Saccharomyces cerevisiae strain carrying deletions in all three pyruvate decarboxylase (PDC) genes (also called Pdc negative yeast) represents a non-ethanol producing platform strain for the production of pyruvate derived biochemicals. However, it cannot grow on glucose as the sole...... DNA sequencing. Among these genetic changes, 4 genes were found to carry point mutations in at least two of the evolved strains: MTH1 encoding a negative regulator of the glucose-sensing signal transduction pathway, HXT2 encoding a hexose transporter, CIT1 encoding a mitochondrial citrate synthase...... further increased the maximum specific growth rate to 0.069 h-1. Conclusions: In this study, possible evolving mechanisms of Pdc negative strains on glucose were investigated by genome sequencing and reverse engineering. The non-synonymous mutations in MTH1 alleviated the glucose repression by repressing...

  16. Selection of 80 newly isolated autochthonous yeast strains from the Tikveš region of Macedonia and their impact on the quality of red wines produced from Vranec and Cabernet Sauvignon grape varieties.

    Science.gov (United States)

    Ilieva, Fidanka; Kostadinović Veličkovska, Sanja; Dimovska, Violeta; Mirhosseini, Hamed; Spasov, Hristo

    2017-02-01

    The main objectives of this study were to (i) isolate newly autochthonous yeast strains from the Tikveš region of Macedonia and (ii) test their impact on the quality of red wines from Vranec and Cabernet Sauvignon grape varieties. The newly isolated yeast strains were obtained by spontaneous fermentation of grape must from Vranec and Cabernet Sauvignon varieties collected from ten different micro-regions in Macedonia. The grapevines from both varieties grown in "Barovo" micro-region were the richest sources of yeast strains. In addition, the molecular identification and typing of strains were also carried out. The monomeric anthocyanins, polyphenolic content and other oenochemical characteristics of the wines were also compared with the wines from commercial yeast strain "SiHa". The Vranec wine from yeast strain F-8 and Cabernet Sauvignon wine from yeast strain F-20 had significantly (p<0.05) higher concentrations of monomeric anthocyanins and total phenolic compounds than other wines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Nitrogen requirements of commercial wine yeast strains during fermentation of a synthetic grape must.

    Science.gov (United States)

    Gutiérrez, Alicia; Chiva, Rosana; Sancho, Marta; Beltran, Gemma; Arroyo-López, Francisco Noé; Guillamon, José Manuel

    2012-08-01

    Nitrogen deficiencies in grape musts are one of the main causes of stuck or sluggish wine fermentations. Currently, the most common method for dealing with nitrogen-deficient fermentations is adding supplementary nitrogen (usually ammonium phosphate). However, it is important to know the specific nitrogen requirement of each strain, to avoid excessive addition that can lead to microbial instability and ethyl carbamate accumulation. In this study, we aimed to determine the effect of increasing nitrogen concentrations of three different nitrogen sources on growth and fermentation performance in four industrial wine yeast strains. This task was carried out using statistical modeling techniques. The strains PDM and RVA showed higher growth-rate and maximum population size and consumed nitrogen much more quickly than strains ARM and TTA. Likewise, the strains PDM and RVA were also the greatest nitrogen demanders. Thus, we can conclude that these differences in nitrogen demand positively correlated with higher growth rate and higher nitrogen uptake rate. The most direct effect of employing an adequate nitrogen concentration is the increase in biomass, which involves a higher fermentation rate. However, the impact of nitrogen on fermentation rate is not exclusively due to the increase in biomass because the strain TTA, which showed the worst growth behavior, had the best fermentation activity. Some strains may adapt a strategy whereby fewer cells with higher metabolic activity are produced. Regarding the nitrogen source used, all the strains showed the better and worse fermentation performance with arginine and ammonium, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. A novel strategy to construct yeast Saccharomyces cerevisiae strains for very high gravity fermentation.

    Directory of Open Access Journals (Sweden)

    Xianglin Tao

    Full Text Available Very high gravity (VHG fermentation is aimed to considerably increase both the fermentation rate and the ethanol concentration, thereby reducing capital costs and the risk of bacterial contamination. This process results in critical issues, such as adverse stress factors (ie., osmotic pressure and ethanol inhibition and high concentrations of metabolic byproducts which are difficult to overcome by a single breeding method. In the present paper, a novel strategy that combines metabolic engineering and genome shuffling to circumvent these limitations and improve the bioethanol production performance of Saccharomyces cerevisiae strains under VHG conditions was developed. First, in strain Z5, which performed better than other widely used industrial strains, the gene GPD2 encoding glycerol 3-phosphate dehydrogenase was deleted, resulting in a mutant (Z5ΔGPD2 with a lower glycerol yield and poor ethanol productivity. Second, strain Z5ΔGPD2 was subjected to three rounds of genome shuffling to improve its VHG fermentation performance, and the best performing strain SZ3-1 was obtained. Results showed that strain SZ3-1 not only produced less glycerol, but also increased the ethanol yield by up to 8% compared with the parent strain Z5. Further analysis suggested that the improved ethanol yield in strain SZ3-1 was mainly contributed by the enhanced ethanol tolerance of the strain. The differences in ethanol tolerance between strains Z5 and SZ3-1 were closely associated with the cell membrane fatty acid compositions and intracellular trehalose concentrations. Finally, genome rearrangements in the optimized strain were confirmed by karyotype analysis. Hence, a combination of genome shuffling and metabolic engineering is an efficient approach for the rapid improvement of yeast strains for desirable industrial phenotypes.

  19. Extracellular Phytase Production by the Wine Yeast S. cerevisiae (Finarome Strain) during Submerged Fermentation.

    Science.gov (United States)

    Kłosowski, Grzegorz; Mikulski, Dawid; Jankowiak, Oliwia

    2018-04-08

    One of the key steps in the production of phytases of microbial origin is selection of culture parameters, followed by isolation of the enzyme and evaluation of its catalytic activity. It was found that conditions for S. cerevisiae yeast culture, strain Finarome, giving the reduction in phytic acid concentration of more than 98% within 24 h of incubation were as follows: pH 5.5, 32 °C, continuous stirring at 80 rpm, the use of mannose as a carbon source and aspartic acid as a source of nitrogen. The highest catalytic activity of the isolated phytase was observed at 37 °C, pH 4.0 and using phytate as substrate at concentration of 5.0 mM. The presence of ethanol in the medium at a concentration of 12% v / v reduces the catalytic activity to above 60%. Properties of phytase derived from S. cerevisiae yeast culture, strain Finarome, indicate the possibility of its application in the form of a cell's free crude protein isolate for the hydrolysis of phytic acid to improve the efficiency of alcoholic fermentation processes. Our results also suggest a possibility to use the strain under study to obtain a fusant derived with specialized distillery strains, capable of carrying out a highly efficient fermentation process combined with the utilization of phytates.

  20. Evaluation of the Components Released by Wine Yeast Strains on Protein Haze Formation in White Wine

    Directory of Open Access Journals (Sweden)

    Ellen Cristine Giese

    2016-12-01

    Full Text Available Cultures of 23 indigenous yeast strains (22 Saccharomyces cerevisiae and a non-Saccharomyces, Torulaspora delbrueckii, isolated from fermentation tanks at wineries in Castilla-La Mancha (Spain, and were performed under winemaking conditions using a synthetic must. Polysaccharide analysis and turbidity assays were conducted so as to observe the capacity of the released mannoproteins against protein haze formation in white wine, and 3 strains (2 Saccharomyces cerevisiae and T. delbrueckii were chosen for further experiments. The action of a commercial b-glucanolytic enzyme preparation (Lallzyme BETA®, and a β-(1→3-glucanase preparation from Trichoderma harzianum Rifai were evaluated to release polysaccharides from the different yeast strains’ cell walls. Protection against protein haze formation was strain dependent, and only two strains (Sc2 and Sc4 presented >50% stabilization in comparison to controls. Addition of β-glucanases did not increase the concentrations of polysaccharides in the fermentation musts; however, a significant increase of polymeric mannose (mannoproteins was detected using an enzymatic assay following total acid hydrolysis of the soluble polysaccharides. Enzymatic treatment presented positive effects and decreased protein haze formation in white wine. DOI http://dx.doi.org/10.17807/orbital.v8i6.869

  1. Hsp12p and PAU genes are involved in ecological interactions between natural yeast strains.

    Science.gov (United States)

    Rivero, Damaríz; Berná, Luisa; Stefanini, Irene; Baruffini, Enrico; Bergerat, Agnes; Csikász-Nagy, Attila; De Filippo, Carlotta; Cavalieri, Duccio

    2015-08-01

    The coexistence of different yeasts in a single vineyard raises the question on how they communicate and why slow growers are not competed out. Genetically modified laboratory strains of Saccharomyces cerevisiae are extensively used to investigate ecological interactions, but little is known about the genes regulating cooperation and competition in ecologically relevant settings. Here, we present evidences of Hsp12p-dependent altruistic and contact-dependent competitive interactions between two natural yeast isolates. Hsp12p is released during cell death for public benefit by a fast-growing strain that also produces a killer toxin to inhibit growth of a slow grower that can enjoy the benefits of released Hsp12p. We also show that the protein Pau5p is essential in the defense against the killer effect. Our results demonstrate that the combined action of Hsp12p, Pau5p and a killer toxin is sufficient to steer a yeast community. © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Identification of yeast strains isolated from marcha in Sikkim, a microbial starter for amylolytic fermentation.

    Science.gov (United States)

    Tsuyoshi, Naoko; Fudou, Ryosuke; Yamanaka, Shigeru; Kozaki, Michio; Tamang, Namrata; Thapa, Saroj; Tamang, Jyoti P

    2005-03-15

    Marcha or murcha is a traditional amylolytic starter used to produce sweet-sour alcoholic drinks, commonly called jaanr in the Himalayan regions of India, Nepal, Bhutan, and Tibet (China). The aim of this study was to examine the microflora of marcha collected from Sikkim in India, focusing on yeast flora and their roles. Twenty yeast strains were isolated from six samples of marcha and identified by genetic and phenotypic methods. They were first classified into four groups (Group I, II, III, and IV) based on physiological features using an API test. Phylogenetic, morphological, and physiological characterization identified the isolates as Saccharomyces bayanus (Group I); Candida glabrata (Group II); Pichia anomala (Group III); and Saccharomycopsis fibuligera, Saccharomycopsis capsularis, and Pichia burtonii (Group IV). Among them, the Group I, II, and III strains produced ethanol. The isolates of Group IV had high amylolytic activity. Because all marcha samples tested contained both starch degraders and ethanol producers, it was hypothesized that all four groups of yeast (Group I, II, III, and IV) contribute to starch-based alcohol fermentation.

  3. Analysis of mutagenic effects induced by carbon beams at different LET in a red yeast strain

    International Nuclear Information System (INIS)

    Sun Haining; Wang Jufang; Ma Shuang; Lu Dong; Wu Xin; Li Wenjian

    2011-01-01

    To evaluate inactive and mutagenic effects of carbon beam at different LET, the inactivation cross section and mutation cross section induced by carbon beams of different LET values were investigated in a red yeast strain Rhodotorula glutinis AY 91015. It was found that the maximum inactivation cross section of 4.37μm 2 , which was very close to the average nucleus cross section, was at LET of 120.0 keV/μm. The maximum mutation cross section was at LET of 96.0 keV/μm. Meanwhile, the highest mutagenicity of carbon ion was found around 58.2 keV/μm. It implied that the most efficient LET to induce mutation in survival yeasts was 58.2 keV/μm, which corresponded to energy of 35 MeV/u carbon beam. The most effective carbon beam to induce inactivation and mutation located at different energy region. (authors)

  4. Antifungal activity of four honeys of different types from Algeria against pathogenic yeast: Candida albicans and Rhodotorula sp.

    OpenAIRE

    Ahmed Moussa; Djebli Noureddine; Aissat Saad; Meslem Abdelmelek; Benhalima Abdelkader

    2012-01-01

    Objective: To evaluate the antifungal activity of four honeys of different types from Algeria against pathogenic yeast i.e. Candida albicans (C. albicans) and Rhodotorula sp. Methods: Four Algeria honeys of different botanical origin were analyzed to test antifungal effect against C. albicans, and Rhodotorula sp. Different concentrations (undiluted, 10%, 30%, 50% and 70% w/v) of honey were studied in vitro for their antifugal activity using C. albicans and Rhodotorula sp. as fungal strains...

  5. Investigation of Antibacterial Properties of Yeast Strains Isolated from Iranian Richal and Traditional Dairy Products in Armenia

    Directory of Open Access Journals (Sweden)

    F Karimpour

    2016-09-01

    Full Text Available Background & aim:The use of bio preservative or strains as sources are interesting for food bioprocessing technologist,   and is one of the latest methods to increase the shelf life of food by the health authorities . The present study aimed to investigate the antibacterial activity of supernatants of yeasts isolated from Richal as a traditional dairy product and fermented dairy products in Armenia. Methods: In the present experimental study, the purified supernatant of 77 strains of Armenian yeast products and 12 strains from Iranian Richal were isolated. The purified supernatant were tested against three strains as food spoilages bacteria includes: B. subtilis 17-89, B. Thuringensis17-89, S.typhimuium G-38 , on 3media in 2 condition as aerobic and anaerobic. The inhibition zone of the supernatant were measured   and reported as antibacterial activity. Data were analyzed using statistical tests. Result: A total of 89 strains of yeasts, three species of Rachel and 9 strains of Armenian products (13.5% percent had demonstrated antibacterial activity. T86 strains of Armenian yeasts and FA1 (25 of Rachel had shown more ZOI and antibacterial activity on three media at both aerobic and anaerobic conditions. Comparing the mean of ZOI upon three corruption factors, Rachel strains were significantly different (p <0.05. The highest and lowest effect was observed on Bacillus subtilis effect and Salmonella typhimurium respectively. Conclusion: The results indicated that the yeast strains isolated in anaerobic and aerobic conditions on spoilage bacteria had antibacterial activity effect. Thus, it could be concluded that adding the yeast or its supernatant to food as a bio preservative, may introduce a operative product to the food industry.

  6. Glycerol production by Oenococcus oeni during sequential and simultaneous cultures with wine yeast strains.

    Science.gov (United States)

    Ale, Cesar E; Farías, Marta E; Strasser de Saad, Ana M; Pasteris, Sergio E

    2014-07-01

    Growth and fermentation patterns of Saccharomyces cerevisiae, Kloeckera apiculata, and Oenococcus oeni strains cultured in grape juice medium were studied. In pure, sequential and simultaneous cultures, the strains reached the stationary growth phase between 2 and 3 days. Pure and mixed K. apiculata and S. cerevisiae cultures used mainly glucose, producing ethanol, organic acids, and 4.0 and 0.1 mM glycerol, respectively. In sequential cultures, O. oeni achieved about 1 log unit at 3 days using mainly fructose and L-malic acid. Highest sugars consumption was detected in K. apiculata supernatants, lactic acid being the major end-product. 8.0 mM glycerol was found in 6-day culture supernatants. In simultaneous cultures, total sugars and L-malic acid were used at 3 days and 98% of ethanol and glycerol were detected. This study represents the first report of the population dynamics and metabolic behavior of yeasts and O. oeni in sequential and simultaneous cultures and contributes to the selection of indigenous strains to design starter cultures for winemaking, also considering the inclusion of K. apiculata. The sequential inoculation of yeasts and O. oeni would enhance glycerol production, which confers desirable organoleptic characteristics to wines, while organic acids levels would not affect their sensory profile. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Antifungal susceptibility profiles of 1698 yeast reference strains revealing potential emerging human pathogens.

    Directory of Open Access Journals (Sweden)

    Marie Desnos-Ollivier

    Full Text Available New molecular identification techniques and the increased number of patients with various immune defects or underlying conditions lead to the emergence and/or the description of novel species of human and animal fungal opportunistic pathogens. Antifungal susceptibility provides important information for ecological, epidemiological and therapeutic issues. The aim of this study was to assess the potential risk of the various species based on their antifungal drug resistance, keeping in mind the methodological limitations. Antifungal susceptibility profiles to the five classes of antifungal drugs (polyens, azoles, echinocandins, allylamines and antimetabolites were determined for 1698 yeast reference strains belonging to 992 species (634 Ascomycetes and 358 Basidiomycetes. Interestingly, geometric mean minimum inhibitory concentrations (MICs of all antifungal drugs tested were significantly higher for Basidiomycetes compared to Ascomycetes (p<0.001. Twenty four strains belonging to 23 species of which 19 were Basidiomycetes seem to be intrinsically "resistant" to all drugs. Comparison of the antifungal susceptibility profiles of the 4240 clinical isolates and the 315 reference strains belonging to 53 shared species showed similar results. Even in the absence of demonstrated in vitro/in vivo correlation, knowing the in vitro susceptibility to systemic antifungal agents and the putative intrinsic resistance of yeast species present in the environment is important because they could become opportunistic pathogens.

  8. Thermotolerant Yeast Strains Adapted by Laboratory Evolution Show Trade-Off at Ancestral Temperatures and Preadaptation to Other Stresses.

    Science.gov (United States)

    Caspeta, Luis; Nielsen, Jens

    2015-07-21

    A major challenge for the production of ethanol from biomass-derived feedstocks is to develop yeasts that can sustain growth under the variety of inhibitory conditions present in the production process, e.g., high osmolality, high ethanol titers, and/or elevated temperatures (≥ 40 °C). Using adaptive laboratory evolution, we previously isolated seven Saccharomyces cerevisiae strains with improved growth at 40 °C. Here, we show that genetic adaptations to high temperature caused a growth trade-off at ancestral temperatures, reduced cellular functions, and improved tolerance of other stresses. Thermotolerant yeast strains showed horizontal displacement of their thermal reaction norms to higher temperatures. Hence, their optimal and maximum growth temperatures increased by about 3 °C, whereas they showed a growth trade-off at temperatures below 34 °C. Computational analysis of the physical properties of proteins showed that the lethal temperature for yeast is around 49 °C, as a large fraction of the yeast proteins denature above this temperature. Our analysis also indicated that the number of functions involved in controlling the growth rate decreased in the thermotolerant strains compared with the number in the ancestral strain. The latter is an advantageous attribute for acquiring thermotolerance and correlates with the reduction of yeast functions associated with loss of respiration capacity. This trait caused glycerol overproduction that was associated with the growth trade-off at ancestral temperatures. In combination with altered sterol composition of cellular membranes, glycerol overproduction was also associated with yeast osmotolerance and improved tolerance of high concentrations of glucose and ethanol. Our study shows that thermal adaptation of yeast is suitable for improving yeast resistance to inhibitory conditions found in industrial ethanol production processes. Yeast thermotolerance can significantly reduce the production costs of biomass

  9. Selection of Yeast Strains for Tequila Fermentation Based on Growth Dynamics in Combined Fructose and Ethanol Media.

    Science.gov (United States)

    Aldrete-Tapia, J A; Miranda-Castilleja, D E; Arvizu-Medrano, S M; Hernández-Iturriaga, M

    2018-02-01

    The high concentration of fructose in agave juice has been associated with reduced ethanol tolerance of commercial yeasts used for tequila production and low fermentation yields. The selection of autochthonous strains, which are better adapted to agave juice, could improve the process. In this study, a 2-step selection process of yeasts isolated from spontaneous fermentations for tequila production was carried out based on analysis of the growth dynamics in combined conditions of high fructose and ethanol. First, yeast isolates (605) were screened to identify strains tolerant to high fructose (20%) and to ethanol (10%), yielding 89 isolates able to grow in both conditions. From the 89 isolates, the growth curves under 8 treatments of combined fructose (from 20% to 5%) and ethanol (from 0% to 10%) were obtained, and the kinetic parameters were analyzed with principal component analysis and k-means clustering. The resulting yeast strain groups corresponded to the fast, medium and slow growers. A second clustering of only the fast growers led to the selection of 3 Saccharomyces strains (199, 230, 231) that were able to grow rapidly in 4 out of the 8 conditions evaluated. This methodology differentiated strains phenotypically and could be further used for strain selection in other processes. A method to select yeast strains for fermentation taking into account the natural differences of yeast isolates. This methodology is based on the cell exposition to combinations of sugar and ethanol, which are the most important stress factors in fermentation. This strategy will help to identify the most tolerant strain that could improve ethanol yield and reduce fermentation time. © 2018 Institute of Food Technologists®.

  10. Influence of the Addition of Riboflavin in Culture Medium on Delivering Biomass Using Yeast Strains of Saccharomyces Carlsbengensis

    Directory of Open Access Journals (Sweden)

    Cornelia Nicoară

    2010-05-01

    Full Text Available Yeasts requirements for growth factors should be considered both in terms of ability to summarize the simpleaverage and the dependence on external supplies. Vitamins are components of coenzymes or enzymes prostheticgroups and thus they are growth factors for yeast. The study concerns about the influence of the addition ofriboflavin in culture medium in different quantities, the accumulation of yeast biomass under the action of yeaststrains of beer. The process of cultivation has been made for 24 hours at a temperature of 220C. The addition ofriboflavin in culture medium of yeast biomass increased in each strain of yeast compared with the witness - thesample without added riboflavin. Biomass obtained by follow this procedure could be used to create new foodproducts with high ration nutritional value.

  11. Thermotolerant Yeast Strains Adapted by Laboratory Evolution Show Trade-Off at Ancestral Temperatures and Preadaptation to Other Stresses

    DEFF Research Database (Denmark)

    Caspeta, Luis; Nielsen, Jens

    2015-01-01

    adaptive laboratory evolution, we previously isolated seven Saccharomyces cerevisiae strains with improved growth at 40°C. Here, we show that genetic adaptations to high temperature caused a growth trade-off at ancestral temperatures, reduced cellular functions, and improved tolerance of other stresses...... in the ancestral strain. The latter is an advantageous attribute for acquiring thermotolerance and correlates with the reduction of yeast functions associated with loss of respiration capacity. This trait caused glycerol overproduction that was associated with the growth trade-off at ancestral temperatures....... In combination with altered sterol composition of cellular membranes, glycerol overproduction was also associated with yeast osmotolerance and improved tolerance of high concentrations of glucose and ethanol. Our study shows that thermal adaptation of yeast is suitable for improving yeast resistance...

  12. Metabolomics-based prediction models of yeast strains for screening of metabolites contributing to ethanol stress tolerance

    Science.gov (United States)

    Hashim, Z.; Fukusaki, E.

    2016-06-01

    The increased demand for clean, sustainable and renewable energy resources has driven the development of various microbial systems to produce biofuels. One of such systems is the ethanol-producing yeast. Although yeast produces ethanol naturally using its native pathways, production yield is low and requires improvement for commercial biofuel production. Moreover, ethanol is toxic to yeast and thus ethanol tolerance should be improved to further enhance ethanol production. In this study, we employed metabolomics-based strategy using 30 single-gene deleted yeast strains to construct multivariate models for ethanol tolerance and screen metabolites that relate to ethanol sensitivity/tolerance. The information obtained from this study can be used as an input for strain improvement via metabolic engineering.

  13. Coordinated Evolution of Transcriptional and Post-Transcriptional Regulation for Mitochondrial Functions in Yeast Strains.

    Directory of Open Access Journals (Sweden)

    Xuepeng Sun

    Full Text Available Evolution of gene regulation has been proposed to play an important role in environmental adaptation. Exploring mechanisms underlying coordinated evolutionary changes at various levels of gene regulation could shed new light on how organism adapt in nature. In this study, we focused on regulatory differences between a laboratory Saccharomyces cerevisiae strain BY4742 and a pathogenic S. cerevisiae strain, YJM789. The two strains diverge in many features, including growth rate, morphology, high temperature tolerance, and pathogenicity. Our RNA-Seq and ribosomal footprint profiling data showed that gene expression differences are pervasive, and genes functioning in mitochondria are mostly divergent between the two strains at both transcriptional and translational levels. Combining functional genomics data from other yeast strains, we further demonstrated that significant divergence of expression for genes functioning in the electron transport chain (ETC was likely caused by differential expression of a transcriptional factor, HAP4, and that post-transcriptional regulation mediated by an RNA-binding protein, PUF3, likely led to expression divergence for genes involved in mitochondrial translation. We also explored mito-nuclear interactions via mitochondrial DNA replacement between strains. Although the two mitochondrial genomes harbor substantial sequence divergence, neither growth nor gene expression were affected by mitochondrial DNA replacement in both fermentative and respiratory growth media, indicating compatible mitochondrial and nuclear genomes between these two strains in the tested conditions. Collectively, we used mitochondrial functions as an example to demonstrate for the first time that evolution at both transcriptional and post-transcriptional levels could lead to coordinated regulatory changes underlying strain specific functional variations.

  14. Quantitative Genome-Wide Analysis of Yeast Deletion Strain Sensitivities to Oxidative and Chemical Stress

    Directory of Open Access Journals (Sweden)

    Stanley Fields

    2006-03-01

    Full Text Available Understanding the actions of drugs and toxins in a cell is of critical importance to medicine, yet many of the molecular events involved in chemical resistance are relatively uncharacterized. In order to identify the cellular processes and pathways targeted by chemicals, we took advantage of the haploid Saccharomyces cerevisiae deletion strains (Winzeler et al., 1999. Although ~4800 of the strains are viable, the loss of a gene in a pathway affected by a drug can lead to a synthetic lethal effect in which the combination of a deletion and a normally sublethal dose of a chemical results in loss of viability. WE carried out genome-wide screens to determine quantitative sensitivities of the deletion set to four chemicals: hydrogen peroxide, menadione, ibuprofen and mefloquine. Hydrogen peroxide and menadione induce oxidative stress in the cell, whereas ibuprofen and mefloquine are toxic to yeast by unknown mechanisms. Here we report the sensitivities of 659 deletion strains that are sensitive to one or more of these four compounds, including 163 multichemicalsensitive strains, 394 strains specific to hydrogen peroxide and/or menadione, 47 specific to ibuprofen and 55 specific to mefloquine.We correlate these results with data from other large-scale studies to yield novel insights into cellular function.

  15. Fermentation of biomass sugars to ethanol using native industrial yeast strains.

    Science.gov (United States)

    Yuan, Dawei; Rao, Kripa; Relue, Patricia; Varanasi, Sasidhar

    2011-02-01

    In this paper, the feasibility of a technology for fermenting sugar mixtures representative of cellulosic biomass hydrolyzates with native industrial yeast strains is demonstrated. This paper explores the isomerization of xylose to xylulose using a bi-layered enzyme pellet system capable of sustaining a micro-environmental pH gradient. This ability allows for considerable flexibility in conducting the isomerization and fermentation steps. With this method, the isomerization and fermentation could be conducted sequentially, in fed-batch, or simultaneously to maximize utilization of both C5 and C6 sugars and ethanol yield. This system takes advantage of a pH-dependent complexation of xylulose with a supplemented additive to achieve up to 86% isomerization of xylose at fermentation conditions. Commercially-proven Saccharomyces cerevisiae strains from the corn-ethanol industry were used and shown to be very effective in implementation of the technology for ethanol production. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Comparative behaviour of yeast strains for ethanolic fermentation of culled apple juice.

    Science.gov (United States)

    Modi, D R; Garg, S K; Johri, B N

    1998-07-01

    The culled apple juice contained (% w/v): nitrogen, 0.036; total sugars, 11.6 and was of pH 3.9. Saccharomyces cerevisiae NCIM 3284, Pichia kluyeri and Candida krusei produced more ethanol from culled apple juice at its optimum initial pH 4.5, whereas S. cerevisiae NCIM 3316 did so at pH 5.0. An increase in sugar concentration of apple juice from natural 11.6% to 20% exhibited enhanced ethanol production and improved fermentation efficiency of both the S. cerevisiae strains, whereas P. kluyveri and C. krusei produced high ethanol at 11.6% and 16.0% sugar levels, respectively. Urea was stimulatory for ethanol production as well as fermentation efficiency of the yeast strains under study.

  17. The gene dosage effect of the rad52 mutation on X-ray survival curves of tetraploid yeast strains

    International Nuclear Information System (INIS)

    Ho, K.S.Y.

    1975-01-01

    The mutation rad52 in the yeast Saccharomyces cerevisiae confers sensitivity to X-rays. The gene dosage effect of this mutation on X-ray survival curves of tetraploid yeast strains is shown. With increasing number of rad52 alleles, both a decrease in the survival for a given dose and a decrease in the survival curve shoulder width are observed. The generation of such a family of survival curves using three different mathematical models is discussed

  18. Ultraviolet-induced reversion of cyc1 alleles in radiation-sensitive strains of yeast. III. rev 3 mutant strains

    International Nuclear Information System (INIS)

    Lawrence, C.W.; Crhistensen, R.B.

    1979-01-01

    The role of rev3 gene function in uv-induced mutagenesis in the yeast Saccharomyces cerevisiae has been examined by determining the reversion of 12 well-defined cyc1 mutations in diploid strains homozygous for the rev3-1 or rev3-3 allale. The 12 cyc1 alleles include one ochre, one amber, four initiation, two proline missense, and four frameshift mutations. We find that the rev3 mutations reduce the frequency of UV-induced reversion of all of the cyc1 alleles, though different classes of alleles respond to a different extent. These results imply that the rev3 gene function is required for the production of a wide variety of mutational events, though probably not all, and show that each of the three rev loci have different mutational phenotypes. Such diverse phenotypes are not predicted by the unitary model for bacterial mutagenes, suggesting that this is at best an incomplete description of eukaryotic mutagenesis

  19. Yeast Autolysis in Sparkling Wine Aging: Use of Killer and Sensitive Saccharomyces cerevisiae Strains in Co-Culture.

    Science.gov (United States)

    Lombardi, Silvia Jane; De Leonardis, Antonella; Lustrato, Giuseppe; Testa, Bruno; Iorizzo, Massimo

    2015-01-01

    Sparkling wines produced by traditional method owe their characteristics to secondary fermentation and maturation that occur during a slow ageing in bottles. Yeast autolysis plays an important role during the sparkling wine aging. Using a combination of killer and sensitive yeasts is possible to accelerate yeast autolysis and reduce maturing time. killer and sensitive Saccharomyces cerevisiae strains, separately and in co-cultures, were inoculated in base wine and bottled on pilot-plant scale. Commercial Saccaromyces bayanus strain was also investigated. Protein free amino acid and polysaccharides contents and sensory analysis were determined on the wine samples at 3, 6 and 9 months of aging. Yeast autolysis that occurs during the production of sparkling wines, obtained with co-cultures of killer and sensitive strains, has influenced free amino acids, total protein and polysaccharides content after 3 months aging time: sparkling wines, produced without the use of these yeasts, have reached the same results only after 9 months aging time. These results demonstrate that killer and sensitive yeasts in co-culture can accelerate the onset of autolysis in enological conditions, and has a positive effect on the quality of the aroma and flavor of sparkling wine. This paper offers an interesting biotechnological method to reduce production time of sparkling wine with economical benefits for the producers. We revised all patents relating to sparkling wine considering only those of interest for our study.

  20. Analysis of Growth Inhibition and Metabolism of Hydroxycinnamic Acids by Brewing and Spoilage Strains of Brettanomyces Yeast

    Directory of Open Access Journals (Sweden)

    Michael Lentz

    2015-10-01

    Full Text Available Brettanomyces yeasts are well-known as spoilage organisms in both the wine and beer industries, but also contribute important desirable characters to certain beer styles. These properties are mediated in large part by Brettanomyces’ metabolism of hydroxycinnamic acids (HCAs present in beverage raw materials. Here we compare growth inhibition by, and metabolism of, HCAs among commercial brewing strains and spoilage strains of B. bruxellensis and B. anomalus. These properties vary widely among the different strains tested and between the HCAs analyzed. Brewing strains showed more efficient metabolism of ferulic acid over p-coumaric acid, a trait not shared among the spoilage strains.

  1. Analysis of Growth Inhibition and Metabolism of Hydroxycinnamic Acids by Brewing and Spoilage Strains of Brettanomyces Yeast.

    Science.gov (United States)

    Lentz, Michael; Harris, Chad

    2015-10-15

    Brettanomyces yeasts are well-known as spoilage organisms in both the wine and beer industries, but also contribute important desirable characters to certain beer styles. These properties are mediated in large part by Brettanomyces ' metabolism of hydroxycinnamic acids (HCAs) present in beverage raw materials. Here we compare growth inhibition by, and metabolism of, HCAs among commercial brewing strains and spoilage strains of B. bruxellensis and B. anomalus . These properties vary widely among the different strains tested and between the HCAs analyzed. Brewing strains showed more efficient metabolism of ferulic acid over p -coumaric acid, a trait not shared among the spoilage strains.

  2. Differing effects of 2 active dried yeast (Saccharomyces cerevisiae) strains on ruminal acidosis and methane production in nonlactating dairy cows.

    Science.gov (United States)

    Chung, Y-H; Walker, N D; McGinn, S M; Beauchemin, K A

    2011-05-01

    Fifteen ruminally cannulated, nonlactating Holstein cows were used to measure the effects of 2 strains of Saccharomyces cerevisiae, fed as active dried yeasts, on ruminal pH and fermentation and enteric methane (CH(4)) emissions. Nonlactating cows were blocked by total duration (h) that their ruminal pH was below 5.8 during a 6-d pre-experimental period. Within each block, cows were randomly assigned to control (no yeast), yeast strain 1 (Levucell SC), or yeast strain 2 (a novel strain selected for enhanced in vitro fiber degradation), with both strains (Lallemand Animal Nutrition, Montréal, QC, Canada) providing 1 × 10(10) cfu/head per day. Cows were fed once daily a total mixed ration consisting of a 50:50 forage to concentrate ratio (dry matter basis). The yeast strains were dosed via the rumen cannula daily at the time of feeding. During the 35-d experiment, ruminal pH was measured continuously for 7 d (d 22 to 28) by using an indwelling system, and CH(4) gas was measured for 4 d (d 32 to 35) using the sulfur hexafluoride tracer gas technique (with halters and yokes). Rumen contents were sampled on 2 d (d 22 and 26) at 0, 3, and 6h after feeding. Dry matter intake, body weight, and apparent total-tract digestibility of nutrients were not affected by yeast feeding. Strain 2 decreased the average daily minimum (5.35 vs. 5.65 or 5.66), mean (5.98 vs. 6.24 or 6.34), and maximum ruminal pH (6.71 vs. 6.86 or 6.86), and prolonged the time that ruminal pH was below 5.8 (7.5 vs. 3.3 or 1.0 h/d) compared with the control or strain 1, respectively. The molar percentage of acetate was lower and that of propionate was greater in the ruminal fluid of cows receiving strain 2 compared with cows receiving no yeast or strain 1. Enteric CH(4) production adjusted for intake of dry matter or gross energy, however, did not differ between either yeast strain compared with the control but it tended to be reduced by 10% when strain 2 was compared with strain 1. The study shows that

  3. SNIT: SNP identification for strain typing

    Directory of Open Access Journals (Sweden)

    Reifman Jaques

    2011-09-01

    Full Text Available Abstract With ever-increasing numbers of microbial genomes being sequenced, efficient tools are needed to perform strain-level identification of any newly sequenced genome. Here, we present the SNP identification for strain typing (SNIT pipeline, a fast and accurate software system that compares a newly sequenced bacterial genome with other genomes of the same species to identify single nucleotide polymorphisms (SNPs and small insertions/deletions (indels. Based on this information, the pipeline analyzes the polymorphic loci present in all input genomes to identify the genome that has the fewest differences with the newly sequenced genome. Similarly, for each of the other genomes, SNIT identifies the input genome with the fewest differences. Results from five bacterial species show that the SNIT pipeline identifies the correct closest neighbor with 75% to 100% accuracy. The SNIT pipeline is available for download at http://www.bhsai.org/snit.html

  4. Generation of a Uracil Auxotroph Strain of the Probiotic Yeast Saccharomyces boulardii as a Host for the Recombinant Protein Production

    Science.gov (United States)

    Hamedi, Hassan; Misaghi, Ali; Modarressi, Mohammad Hossein; Salehi, Taghi Zahraei; Khorasanizadeh, Dorsa; Khalaj, Vahid

    2013-01-01

    Background Saccharomyces boulardii (S. boulardii) is the best known probiotic yeast. The genetic engineering of this probiotic strain requires the availability of appropriate mutants to accept various gene constructs carrying different selection markers. As the auxotrophy selection markers are under focus, we have generated a ura3 auxotroph mutant of S. boulardii for use in further genetic manipulations. Methods Classical UV mutagenesis was used for the generation of auxotroph mutants. The mutants were selected in the presence of 5-FOA (5-Fluoroorotic acid), uracil and uridine. Uracil auxotrophy phenotype was confirmed by the ability of mutants to grow in the presence of uracil and the lack of growth in the absence of this compound. To test whether the uracil auxotrophy phenotype is due to the inactivation of URA3, the mutants were transformed with a plasmid carrying the gene. An in vitro assay was used for the analysis of acid and bile resistance capacity of these mutants. Results Three mutants were found to be ura3 auxotroph as they were able to grow only in the presence of uracil. When the URA3 gene was added, these mutants were able to grow normally in the absence of uracil. Further in vitro analysis showed that the acid and bile resistance capacity of one of these mutants is intact and similar to the wild type. Conclusion A uracil auxotroph mutant of the probiotic yeast, S. boulardii, was generated and characterized. This auxotroph strain may have potential applications in the production and delivery of the recombinant pharmacuetics into the intestinal lumen. PMID:23626874

  5. Diversity of yeast strains of the genus Hanseniaspora in the winery environment: What is their involvement in grape must fermentation?

    Science.gov (United States)

    Grangeteau, Cédric; Gerhards, Daniel; Rousseaux, Sandrine; von Wallbrunn, Christian; Alexandre, Hervé; Guilloux-Benatier, Michèle

    2015-09-01

    Isolated yeast populations of Chardonnay grape must during spontaneous fermentation were compared to those isolated on grape berries and in a winery environment before the arrival of the harvest (air, floor, winery equipment) and in the air through time. Two genera of yeast, Hanseniaspora and Saccharomyces, were isolated in grape must and in the winery environment before the arrival of the harvest but not on grape berries. The genus Hanseniaspora represented 27% of isolates in the must and 35% of isolates in the winery environment. The isolates of these two species were discriminated at the strain level by Fourier transform infrared spectroscopy. The diversity of these strains observed in the winery environment (26 strains) and in must (12 strains) was considerable. 58% of the yeasts of the genus Hanseniaspora isolated in the must corresponded to strains present in the winery before the arrival of the harvest. Although the proportion and number of strains of the genus Hanseniaspora decreased during fermentation, some strains, all from the winery environment, subsisted up to 5% ethanol content. This is the first time that the implantation in grape must of populations present in the winery environment has been demonstrated for a non-Saccharomyces genus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Genome Sequences of Industrially Relevant Saccharomyces cerevisiae Strain M3707, Isolated from a Sample of Distillers Yeast and Four Haploid Derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Steven D.; Klingeman, Dawn M.; Johnson, Courtney M.; Clum, Alicia; Aerts, Andrea; Salamov, Asaf; Sharma, Aditi; Zane, Matthew; Barry, Kerrie; Grigoriev, Igor V.; Davison, Brian H.; Lynd, Lee R.; Gilna, Paul; Hau, Heidi; Hogsett, David A.; Froehlich, Allan C.

    2013-04-19

    Saccharomyces cerevisiae strain M3707 was isolated from a sample of commercial distillers yeast, and its genome sequence together with the genome sequences for the four derived haploid strains M3836, M3837, M3838, and M3839 has been determined. Yeasts have potential for consolidated bioprocessing (CBP) for biofuel production, and access to these genome sequences will facilitate their development.

  7. Distribution of yeast complexes in the profiles of different soil types

    Science.gov (United States)

    Glushakova, A. M.; Kachalkin, A. V.; Tiunov, A. V.; Chernov, I. Yu.

    2017-07-01

    The number and taxonomic structure of the yeast complexes were investigated in the full profiles of the soddy-podzolic soil (Central Forest State Nature Biosphere Reserve), dark gray forest soil (Kaluzhskie Zaseki Reserve), and chernozem (Privolzhskaya Forest-Steppe Reserve). In all these soils, the number of yeasts was maximal (104 CFU/g) directly under the litter; it drastically decreased with the depth. However, at the depth of 120-160 cm, the number of yeasts significantly increased in all the soils; their maximum was found in the illuvial horizon of the soddy-podzolic soil. Such a statistically significant increase in the number of yeasts at a considerable depth was found for the first time. Different groups of yeasts were present in the yeast communities of different soils. The species structure of yeast communities changed little in each soil: the same species were isolated both from the soil surface and from the depth of more than 2 m. The results showed that yeasts could be used for soil bioindication on the basis of specific yeast complexes in the profiles of different soil types rather than individual indicative species.

  8. VNTR fingerprinting of Kluyveromyces marxianus strains WT, 7-1, and 8-1 by using different primer types to give best results in PCR and on electrophorese gel in order to find differentiation of the DNA of the yeast strains.

    Science.gov (United States)

    Using mutagenized Kluyveromyces marxianus strains (WT, 7-1, 8-1) we wish to find out the variable numbered tandem repeats (VNTR) of each of the DNA strains from the different mutagenized K. marxianus strains. To do this we used Phusion HF Buffer Pack to try and give a clear picture of the VNTR by u...

  9. Induction of mutation for increased sulfur content in the CFI strain of yeast by gamma-irradiation

    International Nuclear Information System (INIS)

    Faustino, C.C.

    1977-08-01

    From all current source of protein concentration the food yeast offers the greatest potential for development. Yeast protein is a good source of lysine and has adeqouate acounts of other essential amino acids such as trytophan and threonine, however, it was found to be relatively poor in the sulfur-containing amino acids which limits its nutrient value. A lasting remedy is genetic modification of the microorganisms to produce protein with a better amino acid balance. Gamma radiation from Co-60 was tried in these experiments being reported to induce mutations in the new CFI strain. A way of screening for increased sulfur content was devised. These are; 1) Incorporation of (NH 4 ) 2 35 S0 4 into the yeast cells; 2) Autoradiography; and 3) Quantitative determination of S-incorporation in submerse cultures of yeasts by use of a liquid scintillation counter. About seven hundred individual colonies were carefully and meticulously autQradiographically screened for high-S0 4 incorporation. Based on the results of autoradiography, 7.8% (50 strains) of the whole population were considered high in 35 S0 4 incorporation. The 50 yeast strains selected by autoradiography to be high in S0 4 incorporation were analyzed with the use of a liquid scintillation counter. From the data gathered, 29 mutants were se--lected. The data from these 29 mutants are presented in tabulated form. Only yeast strains no. 1, 42, 44, 47, 4, 3, 49, 50, 2 and 39 appear to show any promise as putative high-S mutants

  10. Creating libraries for commercial yeast strains through miniaturization of cloning and transformations using the BioRAPTR FRD Microfluidic workstation

    Science.gov (United States)

    The ability to miniaturize molecular reactions can lead to significant cost savings when creating libraries of thousands of clones. For this application Beckman Coulter partnered with the USDA to provide a low-volume automated solution for library cloning for use in the development of yeast strains...

  11. Data from: Rapid multiple-level coevolution in experimental populations of yeast killer and non-killer strains

    NARCIS (Netherlands)

    Pieczynska, M.D.; Wloch-Salamon, D.; Korona, R.; Visser, de J.A.G.M.

    2016-01-01

    Coevolution between different biological entities is considered an important evolutionary mechanism at all levels of biological organization. Here we provide evidence for coevolution of a yeast killer strain (K) carrying cytoplasmic dsRNA viruses coding for anti-competitor toxins and an isogenic

  12. Effects of feedstock and co-culture of Lactobacillus fermentum and wild Saccharomyces cerevisiae strain during fuel ethanol fermentation by the industrial yeast strain PE-2.

    Science.gov (United States)

    Reis, Vanda R; Bassi, Ana Paula G; Cerri, Bianca C; Almeida, Amanda R; Carvalho, Isis G B; Bastos, Reinaldo G; Ceccato-Antonini, Sandra R

    2018-02-16

    Even though contamination by bacteria and wild yeasts are frequently observed during fuel ethanol fermentation, our knowledge regarding the effects of both contaminants together is very limited, especially considering that the must composition can vary from exclusively sugarcane juice to a mixture of molasses and juice, affecting the microbial development. Here we studied the effects of the feedstock (sugarcane juice and molasses) and the co-culture of Lactobacillus fermentum and a wild Saccharomyces cerevisiae strain (rough colony and pseudohyphae) in single and multiple-batch fermentation trials with an industrial strain of S. cerevisiae (PE-2) as starter yeast. The results indicate that in multiple-cycle batch system, the feedstock had a minor impact on the fermentation than in single-cycle batch system, however the rough yeast contamination was more harmful than the bacterial contamination in multiple-cycle batch fermentation. The inoculation of both contaminants did not potentiate the detrimental effect in any substrate. The residual sugar concentration in the fermented broth had a higher concentration of fructose than glucose for all fermentations, but in the presence of the rough yeast, the discrepancy between fructose and glucose concentrations were markedly higher, especially in molasses. The biggest problem associated with incomplete fermentation seemed to be the lower consumption rate of sugar and the reduced fructose preference of the rough yeast rather than the lower invertase activity. Lower ethanol production, acetate production and higher residual sugar concentration are characteristics strongly associated with the rough yeast strain and they were not potentiated with the inoculation of L. fermentum.

  13. Brewer?s Yeast Improves Blood Pressure in Type 2 Diabetes Mellitus

    OpenAIRE

    HOSSEINZADEH, Payam; DJAZAYERY, Abolghassem; MOSTAFAVI, Seyed-Ali; JAVANBAKHT, Mohammad Hassan; DERAKHSHANIAN, Hoda; RAHIMIFOROUSHANI, Abbas; DJALALI, Mahmoud

    2013-01-01

    Background This study was conducted to investigate the effects of Brewer?s yeast supplementation on serum lipoproteins and blood pressure in patients with Type 2 diabetes mellitus. Methods: In a randomized double blind clinical trial, 90 adults with type 2 diabetes mellitus were recruited, and divided randomly into 2 groups, trial group received brewer?s yeast (1800 mg/day) and control group received placebo for 12 weeks. Weight, BMI, food consumption (based on 24 hour food recall), fasting s...

  14. Construction of novel Saccharomyces cerevisiae strains for bioethanol active dry yeast (ADY) production.

    Science.gov (United States)

    Zheng, Daoqiong; Zhang, Ke; Gao, Kehui; Liu, Zewei; Zhang, Xing; Li, Ou; Sun, Jianguo; Zhang, Xiaoyang; Du, Fengguang; Sun, Peiyong; Qu, Aimin; Wu, Xuechang

    2013-01-01

    The application of active dry yeast (ADY) in bioethanol production simplifies operation processes and reduces the risk of bacterial contamination. In the present study, we constructed a novel ADY strain with improved stress tolerance and ethanol fermentation performances under stressful conditions. The industrial Saccharomyces cerevisiae strain ZTW1 showed excellent properties and thus subjected to a modified whole-genome shuffling (WGS) process to improve its ethanol titer, proliferation capability, and multiple stress tolerance for ADY production. The best-performing mutant, Z3-86, was obtained after three rounds of WGS, producing 4.4% more ethanol and retaining 2.15-fold higher viability than ZTW1 after drying. Proteomics and physiological analyses indicated that the altered expression patterns of genes involved in protein metabolism, plasma membrane composition, trehalose metabolism, and oxidative responses contribute to the trait improvement of Z3-86. This work not only successfully developed a novel S. cerevisiae mutant for application in commercial bioethanol production, but also enriched the current understanding of how WGS improves the complex traits of microbes.

  15. Whole-genome sequencing of a laboratory-evolved yeast strain

    Directory of Open Access Journals (Sweden)

    Dunham Maitreya J

    2010-02-01

    Full Text Available Abstract Background Experimental evolution of microbial populations provides a unique opportunity to study evolutionary adaptation in response to controlled selective pressures. However, until recently it has been difficult to identify the precise genetic changes underlying adaptation at a genome-wide scale. New DNA sequencing technologies now allow the genome of parental and evolved strains of microorganisms to be rapidly determined. Results We sequenced >93.5% of the genome of a laboratory-evolved strain of the yeast Saccharomyces cerevisiae and its ancestor at >28× depth. Both single nucleotide polymorphisms and copy number amplifications were found, with specific gains over array-based methodologies previously used to analyze these genomes. Applying a segmentation algorithm to quantify structural changes, we determined the approximate genomic boundaries of a 5× gene amplification. These boundaries guided the recovery of breakpoint sequences, which provide insights into the nature of a complex genomic rearrangement. Conclusions This study suggests that whole-genome sequencing can provide a rapid approach to uncover the genetic basis of evolutionary adaptations, with further applications in the study of laboratory selections and mutagenesis screens. In addition, we show how single-end, short read sequencing data can provide detailed information about structural rearrangements, and generate predictions about the genomic features and processes that underlie genome plasticity.

  16. Construction of novel Saccharomyces cerevisiae strains for bioethanol active dry yeast (ADY production.

    Directory of Open Access Journals (Sweden)

    Daoqiong Zheng

    Full Text Available The application of active dry yeast (ADY in bioethanol production simplifies operation processes and reduces the risk of bacterial contamination. In the present study, we constructed a novel ADY strain with improved stress tolerance and ethanol fermentation performances under stressful conditions. The industrial Saccharomyces cerevisiae strain ZTW1 showed excellent properties and thus subjected to a modified whole-genome shuffling (WGS process to improve its ethanol titer, proliferation capability, and multiple stress tolerance for ADY production. The best-performing mutant, Z3-86, was obtained after three rounds of WGS, producing 4.4% more ethanol and retaining 2.15-fold higher viability than ZTW1 after drying. Proteomics and physiological analyses indicated that the altered expression patterns of genes involved in protein metabolism, plasma membrane composition, trehalose metabolism, and oxidative responses contribute to the trait improvement of Z3-86. This work not only successfully developed a novel S. cerevisiae mutant for application in commercial bioethanol production, but also enriched the current understanding of how WGS improves the complex traits of microbes.

  17. The use of a thermotolerant fermentative Kluyveromyces marxianus IMB3 yeast strain for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Banat, I.M. [Univ. of the United Arab Emirates, Al-Ain (United Arab Emirates). Dept. of Biolology; Singh, D. [Haryana Agriculture Univ., Hisar (India). Dept. of Microbiology; Marchant, R. [Ulster Univ. (United Kingdom). School of Applied Biological and Chemical Sciences

    1996-12-31

    An investigation was carried out on the growth and ethanol production of a novel thermotolerant ethanol-producing Kluyveromyces marxianus IMB3 yeast strain. It grew aerobically on glucose, lactose, cellobiose, xylose and whey permeate and fermented all the above carbon sources to ethanol at 45 C. This strain was capable of growing under anaerobic chemostat fermentation conditions at 45 C and a dilution rate of 0.15 h{sup -1} and produced {<=}0.9 g/l biomass and 1.8% (v/v) ethanol. An increase in biomass (up to 10.0 g/l) and ethanol (up to 4.3% v/v at 45 C and 7.7% v/v at 40 C) were achieved by applying a continuous two-stage fermentation in sequence (one aerobic and one anerobic stage) or a two-stage anaerobic fermentation with cell recycling. Potential applications, involving alcohol production systems, for use in dairy and wood related industries, were discussed. (orig.)

  18. Potential Role of Yeast Strains Isolated from Grapes in the Production of Aglianico of Taurasi DOCG

    Directory of Open Access Journals (Sweden)

    Maria eAponte

    2016-05-01

    Full Text Available Twelve samples of Aglianico grapes, collected in different locations of the Taurasi DOCG (Appellation of Controlled and Guaranteed Origin production area were naturally fermented in sterile containers at room temperature. A total of 70 yeast cultures were isolated from countable WL agar plates: 52 in the middle of the fermentation and 18 at the end. On the basis of ITS-RFLP analysis and ITS sequencing, all cultures collected at the end of fermentations were identified as Saccharomyces (S. cerevisiae; while, the 52 isolates, collected after one week, could be referred to the following species: Metschnikowia (M. pulcherrima; Starmerella (Star. bacillaris; Pichia (P. kudriavzevii; Lachancea (L. thermotolerans; Hanseniaspora (H. uvarum; Pseudozyma (Pseud. aphidis; S. cerevisiae. By means of Interdelta analysis, 18 different biotypes of S. cerevisiae were retrieved. All strains were characterized for ethanol production, SO2 resistance, H2S development, β-glucosidasic, esterasic and antagonistic activities. Fermentation abilities of selected strains were evaluated in micro-fermentations on Aglianico must. Within non-Saccharomyces species, some cultures showed features of technological interest. Antagonistic activity was expressed by some strains of M. pulcherrima, L. thermotolerans, P. kudriavzevii and S. cerevisiae. Strains of M. pulcherrima showed the highest β-glucosidase activity and proved to be able to produce high concentrations of succinic acid. L. thermotolerans produced both succinic and lactic acids. The lowest amount of acetic acid was produced by M. pulcherrima and L. thermotolerans; while the highest content was recorded for H. uvarum. The strain of Star. bacillaris produced the highest amount of glycerol and was able to metabolize all fructose and malic acid. Strains of M. pulcherrima and H. uvarum showed a low fermentation power (about 4%, while, L. thermotolerans, Star. bacillaris and P. kudriavzevii of about 10%. Significant

  19. Genome-wide polysomal analysis of a yeast strain with mutated ribosomal protein S9

    Directory of Open Access Journals (Sweden)

    Arava Yoav

    2007-08-01

    Full Text Available Abstract Background The yeast ribosomal protein S9 (S9 is located at the entrance tunnel of the mRNA into the ribosome. It is known to play a role in accurate decoding and its bacterial homolog (S4 has recently been shown to be involved in opening RNA duplexes. Here we examined the effects of changing the C terminus of S9, which is rich in acidic amino acids and extends out of the ribosome surface. Results We performed a genome-wide analysis to reveal effects at the transcription and translation levels of all yeast genes. While negligible relative changes were observed in steady-state mRNA levels, a significant number of mRNAs appeared to have altered ribosomal density. Notably, 40% of the genes having reliable signals changed their ribosomal association by more than one ribosome. Yet, no general correlations with physical or functional features of the mRNA were observed. Ribosome Density Mapping (RDM along four of the mRNAs with increased association revealed an increase in ribosomal density towards the end of the coding region for at least two of them. Read-through analysis did not reveal any increase in read-through of a premature stop codon by the mutant strain. Conclusion The ribosomal protein rpS9 appears to be involved in the translation of many mRNAs, since altering its C terminus led to a significant change in ribosomal association of many mRNAs. We did not find strong correlations between these changes and several physical features of the mRNA, yet future studies with advanced tools may allow such correlations to be determined. Importantly, our results indicate an accumulation of ribosomes towards the end of the coding regions of some mRNAs. This suggests an involvement of S9 in ribosomal dissociation during translation termination.

  20. Novel endophytic yeast Rhodotorula mucilaginosa strain PTD3 I: production of xylitol and ethanol.

    Science.gov (United States)

    Bura, Renata; Vajzovic, Azra; Doty, Sharon L

    2012-07-01

    An endophytic yeast, Rhodotorula mucilaginosa strain PTD3, that was isolated from stems of hybrid poplar was found to be capable of production of xylitol from xylose, of ethanol from glucose, galactose, and mannose, and of arabitol from arabinose. The utilization of 30 g/L of each of the five sugars during fermentation by PTD3 was studied in liquid batch cultures. Glucose-acclimated PTD3 produced enhanced yields of xylitol (67% of theoretical yield) from xylose and of ethanol (84, 86, and 94% of theoretical yield, respectively) from glucose, galactose, and mannose. Additionally, this yeast was capable of metabolizing high concentrations of mixed sugars (150 g/L), with high yields of xylitol (61% of theoretical yield) and ethanol (83% of theoretical yield). A 1:1 glucose:xylose ratio with 30 g/L of each during double sugar fermentation did not affect PTD3's ability to produce high yields of xylitol (65% of theoretical yield) and ethanol (92% of theoretical yield). Surprisingly, the highest yields of xylitol (76% of theoretical yield) and ethanol (100% of theoretical yield) were observed during fermentation of sugars present in the lignocellulosic hydrolysate obtained after steam pretreatment of a mixture of hybrid poplar and Douglas fir. PTD3 demonstrated an exceptional ability to ferment the hydrolysate, overcome hexose repression of xylose utilization with a short lag period of 10 h, and tolerate sugar degradation products. In direct comparison, PTD3 had higher xylitol yields from the mixed sugar hydrolysate compared with the widely studied and used xylitol producer Candida guilliermondii.

  1. Yeast as a Heterologous Model System to Uncover Type III Effector Function.

    Directory of Open Access Journals (Sweden)

    Crina Popa

    2016-02-01

    Full Text Available Type III effectors (T3E are key virulence proteins that are injected by bacterial pathogens inside the cells of their host to subvert cellular processes and contribute to disease. The budding yeast Saccharomyces cerevisiae represents an important heterologous system for the functional characterisation of T3E proteins in a eukaryotic environment. Importantly, yeast contains eukaryotic processes with low redundancy and are devoid of immunity mechanisms that counteract T3Es and mask their function. Expression in yeast of effectors from both plant and animal pathogens that perturb conserved cellular processes often resulted in robust phenotypes that were exploited to elucidate effector functions, biochemical properties, and host targets. The genetic tractability of yeast and its amenability for high-throughput functional studies contributed to the success of this system that, in recent years, has been used to study over 100 effectors. Here, we provide a critical view on this body of work and describe advantages and limitations inherent to the use of yeast in T3E research. "Favourite" targets of T3Es in yeast are cytoskeleton components and small GTPases of the Rho family. We describe how mitogen-activated protein kinase (MAPK signalling, vesicle trafficking, membrane structures, and programmed cell death are also often altered by T3Es in yeast and how this reflects their function in the natural host. We describe how effector structure-function studies and analysis of candidate targeted processes or pathways can be carried out in yeast. We critically analyse technologies that have been used in yeast to assign biochemical functions to T3Es, including transcriptomics and proteomics, as well as suppressor, gain-of-function, or synthetic lethality screens. We also describe how yeast can be used to select for molecules that block T3E function in search of new antibacterial drugs with medical applications. Finally, we provide our opinion on the limitations

  2. Modification of Salmonella Typhimurium motility by the probiotic yeast strain Saccharomyces boulardii.

    Directory of Open Access Journals (Sweden)

    Rodolphe Pontier-Bres

    Full Text Available BACKGROUND: Motility is an important component of Salmonella enterica serovar Typhimurium (ST pathogenesis allowing the bacteria to move into appropriate niches, across the mucus layer and invade the intestinal epithelium. In vitro, flagellum-associated motility is closely related to the invasive properties of ST. The probiotic yeast Saccharomyces boulardii BIOCODEX (S.b-B is widely prescribed for the prophylaxis and treatment of diarrheal diseases caused by bacteria or antibiotics. In case of Salmonella infection, S.b-B has been shown to decrease ST invasion of T84 colon cell line. The present study was designed to investigate the impact of S.b-B on ST motility. METHODOLOGY/PRINCIPAL FINDINGS: Experiments were performed on human colonic T84 cells infected by the Salmonella strain 1344 alone or in the presence of S.b-B. The motility of Salmonella was recorded by time-lapse video microscopy. Next, a manual tracking was performed to analyze bacteria dynamics (MTrackJ plugin, NIH image J software. This revealed that the speed of bacterial movement was modified in the presence of S.b-B. The median curvilinear velocity (CLV of Salmonella incubated alone with T84 decreased from 43.3 µm/sec to 31.2 µm/sec in the presence of S.b-B. Measurement of track linearity (TL showed similar trends: S.b-B decreased by 15% the number of bacteria with linear tract (LT and increased by 22% the number of bacteria with rotator tract (RT. Correlation between ST motility and invasion was further established by studying a non-motile flagella-deficient ST strain. Indeed this strain that moved with a CLV of 0.5 µm/sec, presented a majority of RT and a significant decrease in invasion properties. Importantly, we show that S.b-B modified the motility of the pathogenic strain SL1344 and significantly decreased invasion of T84 cells by this strain. CONCLUSIONS: This study reveals that S.b-B modifies Salmonella's motility and trajectory which may account for the modification

  3. Modification of Salmonella Typhimurium Motility by the Probiotic Yeast Strain Saccharomyces boulardii

    Science.gov (United States)

    Pontier-Bres, Rodolphe; Prodon, François; Munro, Patrick; Rampal, Patrick; Lemichez, Emmanuel; Peyron, Jean François; Czerucka, Dorota

    2012-01-01

    Background Motility is an important component of Salmonella enterica serovar Typhimurium (ST) pathogenesis allowing the bacteria to move into appropriate niches, across the mucus layer and invade the intestinal epithelium. In vitro, flagellum-associated motility is closely related to the invasive properties of ST. The probiotic yeast Saccharomyces boulardii BIOCODEX (S.b-B) is widely prescribed for the prophylaxis and treatment of diarrheal diseases caused by bacteria or antibiotics. In case of Salmonella infection, S.b-B has been shown to decrease ST invasion of T84 colon cell line. The present study was designed to investigate the impact of S.b-B on ST motility. Methodology/Principal Findings Experiments were performed on human colonic T84 cells infected by the Salmonella strain 1344 alone or in the presence of S.b-B. The motility of Salmonella was recorded by time-lapse video microscopy. Next, a manual tracking was performed to analyze bacteria dynamics (MTrackJ plugin, NIH image J software). This revealed that the speed of bacterial movement was modified in the presence of S.b-B. The median curvilinear velocity (CLV) of Salmonella incubated alone with T84 decreased from 43.3 µm/sec to 31.2 µm/sec in the presence of S.b-B. Measurement of track linearity (TL) showed similar trends: S.b-B decreased by 15% the number of bacteria with linear tract (LT) and increased by 22% the number of bacteria with rotator tract (RT). Correlation between ST motility and invasion was further established by studying a non-motile flagella-deficient ST strain. Indeed this strain that moved with a CLV of 0.5 µm/sec, presented a majority of RT and a significant decrease in invasion properties. Importantly, we show that S.b-B modified the motility of the pathogenic strain SL1344 and significantly decreased invasion of T84 cells by this strain. Conclusions This study reveals that S.b-B modifies Salmonella's motility and trajectory which may account for the modification of Salmonella

  4. Effect of 905 MHz microwave radiation on colony growth of the yeast Saccharomyces cerevisiae strains FF18733, FF1481 and D7

    International Nuclear Information System (INIS)

    Vrhovac, Ivana; Hrascan, Reno; Franekic, Jasna

    2010-01-01

    The aim of this study was to evaluate the effect of weak radiofrequency microwave (RF/MW) radiation emitted by mobile phones on colony growth of the yeast Saccharomyces cerevisiae. S. cerevisiae strains FF18733 (wild-type), FF1481 (rad1 mutant) and D7 (commonly used to detect reciprocal and nonreciprocal mitotic recombinations) were exposed to a 905 MHz electromagnetic field that closely matched the Global System for Mobile Communication (GSM) pulse modulation signals for mobile phones at a specific absorption rate (SAR) of 0.12 W/kg. Following 15-, 30- and 60-minutes exposure to RF/MW radiation, strain FF18733 did not show statistically significant changes in colony growth compared to the control sample. The irradiated strains FF1481 and D7 demonstrated statistically significant reduction of colony growth compared to non-irradiated strains after all exposure times. Furthermore, strain FF1481 was more sensitive to RF/MW radiation than strain D7. The findings indicate that pulsed RF/MW radiation at a low SAR level can affect the rate of colony growth of different S. cerevisiae strains

  5. Determination of yeast killer activity in fermenting sugarcane juice using selected ethanol-making strains

    Directory of Open Access Journals (Sweden)

    Sandra Regina Ceccato-Antonini

    2004-03-01

    Full Text Available Twenty-four yeasts out of 342 isolated from the fermentative process showed killer activity and three of them were selected for the fermentative efficiency evaluation in batch system with cell recycle, flask and fermentor experiments. The selected three killer strains did not present similar results to those of pressed (baking yeast concerning ethanol (0.07-0.18; 0.12-0.20; 0.10-0.13; 0.22-0.25 g/g, respectively and biomass (0.19-0.26; 0.33-0.39; 0.13-0.27; 0.47-0.61 g/g, respectively yields and fermentative efficiency (12.3-36.3; 21.0-40.0; 19.3-26.3; 47.6-54.0 %, respectively in sugarcane juice, in flasks. In fermentor, similar behaviour was observed. However, the selected strains showed high cellular viability and killer activity (using cell-free filtrate along the fermentative cycles, in spite of the unfavourable conditions of the medium, like high pH variation of the medium (from 5.5-6.0 to 3.0-4.0, low aeration and higher temperature (30º C, which were not the ideal ones for the production/activity of killer toxins. A Pichia strain (CCA 510 showed the best results among the killer yeasts tested, exhibiting a killer activity against 92% of isolated fermentative yeasts of the process and against the pressed (baking ferment. It also demonstrated killer activity (using crude toxin preparation at higher temperatures (38ºC and low pH (4.0 after 72 hours of incubation, under proliferative and non-proliferative conditions. The results indicated that the killer activity should be a characteristic to be looked for in the strain selection for ethanolic fermentation, beside other important productivity-based characteristics, since it assure the permanence of the selected strain during the process.A atividade 'killer' poderia garantir às leveduras fermentativas uma vantagem competitiva sobre outras linhagens durante a fermentação etanólica, no entanto, pouco se sabe sobre o papel do sistema 'killer' nesse tipo de fermentação alcoólica. A sele

  6. Biodegradation of lindane using a novel yeast strain, Rhodotorula sp. VITJzN03 isolated from agricultural soil.

    Science.gov (United States)

    Abdul Salam, Jaseetha; Lakshmi, V; Das, Devlina; Das, Nilanjana

    2013-03-01

    Lindane is a notorious organochlorine pesticide due to its high toxicity, persistence in the environment and its tendency to bioaccumulate. A yeast strain isolated from sorghum cultivation field was able to use lindane as carbon and energy source under aerobic conditions. With molecular techniques, it was identified and named as Rhodotorula strain VITJzN03. The effects of nutritional and environmental factors on yeast growth and the biodegradation of lindane was investigated. The maximum production of yeast biomass along with 100 % lindane mineralization was noted at an initial lindane concentration of 600 mg l(-1) within a period of 10 days. Lindane concentration above 600 mg l(-1) inhibited the growth of yeast in liquid medium. A positive relationship was noted between the release of chloride ions and the increase of yeast biomass as well as degradation of lindane. The calculated degradation rate and half life of lindane were found to be 0.416 day(-1) and 1.66 days, respectively. The analysis of the metabolites using GC-MS identified the formation of seven intermediates including γ-pentachlorocyclohexane(γ-PCCH), 1,3,4,6-tetrachloro-1,4-cyclohexadiene(1,4-TCCHdiene), 1,2,4-trichlorobenzene (1,2,4 TCB), 1,4-dichlorobenzene (1,4 DCB), chloro-cis-1,2-dihydroxycyclohexadiene (CDCHdiene), 3-chlorocatechol (3-CC) and maleylacetate (MA) derivatives indicating that lindane degradation follows successive dechlorination and oxido-reduction. Based on the results of the present study, the possible pathway for lindane degradation by Rhodotorula sp. VITJzN03 has been proposed. To the best of our knowledge, this is the first report on lindane degradation by yeast which can serve as a potential agent for in situ bioremediation of medium to high level lindane-contaminated sites.

  7. Overexpression of a homogeneous oligosaccharide with {sup 13}C labeling by genetically engineered yeast strain

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, Yukiko; Yamamoto, Sayoko [National Institutes of Natural Sciences, Okazaki Institute for Integrative Bioscience and Institute for Molecular Science (Japan); Chiba, Yasunori; Jigami, Yoshifumi [National Institute of Advanced Industrial Science and Technology, Research Center for Medical Glycoscience (Japan); Kato, Koichi, E-mail: kkatonmr@ims.ac.jp [National Institutes of Natural Sciences, Okazaki Institute for Integrative Bioscience and Institute for Molecular Science (Japan)

    2011-08-15

    This report describes a novel method for overexpression of {sup 13}C-labeled oligosaccharides using genetically engineered Saccharomyces cerevisiae cells, in which a homogeneous high-mannose-type oligosaccharide accumulates because of deletions of genes encoding three enzymes involved in the processing pathway of asparagine-linked oligosaccharides in the Golgi complex. Using uniformly {sup 13}C-labeled glucose as the sole carbon source in the culture medium of these engineered yeast cells, high yields of the isotopically labeled Man{sub 8}GlcNAc{sub 2} oligosaccharide could be successfully harvested from glycoprotein extracts of the cells. Furthermore, {sup 13}C labeling at selected positions of the sugar residues in the oligosaccharide could be achieved using a site-specific {sup 13}C-enriched glucose as the metabolic precursor, facilitating NMR spectral assignments. The {sup 13}C-labeling method presented provides the technical basis for NMR analyses of structures, dynamics, and interactions of larger, branched oligosaccharides.

  8. A biotechnological valorization and treatment of olive mill waste waters by selected yeast strains

    Directory of Open Access Journals (Sweden)

    Mouncif, M.

    1995-12-01

    Full Text Available Olive mill waste waters were diluted to 1/10, supplied with 2% urea and inoculated with yeast strains. 20 yeast strains isolated from Olive Mill Waste (OMW water were screened for their biomass production, GOD reduction and polyphenols bioconversión activities. Pure cultures of yeasts were realized in 100 ml erlen-meyer flasks. 50 ml cultures were used and the flasks were incubated at room temperature (22°G on a shaker. Biomass production, COD (chemical oxygen demand reduction and Polyphenols bioconversión were followed up in the inoculated OMW waters. Results showed that the urea supply improve significantly the biomass production relatively to the control. This reached in some assays 2.06% expressed as g of biomass dry weight per 100 mL of OMW water. Polyphenols removal was estimated to around 50% and the COD was decreased from 54.14 g/Kg to 21.56 g/Kg. This aerobic treatment lead to the biomass production and also to a pretreated efluent by the COD and the removal of the methanization inhibiting polyphenolic compounds.

    Aguas residuales de la molturación de la aceituna se diluyeron en la proporción 1/10, se le añadió un 2% de urea y se inoculó con cepas de levaduras. 20 cepas de levaduras aisladas de aguas residuales de la molturación de la aceituna (OMW se seleccionaron por su producción de biomasa, reducción DQO y actividades de bioconversión de polifenoles. Se llevaron a cabo cultivos puros de levaduras en matraces erlenmeyer de 100 mi. Se tomaron 50 ml de cultivos y los matraces se incubaron a temperatura ambiente (22°C en un agitador. Se siguió la producción de biomasa, la reducción de DQO (demanda química de oxígeno y la bioconversión de polifenoles en las aguas residuales de la aceituna. Los resultados mostraron que el suministro de urea mejoró significativamente la producción de biomasa en relación al control. Esta alcanzó en algunos ensayos el 2.06% expresado como g de peso seco de biomasa por 100 ml de

  9. Ethanol production from kitchen waste using the flocculating yeast Saccharomyces cerevisiae strain KF-7

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yue-Qin; Liu, Kai; An, Ming-Zhe; Morimura, Shigeru; Kida, Kenji [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Koike, Yoji [Tokyo Gas Co., Ltd., 1-7-7 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045 (Japan); Wu, Xiao-Lei [Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871 (China)

    2008-11-15

    A process for producing ethanol from kitchen waste was developed in this study. The process consists of freshness preservation of the waste, saccharification of the sugars in the waste, continuous ethanol fermentation of the saccharified liquid, and anaerobic treatment of the saccharification residue and the stillage. Spraying lactic acid bacteria (LCB) on the kitchen waste kept the waste fresh for over 1 week. High glucose recovery (85.5%) from LCB-sprayed waste was achieved after saccharification using Nagase N-40 glucoamylase. The resulting saccharified liquid was used directly for ethanol fermentation, without the addition of any nutrients. High ethanol productivity (24.0 g l{sup -1} h{sup -1}) was obtained when the flocculating yeast strain KF-7 was used in a continuous ethanol fermentation process at a dilution rate of 0.8 h{sup -1}. The saccharification residue was mixed with stillage and treated in a thermophilic anaerobic continuous stirred tank reactor (CSTR); a VTS loading rate of 6 g l{sup -1} d{sup -1} with 72% VTS digestion efficiency was achieved. Using this process, 30.9 g ethanol, and 65.2 l biogas with 50% methane, was produced from 1 kg of kitchen waste containing 118.0 g total sugar. Thus, energy in kitchen waste can be converted to ethanol and methane, which can then be used as fuels, while simultaneously treating kitchen waste. (author)

  10. Ethanol production from kitchen waste using the flocculating yeast Saccharomyces cerevisiae strain KF-7

    International Nuclear Information System (INIS)

    Tang, Y.-Q.; Koike, Yoji; Liu Kai; An, M.-Z.; Morimura, Shigeru; Wu Xiaolei; Kida, Kenji

    2008-01-01

    A process for producing ethanol from kitchen waste was developed in this study. The process consists of freshness preservation of the waste, saccharification of the sugars in the waste, continuous ethanol fermentation of the saccharified liquid, and anaerobic treatment of the saccharification residue and the stillage. Spraying lactic acid bacteria (LCB) on the kitchen waste kept the waste fresh for over 1 week. High glucose recovery (85.5%) from LCB-sprayed waste was achieved after saccharification using Nagase N-40 glucoamylase. The resulting saccharified liquid was used directly for ethanol fermentation, without the addition of any nutrients. High ethanol productivity (24.0 g l -1 h -1 ) was obtained when the flocculating yeast strain KF-7 was used in a continuous ethanol fermentation process at a dilution rate of 0.8 h -1 . The saccharification residue was mixed with stillage and treated in a thermophilic anaerobic continuous stirred tank reactor (CSTR); a VTS loading rate of 6 g l -1 d -1 with 72% VTS digestion efficiency was achieved. Using this process, 30.9 g ethanol, and 65.2 l biogas with 50% methane, was produced from 1 kg of kitchen waste containing 118.0 g total sugar. Thus, energy in kitchen waste can be converted to ethanol and methane, which can then be used as fuels, while simultaneously treating kitchen waste

  11. Type 1 diabetes in children is not a predisposing factor for oral yeast colonization.

    Science.gov (United States)

    Costa, Ana L; Silva, Branca M A; Soares, Rui; Mota, Diana; Alves, Vera; Mirante, Alice; Ramos, João C; Maló de Abreu, João; Santos-Rosa, Manuel; Caramelo, Francisco; Gonçalves, Teresa

    2017-06-01

    Type 1 diabetes mellitus (T1D) is considered a risk factor associated with oral yeast infections. The aim of this study was to evaluate the yeast oral carriage (in saliva and mucosal surface) of children with T1D and potential relation with host factors, particularly the subset of CD4+ T cells. Yeasts were quantified and identified in stimulated saliva and in cheek mucosal swabs of 133 diabetic T1D and 72 healthy control subjects. Salivary lymphocytes were quantified using flow cytometry. The presence of yeasts in the oral cavity (60% of total patients) was not affected by diabetes, metabolic control, duration of the disease, salivary flow rate or saliva buffer capacity, by age, sex, place of residence, number of daily meals, consumption of sweets or frequency of tooth brushing. Candida albicans was the most prevalent yeast species, but a higher number of yeast species was isolated in nondiabetics. T1D children with HbA1c ≤ 7.5 (metabolically controlled) presented higher number of CD4+ T salivary subsets when compared with the other groups of children (non-diabetic and nonmetabolically controlled) and also presented the highest number of individuals without oral yeast colonization. In conclusion, T1D does not predisposes for increased oral yeast colonization and a higher number of salivary CD4+T cells seems to result in the absence of oral colonization by yeasts. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. The effect of Maillard reaction products and yeast strain on the synthesis of key higher alcohols and esters in beer fermentations.

    Science.gov (United States)

    Dack, Rachael E; Black, Gary W; Koutsidis, Georgios; Usher, St John

    2017-10-01

    The effect of Maillard reaction products (MRPs), formed during the production of dark malts, on the synthesis of higher alcohols and esters in beer fermentations was investigated by headspace solid-phase microextraction GC-MS. Higher alcohol levels were significantly (p<0.05) higher in dark malt fermentations, while the synthesis of esters was inhibited, due to possible suppression of enzyme activity and/or gene expression linked to ester synthesis. Yeast strain also affected flavour synthesis with Saccharomyces cerevisiae strain A01 producing considerably lower levels of higher alcohols and esters than S288c and L04. S288c produced approximately double the higher alcohol levels and around twenty times more esters compared to L04. Further investigations into malt type-yeast strain interactions in relation to flavour development are required to gain better understanding of flavour synthesis that could assist in the development of new products and reduce R&D costs for the industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Construction of a genetically modified wine yeast strain expressing the Aspergillus aculeatus rhaA gene, encoding an -L-Rhamnosidase of enological interest

    NARCIS (Netherlands)

    Manzanares, P.; Orejas, M.; Vicente Gil, J.; Graaff, de L.H.; Visser, J.; Ramon, D.

    2003-01-01

    The Aspergillus aculeatus rhaA gene encoding an alpha-L-rhamnosidase has been expressed in both laboratory and industrial wine yeast strains. Wines produced in microvinifications, conducted using a combination of the genetically modified industrial strain expressing rhaA and another strain

  14. Isolation of a high malic and low acetic acid-producing sake yeast Saccharomyces cerevisiae strain screened from respiratory inhibitor 2,4-dinitrophenol (DNP)-resistant strains.

    Science.gov (United States)

    Kosugi, Shingo; Kiyoshi, Keiji; Oba, Takahiro; Kusumoto, Kenichi; Kadokura, Toshimori; Nakazato, Atsumi; Nakayama, Shunichi

    2014-01-01

    We isolated 2,4-dinitrophenol (DNP)-resistant sake yeast strains by UV mutagenesis. Among the DNP-resistant mutants, we focused on strains exhibiting high malic acid and low acetic acid production. The improved organic acid composition is unlikely to be under the control of enzyme activities related to malic and acetic acid synthesis pathways. Instead, low mitochondrial activity was observed in DNP-resistant mutants, indicating that the excess pyruvic acid generated during glycolysis is not metabolized in the mitochondria but converted to malic acid in the cytosol. In addition, the NADH/NAD(+) ratio of the DNP-resistant strains was higher than that of the parental strain K901. These results suggest that the increased NADH/NAD(+) ratio together with the low mitochondrial activity alter the organic acid composition because malic acid synthesis requires NADH, while acetic acid uses NAD(+). Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. The smt-0 mutation which abolishes mating-type switching in fission yeast is a deletion

    DEFF Research Database (Denmark)

    Styrkársdóttir, U; Egel, R; Nielsen, O

    1993-01-01

    Mating-type switching in the fission yeast, S. pombe, is initiated by a DNA double-strand break (DSB) between the mat1 cassette and the H1 homology box. The mat1-cis-acting mutant, smt-0, abolishes mating-type switching and is shown here to be a 263-bp deletion. This deletion starts in the middle...

  16. Colony size measurement of the yeast gene deletion strains for functional genomics

    Directory of Open Access Journals (Sweden)

    Mir-Rashed Nadereh

    2007-04-01

    Full Text Available Abstract Background Numerous functional genomics approaches have been developed to study the model organism yeast, Saccharomyces cerevisiae, with the aim of systematically understanding the biology of the cell. Some of these techniques are based on yeast growth differences under different conditions, such as those generated by gene mutations, chemicals or both. Manual inspection of the yeast colonies that are grown under different conditions is often used as a method to detect such growth differences. Results Here, we developed a computerized image analysis system called Growth Detector (GD, to automatically acquire quantitative and comparative information for yeast colony growth. GD offers great convenience and accuracy over the currently used manual growth measurement method. It distinguishes true yeast colonies in a digital image and provides an accurate coordinate oriented map of the colony areas. Some post-processing calculations are also conducted. Using GD, we successfully detected a genetic linkage between the molecular activity of the plant-derived antifungal compound berberine and gene expression components, among other cellular processes. A novel association for the yeast mek1 gene with DNA damage repair was also identified by GD and confirmed by a plasmid repair assay. The results demonstrate the usefulness of GD for yeast functional genomics research. Conclusion GD offers significant improvement over the manual inspection method to detect relative yeast colony size differences. The speed and accuracy associated with GD makes it an ideal choice for large-scale functional genomics investigations.

  17. Novel endophytic yeast Rhodotorula mucilaginosa strain PTD3 II: production of xylitol and ethanol in the presence of inhibitors.

    Science.gov (United States)

    Vajzovic, Azra; Bura, Renata; Kohlmeier, Kevin; Doty, Sharon L

    2012-10-01

    A systematic study was conducted characterizing the effect of furfural, 5-hydroxymethylfurfural (5-HMF), and acetic acid concentration on the production of xylitol and ethanol by a novel endophytic yeast, Rhodotorula mucilaginosa strain PTD3. The influence of different inhibitor concentrations on the growth and fermentation abilities of PTD3 cultivated in synthetic nutrient media containing 30 g/l xylose or glucose were measured during liquid batch cultures. Concentrations of up to 5 g/l of furfural stimulated production of xylitol to 77 % of theoretical yield (10 % higher compared to the control) by PTD3. Xylitol yields produced by this yeast were not affected in the presence of 5-HMF at concentrations of up to 3 g/l. At higher concentrations of furfural and 5-HMF, xylitol and ethanol yields were negatively affected. The higher the concentration of acetic acid present in a media, the higher the ethanol yield approaching 99 % of theoretical yield (15 % higher compared to the control) was produced by the yeast. At all concentrations of acetic acid tested, xylitol yield was lowered. PTD3 was capable of metabolizing concentrations of 5, 15, and 5 g/l of furfural, 5-HMF, and acetic acid, respectively. This yeast would be a potent candidate for the bioconversion of lignocellulosic sugars to biochemicals given that in the presence of low concentrations of inhibitors, its xylitol and ethanol yields are stimulated, and it is capable of metabolizing pretreatment degradation products.

  18. Genetic analysis of gamma-ray mutagenesis in yeast. I. Reversion in radiation-sensitive strains

    International Nuclear Information System (INIS)

    McKee, R.H.; Lawrence, C.W.

    1979-01-01

    The frequency of revertants induced by 60 Co γ rays of the ochre allele, cyc1-9, has been measured in radiation-sensitive strains carrying one of 19 nonallelic mutations and in wild-type strains. The results indicate that ionizing radiation mutagenesis depends on the activity of the RAD6 group of genes and that the gene functions employed are very similar, but probably not identical, to those that mediate uv mutagenesis. Repair activities dependent on the functions of the RAD50 through RAD57 loci, the major pathway for the repair of damage caused by ionizing radiation, do not appear to play any part in mutagenesis. A comparison between the γ-ray data and those obtained previously with uv and chemical mutagens suggests that the RAD6 mutagenic pathway is in fact composed of a set of processes, some of which are concerned with error-prone, and some with error-free, recovery activities

  19. Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain

    Science.gov (United States)

    Heer, Dominik; Sauer, Uwe

    2008-01-01

    Summary The production of fuel ethanol from low‐cost lignocellulosic biomass currently suffers from several limitations. One of them is the presence of inhibitors in lignocellulosic hydrolysates that are released during pre‐treatment. These compounds inhibit growth and hamper the production of ethanol, thereby affecting process economics. To delineate the effects of such complex mixtures, we conducted a chemical analysis of four different real‐world lignocellulosic hydrolysates and determined their toxicological effect on yeast. By correlating the potential inhibitor abundance to the growth‐inhibiting properties of the corresponding hydrolysates, we identified furfural as an important contributor to hydrolysate toxicity for yeast. Subsequently, we conducted a targeted evolution experiment to improve growth behaviour of the half industrial Saccharomyces cerevisiae strain TMB3400 in the hydrolysates. After about 300 generations, representative clones from these evolved populations exhibited significantly reduced lag phases in medium containing the single inhibitor furfural, but also in hydrolysate‐supplemented medium. Furthermore, these strains were able to grow at concentrations of hydrolysates that effectively killed the parental strain and exhibited significantly improved bioconversion characteristics under industrially relevant conditions. The improved resistance of our evolved strains was based on their capacity to remain viable in a toxic environment during the prolonged, furfural induced lag phase. PMID:21261870

  20. Engineered Trx2p industrial yeast strain protects glycolysis and fermentation proteins from oxidative carbonylation during biomass propagation

    Directory of Open Access Journals (Sweden)

    Gómez-Pastor Rocío

    2012-01-01

    Full Text Available Abstract Background In the yeast biomass production process, protein carbonylation has severe adverse effects since it diminishes biomass yield and profitability of industrial production plants. However, this significant detriment of yeast performance can be alleviated by increasing thioredoxins levels. Thioredoxins are important antioxidant defenses implicated in many functions in cells, and their primordial functions include scavenging of reactive oxygen species that produce dramatic and irreversible alterations such as protein carbonylation. Results In this work we have found several proteins specifically protected by yeast Thioredoxin 2 (Trx2p. Bidimensional electrophoresis and carbonylated protein identification from TRX-deficient and TRX-overexpressing cells revealed that glycolysis and fermentation-related proteins are specific targets of Trx2p protection. Indeed, the TRX2 overexpressing strain presented increased activity of the central carbon metabolism enzymes. Interestingly, Trx2p specifically preserved alcohol dehydrogenase I (Adh1p from carbonylation, decreased oligomer aggregates and increased its enzymatic activity. Conclusions The identified proteins suggest that the fermentative capacity detriment observed under industrial conditions in T73 wine commercial strain results from the oxidative carbonylation of specific glycolytic and fermentation enzymes. Indeed, increased thioredoxin levels enhance the performance of key fermentation enzymes such as Adh1p, which consequently increases fermentative capacity.

  1. Investigating cross-contamination by yeast strains from dental solid waste to waste-handling workers by DNA sequencing.

    Science.gov (United States)

    Vieira, Cristina Dutra; Tagliaferri, Thaysa Leite; de Carvalho, Maria Auxiliadora Roque; de Resende-Stoianoff, Maria Aparecida; Holanda, Rodrigo Assuncao; de Magalhães, Thais Furtado Ferreira; Magalhães, Paula Prazeres; Dos Santos, Simone Gonçalves; de Macêdo Farias, Luiz

    2018-04-01

    Trying to widen the discussion on the risks associated with dental waste, this study proposed to investigate and genetically compare yeast isolates recovered from dental solid waste and waste workers. Three samples were collected from workers' hands, nasal mucosa, and professional clothing (days 0, 30, and 180), and two from dental waste (days 0 and 180). Slide culture, microscopy, antifungal drug susceptibility, intersimple sequence repeat analysis, and amplification and sequencing of internal transcribed spacer regions were performed. Yeast strains were recovered from all waste workers' sites, including professional clothes, and from waste. Antifungal susceptibility testing demonstrated that some yeast recovered from employees and waste exhibited nonsusceptible profiles. The dendrogram demonstrated the presence of three major clusters based on similarity matrix and UPGMA grouping method. Two branches displayed 100% similarity: three strains of Candida guilliermondii isolated from different employees, working in opposite work shifts, and from diverse sites grouped in one part of branch 1 and cluster 3 that included two samples of Candida albicans recovered from waste and the hand of one waste worker. The results suggested the possibility of cross-contamination from dental waste to waste workers and reinforce the need of training programs focused on better waste management routines. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  2. Detection of weak estrogenic flavonoids using a recombinant yeast strain and a modified MCF7 cell proliferation assay

    DEFF Research Database (Denmark)

    Breinholt, Vibeke; Larsen, John Christian

    1998-01-01

    A newly developed recombinant yeast strain, in which the human estrogen receptor has been stably integrated into the genome of the yeast, was used to gain information on the estrogenic activity of a large series of dietary flavonoids. Among 23 flavonoids investigated, 8 were found to markedly...... values ranging from 84 to 102 mu M, whereas the remaining flavonoids were devoid of activity. The most potent flavonoid estrogens tested were naringenin, apigenin, kaempferol, phloretin, and the four isoflavonoids equol, genistein, daidzein, and biochanin A. With the exception of biochanin A, the main...... feature required to confer estrogenicity was the presence of a single hydroxyl group in the 4'-position of the B-ring of the flavan nucleus, corresponding to the 4-position on phloretin. The estrogenic potency of the flavonoids was found to be 4 000-4 000 000 times lower than that observed for 17 beta...

  3. Prior Inoculation with Type B Strains of Francisella tularensis Provides Partial Protection against Virulent Type A Strains in Cottontail Rabbits.

    Directory of Open Access Journals (Sweden)

    Vienna R Brown

    Full Text Available Francisella tularensis is a highly virulent bacterium that is capable of causing severe disease (tularemia in a wide range of species. This organism is characterized into two distinct subspecies: tularensis (type A and holarctica (type B which vary in several crucial ways, with some type A strains having been found to be considerably more virulent in humans and laboratory animals. Cottontail rabbits have been widely implicated as a reservoir species for this subspecies; however, experimental inoculation in our laboratory revealed type A organisms to be highly virulent, resulting in 100% mortality following challenge with 50-100 organisms. Inoculation of cottontail rabbits with the same number of organisms from type B strains of bacteria was found to be rarely lethal and to result in a robust humoral immune response. The objective of this study was to characterize the protection afforded by a prior challenge with type B strains against a later inoculation with a type A strain in North American cottontail rabbits (Sylvilagus spp. Previous infection with a type B strain of organism was found to lengthen survival time and in some cases prevent death following inoculation with a type A2 strain of F. tularensis. In contrast, inoculation of a type A1b strain was uniformly lethal in cottontail rabbits irrespective of a prior type B inoculation. These findings provide important insight about the role cottontail rabbits may play in environmental maintenance and transmission of this organism.

  4. Molecular assembly of recombinant chicken type II collagen in the yeast Pichia pastoris.

    Science.gov (United States)

    Xi, Caixia; Liu, Nan; Liang, Fei; Zhao, Xiao; Long, Juan; Yuan, Fang; Yun, Song; Sun, Yuying; Xi, Yongzhi

    2018-01-09

    Effective treatment of rheumatoid arthritis can be mediated by native chicken type II collagen (nCCII), recombinant peptide containing nCCII tolerogenic epitopes (CTEs), or a therapeutic DNA vaccine encoding the full-length CCOL2A1 cDNA. As recombinant CCII (rCCII) might avoid potential pathogenic virus contamination during nCCII preparation or chromosomal integration and oncogene activation associated with DNA vaccines, here we evaluated the importance of propeptide and telopeptide domains on rCCII triple helix molecular assembly. We constructed pC- and pN-procollagen (without N- or Cpropeptides, respectively) as well as CTEs located in the triple helical domain lacking both propeptides and telopeptides, and expressed these in yeast Pichia pastoris host strain GS115 (his4, Mut + ) simultaneously with recombinant chicken prolyl-4-hydroxylase α and β subunits. Both pC- and pN-procollagen monomers accumulated inside P. pastoris cells, whereas CTE was assembled into homotrimers with stable conformation and secreted into the supernatants, suggesting that the large molecular weight pC-or pN-procollagens were retained within the endoplasmic reticulum whereas the smaller CTEs proceeded through the secretory pathway. Furthermore, resulting recombinant chicken type II collagen pCα1(II) can induced collagen-induced arthritis (CIA) rat model, which seems to be as effective as the current standard nCCII. Notably, protease digestion assays showed that rCCII could assemble in the absence of C- and N-propeptides or telopeptides. These findings provide new insights into the minimal structural requirements for rCCII expression and folding.

  5. Production of ethanol from cassava pulp via fermentation with a surface-engineered yeast strain displaying glucoamylase

    Energy Technology Data Exchange (ETDEWEB)

    Kosugi, Akihiko; Murata, Yoshinori; Arai, Takamitsu; Mori, Yutaka [Post-harvest Science and Technology Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686 (Japan); Kondo, Akihiko [Department of Chemical Science and Engineering, Faculty of Engineering, Kobe University, Nada-ku, Kobe, 657-8501 (Japan); Ueda, Mitsuyoshi [Department of Applied Biochemistry, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Vaithanomsat, Pilanee; Thanapase, Warunee [Nanotechnology and Biotechnology Division, Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, 50 Chatuchak, Ladyao, Bangkok 10900 (Thailand)

    2009-05-15

    Cassava (Manihot esculenta Crantz) pulp, produced in large amounts as a by-product of starch manufacturing, is a major biomass resource in Southeast Asian countries. It contains abundant starch (approximately 60%) and cellulose fiber (approximately 20%). To effectively utilize the cassava pulp, an attempt was made to convert its components to ethanol using a sake-brewing yeast displaying glucoamylase on the cell surface. Saccharomyces cerevisiae Kyokai no. 7 (strain K7) displaying Rhizopus oryzae glucoamylase, designated strain K7G, was constructed using the C-terminal-half region of {alpha}-agglutinin. A sample of cassava pulp was pretreated with a hydrothermal reaction (140 C for 1 h), followed by treatment with a Trichoderma reesei cellulase to hydrolyze the cellulose in the sample. The K7G strain fermented starch and glucose in pretreated samples without addition of amylolytic enzymes, and produced ethanol in 91% and 80% of theoretical yield from 5% and 10% cassava pulp, respectively. (author)

  6. Hyphal-like extension and pseudohyphal formation in industrial strains of yeasts induced by isoamyl alcohol

    OpenAIRE

    Ceccato-Antonini, Sandra Regina; Silva, Paula Cristina da

    2002-01-01

    Yeasts can produce pseudohyphae and hyphal-like extensions under certain growth conditions like isoamyl alcohol (IAA) induction, a chief constituent of fusel oil, which is a subproduct from the ethanolic fermentation. The morphology switch from yeast to a filamentous form can be troublesome to the process. In this work it was studied the influence of fusel alcohols, nitrogen sources (ammonium sulphate and leucine) and glifosate (a chemical maturator for sugar cane) added to a complex medium o...

  7. Repression of a mating type cassette in the fission yeast by four DNA elements

    DEFF Research Database (Denmark)

    Ekwall, K; Nielsen, O; Ruusala, T

    1991-01-01

    The fission yeast, Schizosaccharomyces pombe, expresses one of two alternative mating types. They are specified by one of two determinants (M or P) present at the mat1 locus. In addition, silent copies of M and P are present on the same chromosome. In the present work we demonstrate that the diff...... partitioning in mitosis to Schizosaccharomyces pombe ars plasmids....

  8. Use of two osmoethanol tolerant yeast strain to ferment must from Tempranillo dried grapes: effect on wine composition.

    Science.gov (United States)

    López de Lerma, N; Peinado, R A

    2011-01-31

    The must from Tempranillo dried grapes was divided into four batches to produce sweet wine. The first one was fortified with ethanol up to 12% (v/v) to avoid fermentation (traditional way). Other two batches were partially fermented with two osmoethanol tolerant Saccharomyces cerevisiae strains (X4 and X5). The last one was fermented with native yeast by spontaneous fermentation. Wines fermented partially with the strains X4 and X5 show high volatile acidity values (above 2g/L expressed as acetic acid), and a glycerol concentration around 20 g/L. Both strains also produce high amount of carboxylic acids and therefore the wines show a high ethyl ester concentration. Aromatic series were obtained for all the wines by grouping aroma compounds according to their odor descriptors. The series of the fermented wines with higher values in relation with the control wine were fruity, sweet and fatty, emphasizing the fruity series in the samples fermented with the X4 and X5 strains. The sensorial analysis of the wine samples by a tasting panel put in evidence that the musts fermented with the osmoethanol tolerant yeasts were better valued than the rest of the wine samples. The must fermented with the X4 strain obtained the maximum score in terms of aroma and flavour. So, the use of these osmoethanol tolerant S. cerevisiae strains could be a suitable alternative to produce sweet wines from must with high sugar concentration. The wines obtained this way are chemically and organoleptically more complex than those elaborated traditionally. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. A cloned prokaryotic Cd2+ P-type ATPase increases yeast sensitivity to Cd2+

    International Nuclear Information System (INIS)

    Wu, C.-C.; Bal, Nathalie; Perard, Julien; Lowe, Jennifer; Boscheron, Cecile; Mintz, Elisabeth; Catty, Patrice

    2004-01-01

    CadA, the P1-type ATPase involved in Listeria monocytogenes resistance to Cd 2+ , was expressed in Saccharomyces cerevisiae and did just the opposite to what was expected, as it strikingly decreased the Cd 2+ tolerance of these cells. Yeast cells expressing the non-functional mutant Asp 398 Ala could grow on selective medium containing up to 100 μM Cd 2+ , whereas those expressing the functional protein could not grow in the presence of 1 μM Cd 2+ . The CadA-GFP fusion protein was localized in the endoplasmic reticulum membrane, suggesting that yeast hyper-sensitivity was due to Cd 2+ accumulation in the reticulum lumen. CadA is also known to transport Zn 2+ , but Zn 2+ did not protect the cells against Cd 2+ poisoning. In the presence of 10 μM Cd 2+ , transformed yeasts survived by rapid loss of their expression vector

  10. Potential application of Saccharomyces cerevisiae strains for the ...

    African Journals Online (AJOL)

    This paper aimed at evaluating the fermentation behavior of selected Saccharomyces cerevisiae strains in banana pulp and they were compared with commercial yeast (baker's yeast) for subsequent production of distilled spirits. Five types of microorganisms were used: Four yeast strains obtained from accredited ...

  11. The Geographic Distribution of Saccharomyces cerevisiae Isolates within three Italian Neighboring Winemaking Regions Reveals Strong Differences in Yeast Abundance, Genetic Diversity and Industrial Strain Dissemination

    Directory of Open Access Journals (Sweden)

    Alessia Viel

    2017-08-01

    Full Text Available In recent years the interest for natural fermentations has been re-evaluated in terms of increasing the wine terroir and managing more sustainable winemaking practices. Therefore, the level of yeast genetic variability and the abundance of Saccharomyces cerevisiae native populations in vineyard are becoming more and more crucial at both ecological and technological level. Among the factors that can influence the strain diversity, the commercial starter release that accidentally occur in the environment around the winery, has to be considered. In this study we led a wide scale investigation of S. cerevisiae genetic diversity and population structure in the vineyards of three neighboring winemaking regions of Protected Appellation of Origin, in North-East of Italy. Combining mtDNA RFLP and microsatellite markers analyses we evaluated 634 grape samples collected over 3 years. We could detect major differences in the presence of S. cerevisiae yeasts, according to the winemaking region. The population structures revealed specificities of yeast microbiota at vineyard scale, with a relative Appellation of Origin area homogeneity, and transition zones suggesting a geographic differentiation. Surprisingly, we found a widespread industrial yeast dissemination that was very high in the areas where the native yeast abundance was low. Although geographical distance is a key element involved in strain distribution, the high presence of industrial strains in vineyard reduced the differences between populations. This finding indicates that industrial yeast diffusion it is a real emergency and their presence strongly interferes with the natural yeast microbiota.

  12. Murine FATP alleviates growth and biochemical deficiencies of yeast fat1Delta strains

    DEFF Research Database (Denmark)

    Dirusso, C C; Connell, E J; Færgeman, Nils J.

    2000-01-01

    following incubation of the cells with exogenous oleate. Expression of either Fat1p or murine FATP from a plasmid in a fat1Delta strain restored these phenotypic and biochemical deficiencies. Fat1p and FATP restored growth of fat1Delta cells in the presence of cerulenin and under hypoxic conditions....... Furthermore, fatty-acid transport was restored and was found to be chain length specific: octanoate, a medium-chain fatty acid was transported in a Fat1p- and FATP-independent manner while the long-chain fatty acids myristate, palmitate, and oleate required either Fat1p or FATP for maximal levels of transport....... Lignoceryl CoA synthetase activities were restored to wild-type levels in fat1Delta strains expressing either Fat1p or FATP. Fat1p or FATP also restored wild-type levels of beta-oxidation of exogenous long-chain fatty acids. These data show that Fat1p and FATP are functionally equivalent when expressed...

  13. Utilization of Candida berkhout strains in the production of yeasts and ethyl alcohol from sulfite waste liquor and molasses

    Energy Technology Data Exchange (ETDEWEB)

    Karczewska, H

    1962-01-01

    A single strain of Candida tropicalis was used to produce EtOH and fodder yeast from pasteurized, neutralized sulfite liquor containing 3.5% reducing substances and supplemented with NH/sub 3/ and P salts, or from molasses containing 150 g sucrose per l. After 48 hours sugar utilization by Candida was 87.7% and EtOH yield 56.1%; Saccharomyces cerevisiae gave 94.8 and 64.6 to 65.2%, respectively. After 72 hours sugar utilization and EtOH yield by Candida was 94.9 and 60.4% respectively.

  14. Cloning and characterization of iron-superoxide dismutase in Antarctic yeast strain Rhodotorula mucilaginosa AN5.

    Science.gov (United States)

    Kan, Guangfeng; Wen, Hua; Wang, Xiaofei; Zhou, Ting; Shi, Cuijuan

    2017-08-01

    A novel superoxide dismutase gene from Antarctic yeast Rhodotorula mucilaginosa AN5 was cloned, sequenced, and then expressed in Escherichia coli. The R. mucilaginosa AN5 SOD (RmFeSOD) gene was 639 bp open reading frame in length, which encoded a protein of 212 amino acids with a deduced molecular mass of 23.5 kDa and a pI of 7.89. RmFeSOD was identified as iron SOD type with a natural status of homodimer. The recombinant RmFeSOD showed good pH stability in the pH 1.0-9.0 after 1 h incubation. Meanwhile, it was found to behave relatively high thermostability, and maintained more than 80% activity at 50 °C for 1 h. By addition of 1 mM metal ions, the enzyme activity increased by Zn 2+ , Cu 2+ , Mn 2+ , and Fe 3+ , and inhibited only by Mg 2+ . RmFeSOD showed relatively low tolerance to some compounds, such as PMSF, SDS, Tween-80, Triton X-100, DMSO, β-ME, and urea. However, DTT showed no inhibition to enzyme activity. Using copper stress experiment, the RmFeSOD recombinant E. coli exhibited better growth than non-recombinant bacteria, which revealed that RmFeSOD might play an important role in the adaptability of heavy metals. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Draft Genome Sequence of Mycobacterium chimaera Type Strain Fl-0169

    Science.gov (United States)

    We report the draft genome sequence of the type strain Mycobacterium chimaera Fl-0169T, a member of the Mycobacterium avium complex (MAC). M. chimaera Fl-0169T was isolated from a patient in Italy and is highly similar to strains of M. chimaera isolated in Ireland, though Fl-016...

  16. The yeast culture Saccharomyces cerevisiae (Strain 47 as manipulator of rumen fermentation in postpartal period of dairy cows

    Directory of Open Access Journals (Sweden)

    Petr Doležal

    2005-01-01

    Full Text Available In the present study, examined was the effect of a yeast culture (Saccharomyces cerevisiae, Strain 47 on rumen fermentation of cows. Animals received a diet consisting of good maize silage with a higher dry matter content (16  kg, 16  kg of clovergrass haylage, 3  kg of meadow hay and 7.5  kg feed mixture. The yeast culture was added to the mixture in the dose 6  g/day and cow. The supplement of yeast culture showed a positive effect on VFA production in comparison with control (1.16±0.013B vs. 0.84±0.063A  g/ 100 ml, and lower production of lactic acid. The utilisation of ammonia was higher by cows in treated group (8.68±0.084A mmol/L. The difference in number of protozoa of cows in the control and experimental groups was significant (302.0±12.349A vs. 359.2±1.304B ths /1 ml of rumen fluid.

  17. Apple Aminoacid Profile and Yeast Strains in the Formation of Fusel Alcohols and Esters in Cider Production.

    Science.gov (United States)

    Eleutério Dos Santos, Caroline Mongruel; Pietrowski, Giovana de Arruda Moura; Braga, Cíntia Maia; Rossi, Márcio José; Ninow, Jorge; Machado Dos Santos, Tâmisa Pires; Wosiacki, Gilvan; Jorge, Regina Maria Matos; Nogueira, Alessandro

    2015-06-01

    The amino acid profile in dessert apple must and its effect on the synthesis of fusel alcohols and esters in cider were established by instrumental analysis. The amino acid profile was performed in nine apple musts. Two apple musts with high (>150 mg/L) and low (90%) during fermentation in all the ciders. Principal component analysis (PCA) explained 81.42% of data variability and the separation of three groups for the analyzed samples was verified. The ciders manufactured with low nitrogen content showed sluggish fermentation and around 50% less content of volatile compounds (independent of the yeast strain used), which were mainly 3-methyl-1-butanol (isoamyl alcohol) and esters. However, in the presence of amino acids (asparagine, aspartic acid, glutamic acid and alanine) there was a greater differentiation between the yeasts in the production of fusel alcohols and ethyl esters. High contents of these aminoacids in dessert apple musts are essential for the production of fusel alcohols and most of esters by aromatic yeasts during cider fermentation. © 2015 Institute of Food Technologists®

  18. Antifungal activity of four honeys of different types from Algeria against pathogenic yeast: Candida albicans and Rhodotorula sp.

    Science.gov (United States)

    Moussa, Ahmed; Noureddine, Djebli; Saad, Aissat; Abdelmelek, Meslem; Abdelkader, Benhalima

    2012-07-01

    To evaluate the antifungal activity of four honeys of different types from Algeria against pathogenic yeast i.e. Candida albicans (C. albicans) and Rhodotorula sp. Four Algeria honeys of different botanical origin were analyzed to test antifungal effect against C. albicans, and Rhodotorula sp. Different concentrations (undiluted, 10%, 30%, 50% and 70% w/v) of honey were studied in vitro for their antifugal activity using C. albicans and Rhodotorula sp. as fungal strains. The range of the diameter of zone of inhibition of various concentrations of tested honeys was (7-23 mm) for Rhodotorula sp., while C. albicans showed clearly resistance towards all concentrations used. The MICs of tested honey concentrations against C. albicans and Rhodotorula sp. were (70.09-93.48)% and (4.90-99.70)% v/v, respectively. This study demonstrates that, in vitro, these natural products have clearly an antifungal activity against Rhodotorula sp. and C. albicans.

  19. [Yeast-like fungi in the gastrointestinal tract in children and adolescents with diabetes type 1].

    Science.gov (United States)

    Kowalewska, Beata; Kawko, Małgorzata; Zorena, Katarzyna; Myśliwiec, Małgorzata

    2015-01-01

    In recent years the frequency of fungal infections in human populations has increased considerably. The most common type offungus attacking the human organism is Candida albicans. Yeast-like fungi occur naturally in the oral cavity, intestines, vagina, or skin, however in amounts not dangerous to human health. The studies so far have shown that patients with diabetes type 1 (T1DM) to a large degree are exposed to complications related to fungal infections. A substantial growth of fungi observed in diabetic patients may unfavorably affect metabolic compensation, and lead to increased demand for insulin, as well as to the difficult to cure symptom infections. The weaker the immune resistance in patients with diabetes, the greater the risk of ailments related to candidiasis. The article contains a review of recent literature regarding the problems related to occurrence of yeast-like fungi in digestive tract of children with diabetes type 1. © Polish Society for Pediatric Endocrinology and Diabetology.

  20. Complete Genome Sequence of Mycobacterium phlei Type Strain RIVM601174

    KAUST Repository

    Abdallah, A. M.; Rashid, M.; Adroub, S. A.; Arnoux, M.; Ali, Shahjahan; van Soolingen, D.; Bitter, W.; Pain, Arnab

    2012-01-01

    Mycobacterium phlei is a rapidly growing nontuberculous Mycobacterium species that is typically nonpathogenic, with few reported cases of human disease. Here we report the whole genome sequence of M. phlei type strain RIVM601174.

  1. Complete Genome Sequence of Mycobacterium phlei Type Strain RIVM601174

    KAUST Repository

    Abdallah, A. M.

    2012-05-24

    Mycobacterium phlei is a rapidly growing nontuberculous Mycobacterium species that is typically nonpathogenic, with few reported cases of human disease. Here we report the whole genome sequence of M. phlei type strain RIVM601174.

  2. Synergism between hydrogen peroxide and seventeen acids against five agri-food-borne fungi and one yeast strain.

    Science.gov (United States)

    Martin, H; Maris, P

    2012-12-01

    The objective of this study was to evaluate fungicidal efficacy of hydrogen peroxide administered in combination with 17 mineral and organic acids authorized for use in the food industry. The assays were performed on a 96-well microplate using a microdilution technique based on the checkerboard titration method. The six selected strains (one yeast and five fungi) were reference strains and strains representative of contaminating fungi found in the food industry. Each synergistic hydrogen peroxide/acid combination found after fifteen minutes contact time at 20 °C in distilled water was then tested in conditions simulating four different use conditions. Twelve combinations were synergistic in distilled water, eleven of these remained synergistic with one or more of the four mineral and organic interfering substances selected. Hydrogen peroxide/formic acid combination remained effective against four strains and was never antagonistic against the other two fungi. Combinations with propionic acid and acetic acid stayed synergistic against two strains. Those with oxalic acid and lactic acid kept their synergism only against Candida albicans. No synergism was detected against Penicillium cyclopium. Synergistic combinations of disinfectants were revealed, among them the promising hydrogen peroxide/formic acid combination. A rapid screening method developed in our laboratory for bacteria was adapted to fungi and used to reveal the synergistic potential of disinfectants and/or sanitizers combinations. © 2012 The Society for Applied Microbiology.

  3. Genome Sequence of the Lager-Brewing Yeast Saccharomyces sp. Strain M14, Used in the High-Gravity Brewing Industry in China.

    Science.gov (United States)

    Liu, Chunfeng; Li, Qi; Niu, Chengtuo; Zheng, Feiyun; Li, Yongxian; Zhao, Yun; Yin, Xiangsheng

    2017-10-26

    Lager-brewing yeasts are mainly used for the production of lager beers. Illumina and PacBio-based sequence analyses revealed an approximate genome size of 22.8 Mb, with a GC content of 38.98%, for the Chinese lager-brewing yeast Saccharomyces sp. strain M14. Based on ab initio prediction, 9,970 coding genes were annotated. Copyright © 2017 Liu et al.

  4. Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains

    DEFF Research Database (Denmark)

    Canelas, Andre B.; Harrison, Nicola; Fazio, Alessandro

    2010-01-01

    The field of systems biology is often held back by difficulties in obtaining comprehensive, high-quality, quantitative data sets. In this paper, we undertook an interlaboratory effort to generate such a data set for a very large number of cellular components in the yeast Saccharomyces cerevisiae,...

  5. Functionality of selected strains of moulds and yeasts from Vietnamese rice wine starters

    NARCIS (Netherlands)

    Dung, N.T.P.; Rombouts, F.M.; Nout, M.J.R.

    2006-01-01

    The role of starch-degrading mycelial fungi, and the alcohol production and ethanol tolerance of the yeasts isolated from selected Vietnamese traditional rice wine starters were examined, and optimum conditions for these essential steps in rice wine fermentation were determined. Of pure isolates

  6. A multi-phase approach to select new wine yeast strains with enhanced fermentative fitness and glutathione production.

    Science.gov (United States)

    Bonciani, Tommaso; De Vero, Luciana; Mezzetti, Francesco; Fay, Justin C; Giudici, Paolo

    2018-03-01

    The genetic improvement of winemaking yeasts is a virtually infinite process, as the design of new strains must always cope with varied and ever-evolving production contexts. Good wine yeasts must feature both good primary traits, which are related to the overall fermentative fitness of the strain, and secondary traits, which provide accessory features augmenting its technological value. In this context, the superiority of "blind," genetic improvement techniques, as those based on the direct selection of the desired phenotype without prior knowledge of the genotype, was widely proven. Blind techniques such as adaptive evolution strategies were implemented for the enhancement of many traits of interest in the winemaking field. However, these strategies usually focus on single traits: this possibly leads to genetic tradeoff phenomena, where the selection of enhanced secondary traits might lead to sub-optimal primary fermentation traits. To circumvent this phenomenon, we applied a multi-step and strongly directed genetic improvement strategy aimed at combining a strong fermentative aptitude (primary trait) with an enhanced production of glutathione (secondary trait). We exploited the random genetic recombination associated to a library of 69 monosporic clones of strain UMCC 855 (Saccharomyces cerevisiae) to search for new candidates possessing both traits. This was achieved by consecutively applying three directional selective criteria: molybdate resistance (1), fermentative aptitude (2), and glutathione production (3). The strategy brought to the selection of strain 21T2-D58, which produces a high concentration of glutathione, comparable to that of other glutathione high-producers, still with a much greater fermentative aptitude.

  7. Effect of yeast strain and some nutritional factors on tannin composition and potential astringency of model wines.

    Science.gov (United States)

    Rinaldi, Alessandra; Blaiotta, Giuseppe; Aponte, Maria; Moio, Luigi

    2016-02-01

    Nine Saccharomyces cerevisiae cultures, isolated from different sources, were tested for their ability to reduce tannins reactive towards salivary proteins, and potentially responsible for wine astringency. Strains were preliminary genetically characterized and evaluated for physiological features of technological interest. Laboratory-scale fermentations were performed in three synthetic media: CT) containing enological grape tannin; CTP) CT supplemented with organic nitrogen sources; CTPV) CTP supplemented with vitamins. Adsorption of total tannins, tannins reactive towards salivary proteins, yellow pigments, phenolics having antioxidant activity, and total phenols, characterizing the enological tannin, was determined by spectrophotometric methods after fermentation. The presence of vitamins and peptones in musts greatly influenced the adsorption of tannins reactive towards salivary proteins (4.24 g/L gallic acid equivalent), thus promoting the reduction of the potential astringency of model wines. With reference to the different phenolic classes, yeast strains showed different adsorption abilities. From a technological point of view, the yeast choice proved to be crucial in determining changes in gustative and mouthfeel profile of red wines and may assist winemakers to modulate colour and astringency of wine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Induction of ploidy level increments in an asporogenous industrial strain of the yeast Saccaromyces cerevisiae by UV irradiation

    International Nuclear Information System (INIS)

    Sasaki, Takashi

    1992-01-01

    Cells of an asporogenous industrial strain of the yeast Saccaromyces cerevisiae were irradiated with UV light by using a method that was developed previously. This treatment gave rise to large-cell clones among the surviving cells, from which colonies consisting of cells with a normal morphology and a prototropic property were obtained. The large-cell trait of these was stably inheritable, with the cell volumes being about twice that of the parent for 7 years on a slant agar medium at 4C with repeated transfers. The cellular DNA content of these clones, in comparison to those of two authentic haploid strains, was determined by chemical analysis. The ratio of the DNA contents showed that the parent and its large-cell derivatives were a diploid and tetraploids, respectively. No abnormality was found in the chromosomal DNA patterns of the large-cell clones, at least as determined by agarose gel electrophoresis with a CHEF-DR II pulsed-field electrophoresis system. These findings led to the conclusion that the UV light method is applicable for inducing ploidy level increments in the widely used yeast species S. cerevisiae

  9. Stress tolerance and growth physiology of yeast strains from the Brazilian fuel ethanol industry.

    Science.gov (United States)

    Della-Bianca, B E; Gombert, A K

    2013-12-01

    Improved biofuels production requires a better understanding of industrial microorganisms. Some wild Saccharomyces cerevisiae strains, isolated from the fuel ethanol industry in Brazil, present exceptional fermentation performance, persistence and prevalence in the harsh industrial environment. Nevertheless, their physiology has not yet been systematically investigated. Here we present a first systematic evaluation of the widely used industrial strains PE-2, CAT-1, BG-1 and JP1, in terms of their tolerance towards process-related stressors. We also analyzed their growth physiology under heat stress. These strains were evaluated in parallel to laboratory and baker's strains. Whereas the industrial strains performed in general better than the laboratory strains under ethanol or acetic acid stresses and on industrial media, high sugar stress was tolerated equally by all strains. Heat and low pH stresses clearly distinguished fuel ethanol strains from the others, indicating that these conditions might be the ones that mostly exert selective pressure on cells in the industrial environment. During shake-flask cultivations using a synthetic medium at 37 °C, industrial strains presented higher ethanol yields on glucose than the laboratory strains, indicating that they could have been selected for this trait-a response to energy-demanding fermentation conditions. These results might be useful to guide future improvements of large-scale fuel ethanol production via engineering of stress tolerance traits in other strains, and eventually also for promoting the use of these fuel ethanol strains in different industrial bioprocesses.

  10. Production of Food Grade Yeasts

    Directory of Open Access Journals (Sweden)

    Argyro Bekatorou

    2006-01-01

    Full Text Available Yeasts have been known to humans for thousands of years as they have been used in traditional fermentation processes like wine, beer and bread making. Today, yeasts are also used as alternative sources of high nutritional value proteins, enzymes and vitamins, and have numerous applications in the health food industry as food additives, conditioners and flavouring agents, for the production of microbiology media and extracts, as well as livestock feeds. Modern scientific advances allow the isolation, construction and industrial production of new yeast strains to satisfy the specific demands of the food industry. Types of commercial food grade yeasts, industrial production processes and raw materials are highlighted. Aspects of yeast metabolism, with respect to carbohydrate utilization, nutritional aspects and recent research advances are also discussed.

  11. Yeasts in sustainable bioethanol production: A review.

    Science.gov (United States)

    Mohd Azhar, Siti Hajar; Abdulla, Rahmath; Jambo, Siti Azmah; Marbawi, Hartinie; Gansau, Jualang Azlan; Mohd Faik, Ainol Azifa; Rodrigues, Kenneth Francis

    2017-07-01

    Bioethanol has been identified as the mostly used biofuel worldwide since it significantly contributes to the reduction of crude oil consumption and environmental pollution. It can be produced from various types of feedstocks such as sucrose, starch, lignocellulosic and algal biomass through fermentation process by microorganisms. Compared to other types of microoganisms, yeasts especially Saccharomyces cerevisiae is the common microbes employed in ethanol production due to its high ethanol productivity, high ethanol tolerance and ability of fermenting wide range of sugars. However, there are some challenges in yeast fermentation which inhibit ethanol production such as high temperature, high ethanol concentration and the ability to ferment pentose sugars. Various types of yeast strains have been used in fermentation for ethanol production including hybrid, recombinant and wild-type yeasts. Yeasts can directly ferment simple sugars into ethanol while other type of feedstocks must be converted to fermentable sugars before it can be fermented to ethanol. The common processes involves in ethanol production are pretreatment, hydrolysis and fermentation. Production of bioethanol during fermentation depends on several factors such as temperature, sugar concentration, pH, fermentation time, agitation rate, and inoculum size. The efficiency and productivity of ethanol can be enhanced by immobilizing the yeast cells. This review highlights the different types of yeast strains, fermentation process, factors affecting bioethanol production and immobilization of yeasts for better bioethanol production.

  12. Yeasts in sustainable bioethanol production: A review

    Directory of Open Access Journals (Sweden)

    Siti Hajar Mohd Azhar

    2017-07-01

    Full Text Available Bioethanol has been identified as the mostly used biofuel worldwide since it significantly contributes to the reduction of crude oil consumption and environmental pollution. It can be produced from various types of feedstocks such as sucrose, starch, lignocellulosic and algal biomass through fermentation process by microorganisms. Compared to other types of microoganisms, yeasts especially Saccharomyces cerevisiae is the common microbes employed in ethanol production due to its high ethanol productivity, high ethanol tolerance and ability of fermenting wide range of sugars. However, there are some challenges in yeast fermentation which inhibit ethanol production such as high temperature, high ethanol concentration and the ability to ferment pentose sugars. Various types of yeast strains have been used in fermentation for ethanol production including hybrid, recombinant and wild-type yeasts. Yeasts can directly ferment simple sugars into ethanol while other type of feedstocks must be converted to fermentable sugars before it can be fermented to ethanol. The common processes involves in ethanol production are pretreatment, hydrolysis and fermentation. Production of bioethanol during fermentation depends on several factors such as temperature, sugar concentration, pH, fermentation time, agitation rate, and inoculum size. The efficiency and productivity of ethanol can be enhanced by immobilizing the yeast cells. This review highlights the different types of yeast strains, fermentation process, factors affecting bioethanol production and immobilization of yeasts for better bioethanol production.

  13. Molecular diversity of neurotoxins from Clostridium botulinum type D strains.

    OpenAIRE

    Moriishi, K; Syuto, B; Kubo, S; Oguma, K

    1989-01-01

    The molecular properties of Clostridium botulinum type D South African (D-SA) were compared with those of neurotoxins from type D strain 1873 (D-1873) and type C strains Stockholm and 6813. D-SA toxin, purified 610-fold from the culture supernatant in an overall yield of 30%, consisted of an intact peptide chain with a molecular weight of 140,000. Limited proteolysis of the toxin by trypsin formed a dichain structure consisting of a light chain (Mr, 50,000) and a heavy chain (Mr, 90,000) link...

  14. Genetic characterization of type A enterotoxigenic Clostridium perfringens strains.

    Directory of Open Access Journals (Sweden)

    Agi Deguchi

    2009-05-01

    Full Text Available Clostridium perfringens type A, is both a ubiquitous environmental bacterium and a major cause of human gastrointestinal disease, which usually involves strains producing C. perfringens enterotoxin (CPE. The gene (cpe encoding this toxin can be carried on the chromosome or a large plasmid. Interestingly, strains carrying cpe on the chromosome and strains carrying cpe on a plasmid often exhibit different biological characteristics, such as resistance properties against heat. In this study, we investigated the genetic properties of C. perfringens by PCR-surveying 21 housekeeping genes and genes on representative plasmids and then confirmed those results by Southern blot assay (SB of five genes. Furthermore, sequencing analysis of eight housekeeping genes and multilocus sequence typing (MLST analysis were also performed. Fifty-eight C. perfringens strains were examined, including isolates from: food poisoning cases, human gastrointestinal disease cases, foods in Japan or the USA, or feces of healthy humans. In the PCR survey, eight of eleven housekeeping genes amplified positive reactions in all strains tested. However, by PCR survey and SB assay, one representative virulence gene, pfoA, was not detected in any strains carrying cpe on the chromosome. Genes involved in conjugative transfer of the cpe plasmid were also absent from almost all chromosomal cpe strains. MLST showed that, regardless of their geographic origin, date of isolation, or isolation source, chromosomal cpe isolates, i assemble into one definitive cluster ii lack pfoA and iii lack a plasmid related to the cpe plasmid. Similarly, independent of their origin, strains carrying a cpe plasmid also appear to be related, but are more variable than chromosomal cpe strains, possibly because of the instability of cpe-borne plasmid(s and/or the conjugative transfer of cpe-plasmid(s into unrelated C. perfringens strains.

  15. Bioremediation of acidic oily sludge-contaminated soil by the novel yeast strain Candida digboiensis TERI ASN6.

    Science.gov (United States)

    Sood, Nitu; Patle, Sonali; Lal, Banwari

    2010-03-01

    Primitive wax refining techniques had resulted in almost 50,000 tonnes of acidic oily sludge (pH 1-3) being accumulated inside the Digboi refinery premises in Assam state, northeast India. A novel yeast species Candida digboiensis TERI ASN6 was obtained that could degrade the acidic petroleum hydrocarbons at pH 3 under laboratory conditions. The aim of this study was to evaluate the degradation potential of this strain under laboratory and field conditions. The ability of TERI ASN6 to degrade the hydrocarbons found in the acidic oily sludge was established by gravimetry and gas chromatography-mass spectroscopy. Following this, a feasibility study was done, on site, to study various treatments for the remediation of the acidic sludge. Among the treatments, the application of C. digboiensis TERI ASN6 with nutrients showed the highest degradation of the acidic oily sludge. This treatment was then selected for the full-scale bioremediation study conducted on site, inside the refinery premises. The novel yeast strain TERI ASN6 could degrade 40 mg of eicosane in 50 ml of minimal salts medium in 10 days and 72% of heneicosane in 192 h at pH 3. The degradation of alkanes yielded monocarboxylic acid intermediates while the polycyclic aromatic hydrocarbon pyrene found in the acidic oily sludge yielded the oxygenated intermediate pyrenol. In the feasibility study, the application of TERI ASN6 with nutrients showed a reduction of solvent extractable total petroleum hydrocarbon (TPH) from 160 to 28.81 g kg(-1) soil as compared to a TPH reduction from 183.85 to 151.10 g kg(-1) soil in the untreated control in 135 days. The full-scale bioremediation study in a 3,280-m(2) area in the refinery showed a reduction of TPH from 184.06 to 7.96 g kg(-1) soil in 175 days. Degradation of petroleum hydrocarbons by microbes is a well-known phenomenon, but most microbes are unable to withstand the low pH conditions found in Digboi refinery. The strain C. digboiensis could efficiently degrade

  16. Biocontrol activity of four non- and low-fermenting yeast strains against Aspergillus carbonarius and their ability to remove ochratoxin A from grape juice.

    Science.gov (United States)

    Fiori, Stefano; Urgeghe, Pietro Paolo; Hammami, Walid; Razzu, Salvatorico; Jaoua, Samir; Migheli, Quirico

    2014-10-17

    Aspergillus spp. infection of grape may lead to ochratoxin A (OTA) contamination in processed beverages such as wine and grape juice. The aim of the current study was to evaluate the biocontrol potential of two non-fermenting (Cyberlindnera jadinii 273 and Candida friedrichii 778) and two low-fermenting (Candida intermedia 235 and Lachancea thermotolerans 751) yeast strains against the pathogenic fungus and OTA-producer Aspergillus carbonarius, and their ability to remove OTA from grape juice. Two strains, 235 and 751, showed a significant ability to inhibit A. carbonarius both on grape berries and in in vitro experiments. Neither their filtrate nor their autoclaved filtrate culture broth was able to prevent consistently pathogen growth. Volatile organic compounds (VOCs) produced by all four selected yeasts were likely able to consistently prevent pathogen sporulation in vitro. VOCs produced by the non-fermenting strain 778 also significantly reduced A. carbonarius vegetative growth. Three yeast strains (235, 751, and 778) efficiently adsorbed artificially spiked OTA from grape juice, while autoclaving treatment improved OTA adsorption capacity by all the four tested strains. Biological control of A. carbonarius and OTA-decontamination using yeast is proposed as an approach to meet the Islamic dietary laws concerning the absence of alcohol in halal beverages. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  17. SCREENING OF SELECTED OLEAGINOUS YEASTS FOR LIPID PRODUCTION FROM GLYCEROL AND SOME FACTORS WHICH AFFECT LIPID PRODUCTION BY YARROWIA LIPOLYTICA STRAINS

    Directory of Open Access Journals (Sweden)

    Salinee Sriwongchai

    2013-04-01

    Full Text Available The ability of eight yeast strains to utilize glycerol as a sole carbon source and accumulate lipids in a chemically defined medium was screened. Among the yeasts, Yarrowia lipolytica strains DSM 70561 and JDC 335 grew to high cell densities on glycerol. These strains were further tested for lipid accumulation under varying nutritional conditions in Erlenmeyer flasks. The results showed that strains DSM 70561 and JDC 335 accumulated lipids up to 37.1 % and 54.4 % of total cell dry weight, respectively, when the defined medium was supplemented with 1 g/L urea and 2 g/L yeast extract. The lipids accumulated by the two yeasts contained a high proportion of C16:0, C18:1, C18:2 and C18:0 fatty acids. The results suggest that Y. lipolytica strains DSM 70561 and JDC 335 have the potential for converting crude glycerol into fatty acids which can in turn be utilized as substrate for biodiesel production.

  18. Outlining a future for non-Saccharomyces yeasts: selection of putative spoilage wine strains to be used in association with Saccharomyces cerevisiae for grape juice fermentation.

    Science.gov (United States)

    Domizio, Paola; Romani, Cristina; Lencioni, Livio; Comitini, Francesca; Gobbi, Mirko; Mannazzu, Ilaria; Ciani, Maurizio

    2011-06-30

    The use of non-Saccharomyces yeasts that are generally considered as spoilage yeasts, in association with Saccharomyces cerevisiae for grape must fermentation was here evaluated. Analysis of the main oenological characteristics of pure cultures of 55 yeasts belonging to the genera Hanseniaspora, Pichia, Saccharomycodes and Zygosaccharomyces revealed wide biodiversity within each genus. Moreover, many of these non-Saccharomyces strains had interesting oenological properties in terms of fermentation purity, and ethanol and secondary metabolite production. The use of four non-Saccharomyces yeasts (one per genus) in mixed cultures with a commercial S. cerevisiae strain at different S. cerevisiae/non-Saccharomyces inoculum ratios was investigated. This revealed that most of the compounds normally produced at high concentrations by pure cultures of non-Saccharomyces, and which are considered detrimental to wine quality, do not reach threshold taste levels in these mixed fermentations. On the other hand, the analytical profiles of the wines produced by these mixed cultures indicated that depending on the yeast species and the S. cerevisiae/non-Saccharomyces inoculum ratio, these non-Saccharomyces yeasts can be used to increase production of polysaccharides and to modulate the final concentrations of acetic acid and volatile compounds, such as ethyl acetate, phenyl-ethyl acetate, 2-phenyl ethanol, and 2-methyl 1-butanol. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Adaptability of lactic acid bacteria and yeasts to sourdoughs prepared from cereals, pseudocereals and cassava and use of competitive strains as starters.

    Science.gov (United States)

    Vogelmann, Stephanie A; Seitter, Michael; Singer, Ulrike; Brandt, Markus J; Hertel, Christian

    2009-04-15

    The adaptability of lactic acid bacteria (LAB) and yeasts to sourdoughs prepared from cereals, pseudocereals and cassava was investigated using PCR-DGGE and bacteriological culture combined with rRNA gene sequence analysis. Sourdoughs were prepared either from flours of the cereals wheat, rye, oat, barley, rice, maize, and millet, or from the pseudocereals amaranth, quinoa, and buckwheat, or from cassava, using a starter consisting of various species of LAB and yeasts. Doughs were propagated until a stable microbiota was established. The dominant LAB and yeast species were Lactobacillus fermentum, Lactobacillus helveticus, Lactobacillus paralimentarius, Lactobacillus plantarum, Lactobacillus pontis, Lactobacillus spicheri, Issatchenkia orientalis and Saccharomyces cerevisiae. The proportion of the species within the microbiota varied. L. paralimentarius dominated in the pseudocereal sourdoughs, L. fermentum, L. plantarum and L. spicheri in the cassava sourdough, and L. fermentum, L. helveticus and L. pontis in the cereal sourdoughs. S. cerevisiae constituted the dominating yeast, except for quinoa sourdough, where I. orientalis also reached similar counts, and buckwheat and oat sourdoughs, where no yeasts could be detected. To assess the usefulness of competitive LAB and yeasts as starters, the fermentations were repeated using flours from rice, maize, millet and the pseudocereals, and by starting the dough fermentation with selected dominant strains. At the end of fermentation, most of starter strains belonged to the dominating microbiota. For the rice, millet and quinoa sourdoughs the species composition was similar to that of the prior fermentation, whereas in the other sourdoughs, the composition differed.

  20. [Multilocus sequence-typing for characterization of Moscow strains of Haemophilus influenzae type b].

    Science.gov (United States)

    Platonov, A E; Mironov, K O; Iatsyshina, S B; Koroleva, I S; Platonova, O V; Gushchin, A E; Shipulin, G A

    2003-01-01

    Haemophilius influenzae, type b (Hib) bacteria, were genotyped by multilocus sequence typing (MLST) using 5 loci (adk, fucK, mdh, pgi, recA). 42 Moscow Hib strains (including 38 isolates form cerebrospinal fluid of children, who had purulent meningitis in 1999-2001, and 4 strains isolated from healthy carriers of Hib), as well as 2 strains from Yekaterinburg were studied. In MLST a strain is characterized, by alleles and their combinations (an allele profile) referred to also as sequence-type (ST). 9 Sts were identified within the Russian Hib bacteria: ST-1 was found in 25 strains (57%), ST-12 was found in 8 strains (18%), ST-11 was found in 4 strains (9%) and ST-15 was found in 2 strains (4.5%); all other STs strains (13, 14, 16, 17, 51) were found in isolated cases (2.3%). A comparison of allelic profiles and of nucleotide sequences showed that 93% of Russian isolates, i.e. strain with ST-1, 11, 12, 13, 15 and 17, belong to one and the same clonal complex. 2 isolates from Norway and Sweden from among 7 foreign Hib strains studied up to now can be described as belonging to the same clonal complex; 5 Hib strains were different from the Russian ones.

  1. Distinct Domestication Trajectories in Top-Fermenting Beer Yeasts and Wine Yeasts.

    Science.gov (United States)

    Gonçalves, Margarida; Pontes, Ana; Almeida, Pedro; Barbosa, Raquel; Serra, Marta; Libkind, Diego; Hutzler, Mathias; Gonçalves, Paula; Sampaio, José Paulo

    2016-10-24

    Beer is one of the oldest alcoholic beverages and is produced by the fermentation of sugars derived from starches present in cereal grains. Contrary to lager beers, made by bottom-fermenting strains of Saccharomyces pastorianus, a hybrid yeast, ale beers are closer to the ancient beer type and are fermented by S. cerevisiae, a top-fermenting yeast. Here, we use population genomics to investigate (1) the closest relatives of top-fermenting beer yeasts; (2) whether top-fermenting yeasts represent an independent domestication event separate from those already described; (3) whether single or multiple beer yeast domestication events can be inferred; and (4) whether top-fermenting yeasts represent non-recombinant or recombinant lineages. Our results revealed that top-fermenting beer yeasts are polyphyletic, with a main clade composed of at least three subgroups, dominantly represented by the German, British, and wheat beer strains. Other beer strains were phylogenetically close to sake, wine, or bread yeasts. We detected genetic signatures of beer yeast domestication by investigating genes previously linked to brewing and using genome-wide scans. We propose that the emergence of the main clade of beer yeasts is related with a domestication event distinct from the previously known cases of wine and sake yeast domestication. The nucleotide diversity of the main beer clade more than doubled that of wine yeasts, which might be a consequence of fundamental differences in the modes of beer and wine yeast domestication. The higher diversity of beer strains could be due to the more intense and different selection regimes associated to brewing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Brunenders: a partially attenuated historic poliovirus type I vaccine strain.

    Science.gov (United States)

    Sanders, Barbara P; Liu, Ying; Brandjes, Alies; van Hoek, Vladimir; de Los Rios Oakes, Isabel; Lewis, John; Wimmer, Eckard; Custers, Jerome H H V; Schuitemaker, Hanneke; Cello, Jeronimo; Edo-Matas, Diana

    2015-09-01

    Brunenders, a type I poliovirus (PV) strain, was developed in 1952 by J. F. Enders and colleagues through serial in vitro passaging of the parental Brunhilde strain, and was reported to display partial neuroattenuation in monkeys. This phenotype of attenuation encouraged two vaccine manufacturers to adopt Brunenders as the type I component for their inactivated poliovirus vaccines (IPVs) in the 1950s, although today no licensed IPV vaccine contains Brunenders. Here we confirmed, in a transgenic mouse model, the report of Enders on the reduced neurovirulence of Brunenders. Although dramatically neuroattenuated relative to WT PV strains, Brunenders remains more virulent than the attenuated oral vaccine strain, Sabin 1. Importantly, the neuroattenuation of Brunenders does not affect in vitro growth kinetics and in vitro antigenicity, which were similar to those of Mahoney, the conventional type I IPV vaccine strain. We showed, by full nucleotide sequencing, that Brunhilde and Brunenders differ at 31 nucleotides, eight of which lead to amino acid changes, all located in the capsid. Upon exchanging the Brunenders capsid sequence with that of the Mahoney capsid, WT neurovirulence was regained in vivo, suggesting a role for the capsid mutations in Brunenders attenuation. To date, as polio eradication draws closer, the switch to using attenuated strains for IPV is actively being pursued. Brunenders preceded this novel strategy as a partially attenuated IPV strain, accompanied by decades of successful use in the field. Providing data on the attenuation of Brunenders may be of value in the further construction of attenuated PV strains to support the grand pursuit of the global eradication of poliomyelitis.

  3. Inactive and mutagenic effects induced by carbon beams of different LET values in a red yeast strain

    International Nuclear Information System (INIS)

    Wang Jufang; Lu Dong; Wu Xin; Sun Haining; Ma Shuang; Li Renmin; Li Wenjian

    2010-01-01

    To evaluate biological action of microorganism exposed to charged particles during the long distance space exploration, induction of inactivation and mutation in a red yeast strain Rhodotorula glutinis AY 91015 by carbon beams of different LET values (14.9-120.0 keV μm -1 ) was investigated. It was found that survival curves were exponential, and mutation curves were linear for all LET values. The dependence of inactivation cross section on LET approached saturation near 120.0 keV μm -1 . The mutation cross section saturated when LET was higher than 58.2 keV μm -1 . Meanwhile, the highest RBE i for inactivation located at 120.0 keV μm -1 and the highest RBE m for mutation was at 58.2 keV μm -1 . The experiments imply that the most efficient mutagenic part of the depth dose profile of carbon ion is at the plateau region with intermediate LET value in which energy deposited is high enough to induce mutagenic lesions but too low to induce over kill effect in the yeast cells.

  4. Inactive and mutagenic effects induced by carbon beams of different LET values in a red yeast strain

    Science.gov (United States)

    Wang, Jufang; Lu, Dong; Wu, Xin; Sun, Haining; Ma, Shuang; Li, Renmin; Li, Wenjian

    2010-09-01

    To evaluate biological action of microorganism exposed to charged particles during the long distance space exploration, induction of inactivation and mutation in a red yeast strain Rhodotorula glutinis AY 91015 by carbon beams of different LET values (14.9-120.0 keV μm -1) was investigated. It was found that survival curves were exponential, and mutation curves were linear for all LET values. The dependence of inactivation cross section on LET approached saturation near 120.0 keV μm -1. The mutation cross section saturated when LET was higher than 58.2 keV μm -1. Meanwhile, the highest RBE i for inactivation located at 120.0 keV μm -1 and the highest RBE m for mutation was at 58.2 keV μm -1. The experiments imply that the most efficient mutagenic part of the depth dose profile of carbon ion is at the plateau region with intermediate LET value in which energy deposited is high enough to induce mutagenic lesions but too low to induce over kill effect in the yeast cells.

  5. Inactive and mutagenic effects induced by carbon beams of different LET values in a red yeast strain

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jufang, E-mail: jufangwang@impcas.ac.c [Institute of Modern Physics, Chinese Academy of Sciences, Nanchang Road No. 509, Lanzhou 730000 (China); Lu Dong; Wu Xin; Sun Haining; Ma Shuang; Li Renmin; Li Wenjian [Institute of Modern Physics, Chinese Academy of Sciences, Nanchang Road No. 509, Lanzhou 730000 (China)

    2010-09-15

    To evaluate biological action of microorganism exposed to charged particles during the long distance space exploration, induction of inactivation and mutation in a red yeast strain Rhodotorula glutinis AY 91015 by carbon beams of different LET values (14.9-120.0 keV {mu}m{sup -1}) was investigated. It was found that survival curves were exponential, and mutation curves were linear for all LET values. The dependence of inactivation cross section on LET approached saturation near 120.0 keV {mu}m{sup -1}. The mutation cross section saturated when LET was higher than 58.2 keV {mu}m{sup -1}. Meanwhile, the highest RBE{sub i} for inactivation located at 120.0 keV {mu}m{sup -1} and the highest RBE{sub m} for mutation was at 58.2 keV {mu}m{sup -1}. The experiments imply that the most efficient mutagenic part of the depth dose profile of carbon ion is at the plateau region with intermediate LET value in which energy deposited is high enough to induce mutagenic lesions but too low to induce over kill effect in the yeast cells.

  6. Genetic analysis of D-xylose metabolism by endophytic yeast strains of Rhodotorula graminis and Rhodotorula mucilaginosa

    Directory of Open Access Journals (Sweden)

    Ping Xu

    2011-01-01

    Full Text Available Two novel endophytic yeast strains, WP1 and PTD3, isolated from within the stems of poplar (Populus trees, were genetically characterized with respect to their xylose metabolism genes. These two strains, belonging to the species Rhodotorula graminis and R. mucilaginosa, respectively, utilize both hexose and pentose sugars, including the common plant pentose sugar, D-xylose. The xylose reductase (XYL1 and xylitol dehydrogenase (XYL2 genes were cloned and characterized. The derived amino acid sequences of xylose reductase (XR and xylose dehydrogenase (XDH were 32%~41% homologous to those of Pichia stipitis and Candida. spp., two species known to utilize xylose. The derived XR and XDH sequences of WP1 and PTD3 had higher homology (73% and 69% identity with each other. WP1 and PTD3 were grown in single sugar and mixed sugar media to analyze the XYL1 and XYL2 gene regulation mechanisms. Our results revealed that for both strains, the gene expression is induced by D-xylose, and that in PTD3 the expression was not repressed by glucose in the presence of xylose.

  7. Isolation and characterization of an acrylamide-degrading yeast Rhodotorula sp. strain MBH23 KCTC 11960BP.

    Science.gov (United States)

    Rahim, M B H; Syed, M A; Shukor, M Y

    2012-10-01

    As well as for chemical and environmental reasons, acrylamide is widely used in many industrial applications. Due to its carcinogenicity and toxicity, its discharge into the environment causes adverse effects on humans and ecology alike. In this study, a novel acrylamide-degrading yeast has been isolated. The isolate was identified as Rhodotorula sp. strain MBH23 using ITS rRNA analysis. The results showed that the best carbon source for growth was glucose at 1.0% (w/v). The optimum acrylamide concentration, being a nitrogen source for cellular growth, was at 500 mg l(-1). The highest tolerable concentration of acrylamide was 1500 mg l(-1) whereas growth was completely inhibited at 2000 mg l(-1). At 500 mg l(-1), the strain MBH completely degraded acrylamide on day 5. Acrylic acid as a metabolite was detected in the media. Strain MBH23 grew well between pH 6.0 and 8.0 and between 27 and 30 °C. Amides such as 2-chloroacetamide, methacrylamide, nicotinamide, acrylamide, acetamide, and propionamide supported growth. Toxic heavy metals such as mercury, chromium, and cadmium inhibited growth on acrylamide. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Characterization of very high gravity ethanol fermentation of corn mash. Effect of glucoamylase dosage, pre-saccharification and yeast strain

    DEFF Research Database (Denmark)

    Devantier, Rasmus; Pedersen, S; Olsson, Lisbeth

    2005-01-01

    Ethanol was produced from very high gravity mashes of dry milled corn (35% w/w total dry matter) under simultaneous saccharification and fermentation conditions. The effects of glucoamylase dosage, pre-saccharification and Saccharomyces cerevisiae strain on the growth characteristics such as the ......Ethanol was produced from very high gravity mashes of dry milled corn (35% w/w total dry matter) under simultaneous saccharification and fermentation conditions. The effects of glucoamylase dosage, pre-saccharification and Saccharomyces cerevisiae strain on the growth characteristics...... such as the ethanol yield and volumetric and specific productivity were determined. It was shown that higher glucoamylase doses and/or pre-saccharification accelerated the simultaneous saccharification and fermentation process and increased the final ethanol concentration from 106 to 126 g/kg although the maximal...... specific growth rate was decreased. Ethanol production was not only growth related, as more than half of the total saccharides were consumed and more than half of the ethanol was produced during the stationary phase. Furthermore, a high stress tolerance of the applied yeast strain was found to be crucial...

  9. Characterization of very high gravity ethanol fermentation of corn mash. Effect of glucoamylase dosage, pre-saccharification and yeast strain

    Energy Technology Data Exchange (ETDEWEB)

    Devantier, R. [Starch, Applied Discovery, Research and Development, Novozymes A/S, Bagsvaerd (Denmark); Center for Microbial Biotechnology, BioCentrum-DTU, Technical Univ. of Denmark, Kgs Lyngby (Denmark); Pedersen, S. [Starch, Applied Discovery, Research and Development, Novozymes A/S, Bagsvaerd (Denmark); Olsson, L. [Center for Microbial Biotechnology, BioCentrum-DTU, Technical Univ. of Denmark, Kgs Lyngby (Denmark)

    2005-09-01

    Ethanol was produced from very high gravity mashes of dry milled corn (35% w/w total dry matter) under simultaneous saccharification and fermentation conditions. The effects of glucoamylase dosage, pre-saccharification and Saccharomyces cerevisiae strain on the growth characteristics such as the ethanol yield and volumetric and specific productivity were determined. It was shown that higher glucoamylase doses and/or pre-saccharification accelerated the simultaneous saccharification and fermentation process and increased the final ethanol concentration from 106 to 126 g/kg although the maximal specific growth rate was decreased. Ethanol production was not only growth related, as more than half of the total saccharides were consumed and more than half of the ethanol was produced during the stationary phase. Furthermore, a high stress tolerance of the applied yeast strain was found to be crucial for the outcome of the fermentation process, both with regard to residual saccharides and final ethanol concentration. The increased formation of cell mass when a well-suited strain was applied increased the final ethanol concentration, since a more complete fermentation was achieved. (orig.)

  10. Microarray data analyses of yeast RNA Pol I subunit RPA12 deletion strain

    Directory of Open Access Journals (Sweden)

    Kamlesh Kumar Yadav

    2016-06-01

    Full Text Available The ribosomal RNA (rRNA biosynthesis is the most energy consuming process in all living cells and the majority of total transcription activity is dedicated for synthesizing rRNA. The cells may adjust the synthesis of rRNA with the availability of resources. rRNA is mainly synthesized by RNA polymerase I that is composed of 14 subunits. Deletion of RPA12, 14, 39 and 49 are viable. RPA12 is a very small protein (13.6 kDa, and the amount of protein in the cells is very high (12,000 molecules per cell, but the role of this protein is unknown in other cellular metabolic processes (Kulak et al., 2014 [1]. RPA12 consists of two zinc-binding domains and it is required for the termination of rRNA synthesis (Mullem et al., 2002 [2]. Deletions of RPA12 in Saccharomyces cerevisiae and Schizosaccharomyces pombe cause a conditional growth defect (Nogi et al., 1993 [3]. In S. pombe, C-terminal deletion behaves like wild-type (Imazawa et al., 2001 [4]. This prompted us to investigate in detail the physiological role of RPA12 in S. cerevisiae, we performed the microarray of rpa12∆ strain and deposited into Gene Expression Omnibus under GSE68731. The analysis of microarray data revealed that the expression of major cellular metabolism genes is high. The amino acid biosynthesis, nonpolar lipid biosynthesis and glucose metabolic genes are highly expressed. The analyses also revealed that the rpa12∆ cells have an uncontrolled synthesis of cell metabolites, so RPA12 could be a master regulator for whole cellular metabolism.

  11. Draft Genome Sequence of Type Strain Streptococcus gordonii ATCC 10558

    DEFF Research Database (Denmark)

    Rasmussen, Louise Hesselbjerg; Dargis, Rimtas; Christensen, Jens Jørgen Elmer

    2016-01-01

    Streptococcus gordonii ATCC 10558T was isolated from a patient with infective endocarditis in 1946 and announced as a type strain in 1989. Here, we report the 2,154,510-bp draft genome sequence of S. gordonii ATCC 10558T. This sequence will contribute to knowledge about the pathogenesis of infect......Streptococcus gordonii ATCC 10558T was isolated from a patient with infective endocarditis in 1946 and announced as a type strain in 1989. Here, we report the 2,154,510-bp draft genome sequence of S. gordonii ATCC 10558T. This sequence will contribute to knowledge about the pathogenesis...

  12. Malolactic bioconversion using a Oenococcus oeni strain for cider production: effect of yeast extract supplementation.

    Science.gov (United States)

    Herrero, Mónica; García, Luis A; Díaz, Mario

    2003-12-01

    Yeast extract addition to reconstituted apple juice had a positive impact on the development of the malolactic starter culture used to ensure malolactic fermentation in cider, using active but non-proliferating cells. In this work, the reuse of fermentation lees from cider is proposed as an alternative to the use of commercial yeast extract products. Malolactic enzymatic assays, both in whole cells and cell-free extracts, were carried out to determine the best time to harvest cells for use as an inoculum in cider. Cells harvested at the late exponential phase, the physiological stage of growth corresponding to the maximum values of specific malolactic activity, achieved a good rate of malic acid degradation in controlled cider fermentation. Under the laboratory conditions used, malic acid degradation rates in the fermentation media turned out to be near 2.0 and 2.5 times lower, compared with the rates obtained in whole-cell enzymatic assays, as useful data applicable to industrial cider production.

  13. Aggregation and retention of human urokinase type plasminogen activator in the yeast endoplasmic reticulum

    Directory of Open Access Journals (Sweden)

    Smirnov Vladimir N

    2002-10-01

    Full Text Available Abstract Background Secretion of recombinant proteins in yeast can be affected by their improper folding in the endoplasmic reticulum and subsequent elimination of the misfolded molecules via the endoplasmic reticulum associated protein degradation pathway. Recombinant proteins can also be degraded by the vacuolar protease complex. Human urokinase type plasminogen activator (uPA is poorly secreted by yeast but the mechanisms interfering with its secretion are largely unknown. Results We show that in Hansenula polymorpha overexpression worsens uPA secretion and stimulates its intracellular aggregation. The absence of the Golgi modifications in accumulated uPA suggests that aggregation occurs within the endoplasmic reticulum. Deletion analysis has shown that the N-terminal domains were responsible for poor uPA secretion and propensity to aggregate. Mutation abolishing N-glycosylation decreased the efficiency of uPA secretion and increased its aggregation degree. Retention of uPA in the endoplasmic reticulum stimulates its aggregation. Conclusions The data obtained demonstrate that defect of uPA secretion in yeast is related to its retention in the endoplasmic reticulum. Accumulation of uPA within the endoplasmic reticulum disturbs its proper folding and leads to formation of high molecular weight aggregates.

  14. [Standard algorithm of molecular typing of Yersinia pestis strains].

    Science.gov (United States)

    Eroshenko, G A; Odinokov, G N; Kukleva, L M; Pavlova, A I; Krasnov, Ia M; Shavina, N Iu; Guseva, N P; Vinogradova, N A; Kutyrev, V V

    2012-01-01

    Development of the standard algorithm of molecular typing of Yersinia pestis that ensures establishing of subspecies, biovar and focus membership of the studied isolate. Determination of the characteristic strain genotypes of plague infectious agent of main and nonmain subspecies from various natural foci of plague of the Russian Federation and the near abroad. Genotyping of 192 natural Y. pestis strains of main and nonmain subspecies was performed by using PCR methods, multilocus sequencing and multilocus analysis of variable tandem repeat number. A standard algorithm of molecular typing of plague infectious agent including several stages of Yersinia pestis differentiation by membership: in main and nonmain subspecies, various biovars of the main subspecies, specific subspecies; natural foci and geographic territories was developed. The algorithm is based on 3 typing methods--PCR, multilocus sequence typing and multilocus analysis of variable tandem repeat number using standard DNA targets--life support genes (terC, ilvN, inv, glpD, napA, rhaS and araC) and 7 loci of variable tandem repeats (ms01, ms04, ms06, ms07, ms46, ms62, ms70). The effectiveness of the developed algorithm is shown on the large number of natural Y. pestis strains. Characteristic sequence types of Y. pestis strains of various subspecies and biovars as well as MLVA7 genotypes of strains from natural foci of plague of the Russian Federation and the near abroad were established. The application of the developed algorithm will increase the effectiveness of epidemiologic monitoring of plague infectious agent, and analysis of epidemics and outbreaks of plague with establishing the source of origin of the strain and routes of introduction of the infection.

  15. A comparison of the radiosensitivity of stationary, exponential and G1 phase wild type and repair deficient yeast cultures: supporting evidence for stationary phase yeast cells being in G0

    International Nuclear Information System (INIS)

    Tippins, R.S.; Parry, J.M.

    1982-01-01

    The main points to emerge from this comparison of the radiosensitivity of stationary, exponential and G 1 phase yeast cultures were: (1) In wild type yeast cultures, G 1 cells were the most sensitive to the lethal effects of X-rays, exponential phase cells were the most resistant and stationary phase cells were intermediate in sensitivity. (2) With the excision-repair-defective strain D61-3 (rad 3) stationary phase cells were more resistant than exponential cells with G 1 cells again being most sensitive. (3) The rad 50 gene present in JD50 had a marked effect on the X-ray inactivation response of this strain. In the presence of the defective rad 50 allele, exponential phase cells were as sensitive as G 1 phase cells, with stationary phase cells being more resistant than either. (4) There were marked differences in sensitivity between stationary phase and G 1 phase cells. These differences, along with other physiological differences reported by other workers, lead the authors to suggest that stationary phase cells can be better described as being in G 0 phase, i.e. a stage which is outside the normal mitotic cell cycle of an exponential culture. (author)

  16. Gentamicin-Containing Peptone-Yeast Extract Medium for Cocultivation of Hartmannella vermiformis ATCC 50256 and Virulent Strains of Legionella pneumophila.

    Science.gov (United States)

    Wadowsky, R M; Wang, L; Laus, S; Dowling, J N; Kuchta, J M; States, S J; Yee, R B

    1995-12-01

    We evaluated the use of peptone-yeast extract (PY) medium, different strains of Hartmannella vermiformis, and gentamicin in a coculture system to improve the discrimination of virulent and avirulent strains of Legionella pneumophila. H. vermiformis ATCC 50256 was unique among four strains of H. vermiformis, in that it multiplied equally well in Medium 1034 and PY medium (Medium 1034 without fetal calf serum, folic acid, hemin, and yeast nucleic acid and with a 50% reduction of peptone). However, both a virulent strain of L. pneumophila and its avirulent derivative strain multiplied in cocultures when PY medium was used. The multiplication of this avirulent strain was greatly reduced by incorporating gentamicin (1 (mu)g/ml) into the cocultivation system. Five virulent-avirulent sets of L. pneumophila strains were then tested for multiplication in cocultures with H. vermiformis ATCC 50256 and the gentamicin-containing PY medium. Only the virulent strains multiplied. The modified cocultivation system can discriminate between virulent and avirulent strains of L. pneumophila.

  17. Complete Genome Sequence of Plesiomonas shigelloides Type Strain NCTC10360

    Science.gov (United States)

    Fazal, Mohammed-Abbas; Burnett, Edward; Deheer-Graham, Ana; Oliver, Karen; Holroyd, Nancy; Russell, Julie E.

    2016-01-01

    Plesiomonas shigelloides is a Gram-negative rod within the Enterobacteriaceae family. It is a gastrointestinal pathogen of increasing notoriety, often associated with diarrheal disease. P. shigelloides is waterborne, and infection is often linked to the consumption of seafood. Here, we describe the first complete genome for P. shigelloides type strain NCTC10360. PMID:27660796

  18. Complete Genome Sequence of Mycobacterium vaccae Type Strain ATCC 25954

    KAUST Repository

    Ho, Y. S.; Adroub, S. A.; Abadi, Maram; Al Alwan, B.; Alkhateeb, R.; Gao, G.; Ragab, A.; Ali, Shahjahan; van Soolingen, D.; Bitter, W.; Pain, Arnab; Abdallah, A. M.

    2012-01-01

    Mycobacterium vaccae is a rapidly growing, nontuberculous Mycobacterium species that is generally not considered a human pathogen and is of major pharmaceutical interest as an immunotherapeutic agent. We report here the annotated genome sequence of the M. vaccae type strain, ATCC 25954.

  19. Complete Genome Sequence of Mycobacterium vaccae Type Strain ATCC 25954

    KAUST Repository

    Ho, Y. S.

    2012-10-26

    Mycobacterium vaccae is a rapidly growing, nontuberculous Mycobacterium species that is generally not considered a human pathogen and is of major pharmaceutical interest as an immunotherapeutic agent. We report here the annotated genome sequence of the M. vaccae type strain, ATCC 25954.

  20. Strain typing with IS200 fingerprints in Salmonella abortusovis.

    Science.gov (United States)

    Schiaffino, A; Beuzón, C R; Uzzau, S; Leori, G; Cappuccinelli, P; Casadesús, J; Rubino, S

    1996-07-01

    A collection of Salmonella abortusovis isolates was examined for the presence of insertion element IS200. All proved to contain three or four copies of the element. One IS200 hybridization band of approximately 9 kb was found in all isolates, indicating that all S. abortusovis strains carry an IS200 element in similar or identical locations; this band can be potentially useful for serovar identification. S. abortusovis collection isolates from distinct geographic areas were highly polymorphic, suggesting that IS200 fingerprints might provide information on the geographic origin of S. abortusovis strains. Isolates obtained from the same geographic area (the island of Sardinia, Italy) were less polymorphic: all shared three constant IS200 hybridization bands, indicating that they derive from a single ancestor. Most strains analyzed contained an additional copy of IS200 in the variable region of the virulence plasmid. Certain Sardinian flocks proved to be infected by only one S. abortusovis strain, while others harbored two strains. Strain typing with IS200 fingerprints proved to be more reliable than plasmid analysis, because the latter yielded a high degree of polymorphism, even among isolates from the same flock.

  1. Identification by PCR and evaluation of probiotic potential in yeast strains found in kefir samples in the city of Santa Maria, RS, Brazil

    Directory of Open Access Journals (Sweden)

    Daniela CASSANEGO

    2017-10-01

    Full Text Available Abstract Kefir is a product elaborated from the symbiotic fermentation of different microorganisms. The Kluyveromyces and Saccharomyces genera are the major representatives of the yeasts found in kefir microbiota. The only pobiotic yeast commercialized as an oral medication, is the Saccharomyces boulardii. The present work involved the microbiological quality examination of six kefir samples in the city of Santa Maria/RS, the yeasts isolation present in the samples and the identification of them by PCR (Polymerase chain reaction. Then, their probiotic potential was evaluated by in vitro technique. After that, microbiological analysis confirmed that kefir samples were suitable for consumption once the microbiological quality was established. Nineteen yeast strains were isolated from six different kefir samples; it was identified, by PCR analysis, but only three species were identified from these microorganisms in the present article: Saccharomyces cerevisiae, Hanseniospora uvarum and Kazachstania unispora. Nevertheless, by simulating the passage of isolated strains through the gastrointestinal environment, it was observed that they could not be considered probiotics. The results indicate that, in an isolated way, the yeast presents in kefir samples, in the city of Santa Maria, RS, can´t be considered probiotics according to the tests performed.

  2. Effects of distillation system and yeast strain on the aroma profile of Albariño (Vitis vinifera L.) grape pomace spirits.

    Science.gov (United States)

    Arrieta-Garay, Y; Blanco, P; López-Vázquez, C; Rodríguez-Bencomo, J J; Pérez-Correa, J R; López, F; Orriols, I

    2014-10-29

    Orujo is a traditional alcoholic beverage produced in Galicia (northwest Spain) from distillation of grape pomace, a byproduct of the winemaking industry. In this study, the effect of the distillation system (copper charentais alembic versus packed column) and the yeast strain (native yeast L1 versus commercial yeast L2) on the chemical and sensory characteristics of orujo obtained from Albariño (Vitis vinifera L.) grape pomace has been analyzed. Principal component analysis, with two components explaining 74% of the variance, is able to clearly differentiate the distillates according to distillation system and yeast strain. Principal component 1, mainly defined by C6-C12 esters, isoamyl octanoate, and methanol, differentiates L1 from L2 distillates. In turn, principal component 2, mainly defined by linear alcohols, linalool, and 1-hexenol, differentiates alembic from packed column distillates. In addition, an aroma descriptive test reveals that the distillate obtained with a packed column from a pomace fermented with L1 presented the highest positive general impression, which is associated with the highest fruity and smallest solvent aroma scores. Moreover, chemical analysis shows that use of a packed column increases average ethanol recovery by 12%, increases the concentration of C6-C12 esters by 25%, and reduces the concentration of higher alcohols by 21%. In turn, L2 yeast obtained lower scores in the alembic distillates aroma profile. In addition, with L1, 9% higher ethanol yields were achieved, and L2 distillates contained 34%-40% more methanol than L1 distillates.

  3. Effect of brewer’s yeast supplementation on serum glucose and lipids in type II diabetic patients with dislipidemia

    OpenAIRE

    Sh. Ravanshad; H. Khosvani Borujeni; M. Soveid; B. Zeighami

    2005-01-01

    Background and purpose : Chromium deficiency leads to impaired glucose and lipid metabolism. Chromium supplementation in type II diabetic patients improves glucose and lipid profiles. Organic chromium, such as found in brewer’s yeast, is much better absorbed than inorganic chromium. In this study, the effect of chromium supplementation in the form of brewer’s yeast on glucose and lipid profile of diabetic patients were evaluated.Materials and methods : In a clinical trial study (before and af...

  4. Ethanol-Independent Biofilm Formation by a Flor Wine Yeast Strain of Saccharomyces cerevisiae▿

    Science.gov (United States)

    Zara, Severino; Gross, Michael K.; Zara, Giacomo; Budroni, Marilena; Bakalinsky, Alan T.

    2010-01-01

    Flor strains of Saccharomyces cerevisiae form a biofilm on the surface of wine at the end of fermentation, when sugar is depleted and growth on ethanol becomes dependent on oxygen. Here, we report greater biofilm formation on glycerol and ethyl acetate and inconsistent formation on succinic, lactic, and acetic acids. PMID:20435772

  5. Ethanol-independent biofilm formation by a flor wine yeast strain of Saccharomyces cerevisiae.

    Science.gov (United States)

    Zara, Severino; Gross, Michael K; Zara, Giacomo; Budroni, Marilena; Bakalinsky, Alan T

    2010-06-01

    Flor strains of Saccharomyces cerevisiae form a biofilm on the surface of wine at the end of fermentation, when sugar is depleted and growth on ethanol becomes dependent on oxygen. Here, we report greater biofilm formation on glycerol and ethyl acetate and inconsistent formation on succinic, lactic, and acetic acids.

  6. DNA type analysis to differentiate strains of Xylophilus ampelinus from Europe and Hokkaido, Japan

    OpenAIRE

    Komatsu, Tsutomu; Shinmura, Akinori; Kondo, Norio

    2016-01-01

    Strains of the bacterium Xylophilus ampelinus were collected from Europe and Hokkaido, Japan. Genomic fingerprints generated from 43 strains revealed four DNA types (A-D) using the combined results of Rep-, ERIC-, and Box-PCR. Genetic variation was found among the strains examined; strains collected from Europe belonged to DNA types A or B, and strains collected from Hokkaido belonged to DNA types C or D. However, strains belonging to each DNA type showed the same pathogenicity to grapevines ...

  7. Complete genome sequence of Rhodospirillum rubrum type strain (S1).

    Science.gov (United States)

    Munk, A Christine; Copeland, Alex; Lucas, Susan; Lapidus, Alla; Del Rio, Tijana Glavina; Barry, Kerrie; Detter, John C; Hammon, Nancy; Israni, Sanjay; Pitluck, Sam; Brettin, Thomas; Bruce, David; Han, Cliff; Tapia, Roxanne; Gilna, Paul; Schmutz, Jeremy; Larimer, Frank; Land, Miriam; Kyrpides, Nikos C; Mavromatis, Konstantinos; Richardson, Paul; Rohde, Manfred; Göker, Markus; Klenk, Hans-Peter; Zhang, Yaoping; Roberts, Gary P; Reslewic, Susan; Schwartz, David C

    2011-07-01

    Rhodospirillum rubrum (Esmarch 1887) Molisch 1907 is the type species of the genus Rhodospirillum, which is the type genus of the family Rhodospirillaceae in the class Alphaproteobacteria. The species is of special interest because it is an anoxygenic phototroph that produces extracellular elemental sulfur (instead of oxygen) while harvesting light. It contains one of the most simple photosynthetic systems currently known, lacking light harvesting complex 2. Strain S1(T) can grow on carbon monoxide as sole energy source. With currently over 1,750 PubMed entries, R. rubrum is one of the most intensively studied microbial species, in particular for physiological and genetic studies. Next to R. centenum strain SW, the genome sequence of strain S1(T) is only the second genome of a member of the genus Rhodospirillum to be published, but the first type strain genome from the genus. The 4,352,825 bp long chromosome and 53,732 bp plasmid with a total of 3,850 protein-coding and 83 RNA genes were sequenced as part of the DOE Joint Genome Institute Program DOEM 2002.

  8. Virgin olive oil yeasts: A review.

    Science.gov (United States)

    Ciafardini, Gino; Zullo, Biagi Angelo

    2018-04-01

    This review summarizes current knowledge on virgin olive oil yeasts. Newly produced olive oil contains solid particles and micro drops of vegetation water in which yeasts reproduce to become the typical microbiota of olive oil. To date, about seventeen yeast species have been isolated from different types of olive oils and their by-products, of which six species have been identified as new species. Certain yeast species contribute greatly to improving the sensorial characteristics of the newly produced olive oil, whereas other species are considered harmful as they can damage the oil quality through the production of unpleasant flavors and triacylglycerol hydrolysis. Studies carried out in certain yeast strains have demonstrated the presence of defects in olive oil treated with Candida adriatica, Nakazawaea wickerhamii and Candida diddensiae specific strains, while other olive oil samples treated with other Candida diddensiae strains were defect-free after four months of storage and categorized as extra virgin. A new acetic acid producing yeast species, namely, Brettanomyces acidodurans sp. nov., which was recently isolated from olive oil, could be implicated in the wine-vinegary defect of the product. Other aspects related to the activity of the lipase-producing yeasts and the survival of the yeast species in the flavored olive oils are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Effects of the strain background and autolysis process on the composition and biophysical properties of the cell wall from two different industrial yeasts.

    Science.gov (United States)

    Schiavone, Marion; Sieczkowski, Nathalie; Castex, Mathieu; Dague, Etienne; Marie François, Jean

    2015-03-01

    The Saccharomyces cerevisiae cell surface is endowed with some relevant technological properties, notably antimicrobial and biosorption activities. For these purposes, yeasts are usually processed and packaged in an 'autolysed/dried' formula, which may have some impacts on cell surface properties. In this report, we showed using a combination of biochemical, biophysical and molecular methods that the composition of the cell wall of two wine yeast strains was not altered by the autolysis process. In contrast, this process altered the nanomechanical properties as shown by a 2- to 4-fold increased surface roughness and to a higher adhesion to the atomic force microscope tips of the autolysed cells as compared to live yeast cells. Besides, we found that the two strains harboured differences in biomechanical properties that could be due in part to higher levels of mannan in one of them, and to the fact that the surface of this mannan-enriched strain is decorated with highly adhesive patches forming nanodomains. The presence of these nanodomains could be correlated with the upregulation of flocculin encoding FLO11 as well as to higher expression of few other genes encoding cell wall mannoproteins in this mannan-enriched strain as compared to the other strain. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  10. Thailandins A and B, New Polyene Macrolactone Compounds Isolated from Actinokineospora bangkokensis Strain 44EHW(T), Possessing Antifungal Activity against Anthracnose Fungi and Pathogenic Yeasts.

    Science.gov (United States)

    Intra, Bungonsiri; Greule, Anja; Bechthold, Andreas; Euanorasetr, Jirayut; Paululat, Thomas; Panbangred, Watanalai

    2016-06-29

    Two new polyene macrolactone antibiotics, thailandins A, 1, and B, 2, were isolated from the fermentation broth of rhizosphere soil-associated Actinokineospora bangkokensis strain 44EHW(T). The new compounds from this strain were purified using semipreparative HPLC and Sephadex LH-20 gel filtration while following an antifungal activity guided fractionation. Their structures were elucidated through spectroscopic techniques including UV, HR-ESI-MS, and NMR. These compounds demonstrated broad spectrum antifungal activity against fungi causing anthracnose disease (Colletotrichum gloeosporioides DoA d0762, Colletotrichum gloeosporiodes DoA c1060, and Colletotrichum capsici DoA c1511) as well as pathogenic yeasts (Candida albicans MT 2013/1, Candida parasilopsis DKMU 434, and Cryptococcus neoformans MT 2013/2) with minimum inhibitory concentrations ranging between 16 and 32 μg/mL. This is the first report of polyene antibiotics produced by Actinokineospora species as bioactive compounds against anthracnose fungi and pathogenic yeast strains.

  11. Job Strain as a Risk Factor for Type 2 Diabetes

    DEFF Research Database (Denmark)

    Nyberg, Solja T; Fransson, Eleonor I; Heikkilä, Katriina

    2014-01-01

    with baseline questionnaires. Incident type 2 diabetes at follow-up was ascertained using national health registers, clinical screening, and self-reports. We analyzed data for each study using Cox regression and pooled the study-specific estimates in fixed-effect meta-analyses. RESULTS: There were 3,703 cases......OBJECTIVE: The status of psychosocial stress at work as a risk factor for type 2 diabetes is unclear because existing evidence is based on small studies and is subject to confounding by lifestyle factors, such as obesity and physical inactivity. This collaborative study examined whether stress...... at work, defined as "job strain," is associated with incident type 2 diabetes independent of lifestyle factors. RESEARCH DESIGN AND METHODS: We extracted individual-level data for 124,808 diabetes-free adults from 13 European cohort studies participating in the IPD-Work Consortium. We measured job strain...

  12. The pat1 protein kinase controls transcription of the mating-type genes in fission yeast

    DEFF Research Database (Denmark)

    Nielsen, O; Egel, R; Nielsen, Olaf

    1990-01-01

    . This differentiation process is characterized by a transcriptional induction of the mating-type genes. Conjugation can also be induced in pat1-ts mutants by a shift to a semi-permissive temperature. The pat1 gene encodes a protein kinase, which also functions further downstream in the developmental pathway controlling...... of the mating-type genes in the zygote leads to complete loss of pat1 protein kinase activity causing entry into meiosis. Thus, pat1 can promote its own inactivation. We suggest a model according to which a stepwise inactivation of pat1 leads to sequential derepression of the processes of conjugation......The developmental programme of fission yeast brings about a transition from mitotic cell division to the dormant state of ascospores. In response to nitrogen starvation, two cells of opposite mating type conjugate to form a diploid zygote, which then undergoes meiosis and sporulation...

  13. Fermentation of Apple Juice with a Selected Yeast Strain Isolated from the Fermented Foods of Himalayan Regions and Its Organoleptic Properties.

    Science.gov (United States)

    Kanwar, S S; Keshani

    2016-01-01

    Twenty-three Saccharomyces cerevisiae strains isolated from different fermented foods of Western Himalayas have been studied for strain level and functional diversity in our department. Among these 23 strains, 10 S. cerevisiae strains on the basis of variation in their brewing traits were selected to study their organoleptic effect at gene level by targeting ATF1 gene, which is responsible for ester synthesis during fermentation. Significant variation was observed in ATF1 gene sequences, suggesting differences in aroma and flavor of their brewing products. Apple is a predominant fruit in Himachal Pradesh and apple cider is one of the most popular drinks all around the world hence, it was chosen for sensory evaluation of six selected yeast strains. Organoleptic studies and sensory analysis suggested Sc21 and Sc01 as best indigenous strains for soft and hard cider, respectively, indicating their potential in enriching the local products with enhanced quality.

  14. Modulation of intestinal inflammation by yeasts and cell wall extracts: strain dependence and unexpected anti-inflammatory role of glucan fractions.

    Directory of Open Access Journals (Sweden)

    Samir Jawhara

    Full Text Available Yeasts and their glycan components can have a beneficial or adverse effect on intestinal inflammation. Previous research has shown that the presence of Saccharomyces cerevisiae var. boulardii (Sb reduces intestinal inflammation and colonization by Candida albicans. The aim of this study was to identify dietary yeasts, which have comparable effects to the anti-C. albicans and anti-inflammatory properties of Sb and to assess the capabilities of yeast cell wall components to modulate intestinal inflammation. Mice received a single oral challenge of C. albicans and were then given 1.5% dextran-sulphate-sodium (DSS for 2 weeks followed by a 3-day restitution period. S. cerevisiae strains (Sb, Sc1 to Sc4, as well as mannoprotein (MP and β-glucan crude fractions prepared from Sc2 and highly purified β-glucans prepared from C. albicans were used in this curative model, starting 3 days after C. albicans challenge. Mice were assessed for the clinical, histological and inflammatory responses related to DSS administration. Strain Sc1-1 gave the same level of protection against C. albicans as Sb when assessed by mortality, clinical scores, colonization levels, reduction of TNFα and increase in IL-10 transcription. When Sc1-1 was compared with the other S. cerevisiae strains, the preparation process had a strong influence on biological activity. Interestingly, some S. cerevisiae strains dramatically increased mortality and clinical scores. Strain Sc4 and MP fraction favoured C. albicans colonization and inflammation, whereas β-glucan fraction was protective against both. Surprisingly, purified β-glucans from C. albicans had the same protective effect. Thus, some yeasts appear to be strong modulators of intestinal inflammation. These effects are dependent on the strain, species, preparation process and cell wall fraction. It was striking that β-glucan fractions or pure β-glucans from C. albicans displayed the most potent anti-inflammatory effect in the

  15. Enhanced biodegradation of lindane using oil-in-water bio-microemulsion stabilized by biosurfactant produced by a new yeast strain, Pseudozyma VITJzN01.

    Science.gov (United States)

    Abdul Salam, Jaseetha; Das, Nilanjana

    2013-11-28

    Organochlorine pesticide residues continue to remain as a major environmental threat worldwide. Lindane is an organochlorine pesticide widely used as an acaricide in medicine and agriculture. In the present study, a new lindane-degrading yeast strain, Pseudozyma VITJzN01, was identified as a copious producer of glycolipid biosurfactant. The glycolipid structure and type were elucidated by FTIR, NMR spectroscopy, and GC-MS analysis. The surface activity and stability of the glycolipid was analyzed. The glycolipids, characterized as mannosylerythritol lipids (MELs), exhibited excellent surface active properties and the surface tension of water was reduced to 29 mN/m. The glycolipid was stable over a wide range of pH, temperature, and salinity, showing a very low CMC of 25 mg/l. Bio-microemulsion of olive oil-in-water (O/W) was prepared using the purified biosurfactant without addition of any synthetic cosurfactants, for lindane solubilization and enhanced degradation assay in liquid and soil slurry. The O/W bio-microemulsions enhanced the solubility of lindane up to 40-folds. Degradation of lindane (700 mg/l) by VITJzN01 in liquid medium amended with bio-microemulsions was found to be enhanced by 36% in 2 days, compared with degradation in 12 days in the absence of bio-microemulsions. Lindane-spiked soil slurry incubated with bio-microemulsions also showed 20-40% enhanced degradation compared with the treatment with glycolipids or yeast alone. This is the first report on lindane degradation by Pseudozyma sp., and application of bio-microemulsions for enhanced lindane degradation. MEL-stabilized bio-microemulsions can serve as a potential tool for enhanced remediation of diverse lindanecontaminated environments.

  16. A robust SNP barcode for typing Mycobacterium tuberculosis complex strains

    KAUST Repository

    Coll, Francesc

    2014-09-01

    Strain-specific genomic diversity in the Mycobacterium tuberculosis complex (MTBC) is an important factor in pathogenesis that may affect virulence, transmissibility, host response and emergence of drug resistance. Several systems have been proposed to classify MTBC strains into distinct lineages and families. Here, we investigate single-nucleotide polymorphisms (SNPs) as robust (stable) markers of genetic variation for phylogenetic analysis. We identify ∼92k SNP across a global collection of 1,601 genomes. The SNP-based phylogeny is consistent with the gold-standard regions of difference (RD) classification system. Of the ∼7k strain-specific SNPs identified, 62 markers are proposed to discriminate known circulating strains. This SNP-based barcode is the first to cover all main lineages, and classifies a greater number of sublineages than current alternatives. It may be used to classify clinical isolates to evaluate tools to control the disease, including therapeutics and vaccines whose effectiveness may vary by strain type. © 2014 Macmillan Publishers Limited.

  17. 'Killer' character of yeasts isolated from ethanolic fermentations

    Directory of Open Access Journals (Sweden)

    Ceccato-Antonini Sandra Regina

    1999-01-01

    Full Text Available The number of killer, neutral and sensitive yeasts was determined from strains isolated from substrates related to alcoholic fermentations. From 113 isolates, 24 showed killer activity against NCYC 1006 (standard sensitive strain, while 30 were sensitive to NCYC 738 (standard killer strain, and 59 had no reaction in assays at 25-27°C. Two wild yeast strains of Saccharomyces cerevisiae and one of Candida colliculosa were tested against 10 standard killer strains and one standard sensitive strain in a cell x cell and well-test assays at four different pHs. None of the isolates displayed strong killer activity or were sensitive to the standard strains. All belonged to the neutral type. It was concluded that although the number of killer strains was high, this character cannot be used to protect ethanol fermentation processes against yeast contaminants like those which form cell clusters.

  18. Prions in yeast

    OpenAIRE

    Bezdíčka, Martin

    2013-01-01

    The thesis describes yeast prions and their biological effects on yeast in general. It defines the basic characteristics of yeast prions, that distinguish prions from other proteins. The thesis introduces various possibilities of prion formation, and propagation as well as specific types of yeast prions, including various functions of most studied types of prions. The thesis also focuses on chaperones that affect the state of yeast prions in cells. Lastly, the thesis indicates similarities be...

  19. Static strain aging type AISI-304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Trindade, M.B.

    1981-03-01

    Static strain aging of type AISI-304 austenitic stainless steel was studied from room temperature up to 623K by conducting tests in which the load was held approximately constant, continuously relaxing and unloaded. The aging times varied between 10s and 100h, using a plastic pre deformation of 9% in most of the cases. The static strain aging of 304 steel furnished an activation energy of 23,800 cal/mol. This implies that vacancies play an important role on the aging process. The curve of the variation of the discontinuous yielding with aging time presented different stages, to which specific mathematical expressions were developed. These facts permited the conclusion that Snoek type mechanisms are responsible for the aging in such conditions. (Author) [pt

  20. Bacteriological Typing of C. Diphtheriae Strains Recently Isolated in Teheran

    Directory of Open Access Journals (Sweden)

    H. Esterabady

    1963-01-01

    Full Text Available From a total of 600 nose and throat introduction swabs examined for diphtherie, 200 or 33% were positive. Cultures were carfully classified on the basis of morphological appearance and biochemical characteristics into Gravis, Mitis and Intermedius groups.  A special tellurite serum agar was used for colonial appearance. Neill's broth culture was employed for haemolytic tests. The virulence of each culture was examined in laboratory animals by the agar gel precipitation method of Elek. From 200 cultures tested, 138 or 69% were gravis, 5 or 2.5% were intermedius, and 57 or 28% were mitis. 'I'hre.e strains of gravis type and one strain of mitis type were avirulent

  1. Alcoholic glucose and xylose fermentations by the coculture process: Compatability and typing of associated strains

    Energy Technology Data Exchange (ETDEWEB)

    Laplace, J.M.; Delgenes, J.P.; Moletta, R. (Institut national de la recherche agronomique, Narbonne (France)); Navarro, J.M. (Universite de Montpellier (France))

    1992-01-01

    As part of the simulaneous fermentation of both glucose and xylose to ethanol by a coculture process, compatibilities between xylose-fermenting yeasts and glucose-fermenting species were investigated. Among the Saccharomyces species tested, none inhibited growth of the xylose-fermenting yeasts. By contrast, many xylose-fermenting yeasts, among the 11 tested, exerted an inhibitory effect on growth of the selected Saccharomyces species. Killer character was demonstrated in three strains of Pichia stipitis. Such strains, despite their high fermentative performances, cannot be used to ferment D-xylose in association with the selected Saccharomyces species. From compatibility tests between xylose-fermenting yeasts and Saccharomyces species, pairs of microorganisms suitable for simultaneous xylose and glucose fermentations by coculture are proposed. Strains associated in the coculture process are distinguished by their resistance to mitochondrial inhibitors. The xylose-fermenting yeasts are able to grow on media containing erythromycin (1 g/l) or diuron (50 mg/l), whereas, the Saccharomyces species are inhibited by these mitochondrial inhibitors. 15 refs., 2 figs., 3 tabs.

  2. Complete Genome Sequence of Mycobacterium xenopi Type Strain RIVM700367

    KAUST Repository

    Abdallah, A. M.; Rashid, M.; Adroub, S. A.; Elabdalaoui, H.; Ali, Shahjahan; van Soolingen, D.; Bitter, W.; Pain, Arnab

    2012-01-01

    Mycobacterium xenopi is a slow-growing, thermophilic, water-related Mycobacterium species. Like other nontuberculous mycobacteria, M. xenopi more commonly infects humans with altered immune function, such as chronic obstructive pulmonary disease patients. It is considered clinically relevant in a significant proportion of the patients from whom it is isolated. We report here the whole genome sequence of M. xenopi type strain RIVM700367.

  3. Complete Genome Sequence of Mycobacterium xenopi Type Strain RIVM700367

    KAUST Repository

    Abdallah, A. M.

    2012-05-24

    Mycobacterium xenopi is a slow-growing, thermophilic, water-related Mycobacterium species. Like other nontuberculous mycobacteria, M. xenopi more commonly infects humans with altered immune function, such as chronic obstructive pulmonary disease patients. It is considered clinically relevant in a significant proportion of the patients from whom it is isolated. We report here the whole genome sequence of M. xenopi type strain RIVM700367.

  4. Complete genome sequence of Marivirga tractuosa type strain (H-43).

    OpenAIRE

    Pagani, Ioanna; Chertkov, Olga; Lapidus, Alla; Lucas, Susan; Del Rio, Tijana Glavina; Tice, Hope; Copeland, Alex; Cheng, Jan-Fang; Nolan, Matt; Saunders, Elizabeth; Pitluck, Sam; Held, Brittany; Goodwin, Lynne; Liolios, Konstantinos; Ovchinikova, Galina

    2011-01-01

    Marivirga tractuosa (Lewin 1969) Nedashkovskaya et al. 2010 is the type species of the genus Marivirga, which belongs to the family Flammeovirgaceae. Members of this genus are of interest because of their gliding motility. The species is of interest because representative strains show resistance to several antibiotics, including gentamicin, kanamycin, neomycin, polymixin and streptomycin. This is the first complete genome sequence of a member of the family Flammeovirgaceae. Here we describe t...

  5. A Mutated Yeast Strain with Enhanced Ethanol Production Efficiency and Stress Tolerance

    Directory of Open Access Journals (Sweden)

    Naghmeh Hemmati1*, David A. Lightfoot1,2, and Ahmed Fakhoury3

    2012-05-01

    Full Text Available One of the strategies to improve and optimize bio-ethanolproduction from new feed stocks is to develop new strainsof Saccharomyces cerevisiae with tolerance to stresses. Themain objectives here were to; generate S. cerevisiae mutantstolerant to high ethanol concentrations; test for their abilityto ferment maize starch; and partially characterize the mutationsresponsible for the new phenotypes. A combinationof mutagenesis, selection and cross-stress protection methodswere used. EMS (ethyl methanesulfonate was used tomutagenize one S. cerevisiae strain. The mutagenized yeaststrain was exposed to high concentrations of ethanol andtolerant mutants were isolated. Mutants showed improvedethanol yield (0.02-0.03 g/g of maize and fermentation efficiency(3-5%. Finally, AFLP (Amplified Fragment LengthPolymorphism was performed to identify polymorphisms inthe mutants that might underlie the strains ethanol tolerance.The best performing mutant isolate had four altered genetranscripts encoding; an arginine uptake and canavanine resistanceprotein (CAN1; mitochondrial membrane proteins(SLS1; a putative membrane glycoprotein (VTH1; and cytochromeC oxidase (COX6; EC 1.9.3.1 among about 1,000tested. It was concluded these mutations might underlie theimproved ethanol production efficiency and stress tolerance.

  6. Enterovirus type 71 2A protease functions as a transcriptional activator in yeast

    Directory of Open Access Journals (Sweden)

    Lai Meng-Jiun

    2010-08-01

    Full Text Available Abstract Enterovirus type 71 (EV71 2A protease exhibited strong transcriptional activity in yeast cells. The transcriptional activity of 2A protease was independent of its protease activity. EV71 2A protease retained its transcriptional activity after truncation of 40 amino acids at the N-terminus but lost this activity after truncation of 60 amino acids at the N-terminus or deletion of 20 amino acids at the C-terminus. Thus, the acidic domain at the C-terminus of this protein is essential for its transcriptional activity. Indeed, deletion of amino acids from 146 to 149 (EAME in this acidic domain lost the transcriptional activity of EV71 2A protein though still retained its protease activity. EV71 2A protease was detected both in the cytoplasm and nucleus using confocal microscopy analysis. Coxsackie virus B3 2A protease also exhibited transcriptional activity in yeast cells. As expected, an acidic domain in the C-terminus of Coxsackie virus B3 2A protease was also identified. Truncation of this acidic domain resulted in the loss of transcriptional activity. Interestingly, this acidic region of poliovirus 2A protease is critical for viral RNA replication. The transcriptional activity of the EV71 or Coxsackie virus B3 2A protease should play a role in viral replication and/or pathogenesis.

  7. Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and {beta}-glucosidase

    Energy Technology Data Exchange (ETDEWEB)

    Apiwatanapiwat, Waraporn; Rugthaworn, Prapassorn [Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki (Japan). Post-Harvest Science and Technology Div.; Kasetsart Univ., Bangkok (Thailand). Nanotechnology and Biotechnology Div.; Murata, Yoshinori; Kosugi, Akihiko; Arai, Takamitsu; Mori, Yutaka [Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki (Japan). Post-Harvest Science and Technology Div.; Yamada, Ryosuke; Kondo, Akihiko [Kobe Univ. (Japan). Dept. of Chemical Science and Engineering

    2011-04-15

    In order to develop a method for producing fuel ethanol from cassava pulp using cell surface engineering (arming) technology, an arming yeast co-displaying {alpha}-amylase ({alpha}-AM), glucoamylase, endoglucanase, cellobiohydrase, and {beta}-glucosidase on the surface of the yeast cells was constructed. The novel yeast strain, possessing the activities of all enzymes, was able to produce ethanol directly from soluble starch, barley {beta}-glucan, and acid-treated Avicel. Cassava is a major crop in Southeast Asia and used mainly for starch production. In the starch manufacturing process, large amounts of solid wastes, called cassava pulp, are produced. The major components of cassava pulp are starch (approximately 60%) and cellulose fiber (approximately 30%). We attempted simultaneous saccharification and ethanol fermentation of cassava pulp with this arming yeast. During fermentation, ethanol concentration increased as the starch and cellulose fiber substrates contained in the cassava pulp decreased. The results clearly showed that the arming yeast was able to produce ethanol directly from cassava pulp without addition of any hydrolytic enzymes. (orig.)

  8. Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and β-glucosidase.

    Science.gov (United States)

    Apiwatanapiwat, Waraporn; Murata, Yoshinori; Kosugi, Akihiko; Yamada, Ryosuke; Kondo, Akihiko; Arai, Takamitsu; Rugthaworn, Prapassorn; Mori, Yutaka

    2011-04-01

    In order to develop a method for producing fuel ethanol from cassava pulp using cell surface engineering (arming) technology, an arming yeast co-displaying α-amylase (α-AM), glucoamylase, endoglucanase, cellobiohydrase, and β-glucosidase on the surface of the yeast cells was constructed. The novel yeast strain, possessing the activities of all enzymes, was able to produce ethanol directly from soluble starch, barley β-glucan, and acid-treated Avicel. Cassava is a major crop in Southeast Asia and used mainly for starch production. In the starch manufacturing process, large amounts of solid wastes, called cassava pulp, are produced. The major components of cassava pulp are starch (approximately 60%) and cellulose fiber (approximately 30%). We attempted simultaneous saccharification and ethanol fermentation of cassava pulp with this arming yeast. During fermentation, ethanol concentration increased as the starch and cellulose fiber substrates contained in the cassava pulp decreased. The results clearly showed that the arming yeast was able to produce ethanol directly from cassava pulp without addition of any hydrolytic enzymes.

  9. A combinatorial approach to synthetic transcription factor-promoter combinations for yeast strain engineering

    DEFF Research Database (Denmark)

    Dossani, Zain Y.; Apel, Amanda Reider; Szmidt-Middleton, Heather

    2018-01-01

    regions, we have built a library of hybrid promoters that are regulated by a synthetic transcription factor. The hybrid promoters consist of native S. cerevisiae promoters, in which the operator regions have been replaced with sequences that are recognized by the bacterial LexA DNA binding protein....... Correspondingly, the synthetic transcription factor (TF) consists of the DNA binding domain of the LexA protein, fused with the human estrogen binding domain and the viral activator domain, VP16. The resulting system with a bacterial DNA binding domain avoids the transcription of native S. cerevisiae genes...... levels, using the same synthetic TF and a given estradiol. This set of promoters, in combination with our synthetic TF, has the potential to regulate numerous genes or pathways simultaneously, to multiple desired levels, in a single strain....

  10. Moniliella sojae sp. nov., a species of black yeasts isolated from Vietnamese soy paste (tuong), and reassignment of Moniliella suaveolens strains to Moniliella pyrgileucina sp. nov., Moniliella casei sp. nov. and Moniliella macrospora emend. comb. nov.

    Science.gov (United States)

    Thanh, Vu Nguyen; Duc Hien, Dinh; Yaguchi, Takashi; Sampaio, Jose Paulo; Lachance, Marc-André

    2018-05-01

    The presence of yeasts at different steps of Vietnamese soy paste production was studied. Yeast growth occurred during primary soybean fermentation, with the cell density reaching 4.10 6 c.f.u. ml -1 , and terminated during brine fermentation. The dominant species were Pichia kudriavzevii and Millerozyma farinosa. Over the span of 14 years, nine strains of Moniliella were isolated. The strains had identical PCR fingerprints generated with primer (GAC)5 and identical D1/D2 and internal transcribed spacer (ITS) sequences. A D1/D2-based phylogeny indicated that the strains were closest to a group of four previously assigned as Moniliella suaveolens strains. Together they form a new lineage that is well separated from all known species, including M. suaveolens (over 12.7 % divergence). ITS sequences indicated the presence of four species differing from each other by 9-57 nt. The name Moniliella sojae sp. nov. is proposed to accommodate the strains isolated from Vietnamese soy paste, Moniliella pyrgileucina sp. nov. is proposed for PYCC 6800 and Moniliella casei sp. nov. is proposed for CBS 157.58. An emended combination Moniliella macrospora is proposed for CBS 221.32 and CBS 223.32. The type strains and MycoBank numbers are: M. sojae sp. nov., SS 4.2 T =CBS 126448 T =NRRL Y-48680 T and MB 822871; M. pyrgileucina sp. nov., PYCC 6800 T =CBS 15203 T and MB 823030; M. casei sp. nov., CBS 157.58 T =IFM 60348 T and MB 822872; M. macrospora emend. comb. nov., CBS 221.32 T (=MUCL 11527 T ) and MB 822874.

  11. Calcium alginate as an eco-friendly supporting material for Baker’s yeast strain in chromium bioremediation

    Directory of Open Access Journals (Sweden)

    M.S. Mahmoud

    2017-12-01

    Full Text Available In this study, Baker’s yeast strain (Saccharomyces cerevisiae biomass was immobilized in alginate extract 3% forming Biomass/Polymer Matrices Beads (BPMB. These beads were investigated for chromium biosorption from aqueous solution. Factors such as solution pH, contact times, temperature values, stirring rates, BPMB dosages and initial chromium ions concentrations were experimentally tested using repeated-batch process to determine the sorption capacity for chromium (VI ions. Batch experiments were conducted at pH range from 1.5 to 7.5. The optimum pH value was 3.5 for direct chromium removal. The effect of chromium concentration was studied using different concentrations from 200 to 1000 ppm. Freundlich’s isothermal model showed better representation of data than Langmuir’s isothermal model with correlation coefficient 0.922. The maximum biosorption capacity of chromium was found to be 154 mg g−1 at initial concentration 200 ppm under optimum conditions. At the end of the experiments, BPMB were investigated for chromium biosorption from tannery effluent sample. Results showed decrease in chromium concentration up to 85%. The availability of recycling of the BPMB was also studied for three subsequent cycles. The surface sequestration of metal ions by BPMB was characterized before and after metal binding using a scanning electron microscope (SEM equipped with an energy dispersive X-ray analysis (EDXA and FTIR spectroscopy in order to determine the mechanisms of chromium biosorption.

  12. Simultaneous saccharification and fermentation of alkaline-pretreated corn stover to ethanol using a recombinant yeast strain

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jing; Xia, Liming [Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027 (China)

    2009-10-15

    Bio-ethanol converted from cheap and abundant lignocellulosic materials is a potential renewable resource to replace depleting fossil fuels. Simultaneous saccharification and fermentation (SSF) of alkaline-pretreated corn stover for the production of ethanol was investigated using a recombinant yeast strain Saccharomyces cerevisiae ZU-10. Low cellobiase activity in Trichoderma reesei cellulase resulted in cellobiose accumulation. Supplementing the simultaneous saccharification and fermentation system with cellobiase greatly reduced feedback inhibition caused by cellobiose to the cellulase reaction, thereby increased the ethanol yield. 12 h of enzymatic prehydrolysis at 50 C prior to simultaneous saccharification and fermentation was found to have a negative effect on the overall ethanol yield. Glucose and xylose produced from alkaline-pretreated corn stover could be co-fermented to ethanol effectively by S. cerevisiae ZU-10. An ethanol concentration of 27.8 g/L and the corresponding ethanol yield on carbohydrate in substrate of 0.350 g/g were achieved within 72 h at 33 C with 80 g/L of substrate and enzyme loadings of 20 filter paper activity units (FPU)/g substrate and 10 cellobiase units (CBU)/g substrate. The results are meaningful in co-conversion of cellulose and hemicellulose fraction of lignocellulosic materials to fuel ethanol. (author)

  13. Complete genome sequence of 'Thermobaculum terrenum' type strain (YNP1).

    Science.gov (United States)

    Kiss, Hajnalka; Cleland, David; Lapidus, Alla; Lucas, Susan; Del Rio, Tijana Glavina; Nolan, Matt; Tice, Hope; Han, Cliff; Goodwin, Lynne; Pitluck, Sam; Liolios, Konstantinos; Ivanova, Natalia; Mavromatis, Konstantinos; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Lu, Megan; Brettin, Thomas; Detter, John C; Göker, Markus; Tindall, Brian J; Beck, Brian; McDermott, Timothy R; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Cheng, Jan-Fang

    2010-10-27

    'Thermobaculum terrenum' Botero et al. 2004 is the sole species within the proposed genus 'Thermobaculum'. Strain YNP1(T) is the only cultivated member of an acid tolerant, extremely thermophilic species belonging to a phylogenetically isolated environmental clone group within the phylum Chloroflexi. At present, the name 'Thermobaculum terrenum' is not yet validly published as it contravenes Rule 30 (3a) of the Bacteriological Code. The bacterium was isolated from a slightly acidic extreme thermal soil in Yellowstone National Park, Wyoming (USA). Depending on its final taxonomic allocation, this is likely to be the third completed genome sequence of a member of the class Thermomicrobia and the seventh type strain genome from the phylum Chloroflexi. The 3,101,581 bp long genome with its 2,872 protein-coding and 58 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  14. Study of puromycin and acridic orange strain effect on photoprotection of yeasts Candida guillermondii from the lethal action of short-wave ultraviolet

    International Nuclear Information System (INIS)

    Fraikin, G.Ya.; Strakhovskaya, M.G.; Rubvin, L.B.

    1980-01-01

    The synthesis inhibitor of puromycin albumen has been used to establish that photoprotection formation in yeasts of a hypothetic compound which protects DNA from lethal damages, is not connected with macromolecular synthesis. The combined effect of photoprotective light and acridic orange strain on cells has been studied. It is shown that the mechanism in the base of the protector action is analogous to the mechanism of DNA protection with acridic orange

  15. Impact of process parameters on the sourdough microbiota, selection of suitable starter strains, and description of the novel yeast Cryptococcus thermophilus sp. nov.

    OpenAIRE

    Vogelmann, Stephanie Anke

    2013-01-01

    The microbiota of a ripe sourdough consists of lactic acid bacteria (LAB), especially of the genus Lactobacillus, and yeasts. Their composition is influenced by the interplay of species or strains, the kind of substrate as well as the process parameters temperature, dough yield, redox potential, refreshment time, and number of propagation steps (Hammes and Gänzle, 1997). As taste and quality of sourdough breads are mainly influenced by the fermentation microbiota, intense research has been fo...

  16. Insights Gained from the Dehalococcoides ethenogenes Strain 195’s Transcriptome Responding to a Wide Range of Respiration Rates and Substrate Types

    Science.gov (United States)

    2012-04-01

    fermented yeast , pure hydrogen, or endogenous biomass decay). When similarly respiring (~120 ?eeq PCE/(L-hr)) batch and PSS cultures were contrasted, the...REPORT Insights gained from the “Dehalococcoides ethenogenes” strain 195?s transcriptome responding to a wide range of respiration rates and substrate...types. 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Bacteria of the group “Dehalococcoides” display the ability to respire recalcitrant chlorinated

  17. Use of sugarcane molasses "B" as an alternative for ethanol production with wild-type yeast Saccharomyces cerevisiae ITV-01 at high sugar concentrations.

    Science.gov (United States)

    Fernández-López, C L; Torrestiana-Sánchez, B; Salgado-Cervantes, M A; García, P G Mendoza; Aguilar-Uscanga, M G

    2012-05-01

    Molasses "B" is a rich co-product of the sugarcane process. It is obtained from the second step of crystallization and is richer in fermentable sugars (50-65%) than the final molasses, with a lower non-sugar solid content (18-33%); this co-product also contains good vitamin and mineral levels. The use of molasses "B" for ethanol production could be a good option for the sugarcane industry when cane sugar prices diminish in the market. In a complex medium like molasses, osmotolerance is a desirable characteristic for ethanol producing strains. The aim of this work was to evaluate the use of molasses "B" for ethanol production using Saccharomyces cerevisiae ITV-01 (a wild-type yeast isolated from sugarcane molasses) using different initial sugar concentrations (70-291 g L(-1)), two inoculum sizes and the addition of nutrients such as yeast extract, urea, and ammonium sulphate to the culture medium. The results obtained showed that the strain was able to grow at 291 g L(-1) total sugars in molasses "B" medium; the addition of nutrients to the culture medium did not produce a statistically significant difference. This yeast exhibits high osmotolerance in this medium, producing high ethanol yields (0.41 g g(-1)). The best conditions for ethanol production were 220 g L(-1) initial total sugars in molasses "B" medium, pH 5.5, using an inoculum size of 6 × 10(6) cell mL(-1); ethanol production was 85 g L(-1), productivity 3.8 g L(-1 )h(-1) with 90% preserved cell viability.

  18. Complete genome sequence of Halanaerobium praevalens type strain (GSLT)

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Chertkov, Olga [Los Alamos National Laboratory (LANL); Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Hammon, Nancy [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Kannan, K. Palani [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Tindall, Brian [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute

    2011-01-01

    Halanaerobium praevalens Zeikus et al. 1984 is the type species of the genus Halanaero- bium, which in turn is the type genus of the family Halanaerobiaceae. The species is of inter- est because it is able to reduce a variety of nitro-substituted aromatic compounds at a high rate, and because of its ability to degrade organic pollutants. The strain is also of interest be- cause it functions as a hydrolytic bacterium, fermenting complex organic matter and produc- ing intermediary metabolites for other trophic groups such as sulfate-reducing and methano- genic bacteria. It is further reported as being involved in carbon removal in the Great Salt Lake, its source of isolation. This is the first completed genome sequence of a representative of the genus Halanaerobium and the second genome sequence from a type strain of the fami- ly Halanaerobiaceae. The 2,309,262 bp long genome with its 2,110 protein-coding and 70 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  19. The Evolution of Strain Typing in the Mycobacterium tuberculosis Complex.

    Science.gov (United States)

    Merker, Matthias; Kohl, Thomas A; Niemann, Stefan; Supply, Philip

    2017-01-01

    Tuberculosis (TB) is a contagious disease with a complex epidemiology. Therefore, molecular typing (genotyping) of Mycobacterium tuberculosis complex (MTBC) strains is of primary importance to effectively guide outbreak investigations, define transmission dynamics and assist global epidemiological surveillance of the disease. Large-scale genotyping is also needed to get better insights into the biological diversity and the evolution of the pathogen. Thanks to its shorter turnaround and simple numerical nomenclature system, mycobacterial interspersed repetitive unit-variable-number tandem repeat (MIRU-VNTR) typing, based on 24 standardized plus 4 hypervariable loci, optionally combined with spoligotyping, has replaced IS6110 DNA fingerprinting over the last decade as a gold standard among classical strain typing methods for many applications. With the continuous progress and decreasing costs of next-generation sequencing (NGS) technologies, typing based on whole genome sequencing (WGS) is now increasingly performed for near complete exploitation of the available genetic information. However, some important challenges remain such as the lack of standardization of WGS analysis pipelines, the need of databases for sharing WGS data at a global level, and a better understanding of the relevant genomic distances for defining clusters of recent TB transmission in different epidemiological contexts. This chapter provides an overview of the evolution of genotyping methods over the last three decades, which culminated with the development of WGS-based methods. It addresses the relative advantages and limitations of these techniques, indicates current challenges and potential directions for facilitating standardization of WGS-based typing, and provides suggestions on what method to use depending on the specific research question.

  20. Complete genome sequence of Truepera radiovictrix type strain (RQ-24).

    Science.gov (United States)

    Ivanova, Natalia; Rohde, Christine; Munk, Christine; Nolan, Matt; Lucas, Susan; Del Rio, Tijana Glavina; Tice, Hope; Deshpande, Shweta; Cheng, Jan-Fang; Tapia, Roxane; Han, Cliff; Goodwin, Lynne; Pitluck, Sam; Liolios, Konstantinos; Mavromatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Brambilla, Evelyne; Rohde, Manfred; Göker, Markus; Tindall, Brian J; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Lapidus, Alla

    2011-02-22

    Truepera radiovictrix Albuquerque et al. 2005 is the type species of the genus Truepera within the phylum "Deinococcus/Thermus". T. radiovictrix is of special interest not only because of its isolated phylogenetic location in the order Deinococcales, but also because of its ability to grow under multiple extreme conditions in alkaline, moderately saline, and high temperature habitats. Of particular interest is the fact that, T. radiovictrix is also remarkably resistant to ionizing radiation, a feature it shares with members of the genus Deinococcus. This is the first completed genome sequence of a member of the family Trueperaceae and the fourth type strain genome sequence from a member of the order Deinococcales. The 3,260,398 bp long genome with its 2,994 protein-coding and 52 RNA genes consists of one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  1. Alcohol production by selected yeast strains in lactase-hydrolyzed acid whey

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, V S; Green, R; Sullivan, B C; Holsinger, V H

    1977-07-01

    Ethanol production by Kluyveromyces fragilis and Saccharomyces cerevisiae was studied using cottage cheese whey in which 80 to 90 percent of the lactose present had been prehydrolyzed to glucose and galactose. Complete fermentation of the sugar by K. fragilis required 120 hr at 30/sup 0/C in lactase-hydrolyzed whey compared to 72 hr in nonhydrolyzed whey. This effect was due to a diauxic fermentation pattern in lactase-hydrolyzed whey with glucose being fermented before galactose. Ethanol yields of about 2 percent were obtained in both types of whey when K. fragilis was the organism used for fermentation. Saccharomyces cerevisiae produced alcohol from glucose more rapidly than K. fragilis, but galactose was fermented only when S. cerevisiae was pregrown on galactose. Slightly lower alcohol yields were obtained with S. cerevisiae, owing to the presence of some lactose in the whey which was not fermented by this organism. Although prehydrolysis of lactose in whey and whey fractions is advantageous in that microbial species unable to ferment lactose may be utilized, diauxic and galactose utilization problems must be considered.

  2. Types of cell death and methods of their detection in yeast Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Wloch-Salamon, D.M.; Bem, A.E.

    2013-01-01

    The occurrence of programmed cell death in unicellular organisms is a subject that arouses great interest of theoreticians and experimental scientists. Already found evolutionarily conserved genes and metabolic pathways confirmed its existence in yeast, protozoa and even bacteria. In the yeast

  3. [Overexpression of FKS1 to improve yeast autolysis-stress].

    Science.gov (United States)

    Li, Jia; Wang, Jinjing; Li, Qi

    2015-09-01

    With the development of high gravity brewing, yeast cells are exposed to multiple brewing-associated stresses, such as increased osmotic pressure, enhanced alcohol concentration and nutritional imbalance. These will speed up yeast autolysis, which seriously influence beer flavor and quality. To increase yeast anti-autolytic ability, FKS1 overexpression strain was constructed by 18S rDNA. The concentration of β-1,3-glucan of overexpression strain was 62% higher than that of wild type strain. Meantime, FKS1 overexpression strain increased anti-stress ability at 8% ethanol, 0.4 mol/L NaCl and starvation stress. Under simulated autolysis, FKS1 showed good anti-autolytic ability by slower autolysis. These results confirms the potential of FKS1 overexpression to tackle yeast autolysis in high-gravity brewing.

  4. Oxygen availability and strain combination modulate yeast growth dynamics in mixed culture fermentations of grape must with Starmerella bacillaris and Saccharomyces cerevisiae.

    Science.gov (United States)

    Englezos, Vasileios; Cravero, Francesco; Torchio, Fabrizio; Rantsiou, Kalliopi; Ortiz-Julien, Anne; Lambri, Milena; Gerbi, Vincenzo; Rolle, Luca; Cocolin, Luca

    2018-02-01

    Starmerella bacillaris (synonym Candida zemplinina) is a non-Saccharomyces yeast that has been proposed as a co-inoculant of selected Saccharomyces cerevisiae strains in mixed culture fermentations to enhance the analytical composition of the wines. In order to acquire further knowledge on the metabolic interactions between these two species, in this study we investigated the impact of oxygen addition and combination of Starm. bacillaris with S. cerevisiae strains on the microbial growth and metabolite production. Fermentations were carried out under two different conditions of oxygen availability. Oxygen availability and strain combination clearly influenced the population dynamics throughout the fermentation. Oxygen concentration increased the survival time of Starm. bacillaris and decreased the growth rate of S. cerevisiae strains in mixed culture fermentations, whereas it did not affect the growth of the latter in pure culture fermentations. This study reveals new knowledge about the influence of oxygen availability on the successional evolution of yeast species during wine fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. High-Resolution Typing Reveals Distinct Chlamydia trachomatis Strains in an At-Risk Population in Nanjing, China

    NARCIS (Netherlands)

    Bom, Reinier J. M.; van den Hoek, Anneke; Wang, Qianqiu; Long, Fuquan; de Vries, Henry J. C.; Bruisten, Sylvia M.

    2013-01-01

    We investigated Chlamydia trachomatis strains from Nanjing, China, and whether these strains differed from Amsterdam, the Netherlands. C. trachomatis type was determined with multilocus sequence typing. Most strains were specific to Nanjing, but some clustered with strains from Amsterdam. This

  6. Effect of selected Saccharomyces cerevisiae yeast strains and different aging techniques on the polysaccharide and polyphenolic composition and sensorial characteristics of Cabernet Sauvignon red wines.

    Science.gov (United States)

    del Barrio-Galán, Rubén; Cáceres-Mella, Alejandro; Medel-Marabolí, Marcela; Peña-Neira, Álvaro

    2015-08-15

    The objective of this work was to study the effect of two Saccharomyces cerevisiae yeast strains with different capabilities of polysaccharide liberation during alcoholic fermentation in addition to subsequent aging on lees with or without oak wood chips as well as aging with commercial inactive dry yeast on the physical, chemical and sensorial characteristics of Cabernet Sauvignon red wines. The HPS (high levels of polysaccharides) yeast strain released higher amounts of polysaccharides (429 g L(-1)) than EC1118 (390 g L(-1)) during alcoholic fermentation, but the concentration equalized during the aging period (424 and 417 g L(-1) respectively). All aging techniques increased the polysaccharide concentration, but the increase was dependent on the technique applied. A higher liberation of polysaccharides reduced the concentration of most of the phenolic families analyzed. Moreover, no clear effect of the different aging techniques used in this study on color stabilization was found. The HPS wines were better valued than the EC1118 wines by the panel of tasters after alcoholic fermentation. In general, the HPS wines showed better physicochemical and sensorial characteristics than the EC1118 wines. According to the results obtained during the aging period, all aging techniques contributed to improve wine quality, but it was difficult to establish the technique that allowed the best wine to be obtained, because it depended on the aging technique used and the period of aging. © 2014 Society of Chemical Industry.

  7. Yeast Monitoring of Wine Mixed or Sequential Fermentations Made by Native Strains from D.O. “Vinos de Madrid” Using Real-Time Quantitative PCR

    Science.gov (United States)

    García, Margarita; Esteve-Zarzoso, Braulio; Crespo, Julia; Cabellos, Juan M.; Arroyo, Teresa

    2017-01-01

    There is an increasing trend toward understanding the impact of non-Saccharomyces yeasts on the winemaking process. Although Saccharomyces cerevisiae is the predominant species at the end of fermentation, it has been recognized that the presence of non-Saccharomyces species during alcoholic fermentation can produce an improvement in the quality and complexity of the final wines. A previous work was developed for selecting the best combinations between S. cerevisiae and five non-Saccharomyces (Torulaspora delbrueckii, Schizosaccharomyces pombe, Candida stellata, Metschnikowia pulcherrima, and Lachancea thermotolorans) native yeast strains from D.O. “Vinos de Madrid” at the laboratory scale. The best inoculation strategies between S. cerevisiae and non-Saccharomyces strains were chosen to analyze, by real-time quantitative PCR (qPCR) combined with the use of specific primers, the dynamics of inoculated populations throughout the fermentation process at the pilot scale using the Malvar white grape variety. The efficiency of the qPCR system was verified independently of the samples matrix, founding the inoculated yeast species throughout alcoholic fermentation. Finally, we can validate the positive effect of selected co-cultures in the Malvar wine quality, highlighting the sequential cultures of T. delbrueckii CLI 918/S. cerevisiae CLI 889 and C. stellata CLI 920/S. cerevisiae CLI 889 and, mixed and sequential cultures of L. thermotolerans 9-6C combined with S. cerevisiae CLI 889. PMID:29326669

  8. Yeast Monitoring of Wine Mixed or Sequential Fermentations Made by Native Strains from D.O. “Vinos de Madrid” Using Real-Time Quantitative PCR

    Directory of Open Access Journals (Sweden)

    Margarita García

    2017-12-01

    Full Text Available There is an increasing trend toward understanding the impact of non-Saccharomyces yeasts on the winemaking process. Although Saccharomyces cerevisiae is the predominant species at the end of fermentation, it has been recognized that the presence of non-Saccharomyces species during alcoholic fermentation can produce an improvement in the quality and complexity of the final wines. A previous work was developed for selecting the best combinations between S. cerevisiae and five non-Saccharomyces (Torulaspora delbrueckii, Schizosaccharomyces pombe, Candida stellata, Metschnikowia pulcherrima, and Lachancea thermotolorans native yeast strains from D.O. “Vinos de Madrid” at the laboratory scale. The best inoculation strategies between S. cerevisiae and non-Saccharomyces strains were chosen to analyze, by real-time quantitative PCR (qPCR combined with the use of specific primers, the dynamics of inoculated populations throughout the fermentation process at the pilot scale using the Malvar white grape variety. The efficiency of the qPCR system was verified independently of the samples matrix, founding the inoculated yeast species throughout alcoholic fermentation. Finally, we can validate the positive effect of selected co-cultures in the Malvar wine quality, highlighting the sequential cultures of T. delbrueckii CLI 918/S. cerevisiae CLI 889 and C. stellata CLI 920/S. cerevisiae CLI 889 and, mixed and sequential cultures of L. thermotolerans 9-6C combined with S. cerevisiae CLI 889.

  9. Vaginal yeast infection

    Science.gov (United States)

    Yeast infection - vagina; Vaginal candidiasis; Monilial vaginitis ... Most women have a vaginal yeast infection at some time. Candida albicans is a common type of fungus. It is often found in small amounts ...

  10. Types of strain among family members of individuals with autism spectrum disorder across the lifespan.

    Science.gov (United States)

    Shivers, Carolyn M; Krizova, Katarina; Lee, Gloria K

    2017-09-01

    Although increased caregiver strain is often found among family caregivers of individuals with autism spectrum disorder, it is still unclear as to how different types of strain relate to amount and types of caregiving across the lifespan. The present study examined different types of strain (i.e. subjective internalized strain, subjective externalized strain, and objective strain) and how such strain relates to the amount of caregiving responsibilities. Data was collected via online survey from a sample of 193 family caregivers of individuals with ASD from the United States, Canada, and the Republic of Ireland. Participants completed measures of strain and caregiving responsibilities, as well as coping, demographics, and services needed and received by the individual with ASD. Caregivers reported higher levels of objective strain than subjective, and caregiving responsibility was related to objective and subjective internalized strain. Coping style was strongly correlated with all types of strain, and unmet service needs were significantly related to objective and subjective internalized strain. Caregiving behaviors were only related to objective strain. The present results indicate that, although caregiving responsibility is related to objective and subjective internalized strain, the relationship is perhaps not as strong as the relationship between coping mechanisms and strain. Future research is needed to understand different types of strain and develop strategies to help caregivers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Comparisons of radiosensitivity and damage repair potential between mutants from the Saccharomyces cerevisiae strain of yeast and laboratory-bred wild yeasts with particular attention being given to giant cell formation after X-radiation

    International Nuclear Information System (INIS)

    Heinen, A.

    1988-01-01

    Yeast cells were exposed to X-rays at dose levels up to 10 kGy to induce damage to the DNA and investigate its effects on cellular growth patterns. For this purpose, comparisons were carried out between one diploid strain and six haploid strains of the Saccharomyces uvarum and Saccharomyces cerevisiae species, which permitted the individual recovery and damage repair pathways to be described in more detail. The laboratory-bred wild strains ATCC 9080, 211 and 706 were judged to have unimpaired repair mechanisms as compared to the auxotrophs, which fact was evident from the higher radiosensitivity of the latter. A further parameter in this evaluation of growth behaviours was giant cell formation. The results here provided evidence in confirmation of deviations between wild strains and mutants. Even though the ceiling values for the formation of giant cells were similarly high in all strains, impairments of cell division and initial development were observed for the mutants already at considerably lower dose levels. (orig./MG) [de

  12. L-arabinose fermenting yeast

    Science.gov (United States)

    Zhang, Min; Singh, Arjun; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric; Suominen, Pirkko

    2010-12-07

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. Methods of producing ethanol include utilizing these modified yeast strains. ##STR00001##

  13. Isolation of basidiomycetous yeast Pseudozyma tsukubaensis and production of glycolipid biosurfactant, a diastereomer type of mannosylerythritol lipid-B.

    Science.gov (United States)

    Morita, Tomotake; Takashima, Masako; Fukuoka, Tokuma; Konishi, Masaaki; Imura, Tomohiro; Kitamoto, Dai

    2010-10-01

    The producers of glycolipid biosurfactant, mannosylerythritol lipid-B (MEL-B), were isolated from leaves of Perilla frutescens on Ibaraki in Japan. Four isolates, 1D9, 1D10, 1D11, and 1E5, were identified as basidiomycetous yeast Pseudozyma tsukubaensis by rDNA sequence and biochemical properties. The structure of MEL-B produced by these strains was analyzed by (1)H nuclear magnetic resonance and gas chromatography-mass spectrometry methods, and was determined to be the same as the diastereomer MEL-B produced by P. tsukubaensis NBRC 1940. Of these isolates, P. tsukubaensis 1E5 (JCM 16987) is capable of producing the largest amount of the diastereomer MEL-B from vegetable oils. In order to progress the diastereomer MEL-B production by strain 1E5, factors affecting the production, such as carbon and organic nutrient sources, were further examined. Olive oil and yeast extract were the best carbon and nutrient sources, respectively. Under the optimal conditions, a maximum yield, productivity, and yield coefficient of 73.1 g/L, 10.4 g L(-1) day(-1), and 43.5 g/g were achieved by feeding of olive oil in a 5-L jar-fermenter culture using strain 1E5.

  14. Complete genome sequence of Nakamurella multipartita type strain (Y-104).

    Science.gov (United States)

    Tice, Hope; Mayilraj, Shanmugam; Sims, David; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Glavina Del Rio, Tijana; Copeland, Alex; Cheng, Jan-Fang; Meincke, Linda; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ivanova, Natalia; Mavromatis, Konstantinos; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Detter, John C; Brettin, Thomas; Rohde, Manfred; Göker, Markus; Bristow, Jim; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Chen, Feng

    2010-03-30

    Nakamurella multipartita (Yoshimi et al. 1996) Tao et al. 2004 is the type species of the monospecific genus Nakamurella in the actinobacterial suborder Frankineae. The nonmotile, coccus-shaped strain was isolated from activated sludge acclimated with sugar-containing synthetic wastewater, and is capable of accumulating large amounts of polysaccharides in its cells. Here we describe the features of the organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of a member of the family Nakamurellaceae. The 6,060,298 bp long single replicon genome with its 5415 protein-coding and 56 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  15. Complete genome sequence of Marivirga tractuosa type strain (H-43).

    Science.gov (United States)

    Pagani, Ioanna; Chertkov, Olga; Lapidus, Alla; Lucas, Susan; Del Rio, Tijana Glavina; Tice, Hope; Copeland, Alex; Cheng, Jan-Fang; Nolan, Matt; Saunders, Elizabeth; Pitluck, Sam; Held, Brittany; Goodwin, Lynne; Liolios, Konstantinos; Ovchinikova, Galina; Ivanova, Natalia; Mavromatis, Konstantinos; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Jeffries, Cynthia D; Detter, John C; Han, Cliff; Tapia, Roxanne; Ngatchou-Djao, Olivier D; Rohde, Manfred; Göker, Markus; Spring, Stefan; Sikorski, Johannes; Woyke, Tanja; Bristow, Jim; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Klenk, Hans-Peter; Kyrpides, Nikos C

    2011-04-29

    Marivirga tractuosa (Lewin 1969) Nedashkovskaya et al. 2010 is the type species of the genus Marivirga, which belongs to the family Flammeovirgaceae. Members of this genus are of interest because of their gliding motility. The species is of interest because representative strains show resistance to several antibiotics, including gentamicin, kanamycin, neomycin, polymixin and streptomycin. This is the first complete genome sequence of a member of the family Flammeovirgaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 4,511,574 bp long chromosome and the 4,916 bp plasmid with their 3,808 protein-coding and 49 RNA genes are a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  16. Chimeric Sex-Determining Chromosomal Regions and Dysregulation of Cell-Type Identity in a Sterile Zygosaccharomyces Allodiploid Yeast.

    Directory of Open Access Journals (Sweden)

    Melissa Bizzarri

    Full Text Available Allodiploidization is a fundamental yet evolutionarily poorly characterized event, which impacts genome evolution and heredity, controlling organismal development and polyploid cell-types. In this study, we investigated the sex determination system in the allodiploid and sterile ATCC 42981 yeast, a member of the Zygosaccharomyces rouxii species complex, and used it to study how a chimeric mating-type gene repertoire contributes to hybrid reproductive isolation. We found that ATCC 42981 has 7 MAT-like (MTL loci, 3 of which encode α-idiomorph and 4 encode a-idiomorph. Two phylogenetically divergent MAT expression loci were identified on different chromosomes, accounting for a hybrid a/α genotype. Furthermore, extra a-idimorph-encoding loci (termed MTLa copies 1 to 3 were recognized, which shared the same MATa1 ORFs but diverged for MATa2 genes. Each MAT expression locus was linked to a HML silent cassette, while the corresponding HMR loci were located on another chromosome. Two putative parental sex chromosome pairs contributed to this unusual genomic architecture: one came from an as-yet-undescribed taxon, which has the NCYC 3042 strain as a unique representative, while the other did not match any MAT-HML and HMR organizations previously described in Z. rouxii species. This chimeric rearrangement produces two copies of the HO gene, which encode for putatively functional endonucleases essential for mating-type switching. Although both a and α coding sequences, which are required to obtain a functional cell-type a1-α2 regulator, were present in the allodiploid ATCC 42981 genome, the transcriptional circuit, which regulates entry into meiosis in response to meiosis-inducing salt stress, appeared to be turned off. Furthermore, haploid and α-specific genes, such as MATα1 and HO, were observed to be actively transcribed and up-regulated under hypersaline stress. Overall, these evidences demonstrate that ATCC 42981 is unable to repress haploid

  17. Complete genome sequence of Kytococcus sedentarius type strain (strain 541T)

    Energy Technology Data Exchange (ETDEWEB)

    Sims, David; Brettin, Thomas; Detter, John C.; Han, Cliff; Lapidus, Alla; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Chen, Feng; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ovchinnikova, Galina; Pati, Amrita; Ivanova, Natalia; Mavrommatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; D' haeseleer, Patrick; Chain, Patrick; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Schneider, Susanne; Goker, Markus; Pukall, Rudiger; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2009-05-20

    Kytococcus sedentarius (ZoBell and Upham 1944) Stackebrandt et al. 1995 is the type strain of the species, and is of phylogenetic interest because of its location in the Dermacoccaceae, a poorly studied family within the actinobacterial suborder Micrococcineae. K. sedentarius is known for the production of oligoketide antibiotics as well as for its role as an opportunistic pathogen causing valve endocarditis, hemorrhagic pneumonia, and pitted keratolysis. It is strictly aerobic and can only grow when several amino acids are provided in the medium. The strain described in this report is a free-living, nonmotile, Gram-positive bacterium, originally isolated from a marine environment. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the family Dermacoccaceae and the 2,785,024 bp long single replicon genome with its 2639 protein-coding and 64 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  18. L-arabinose fermenting yeast

    Science.gov (United States)

    Zhang, Min; Singh, Arjun; Suominen, Pirkko; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric

    2013-02-12

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  19. Bactericidal activity of culture fluid components of Lactobacillus fermentum strain 90 TS-4 (21) clone 3, and their capacity to modulate adhesion of Candida albicans yeast-like fungi to vaginal epithelial cells.

    Science.gov (United States)

    Anokhina, I V; Kravtsov, E G; Protsenko, A V; Yashina, N V; Yermolaev, A V; Chesnokova, V L; Dalin, M V

    2007-03-01

    Antagonistic activities of L. fermentum strain 90 TS-4 (21), L. casei ATCC 27216, and L. acidophilus ATCC 4356 and bactericidal activity of lactobacillus culture fluid towards E. coli strain K12, S. aureus, and S. epidermidis test cultures were studied. The bactericidal effect of L. fermentum strain 90 TS-4 (21) clone 3 culture fluid preparation (pH 6.0) on the test cultures was dose-dependent. Adhesion of C. albicans yeast-like fungi to vaginal epitheliocytes was more pronounced for strains isolated from women with asymptomatic infection than for strains isolated from women with manifest forms. L. fermentum strain 90 TS-4 (21) clone 3 culture fluid preparation modulated adhesion of yeast-like fungi only if the fungal strain was initially highly adherent.

  20. Liquid holding recovery kinetics in wild-type and radiosensitive mutants of the yeast Saccharomyces exposed to low- and high-LET radiations

    Energy Technology Data Exchange (ETDEWEB)

    Petin, Vladislav G. [Biophysical Laboratory, Medical Radiological Research Center, 249036 Obninsk (Russian Federation); Kim, Jin Kyu [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)]. E-mail: jkkim@kaeri.re.kr

    2005-02-15

    Three wild-type diploid yeast strains Saccharomyces ellipsoideus and Saccharomyces cerevisiae and five radiosensitive mutants of S. cerevisiae in the diploid state were irradiated with {gamma}-rays from {sup 60}Co and {alpha}-particles from {sup 239}Pu in the stationary phase of growth. Survival curves and the kinetics of the liquid holding recovery were measured. It was shown that the irreversible component was enhanced for the densely ionizing radiation in comparison to the low-LET radiation while the probability of the recovery was identical for both the low- and high-LET radiations for all the strains investigated. It means that the recovery process itself is not damaged after densely ionizing radiation and the enhanced RBE of the high-LET radiation may be caused by the increased yield of the irreversible damage. A parent diploid strain and all its radiosensitive mutants showed the same probability for recovery from radiation damage. Thus, the mechanism of the enhanced radiosensitivity of the mutant cells might not be related to the damage of the repair systems themselves but with the production of some kind of radiation damage from which cells are incapable to recover.

  1. Hybridization of Palm Wine Yeasts ( Saccharomyces Cerevisiae ...

    African Journals Online (AJOL)

    Haploid auxotrophic strains of Saccharomyces cerevisiae were selected from palm wine and propagated by protoplast fusion with Brewers yeast. Fusion resulted in an increase in both ethanol production and tolerance against exogenous ethanol. Mean fusion frequencies obtained for a mating types ranged between 8 x ...

  2. Complete genome sequence of Desulfomicrobium baculatum type strain (XT)

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Alex; Spring, Stefan; Goker, Markus; Schneider, Susanne; Lapidus, Alla; Glavina Del Rio, Tijana; Tice, Hope; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Nolan, Matt; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ivanova, Natalia; Mavrommatis, Konstantinos; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia C; Meincke, Linda; Sims, David; Brettin, Thomas; Detter, John C; Han, Cliff; Chain, Patrick; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Klenk, Hans-Peter; Kyrpides, Nikos C; Lucas, Susan

    2009-05-20

    Desulfomicrobium baculatum is the type species of the genus Desulfomicrobium, which is the type genus of the family Desulfomicrobiaceae. It is of phylogenetic interest because of the isolated location of the family Desulfomicrobiaceae within the order Desulfovibrionales. D. baculatum strain XT is a Gram-negative, motile, sulfate-reducing bacterium isolated from water-saturated manganese carbonate ore. It is strictly anaerobic and does not require NaCl for growth, although NaCl concentrations up to 6percent (w/v) are tolerated. The metabolism is respiratory or fermentative. In the presence of sulfate, pyruvate and lactate are incompletely oxidized to acetate and CO2. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a member of the deltaproteobacterial family Desulfomicrobiaceae, and this 3,942,657 bp long single replicon genome with its 3494 protein-coding and 72 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  3. Evaluation of molecular typing techniques to assign genetic diversity among Saccharomyces cerevisiae strains

    NARCIS (Netherlands)

    Baleiras Couto, M.M.; Eijsma, B.; Hofstra, H.; Huis in 't Veld, J.H.J.; Vossen, J.M.B.M. van der

    1996-01-01

    Discrimination of strains within the species Saccharomyces cerevisiae was demonstrated by the use of four different techniques to type 15 strains isolated from spoiled wine and beer. Random amplified polymorphic DNA with specific oligonucleotides and PCR fingerprinting with the microsatellite

  4. Genetic homogeneity of Clostridium botulinum type A1 strains with unique toxin gene clusters.

    Science.gov (United States)

    Raphael, Brian H; Luquez, Carolina; McCroskey, Loretta M; Joseph, Lavin A; Jacobson, Mark J; Johnson, Eric A; Maslanka, Susan E; Andreadis, Joanne D

    2008-07-01

    A group of five clonally related Clostridium botulinum type A strains isolated from different sources over a period of nearly 40 years harbored several conserved genetic properties. These strains contained a variant bont/A1 with five nucleotide polymorphisms compared to the gene in C. botulinum strain ATCC 3502. The strains also had a common toxin gene cluster composition (ha-/orfX+) similar to that associated with bont/A in type A strains containing an unexpressed bont/B [termed A(B) strains]. However, bont/B was not identified in the strains examined. Comparative genomic hybridization demonstrated identical genomic content among the strains relative to C. botulinum strain ATCC 3502. In addition, microarray data demonstrated the absence of several genes flanking the toxin gene cluster among the ha-/orfX+ A1 strains, suggesting the presence of genomic rearrangements with respect to this region compared to the C. botulinum ATCC 3502 strain. All five strains were shown to have identical flaA variable region nucleotide sequences. The pulsed-field gel electrophoresis patterns of the strains were indistinguishable when digested with SmaI, and a shift in the size of at least one band was observed in a single strain when digested with XhoI. These results demonstrate surprising genomic homogeneity among a cluster of unique C. botulinum type A strains of diverse origin.

  5. Genetic analysis of Saccharomyces cerevisiae strains isolated from palm wine in eastern Nigeria. Comparison with other African strains.

    Science.gov (United States)

    Ezeronye, O U; Legras, J-L

    2009-05-01

    To study the yeast diversity of Nigerian palm wines by comparison with other African strains. Twenty-three Saccharomyces cerevisiae strains were obtained from palm wine samples collected at four locations in eastern Nigeria, and characterized using different molecular techniques: internal transcribed spacer restriction fragment length polymorphism and sequence analysis, pulsed field gel electrophoresis, inter delta typing and microsatellite multilocus analysis. These techniques revealed that palm wine yeasts represent a group of closely related strains that includes other West African isolates (CBS400, NCYC110, DVPG6044). Population analysis revealed an excess of homozygote strains and an allelic richness similar to wine suggestive of local domestication. Several other African yeast strains were not connected to this group. Ghana sorghum beer strains and other African strains (DBVPG1853 and MUCL28071) displayed strikingly high relatedness with European bread, beer or wine strains, and the genome of strain MUCL30909 contained African and wine-type alleles, indicating its hybrid origin. Nigerian palm wine yeast represents a local specific yeast flora, whereas a European origin or hybrid was suspected for several other Africa isolates. This study presents the first genetic characterization of an autochthonous African palm wine yeast population and confirms the idea that human intervention has favoured yeast migration.

  6. A loss-of-function mutation in the PAS kinase Rim15p is related to defective quiescence entry and high fermentation rates of Saccharomyces cerevisiae sake yeast strains.

    Science.gov (United States)

    Watanabe, Daisuke; Araki, Yuya; Zhou, Yan; Maeya, Naoki; Akao, Takeshi; Shimoi, Hitoshi

    2012-06-01

    Sake yeast cells have defective entry into the quiescent state, allowing them to sustain high fermentation rates. To reveal the underlying mechanism, we investigated the PAS kinase Rim15p, which orchestrates initiation of the quiescence program in Saccharomyces cerevisiae. We found that Rim15p is truncated at the carboxyl terminus in modern sake yeast strains as a result of a frameshift mutation. Introduction of this mutation or deletion of the full-length RIM15 gene in a laboratory strain led to a defective stress response, decreased synthesis of the storage carbohydrates trehalose and glycogen, and impaired G(1) arrest, which together closely resemble the characteristic phenotypes of sake yeast. Notably, expression of a functional RIM15 gene in a modern sake strain suppressed all of these phenotypes, demonstrating that dysfunction of Rim15p prevents sake yeast cells from entering quiescence. Moreover, loss of Rim15p or its downstream targets Igo1p and Igo2p remarkably improved the fermentation rate in a laboratory strain. This finding verified that Rim15p-mediated entry into quiescence plays pivotal roles in the inhibition of ethanol fermentation. Taken together, our results suggest that the loss-of-function mutation in the RIM15 gene may be the key genetic determinant of the increased ethanol production rates in modern sake yeast strains.

  7. Fission yeast strains with circular chromosomes require the 9-1-1 checkpoint complex for the viability in response to the anti-cancer drug 5-fluorodeoxyuridine.

    Directory of Open Access Journals (Sweden)

    Hossain Mohammad Shamim

    Full Text Available Thymidine kinase converts 5-fluorodeoxyuridine to 5-fluorodeoxyuridine monophosphate, which causes disruption of deoxynucleotide triphosphate ratios. The fission yeast Schizosaccharomyces pombe does not express endogenous thymidine kinase but 5-fluorodeoxyuridine inhibits growth when exogenous thymidine kinase is expressed. Unexpectedly, we found that 5-fluorodeoxyuridine causes S phase arrest even without thymidine kinase expression. DNA damage checkpoint proteins such as the 9-1-1 complex were required for viability in the presence of 5-fluorodeoxyuridine. We also found that strains with circular chromosomes, due to loss of pot1+, which have higher levels of replication stress, were more sensitive to loss of the 9-1-1 complex in the presence of 5-fluorodeoxyuridine. Thus, our results suggest that strains carrying circular chromosomes exhibit a greater dependence on DNA damage checkpoints to ensure viability in the presence of 5-fluorodeoxyuridine compared to stains that have linear chromosomes.

  8. Fission yeast strains with circular chromosomes require the 9-1-1 checkpoint complex for the viability in response to the anti-cancer drug 5-fluorodeoxyuridine.

    Science.gov (United States)

    Shamim, Hossain Mohammad; Minami, Yukako; Tanaka, Daiki; Ukimori, Shinobu; Murray, Johanne M; Ueno, Masaru

    2017-01-01

    Thymidine kinase converts 5-fluorodeoxyuridine to 5-fluorodeoxyuridine monophosphate, which causes disruption of deoxynucleotide triphosphate ratios. The fission yeast Schizosaccharomyces pombe does not express endogenous thymidine kinase but 5-fluorodeoxyuridine inhibits growth when exogenous thymidine kinase is expressed. Unexpectedly, we found that 5-fluorodeoxyuridine causes S phase arrest even without thymidine kinase expression. DNA damage checkpoint proteins such as the 9-1-1 complex were required for viability in the presence of 5-fluorodeoxyuridine. We also found that strains with circular chromosomes, due to loss of pot1+, which have higher levels of replication stress, were more sensitive to loss of the 9-1-1 complex in the presence of 5-fluorodeoxyuridine. Thus, our results suggest that strains carrying circular chromosomes exhibit a greater dependence on DNA damage checkpoints to ensure viability in the presence of 5-fluorodeoxyuridine compared to stains that have linear chromosomes.

  9. Complete genome sequence of Actinosynnema mirum type strain (101T)

    Energy Technology Data Exchange (ETDEWEB)

    Land, Miriam; Lapidus, Alla; Mayilraj, Shanmugam; Chen, Feng; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Chertkov, Olga; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Rohde, Manfred; Goker, Markus; Pati, Amrita; Ivanova, Natalia; Mavrommatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia; Brettin, Thomas; Detter, John C.; Han, Cliff; Chain, Patrick; Tindall, Brian; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2009-05-20

    Actinosynnema mirum Hasegawa et al. 1978 is the type species of the genus, and is of phylogenetic interest because of its central phylogenetic location in the Actino-synnemataceae, a rapidly growing family within the actinobacterial suborder Pseudo-nocardineae. A. mirum is characterized by its motile spores borne on synnemata and as a producer of nocardicin antibiotics. It is capable of growing aerobically and under a moderate CO2 atmosphere. The strain is a Gram-positive, aerial and substrate mycelium producing bacterium, originally isolated from a grass blade collected from the Raritan River, New Jersey. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of a member of the family Actinosynnemataceae, and only the second sequence from the actinobacterial suborder Pseudonocardineae. The 8,248,144 bp long single replicon genome with its 7100 protein-coding and 77 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  10. Molecular typing of Brucella melitensis endemic strains and differentiation from the vaccine strain Rev-1.

    Science.gov (United States)

    Noutsios, Georgios T; Papi, Rigini M; Ekateriniadou, Loukia V; Minas, Anastasios; Kyriakidis, Dimitrios A

    2012-03-01

    In the present study forty-four Greek endemic strains of Br. melitensis and three reference strains were genotyped by Multi locus Variable Number Tandem Repeat (ML-VNTR) analysis based on an eight-base pair tandem repeat sequence that was revealed in eight loci of Br. melitensis genome. The forty-four strains were discriminated from the vaccine strain Rev-1 by Restriction Fragment Length Polymorphism (RFLP) and Denaturant Gradient Gel Electrophoresis (DGGE). The ML-VNTR analysis revealed that endemic, reference and vaccine strains are genetically closely related, while most of the loci tested (1, 2, 4, 5 and 7) are highly polymorphic with Hunter-Gaston Genetic Diversity Index (HGDI) values in the range of 0.939 to 0.775. Analysis of ML-VNTRs loci stability through in vitro passages proved that loci 1 and 5 are non stable. Therefore, vaccine strain can be discriminated from endemic strains by allele's clusters of loci 2, 4, 6 and 7. RFLP and DGGE were also employed to analyse omp2 gene and reveled different patterns among Rev-1 and endemic strains. In RFLP, Rev-1 revealed three fragments (282, 238 and 44 bp), while endemic strains two fragments (238 and 44 bp). As for DGGE, the electrophoretic mobility of Rev-1 is different from the endemic strains due to heterologous binding of DNA chains of omp2a and omp2b gene. Overall, our data show clearly that it is feasible to genotype endemic strains of Br. melitensis and differentiate them from vaccine strain Rev-1 with ML-VNTR, RFLP and DGGE techniques. These tools can be used for conventional investigations in brucellosis outbreaks.

  11. Dynamic study of yeast species and Saccharomyces cerevisiae strains during the spontaneous fermentations of Muscat blanc in Jingyang, China.

    Science.gov (United States)

    Wang, Chunxiao; Liu, Yanlin

    2013-04-01

    The evolution of yeast species and Saccharomyces cerevisiae genotypes during spontaneous fermentations of Muscat blanc planted in 1957 in Jingyang region of China was followed in this study. Using a combination of colony morphology on Wallerstein Nutrient (WLN) medium, sequence analysis of the 26S rDNA D1/D2 domain and 5.8S-ITS-RFLP analysis, a total of 686 isolates were identified at the species level. The six species identified were S. cerevisiae, Hanseniaspora uvarum, Hanseniaspora opuntiae, Issatchenkia terricola, Pichia kudriavzevii (Issatchenkia orientalis) and Trichosporon coremiiforme. This is the first report of T. coremiiforme as an inhabitant of grape must. Three new colony morphologies on WLN medium and one new 5.8S-ITS-RFLP profile are described. Species of non-Saccharomyces, predominantly H. opuntiae, were found in early stages of fermentation. Subsequently, S. cerevisiae prevailed followed by large numbers of P. kudriavzevii that dominated at the end of fermentations. Six native genotypes of S. cerevisiae were determined by interdelta sequence analysis. Genotypes III and IV were predominant. As a first step in exploring untapped yeast resources of the region, this study is important for monitoring the yeast ecology in native fermentations and screening indigenous yeasts that will produce wines with regional characteristics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Multi-Locus Next-Generation Sequence Typing of DNA Extracted From Pooled Colonies Detects Multiple Unrelated Candida albicans Strains in a Significant Proportion of Patient Samples

    Directory of Open Access Journals (Sweden)

    Ningxin Zhang

    2018-06-01

    Full Text Available The yeast Candida albicans is an important opportunistic human pathogen. For C. albicans strain typing or drug susceptibility testing, a single colony recovered from a patient sample is normally used. This is insufficient when multiple strains are present at the site sampled. How often this is the case is unclear. Previous studies, confined to oral, vaginal and vulvar samples, have yielded conflicting results and have assessed too small a number of colonies per sample to reliably detect the presence of multiple strains. We developed a next-generation sequencing (NGS modification of the highly discriminatory C. albicans MLST (multilocus sequence typing method, 100+1 NGS-MLST, for detection and typing of multiple strains in clinical samples. In 100+1 NGS-MLST, DNA is extracted from a pool of colonies from a patient sample and also from one of the colonies. MLST amplicons from both DNA preparations are analyzed by high-throughput sequencing. Using base call frequencies, our bespoke DALMATIONS software determines the MLST type of the single colony. If base call frequency differences between pool and single colony indicate the presence of an additional strain, the differences are used to computationally infer the second MLST type without the need for MLST of additional individual colonies. In mixes of previously typed pairs of strains, 100+1 NGS-MLST reliably detected a second strain. Inferred MLST types of second strains were always more similar to their real MLST types than to those of any of 59 other isolates (22 of 31 inferred types were identical to the real type. Using 100+1 NGS-MLST we found that 7/60 human samples, including three superficial candidiasis samples, contained two unrelated strains. In addition, at least one sample contained two highly similar variants of the same strain. The probability of samples containing unrelated strains appears to differ considerably between body sites. Our findings indicate the need for wider surveys to

  13. Citric acid production from extract of Jerusalem artichoke tubers by the genetically engineered yeast Yarrowia lipolytica strain 30 and purification of citric acid.

    Science.gov (United States)

    Wang, Ling-Fei; Wang, Zhi-Peng; Liu, Xiao-Yan; Chi, Zhen-Ming

    2013-11-01

    In this study, citric acid production from extract of Jerusalem artichoke tubers by the genetically engineered yeast Yarrowia lipolytica strain 30 was investigated. After the compositions of the extract of Jerusalem artichoke tubers for citric acid production were optimized, the results showed that natural components of extract of Jerusalem artichoke tubers without addition of any other components were suitable for citric acid production by the yeast strain. During 10 L fermentation using the extract containing 84.3 g L(-1) total sugars, 68.3 g L(-1) citric acid was produced and the yield of citric acid was 0.91 g g(-1) within 336 h. At the end of the fermentation, 9.2 g L(-1) of residual total sugar and 2.1 g L(-1) of reducing sugar were left in the fermented medium. At the same time, citric acid in the supernatant of the culture was purified. It was found that 67.2 % of the citric acid in the supernatant of the culture was recovered and purity of citric acid in the crystal was 96 %.

  14. R5 strains of human immunodeficiency virus type 1 from rapid progressors lacking X4 strains do not possess X4-type pathogenicity in human thymus

    NARCIS (Netherlands)

    Berkowitz, R. D.; van't Wout, A. B.; Kootstra, N. A.; Moreno, M. E.; Linquist-Stepps, V. D.; Bare, C.; Stoddart, C. A.; Schuitemaker, H.; McCune, J. M.

    1999-01-01

    Some individuals infected with only R5 strains of human immunodeficiency virus type 1 progress to AIDS as quickly as individuals harboring X4 strains. We determined that three R5 viruses were much less pathogenic than an X4 virus in SCID-hu Thy/Liv mice, suggesting that R5 virus-mediated rapid

  15. Brewing characteristics of piezosensitive sake yeasts

    Science.gov (United States)

    Nomura, Kazuki; Hoshino, Hirofumi; Igoshi, Kazuaki; Onozuka, Haruka; Tanaka, Erika; Hayashi, Mayumi; Yamazaki, Harutake; Takaku, Hiroaki; Iguchi, Akinori; Shigematsu, Toru

    2018-04-01

    Application of high hydrostatic pressure (HHP) treatment to food processing is expected as a non-thermal fermentation regulation technology that supresses over fermentation. However, the yeast Saccharomyces cerevisiae used for Japanese rice wine (sake) brewing shows high tolerance to HHP. Therefore, we aimed to generate pressure-sensitive (piezosensitive) sake yeast strains by mating sake with piezosensitive yeast strains to establish an HHP fermentation regulation technology and extend the shelf life of fermented foods. The results of phenotypic analyses showed that the generated yeast strains were piezosensitive and exhibited similar fermentation ability compared with the original sake yeast strain. In addition, primary properties of sake brewed using these strains, such as ethanol concentration, sake meter value and sake flavor compounds, were almost equivalent to those obtained using the sake yeast strain. These results suggest that the piezosensitive strains exhibit brewing characteristics essentially equivalent to those of the sake yeast strain.

  16. Genome sequence of the thermophile Bacillus coagulans Hammer, the type strain of the species.

    Science.gov (United States)

    Su, Fei; Tao, Fei; Tang, Hongzhi; Xu, Ping

    2012-11-01

    Here we announce a 3.0-Mb assembly of the Bacillus coagulans Hammer strain, which is the type strain of the species within the genus Bacillus. Genomic analyses based on the sequence may provide insights into the phylogeny of the species and help to elucidate characteristics of the poorly studied strains of Bacillus coagulans.

  17. Genome Sequence of the Thermophile Bacillus coagulans Hammer, the Type Strain of the Species

    OpenAIRE

    Su, Fei; Tao, Fei; Tang, Hongzhi; Xu, Ping

    2012-01-01

    Here we announce a 3.0-Mb assembly of the Bacillus coagulans Hammer strain, which is the type strain of the species within the genus Bacillus. Genomic analyses based on the sequence may provide insights into the phylogeny of the species and help to elucidate characteristics of the poorly studied strains of Bacillus coagulans.

  18. A robust SNP barcode for typing Mycobacterium tuberculosis complex strains

    KAUST Repository

    Coll, Francesc; McNerney, Ruth; Guerra-Assunç ã o, José Afonso; Glynn, Judith R.; Perdigã o, Joã o; Viveiros, Miguel; Portugal, Isabel; Pain, Arnab; Martin, Nigel; Clark, Taane G.

    2014-01-01

    Strain-specific genomic diversity in the Mycobacterium tuberculosis complex (MTBC) is an important factor in pathogenesis that may affect virulence, transmissibility, host response and emergence of drug resistance. Several systems have been proposed

  19. Single-cell Protein and Xylitol Production by a Novel Yeast Strain Candida intermedia FL023 from Lignocellulosic Hydrolysates and Xylose.

    Science.gov (United States)

    Wu, Jiaqiang; Hu, Jinlong; Zhao, Shumiao; He, Mingxiong; Hu, Guoquan; Ge, Xiangyang; Peng, Nan

    2018-05-01

    Yeasts are good candidates to utilize the hydrolysates of lignocellulose, the most abundant bioresource, for bioproducts. This study aimed to evaluate the efficiencies of single-cell protein (SCP) and xylitol production by a novel yeast strain, Candida intermedia FL023, from lignocellulosic hydrolysates and xylose. This strain efficiently assimilated hexose, pentose, and cellubiose for cell mass production with the crude protein content of 484.2 g kg -1 dry cell mass. SCP was produced by strain FL023 using corncob hydrolysate and urea as the carbon and nitrogen sources with the dry cell mass productivity 0.86 g L -1  h -1 and the yield of 0.40 g g -1 sugar. SCP was also produced using NaOH-pretreated Miscanthus sinensis straw and corn steep liquor as the carbon and nitrogen sources through simultaneous saccharification and fermentation with the dry cell productivity of 0.23 g L -1  h -1 and yield of 0.17 g g -1 straw. C. intermedia FL023 was tolerant to 0.5 g L -1 furfural, acetic acid, and syringaldehyde in xylitol fermentation and produced 45.7 g L -1 xylitol from xylose with the productivity of 0.38 g L -1  h -1 and the yield of 0.57 g g -1 xylose. This study provides feasible methods for feed and food additive production from the abundant lignocellulosic bioresources.

  20. Checkpoint independence of most DNA replication origins in fission yeast

    OpenAIRE

    Mickle, Katie L; Ramanathan, Sunita; Rosebrock, Adam; Oliva, Anna; Chaudari, Amna; Yompakdee, Chulee; Scott, Donna; Leatherwood, Janet; Huberman, Joel A

    2007-01-01

    Abstract Background In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU), which limits the pool of deoxyribonucleo...

  1. Use of colony-based bacterial strain typing for tracking the fate of Lactobacillus strains during human consumption

    Directory of Open Access Journals (Sweden)

    Drevinek Pavel

    2009-12-01

    Full Text Available Abstract Background The Lactic Acid Bacteria (LAB are important components of the healthy gut flora and have been used extensively as probiotics. Understanding the cultivable diversity of LAB before and after probiotic administration, and being able to track the fate of administered probiotic isolates during feeding are important parameters to consider in the design of clinical trials to assess probiotic efficacy. Several methods may be used to identify bacteria at the strain level, however, PCR-based methods such as Random Amplified Polymorphic DNA (RAPD are particularly suited to rapid analysis. We examined the cultivable diversity of LAB in the human gut before and after feeding with two Lactobacillus strains, and also tracked the fate of these two administered strains using a RAPD technique. Results A RAPD typing scheme was developed to genetically type LAB isolates from a wide range of species, and optimised for direct application to bacterial colony growth. A high-throughput strategy for fingerprinting the cultivable diversity of human faeces was developed and used to determine: (i the initial cultivable LAB strain diversity in the human gut, and (ii the fate of two Lactobacillus strains (Lactobacillus salivarius NCIMB 30211 and Lactobacillus acidophilus NCIMB 30156 contained within a capsule that was administered in a small-scale human feeding study. The L. salivarius strain was not cultivated from the faeces of any of the 12 volunteers prior to capsule administration, but appeared post-feeding in four. Strains matching the L. acidophilus NCIMB 30156 feeding strain were found in the faeces of three volunteers prior to consumption; after taking the Lactobacillus capsule, 10 of the 12 volunteers were culture positive for this strain. The appearance of both Lactobacillus strains during capsule consumption was statistically significant (p Conclusion We have shown that genetic strain typing of the cultivable human gut microbiota can be

  2. Application of a modified culture medium for the simultaneous counting of molds and yeasts and detection of aflatoxigenic strains of Aspergillus flavus and Aspergillus parasiticus.

    Science.gov (United States)

    Jaimez, J; Fente, C A; Franco, C M; Cepeda, A; Vázquez, B I

    2003-02-01

    Molds and yeasts from 91 samples of feed and raw materials used in feed formulation were enumerated on a new culture medium to which a beta cyclodextrin (beta-W7M 1.8-cyclodextrin) had been added. This medium was compared with other media normally used in laboratories for the routine analysis of fungi, such as Sabouraud agar, malt agar supplemented with 2% dextrose, and potato dextrose agar. When a t test for paired data (0.05 significance level, 95% confidence interval) was applied, no statistically significant differences between the results obtained with the new culture medium and those obtained with the other media used to enumerate molds and yeasts were found. For the evaluation of contamination due to aflatoxin for all of the samples, Sabouraud agar and yeast extract agar, both supplemented with 0.3% beta-W7M 1.8-cyclodextrin, and APA (aflatoxin-producing ability) medium were used. Aflatoxin was detected in 21% of the feed samples and in 23% of the raw-material samples analyzed, with maximal amounts of 2.8 and 6.0 microg of aflatoxin B1 per kg, respectively, being detected. In any case, the aflatoxin contents found exceeded the legally stipulated limits. The t test for paired data (0.05 significance level, 95% confidence interval) did not show statistically significant differences between the results obtained with the different culture media used for the detection of aflatoxins. The advantage of the new medium developed (Sabouraud agar with 0.3% beta-W7M 1.8-cyclodextrin) is that it allows simultaneous fungal enumeration and determination (under UV light) of the presence of aflatoxin-producing strains without prior isolation and culture procedures involving expensive and/or complex specific media and thus saves work, time, and money.

  3. ELECTROPHORETIC MOBILITIES OF ESCHERICHIA COLI 0157:H7 AND WILD-TYPE ESCHERICHIA COLI STRAINS

    Science.gov (United States)

    The electrophoretic mobility (EPM) of a number of human-virulent and "wild-type" Escherichia coli strains in phosphate buffered water was measured. The impact of pH, ionic strength, cation type (valence) and concentration, and bacterial strain on the EPM was investigated. Resul...

  4. Protein patterns of yeast during sporulation

    International Nuclear Information System (INIS)

    Litske Petersen, J.G.; Kielland-Brandt, M.C.; Nilsson-Tillgren, T.

    1979-01-01

    High resolution two-dimensional gel electrophoresis was used to study protein synthesis during synchronous meiosis and ascospore formation of Saccharomyces cerevisiae. The stained protein patterns of samples harvested at any stage between meiotic prophase and the four-spore stage in two sporulating strains showed the same approximately 250 polypeptides. Of these only a few seemed to increase or decrease in concentration during sporulation. The characteristic pattern of sporulating yeast was identical to the pattern of glucose-grown staitonary yeast cells adapted to respiration. The latter type of cells readily initiates meiosis when transferred to sporulation medium. This pattern differed from the protein patterns of exponentially growing cells in glucose or acetate presporulation medium. Five major proteins in stationary and sporulating yeast cells were not detected in either type of exponential culture. Two-dimensional autoradiograms of [ 35 S]methionine-labelled yeast proteins revealed that some proteins were preferentially labelled during sporulation, while other proteins were labelled at later stages. These patterns differed from the auroradiograms of exponentially growing yeast cells in glucose presporulation medium in a number of spots. No differences were observed when stained gels or autoradiograms of sporulating cultures and non-sporulating strains in sporulation medium were compared. (author)

  5. Experimental analysis of an effect of the nutrient type and its concentration on the rheological properties of the baker’s yeast suspensions

    Directory of Open Access Journals (Sweden)

    Major-Godlewska Marta

    2015-09-01

    Full Text Available The aim of the study presented was to experimentally analyze an effect of the nutrient type and its concentration on the variability of rheological properties of the baker’s yeast suspensions for different time periods. Aqueous suspensions of the baker’s yeast of various concentration (solution I, without nutrient and yeasts suspended in aqueous solution of sucrose or honey as nutrients with different concentration (solution II or solution III were tested. Experiments were carried out using rotational rheoviscometer of type RT10 by a company HAAKE. The measurements were conducted for different time periods (from 1 h up to 144 h at given fluid temperature. On the basis of the obtained data, rheological characteristics of the aqueous solution of baker’s yeast suspensions without and with nutrients of different sucrose or honey concentration were identified and mathematically described.

  6. Discriminatory Indices of Typing Methods for Epidemiologic Analysis of Contemporary Staphylococcus aureus Strains.

    Science.gov (United States)

    Rodriguez, Marcela; Hogan, Patrick G; Satola, Sarah W; Crispell, Emily; Wylie, Todd; Gao, Hongyu; Sodergren, Erica; Weinstock, George M; Burnham, Carey-Ann D; Fritz, Stephanie A

    2015-09-01

    Historically, a number of typing methods have been evaluated for Staphylococcus aureus strain characterization. The emergence of contemporary strains of community-associated S. aureus, and the ensuing epidemic with a predominant strain type (USA300), necessitates re-evaluation of the discriminatory power of these typing methods for discerning molecular epidemiology and transmission dynamics, essential to investigations of hospital and community outbreaks. We compared the discriminatory index of 5 typing methods for contemporary S. aureus strain characterization. Children presenting to St. Louis Children's Hospital and community pediatric practices in St. Louis, Missouri (MO), with community-associated S. aureus infections were enrolled. Repetitive sequence-based PCR (repPCR), pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), staphylococcal protein A (spa), and staphylococcal cassette chromosome (SCC) mec typing were performed on 200 S. aureus isolates. The discriminatory index of each method was calculated using the standard formula for this metric, where a value of 1 is highly discriminatory and a value of 0 is not discriminatory. Overall, we identified 26 distinct strain types by repPCR, 17 strain types by PFGE, 30 strain types by MLST, 68 strain types by spa typing, and 5 strain types by SCCmec typing. RepPCR had the highest discriminatory index (D) of all methods (D = 0.88), followed by spa typing (D = 0.87), MLST (D = 0.84), PFGE (D = 0.76), and SCCmec typing (D = 0.60). The method with the highest D among MRSA isolates was repPCR (D = 0.64) followed by spa typing (D = 0.45) and MLST (D = 0.44). The method with the highest D among MSSA isolates was spa typing (D = 0.98), followed by MLST (D = 0.93), repPCR (D = 0.92), and PFGE (D = 0.89). Among isolates designated USA300 by PFGE, repPCR was most discriminatory, with 10 distinct strain types identified (D = 0.63). We identified 45

  7. Microbiological and Physicochemical Characterization of Small-Scale Cocoa Fermentations and Screening of Yeast and Bacterial Strains To Develop a Defined Starter Culture

    Science.gov (United States)

    Pereira, Gilberto Vinícius de Melo; Miguel, Maria Gabriela da Cruz Pedrozo; Ramos, Cíntia Lacerda

    2012-01-01

    Spontaneous cocoa bean fermentations performed under bench- and pilot-scale conditions were studied using an integrated microbiological approach with culture-dependent and culture-independent techniques, as well as analyses of target metabolites from both cocoa pulp and cotyledons. Both fermentation ecosystems reached equilibrium through a two-phase process, starting with the simultaneous growth of the yeasts (with Saccharomyces cerevisiae as the dominant species) and lactic acid bacteria (LAB) (Lactobacillus fermentum and Lactobacillus plantarum were the dominant species), which were gradually replaced by the acetic acid bacteria (AAB) (Acetobacter tropicalis was the dominant species). In both processes, a sequence of substrate consumption (sucrose, glucose, fructose, and citric acid) and metabolite production kinetics (ethanol, lactic acid, and acetic acid) similar to that of previous, larger-scale fermentation experiments was observed. The technological potential of yeast, LAB, and AAB isolates was evaluated using a polyphasic study that included the measurement of stress-tolerant growth and fermentation kinetic parameters in cocoa pulp media. Overall, strains L. fermentum UFLA CHBE8.12 (citric acid fermenting, lactic acid producing, and tolerant to heat, acid, lactic acid, and ethanol), S. cerevisiae UFLA CHYC7.04 (ethanol producing and tolerant to acid, heat, and ethanol), and Acetobacter tropicalis UFLA CHBE16.01 (ethanol and lactic acid oxidizing, acetic acid producing, and tolerant to acid, heat, acetic acid, and ethanol) were selected to form a cocktail starter culture that should lead to better-controlled and more-reliable cocoa bean fermentation processes. PMID:22636007

  8. Metabolic and transcriptomic response of the wine yeast Saccharomyces cerevisiae strain EC1118 after an oxygen impulse under carbon-sufficient, nitrogen-limited fermentative conditions.

    Science.gov (United States)

    Orellana, Marcelo; Aceituno, Felipe F; Slater, Alex W; Almonacid, Leonardo I; Melo, Francisco; Agosin, Eduardo

    2014-05-01

    During alcoholic fermentation, Saccharomyces cerevisiae is exposed to continuously changing environmental conditions, such as decreasing sugar and increasing ethanol concentrations. Oxygen, a critical nutrient to avoid stuck and sluggish fermentations, is only discretely available throughout the process after pump-over operation. In this work, we studied the physiological response of the wine yeast S. cerevisiae strain EC1118 to a sudden increase in dissolved oxygen, simulating pump-over operation. With this aim, an impulse of dissolved oxygen was added to carbon-sufficient, nitrogen-limited anaerobic continuous cultures. Results showed that genes related to mitochondrial respiration, ergosterol biosynthesis, and oxidative stress, among other metabolic pathways, were induced after the oxygen impulse. On the other hand, mannoprotein coding genes were repressed. The changes in the expression of these genes are coordinated responses that share common elements at the level of transcriptional regulation. Beneficial and detrimental effects of these physiological processes on wine quality highlight the dual role of oxygen in 'making or breaking wines'. These findings will facilitate the development of oxygen addition strategies to optimize yeast performance in industrial fermentations. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  9. Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape.

    Science.gov (United States)

    Parafati, Lucia; Vitale, Alessandro; Restuccia, Cristina; Cirvilleri, Gabriella

    2015-05-01

    Strains belonging to the species Saccharomyces cerevisiae, Wickerhamomyces anomalus, Metschnikowia pulcherrima and Aureobasidium pullulans, isolated from different food sources, were tested in vitro as biocontrol agents (BCAs) against the post-harvest pathogenic mold Botrytis cinerea. All yeast strains demonstrated antifungal activity at different levels depending on species and medium. Killer strains of W. anomalus and S. cerevisiae showed the highest biocontrol in vitro activity, as demonstrated by largest inhibition halos. The competition for iron and the ability to form biofilm and to colonize fruit wounds were hypothesized as the main action mechanisms for M. pulcherrima. The production of hydrolytic enzymes and the ability to colonize the wounds were the most important mechanisms for biocontrol activity in A. pullulans and W. anomalus, which also showed high ability to form biofilm. The production of volatile organic compounds (VOCs) with in vitro and in vivo inhibitory effect on pathogen growth was observed for the species W. anomalus, S. cerevisiae and M. pulcherrima. Our study clearly indicates that multiple modes of action may explain as M. pulcherrima provide excellent control of postharvest botrytis bunch rot of grape. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Chemostat Culture for Yeast Physiology.

    Science.gov (United States)

    Kerr, Emily O; Dunham, Maitreya J

    2017-07-05

    The use of chemostat culture facilitates the careful comparison of different yeast strains growing in well-defined conditions. Variations in physiology can be measured by examining gene expression, metabolite levels, protein content, and cell morphology. In this protocol, we show how a combination of sample types can be collected during harvest from a single 20-mL chemostat in a ministat array, with special attention to coordinating the handling of the most time-sensitive sample types. © 2017 Cold Spring Harbor Laboratory Press.

  11. Breeding of lager yeast with Saccharomyces cerevisiae improves stress resistance and fermentation performance.

    Science.gov (United States)

    Garcia Sanchez, Rosa; Solodovnikova, Natalia; Wendland, Jürgen

    2012-08-01

    Lager beer brewing relies on strains collectively known as Saccharomyces carlsbergensis, which are hybrids between S. cerevisiae and S. eubayanus-like strains. Lager yeasts are particularly adapted to low-temperature fermentations. Selection of new yeast strains for improved traits or fermentation performance is laborious, due to the allotetraploid nature of lager yeasts. Initially, we have generated new F1 hybrids by classical genetics, using spore clones of lager yeast and S. cerevisiae and complementation of auxotrophies of the single strains upon mating. These hybrids were improved on several parameters, including growth at elevated temperature and resistance against high osmolarity or high ethanol concentrations. Due to the uncertainty of chromosomal make-up of lager yeast spore clones, we introduced molecular markers to analyse mating-type composition by PCR. Based on these results, new hybrids between a lager and an ale yeast strain were isolated by micromanipulation. These hybrids were not subject to genetic modification. We generated and verified 13 hybrid strains. All of these hybrid strains showed improved stress resistance as seen in the ale parent, including improved survival at the end of fermentation. Importantly, some of the strains showed improved fermentation rates using 18° Plato at 18-25°C. Uniparental mitochondrial DNA inheritance was observed mostly from the S. cerevisiae parent. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Influence of dynamic strain ageing on tensile strain energy of type 316L(N) austenitic stainless steel

    International Nuclear Information System (INIS)

    Isaac Samuel, B.; Choudhary, B.K.; Bhanu Sankara Rao, K.

    2010-01-01

    Tensile tests were conducted on type 316 L(N) stainless steel over a wide temperature range of 300-1123 K employing strain rates ranging from 3.16 X 10 -5 to 3.16 X 10 -3/s . The variation of strain energy in terms of modulus of resilience and modulus of toughness over the wide range of temperatures and strain rates were examined. The variation in modulus of resilience with temperature and strain rate did not show the signatures of dynamic strain ageing (DSA). However, the modulus of toughness exhibited a plateau at the intermediate temperatures of 523-1023 K. Further, the distribution of energy absorbed till necking and energy absorbed from necking till fracture were found to characterise the deformation and damage processes, respectively, and exhibited anomalous variations in the temperature range 523-823 K and 823-1023 K, respectively. In addition to the observed manifestations of DSA such as serrated load-elongation curve, peaks/plateaus in flow stress, ultimate tensile strength and work hardening rate, negative strain rate sensitivity and ductility minima, the observed anomalous variations in modulus of toughness at intermediate temperatures (523-1023 K) can be regarded as yet another key manifestation of DSA. At temperatures above 1023 K, a sharp decrease in the modulus of toughness and also in the strain energies up to necking and from necking to fracture observed, with increasing temperature and decreasing strain rate, reveal the onset of dynamic recovery leading to early cross slip and climb processes. (author)

  13. DNA probe for strain typing of Cryptococcus neoformans.

    OpenAIRE

    Varma, A; Kwon-Chung, K J

    1992-01-01

    A 7-kb linear plasmid, harbored by a URA5 transformant, hybridized to all the chromosomes of Cryptococcus neoformans separated by contour-clamped homogeneous electric field electrophoresis. Its linear maintenance was determined to have been facilitated by the presence of telomere-like sequences at its free ends. Hybridization of this plasmid to AccI-digested genomic DNAs of 26 C. neoformans strains generated 21 unique DNA fingerprints. The DNA fingerprints of isolates within the same serotype...

  14. Fin Type Variation of Lionhead Strain Goldfish (Carassius auratus Offspring

    Directory of Open Access Journals (Sweden)

    M. Syaifudin

    2007-12-01

    Full Text Available  Lionhead strain goldfish (Carassius auratus inheritance produce many variations in phenotype qualitative traits of their offspring that is not common with the parents. Lionhead is an ornamental freshwater fish, they do not have a dorsal fin, but it is a beauty finfish, is popular to the people and have a high economic value. Of the 846 offspring of lionhead is produced in this experiment, and 57,7% of them have dorsal fin (42,3% normal, 13,1% of them have anal fin which did not similar with their parents, 58,6% caudal fin of them did not have similar to their parents. It might be caused by incompletely segregation in meiosis and many gen responsible to certain phenotype trait. Another abnormalities such as no anal fin, blindness, stumped and no pigmen in their gill lamella also occurred. Key words: Inheritance, fin, phenotype, abnormality   ABSTRAK Ikan maskoki strain lionhead menghasilkan keturunan dengan fenotip yang sangat bervariasi dan berbeda dengan induknya. Ikan ini merupakan ikan hias air tawar yang tidak memiliki sirip punggung namun tetap memiliki keindahan, sehingga menjadi begitu populer di masyarakat dan memiliki nilai ekonomi yang tinggi. Sebanyak 846 keturunan (anakan telah dihasilkan dalam percobaan ini, dan sebanyak 57,7% dari populasi tersebut memiliki sirip punggung (berarti 42,3% merupakan keturunan normal, 13,1% memiliki sirip dubur yang tidak mirip dengan induknya. Variasi keturunan ikan maskoki strain lionhead ini disebabkan oleh segregasi yang tidak sempurna dalam proses meiosis dan banyaknya gen yang terlibat dalam pembentukan penotip tertentu. Abnormalitas lainnya juga terjadi pada keturunan ikan maskoki strain lionhead ini, seperti tidak adanya sirip dubur, mata buta, tubuh pendek dan tidak adanya pigmen pada lemela insang Kata kunci: Keturunan, sirip, fenotip, abnormalitas  

  15. Genome Sequences of Three Vaccine Strains and Two Wild-Type Canine Distemper Virus Strains from a Recent Disease Outbreak in South Africa.

    Science.gov (United States)

    Loots, Angelika K; Du Plessis, Morné; Dalton, Desiré Lee; Mitchell, Emily; Venter, Estelle H

    2017-07-06

    Canine distemper virus causes global multihost infectious disease. This report details complete genome sequences of three vaccine and two new wild-type strains. The wild-type strains belong to the South African lineage, and all three vaccine strains to the America 1 lineage. This constitutes the first genomic sequences of this virus from South Africa. Copyright © 2017 Loots et al.

  16. Effect of ion implantation on apple wine yeast

    International Nuclear Information System (INIS)

    Song Andong; Chen Hongge; Zhang Shimin; Jia Cuiying

    2004-01-01

    The wild type apple wine yeast Y 02 was treated by ion implantation with the dose of 8 x 10 15 ion/cm 2 . As results, a special mutant strain, ION II -11 dry, was obtained. The morphology characters, partial biochemistry characters, mycelium protein of the mutant strain were distinctively changed compared with original strain Y 02 . After the fermentation test ,the apple wine producing rate of the mutant strain increased 22.4% compared with original strain. These results showed that ion implantation was an effective method for mutagenesis

  17. Xylitol production from colombian native yeast strains Producción de xilitol a partir de levaduras nativas colombianas*

    Directory of Open Access Journals (Sweden)

    Vanegas Córdoba Isleny Andrea

    2004-12-01

    Full Text Available Xylitol is an alternative sweetener with similar characteristics to sucrose that has become of great interest, due mainly to its safe use in diabetic patients and those deficient in glucose-6-phosphate-dehydrogenase. Its chemical production is expensive and generates undesirable by-products, whereas biotechnological process, which uses different yeasts genera, is a viable production alternative because it is safer and specific. Colombia has a privilege geographic location and offers a great microbial variety, this can be taken advantage of with academic and commercial goals. Because of this, some native microorganisms with potential to produce xylitol were screened in this work. It were isolated 25 yeasts species, from which was possible to identify 84% by the kit API 20C-AUX. Three yeasts: Candida kefyr, C. tropicalis y C. parapsilosis presented greater capacity to degrade xylose compared to the others, therefore they were selected for the later evaluation of its productive capacity. Discontinuous cellular cultures were developed in shaken flasks at 200 rpm and 35°C by 30 hours, using synthetic media with xylose as carbon source. Xylose consumption and xylitol production were evaluated by thin layer chromatography and high performance liquid chromatography. The maximal efficiency were obtained with Candida kefyr and C. tropicalis (Yp/s 0.5 y 0.43 g/g, respectively, using an initial xylose concentration of 20 g/L. Key words: Xylitol, xylose, yeasts, Candida kefyr, C. tropicalis, C. parapsilosis.* Este artículo corresponde a la presentación oral que obtuvo el tercer lugar en la sala de bioprocesos, bioprospección y ambiental del segundo Congreso Colombiano de Biotecnología. El xilitol es un edulcorante alternativo con características similares a la sacarosa que ha despertado gran interés debido principalmente a su uso seguro en pacientes diabéticos y aquellos deficientes en glucosa-6-fosfato-deshidrogenasa. Su síntesis química es

  18. [Identification and typing of hospital strains of Acinetobacter calcoaceticus-Acinetobacter baumanni complex].

    Science.gov (United States)

    Nemec, A; Urbásková, P; Grimont, F; Vránková, J; Melter, O; Schindler, J

    1996-05-01

    A collection of 95 strains of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex, isolated between 1991 and 1993 in the Prague Burn Center (BC), was studied. Ninety-one strains were isolated from 43 patients: 50 of them from burnt sites, 22 from endotracheal tube, 13 from urine, 3 from blood and 3 from venous catheter, and 4 strains were isolated from the hospital environment and the nursing staff. The strains were classified by restriction endonuclease fingerprinting of total DNA, plasmid profile analysis, ribotyping, comparison of antibiograms, biotyping and according to epidemiological data, into 31 relatedness groups each of them including 1 to 29 strains, likely to be isolates of the same strain. None of the methods used enabled to distinguish all groups. The importance of the polyphasic approach is emphasized since three multiresistant strains, isolated almost simultaneously in the BC, needed at least two methods to be distinguished (e.g. ribotyping and biotyping). Twenty-eight representative strains of different groups were identified by ribotyping: 18 of them were allocated to genomospecies 2 (A. baumannii), 5 to genomospecies 3 and 5 to genomospecies 13 sensu Tjernberg and Ursing. Only A. baumannii was found to spread among patients. Strains of two multiresistant groups persisted in the BC throughout the period studied and strains of one of these groups were responsible for an outbreak in the autumn of 1993. The methods mentioned above were used to describe 12 multiresistant strains isolated in three hospital wards in other localities. When ribotyped these strains were identified as A. baumannii. The strains of the same origin were identical in their typing profiles while the strains of different origins were easy to differentiate using any of the above methods; nevertheless, 2 of these groups were almost identical to 2 groups of multiresistant strains isolated in the BC.

  19. Influence of yeast strain, canopy management, and site on the volatile composition and sensory attributes of cabernet sauvignon wines from Western Australia.

    Science.gov (United States)

    Robinson, Anthony L; Boss, Paul K; Heymann, Hildegarde; Solomon, Peter S; Trengove, Robert D

    2011-04-13

    Understanding what factors are the major influences on wine composition will assist in the successful management of grape composition in the vineyard and/or variables in the winery to produce wines with specific sensory attributes. A recently developed analytical method [headspace solid-phase microextraction comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry] was employed to analyze over 350 volatile compounds in research scale wines and was combined with descriptive sensory analysis. Both compositional and sensory results showed significant differences among the wines, and in many cases, multiple factors influenced the abundance of wine volatile compounds. Site had the most significant influence on sensory scores and wine composition, followed by canopy management. Unexpectedly, yeast strain had no significant sensory effect despite the fact that a number of volatile compounds were significantly different in the wines made from different strains. PLS analysis, combining the sensory and chemical analyses, also supports the concept of volatile compound interactions contributing to the aroma characteristics of Cabernet Sauvignon wine.

  20. The radiation resistance and cobalt biosorption activity of yeast strains isolated from the Lanyu low-level radioactive waste repository in Taiwan.

    Science.gov (United States)

    Li, Chia-Chin; Chung, Hsiao-Ping; Wen, Hsiao-Wei; Chang, Ching-Tu; Wang, Ya-Ting; Chou, Fong-In

    2015-08-01

    The ubiquitous nature of microbes has made them the pioneers in radionuclides adsorption and transport. In this study, the radiation resistance and nuclide biosorption capacity of microbes isolated from the Lanyu low-level radioactive waste (LLRW) repository in Taiwan was assessed, the evaluation of the possibility of using the isolated strain as biosorbents for (60)Co and Co (II) from contaminated aqueous solution and the potential impact on radionuclides release. The microbial content of solidified waste and broken fragments of containers at the Lanyu LLRW repository reached 10(5) CFU/g. Two yeast strains, Candida guilliermondii (CT1) and Rhodotorula calyptogenae (RT1) were isolated. The radiation dose necessary to reduce the microbial count by one log cycle of CT1 and RT1 was 2.1 and 0.8 kGy, respectively. Both CT1 and RT1 can grow under a radiation field with dose rate of 6.8 Gy/h, about 100 times higher than that on the surface of the LLRW container in Lanyu repository. CT1 and RT1 had the maximum (60)Co biosorption efficiency of 99.7 ± 0.1% and 98.3 ± 0.2%, respectively in (60)Co aqueous solution (700 Bq/mL), and the (60)Co could stably retained for more than 30 days in CT 1. Nearly all of the Co was absorbed and reached equilibrium within 1 h by CT1 and RT1 in the 10 μg/g Co (II) aqueous solution. Biosorption efficiency test showed almost all of the Co (II) was adsorbed by CT1 in 20 μg/g Co (II) aqueous solution, the efficiency of biosorption by RT1 in 10 μg/g of Co (II) was lower. The maximum Co (II) sorption capacity of CT1 and RT1 was 5324.0 ± 349.0 μg/g (dry wt) and 3737.6 ± 86.5 μg/g (dry wt), respectively, in the 20 μg/g Co (II) aqueous solution. Experimental results show that microbial activity was high in the Lanyu LLRW repository in Taiwan. Two isolated yeast strains, CT1 and RT1 have high potential for use as biosorbents for (60)Co and Co (II) from contaminated aqueous solution, on the other hand, but may have the

  1. Typing of Pseudomonas aeruginosa strains in Norwegian cystic fibrosis patients

    DEFF Research Database (Denmark)

    Fluge, G; Ojeniyi, B; Høiby, N

    2001-01-01

    OBJECTIVES: Typing of Pseudomonas aeruginosa isolates from Norwegian cystic fibrosis (CF) patients with chronic Pseudomonas lung infection in order to see whether cross-infection might have occurred. METHODS: Isolates from 60 patients were collected during the years 1994-98, and typed by pulsed...

  2. The radiation resistance and cobalt biosorption activity of yeast strains isolated from the Lanyu low-level radioactive waste repository in Taiwan

    International Nuclear Information System (INIS)

    Li, Chia-Chin; Chung, Hsiao-Ping; Wen, Hsiao-Wei; Chang, Ching-Tu; Wang, Ya-Ting; Chou, Fong-In

    2015-01-01

    The ubiquitous nature of microbes has made them the pioneers in radionuclides adsorption and transport. In this study, the radiation resistance and nuclide biosorption capacity of microbes isolated from the Lanyu low-level radioactive waste (LLRW) repository in Taiwan was assessed, the evaluation of the possibility of using the isolated strain as biosorbents for 60 Co and Co (II) from contaminated aqueous solution and the potential impact on radionuclides release. The microbial content of solidified waste and broken fragments of containers at the Lanyu LLRW repository reached 10 5  CFU/g. Two yeast strains, Candida guilliermondii (CT1) and Rhodotorula calyptogenae (RT1) were isolated. The radiation dose necessary to reduce the microbial count by one log cycle of CT1 and RT1 was 2.1 and 0.8 kGy, respectively. Both CT1 and RT1 can grow under a radiation field with dose rate of 6.8 Gy/h, about 100 times higher than that on the surface of the LLRW container in Lanyu repository. CT1 and RT1 had the maximum 60 Co biosorption efficiency of 99.7 ± 0.1% and 98.3 ± 0.2%, respectively in 60 Co aqueous solution (700 Bq/mL), and the 60 Co could stably retained for more than 30 days in CT 1. Nearly all of the Co was absorbed and reached equilibrium within 1 h by CT1 and RT1 in the 10 μg/g Co (II) aqueous solution. Biosorption efficiency test showed almost all of the Co (II) was adsorbed by CT1 in 20 μg/g Co (II) aqueous solution, the efficiency of biosorption by RT1 in 10 μg/g of Co (II) was lower. The maximum Co (II) sorption capacity of CT1 and RT1 was 5324.0 ± 349.0 μg/g (dry wt) and 3737.6 ± 86.5 μg/g (dry wt), respectively, in the 20 μg/g Co (II) aqueous solution. Experimental results show that microbial activity was high in the Lanyu LLRW repository in Taiwan. Two isolated yeast strains, CT1 and RT1 have high potential for use as biosorbents for 60 Co and Co (II) from contaminated aqueous solution, on the other hand, but may have the impact on

  3. The ability of the antagonist yeast Pichia guilliermondii strain Z1 to suppress green mould infection in citrus fruit

    Directory of Open Access Journals (Sweden)

    Rachid Lahlali

    2014-12-01

    Full Text Available In previous studies it was shown that Pichia guilliermondii strain Z1, isolated from healthy Moroccan citrus Valencia-Late oranges, was effective against Penicillium italicum. Here the effectiveness of strain Z1 was assessed against Penicillium digitatum, the causal agent of green mould, under different temperature (5-25°C and relative humidity (RH (45-100% regimes for its reliable and largescale application in packinghouse. All main effects and interactions were significant (P80%. Its applications as a formulated product significantly reduced the incidence of infected fruit (55% and the percentage of infected wounds (47% compared to the only pathogen control treatment. However, disease control with formulated product was significantly less than that obtained with thiabendazole (30% or strain Z1 culturable cells (35%. These results highlight that strain Z1 is an effective biological control agent for control of green mould under varying environmental conditions, and control may be optimized by combining its use with other environmentally-safe post-harvest treatments or improved formulation.

  4. INHIBITION OF THE GROWTH OF TOLERANT YEAST Saccharomyces cerevisiae STRAIN I136 BY A MIXTURE OF SYNTHETIC INHIBITORS

    Directory of Open Access Journals (Sweden)

    Eny Ida Riyanti

    2017-09-01

    Full Text Available Biomass from lignocellulosic wastes is a potential source for biobased products.  However, one of the constraints in utilization of biomass hydrolysate is the presence of inhibitors. Therefore, the use of inhibitor-tolerant microorganisms in the fermentation is required. The study aimed to investigate the effect of a mixture of inhibitors on the growth of Saccharomyces cerevisiae strain I136 grown in medium containing synthetic inhibitors (acetic acid, formic acid, furfural, 5-hydroxymethyl furfural/5-HMF, and levulinic acid in four different concentrations with a mixture of carbon sources, glucose  (50 g.l-1 and xylose (50 g.l-1 at 30oC. The parameters related to growth and fermentation products were observed. Results showed that the strain was able to grow in media containing natural inhibitors (BSL medium with µmax of 0.020/h. Higher level of synthetic inhibitors prolonged the lag phase, decreased the cell biomass and ethanol production, and specific growth rate. The strain could detoxify furfural and 5-HMF and produced the highest ethanol (Y(p/s of 0.32 g.g-1 when grown in BSL. Glucose was utilized as its level decreased in a result of increase in cell biomass, in contrast to xylose which was not consumed. The highest cell biomass was produced in YNB with Y (x/s value of 0.25 g.g-1. The strain produced acetic acid as a dominant side product and could convert furfural into a less toxic compound, hydroxyl furfural. This robust tolerant strain provides basic information on resistance mechanism and would be useful for bio-based cell factory using lignocellulosic materials. 

  5. Induction of different types of mutations in yeast Saccharomyces serevisiae by γ-radiation

    International Nuclear Information System (INIS)

    Lyubimova, K.A.; Shvaneva, N.V.; Koltovaya, N.A.

    2005-01-01

    Several tester systems were used to study a wide spectrum of genetic changes induced by γ-radiation in the yeast Saccharomyces cerevisiae. The tester systems allow one to identify a loss of chromosomes, recombination (crossing over) and point mutations (frame shifts and base-pair substitutions.) Large genome changes were induced by γ-rays more efficiently than the point mutations. The dose dependence of the point mutations frequency was linear. Spontaneous and induced mutation rates per base pair corresponded with the known literature data for the same tester systems. Our finding shows that the used tester systems are not specific. They are useful for further study of mutations induced by ionizing radiation with various physical characteristics

  6. Effects of Selenium Yeast on Blood Glucose and Antioxidant Biomarkers in Cholesterol Fed Diet Induced Type 2 Diabetes Mellitus in Wistar Rats.

    Science.gov (United States)

    Tanko, Y; Jimoh, A; Ahmed, A; Adam, A; Ejeh, L; Mohammed, A; Ayo, J O

    2017-03-06

    Selenium is an antioxidant that prevents oxygen radical from damaging cells from chronic diseases that can develop from cell injury and inflammation such as diabetes mellitus. The aim of the study is to investigate the possible protective effect of selenium yeast on cholesterol diet induced type-2 diabetes mellitus and oxidative stress in rats. Twenty male wistar rats were divided in to four groups of five animals each: Group 1: (Negative control) received standard animal feed only, Group 2:  received cholesterol diet (CD) only, Group 3: received CD and 0.1 mg/kg selenium yeast orally, Group 4: Received CD and 0.2 mg/kg selenium yeast orally for six weeks. At the end of the study period, the animals were sacrificed and the serum samples were collected and evaluated for estimation of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). The results showed a significant decrease in blood glucose level in the groups  co-administered CD and selenium yeast when compared to CD group only. Antioxidant enzymes status recorded significant decrease in SOD, CAT and GPx activities in CD and selenium yeast administered when compared to CD group only. In Conclusion, Selenium yeast administrations prevent free radical formations which are potent inducer of diabetes mellitus.

  7. Cell Size Influences the Reproductive Potential and Total Lifespan of the Saccharomyces cerevisiae Yeast as Revealed by the Analysis of Polyploid Strains

    Directory of Open Access Journals (Sweden)

    Renata Zadrag-Tecza

    2018-01-01

    Full Text Available The total lifespan of the yeast Saccharomyces cerevisiae may be divided into two phases: the reproductive phase, during which the cell undergoes mitosis cycles to produce successive buds, and the postreproductive phase, which extends from the last division to cell death. These phases may be regulated by a common mechanism or by distinct ones. In this paper, we proposed a more comprehensive approach to reveal the mechanisms that regulate both reproductive potential and total lifespan in cell size context. Our study was based on yeast cells, whose size was determined by increased genome copy number, ranging from haploid to tetraploid. Such experiments enabled us to test the hypertrophy hypothesis, which postulates that excessive size achieved by the cell—the hypertrophy state—is the reason preventing the cell from further proliferation. This hypothesis defines the reproductive potential value as the difference between the maximal size that a cell can reach and the threshold value, which allows a cell to undergo its first cell cycle and the rate of the cell size to increase per generation. Here, we showed that cell size has an important impact on not only the reproductive potential but also the total lifespan of this cell. Moreover, the maximal cell size value, which limits its reproduction capacity, can be regulated by different factors and differs depending on the strain ploidy. The achievement of excessive size by the cell (hypertrophic state may lead to two distinct phenomena: the cessation of reproduction without “mother” cell death and the cessation of reproduction with cell death by bursting, which has not been shown before.

  8. The Mechanism for Type I Interferon Induction by Mycobacterium tuberculosis is Bacterial Strain-Dependent.

    Directory of Open Access Journals (Sweden)

    Kirsten E Wiens

    2016-08-01

    Full Text Available Type I interferons (including IFNαβ are innate cytokines that may contribute to pathogenesis during Mycobacterium tuberculosis (Mtb infection. To induce IFNβ, Mtb must gain access to the host cytosol and trigger stimulator of interferon genes (STING signaling. A recently proposed model suggests that Mtb triggers STING signaling through bacterial DNA binding cyclic GMP-AMP synthase (cGAS in the cytosol. The aim of this study was to test the generalizability of this model using phylogenetically distinct strains of the Mtb complex (MTBC. We infected bone marrow derived macrophages with strains from MTBC Lineages 2, 4 and 6. We found that the Lineage 6 strain induced less IFNβ, and that the Lineage 2 strain induced more IFNβ, than the Lineage 4 strain. The strains did not differ in their access to the host cytosol and IFNβ induction by each strain required both STING and cGAS. We also found that the three strains shed similar amounts of bacterial DNA. Interestingly, we found that the Lineage 6 strain was associated with less mitochondrial stress and less mitochondrial DNA (mtDNA in the cytosol compared with the Lineage 4 strain. Treating macrophages with a mitochondria-specific antioxidant reduced cytosolic mtDNA and inhibited IFNβ induction by the Lineage 2 and 4 strains. We also found that the Lineage 2 strain did not induce more mitochondrial stress than the Lineage 4 strain, suggesting that additional pathways contribute to higher IFNβ induction. These results indicate that the mechanism for IFNβ by Mtb is more complex than the established model suggests. We show that mitochondrial dynamics and mtDNA contribute to IFNβ induction by Mtb. Moreover, we show that the contribution of mtDNA to the IFNβ response varies by MTBC strain and that additional mechanisms exist for Mtb to induce IFNβ.

  9. Superoxide dismutase 1-mediated production of ethanol- and DNA-derived radicals in yeasts challenged with hydrogen peroxide: molecular insights into the genome instability of peroxiredoxin-null strains.

    Science.gov (United States)

    Ogusucu, Renata; Rettori, Daniel; Netto, Luis E S; Augusto, Ohara

    2009-02-27

    Peroxiredoxins are receiving increasing attention as defenders against oxidative damage and sensors of hydrogen peroxide-mediated signaling events. In the yeast Saccharomyces cerevisiae, deletion of one or more isoforms of the peroxiredoxins is not lethal but compromises genome stability by mechanisms that remain under scrutiny. Here, we show that cytosolic peroxiredoxin-null cells (tsa1Deltatsa2Delta) are more resistant to hydrogen peroxide than wild-type (WT) cells and consume it faster under fermentative conditions. Also, tsa1Deltatsa2Delta cells produced higher yields of the 1-hydroxyethyl radical from oxidation of the glucose metabolite ethanol, as proved by spin-trapping experiments. A major role for Fenton chemistry in radical formation was excluded by comparing WT and tsa1Deltatsa2Delta cells with respect to their levels of total and chelatable metal ions and of radical produced in the presence of chelators. The main route for 1-hydroxyethyl radical formation was ascribed to the peroxidase activity of Cu,Zn-superoxide dismutase (Sod1), whose expression and activity increased approximately 5- and 2-fold, respectively, in tsa1Deltatsa2Delta compared with WT cells. Accordingly, overexpression of human Sod1 in WT yeasts led to increased 1-hydroxyethyl radical production. Relevantly, tsa1Deltatsa2Delta cells challenged with hydrogen peroxide contained higher levels of DNA-derived radicals and adducts as monitored by immuno-spin trapping and incorporation of (14)C from glucose into DNA, respectively. The results indicate that part of hydrogen peroxide consumption by tsa1Deltatsa2Delta cells is mediated by induced Sod1, which oxidizes ethanol to the 1-hydroxyethyl radical, which, in turn, leads to increased DNA damage. Overall, our studies provide a pathway to account for the hypermutability of peroxiredoxin-null strains.

  10. Isochronous relaxation curves for type 304 stainless steel after monotonic and cyclic strain

    International Nuclear Information System (INIS)

    Swindeman, R.W.

    1978-01-01

    Relaxation tests to 100 hr were performed on type 304 stainless steel in the temperature range 480 to 650 0 C and were used to develop isochronous relaxation curves. Behavior after monotonic and cyclic strain was compared. Relaxation differed only slightly as a consequence of the type of previous strain, provided that plastic flow preceded the relaxation period. We observed that the short-time relaxation behavior did not manifest strong heat-to-heat variation in creep strength

  11. Galleria mellonella model identifies highly virulent strains among all major molecular types of Cryptococcus gattii.

    Directory of Open Access Journals (Sweden)

    Carolina Firacative

    Full Text Available Cryptococcosis is mainly caused by Cryptococcus neoformans. However, the number of cases due to C. gattii is increasing, affecting mainly immunocompetent hosts. C. gattii is divided into four major molecular types, VGI to VGIV, which differ in their host range, epidemiology, antifungal susceptibility and geographic distribution. Besides studies on the Vancouver Island outbreak strains, which showed that the subtype VGIIa is highly virulent compared to the subtype VGIIb, little is known about the virulence of the other major molecular types. To elucidate the virulence potential of the major molecular types of C. gattii, Galleria mellonella larvae were inoculated with ten globally selected strains per molecular type. Survival rates were recorded and known virulence factors were studied. One VGII, one VGIII and one VGIV strain were more virulent (p 0.05, 21 (five VGI, five VGII, four VGIII and seven VGIV were less virulent (p <0.05 while one strain of each molecular type were avirulent. Cell and capsule size of all strains increased markedly during larvae infection (p <0.001. No differences in growth rate at 37°C were observed. Melanin synthesis was directly related with the level of virulence: more virulent strains produced more melanin than less virulent strains (p <0.05. The results indicate that all C. gattii major molecular types exhibit a range of virulence, with some strains having the potential to be more virulent. The study highlights the necessity to further investigate the genetic background of more and less virulent strains in order to recognize critical features, other than the known virulence factors (capsule, melanin and growth at mammalian body temperature, that maybe crucial for the development and progression of cryptococcosis.

  12. [TYPING OF LEPTOSPIRA SPP. STRAINS BASED ON 16S rRNA].

    Science.gov (United States)

    Ostankova, Yu V; Semenov, A V; Stoyanova, N A; Tokarevich, N K; Lyubimova, N E; Petrova, O A; Ananina, Yu V; Petrov, E M

    2016-01-01

    Comparative typing of Leptospira spp. strain collection based on analysis of 16S RNA fragment. 2 pairs of primers were used for PCR, that jointly flank 1423b.p. sized fragment. Sequences of Leptospira spp. strain 16S rRNA, presented in the international database, were used for phylogenetic analysis. A high similarity, including interspecies, of the 16S fragment in Leptospira spp. strains was shown independently of the source, serovar and serogroup. Heterogeneity of the primary matrix, spontaneous mutations of hotspots and erroneous nucleotide couplings, characteristic for 16S sequence of pathogenic Leptospira spp. strains, are discussed. Molecular-genetic characteristic of certain reference Leptospira spp. strains by 16S sequence is obtained. Results of the studies give evidence on expedience of introduction into clinical practice of identification of Leptospira spp. by 16S sequence directly from the clinical material, that would allow to significantly reduce identification time, dismiss complex type-specific sera and other labor-intensive methods.

  13. Genetic relatedness of ciprofloxacin-resistant Shigella dysenteriae type 1 strains isolated in south Asia.

    Science.gov (United States)

    Talukder, Kaisar A; Khajanchi, Bijay K; Islam, M Aminul; Dutta, Dilip K; Islam, Zhahirul; Safa, Ashrafus; Khan, G Y; Alam, Khorshed; Hossain, M A; Malla, Sarala; Niyogi, S K; Rahman, Mustafizur; Watanabe, Haruo; Nair, G Balakrish; Sack, David A

    2004-10-01

    The aim of the present study was to determine the clonal relationships of ciprofloxacin-resistant Shigella dysenteriae type 1 strains isolated from south Asia, and S. dysenteriae 1 strains associated with epidemics in 1978, 1984 and 1994. The antimicrobial susceptibilities were examined by NCCLS methods. Molecular epidemiological characterization was performed by plasmid profiling, pulsed-field gel electrophoresis (PFGE) and mutation analysis of the quinolone resistance-determining region (QRDR) of gyrA by sequencing. Plasmid patterns of the current ciprofloxacin-resistant strains from India, Nepal and Bangladesh were very similar to those of the 1978, 1984 and 1994 epidemic isolates of S. dysenteriae 1, except for the presence of a new plasmid of approximately 2.6 MDa, which was found in one recent ciprofloxacin-resistant strain isolated in Bangladesh. PFGE analysis showed that the ciprofloxacin-resistant strains isolated in Bangladesh, India and Nepal belonged to a PFGE type (type A), which was possibly related to that of the 1984 and 1994 clone of S. dysenteriae 1, but different from 1978 epidemic strains. The current ciprofloxacin-resistant strains belong to five subtypes (A3-A7), all of which were found in India, but in Bangladesh and Nepal, only A3 existed. Mutation analysis of the QRDR of gyrA revealed that amino acid substitutions at positions 83 and 87 of ciprofloxacin-resistant strains isolated in Bangladesh were similar to those of the strains isolated in Nepal, but different (at position 87) from ciprofloxacin-resistant strains isolated in India. PFGE and mutation analysis of gyrA showed differences between the current ciprofloxacin-resistant S. dysenteriae 1 strains isolated in south Asia and those associated with epidemics in 1978, 1984 and 1994.

  14. Mating-type switching by chromosomal inversion in methylotrophic yeasts suggests an origin for the three-locus Saccharomyces cerevisiae system.

    Science.gov (United States)

    Hanson, Sara J; Byrne, Kevin P; Wolfe, Kenneth H

    2014-11-11

    Saccharomyces cerevisiae has a complex system for switching the mating type of haploid cells, requiring the genome to have three mating-type (MAT)-like loci and a mechanism for silencing two of them. How this system originated is unknown, because the three-locus system is present throughout the family Saccharomycetaceae, whereas species in the sister Candida clade have only one locus and do not switch. Here we show that yeasts in a third clade, the methylotrophs, have a simpler two-locus switching system based on reversible inversion of a section of chromosome with MATa genes at one end and MATalpha genes at the other end. In Hansenula polymorpha the 19-kb invertible region lies beside a centromere so that, depending on the orientation, either MATa or MATalpha is silenced by centromeric chromatin. In Pichia pastoris, the orientation of a 138-kb invertible region puts either MATa or MATalpha beside a telomere and represses transcription of MATa2 or MATalpha2. Both species are homothallic, and inversion of their MAT regions can be induced by crossing two strains of the same mating type. The three-locus system of S. cerevisiae, which uses a nonconservative mechanism to replace DNA at MAT, likely evolved from a conservative two-locus system that swapped genes between expression and nonexpression sites by inversion. The increasing complexity of the switching apparatus, with three loci, donor bias, and cell lineage tracking, can be explained by continuous selection to increase sporulation ability in young colonies. Our results provide an evolutionary context for the diversity of switching and silencing mechanisms.

  15. Strain typing methods and molecular epidemiology of Pneumocystis pneumonia

    DEFF Research Database (Denmark)

    Beard, Charles Ben; Roux, Patricia; Nevez, Gilles

    2004-01-01

    Pneumocystis pneumonia (PCP) caused by the opportunistic fungal agent Pneumocystis jirovecii (formerly P. carinii) continues to cause illness and death in HIV-infected patients. In the absence of a culture system to isolate and maintain live organisms, efforts to type and characterize the organism...

  16. Exploring Protein Interactions on a Minimal Type II Polyketide Synthase Using a Yeast Two-Hybrid System

    Directory of Open Access Journals (Sweden)

    Gaetano Castaldo

    2005-01-01

    Full Text Available Interactions between proteins that form the ’minimal’ type II polyketide synthase in the doxorubicin producing biosynthetic pathway from Streptomyces peucetius were investigated using a yeast two-hybrid system (Y2H. Proteins that function as the so called ’chain length factor’ (DpsB and putative transacylase (DpsD were found to interact with the ketosynthase subunit (DpsA, which can also interact with itself. On the basis of these results we propose a head-to-tail homodimeric structure, which is consistent with previously published in vivo mutagenesis studies. No interactions were found between the acyl-carrier protein (DpsG and any of the other constituents of the complex, however, transient interactions, not detectable using the Y2H system, cannot be discounted and warrant further investigation.

  17. Control of enzymatic degradation of biodegradable polymers by treatment with biosurfactants, mannosylerythritol lipids, derived from Pseudozyma spp. yeast strains.

    Science.gov (United States)

    Fukuoka, Tokuma; Shinozaki, Yukiko; Tsuchiya, Wataru; Suzuki, Ken; Watanabe, Takashi; Yamazaki, Toshimasa; Kitamoto, Dai; Kitamoto, Hiroko

    2016-02-01

    Cutinase-like esterase from the yeasts Pseudozyma antarctica (PaE) shows strong degradation activity in an agricultural biodegradable plastic (BP) model of mulch films composed of poly(butylene succinate-co-adipate) (PBSA). P. antarctica is known to abundantly produce a glycolipid biosurfactant, mannosylerythritol lipid (MEL). Here, the effects of MEL on PaE-catalyzed degradation of BPs were investigated. Based on PBSA dispersion solution, the degradation of PBSA particles by PaE was inhibited in the presence of MEL. MEL behavior on BP substrates was monitored by surface plasmon resonance (SPR) using a sensor chip coated with polymer films. The positive SPR signal shift indicated that MEL readily adsorbed and spread onto the surface of a BP film. The amount of BP degradation by PaE was monitored based on the negative SPR signal shift and was decreased 1.7-fold by MEL pretreatment. Furthermore, the shape of PBSA mulch films in PaE-containing solution was maintained with MEL pretreatment, whereas untreated films were almost completely degraded and dissolved. These results suggest that MEL covering the surface of BP film inhibits adsorption of PaE and PaE-catalyzed degradation of BPs. We applied the above results to control the microbial degradation of BP mulch films. MEL pretreatment significantly inhibited BP mulch film degradation by both PaE solution and BP-degradable microorganism. Moreover, the degradation of these films was recovered after removal of the coated MEL by ethanol treatment. These results demonstrate that the biodegradation of BP films can be readily and reversibly controlled by a physical approach using MEL.

  18. Evaluation of estrogenic potential of flavonoids using a recombinant yeast strain and MCF7/BUS cell proliferation assay.

    Directory of Open Access Journals (Sweden)

    Flávia A Resende

    Full Text Available Phytoestrogens are of interest because of their reported beneficial effects on many human maladies including cancer, neurodegeneration, cardiovascular disease and diabetes. Furthermore, there is a search for compounds with estrogenic activity that can replace estrogen in hormone replacement therapy during menopause, without the undesirable effects of estrogen, such as the elevation of breast cancer occurrence. Thus, the principal objective of this study was to assess the estrogenic activity of flavonoids with different hydroxylation patterns: quercetin, kaempferol, luteolin, fisetin, chrysin, galangin, flavone, 3-hydroxyflavone, 5-hydroxyflavone and 7-hydroxyflavone via two different in vitro assays, the recombinant yeast assay (RYA and the MCF-7 proliferation assay (E-screen, since the most potent phytoestrogens are members of the flavonoid family. In these assays, kaempferol was the only compound that showed ERα-dependent transcriptional activation activity by RYA, showing 6.74±1.7 nM EEQ, besides acting as a full agonist for the stimulation of proliferation of MCF-7/BUS cells. The other compounds did not show detectable levels of interaction with ER under the conditions used in the RYA. However, in the E-screen assay, compounds such as galangin, luteolin and fisetin also stimulated the proliferation of MCF-7/BUS cells, acting as partial agonists. In the evaluation of antiestrogenicity, the compounds quercetin, chrysin and 3-hydroxyflavone significantly inhibited the cell proliferation induced by 17-β-estradiol in the E-screen assay, indicating that these compounds may act as estrogen receptor antagonists. Overall, it became clear in the assay results that the estrogenic activity of flavonoids was affected by small structural differences such as the number of hydroxyl groups, especially those on the B ring of the flavonoid.

  19. Past and Future of Non-Saccharomyces Yeasts: From Spoilage Microorganisms to Biotechnological Tools for Improving Wine Aroma Complexity

    Science.gov (United States)

    Padilla, Beatriz; Gil, José V.; Manzanares, Paloma

    2016-01-01

    It is well established that non-Saccharomyces wine yeasts, considered in the past as undesired or spoilage yeasts, can enhance the analytical composition, and aroma profile of the wine. The contribution of non-Saccharomyces yeasts, including the ability to secret enzymes and produce secondary metabolites, glycerol and ethanol, release of mannoproteins or contributions to color stability, is species- and strain-specific, pointing out the key importance of a clever strain selection. The use of mixed starters of selected non-Saccharomyces yeasts with strains of Saccharomyces cerevisiae represents an alternative to both spontaneous and inoculated wine fermentations, taking advantage of the potential positive role that non-Saccharomyces wine yeast species play in the organoleptic characteristics of wine. In this context mixed starters can meet the growing demand for new and improved wine yeast strains adapted to different types and styles of wine. With the aim of presenting old and new evidences on the potential of non-Saccharomyces yeasts to address this market trend, we mainly review the studies focused on non-Saccharomyces strain selection and design of mixed starters directed to improve primary and secondary aroma of wines. The ability of non-Saccharomyces wine yeasts to produce enzymes and metabolites of oenological relevance is also discussed. PMID:27065975

  20. [Distiller Yeasts Producing Antibacterial Peptides].

    Science.gov (United States)

    Klyachko, E V; Morozkina, E V; Zaitchik, B Ts; Benevolensky, S V

    2015-01-01

    A new method of controlling lactic acid bacteria contamination was developed with the use of recombinant Saccharomyces cerevisiae strains producing antibacterial peptides. Genes encoding the antibacterial peptides pediocin and plantaricin with codons preferable for S. cerevisiae were synthesized, and a system was constructed for their secretory expression. Recombinant S. cerevisiae strains producing antibacterial peptides effectively inhibit the growth of Lactobacillus sakei, Pediacoccus pentasaceus, Pediacoccus acidilactici, etc. The application of distiller yeasts producing antibacterial peptides enhances the ethanol yield in cases of bacterial contamination. Recombinant yeasts producing the antibacterial peptides pediocin and plantaricin can successfully substitute the available industrial yeast strains upon ethanol production.

  1. Strain typing of acetic acid bacteria responsible for vinegar production by the submerged elaboration method.

    Science.gov (United States)

    Fernández-Pérez, Rocío; Torres, Carmen; Sanz, Susana; Ruiz-Larrea, Fernanda

    2010-12-01

    Strain typing of 103 acetic acid bacteria isolates from vinegars elaborated by the submerged method from ciders, wines and spirit ethanol, was carried on in this study. Two different molecular methods were utilised: pulsed field gel electrophoresis (PFGE) of total DNA digests with a number of restriction enzymes, and enterobacterial repetitive intergenic consensus (ERIC) - PCR analysis. The comparative study of both methods showed that restriction fragment PFGE of SpeI digests of total DNA was a suitable method for strain typing and for determining which strains were present in vinegar fermentations. Results showed that strains of the species Gluconacetobacter europaeus were the most frequent leader strains of fermentations by the submerged method in the studied vinegars, and among them strain R1 was the predominant one. Results showed as well that mixed populations (at least two different strains) occurred in vinegars from cider and wine, whereas unique strains were found in spirit vinegars, which offered the most stressing conditions for bacterial growth. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Wine yeast phenomics: A standardized fermentation method for assessing quantitative traits of Saccharomyces cerevisiae strains in enological conditions

    Science.gov (United States)

    Bernard, Margaux; Trujillo, Marine; Prodhomme, Duyên; Barbe, Jean-Christophe; Gibon, Yves; Marullo, Philippe

    2018-01-01

    This work describes the set up of a small scale fermentation methodology for measuring quantitative traits of hundreds of samples in an enological context. By using standardized screw cap vessels, the alcoholic fermentation kinetics of Saccharomyces cerevisiae strains were measured by following their weight loss over the time. This dispositive was coupled with robotized enzymatic assays for measuring metabolites of enological interest in natural grape juices. Despite the small volume used, kinetic parameters and fermentation end products measured are similar with those observed in larger scale vats. The vessel used also offers the possibility to assay 32 volatiles compounds using a headspace solid-phase micro-extraction coupled to gas chromatography and mass spectrometry. The vessel shaking applied strongly impacted most of the phenotypes investigated due to oxygen transfer occuring in the first hours of the alcoholic fermentation. The impact of grape must and micro-oxygenation was investigated illustrating some relevant genetic x environmental interactions. By phenotyping a wide panel of commercial wine starters in five grape juices, broad phenotypic correlations between kinetics and metabolic end products were evidentiated. Moreover, a multivariate analysis illustrates that some grape musts are more able than others to discriminate commercial strains since some are less robust to environmental changes. PMID:29351285

  3. Wine yeast phenomics: A standardized fermentation method for assessing quantitative traits of Saccharomyces cerevisiae strains in enological conditions.

    Science.gov (United States)

    Peltier, Emilien; Bernard, Margaux; Trujillo, Marine; Prodhomme, Duyên; Barbe, Jean-Christophe; Gibon, Yves; Marullo, Philippe

    2018-01-01

    This work describes the set up of a small scale fermentation methodology for measuring quantitative traits of hundreds of samples in an enological context. By using standardized screw cap vessels, the alcoholic fermentation kinetics of Saccharomyces cerevisiae strains were measured by following their weight loss over the time. This dispositive was coupled with robotized enzymatic assays for measuring metabolites of enological interest in natural grape juices. Despite the small volume used, kinetic parameters and fermentation end products measured are similar with those observed in larger scale vats. The vessel used also offers the possibility to assay 32 volatiles compounds using a headspace solid-phase micro-extraction coupled to gas chromatography and mass spectrometry. The vessel shaking applied strongly impacted most of the phenotypes investigated due to oxygen transfer occuring in the first hours of the alcoholic fermentation. The impact of grape must and micro-oxygenation was investigated illustrating some relevant genetic x environmental interactions. By phenotyping a wide panel of commercial wine starters in five grape juices, broad phenotypic correlations between kinetics and metabolic end products were evidentiated. Moreover, a multivariate analysis illustrates that some grape musts are more able than others to discriminate commercial strains since some are less robust to environmental changes.

  4. POTENTIAL PRODUCTION OF CYCLOPIAZONIC ACID BY PENICILLIUM CAMEMBERTI STRAINS ISOLATED FROM CAMEMBERT TYPE CHEESE

    Directory of Open Access Journals (Sweden)

    Miroslava Císarová

    2012-10-01

    Full Text Available The aim of this study was to isolate the strains of fungi from Camembert type cheese, identify them and to test isolated strains of Penicillium camemberti for their ability to produce cyclopiazonic acid. The description of micro- and macromorphological features was used for identification of Penicillium camemberti strains. Strains were subsequently in vitro tested on their potential ability to produce mycotoxin cyclopiazonic acid (CPA. All of the 14 strains of Penicillium camemberti, which were obtained from 20 samples of Camembert type cheese, were cultivated 7, 14, 21, 27 and 30 days on CYA medium at 10±1°C, 15±1°C and 25±1°C in the dark. For determination of CPA production ability by P. camemberti isolates in vitro was TLC used. After 7 days of cultivation cyclopiazonic acid was produced only by 5 from 14 strains cultivated at all cultivation temperatures. After 14 and 21 days of cultivation was CPA produced by 6 strains at all of cultivation temperatures. After 27 and 30 days of cultivation was CPA identified in 7 strains cultivated at all temperatures of cultivation. The other strains also produced mycotoxin, however, not at each temperature. The most productive at all temperatures and after all days were 5 out of 14 tested strains (S9, S10, S13, S18 and S19. Strains S6 and S16 did not produce CPA at any temperature. The lowest production after all days of cultivation was found at 10±1 °C (44% and the highest at 25±1 °C (85%.

  5. Complete genome sequence of Gordonia bronchialis type strain (3410T)

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Jando, Marlen [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Chen, Feng [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Detter, J C [U.S. Department of Energy, Joint Genome Institute; Brettin, Thomas S [ORNL; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute

    2010-01-01

    Gordonia bronchialis Tsukamura 1971 is the type species of the genus. G. bronchialis is a human-pathogenic organism that has been isolated from a large variety of human tissues. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of the family Gordoniaceae. The 5,290,012 bp long genome with its 4,944 protein-coding and 55 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  6. Complete genome sequence of Acidimicrobium ferrooxidans type strain (ICPT)

    Energy Technology Data Exchange (ETDEWEB)

    Clum, Alicia; Nolan, Matt; Lang, Elke; Glavina Del Rio, Tijana; Tice, Hope; Copeland, Alex; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ivanova, Natalia; Mavrommatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Goker, Markus; Spring, Stefan; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia C.; Chain, Patrick; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Lapidus, Alla

    2009-05-20

    Acidimicrobium ferrooxidans (Clark and Norris 1996) is the sole and type species of the genus, which until recently was the only genus within the actinobacterial family Acidimicrobiaceae and in the order Acidomicrobiales. Rapid oxidation of iron pyrite during autotrophic growth in the absence of an enhanced CO2 concentration is characteristic for A. ferrooxidans. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the order Acidomicrobiales, and the 2,158,157 bp long single replicon genome with its 2038 protein coding and 54 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  7. Multilocus sequence typing confirms synonymy but highlights differences between Candida albicans and Candida stellatoidea.

    NARCIS (Netherlands)

    Jacobsen, M.D.; Boekhout, T.; Odds, F.C.

    2008-01-01

    We used multi-locus sequence typing (MLST) to investigate 35 yeast isolates representing the two genome-sequenced strains plus the type strain of Candida albicans, four isolates originally identified as Candida stellatoidea type I and 28 representing type strains of other species now regarded as

  8. Complete genome sequence of Oceanithermus profundus type strain (506T)

    Energy Technology Data Exchange (ETDEWEB)

    Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Zhang, Xiaojing [Los Alamos National Laboratory (LANL); Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Hauser, Loren John [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Ruhl, Alina [U.S. Department of Energy, Joint Genome Institute; Mwirichia, Romano [University of Munster, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Tindall, Brian [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Wirth, Reinhard [Universitat Regensburg, Regensburg, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Land, Miriam L [ORNL

    2011-01-01

    Oceanithermus profundus Miroshnichenko et al. 2003 is the type species of the genus Oceanithermus, which belongs to the family Thermaceae. The genus currently comprises two species whose members are thermophilic and are able to reduce sulfur compounds and nitrite. The organism is adapted to the salinity of sea water, is able to utilize a broad range of carbohydrates, some proteinaceous substrates, organic acids and alcohols. This is the first completed genome sequence of a member of the genus Oceanithermus and the fourth sequence from the family Thermaceae. The 2,439,291 bp long genome with its 2,391 protein-coding and 54 RNA genes consists of one chromosome and a 135,351 bp long plasmid, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  9. Combine Use of Selected Schizosaccharomyces pombe andLachancea thermotolerans Yeast Strains as an Alternative to theTraditional Malolactic Fermentation in Red Wine Production

    Directory of Open Access Journals (Sweden)

    Ángel Benito

    2015-05-01

    Full Text Available Most red wines commercialized in the market use the malolactic fermentationprocess in order to ensure stability from a microbiological point of view. In this secondfermentation, malic acid is converted into L-lactic acid under controlled setups. Howeverthis process is not free from possible collateral effects that on some occasions produceoff-flavors, wine quality loss and human health problems. In warm viticulture regions suchas the south of Spain, the risk of suffering a deviation during the malolactic fermentationprocess increases due to the high must pH. This contributes to produce wines with highvolatile acidity and biogenic amine values. This manuscript develops a new red winemakingmethodology that consists of combining the use of two non-Saccharomyces yeast strains asan alternative to the traditional malolactic fermentation. In this method, malic acid is totallyconsumed by Schizosaccharomyces pombe, thus achieving the microbiological stabilizationobjective, while Lachancea thermotolerans produces lactic acid in order not to reduce andeven increase the acidity of wines produced from low acidity musts. This technique reducesthe risks inherent to the malolactic fermentation process when performed in warm regions.The result is more fruity wines that contain less acetic acid and biogenic amines than thetraditional controls that have undergone the classical malolactic fermentation.

  10. Phytase-producing capacity of yeasts isolated from traditional African fermented food products and PHYPk gene expression of Pichia kudriavzevii strains.

    Science.gov (United States)

    Greppi, Anna; Krych, Łukasz; Costantini, Antonella; Rantsiou, Kalliopi; Hounhouigan, D Joseph; Arneborg, Nils; Cocolin, Luca; Jespersen, Lene

    2015-07-16

    Phytate is known as a strong chelate of minerals causing their reduced uptake by the human intestine. Ninety-three yeast isolates from traditional African fermented food products, belonging to nine species (Pichia kudriavzevii, Saccharomyces cerevisiae, Clavispora lusitaniae, Kluyveromyces marxianus, Millerozyma farinosa, Candida glabrata, Wickerhamomyces anomalus, Hanseniaspora guilliermondii and Debaryomyces nepalensis) were screened for phytase production on solid and liquid media. 95% were able to grow in the presence of phytate as sole phosphate source, P. kudriavzevii being the best growing species. A phytase coding gene of P. kudriavzevii (PHYPk) was identified and its expression was studied during growth by RT-qPCR. The expression level of PHYPk was significantly higher in phytate-medium, compared to phosphate-medium. In phytate-medium expression was seen in the lag phase. Significant differences in gene expression were detected among the strains as well as between the media. A correlation was found between the PHYPk expression and phytase extracellular activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Cell recycle batch fermentation of high-solid lignocellulose using a recombinant cellulase-displaying yeast strain for high yield ethanol production in consolidated bioprocessing.

    Science.gov (United States)

    Matano, Yuki; Hasunuma, Tomohisa; Kondo, Akihiko

    2013-05-01

    The aim of this study is to develop a scheme of cell recycle batch fermentation (CRBF) of high-solid lignocellulosic materials. Two-phase separation consisting of rough removal of lignocellulosic residues by low-speed centrifugation and solid-liquid separation enabled effective collection of Saccharomyces cerevisiae cells with decreased lignin and ash. Five consecutive batch fermentation of 200 g/L rice straw hydrothermally pretreated led to an average ethanol titer of 34.5 g/L. Moreover, the display of cellulases on the recombinant yeast cell surface increased ethanol titer to 42.2 g/L. After, five-cycle fermentation, only 3.3 g/L sugar was retained in the fermentation medium, because cellulase displayed on the cell surface hydrolyzed cellulose that was not hydrolyzed by commercial cellulases or free secreted cellulases. Fermentation ability of the recombinant strain was successfully kept during a five-cycle repeated batch fermentation with 86.3% of theoretical yield based on starting biomass. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Enhancement of ethanol fermentation in Saccharomyces cerevisiae sake yeast by disrupting mitophagy function.

    Science.gov (United States)

    Shiroma, Shodai; Jayakody, Lahiru Niroshan; Horie, Kenta; Okamoto, Koji; Kitagaki, Hiroshi

    2014-02-01

    Saccharomyces cerevisiae sake yeast strain Kyokai no. 7 has one of the highest fermentation rates among brewery yeasts used worldwide; therefore, it is assumed that it is not possible to enhance its fermentation rate. However, in this study, we found that fermentation by sake yeast can be enhanced by inhibiting mitophagy. We observed mitophagy in wild-type sake yeast during the brewing of Ginjo sake, but not when the mitophagy gene (ATG32) was disrupted. During sake brewing, the maximum rate of CO2 production and final ethanol concentration generated by the atg32Δ laboratory yeast mutant were 7.50% and 2.12% higher than those of the parent strain, respectively. This mutant exhibited an improved fermentation profile when cultured under limiting nutrient concentrations such as those used during Ginjo sake brewing as well as in minimal synthetic medium. The mutant produced ethanol at a concentration that was 2.76% higher than the parent strain, which has significant implications for industrial bioethanol production. The ethanol yield of the atg32Δ mutant was increased, and its biomass yield was decreased relative to the parent sake yeast strain, indicating that the atg32Δ mutant has acquired a high fermentation capability at the cost of decreasing biomass. Because natural biomass resources often lack sufficient nutrient levels for optimal fermentation, mitophagy may serve as an important target for improving the fermentative capacity of brewery yeasts.

  13. Effect of Attachment Type on Denture Strain in Maxillary Implant Overdentures: Part 1. Overdenture with Palate.

    Science.gov (United States)

    Takahashi, Toshihito; Gonda, Tomoya; Maeda, Yoshinobu

    This study examined the effects of attachments on strain in maxillary implant overdentures supported by two or four implants. A maxillary edentulous model with implants inserted into anterior, premolar, and molar areas was fabricated, and three types of unsplinted attachments-ball, locator, and magnet-were set on the implants distributed under various conditions. Maxillary experimental dentures were fabricated, and two strain gauges were attached at the anterior midline on the labial and palatal sides. A vertical occlusal load of 98 N was applied and shear strain of the dentures was measured. On both sides, magnet attachments resulted in the lowest shear strain, while ball attachments resulted in the highest shear strain under most conditions. However, differences in shear strain among the three attachment types were not significant when supported by four implants, especially molar implants. Shear strain of the maxillary implant overdenture was lowest when using magnet attachments. Magnet attachments mounted on four implants are recommended to prevent denture complications when using maxillary implant overdentures.

  14. [Molecular typing of 12 Brucella strains isolated in Guizhou province in 2010-2013].

    Science.gov (United States)

    Wang, Yue; Chen, Hong; Liu, Ying; Zhou, Jingzhu; Li, Shijun; Hang, Yan; Tang, Guangpeng; Wang, Dingming; Chen, Guichun

    2015-09-01

    To identify and characterize the Brucella strains from Guizhou province in 2010-2013. A total of 12 strains of Brucella suspicious bacteria were isolated in Guizhou province from 2010 to 2013. Four strains (GZLL3, GZLL4, GZLL11 and SH2) were isolated from goat blood samples and eight strains (SH4, GZZY, GZSQ, GZZA, BR13001, BR13004, BR13005 and BR13006) were isolated from blood samples of patient 12 Brucella suspicious strains were identified and characterized using conventional methods. Brucella genus specific gene BCSP31-based PCR (BCSP31-PCR) was used to identify the genus of Brucella and IS711 insert sequence-based PCR (AMOS-PCR) was applied to identify the species of Brucella strains. Goats and patients originated Brucella strains were comparatively analysed using Pulse-field Gel Electrophoresis (PFGE). Both of conventional methods and PCR identified the 12 Brucella suspicious strains as B. melitensis biotype 3. BCSP31-PCR identification results showed that a specific DNA bands (223 bp) were detected in all the 12 strains and positive control samples with no DNA band in negative samples. AMOS-PCR amplified a 731 bp-DNA bands in all the 12 strains, with 731 bp, 498 bp and 275 bp in M5, S2 and A19 strains, respectively, and no DNA band was detected in the negative control samples. PFGE analysis showed that 12 Brucella isolates from patients and goats showed consistent PFGE patterns with the digestion of restriction enzyme Xba I. The epidemic species/type of Brucella in both human and animal in Guizhou province was B. melitensis biotype 3 and goat was the main animal source of infection of brucellosis in Guizhou province.

  15. Influence of Fermentation Temperature, Yeast Strain, and Grape Juice on the Aroma Chemistry and Sensory Profile of Sauvignon Blanc Wines.

    Science.gov (United States)

    Deed, Rebecca C; Fedrizzi, Bruno; Gardner, Richard C

    2017-10-11

    Sauvignon blanc wine, balanced by herbaceous and tropical aromas, is fermented at low temperatures (10-15 °C). Anecdotal accounts from winemakers suggest that cold fermentations produce and retain more "fruity" aroma compounds; nonetheless, studies have not confirmed why low temperatures are optimal for Sauvignon blanc. Thirty-two aroma compounds were quantitated from two Marlborough Sauvignon blanc juices fermented at 12.5 and 25 °C, using Saccharomyces cerevisiae strains EC1118, L-1528, M2, and X5. Fourteen compounds were responsible for driving differences in aroma chemistry. The 12.5 °C-fermented wines had lower 3-mercaptohexan-1-ol (3MH) and higher alcohols but increased fruity acetate esters. However, a sensory panel did not find a significant difference between fruitiness in 75% of wine pairs based on fermentation temperature, in spite of chemical differences. For wine pairs with significant differences (25%), the 25 °C-fermented wines were fruitier than the 12.5 °C-fermented wines, with high fruitiness associated with 3MH. We propose that the benefits of low fermentation temperatures are not derived from increased fruitiness but a better balance between fruitiness and greenness. Even so, since 75% of wines showed no significant difference, higher fermentation temperatures could be utilized without detriment, lowering costs for the wine industry.

  16. Species attribution and strain typing of Oenococcus oeni (formerly Leuconostoc oenos) with restriction endonuclease fingerprints.

    Science.gov (United States)

    Viti, C; Giovannetti, L; Granchi, L; Ventura, S

    1996-10-01

    In several wines, malolactic fermentation is required to improve the organoleptic characters and to stabilize the final product. In order to establish a controlled malolactic fermentation in wine, easy identification and sensitive typing of strains of Oenococcus oeni (new name of the malolactic bacterium Leuconostoc oenos) used as starter cultures are necessary. To accomplish these tasks, several strains of Oenococcus oeni isolated from wines of the Chianti region (Italy), along with reference strains and strains of L. mesenteroides subsp. mesenteroides, L. carnosum, L. fallax, L. pseudomesenteroides, L. lactis and Weisella paramesenteroides, were studied with RFLP of ribosomal genes and ultrasensitive total DNA restriction pattern analysis performed on polyacrylamide gel. With each of four restriction endonucleases used, identical restriction profiles of ribosomal genes were obtained for all strains of O. oeni. These ribopatterns, being strongly dissimilar to profiles of the other lactic acid bacteria tested, appear to be well suited for the attribution of wine lactic acid bacteria to the species O. oeni. Cluster analysis performed on two total DNA restriction profile data sets showed that the species O. oeni possesses a good degree of genomic homogeneity. Very sensitive typing of strains of O. oeni was obtained with total DNA restriction profiles. The potential of an integrated approach using restriction profiles for species assignment and typing of selected malolactic bacteria is demonstrated.

  17. Structural study of phosphomannan of yeast-form cells of Candida albicans J-1012 strain with special reference to application of mild acetolysis.

    Science.gov (United States)

    Kobayashi, H; Shibata, N; Mitobe, H; Ohkubo, Y; Suzuki, S

    1989-08-01

    Structural analysis of the phosphomannan isolated from yeast-form cells of a pathogenic yeast, Candida albicans J-1012 strain, was conducted. Treatment of this phosphomannan (Fr. J) with 10 mM HCl at 100 degrees C for 60 min gave a mixture of beta-1,2-linked manno-oligosaccharides, from tetraose to biose plus mannose, and an acid-stable mannan moiety (Fr. J-a), which was then acetolyzed by means of an acetolysis medium, 100:100:1 (v/v) mixture of (CH3CO)2O, CH3COOH, and H2SO4, at 40 degrees C for 36 h in order to avoid cleavage of the beta-1,2 linkage. The resultant manno-oligosaccharide mixture was fractionated on a column of Bio-Gel P-2 to yield insufficiently resolved manno-oligosaccharide fractions higher than pentaose and lower manno-oligosaccharides ranging from tetraose to biose plus mannose. The higher manno-oligosaccharide fraction was then digested with the Arthrobacter GJM-1 alpha-mannosidase in order to cleave the enzyme-susceptible alpha-1,2 and alpha-1,3 linkages, leaving manno-oligosaccharides containing the beta-1,2 linkage at their nonreducing terminal sites, Manp beta 1----2Manp alpha 1----2Manp alpha 1----2Manp alpha 1----2Man, Manp beta 1----2Manp beta 1----2Manp alpha 1----2Manp alpha 1---- 2Manp alpha 1----2Man, and Manp beta 1----2Manp beta 1----2Manp beta 1----2Manp alpha 1---- 2Manp alpha 1----2Manp alpha 1----2Man. However, the result of acetolysis of Fr. J-a by means of a 10:10:1 (v/v) mixture of (CH3CO)2O, CH3COOH, and H2SO4 at 40 degrees C for 13 h was significantly different from that obtained by the mild acetolysis method; i.e., the amount of mannose was apparently larger than that formed by the mild acetolysis method. In summary, a chemical structure for Fr. J as a highly branched mannan containing 14 different branching moieties was proposed.

  18. CodY Promotes Sporulation and Enterotoxin Production by Clostridium perfringens Type A Strain SM101.

    Science.gov (United States)

    Li, Jihong; Freedman, John C; Evans, Daniel R; McClane, Bruce A

    2017-03-01

    Clostridium perfringens type D strains cause enterotoxemia and enteritis in livestock via epsilon toxin production. In type D strain CN3718, CodY was previously shown to increase the level of epsilon toxin production and repress sporulation. C. perfringens type A strains producing C. perfringens enterotoxin (CPE) cause human food poisoning and antibiotic-associated diarrhea. Sporulation is critical for C. perfringens type A food poisoning since spores contribute to transmission and resistance in the harsh food environment and sporulation is essential for CPE production. Therefore, the current study asked whether CodY also regulates sporulation and CPE production in SM101, a derivative of C. perfringens type A food-poisoning strain NCTC8798. An isogenic codY -null mutant of SM101 showed decreased levels of spore formation, along with lower levels of CPE production. A complemented strain recovered wild-type levels of both sporulation and CPE production. When this result was coupled with the earlier results obtained with CN3718, it became apparent that CodY regulation of sporulation varies among different C. perfringens strains. Results from quantitative reverse transcriptase PCR analysis clearly demonstrated that, during sporulation, codY transcript levels remained high in SM101 but rapidly declined in CN3718. In addition, abrB gene expression patterns varied significantly between codY -null mutants of SM101 and CN3718. Compared to the levels in their wild-type parents, the level of abrB gene expression decreased in the CN3718 codY -null mutant strain but significantly increased in the SM101 codY -null mutant strain, demonstrating CodY-dependent regulation differences in abrB expression between these two strains. This difference appears to be important since overexpression of the abrB gene in SM101 reduced the levels of sporulation and enterotoxin production, supporting the involvement of AbrB repression in regulating C. perfringens sporulation. Copyright © 2017

  19. The Yeast Deletion Collection: A Decade of Functional Genomics

    Science.gov (United States)

    Giaever, Guri; Nislow, Corey

    2014-01-01

    The yeast deletion collections comprise >21,000 mutant strains that carry precise start-to-stop deletions of ∼6000 open reading frames. This collection includes heterozygous and homozygous diploids, and haploids of both MATa and MATα mating types. The yeast deletion collection, or yeast knockout (YKO) set, represents the first and only complete, systematically constructed deletion collection available for any organism. Conceived during the Saccharomyces cerevisiae sequencing project, work on the project began in 1998 and was completed in 2002. The YKO strains have been used in numerous laboratories in >1000 genome-wide screens. This landmark genome project has inspired development of numerous genome-wide technologies in organisms from yeast to man. Notable spinoff technologies include synthetic genetic array and HIPHOP chemogenomics. In this retrospective, we briefly describe the yeast deletion project and some of its most noteworthy biological contributions and the impact that these collections have had on the yeast research community and on genomics in general. PMID:24939991

  20. Pyroprinting: a rapid and flexible genotypic fingerprinting method for typing bacterial strains.

    Science.gov (United States)

    Black, Michael W; VanderKelen, Jennifer; Montana, Aldrin; Dekhtyar, Alexander; Neal, Emily; Goodman, Anya; Kitts, Christopher L

    2014-10-01

    Bacterial strain typing is commonly employed in studies involving epidemiology, population ecology, and microbial source tracking to identify sources of fecal contamination. Methods for differentiating strains generally use either a collection of phenotypic traits or rely on some interrogation of the bacterial genotype. This report introduces pyroprinting, a novel genotypic strain typing method that is rapid, inexpensive, and discriminating compared to the most sensitive methods already in use. Pyroprinting relies on the simultaneous pyrosequencing of polymorphic multicopy loci, such as the intergenic transcribed spacer regions of rRNA operons in bacterial genomes. Data generated by sequencing combinations of variable templates are reproducible and intrinsically digitized. The theory and development of pyroprinting in Escherichia coli, including the selection of similarity thresholds to define matches between isolates, are presented. The pyroprint-based strain differentiation limits and phylogenetic relevance compared to other typing methods are also explored. Pyroprinting is unique in its simplicity and, paradoxically, in its intrinsic complexity. This new approach serves as an excellent alternative to more cumbersome or less phylogenetically relevant strain typing methods. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Awa1p on the cell surface of sake yeast inhibits biofilm formation and the co-aggregation between sake yeasts and Lactobacillus plantarum ML11-11.

    Science.gov (United States)

    Hirayama, Satoru; Shimizu, Masashi; Tsuchiya, Noriko; Furukawa, Soichi; Watanabe, Daisuke; Shimoi, Hitoshi; Takagi, Hiroshi; Ogihara, Hirokazu; Morinaga, Yasushi

    2015-05-01

    We examined mixed-species biofilm formation between Lactobacillus plantarum ML11-11 and both foaming and non-foaming mutant strains of Saccharomyces cerevisiae sake yeasts. Wild-type strains showed significantly lower levels of biofilm formation compared with the non-foaming mutants. Awa1p, a protein involved in foam formation during sake brewing, is a glycosylphosphatidylinositol (GPI)-anchored protein and is associated with the cell wall of sake yeasts. The AWA1 gene of the non-foaming mutant strain Kyokai no. 701 (K701) has lost the C-terminal sequence that includes the GPI anchor signal. Mixed-species biofilm formation and co-aggregation of wild-type strain Kyokai no. 7 (K7) were significantly lower than K701 UT-1 (K701 ura3/ura3 trp1/trp1), while the levels of strain K701 UT-1 carrying the AWA1 on a plasmid were comparable to those of K7. The levels of biofilm formation and co-aggregation of the strain K701 UT-1 harboring AWA1 with a deleted GPI anchor signal were similar to those of K701 UT-1. These results clearly demonstrate that Awa1p present on the surface of sake yeast strain K7 inhibits adhesion between yeast cells and L. plantarum ML11-11, consequently impeding mixed-species biofilm formation. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Primary isolation strain determines both phage type and receptors recognised by Campylobacter jejuni bacteriophages.

    Directory of Open Access Journals (Sweden)

    Martine C Holst Sørensen

    Full Text Available In this study we isolated novel bacteriophages, infecting the zoonotic bacterium Campylobacter jejuni. These phages may be used in phage therapy of C. jejuni colonized poultry to prevent spreading of the bacteria to meat products causing disease in humans. Many C. jejuni phages have been isolated using NCTC12662 as the indicator strain, which may have biased the selection of phages. A large group of C. jejuni phages rely on the highly diverse capsular polysaccharide (CPS for infection and recent work identified the O-methyl phosphoramidate modification (MeOPN of CPS as a phage receptor. We therefore chose seven C. jejuni strains each expressing different CPS structures as indicator strains in a large screening for phages in samples collected from free-range poultry farms. Forty-three phages were isolated using C. jejuni NCTC12658, NCTC12662 and RM1221 as host strains and 20 distinct phages were identified based on host range analysis and genome restriction profiles. Most phages were isolated using C. jejuni strains NCTC12662 and RM1221 and interestingly phage genome size (140 kb vs. 190 kb, host range and morphological appearance correlated with the isolation strain. Thus, according to C. jejuni phage grouping, NCTC12662 and NCTC12658 selected for CP81-type phages, while RM1221 selected for CP220-type phages. Furthermore, using acapsular ∆kpsM mutants we demonstrated that phages isolated on NCTC12658 and NCTC12662 were dependent on the capsule for infection. In contrast, CP220-type phages isolated on RM1221 were unable to infect non-motile ∆motA mutants, hence requiring motility for successful infection. Hence, the primary phage isolation strain determines both phage type (CP81 or CP220 as well as receptors (CPS or flagella recognised by the isolated phages.

  3. Accessible switching of electronic defect type in SrTi O3 via biaxial strain

    Science.gov (United States)

    Chi, Yen-Ting; Youssef, Mostafa; Sun, Lixin; Van Vliet, Krystyn J.; Yildiz, Bilge

    2018-05-01

    Elastic strain is used widely to alter the mobility of free electronic carriers in semiconductors, but a predictive relationship between elastic lattice strain and the extent of charge localization of electronic defects is still underdeveloped. Here we considered SrTi O3 , a prototypical perovskite as a model functional oxide for thin film electronic devices and nonvolatile memories. We assessed the effects of biaxial strain on the stability of electronic defects at finite temperature by combining density functional theory (DFT) and quasiharmonic approximation (QHA) calculations. We constructed a predominance diagram for free electrons and small electron polarons in this material, as a function of biaxial strain and temperature. We found that biaxial tensile strain in SrTi O3 can stabilize the small polaron, leading to a thermally activated and slower electronic transport, consistent with prior experimental observations on SrTi O3 and distinct from our prior theoretical assessment of the response of SrTi O3 to hydrostatic stress. These findings also resolved apparent conflicts between prior atomistic simulations and conductivity experiments for biaxially strained SrTi O3 thin films. Our computational approach can be extended to other functional oxides, and for the case of SrTi O3 our findings provide concrete guidance for conditions under which strain engineering can shift the electronic defect type and concentration to modulate electronic transport in thin films.

  4. Whole genome sequence of Enterobacter ludwigii type strain EN-119T, isolated from clinical specimens.

    Science.gov (United States)

    Li, Gengmi; Hu, Zonghai; Zeng, Ping; Zhu, Bing; Wu, Lijuan

    2015-04-01

    Enterobacter ludwigii strain EN-119(T) is the type strain of E. ludwigii, which belongs to the E. cloacae complex (Ecc). This strain was first reported and nominated in 2005 and later been found in many hospitals. In this paper, the whole genome sequencing of this strain was carried out. The total genome size of EN-119(T) is 4952,770 bp with 4578 coding sequences, 88 tRNAs and 10 rRNAs. The genome sequence of EN-119(T) is the first whole genome sequence of E. ludwigii, which will further our understanding of Ecc. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Strain components of nuclear-reactor-type concretes during first heat cycle

    International Nuclear Information System (INIS)

    Khoury, G.A.

    1995-01-01

    Strains of three advanced-gas-cooled-reactor-type nuclear reactor concretes were measured during the first heat cycle and their relative thermal stability determined. It was possible to isolate for the first time the shrinkage component for the period during heating. Predictions of the residual strains for the loaded specimens can be made by simple superposition of creep and shrinkage components up to a certain critical temperature, which for basalt concrete is about 500 C and for limestone concrete is about 200-300 C. Above the critical temperature, an expansive ''cracking'' strain component is present. It is shown that the strain behaviour of concrete provides a sensitive indication of its thermal stability during heating and subsequent cooling. (orig.)

  6. Yeast flocculation: New story in fuel ethanol production.

    Science.gov (United States)

    Zhao, X Q; Bai, F W

    2009-01-01

    Yeast flocculation has been used in the brewing industry to facilitate biomass recovery for a long time, and thus its mechanism of yeast flocculation has been intensively studied. However, the application of flocculating yeast in ethanol production garnered attention mainly in the 1980s and 1990s. In this article, updated research progress in the molecular mechanism of yeast flocculation and the impact of environmental conditions on yeast flocculation are reviewed. Construction of flocculating yeast strains by genetic approach and utilization of yeast flocculation for ethanol production from various feedstocks were presented. The concept of self-immobilized yeast cells through their flocculation is revisited through a case study of continuous ethanol fermentation with the flocculating yeast SPSC01, and their technical and economic advantages are highlighted by comparing with yeast cells immobilized with supporting materials and regular free yeast cells as well. Taking the flocculating yeast SPSC01 as an example, the ethanol tolerance of the flocculating yeast was also discussed.

  7. Effect of wheelchair mass, tire type and tire pressure on physical strain and wheelchair propulsion technique.

    Science.gov (United States)

    de Groot, Sonja; Vegter, Riemer J K; van der Woude, Lucas H V

    2013-10-01

    The purpose of this study was to evaluate the effect of wheelchair mass, solid vs. pneumatic tires and tire pressure on physical strain and wheelchair propulsion technique. 11 Able-bodied participants performed 14 submaximal exercise blocks on a treadmill with a fixed speed (1.11 m/s) within 3 weeks to determine the effect of tire pressure (100%, 75%, 50%, 25% of the recommended value), wheelchair mass (0 kg, 5 kg, or 10 kg extra) and tire type (pneumatic vs. solid). All test conditions (except pneumatic vs. solid) were performed with and without instrumented measurement wheels. Outcome measures were power output (PO), physical strain (heart rate (HR), oxygen uptake (VO2), gross mechanical efficiency (ME)) and propulsion technique (timing, force application). At 25% tire pressure PO and subsequently VO2 were higher compared to 100% tire pressure. Furthermore, a higher tire pressure led to a longer cycle time and contact angle and subsequently lower push frequency. Extra mass did not lead to an increase in PO, physical strain or propulsion technique. Solid tires led to a higher PO and physical strain. The solid tire effect was amplified by increased mass (tire × mass interaction). In contrast to extra mass, tire pressure and tire type have an effect on PO, physical strain or propulsion technique of steady-state wheelchair propulsion. As expected, it is important to optimize tire pressure and tire type. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  8. Cystobasidiomycetes yeasts from Patagonia (Argentina): description of Rhodotorula meli sp. nov. from glacial meltwater.

    Science.gov (United States)

    Libkind, Diego; Sampaio, José Paulo; van Broock, Maria

    2010-09-01

    A basidiomycetous yeast, strain CRUB 1032(T), which formed salmon-pink colonies, was isolated from glacial meltwater in Patagonia, Argentina. Morphological, physiological and biochemical characterization indicated that this strain belonged to the genus Rhodotorula. Molecular taxonomic analysis based on the 26S rDNA D1/D2 domain and internal transcribed spacer region sequences showed that strain CRUB 1032(T) represents an undescribed yeast species, for which the name Rhodotorula meli sp. nov. is proposed (type strain is CRUB 1032(T)=CBS 10797(T)=JCM 15319(T)). Phylogenetic analysis showed that Rhodotorula lamellibrachii was the closest known species, which, together with R. meli, formed a separate cluster related to the Sakaguchia clade within the Cystobasidiomycetes. Additional Patagonian yeast isolates of the class Cystobasidiomycetes are also investigated in the present work.

  9. Complete Genome Sequences of emm111 Type Streptococcus pyogenes Strain GUR, with Antitumor Activity, and Its Derivative Strain GURSA1 with an Inactivated emm Gene

    DEFF Research Database (Denmark)

    Suvorova, Maria A; Tsapieva, Anna N; Bak, Emilie Glad

    2017-01-01

    We present here the complete genome sequence of Streptococcus pyogenes type emm111 strain GUR, a throat isolate from a scarlet fever patient, which has been used to treat cancer patients in the former Soviet Union. We also present the complete genome sequence of its derivative strain GURSA1...

  10. Structure of the type IV secretion system in different strains of Anaplasma phagocytophilum

    Directory of Open Access Journals (Sweden)

    Al-Khedery Basima

    2012-11-01

    Full Text Available Abstract Background Anaplasma phagocytophilum is an intracellular organism in the Order Rickettsiales that infects diverse animal species and is causing an emerging disease in humans, dogs and horses. Different strains have very different cell tropisms and virulence. For example, in the U.S., strains have been described that infect ruminants but not dogs or rodents. An intriguing question is how the strains of A. phagocytophilum differ and what different genome loci are involved in cell tropisms and/or virulence. Type IV secretion systems (T4SS are responsible for translocation of substrates across the cell membrane by mechanisms that require contact with the recipient cell. They are especially important in organisms such as the Rickettsiales which require T4SS to aid colonization and survival within both mammalian and tick vector cells. We determined the structure of the T4SS in 7 strains from the U.S. and Europe and revised the sequence of the repetitive virB6 locus of the human HZ strain. Results Although in all strains the T4SS conforms to the previously described split loci for vir genes, there is great diversity within these loci among strains. This is particularly evident in the virB2 and virB6 which are postulated to encode the secretion channel and proteins exposed on the bacterial surface. VirB6-4 has an unusual highly repetitive structure and can have a molecular weight greater than 500,000. For many of the virs, phylogenetic trees position A. phagocytophilum strains infecting ruminants in the U.S. and Europe distant from strains infecting humans and dogs in the U.S. Conclusions Our study reveals evidence of gene duplication and considerable diversity of T4SS components in strains infecting different animals. The diversity in virB2 is in both the total number of copies, which varied from 8 to 15 in the herein characterized strains, and in the sequence of each copy. The diversity in virB6 is in the sequence of each of the 4 copies in

  11. Genetic Relationships among Reptilian and Mammalian Campylobacter fetus Strains Determined by Multilocus Sequence Typing

    NARCIS (Netherlands)

    Dingle, K.E.; Blaser, M.J.; Tu, Z.C.; Pruckler, J.; Fitzgerald, C.; Bergen, van M.A.P.; Lawson, A.J.; Owen, R.J.; Wagenaar, J.A.

    2010-01-01

    Reptile Campylobacter fetus isolates and closely related strains causing human disease were characterized by multilocus sequence typing. They shared similar to 90% nucleotide sequence identity with classical mammalian C. fetus, and there was evidence of recombination among members of these two

  12. Complete Genome Sequence of Mycobacterium fortuitum subsp. fortuitum Type Strain DSM46621

    KAUST Repository

    Ho, Y. S

    2012-10-26

    Mycobacterium fortuitum is a member of the rapidly growing nontuberculous mycobacteria (NTM). It is ubiquitous in water and soil habitats, including hospital environments. M. fortuitum is increasingly recognized as an opportunistic nosocomial pathogen causing disseminated infection. Here we report the genome sequence of M. fortuitum subsp. fortuitum type strain DSM46621.

  13. Complete genome sequence of thermophilic Bacillus smithii type strain DSM 4216T

    DEFF Research Database (Denmark)

    Bosma, Elleke Fenna; Koehorst, Jasper J.; van Hijum, Sacha A. F. T.

    2016-01-01

    determined the complete genomic sequence of the B. smithii type strain DSM 4216T, which consists of a 3,368,778 bp chromosome (GenBank accession number CP012024.1) and a 12,514 bp plasmid (GenBank accession number CP012025.1), together encoding 3880 genes. Genome annotation via RAST was complemented...

  14. Complete Genome Sequence of Mycobacterium fortuitum subsp. fortuitum Type Strain DSM46621

    KAUST Repository

    Ho, Y. S; Adroub, S. A.; Aleisa, F.; Mahmood, H.; Othoum, G.; Rashid, F.; Zaher, M.; Ali, Shahjahan; Bitter, W.; Pain, Arnab; Abdallah, A. M.

    2012-01-01

    Mycobacterium fortuitum is a member of the rapidly growing nontuberculous mycobacteria (NTM). It is ubiquitous in water and soil habitats, including hospital environments. M. fortuitum is increasingly recognized as an opportunistic nosocomial pathogen causing disseminated infection. Here we report the genome sequence of M. fortuitum subsp. fortuitum type strain DSM46621.

  15. 21 CFR 184.1983 - Bakers yeast extract.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bakers yeast extract. 184.1983 Section 184.1983... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract... a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b) The...

  16. Genotypic and Phenotypic Assessment of Hyaluronidase among Type Strains of a Select Group of Staphylococcal Species

    Directory of Open Access Journals (Sweden)

    Mark E. Hart

    2009-01-01

    Full Text Available Hyaluronidases degrade hyaluronic acid, a major polysaccharide of the extracellular matrix of tissues, and are considered important for virulence in a number of Gram-positive and -negative bacteria. The purpose of the present study was to determine the prevalence of hyaluronidase among clinical strains of Staphylococcus aureus and among other Staphylococcus species. Spent media and chromosomal DNA were assessed for hyaluronidase activity and the absence or presence of a hyaluronidase gene (hysA by Southern analysis, respectively. All S. aureus strains examined exhibited at least one hybridizing band (half of the strains exhibited two or more hybridizing bands when probed for hysA and all but three of these strains produced hyaluronidase. In contrast, none of the type strains of 19 other species exhibited either hyaluronidase activity or hybridizing bands when probed for hysA. These data support the hypothesis that among members of the Staphylococcus genus only strains of S. aureus possess the enzyme hyaluronidase. This would suggest that hyaluronidase represents yet another potential virulence factor employed by S. aureus to cause disease and may represent a diagnostically important characteristic for distinguishing S. aureus from other members of this genus.

  17. Experience of social role strain in Korean women with type 2 diabetes.

    Science.gov (United States)

    Park, Hyunjeong; Wenzel, Jennifer A

    2013-06-01

    To expand our understanding of the experience of social role strain in the context of diabetes care among middle-aged married Korean women with type 2 diabetes. Diabetes remains an international concern. There are special challenges experienced by middle-aged married women who may not prioritize self-care and disease management. These challenges may be heightened in certain cultures due to traditional female and family roles along with other social norms and values. Descriptive qualitative study. This qualitative descriptive study involves in-depth interviews conducted between January-February 2007 with ten middle-aged married Korean women purposively selected to represent both higher and lower levels of role strain as measured by the measure of role gratification and strain instrument from the companion study, which was conducted simultaneously. Korean women in this study reported 'resentment regarding previous role strain'. This psychosocial burden was heightened by a noted pattern of 'sacrificing self in favour of others', which complicated both their personal lives and their ability to take care of themselves physically. Added to this were feelings of guilt related to their diabetes and the requirements of day-to-day management expressed as, 'my diabetes makes me a liability'. The women's role-strain experience related to their diabetes was intertwined with their past and current daily life. Further explication and interventions to address and manage role strain could potentially improve women's disease management and overall quality of life. © 2012 Blackwell Publishing Ltd.

  18. Comparative genomics of human and non-human Listeria monocytogenes sequence type 121 strains.

    Directory of Open Access Journals (Sweden)

    Kathrin Rychli

    Full Text Available The food-borne pathogen Listeria (L. monocytogenes is able to survive for months and even years in food production environments. Strains belonging to sequence type (ST121 are particularly found to be abundant and to persist in food and food production environments. To elucidate genetic determinants characteristic for L. monocytogenes ST121, we sequenced the genomes of 14 ST121 strains and compared them with currently available L. monocytogenes ST121 genomes. In total, we analyzed 70 ST121 genomes deriving from 16 different countries, different years of isolation, and different origins-including food, animal and human ST121 isolates. All ST121 genomes show a high degree of conservation sharing at least 99.7% average nucleotide identity. The main differences between the strains were found in prophage content and prophage conservation. We also detected distinct highly conserved subtypes of prophages inserted at the same genomic locus. While some of the prophages showed more than 99.9% similarity between strains from different sources and years, other prophages showed a higher level of diversity. 81.4% of the strains harbored virtually identical plasmids. 97.1% of the ST121 strains contain a truncated internalin A (inlA gene. Only one of the seven human ST121 isolates encodes a full-length inlA gene, illustrating the need of better understanding their survival and virulence mechanisms.

  19. Mutations induced by X-radiation in the yeast Schizosaccharomyces pombe

    International Nuclear Information System (INIS)

    Loprieno, N.; Barale, R.; Baroncelli, S.; Cammellini, A.; Melani, M.; Nieri, R.; Nozzolini, M.; Rossi, A.M.; Pisa Univ.

    1975-01-01

    Experiments on strains of yeast with different genetic backgrounds were done to evaluate the kinetics of inactivation and mutation induction by X-radiation. A system of forward mutation induction in five loci was used and a specific mutation rate was evaluated for the wild type. From a comparison of observations with wild type and radiation-sensitive strains, it may be assumed that in this yeast, mutations are mainly the result of a repair-active process. The range of genotypic and phenotypic influence upon the specific locus mutation rate was evaluated with appropriate biological material and experiments

  20. Spatial encoding in spinal sensorimotor circuits differs in different wild type mice strains

    Directory of Open Access Journals (Sweden)

    Schouenborg Jens

    2008-05-01

    Full Text Available Abstract Background Previous studies in the rat have shown that the spatial organisation of the receptive fields of nociceptive withdrawal reflex (NWR system are functionally adapted through experience dependent mechanisms, termed somatosensory imprinting, during postnatal development. Here we wanted to clarify 1 if mice exhibit a similar spatial encoding of sensory input to NWR as previously found in the rat and 2 if mice strains with a poor learning capacity in various behavioural tests, associated with deficient long term potention, also exhibit poor adaptation of NWR. The organisation of the NWR system in two adult wild type mouse strains with normal long term potentiation (LTP in hippocampus and two adult wild type mouse strains exhibiting deficiencies in corresponding LTP were used and compared to previous results in the rat. Receptive fields of reflexes in single hindlimb muscles were mapped with CO2 laser heat pulses. Results While the spatial organisation of the nociceptive receptive fields in mice with normal LTP were very similar to those in rats, the LTP impaired strains exhibited receptive fields of NWRs with aberrant sensitivity distributions. However, no difference was found in NWR thresholds or onset C-fibre latencies suggesting that the mechanisms determining general reflex sensitivity and somatosensory imprinting are different. Conclusion Our results thus confirm that sensory encoding in mice and rat NWR is similar, provided that mice strains with a good learning capability are studied and raise the possibility that LTP like mechanisms are involved in somatosensory imprinting.

  1. Molecular typing of uropathogenic E. coli strains by the ERIC-PCR method.

    Science.gov (United States)

    Ardakani, Maryam Afkhami; Ranjbar, Reza

    2016-04-01

    Escherichia coli (E. coli) is the most common cause of urinary infections in hospitals. The aim of this study was to evaluate the ERIC-PCR method for molecular typing of uropathogenic E. coli strains isolated from hospitalized patients. In a cross sectional study, 98 E. coli samples were collected from urine samples taken from patients admitted to Baqiyatallah Hospital from June 2014 to January 2015. The disk agar diffusion method was used to determine antibiotic sensitivity. DNA proliferation based on repetitive intergenic consensus was used to classify the E. coli strains. The products of proliferation were electrophoresed on 1.5% agarose gel, and their dendrograms were drawn. The data were analyzed by online Insillico software. The method used in this research proliferated numerous bands (4-17 bands), ranging from 100 to 3000 base pairs. The detected strains were classified into six clusters (E1-E6) with 70% similarity between them. In this study, uropathogenic E. coli strains belonged to different genotypic clusters. It was found that ERIC-PCR had good differentiation power for molecular typing of uropathogenic E. coli strains isolated from the patients in the study.

  2. STRESS - STRAIN CURVE ANALYSIS OF WOVEN FABRICS MAD E FROM COMBED YARNS TYPE WOOL

    Directory of Open Access Journals (Sweden)

    VÎLCU Adrian

    2014-05-01

    Full Text Available The paper analyses the tensile behavior of woven fabrics made from 45%Wool + 55% PES used for garments. Analysis of fabric behavior during wearing has shown that these are submitted to simple and repeated uni-axial or bi-axial tensile strains. The level of these strains is often within the elastic limit, rarely going over yielding. Therefore the designer must be able to evaluate the mechanical behavior of such fabrics in order to control the fabric behavior in the garment. This evaluation is carried out based on the tensile testing, using certain indexes specific to the stress-strain curve. The paper considers an experimental matrix based on woven fabrics of different yarn counts, different or equal yarn count for warp and weft systems and different structures. The fabrics were tested using a testing machine and the results were then compared in order to determine the fabrics’ tensile behavior and the factors of influence that affect it.From the point of view of tensile testing, the woven materials having twill weave are preferable because this type of structure is characterized by higher durability and better yarn stability in the fabric. In practice, the woven material must exhibit an optimum behavior to repeated strains, flexions and abrasions during wearing process. The analysis of fabrics tensile properties studied by investigation of stress-strain diagrams reveals that the main factors influencing the tensile strength are: yarns fineness, technological density of those two systems of yarns and the weaving type.

  3. Nitrile Metabolizing Yeasts

    Science.gov (United States)

    Bhalla, Tek Chand; Sharma, Monica; Sharma, Nitya Nand

    Nitriles and amides are widely distributed in the biotic and abiotic components of our ecosystem. Nitrile form an important group of organic compounds which find their applications in the synthesis of a large number of compounds used as/in pharmaceutical, cosmetics, plastics, dyes, etc>. Nitriles are mainly hydro-lyzed to corresponding amide/acid in organic chemistry. Industrial and agricultural activities have also lead to release of nitriles and amides into the environment and some of them pose threat to human health. Biocatalysis and biotransformations are increasingly replacing chemical routes of synthesis in organic chemistry as a part of ‘green chemistry’. Nitrile metabolizing organisms or enzymes thus has assumed greater significance in all these years to convert nitriles to amides/ acids. The nitrile metabolizing enzymes are widely present in bacteria, fungi and yeasts. Yeasts metabolize nitriles through nitrilase and/or nitrile hydratase and amidase enzymes. Only few yeasts have been reported to possess aldoxime dehydratase. More than sixty nitrile metabolizing yeast strains have been hither to isolated from cyanide treatment bioreactor, fermented foods and soil. Most of the yeasts contain nitrile hydratase-amidase system for metabolizing nitriles. Transformations of nitriles to amides/acids have been carried out with free and immobilized yeast cells. The nitrilases of Torulopsis candida>and Exophiala oligosperma>R1 are enantioselec-tive and regiospecific respectively. Geotrichum>sp. JR1 grows in the presence of 2M acetonitrile and may have potential for application in bioremediation of nitrile contaminated soil/water. The nitrilase of E. oligosperma>R1 being active at low pH (3-6) has shown promise for the hydroxy acids. Immobilized yeast cells hydrolyze some additional nitriles in comparison to free cells. It is expected that more focus in future will be on purification, characterization, cloning, expression and immobilization of nitrile metabolizing

  4. Developing a Biosensor for Estrogens in Water Samples: Study ofthe Real-time Response of Live Cells of the Estrogen-sensitive YeastStrain RMY/ER-ERE using Fluorescence Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wozei, E.; Hermanowicz, S.W.; Holman, H-Y.N.

    2006-01-01

    Using a fluorescein di-{beta}-d-galactopyranoside (FDG) substrate we show that in live cells of an estrogen-sensitive yeast strain RMY/ER-ERE with human estrogen receptor (ER{alpha}) gene and the lacZ gene which encodes {beta}-galactosidase, the uptake of 17{beta}-estradiol (E2) and the subsequent production of {beta}-galactosidase enzyme occur quite rapidly, with maximal enzyme-catalyzed product formation evident after about 30 min of exposure to E2. This finding which agrees with the well-known rates of enzyme-catalyzed reactions could have implications for shortening the duration of environmental sample screening and monitoring regimes using yeast-based estrogen assays, and the development of biosensors for environmental estrogens to complement quantification methods.

  5. Developing a Biosensor for Estrogens in Water Samples: Study ofthe Real-time Response of Live Cells of the Estrogen-sensitive YeastStrain RMY/ER-ERE using Fluorescence Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wozei, E.; Hermanowicz, S.W.; Holman, H-Y.N.

    2005-07-13

    Using a fluorescein di-{beta}-D-galactopyranoside (FDG) substrate we show that in live cells of an estrogen-sensitive yeast strain RMY/ER-ERE with human estrogen receptor (ER{alpha}) gene and the lacZ gene which encodes {beta}-galactosidase, the uptake of 17 {beta}-estradiol (E2) and the subsequent production of {beta}-galactosidase enzyme occur quite rapidly, with maximal enzyme-catalyzed product formation evident after about 30 minutes of exposure to E2. This finding which agrees with the well-known rates of enzyme-catalyzed reactions could have implications for shortening the duration of environmental sample screening and monitoring regimes using yeast-based estrogen assays, and the development of biosensors for environmental estrogens to complement quantification methods.

  6. Complete genome sequence of Haliangium ochraceum type strain (SMP-2T)

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Daum, Chris [U.S. Department of Energy, Joint Genome Institute; Lang, Elke [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Abt, Birte [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Kopitz, marcus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Chen, Feng [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Brettin, Thomas S [ORNL; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

    2010-01-01

    Haliangium ochraceum Fudou et al. 2002 is the type species of the genus Haliangium in the myxococcal family Haliangiaceae . Members of the genus Haliangium are the first halophilic myxobacterial taxa described. The cells of the species follow a multicellular lifestyle in highly organized biofilms, called swarms, they decompose bacterial and yeast cells as most myxobacteria do. The fruiting bodies contain particularly small coccoid myxospores. H. ochraceum encodes the first actin homologue identified in a bacterial genome. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the myxococcal suborder Nannocystineae, and the 9,446,314 bp long single replicon genome with its 6,898 protein-coding and 53 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  7. Lager Yeast Comes of Age

    Science.gov (United States)

    2014-01-01

    Alcoholic fermentations have accompanied human civilizations throughout our history. Lager yeasts have a several-century-long tradition of providing fresh beer with clean taste. The yeast strains used for lager beer fermentation have long been recognized as hybrids between two Saccharomyces species. We summarize the initial findings on this hybrid nature, the genomics/transcriptomics of lager yeasts, and established targets of strain improvements. Next-generation sequencing has provided fast access to yeast genomes. Its use in population genomics has uncovered many more hybridization events within Saccharomyces species, so that lager yeast hybrids are no longer the exception from the rule. These findings have led us to propose network evolution within Saccharomyces species. This “web of life” recognizes the ability of closely related species to exchange DNA and thus drain from a combined gene pool rather than be limited to a gene pool restricted by speciation. Within the domesticated lager yeasts, two groups, the Saaz and Frohberg groups, can be distinguished based on fermentation characteristics. Recent evidence suggests that these groups share an evolutionary history. We thus propose to refer to the Saaz group as Saccharomyces carlsbergensis and to the Frohberg group as Saccharomyces pastorianus based on their distinct genomes. New insight into the hybrid nature of lager yeast will provide novel directions for future strain improvement. PMID:25084862

  8. Adhesion activity of glyceraldehyde-3-phosphate dehydrogenase in a Chinese Streptococcus suis type 2 strain.

    Science.gov (United States)

    Wang, Kaicheng; Lu, Chengping

    2007-01-01

    A total of 36 streptococcal strains, including seven S. equi ssp.zooepidemicus, two S. suis type 1 (SS1), 24 SS2, two SS9, and one SS7, were tested for glyceraldehyde-3-phosphate dehydrogenase gene (gapdh). Except from non-virulent SS2 strain T1 5, all strains harboured gapdh. The gapdh of Chinese Sichuan SS2 isolate ZY05719 and Jiangsu SS2 isolate HA9801 were sequenced and then compared with published sequences in the GenBank. The comparison revealed a 99.9 % and 99.8 % similarity of ZY05719 and HA9801, respectively, with the published sequence. Adherence assay data demonstrated a significant ((p<0.05)) reduction in adhesion of SS2 in HEp-2 cells pre-incubated with purified GAPDH compared to non pre-incubated controls, suggesting the GAPDH mediates SS2 bacterial adhesion to host cells.

  9. Role of grain boundary nature and residual strain in controlling sensitisation of type 304 stainless steel

    International Nuclear Information System (INIS)

    Ahmedabadi, Parag M.; Kain, Vivekanand; Dangi, Bhupinder Kumar; Samajdar, I.

    2013-01-01

    Highlights: ► Low-level of residual strain improved resistance to sensitisation. ► High fraction of special boundaries did not always reduce sensitisation. ► Area attacked during the EPR test correlated well with degree of sensitisation. ► Volume loss during the EPR test also correlated well with degree of sensitisation. - Abstract: The effects of residual strain and grain boundary character distribution on sensitisation of type 304 stainless steel at 525 °C were evaluated using electrochemical potentiokinetic reactivation (EPR) technique. The results indicated that a very low level of residual strain and a high fraction of annealing twins significantly improved the resistance to sensitisation. Image analysis indicated that the fraction of area attacked during the EPR test correlated well with the EPR data. The volume loss, calculated using atomic force microscopic examinations, during the EPR tests also correlated well with the EPR results.

  10. Complete genome sequence of Tolumonas auensis type strain (TA 4T)

    Energy Technology Data Exchange (ETDEWEB)

    Chertkov, Olga; Copeland, Alex; Lucas1, Susa; Lapidus, Alla; Berry, KerrieW.; Detter, JohnC.; Glavina Del Rio, Tijana; Hammon, Nancy; Dalin, Eileen; Tice, Hope; Pitluck, Sam; Richardson, Paul; Bruce, David; Goodwin, Lynne; Han, Cliff; Tapia, Roxanne; Saunders, Elizabeth; Schmutz, Jeremy; Brettin, Thomas; Larimer, Frank; Land, Miriam; Hauser, Loren; Spring, Stefan; Rohde, Manfred; Kyrpides, NikosC.; Ivanova, Natalia; G& #246; ker, Markus; Beller, HarryR.; Klenk, Hans-Peter; Woyke, Tanja

    2011-10-04

    Tolumonas auensis (Fischer-Romero et al. 1996) is currently the only validly named species of the genus Tolumonas in the family Aeromonadaceae. The strain is of interest because of its ability to produce toluene from phenylalanine and other phenyl precursors, as well as phenol from tyrosine. This is of interest because toluene is normally considered to be a tracer of anthropogenic pollution in lakes, but T. auensis represents a biogenic source of toluene. Other than Aeromonas hydrophila subsp. hydrophila, T. auensis strain TA 4T is the only other member in the family Aeromonadaceae with a completely sequenced type-strain genome. The 3,471,292-bp chromosome with a total of 3,288 protein-coding and 116 RNA genes was sequenced as part of the DOE Joint Genome Institute Program JBEI 2008.

  11. Complete genome sequence of Tolumonas auensis type strain (TA 4T)

    Energy Technology Data Exchange (ETDEWEB)

    Chertkov, Olga [Los Alamos National Laboratory (LANL); Copeland, A [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Berry, Alison M [California Institute of Technology, University of California, Davis; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Hammon, Nancy [U.S. Department of Energy, Joint Genome Institute; Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Richardson, P M [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Schmutz, Jeremy [Stanford University; Brettin, Thomas S [ORNL; Larimer, Frank W [ORNL; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Beller, Harry R. [Lawrence Berkeley National Laboratory (LBNL); Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute

    2011-01-01

    Tolumonas auensis Fischer-Romero et al. 1996 is currently the only validly named species of the genus Tolumonas in the family Aeromonadaceae. The strain is of interest because of its ability to produce toluene from phenylalanine and other phenyl precursors, as well as phenol from tyrosine. This is of interest because toluene is normally considered to be a tracer of anthropogenic pollution in lakes, but T. auensis represents a biogenic source of toluene. Oth- er than Aeromonas hydrophila subsp. hydrophila, T. auensis strain TA 4T is the only other member in the family Aeromonadaceae with a completely sequenced type-strain genome. The 3,471,292 bp chromosome with a total of 3,288 protein-coding and 116 RNA genes was sequenced as part of the DOE Joint Genome Institute Program JBEI 2008.

  12. Translation efficiency determines differences in cellular infection among dengue virus type 2 strains

    International Nuclear Information System (INIS)

    Edgil, Dianna; Diamond, Michael S.; Holden, Katherine L.; Paranjape, Suman M.; Harris, Eva

    2003-01-01

    We have investigated the molecular basis for differences in the ability of natural variants of dengue virus type 2 (DEN2) to replicate in primary human cells. The rates of virus binding, virus entry, input strand translation, and RNA stability of low-passage Thai and Nicaraguan and prototype DEN2 strains were compared. All strains exhibited equivalent binding, entry, and uncoating, and displayed comparable stability of positive strand viral RNA over time in primary cells. However, the low-passage Nicaraguan isolates were much less efficient in their ability to translate viral proteins. Sequence analysis of the full-length low-passage Nicaraguan and Thai viral genomes identified specific differences in the 3' untranslated region (3'UTR). Substitution of the different sequences into chimeric RNA reporter constructs demonstrated that the changes in the 3'UTR directly affected the efficiency of viral translation. Thus, differences in infectivity among closely related DEN2 strains correlate with efficiency of translation of input viral RNA

  13. CC8 MRSA strains harboring SCCmec type IVc are predominant in Colombian hospitals.

    Directory of Open Access Journals (Sweden)

    J Natalia Jiménez

    Full Text Available BACKGROUND: Recent reports highlight the incursion of community-associated MRSA within healthcare settings. However, knowledge of this phenomenon remains limited in Latin America. The aim of this study was to evaluate the molecular epidemiology of MRSA in three tertiary-care hospitals in Medellín, Colombia. METHODS: An observational cross-sectional study was conducted from 2008-2010. MRSA infections were classified as either community-associated (CA-MRSA or healthcare-associated (HA-MRSA, with HA-MRSA further classified as hospital-onset (HAHO-MRSA or community-onset (HACO-MRSA according to standard epidemiological definitions established by the U.S. Centers for Disease Control and Prevention (CDC. Genotypic analysis included SCCmec typing, spa typing, PFGE and MLST. RESULTS: Out of 538 total MRSA isolates, 68 (12.6% were defined as CA-MRSA, 243 (45.2% as HACO-MRSA and 227 (42.2% as HAHO-MRSA. The majority harbored SCCmec type IVc (306, 58.7%, followed by SCCmec type I (174, 33.4%. The prevalence of type IVc among CA-, HACO- and HAHO-MRSA isolates was 92.4%, 65.1% and 43.6%, respectively. From 2008 to 2010, the prevalence of type IVc-bearing strains increased significantly, from 50.0% to 68.2% (p = 0.004. Strains harboring SCCmec IVc were mainly associated with spa types t1610, t008 and t024 (MLST clonal complex 8, while PFGE confirmed that the t008 and t1610 strains were closely related to the USA300-0114 CA-MRSA clone. Notably, strains belonging to these three spa types exhibited high levels of tetracycline resistance (45.9%. CONCLUSION: CC8 MRSA strains harboring SCCmec type IVc are becoming predominant in Medellín hospitals, displacing previously reported CC5 HA-MRSA clones. Based on shared characteristics including SCCmec IVc, absence of the ACME element and tetracycline resistance, the USA300-related isolates in this study are most likely related to USA300-LV, the recently-described 'Latin American variant' of USA300.

  14. Molecular Typing of Acinetobacter Baumannii Clinical Strains in Tehran by Pulsed-Field Gel Electrophoresis

    Directory of Open Access Journals (Sweden)

    Neda Farahani

    2013-03-01

    Full Text Available Background & Objective : Currently, Acinetobacter baumannii is an important nosocomial pathogen insofar as its hospital outbreaks have been described from various geographical areas. Since the discrimination of strains within a species is important for delineating nosocomial outbreaks, this study was conducted with the aim of genotyping the A. baumannii clinical strains in Tehran via the pulsed-field gel electrophoresis (PFGE method, which is the most accurate method used for the typing of bacterial species.   Materials & methods: This study was performed on 70 isolates of acinetobacter baumannii isolated from patients from Baqiyatallah, Rasoole Akram, and Milad hospitals in Tehran. Cultural and biochemical methods were used for the identification of the isolates in species level, and then susceptibility tests were carried out on 50 isolates of A. baumannii using the disk diffusion method. The PFGE method was performed on the isolates by Apa I restriction enzyme. Finally, the results of the PFGE were analyzed. Result: Acinetobacter baumannii strains isolated from hospitals in Tehran showed seven different genetic patterns, two of which were sporadic . Also, genotypic profiles were different in each hospital, and different patterns of genetic resistance to common antibiotics were observed. Conclusion: A lthough diversity was observed among the strains of A. baumannii by the PFGE method in Tehran, no epidemic strains were found among them.  

  15. Bacillus 'next generation' diagnostics: Moving from detection towards sub-typing and risk related strain profiling

    Directory of Open Access Journals (Sweden)

    Monika eEhling-Schulz

    2013-02-01

    Full Text Available The highly heterogeneous genus Bacillus comprises the largest species group of endospore forming bacteria. Because of their ubiquitous nature, Bacillus spores can enter food production at several stages resulting in significant economic losses and posing a potential risk to consumers due the capacity of certain Bacillus strains for toxin production. In the past, food microbiological diagnostics was focused on the determination of species using conventional culture based methods, which are still widely used. However, due to the extreme intraspecies diversity found in the genus Bacillus, DNA based identification and typing methods are gaining increasing importance in routine diagnostics. Several studies showed that certain characteristics are rather strain dependent than species specific. Therefore, the challenge for current and future Bacillus diagnostics is not only the efficient and accurate identification on species level but also the development of rapid methods to identify strains with specific characteristics (such as stress resistance or spoilage potential, trace contamination sources, and last but not least discriminate potential hazardous strains from non-toxic strains.

  16. Detection of antifungal properties in Lactobacillus paracasei subsp. paracasei SM20, SM29, and SM63 and molecular typing of the strains.

    Science.gov (United States)

    Schwenninger, Susanne Miescher; von Ah, Ueli; Niederer, Brigitte; Teuber, Michael; Meile, Leo

    2005-01-01

    Lactobacilli isolated from different food and feed samples such as raw milk, cheese, yoghurt, olives, sour dough, as well as corn and grass silage, were screened for their antifungal activities. Out of 1,424 isolates tested, 82 were shown to be inhibitory to different yeasts (Candida spp. and Zygosaccharomyces bailii) and a Penicillium sp., which were previously isolated from spoiled yoghurt and fruits. Carbohydrate fermentation patterns suggested that a substantial portion, 25%, belonged to the Lactobacillus casei group, including L. casei, L. paracasei, and L. rhamnosus. The isolates SM20 (DSM14514), SM29 (DSM14515), and SM63 (DSM14516) were classified by PCR using species-specific primers to target the corresponding type strains (L. casei, L. paracasei, and L. rhamnosus) as controls. Further molecular typing methods such as randomly amplified polymorphic DNA, pulsed-field gel electrophoresis, and sequencing analysis of the 16S rRNA gene allowed classifying strains SM20, SM29, and SM63 as L. paracasei subsp. paracasei in accordance with the new reclassification of the L. casei group proposed by Collins et al.

  17. Isolation of baker's yeast mutants with proline accumulation that showed enhanced tolerance to baking-associated stresses.

    Science.gov (United States)

    Tsolmonbaatar, Ariunzaya; Hashida, Keisuke; Sugimoto, Yukiko; Watanabe, Daisuke; Furukawa, Shuhei; Takagi, Hiroshi

    2016-12-05

    During bread-making processes, yeast cells are exposed to baking-associated stresses such as freeze-thaw, air-drying, and high-sucrose concentrations. Previously, we reported that self-cloning diploid baker's yeast strains that accumulate proline retained higher-level fermentation abilities in both frozen and sweet doughs than the wild-type strain. Although self-cloning yeasts do not have to be treated as genetically modified yeasts, the conventional methods for breeding baker's yeasts are more acceptable to consumers than the use of self-cloning yeasts. In this study, we isolated mutants resistant to the proline analogue azetidine-2-carboxylate (AZC) derived from diploid baker's yeast of Saccharomyces cerevisiae. Some of the mutants accumulated a greater amount of intracellular proline, and among them, 5 mutants showed higher cell viability than that observed in the parent wild-type strain under freezing or high-sucrose stress conditions. Two of them carried novel mutations in the PRO1 gene encoding the Pro247Ser or Glu415Lys variant of γ-glutamyl kinase (GK), which is a key enzyme in proline biosynthesis in S. cerevisiae. Interestingly, we found that these mutations resulted in AZC resistance of yeast cells and desensitization to proline feedback inhibition of GK, leading to intracellular proline accumulation. Moreover, baker's yeast cells expressing the PRO1 P247S and PRO1 E415K gene were more tolerant to freezing stress than cells expressing the wild-type PRO1 gene. The approach described here could be a practical method for the breeding of proline-accumulating baker's yeasts with higher tolerance to baking-associated stresses. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Population Genetic Structure of Listeria monocytogenes Strains as Determined by Pulsed-Field Gel Electrophoresis and Multilocus Sequence Typing

    DEFF Research Database (Denmark)

    Henri, Clémentine; Félix, Benjamin; Guillier, Laurent

    2016-01-01

    on the basis of different pulsed-field gel electrophoresis (PFGE) clusters, serotypes, and strain origins and typed by multilocus sequence typing (MLST), and the MLST results were supplemented with MLST data available from Institut Pasteur, representing human and additional food strains from France....... The distribution of sequence types (STs) was compared between food and clinical strains on a panel of 675 strains. High congruence between PFGE and MLST was found. Out of 73 PFGE clusters, the two most prevalent corresponded to ST9 and ST121. Using original statistical analysis, we demonstrated that (i...

  19. Detection and strain typing of ancient Mycobacterium leprae from a medieval leprosy hospital.

    Science.gov (United States)

    Taylor, G Michael; Tucker, Katie; Butler, Rachel; Pike, Alistair W G; Lewis, Jamie; Roffey, Simon; Marter, Philip; Lee, Oona Y-C; Wu, Houdini H T; Minnikin, David E; Besra, Gurdyal S; Singh, Pushpendra; Cole, Stewart T; Stewart, Graham R

    2013-01-01

    Nine burials excavated from the Magdalen Hill Archaeological Research Project (MHARP) in Winchester, UK, showing skeletal signs of lepromatous leprosy (LL) have been studied using a multidisciplinary approach including osteological, geochemical and biomolecular techniques. DNA from Mycobacterium leprae was amplified from all nine skeletons but not from control skeletons devoid of indicative pathology. In several specimens we corroborated the identification of M. leprae with detection of mycolic acids specific to the cell wall of M. leprae and persistent in the skeletal samples. In five cases, the preservation of the material allowed detailed genotyping using single-nucleotide polymorphism (SNP) and multiple locus variable number tandem repeat analysis (MLVA). Three of the five cases proved to be infected with SNP type 3I-1, ancestral to contemporary M. leprae isolates found in southern states of America and likely carried by European migrants. From the remaining two burials we identified, for the first time in the British Isles, the occurrence of SNP type 2F. Stable isotope analysis conducted on tooth enamel taken from two of the type 3I-1 and one of the type 2F remains revealed that all three individuals had probably spent their formative years in the Winchester area. Previously, type 2F has been implicated as the precursor strain that migrated from the Middle East to India and South-East Asia, subsequently evolving to type 1 strains. Thus we show that type 2F had also spread westwards to Britain by the early medieval period.

  20. Detection and strain typing of ancient Mycobacterium leprae from a medieval leprosy hospital.

    Directory of Open Access Journals (Sweden)

    G Michael Taylor

    Full Text Available Nine burials excavated from the Magdalen Hill Archaeological Research Project (MHARP in Winchester, UK, showing skeletal signs of lepromatous leprosy (LL have been studied using a multidisciplinary approach including osteological, geochemical and biomolecular techniques. DNA from Mycobacterium leprae was amplified from all nine skeletons but not from control skeletons devoid of indicative pathology. In several specimens we corroborated the identification of M. leprae with detection of mycolic acids specific to the cell wall of M. leprae and persistent in the skeletal samples. In five cases, the preservation of the material allowed detailed genotyping using single-nucleotide polymorphism (SNP and multiple locus variable number tandem repeat analysis (MLVA. Three of the five cases proved to be infected with SNP type 3I-1, ancestral to contemporary M. leprae isolates found in southern states of America and likely carried by European migrants. From the remaining two burials we identified, for the first time in the British Isles, the occurrence of SNP type 2F. Stable isotope analysis conducted on tooth enamel taken from two of the type 3I-1 and one of the type 2F remains revealed that all three individuals had probably spent their formative years in the Winchester area. Previously, type 2F has been implicated as the precursor strain that migrated from the Middle East to India and South-East Asia, subsequently evolving to type 1 strains. Thus we show that type 2F had also spread westwards to Britain by the early medieval period.

  1. Multilocus sequence typing and virulence analysis of Haemophilus parasuis strains isolated in five provinces of China.

    Science.gov (United States)

    Wang, Liyan; Ma, Lina; Liu, Yongan; Gao, Pengcheng; Li, Youquan; Li, Xuerui; Liu, Yongsheng

    2016-10-01

    Haemophilus parasuis is the etiological agent of Glässers disease, which causes high morbidity and mortality in swine herds. Although H. parasuis strains can be classified into 15 serovars with the Kielstein-Rapp-Gabrielson serotyping scheme, a large number of isolates cannot be classified and have been designated 'nontypeable' strains. In this study, multilocus sequence typing (MLST) of H. parasuis was used to analyze 48 H. parasuis field strains isolated in China and two strains from Australia. Twenty-six new alleles and 29 new sequence types (STs) were detected, enriching the H. parasuis MLST databases. A BURST analysis indicated that H. parasuis lacks stable population structure and is highly heterogeneous, and that there is no association between STs and geographic area. When an UPGMA dendrogram was constructed, two major clades, clade A and clade B, were defined. Animal experiments, in which guinea pigs were challenged intraperitoneally with the bacterial isolates, supported the hypothesis that the H. parasuis STs in clade A are generally avirulent or weakly virulent, whereas the STs in clade B tend to be virulent. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Diphtheria in the Republic of Georgia: Use of Molecular Typing Techniques for Characterization of Corynebacterium diphtheriae Strains

    Science.gov (United States)

    Sulakvelidze, Alexander; Kekelidze, Merab; Gomelauri, Tsaro; Deng, Yingkang; Khetsuriani, Nino; Kobaidze, Ketino; De Zoysa, Aruni; Efstratiou, Androulla; Morris, J. Glenn; Imnadze, Paata

    1999-01-01

    Sixty-six Corynebacterium diphtheriae strains (62 of the gravis biotype and 4 of the mitis biotype) isolated during the Georgian diphtheria epidemic of 1993 to 1998 and 13 non-Georgian C. diphtheriae strains (10 Russian and 3 reference isolates) were characterized by (i) biotyping, (ii) toxigenicity testing with the Elek assay and PCR, (iii) the randomly amplified polymorphic DNA (RAPD) technique, and (iv) pulsed-field gel electrophoresis (PFGE). Fifteen selected strains were ribotyped. Six RAPD types and 15 PFGE patterns were identified among all strains examined, and 12 ribotypes were found among the 15 strains that were ribotyped. The Georgian epidemic apparently was caused by one major clonal group of C. diphtheriae (PFGE type A, ribotype R1), which was identical to the predominant epidemic strain(s) isolated during the concurrent diphtheria epidemic in Russia. A dendrogram based on the PFGE patterns revealed profound differences between the minor (nonpredominant) epidemic strains found in Georgia and Russia. The methodologies for RAPD typing, ribotyping, and PFGE typing of C. diphtheriae strains were improved to enable rapid and convenient molecular typing of the strains. The RAPD technique was adequate for biotype differentiation; however, PFGE and ribotyping were better (and equal to each other) at discriminating between epidemiologically related and unrelated isolates. PMID:10488190

  3. Checkpoint independence of most DNA replication origins in fission yeast.

    Science.gov (United States)

    Mickle, Katie L; Ramanathan, Sunita; Rosebrock, Adam; Oliva, Anna; Chaudari, Amna; Yompakdee, Chulee; Scott, Donna; Leatherwood, Janet; Huberman, Joel A

    2007-12-19

    In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU), which limits the pool of deoxyribonucleoside triphosphates (dNTPs) and activates the replication checkpoint. The checkpoint-mutant cells carried deletions either of rad3 (which encodes the fission yeast homologue of ATR) or cds1 (which encodes the fission yeast homologue of Chk2). Our microarray results proved to be largely consistent with those independently obtained and recently published by three other laboratories. However, we were able to reconcile differences between the previous studies regarding the extent to which fission yeast replication origins are affected by the replication checkpoint. We found (consistent with the three previous studies after appropriate interpretation) that, in surprising contrast to budding yeast, most fission yeast origins, including both early- and late-firing origins, are not significantly affected by checkpoint mutations during replication in the presence of HU. A few origins (approximately 3%) behaved like those in budding yeast: they replicated earlier in the checkpoint mutants than in wild type. These were located primarily in the heterochromatic subtelomeric regions of chromosomes 1 and 2. Indeed, the subtelomeric regions defined by the strongest checkpoint restraint correspond precisely to previously mapped subtelomeric heterochromatin. This observation implies that subtelomeric heterochromatin in fission yeast differs from heterochromatin at centromeres, in the mating type region, and in ribosomal DNA, since these regions replicated at least as efficiently in wild-type cells as in checkpoint

  4. Checkpoint independence of most DNA replication origins in fission yeast

    Science.gov (United States)

    Mickle, Katie L; Ramanathan, Sunita; Rosebrock, Adam; Oliva, Anna; Chaudari, Amna; Yompakdee, Chulee; Scott, Donna; Leatherwood, Janet; Huberman, Joel A

    2007-01-01

    Background In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU), which limits the pool of deoxyribonucleoside triphosphates (dNTPs) and activates the replication checkpoint. The checkpoint-mutant cells carried deletions either of rad3 (which encodes the fission yeast homologue of ATR) or cds1 (which encodes the fission yeast homologue of Chk2). Results Our microarray results proved to be largely consistent with those independently obtained and recently published by three other laboratories. However, we were able to reconcile differences between the previous studies regarding the extent to which fission yeast replication origins are affected by the replication checkpoint. We found (consistent with the three previous studies after appropriate interpretation) that, in surprising contrast to budding yeast, most fission yeast origins, including both early- and late-firing origins, are not significantly affected by checkpoint mutations during replication in the presence of HU. A few origins (~3%) behaved like those in budding yeast: they replicated earlier in the checkpoint mutants than in wild type. These were located primarily in the heterochromatic subtelomeric regions of chromosomes 1 and 2. Indeed, the subtelomeric regions defined by the strongest checkpoint restraint correspond precisely to previously mapped subtelomeric heterochromatin. This observation implies that subtelomeric heterochromatin in fission yeast differs from heterochromatin at centromeres, in the mating type region, and in ribosomal DNA, since these regions replicated at least as efficiently in wild-type cells as in

  5. Checkpoint independence of most DNA replication origins in fission yeast

    Directory of Open Access Journals (Sweden)

    Scott Donna

    2007-12-01

    Full Text Available Abstract Background In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU, which limits the pool of deoxyribonucleoside triphosphates (dNTPs and activates the replication checkpoint. The checkpoint-mutant cells carried deletions either of rad3 (which encodes the fission yeast homologue of ATR or cds1 (which encodes the fission yeast homologue of Chk2. Results Our microarray results proved to be largely consistent with those independently obtained and recently published by three other laboratories. However, we were able to reconcile differences between the previous studies regarding the extent to which fission yeast replication origins are affected by the replication checkpoint. We found (consistent with the three previous studies after appropriate interpretation that, in surprising contrast to budding yeast, most fission yeast origins, including both early- and late-firing origins, are not significantly affected by checkpoint mutations during replication in the presence of HU. A few origins (~3% behaved like those in budding yeast: they replicated earlier in the checkpoint mutants than in wild type. These were located primarily in the heterochromatic subtelomeric regions of chromosomes 1 and 2. Indeed, the subtelomeric regions defined by the strongest checkpoint restraint correspond precisely to previously mapped subtelomeric heterochromatin. This observation implies that subtelomeric heterochromatin in fission yeast differs from heterochromatin at centromeres, in the mating type region, and in ribosomal DNA, since these regions replicated at least as efficiently in wild-type

  6. Topological characterization of static strain aging of type AISI 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Monteiro, S.N.; Miranda, P.E.V. de

    1981-01-01

    Static strain aging of type AISI 304 austenitic stainless steel was studied from room temperature up to 623K by conducting tests in which the load was held approximately constant. The aging times varied between 10s and 100h, using a plastic pre-deformation of 9%. The static strain aging of 304 steel furnished an activation energy of 23.800 cal/mol. This implies that vacancies play an important role on the aging process. The curve of the variation of the discontinuous yielding with aging time presented different stages, to which specific mathematical expressions were developed. These facts permited the conclusion that Snock type mechanisms are responsible for the aging in such conditions. (Author) [pt

  7. Complete genome sequence of Hippea maritima type strain (MH2T)

    Energy Technology Data Exchange (ETDEWEB)

    Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Lu, Megan [Los Alamos National Laboratory (LANL); Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Hammon, Nancy [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute

    2011-01-01

    Hippea maritima (Miroshnichenko et al. 1999) is the type species of the genus Hippea, which belongs to the family Desulfurellaceae within the class Deltaproteobacteria. The anaerobic, moderately thermophilic marine sulfur-reducer was first isolated from shallow-water hot vents in Matipur Harbor, Papua New Guinea. H. maritima was of interest for genome se- quencing because of its isolated phylogenetic location, as a distant next neighbor of the ge- nus Desulfurella. Strain MH2T is the first type strain from the order Desulfurellales with a com- pletely sequenced genome. The 1,694,430 bp long linear genome with its 1,723 protein- coding and 57 RNA genes consists of one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  8. Stressed and strained state for cermetic-rod-type fuel element

    International Nuclear Information System (INIS)

    Kulikov, I.S.

    1987-01-01

    Calculation technique for designing the stress-strained state of a cermetic rod-type fuel element has been proposed. The technique is based on the time-dependent step-by-step method and the solution of the deformation equilibrium equation for continuous and thick-wall long cylinders at every temporal step by the finite difference method. Additional strains, caused by thermal expansion and radiation swelling, have been taken into account. The transion from the non-contact model to the stiff-contact model has been provided in the case of cladding-fuel gap dissappearing in one or a number of cross-sections along the fuel element height. The method is supplemented by the formula for fuel cans stability estimation in the case of high coolant external pressure. The example of estimation of the cermetic-rod-type fuel elements are considered as an example

  9. Different response to acetic acid stress in Saccharomyces cerevisiae wild-type and l-ascorbic acid-producing strains.

    Science.gov (United States)

    Martani, Francesca; Fossati, Tiziana; Posteri, Riccardo; Signori, Lorenzo; Porro, Danilo; Branduardi, Paola

    2013-09-01

    Biotechnological processes are of increasing significance for industrial production of fine and bulk chemicals, including biofuels. Unfortunately, under operative conditions microorganisms meet multiple stresses, such as non-optimal pH, temperature, oxygenation and osmotic stress. Moreover, they have to face inhibitory compounds released during the pretreatment of lignocellulosic biomasses, which constitute the preferential substrate for second-generation processes. Inhibitors include furan derivatives, phenolic compounds and weak organic acids, among which acetic acid is one of the most abundant and detrimental for cells. They impair cellular metabolism and growth, reducing the productivity of the process: therefore, the development of robust cell factories with improved production rates and resistance is of crucial importance. Here we show that a yeast strain engineered to endogenously produce vitamin C exhibits an increased tolerance compared to the parental strain when exposed to acetic acid at moderately toxic concentrations, measured as viability on plates. Starting from this evidence, we investigated more deeply: (a) the nature and levels of reactive oxygen species (ROS); (b) the activation of enzymes that act directly as detoxifiers of reactive oxygen species, such as superoxide dismutase (SOD) and catalase, in parental and engineered strains during acetic acid stress. The data indicate that the engineered strain can better recover from stress by limiting ROS accumulation, independently from SOD activation. The engineered yeast can be proposed as a model for further investigating direct and indirect mechanism(s) by which an antioxidant can rescue cells from organic acid damage; moreover, these studies will possibly provide additional targets for further strain improvements. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Influence of yeast macromolecules on sweetness in dry wines: role of the saccharomyces cerevisiae protein Hsp12.

    Science.gov (United States)

    Marchal, Axel; Marullo, Philippe; Moine, Virginie; Dubourdieu, Denis

    2011-03-09

    Yeast autolysis during lees contact influences the organoleptic properties of wines especially by increasing their sweet taste. Although observed by winemakers, this phenomenon is poorly explained in enology. Moreover, the compounds responsible for sweetness in wine remain unidentified. This work provides new insights in this way by combining sensorial, biochemical and genetic approaches. First, we verified by sensory analysis that yeast autolysis in red wine has a significant effect on sweetness. Moderate additions of ethanol or glycerol did not have the same effect. Second, a sapid fraction was isolated from lees extracts by successive ultrafiltrations and HPLC purifications. Using nano-LC-MS/MS, peptides released by the yeast heat shock protein Hsp12p were distinctly identified in this sample. Third, we confirmed the sweet contribution of this protein by sensorial comparison of red wines incubated with two kinds of yeast strains: a wild-type strain containing the native Hsp12p and a deletion mutant strain that lacks the Hsp12p protein (Δ°HSP12 strain). Red wines incubated with wild-type strain showed a significantly higher sweetness than control wines incubated with Δ°HSP12 strains. These results demonstrated the contribution of protein Hsp12p in the sweet perception consecutive to yeast autolysis in wine.

  11. Rapid detection and strain typing of Chlamydia trachomatis using a highly multiplexed microfluidic PCR assay.

    Directory of Open Access Journals (Sweden)

    Rosemary S Turingan

    Full Text Available Nucleic acid amplification tests (NAATs are recommended by the CDC for detection of Chlamydia trachomatis (Ct urogenital infections. Current commercial NAATs require technical expertise and sophisticated laboratory infrastructure, are time-consuming and expensive, and do not differentiate the lymphogranuloma venereum (LGV strains that require a longer duration of treatment than non-LGV strains. The multiplexed microfluidic PCR-based assay presented in this work simultaneously interrogates 13 loci to detect Ct and identify LGV and non-LGV strain-types. Based on amplified fragment length polymorphisms, the assay differentiates LGV, ocular, urogenital, and proctocolitis clades, and also serovars L1, L2, and L3 within the LGV group. The assay was evaluated in a blinded fashion using 95 clinical swabs, with 76 previously reported as urogenital Ct-positive samples and typed by ompA genotyping and/or Multi-Locus Sequence Typing. Results of the 13-plex assay showed that 51 samples fell within urogenital clade 2 or 4, 24 samples showed both clade 2 and 4 signatures, indicating possible mixed infection, gene rearrangement, or inter-clade recombination, and one sample was a noninvasive trachoma biovar (either a clade 3 or 4. The remaining 19 blinded samples were correctly identified as LGV clade 1 (3, ocular clade 3 (4, or as negatives (12. To date, no NAAT assay can provide a point-of-care applicable turnaround time for Ct detection while identifying clinically significant Ct strain types to inform appropriate treatment. Coupled with rapid DNA processing of clinical swabs (approximately 60 minutes from swab-in to result-out, the assay has significant potential as a rapid POC diagnostic for Ct infections.

  12. Systematic characterization of Bacillus Genetic Stock Center Bacillus thuringiensis strains using Multi-Locus Sequence Typing.

    Science.gov (United States)

    Wang, Kui; Shu, Changlong; Soberón, Mario; Bravo, Alejandra; Zhang, Jie

    2018-04-30

    The goal of this work was to perform a systematic characterization of Bacillus thuringiensis (Bt) strains from the Bacillus Genetic Stock Center (BGSC) collection using Multi-Locus Sequence Typing (MLST). Different genetic markers of 158 Bacillus thuringiensis (Bt) strains from 73 different serovars stored in the BGSC, that represented 92% of the different Bt serovars of the BGSC were analyzed, the 8% that were not analyzed were not available. In addition, we analyzed 72 Bt strains from 18 serovars available at the pubMLST bcereus database, and Bt strains G03, HBF18 and Bt185, with no H serovars provided by our laboratory. We performed a systematic MLST analysis using seven housekeeping genes (glpF, gmK, ilvD, pta, pur, pycA and tpi) and analyzed correlation of the results of this analysis with strain serovars. The 233 Bt strains analyzed were assigned to 119 STs from which 19 STs were new. Genetic relationships were established by phylogenetic analysis and showed that STs could be grouped in two major Clusters containing 21 sub-groups. We found that a significant number of STs (101 in total) correlated with specific serovars, such as ST13 that corresponded to nine Bt isolates from B. thuringiensis serovar kenyae. However, other serovars showed high genetic variability and correlated with multiple STs; for example, B. thuringiensis serovar morrisoni correlated with 11 different STs. In addition, we found that 16 different STs correlated with multiple serovars (2-4 different serovars); for example, ST12 correlated with B. thuringiensis serovar alesti, dakota, palmanyolensis and sotto/dendrolimus. These data indicated that only partial correspondence between MLST and serotyping can be established. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Phyllosphere yeasts rapidly break down biodegradable plastics.

    Science.gov (United States)

    Kitamoto, Hiroko K; Shinozaki, Yukiko; Cao, Xiao-Hong; Morita, Tomotake; Konishi, Masaaki; Tago, Kanako; Kajiwara, Hideyuki; Koitabashi, Motoo; Yoshida, Shigenobu; Watanabe, Takashi; Sameshima-Yamashita, Yuka; Nakajima-Kambe, Toshiaki; Tsushima, Seiya

    2011-11-29

    The use of biodegradable plastics can reduce the accumulation of environmentally persistent plastic wastes. The rate of degradation of biodegradable plastics depends on environmental conditions and is highly variable. Techniques for achieving more consistent degradation are needed. However, only a few microorganisms involved in the degradation process have been isolated so far from the environment. Here, we show that Pseudozyma spp. yeasts, which are common in the phyllosphere and are easily isolated from plant surfaces, displayed strong degradation activity on films made from poly-butylene succinate or poly-butylene succinate-co-adipate. Strains of P. antarctica isolated from leaves and husks of paddy rice displayed strong degradation activity on these films at 30°C. The type strain, P. antarctica JCM 10317, and Pseudozyma spp. strains from phyllosphere secreted a biodegradable plastic-degrading enzyme with a molecular mass of about 22 kDa. Reliable source of biodegradable plastic-degrading microorganisms are now in our hands.

  14. Gender and General Strain Theory: A Comparison of Strains, Mediating, and Moderating Effects Explaining Three Types of Delinquency

    Science.gov (United States)

    Moon, Byongook; Morash, Merry

    2017-01-01

    The present study of 659 Korean adolescents tests General Strain Theory's (GST) utility in explaining gender differences in delinquency causation. It models the effects of key strains, negative emotions, and a composite measure of several conditioning factors separately for boys and girls and for delinquency. Consistent with the theory, males and…

  15. Rapid identification of drug-type strains in Cannabis sativa using loop-mediated isothermal amplification assay.

    Science.gov (United States)

    Kitamura, Masashi; Aragane, Masako; Nakamura, Kou; Watanabe, Kazuhito; Sasaki, Yohei

    2017-01-01

    In Cannabis sativa L., tetrahydrocannabinol (THC) is the primary psychoactive compound and exists as the carboxylated form, tetrahydrocannabinolic acid (THCA). C. sativa is divided into two strains based on THCA content-THCA-rich (drug-type) strains and THCA-poor (fiber-type) strains. Both strains are prohibited by law in many countries including Japan, whereas the drug-type strains are regulated in Canada and some European countries. As the two strains cannot be discriminated by morphological analysis, a simple method for identifying the drug-type strains is required for quality control in legal cultivation and forensic investigation. We have developed a novel loop-mediated isothermal amplification (LAMP) assay for identifying the drug-type strains of C. sativa. We designed two selective LAMP primer sets for on-site or laboratory use, which target the drug-type THCA synthase gene. The LAMP assay was accomplished within approximately 40 min. The assay showed high specificity for the drug-type strains and its sensitivity was the same as or higher than that of conventional polymerase chain reaction. We also showed the effectiveness of melting curve analysis that was conducted after the LAMP assay. The melting temperature values of the drug-type strains corresponded to those of the cloned drug-type THCA synthase gene, and were clearly different from those of the cloned fiber-type THCA synthase gene. Moreover, the LAMP assay with simple sample preparation could be accomplished within 1 h from sample treatment to identification without the need for special devices or techniques. Our rapid, sensitive, specific, and simple assay is expected to be applicable to laboratory and on-site detection.

  16. Effect of increasing growth temperature on yeast fermentation ...

    African Journals Online (AJOL)

    The effect of increasing growth temperature on yeast fermentation was studied at approximately 5 oC intervals over a range of 18 – 37 oC, using one strain each of ale, lager and wine yeast. The ale and wine yeasts grew at all the temperatures tested, but lager yeast failed to grow at 37 oC. All these strains gave lower ...

  17. Production and Its Anti-hyperglycemic Effects of γ-Aminobutyric Acid from the Wild Yeast Strain Pichia silvicola UL6-1 and Sporobolomyces carnicolor 402-JB-1.

    Science.gov (United States)

    Han, Sang-Min; Lee, Jong-Soo

    2017-09-01

    This study was done to produce γ-aminobutyric acid (GABA) from wild yeast as well as investigate its anti-hyperglycemic effects. Among ten GABA-producing yeast strains, Pichia silvicola UL6-1 and Sporobolomyces carnicolor 402-JB-1 produced high GABA concentration of 134.4 µg/mL and 179.2 µg/mL, respectively. P. silvicola UL6-1 showed a maximum GABA yield of 136.5 µg/mL and 200.8 µg/mL from S. carnicolor 402-JB-1 when they were cultured for 30 hr at 30℃ in yeast extract-peptone-dextrose medium. The cell-free extract from P. silvicola UL6-1 and S. carnicolor 402-JB-1 showed very high anti-hyperglycemic α-glucosidase inhibitory activity of 72.3% and 69.9%, respectively. Additionally, their cell-free extract-containing GABA showed the anti-hyperglycemic effect in streptozotocin-induced diabetic Sprague-Dawley rats.

  18. Molecular Mechanisms of Attenuation of the Sabin Strain of Poliovirus Type 3

    OpenAIRE

    Guest, Stephen; Pilipenko, Evgeny; Sharma, Kamal; Chumakov, Konstantin; Roos, Raymond P.

    2004-01-01

    Mutations critical for the central nervous system (CNS) attenuation of the Sabin vaccine strains of poliovirus (PV) are located within the viral internal ribosome entry site (IRES). We examined the interaction of the IRESs of PV type 3 (PV3) and Sabin type 3 (Sabin3) with polypyrimidine tract-binding protein (PTB) and a neural cell-specific homologue, nPTB. PTB and nPTB were found to bind to a site directly adjacent to the attenuating mutation, and binding at this site was less efficient on t...

  19. Clostridium difficile infection: Early history, diagnosis and molecular strain typing methods.

    Science.gov (United States)

    Rodriguez, C; Van Broeck, J; Taminiau, B; Delmée, M; Daube, G

    2016-08-01

    Recognised as the leading cause of nosocomial antibiotic-associated diarrhoea, the incidence of Clostridium difficile infection (CDI) remains high despite efforts to improve prevention and reduce the spread of the bacterium in healthcare settings. In the last decade, many studies have focused on the epidemiology and rapid diagnosis of CDI. In addition, different typing methods have been developed for epidemiological studies. This review explores the history of C. difficile and the current scope of the infection. The variety of available laboratory tests for CDI diagnosis and strain typing methods are also examined. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Effect of aggregate type, casting, thickness and curing condition on restrained strain of mass concrete

    Directory of Open Access Journals (Sweden)

    Pongsak Choktaweekarn

    2010-08-01

    Full Text Available In this paper, a three-dimensional finite element analysis is used for computing temperature and restrained strain inmass concrete. The model takes into account time, material properties, and mix proportion dependent behavior of concrete.The hydration heat and thermal properties used in the finite element analysis are obtained from our previously proposedadiabatic temperature rise model and are used as the input in the analysis. The analysis was done by varying size of massconcrete (especially thickness and the casting method in order to explain their effect on temperature and restrained strain inmass concrete. The casting methods used in the analysis are continuous and discontinuous casting. The discontinuouscasting consists of layer casting and block casting. Different types of aggregate were used in the analysis for studying theeffect of thermal properties of aggregate on temperature and restrained strain in mass concrete. Different conditions of curing(insulation and normal curing were also studied and compared. It was found from the analytical results that the maximumtemperature increases with the increase of the thickness of structure. The use of layer casting is more effective for thermalcracking control of mass concrete. The insulation curing method is preferable for mass concrete. Aggregate with low coefficientof thermal expansion is beneficial to reduce the restrained strain.

  1. Evaluation of Beer Fermentation with a Novel Yeast Williopsis saturnus

    Directory of Open Access Journals (Sweden)

    Althea Ying Hui Quek

    2016-01-01

    Full Text Available The aim of this study is to evaluate the potential of a novel yeast Williopsis saturnus var. mrakii NCYC 500 to produce fruity beer. Fermentation performance of W. mrakii and beer volatile composition were compared against that fermented with Saccharomyces cerevisiae Safale US-05. °Brix, sugar and pH differed significantly between the two types of beer. A total of 8 alcohols, 11 acids, 41 esters, 9 aldehydes, 8 ketones, 21 terpenes and terpenoids, 5 Maillard reaction products and 2 volatile phenolic compounds were detected. Yeast strain Safale US-05 was more capable of producing a wider range of ethyl and other esters, while yeast strain NCYC 500 produced significantly higher amounts of acetate esters. Strain NCYC 500 retained more terpenes and terpenoids, suggesting that the resultant beer could possess more of the aromatic hint of hops. This study showed that W. saturnus var. mrakii NCYC 500 could ferment wort to produce low-alcohol beer with higher levels of acetate esters, terpenes and terpenoids than yeast S. cerevisiae Safale US-05.

  2. Strains of avian paramyxovirus type 1 of low pathogenicity for chickens isolated from poultry and wild birds in Denmark

    DEFF Research Database (Denmark)

    Jørgensen, Poul Henrik; Handberg, Kurt; Ahrens, Peter

    2004-01-01

    Twenty-one strains of avian paramyxovirus type 1 of low virulence for chickens were isolated in Denmark between 1996 and the beginning of 2003. The low virulence of the strains was demonstrated by sequencing the fusion (F) gene at the cleavage site motif and in some cases by determining the intra......Twenty-one strains of avian paramyxovirus type 1 of low virulence for chickens were isolated in Denmark between 1996 and the beginning of 2003. The low virulence of the strains was demonstrated by sequencing the fusion (F) gene at the cleavage site motif and in some cases by determining...

  3. Microbiological diagnosis and molecular typing of Legionella strains during an outbreak of legionellosis in Southern Germany.

    Science.gov (United States)

    Essig, Andreas; von Baum, Heike; Gonser, Theodor; Haerter, Georg; Lück, Christian

    2016-02-01

    An explosive outbreak of Legionnaires' disease with 64 reported cases occurred in Ulm/Neu-Ulm in the South of Germany in December 2009/January 2010 caused by Legionella (L.) pneumophila serogroup 1, monoclonal (mAb) subtype Knoxville, sequence type (ST) 62. Here we present the clinical microbiological results from 51 patients who were diagnosed at the University hospital of Ulm, the results of the environmental investigations and of molecular typing of patients and environmental strains. All 50 patients from whom urine specimens were available were positive for L. pneumophila antigen when an enzyme-linked immunosorbent assay (EIA) was used following concentration of those urine samples that tested initially negative. The sensitivity of the BinaxNow rapid immunographic assay (ICA), after 15 min reading and after 60 min reading were 70% and 84%, respectively. Direct typing confirmed the monoclonal subtype Knoxville in 5 out of 8 concentrated urine samples. Real time PCR testing of respiratory tract specimens for L. pneumophila was positive in 15 out of 25 (60%) patients. Direct nested sequence based typing (nSBT) in some of these samples allowed partial confirmation of ST62. L. pneumophila serogroup 1, monoclonal subtype Knoxville ST62, defined as the epidemic strain was isolated from 8 out of 31 outbreak patients (26%) and from one cooling tower confirming it as the most likely source of the outbreak. While rapid detection of Legionella antigenuria was crucial for the recognition and management of the outbreak, culture and molecular typing of the strains from patients and environmental specimens was the clue for the rapid identification of the source of infection. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Multilocus microsatellite typing (MLMT of strains from Turkey and Cyprus reveals a novel monophyletic L. donovani sensu lato group.

    Directory of Open Access Journals (Sweden)

    Evi Gouzelou

    Full Text Available BACKGROUND: New foci of human CL caused by strains of the Leishmania donovani (L. donovani complex have been recently described in Cyprus and the Çukurova region in Turkey (L. infantum situated 150 km north of Cyprus. Cypriot strains were typed by Multilocus Enzyme Electrophoresis (MLEE using the Montpellier (MON system as L. donovani zymodeme MON-37. However, multilocus microsatellite typing (MLMT has shown that this zymodeme is paraphyletic; composed of distantly related genetic subgroups of different geographical origin. Consequently the origin of the Cypriot strains remained enigmatic. METHODOLOGY/PRINCIPAL FINDINGS: The Cypriot strains were compared with a set of Turkish isolates obtained from a CL patient and sand fly vectors in south-east Turkey (Çukurova region; CUK strains and from a VL patient in the south-west (Kuşadasi; EP59 strain. These Turkish strains were initially analyzed using the K26-PCR assay that discriminates MON-1 strains by their amplicon size. In line with previous DNA-based data, the strains were inferred to the L. donovani complex and characterized as non MON-1. For these strains MLEE typing revealed two novel zymodemes; L. donovani MON-309 (CUK strains and MON-308 (EP59. A population genetic analysis of the Turkish isolates was performed using 14 hyper-variable microsatellite loci. The genotypic profiles of 68 previously analyzed L. donovani complex strains from major endemic regions were included for comparison. Population structures were inferred by combination of bayesian model-based and distance-based approaches. MLMT placed the Turkish and Cypriot strains in a subclade of a newly discovered, genetically distinct L. infantum monophyletic group, suggesting that the Cypriot strains may originate from Turkey. CONCLUSION: The discovery of a genetically distinct L. infantum monophyletic group in the south-eastern Mediterranean stresses the importance of species genetic characterization towards better understanding

  5. Radiation stimulation of yeast crops for increasing output of alcohol and baker yeasts

    International Nuclear Information System (INIS)

    Vlad, E.; Marsheu, P.

    1974-01-01

    The purpose of this study was to stimulate by gamma radiation the existing commercial types of yeast so as to obtain yeasts that would better reflect the substrate and have improved reproductive capacity. The experiments were conducted under ordinary conditions using commercial yeasts received from one factory producing alcohol and bakery yeasts and isolated as pure cultures. Irradiating yeast cultures with small doses (up to 10 krad) was found to stimulate the reproduction and fermenting activity of yeast cells as manifested in increased accumulation of yeast biomass and greater yield of ethyl alcohol. (E.T.)

  6. Comparative evaluation of 13 yeast species in the Yarrowia clade on lignocellulosic biomass hydrolysate and genetic engineering of inhibitor tolerant strains for lipid and biofuel production

    Science.gov (United States)

    Yarrowia lipolytica is an oleaginous yeast that has garnered interest for commercial production of single cell oil and other fatty acid-derived chemicals because of its GRAS status and genetic tractability. Three recent peer-reviewed studies have highlighted the possibility of lipid production by th...

  7. Susceptibility to antimicrobial agents of Streptococcus suis capsular type 2 strains isolated from pigs.

    Science.gov (United States)

    Seol, B; Kelneric, Z; Hajsig, D; Madic, J; Naglic, T

    1996-03-01

    The minimal inhibitory concentrations (MICs) for thirty-three epidemiologicaly unrelated clinical isolates of Streptococcus suis capsular type 2 were determined in relation to ampicillin, ampicillin-sulbactam, amoxicillin, clavulanate-amoxicillin, penicillin G, cephalexin, gentamicin, streptomycin, erythromycin, tylosin and doxycycline, using the microtitre broth dilution procedure described by the U.S. National Committee for Clinical Laboratory Standards (NCCLS). Gentamicin was the most active compound tested, with an MIC for 90% of the strains tested (MIC(90)) of 0.4 mg/L. Overall, 70% of strains were resistant to doxycycline (MIC(90) > or = 100.0 mg/L), followed by penicillin G (51% of strains) (MIC(90) + or = 100.0 mg/L). Resistance to amoxicillin and ampicillin was 36.4% (MIC(90) 12.5 mg/L) and 33.3% (MIC(90) 50.0 mg/L), respectively. 15.2% of S. suis strains were resistant to streptomycin, tylosin and cephalexin with MIC90 values of 25.0 mg/L, 12.5 mg/L and 25.0 mg/L, respectively. A combination of ampicillin and sulbactam (MIC(90) 6.3 mg/L) and a combination of amoxicillin and clavulanate (MIC(90) 3.1 mg/L) as well as erythromycin (1.6 mg/L) were of the same efficacy, with a total of 9.1% resistant S. suis strains. This high percentage of resistance to doxycycline and penicillin G precludes the use of these antibiotics as empiric therapy of swine diseases.

  8. Identification and Characterization of Yeast Isolates from Pharmaceutical Waste Water

    Directory of Open Access Journals (Sweden)

    Marjeta Recek

    2002-01-01

    Full Text Available In order to develop an efficient an system for waste water pretreatment, the isolation of indigenous population of microorganisms from pharmaceutical waste water was done. We obtained pure cultures of 16 yeast isolates that differed slightly in colony morphology. Ten out of 16 isolates efficiently reduced COD in pharmaceutical waste water. Initial physiological characterization failed to match the 10 yeast isolates to either Pichia anomala or Pichia ciferrii. Restriction analysis of rDNA (rDNA-RFLP using three different restriction enzymes: HaeIII, MspI and CfoI, showed identical patterns of the isolates and Pichia anomala type strain. Separation of chromosomal DNAs of yeast isolates by the pulsed field gel electrophoresis revealed that the 10 isolates could be grouped into 6 karyotypes. Growth characteristics of the 6 isolates with distinct karyotypes were then studied in batch cultivation in pharmaceutical waste water for 80 hours.

  9. Complete genome sequence of Pedobacter heparinus type strain (HIM 762-3T)

    Energy Technology Data Exchange (ETDEWEB)

    Han, Cliff; Spring, Stefan; Lapidus, Alla; Glavina Del Rio, Tijana; Tice, Hope; Copeland, Alex; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Nolan, Matt; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ivanova, Natalia; Mavrommatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia C.; Saunders, Elizabeth; Chertkov, Olga; Brettin, Thomas; Goker, Markus; Rohde, Manfred; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Detter, John C.

    2009-05-20

    Pedobacter heparinus (Payza and Korn 1956) Steyn et al. 1998 comb. nov. is the type species of the rapidly growing genus Pedobacter within the family Sphingobacteriaceae of the phylum 'Bacteroidetes'. P. heparinus is of interest, because it was the first isolated strain shown to grow with heparin as sole carbon and nitrogen source and because it produces several enzymes involved in the degradation of mucopolysaccharides. All available data about this species are based on a sole strain that was isolated from dry soil. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first report on a complete genome sequence of a member of the genus Pedobacter, and the 5,167,383 bp long single replicon genome with its 4287 protein-coding and 54 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  10. Complete genome sequence of Saccharomonospora viridis type strain (P101T)

    Energy Technology Data Exchange (ETDEWEB)

    Pati, Amrita; Sikorski, Johannes; Nolan, Matt; Lapidus, Alla; Copeland, Alex; Glavina Del Rio, Tijana; Lucas, Susan; Chen, Feng; Tice, Hope; Pitluck, Sam; Cheng, Jan-Fang; Chertkov, Olga; Brettin, Thomas; Han, Cliff; Detter, John C.; Kuske, Cheryl; Bruce, David; Goodwin, Lynne; Chain, Patrick; D' haeseleer, Patrik; Chen, Amy; Palaniappan, Krishna; Ivanova, Natalia; Mavromatis, Konstantinos; Mikhailova, Natalia; Rohde, Manfred; Tindall, Brian J.; Goker, Markus; Bristow, Jim; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides1, Nikos C.; Klenk, Hans-Peter

    2009-05-20

    Saccharomonospora viridis (Schuurmans et al. 1956) Nonomurea and Ohara 1971 is the type species of the genus Saccharomonospora which belongs to the family Pseudonocardiaceae. S. viridis is of interest because it is a Gram-negative organism classified amongst the usually Gram-positive actinomycetes. Members of the species are frequently found in hot compost and hay, and its spores can cause farmer?s lung disease, bagassosis, and humidifier fever. Strains of the species S. viridis have been found to metabolize the xenobiotic pentachlorophenol (PCP). The strain described in this study has been isolated from peat-bog in Ireland. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the family Pseudonocardiaceae, and the 4,308,349 bp long single replicon genome with its 3906 protein-coding and 64 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  11. Complete genome sequence of the gliding, heparinolytic Pedobacter saltans type strain (113T)

    Science.gov (United States)

    Liolios, Konstantinos; Sikorski, Johannes; Lu, Meagan; Nolan, Matt; Lapidus, Alla; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Tapia, Roxanne; Han, Cliff; Goodwin, Lynne; Pitluck, Sam; Huntemann, Marcel; Ivanova, Natalia; Pagani, Ioanna; Mavromatis, Konstantinos; Ovchinikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Brambilla, Evelyne-Marie; Kotsyurbenko, Oleg; Rohde, Manfred; Tindall, Brian J.; Abt, Birte; Göker, Markus; Detter, John C.; Woyke, Tanja; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Klenk, Hans-Peter; Kyrpides, Nikos C.

    2011-01-01

    Pedobacter saltans Steyn et al. 1998 is one of currently 32 species in the genus Pedobacter within the family Sphingobacteriaceae. The species is of interest for its isolated location in the tree of life. Like other members of the genus P. saltans is heparinolytic. Cells of P. saltans show a peculiar gliding, dancing motility and can be distinguished from other Pedobacter strains by their ability to utilize glycerol and the inability to assimilate D-cellobiose. The genome presented here is only the second completed genome sequence of a type strain from a member of the family Sphingobacteriaceae to be published. The 4,635,236 bp long genome with its 3,854 protein-coding and 67 RNA genes consists of one chromosome, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:22180808

  12. Complete genome sequence of the gliding, heparinolytic Pedobacter saltans type strain (113).

    Science.gov (United States)

    Liolios, Konstantinos; Sikorski, Johannes; Lu, Meagan; Nolan, Matt; Lapidus, Alla; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Tapia, Roxanne; Han, Cliff; Goodwin, Lynne; Pitluck, Sam; Huntemann, Marcel; Ivanova, Natalia; Pagani, Ioanna; Mavromatis, Konstantinos; Ovchinikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Brambilla, Evelyne-Marie; Kotsyurbenko, Oleg; Rohde, Manfred; Tindall, Brian J; Abt, Birte; Göker, Markus; Detter, John C; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Klenk, Hans-Peter; Kyrpides, Nikos C

    2011-10-15

    Pedobacter saltans Steyn et al. 1998 is one of currently 32 species in the genus Pedobacter within the family Sphingobacteriaceae. The species is of interest for its isolated location in the tree of life. Like other members of the genus P. saltans is heparinolytic. Cells of P. saltans show a peculiar gliding, dancing motility and can be distinguished from other Pedobacter strains by their ability to utilize glycerol and the inability to assimilate D-cellobiose. The genome presented here is only the second completed genome sequence of a type strain from a member of the family Sphingobacteriaceae to be published. The 4,635,236 bp long genome with its 3,854 protein-coding and 67 RNA genes consists of one chromosome, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  13. Staphylococcus aureus strains associated with food poisoning outbreaks in France: comparison of different molecular typing methods, including MLVA

    Science.gov (United States)

    Roussel, Sophie; Felix, Benjamin; Vingadassalon, Noémie; Grout, Joël; Hennekinne, Jacques-Antoine; Guillier, Laurent; Brisabois, Anne; Auvray, Fréderic

    2015-01-01

    Staphylococcal food poisoning outbreaks (SFPOs) are frequently reported in France. However, most of them remain unconfirmed, highlighting a need for a better characterization of isolated strains. Here we analyzed the genetic diversity of 112 Staphylococcus aureus strains isolated from 76 distinct SFPOs that occurred in France over the last 30 years. We used a recently developed multiple-locus variable-number tandem-repeat analysis (MLVA) protocol and compared this method with pulsed field gel electrophoresis (PFGE), spa-typing and carriage of genes (se genes) coding for 11 staphylococcal enterotoxins (i.e., SEA, SEB, SEC, SED, SEE, SEG, SEH, SEI, SEJ, SEP, SER). The strains known to have an epidemiological association with one another had identical MLVA types, PFGE profiles, spa-types or se gene carriage. MLVA, PFGE and spa-typing divided 103 epidemiologically unrelated strains into 84, 80, and 50 types respectively demonstrating the high genetic diversity of S. aureus strains involved in SFPOs. Each MLVA type shared by more than one strain corresponded to a single spa-type except for one MLVA type represented by four strains that showed two different-but closely related-spa-types. The 87 enterotoxigenic strains were distributed across 68 distinct MLVA types that correlated all with se gene carriage except for four MLVA types. The most frequent se gene detected was sea, followed by seg and sei and the most frequently associated se genes were sea-seh and sea-sed-sej-ser. The discriminatory ability of MLVA was similar to that of PFGE and higher than that of spa-typing. This MLVA protocol was found to be compatible with high throughput analysis, and was also faster and less labor-intensive than PFGE. MLVA holds promise as a suitable method for investigating SFPOs and tracking the source of contamination in food processing facilities in real time. PMID:26441849

  14. Fermentation of Apple Juice with a Selected Yeast Strain Isolated from the Fermented Foods of Himalayan Regions and Its Organoleptic Properties

    OpenAIRE

    Kanwar, S. S.; Keshani,

    2016-01-01

    Twenty-three Saccharomyces cerevisiae strains isolated from different fermented foods of Western Himalayas have been studied for strain level and functional diversity in our department. Among these 23 strains, 10 S. cerevisiae strains on the basis of variation in their brewing traits were selected to study their organoleptic effect at gene level by targeting ATF1 gene, which is responsible for ester synthesis during fermentation. Significant variation was observed in ATF1 gene sequences, sugg...

  15. Combining Phage and Yeast Cell Surface Antibody Display to Identify Novel Cell Type-Selective Internalizing Human Monoclonal Antibodies.

    Science.gov (United States)

    Bidlingmaier, Scott; Su, Yang; Liu, Bin

    2015-01-01

    Using phage antibody display, large libraries can be generated and screened to identify monoclonal antibodies with affinity for target antigens. However, while library size and diversity is an advantage of the phage display method, there is limited ability to quantitatively enrich for specific binding properties such as affinity. One way of overcoming this limitation is to combine the scale of phage display selections with the flexibility and quantitativeness of FACS-based yeast surface display selections. In this chapter we describe protocols for generating yeast surface antibody display libraries using phage antibody display selection outputs as starting material and FACS-based enrichment of target antigen-binding clones from these libraries. These methods should be widely applicable for the identification of monoclonal antibodies with specific binding properties.

  16. A chemical genetic screen for modulators of asymmetrical 2,2'-dimeric naphthoquinones cytotoxicity in yeast.

    Directory of Open Access Journals (Sweden)

    Ashkan Emadi

    Full Text Available BACKGROUND: Dimeric naphthoquinones (BiQ were originally synthesized as a new class of HIV integrase inhibitors but have shown integrase-independent cytotoxicity in acute lymphoblastic leukemia cell lines suggesting their use as potential anti-neoplastic agents. The mechanism of this cytotoxicity is unknown. In order to gain insight into the mode of action of binaphthoquinones we performed a systematic high-throughput screen in a yeast isogenic deletion mutant array for enhanced or suppressed growth in the presence of binaphthoquinones. METHODOLOGY/PRINCIPAL FINDINGS: Exposure of wild type yeast strains to various BiQs demonstrated inhibition of yeast growth with IC(50s in the microM range. Drug sensitivity and resistance screens were performed by exposing arrays of a haploid yeast deletion mutant library to BiQs at concentrations near their IC(50. Sensitivity screens identified yeast with deletions affecting mitochondrial function and cellular respiration as having increased sensitivity to BiQs. Corresponding to this, wild type yeast grown in the absence of a fermentable carbon source were particularly sensitive to BiQs, and treatment with BiQs was shown to disrupt the mitochondrial membrane potential and lead to the generation of reactive oxygen species (ROS. Furthermore, baseline ROS production in BiQ sensitive mutant strains was increased compared to wild type and could be further augmented by the presence of BiQ. Screens for resistance to BiQ action identified the mitochondrial external NAD(PH dehydrogenase, NDE1, as critical to BiQ toxicity and over-expression of this gene resulted in increased ROS production and increased sensitivity of wild type yeast to BiQ. CONCLUSIONS/SIGNIFICANCE: In yeast, binaphthoquinone cytotoxicity is likely mediated through NAD(PH:quonine oxidoreductases leading to ROS production and dysfunctional mitochondria. Further studies are required to validate this mechanism in mammalian cells.

  17. The fission yeast ubiquitin-conjugating enzymes UbcP3, Ubc15, and Rhp6 affect transcriptional silencing of the mating-type region

    DEFF Research Database (Denmark)

    Nielsen, Inga Sig; Nielsen, Olaf; Murray, Johanne M

    2002-01-01

    Genes transcribed by RNA polymerase II are silenced when introduced near the mat2 or mat3 mating-type loci of the fission yeast Schizosaccharomyces pombe. Silencing is mediated by a number of gene products and cis-acting elements. We report here the finding of novel trans-acting factors identified...... was not suppressed by a mutation in the 26S proteasome, suggesting that loss of silencing is not due to an increased degradation of silencing factors but rather to the posttranslational modification of proteins by ubiquitination. We discuss the implications of these results for the possible modes of action of UbcP3...

  18. Identification of capsule, biofilm, lateral flagellum, and type IV pili in Vibrio mimicus strains.

    Science.gov (United States)

    Tercero-Alburo, J J; González-Márquez, H; Bonilla-González, E; Quiñones-Ramírez, E I; Vázquez-Salinas, C

    2014-11-01

    Vibrio mimicus is a bacterium that causes gastroenteritis; it is closely related to Vibrio cholerae, and can cause acute diarrhea like cholera- or dysentery-type diarrhea. It is distributed worldwide. Factors associated with virulence (such as hemolysins, enterotoxins, proteases, phospholipases, aerobactin, and hemagglutinin) have been identified; however, its pathogenicity mechanism is still unknown. In pathogenic Vibrio species such as V. cholerae, Vibrio. parahaemolyticus and Vibrio vulnificus, capsule, biofilms, lateral flagellum, and type IV pili are structures described as essential for pathogenicity. These structures had not been described in V. mimicus until this work. We used 20 V. mimicus strains isolated from water (6), oyster (9), and fish (5) samples and we were able to identify the capsule, biofilm, lateral flagellum, and type IV pili through phenotypic tests, electron microscopy, PCR, and sequencing. In all tested strains, we observed and identified the presence of capsular exopolysaccharide, biofilm formation in an in vitro model, as well as swarming, multiple flagellation, and pili. In addition, we identified homologous genes to those described in other bacteria of the genus in which these structures have been found. Identification of these structures in V. mimicus is a contribution to the biology of this organism and can help to reveal its pathogenic behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Induction of type I interferon signaling determines the relative pathogenicity of Staphylococcus aureus strains.

    Directory of Open Access Journals (Sweden)

    Dane Parker

    2014-02-01

    Full Text Available The tremendous success of S. aureus as a human pathogen has been explained primarily by its array of virulence factors that enable the organism to evade host immunity. Perhaps equally important, but less well understood, is the importance of the intensity of the host response in determining the extent of pathology induced by S. aureus infection, particularly in the pathogenesis of pneumonia. We compared the pathogenesis of infection caused by two phylogenetically and epidemiologically distinct strains of S. aureus whose behavior in humans has been well characterized. Induction of the type I IFN cascade by strain 502A, due to a NOD2-IRF5 pathway, was the major factor in causing severe pneumonia and death in a murine model of pneumonia and was associated with autolysis and release of peptidogylcan. In contrast to USA300, 502A was readily eliminated from epithelial surfaces in vitro. Nonetheless, 502A caused significantly increased tissue damage due to the organisms that were able to invade systemically and trigger type I IFN responses, and this was ameliorated in Ifnar⁻/⁻ mice. The success of USA300 to cause invasive infection appears to depend upon its resistance to eradication from epithelial surfaces, but not production of specific toxins. Our studies illustrate the important and highly variable role of type I IFN signaling within a species and suggest that targeted immunomodulation of specific innate immune signaling cascades may be useful to prevent the excessive morbidity associated with S. aureus pneumonia.

  20. A piezoelectric-based infinite stiffness generation method for strain-type load sensors

    International Nuclear Information System (INIS)

    Zhang, Shuwen; Shao, Shubao; Xu, Minglong; Chen, Jie

    2015-01-01

    Under certain application conditions like nanoindentation technology and the mechanical property measurement of soft materials, the elastic deformation of strain-type load sensors affects their displacement measurement accuracy. In this work, a piezoelectric-based infinite stiffness generation method for strain-type load sensors that compensates for this elastic deformation is presented. The piezoelectric material-based deformation compensation method is proposed. An Hottinger Baldwin Messtechnik GmbH (HBM) Z30A/50N load sensor acts as the foundation of the method presented in this work. The piezoelectric stack is selected based on its size, maximum deformation value, blocking force and stiffness. Then, a clamping and fixing structure is designed to integrate the HBM sensor with the piezoelectric stack. The clamping and fixing structure, piezoelectric stack and HBM load sensor comprise the sensing part of the enhanced load sensor. The load-deformation curve and the voltage-deformation curve of the enhanced load sensor are then investigated experimentally. Because a hysteresis effect exists in the piezoelectric structure, the relationship between the control signal and the deformation value of the piezoelectric material is nonlinear. The hysteresis characteristic in a quasi-static condition is studied and fitted using a quadratic polynomial, and its coefficients are analyzed to enable control signal prediction. Applied arithmetic based on current theory and the fitted data is developed to predict the control signal. Finally, the experimental effects of the proposed method are presented. It is shown that when a quasi-static load is exerted on this enhanced strain-type load sensor, the deformation is reduced and the equivalent stiffness appears to be almost infinite. (paper)

  1. Identification of novel linear megaplasmids carrying a ß-lactamase gene in neurotoxigenic Clostridium butyricum type E strains.

    Directory of Open Access Journals (Sweden)

    Giovanna Franciosa

    Full Text Available Since the first isolation of type E botulinum toxin-producing Clostridium butyricum from two infant botulism cases in Italy in 1984, this peculiar microorganism has been implicated in different forms of botulism worldwide. By applying particular pulsed-field gel electrophoresis run conditions, we were able to show for the first time that ten neurotoxigenic C. butyricum type E strains originated from Italy and China have linear megaplasmids in their genomes. At least four different megaplasmid sizes were identified among the ten neurotoxigenic C. butyricum type E strains. Each isolate displayed a single sized megaplasmid that was shown to possess a linear structure by ATP-dependent exonuclease digestion. Some of the neurotoxigenic C. butyricum type E strains possessed additional smaller circular plasmids. In order to investigate the genetic content of the newly identified megaplasmids, selected gene probes were designed and used in Southern hybridization experiments. Our results revealed that the type E botulinum neurotoxin gene was chromosome-located in all neurotoxigenic C. butyricum type E strains. Similar results were obtained with the 16S rRNA, the tetracycline tet(P and the lincomycin resistance protein lmrB gene probes. A specific mobA gene probe only hybridized to the smaller plasmids of the Italian C. butyricum type E strains. Of note, a ß-lactamase gene probe hybridized to the megaplasmids of eight neurotoxigenic C. butyricum type E strains, of which seven from clinical sources and the remaining one from a food implicated in foodborne botulism, whereas this ß-lactam antibiotic resistance gene was absent form the megaplasmids of the two soil strains examined. The widespread occurrence among C. butyricum type E strains associated to human disease of linear megaplasmids harboring an antibiotic resistance gene strongly suggests that the megaplasmids could have played an important role in the emergence of C. butyricum type E as a human

  2. Identification of enzymes and quantification of metabolic fluxes in the wild type and in a recombinant Aspergillus oryzae strain

    DEFF Research Database (Denmark)

    Pedersen, Henrik; Carlsen, Morten; Nielsen, Jens Bredal

    1999-01-01

    Two alpha-amylase-producing strains of Aspergillus oryzae, a wild-type strain and a recombinant containing additional copies of the alpha-amylase gene, were characterized,vith respect to enzyme activities, localization of enzymes to the mitochondria or cytosol, macromolecular composition...

  3. Phage type and sensitivity to antibiotics of Staphylococcus aureus film-forming strains isolated from airway mucosa

    Directory of Open Access Journals (Sweden)

    O. S. Voronkova

    2014-10-01

    Full Text Available Today film-forming strains of bacteria play very important role in clinical pathology. Staphylococci are ones of most dangerous of them. This bacteria can determine different pathological processes, for example, complication of airway mucosa. The ability to form a biofilm is one of the main properties of nosocomial strains. These strains should be monitored and their carriers are to be properly treated. To determine the origin of staphylococci strains we used bacteriophages from the International kit. The aim of research was to determine the phage type of staphylococci film-forming strains, that were isolated from naso-pharingial mucosa. Phage typing has been carried out for 16 film-forming strains of S. aureus. To solve this problem, we used the International phage kit by Fisher’s method. As a result, sensitivity to phages from the International kit showed 53.8% of studied strains of S. aureus. 64.3% of sensitivity strains were lysed by one of the phage, 21.4% – were by two of the phages, 14.3% – by three of the phages. Isolates were sensitive to phages: 81 – 42.9%, 75 – 35.7%, 28.6% were sensitive to phages 47 and 53. All cases of detection of sensitivity to phage 47 coincided with the ability to form biofilm. Among non-film-forming strains there was no sensitive strains for this phage. Film-forming strains resist to erythromycin (62.5%, ciprofloxacin (43.8%, gentamicin (56.3%, tetracycline (87.5%, amoxicillin (93.8%, and cefuroxime (37.5%. All cases of sensitivity to phage 47 coincided with resistance to erythromycin, amoxicillin and tetracycline. For two of these strains, we also defined resistance to gentamicin and for one of them – to ciprofloxacin. Results of research allowed to relate the bacterial cultures for determining the type. This may have implications for studying of film-forming ability, because surface structures of bacterial cell take place in this process. Belonging of an isolate to specific phage type may

  4. Complete genome sequence of Sanguibacter keddieii type strain (ST-74T)

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, Natalia; Sikorski, Johannes; Sims, David; Brettin, Thomas; Detter, John C.; Han, Cliff; Lapidus, Alla; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Chen, Feng; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Pati, Amrita; Mavromatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; D' haeseleer, Patrik; Chain, Patrick; Bristow, Jim; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Goker, Markus; Pukall, Rudiger; Klenk, Hans-Peter; Kyrpides, Nikos

    2009-05-20

    Sanguibacter keddieii is the type species of the genus Sanguibacter, the only described genus within the family of Sanguibacteraceae. Phylogenetically, this family is located in the neighbourhood of the genus Oerskovia and the family Cellulomonadaceae within the actinobacterial suborder Micrococcineae. The strain described in this report was isolated from blood of apparently healthy cows. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the family Sanguibacteraceae, and the 4,253,413 bp long single replicon genome with its 3735 protein-coding and 70 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  5. Complete genetic characterization of a Brazilian dengue virus type 3 strain isolated from a fatal outcome

    Directory of Open Access Journals (Sweden)

    Marize Pereira Miagostovich

    2006-05-01

    Full Text Available We have determined the complete nucleotide and the deduced amino acid sequences of Brazilian dengue virus type 3 (DENV-3 from a dengue case with fatal outcome, which occurred during an epidemic in the state of Rio de Janeiro, Brazil, in 2002. This constitutes the first complete genetic characterization of a Brazilian DENV-3 strain since its introduction into the country in 2001. DENV-3 was responsible for the most severe dengue epidemic in the state, based on the highest number of reported cases and on the severity of clinical manifestations and deaths reported.

  6. Complete genome sequence of Hydrogenobacter thermophilus type strain (TK-6T)

    Energy Technology Data Exchange (ETDEWEB)

    Zeytun, Ahmet [Los Alamos National Laboratory (LANL); Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Nolan, Matt [Joint Genome Institute, Walnut Creek, California; Lapidus, Alla L. [Joint Genome Institute, Walnut Creek, California; Lucas, Susan [Joint Genome Institute, Walnut Creek, California; Han, James [Joint Genome Institute; Tice, Hope [Joint Genome Institute, Walnut Creek, California; Cheng, Jan-Fang [Joint Genome Institute, Walnut Creek, California; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [Joint Genome Institute, Walnut Creek, California; Liolios, Konstantinos [Joint Genome Institute, Walnut Creek, California; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [Joint Genome Institute, Walnut Creek, California; Palaniappan, Krishna [Joint Genome Institute, Walnut Creek, California; Ngatchou, Olivier Duplex [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Han, Cliff [Los Alamos National Laboratory (LANL); Detter, J. Chris [Joint Genome Institute, Walnut Creek, California; Ubler, Susanne [Universitat Regensburg, Regensburg, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Tindall, Brian [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Wirth, Reinhard [Universitat Regensburg, Regensburg, Germany; Woyke, Tanja [Joint Genome Institute, Walnut Creek, California; Bristow, James [Joint Genome Institute, Walnut Creek, California; Eisen, Jonathan [Joint Genome Institute, Walnut Creek, California; Markowitz, Victor [Joint Genome Institute, Walnut Creek, California; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Kyrpides, Nikos C [Joint Genome Institute, Walnut Creek, California

    2011-01-01

    Hydrogenobacter thermophilus Kawasumi et al. 1984 is the type species of the genus Hydrogenobacter. H. thermophilus was the first obligate autotrophic organism reported among aerobic hydrogen-oxidizing bacteria. Strain TK-6T is of interest because of the unusually efficient hydrogen-oxidizing ability of this strain, which results in a faster generation time compared to other autotrophs. It is also able to grow anaerobically using nitrate as an electron acceptor when molecular hydrogen is used as the energy source, and able to aerobically fix CO2 via the reductive tricarboxylic acid cycle. This is the fifth completed genome sequence in the family Aquificaceae, and the second genome sequence determined from a strain derived from the original isolate. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 1,742,932 bp long genome with its 1,899 protein-coding and 49 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  7. Genome sequence of the Thermotoga thermarum type strain (LA3(T)) from an African solfataric spring.

    Science.gov (United States)

    Göker, Markus; Spring, Stefan; Scheuner, Carmen; Anderson, Iain; Zeytun, Ahmet; Nolan, Matt; Lucas, Susan; Tice, Hope; Del Rio, Tijana Glavina; Cheng, Jan-Fang; Han, Cliff; Tapia, Roxanne; Goodwin, Lynne A; Pitluck, Sam; Liolios, Konstantinos; Mavromatis, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Rohde, Manfred; Detter, John C; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Lapidus, Alla

    2014-06-15

    Thermotoga thermarum Windberger et al. 1989 is a member to the genomically well characterized genus Thermotoga in the phylum 'Thermotogae'. T. thermarum is of interest for its origin from a continental solfataric spring vs. predominantly marine oil reservoirs of other members of the genus. The genome of strain LA3T also provides fresh data for the phylogenomic positioning of the (hyper-)thermophilic bacteria. T. thermarum strain LA3(T) is the fourth sequenced genome of a type strain from the genus Thermotoga, and the sixth in the family Thermotogaceae to be formally described in a publication. Phylogenetic analyses do not reveal significant discrepancies between the current classification of the group, 16S rRNA gene data and whole-genome sequences. Nevertheless, T. thermarum significantly differs from other Thermotoga species regarding its iron-sulfur cluster synthesis, as it contains only a minimal set of the necessary proteins. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,039,943 bp long chromosome with its 2,015 protein-coding and 51 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  8. Statistical analysis of elevated-temperature, strain-controlled fatigue data on Type 304 stainless steel

    International Nuclear Information System (INIS)

    Diercks, D.R.; Raske, D.T.

    1976-01-01

    The available elevated-temperature, strain-controlled, uniaxial fatigue data on Type 304 stainless steel (435 data points) are summarized, and variables that influence cyclic life are divided into first- and second-order categories. The first-order variables, which include strain range, strain rate, temperature, and tensile hold time, were used in a multivariable regression analysis to describe the observed variation in fatigue life. Goodness of fit with respect to these variables as well as the appropriateness of the transformations employed are discussed. Confidence intervals are estimated, and a comparison with the ASME Boiler and Pressure Vessel Code Case 1592 creep-fatigue design curve is made for a particular set of conditions. The second-order variables include the laboratories at which the data were generated, the different heats from which the test specimens were fabricated, and the heat treatments that preceded testing. These variables were statistically analyzed to determine their effect on fatigue life. The results are discussed, and the heats and heat treatments that are most resistant to fatigue damage under these loading and environmental conditions are identified

  9. Analytical differentiation of cider inoculated with yeast (Saccharomyces cerevisiae) isolated fromAsturian (Spain) apple juice

    OpenAIRE

    Suárez, Belén; Pando, Rosa; Fernández, Norman; González, Aurelio; Rodríguez, Roberto

    2012-01-01

    This paper reports the influence of fermentation conditions (temperature and yeast strain) on the chemical composition of cider. The cider was analysed for the non-volatile acids, polyalcohols, residual sugars and major volatile compounds. The application of principal components analysis enables the ciders to be differentiated on the basis of the two factors considered. The first principal component achieved the separation according to the type of strain and the second principal component sep...

  10. Phytase-producing capacity of yeasts isolated from traditional African fermented food products and PHYPk gene expression of Pichia kudriavzevii strains

    DEFF Research Database (Denmark)

    Greppi, Anna; Krych, Lukasz; Costantini, Antonella

    2015-01-01

    Phytate is known as a strong chelate of minerals causing their reduced uptake by the human intestine. Ninety-three yeast isolates from traditional African fermented food products, belonging to nine species (Pichia kudriavzevii, Saccharomyces cerevisiae, Clavispora lusitaniae, Kluyveromyces...... marxianus, Millerozyma farinosa, Candida glabrata, Wickerhamomyces anomalus, Hanseniaspora guilliermondii and Debaryomyces nepalensis) were screened for phytase production on solid and liquid media. 95% were able to grow in the presence of phytate as sole phosphate source, P. kudriavzevii being the best...

  11. SELECTION AND USE OF YEAST STRAINS ISOLATED FROM AUTOCHTHONOUS SOUTHERN ITALY GRAPEWINE CULTIVARS AND IMPACT ON AROMA PROFILE OF PRODUCED WINES

    OpenAIRE

    Boscaino, Floriana

    2015-01-01

    Today, the use of selected commercial yeasts (LSA) from Saccharomyces species "sensu stricto" is widespread, because it allows to minimize risks in the production process, to standardize the winemaking procedure and ensure the quality of the final product. On the other hand, the widespread use of starter cultures in the wine industry has resulted in a loss of wine sensory characteristics and in a flattening of those differences crucial to distinguish wines of different cultivars. For this ...

  12. Rice Na+/H+- antiporter Nhx1 partially complements the alkali-metal-cation sensitivity of yeast strains lacking three sodium transporters

    Czech Academy of Sciences Publication Activity Database

    Kinclová-Zimmermannová, Olga; Flegelová, Hana; Sychrová, Hana

    2004-01-01

    Roč. 49, č. 5 (2004), s. 519-525 ISSN 0015-5632 R&D Projects: GA ČR GA204/02/1240; GA AV ČR IAA5011407 Grant - others:EU(XE) QLK3-CT-2001-00533 Institutional research plan: CEZ:AV0Z5011922 Keywords : alkali metal cations * Na/H antiporter * yeast Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.034, year: 2004

  13. Baker’s yeasts for use in frozen-dough technology : sugar utilization in freeze tolerant Torulaspora delbrueckii strains and elucidation of cryo-resistance mechanisms

    OpenAIRE

    Pacheco, Andreia

    2009-01-01

    Tese de doutoramento em Ciências (ramo de conhecimento em Biologia) Bread is a central dietary item in most countries of the world. Currently, frozen dough technology is extensively used in the baking industry to supply oven-fresh bakery products to consumers and to improve labor conditions for bakers. Since freeze–thaw stress affects the viability and activity of yeast cells, one serious disadvantage of this technology is a significant reduction in leavening activity during fr...

  14. Characterization of incompletely typed rotavirus strains from Guinea-Bissau: identification of G8 and G9 types and a high frequency of mixed infections

    DEFF Research Database (Denmark)

    Fischer, TK; Page, NA; Griffin, DD

    2003-01-01

    Among 167 rotavirus specimens collected from young children in a suburban area of Bissau, Guinea-Bissau, from 1996 to 1998, most identifiable strains belonged to the uncommon P[6], G2 type and approximately 50% remained incompletely typed. In the present study, 76 such strains were further......%, respectively, identical to other African G8 and G9 strains. Multiple G and/or P types were identified at a high frequency (59%), including two previously undescribed mixed infections, P[4]P[6], G2G8 and P[4]P[6], G2G9. These mixed infections most likely represent naturally occurring reassortance of rotavirus......] and P[6] primer binding sites were detected. These findings highlight the need for regular evaluation of the multiplex primer PCR method and typing primers. The high frequency of uncommon as well as reassortant rotavirus strains in countries where rotavirus is an important cause of child mortality...

  15. Yarrowia divulgata f.a., sp. nov., a yeast species from animal-related and marine sources

    DEFF Research Database (Denmark)

    Nagy, Edina; Niss, Marete; Dlauchy, Dénes

    2013-01-01

    Five yeast strains, phenotypically indistinguishable from Yarrowia lipolytica and Yarrowia deformans, were recovered from different animal-related samples. One strain was isolated from a bacon processing plant in Denmark, two strains from chicken liver in the USA, one strain from chicken breast...... the genotypically closest relative (LSU rRNA gene D1/D2 and ITS region similarity of 97.0 and 93.7 %, respectively). Yarrowia divulgata f.a., sp. nov. is proposed to accommodate these strains with F6-17(T) ( = CBS 11013(T) = CCUG 56725(T)) as the type strain. Some D1/D2 sequences of yeasts from marine habitats were...

  16. Disruption of the yeast ATH1 gene confers better survival after dehydration, freezing, and ethanol shock: potential commercial applications.

    Science.gov (United States)

    Kim, J; Alizadeh, P; Harding, T; Hefner-Gravink, A; Klionsky, D J

    1996-01-01

    The accumulation of trehalose is a critical determinant of stress resistance in the yeast Saccharomyces cerevisiae. We have constructed a yeast strain in which the activity of the trehalose-hydrolyzing enzyme, acid trehalase (ATH), has been abolished. Loss of ATH activity was accomplished by disrupting the ATH1 gene, which is essential for ATH activity. The delta ath1 strain accumulated greater levels of cellular trehalose and grew to a higher cell density than the isogenic wild-type strain. In addition, the elevated levels of trehalose in the delta ath1 strain correlated with increased tolerance to dehydration, freezing, and toxic levels of ethanol. The improved resistance to stress conditions exhibited by the delta ath1 strain may make this strain useful in commercial applications, including baking and brewing. PMID:8633854

  17. Molecular Typing of Vibrio parahaemolyticus Strains Isolated from Mollusks in the North Adriatic Sea.

    Science.gov (United States)

    Rahman, Mohammad Shamsur; Carraro, Roberta; Cardazzo, Barbara; Carraro, Lisa; Meneguolo, Davide Boscolo; Martino, Maria Elena; Andreani, Nadia Andrea; Bordin, Paola; Mioni, Renzo; Barco, Lisa; Novelli, Enrico; Balzan, Stefania; Fasolato, Luca

    2017-08-01

    Vibrio parahaemolyticus is an emerging foodborne pathogen in the Mediterranean, usually associated with shellfish consumption. The increase in the number of outbreaks in Europe is primarily associated with the global warming of the ocean that has a great impact on the spread and genetic selection of waterborne pathogens. The primary role of Italy in Europe's mollusk production, together with the fact that cases of infections with V. parahaemolyticus are not always notified to the European community, highlighted the necessity of acquiring new information about the epidemiological involvement of shellfish products. The aim of the study was to provide useful insights into the first steps of the Risk Assessment associated with V. parahaemolyticus through the molecular characterization of isolates from commercialized mollusks. A total of 102 strains identified as V. parahaemolyticus were investigated as part of a larger sampling (1-year survey) from several shellfish species collected from the Venice lagoon and the North Adriatic sea. All strains were characterized by multilocus sequence typing and tested for the presence of virulence genes (trh and tdh). The study of sampling/environmental factors and epidemiological analyses was performed to describe the behaviors of the different genetic populations. The population structure analysis highlighted three genetic clusters that could be subject to temperature selection during cold (≤15°C) and warm (>16°C) seasons. Moreover, other factors, such as molluscan species (clams/mussels), probably played a role in the distribution of genetic clusters. Although few strains carried the virulence factors (n = 6 trh + ), epidemiological links with clinical isolates and a local dissemination of some sequence types were underlined. This work provides a useful background on the genotype spread as a first step in the Hazard Identification in light of future climate changes.

  18. Biodiesel generation from oleaginous yeast Rhodotorula glutinis ...

    African Journals Online (AJOL)

    SERVER

    2007-09-19

    Sep 19, 2007 ... This study explored a strategy to convert agricultural and forestry residues into microbial lipid, which could be further transformed into biodiesel. Among the 250 yeast strains screened for xylose assimilating capacity, eight oleaginous yeasts were selected by Sudan Black B test. The lipid content of these 8 ...

  19. Chlamydia trachomatis Strain Types Have Diversified Regionally and Globally with Evidence for Recombination across Geographic Divides

    Directory of Open Access Journals (Sweden)

    Vitaly Smelov

    2017-11-01

    Full Text Available Chlamydia trachomatis (Ct is the leading cause of bacterial sexually transmitted diseases worldwide. The Ct Multi Locus Sequence Typing (MLST scheme is effective in differentiating strain types (ST, deciphering transmission patterns and treatment failure, and identifying recombinant strains. Here, we analyzed 323 reference and clinical samples, including 58 samples from Russia, an area that has not previously been represented in Ct typing schemes, to expand our knowledge of the global diversification of Ct STs. The 323 samples resolved into 84 unique STs, a 3.23 higher typing resolution compared to the gold standard single locus ompA genotyping. Our MLST scheme showed a high discriminatory index, D, of 0.98 (95% CI 0.97–0.99 confirming the validity of this method for typing. Phylogenetic analyses revealed distinct branches for the phenotypic diseases of lymphogranuloma venereum, urethritis and cervicitis, and a sub-branch for ocular trachoma. Consistent with these findings, single nucleotide polymorphisms were identified that significantly correlated with each phenotype. While the overall number of unique STs per region was comparable across geographies, the number of STs was greater for Russia with a significantly higher ST/sample ratio of 0.45 (95% CI: 0.35–0.53 compared to Europe or the Americas (p < 0.009, which may reflect a higher level of sexual mixing with the introduction of STs from other regions and/or reassortment of alleles. Four STs were found to be significantly associated with a particular geographic region. ST23 [p = 0.032 (95% CI: 1–23], ST34 [p = 0.019 (95% CI: 1.1–25]; and ST19 [p = 0.001 (95% CI: 1.7–34.7] were significantly associated with Netherlands compared to Russia or the Americas, while ST 30 [p = 0.031 (95% CI: 1.1–17.8] was significantly associated with the Americas. ST19 was significantly associated with Netherlands and Russia compared with the Americans [p = 0.001 (95% CI: 1.7–34.7 and p = 0.006 (95

  20. Defective quiescence entry promotes the fermentation performance of bottom-fermenting brewer's yeast.

    Science.gov (United States)

    Oomuro, Mayu; Kato, Taku; Zhou, Yan; Watanabe, Daisuke; Motoyama, Yasuo; Yamagishi, Hiromi; Akao, Takeshi; Aizawa, Masayuki

    2016-11-01

    One of the key processes in making beer is fermentation. In the fermentation process, brewer's yeast plays an essential role in both the production of ethanol and the flavor profile of beer. Therefore, the mechanism of ethanol fermentation by of brewer's yeast is attracting much attention. The high ethanol productivity of sake yeast has provided a good basis from which to investigate the factors that regulate the fermentation rates of brewer's yeast. Recent studies found that the elevated fermentation rate of sake Saccharomyces cerevisiae species is closely related to a defective transition from vegetative growth to the quiescent (G 0 ) state. In the present study, to clarify the relationship between the fermentation rate of brewer's yeast and entry into G 0 , we constructed two types of mutant of the bottom-fermenting brewer's yeast Saccharomyces pastorianus Weihenstephan 34/70: a RIM15 gene disruptant that was defective in entry into G 0 ; and a CLN3ΔPEST mutant, in which the G 1 cyclin Cln3p accumulated at high levels. Both strains exhibited higher fermentation rates under high-maltose medium or high-gravity wort conditions (20° Plato) as compared with the wild-type strain. Furthermore, G 1 arrest and/or G 0 entry were defective in both the RIM15 disruptant and the CLN3ΔPEST mutant as compared with the wild-type strain. Taken together, these results indicate that regulation of the G 0 /G 1 transition might govern the fermentation rate of bottom-fermenting brewer's yeast in high-gravity wort. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. An improved Armstrong-Frederick-Type Plasticity Model for Stable Cyclic Stress-Strain Responses Considering Nonproportional Hardening

    Science.gov (United States)

    Li, Jing; Zhang, Zhong-ping; Li, Chun-wang

    2018-03-01

    This paper modified an Armstrong-Frederick-type plasticity model for investigating the stable cyclic deformation behavior of metallic materials with different sensitivity to nonproportional loadings. In the modified model, the nonproportionality factor and nonproportional cyclic hardening coefficient coupled with the Jiang-Sehitoglu incremental plasticity model were used to estimate the stable stress-strain responses of the two materials (1045HR steel and 304 stainless steel) under various tension-torsion strain paths. A new equation was proposed to calculate the nonproportionality factor on the basis of the minimum normal strain range. Procedures to determine the minimum normal strain range were presented for general multiaxial loadings. Then, the modified model requires only the cyclic strain hardening exponent and cyclic strength coefficient to determine the material constants. It is convenient for predicting the stable stress-strain responses of materials in engineering application. Comparisons showed that the modified model can reflect the effect of nonproportional cyclic hardening well.

  2. Complete genome sequence of Tsukamurella paurometabola type strain (no. 33T)

    Energy Technology Data Exchange (ETDEWEB)

    Munk, Christine [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Brettin, Thomas S [ORNL; Yasawong, Montri [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

    2011-01-01

    Tsukamurella paurometabola corrig. (Steinhaus 1941) Collins et al. 1988 is the type species of the genus Tsukamurella, which is the type genus to the family Tsukamurellaceae. The spe- cies is not only of interest because of its isolated phylogenetic location, but also because it is a human opportunistic pathogen with some strains of the species reported to cause lung in- fection, lethal meningitis, and necrotizing tenosynovitis. This is the first completed genome sequence of a member of the genus Tsukamurella and the first genome sequence of a member of the family Tsukamurellaceae. The 4,479,724 bp long genome contains a 99,806 bp long plasmid and a total of 4,335 protein-coding and 56 RNA genes, and is a part of the Ge- nomic Encyclopedia of Bacteria and Archaea project.

  3. Complete genome sequence of Desulfohalobium retbaense type strain (HR100T)

    Energy Technology Data Exchange (ETDEWEB)

    Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Chen, Feng [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Munk, Christine [U.S. Department of Energy, Joint Genome Institute; Kiss, Hajnalka [Los Alamos National Laboratory (LANL); Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Han, Cliff [Los Alamos National Laboratory (LANL); Brettin, Thomas S [ORNL; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Schuler, Esther [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

    2010-01-01

    Desulfohalobium retbaense (Ollivier et al. 1991) is the type species of the polyphyletic genus Desulfohalobium, which comprises, at the time of writing, two species and represents the family Desulfohalobiaceae within the Deltaproteobacteria. D. retbaense is a moderately halophilic sulfate-reducing bacterium, which can utilize H2 and a limited range of organic substrates, which are incompletely oxidized to acetate and CO2, for growth. The type strain HR100T was isolated from sediments of the hypersaline Retba Lake in Senegal. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a member of the family Desulfohalobiaceae. The 2,909,567 bp genome (one chromosome and a 45,263 bp plasmid) with its 2,552 protein-coding and 57 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  4. Complete genome sequence of Truepera radiovictrix type strain (RQ-24T)

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Rohde, Christine [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Munk, Christine [Joint Genome Institute, Walnut Creek, California; Nolan, Matt [Joint Genome Institute, Walnut Creek, California; Lucas, Susan [Joint Genome Institute, Walnut Creek, California; Glavina Del Rio, Tijana [Joint Genome Institute, Walnut Creek, California; Tice, Hope [Joint Genome Institute, Walnut Creek, California; Deshpande, Shweta [Joint Genome Institute, Walnut Creek, California; Cheng, Jan-Fang [Joint Genome Institute, Walnut Creek, California; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [Joint Genome Institute, Walnut Creek, California; Liolios, Konstantinos [Joint Genome Institute, Walnut Creek, California; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [Joint Genome Institute, Walnut Creek, California; Palaniappan, Krishna [Joint Genome Institute, Walnut Creek, California; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Tindall, Brian [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [Joint Genome Institute, Walnut Creek, California; Bristow, James [Joint Genome Institute, Walnut Creek, California; Eisen, Jonathan [Joint Genome Institute, Walnut Creek, California; Markowitz, Victor [Joint Genome Institute, Walnut Creek, California; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [Joint Genome Institute, Walnut Creek, California; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [Joint Genome Institute, Walnut Creek, California

    2011-01-01

    Truepera radiovictrix Albuquerque et al. 2005 is the type species of the genus Truepera within the phylum Deinococcus/Thermus. T. radiovictrix is of special interest not only because of its isolated phylogenetic location in the order Deinococcales, but also because of its ability to grow under multiple extreme conditions in alkaline, moderately saline, and high temperature habitats. Of particular interest is the fact that, T. radiovictrix is also remarkably resistant to ionizing radiation, a feature it shares with members of the genus Deinococcus. This is the first completed genome sequence of a member of the family Trueperaceae and the fourth type strain genome sequence from a member of the order Deinococcales. The 3,260,398 bp long genome with its 2,994 protein-coding and 52 RNA genes consists of one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  5. Complete genome sequence of Mahella australiensis type strain (50-1 BONT)

    Energy Technology Data Exchange (ETDEWEB)

    Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Teshima, Hazuki [Los Alamos National Laboratory (LANL); Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Hammon, Nancy [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Ngatchou, Olivier Duplex [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Pukall, Rudiger [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Abt, Birte [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute

    2011-01-01

    Mahella australiensis Bonilla Salinas et al. 2004 is the type species of the genus Mahella, which belongs to the family Thermoanaerobacteraceae. The species is of interest because it differs from other known anaerobic spore-forming bacteria in its G+C content, and in certain phenotypic traits, such as carbon source utilization and relationship to temperature. Moreo- ver, it has been discussed that this species might be an indigenous member of petroleum and oil reservoirs. This is the first completed genome sequence of a member of the genus Mahella and the ninth completed type strain genome sequence from the family Thermoanaerobacte- raceae. The 3,135,972 bp long genome with its 2,974 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  6. Difference in Degradation Patterns on Inulin-type Fructans among Strains of Lactobacillus delbrueckii and Lactobacillus paracasei.

    Science.gov (United States)

    Tsujikawa, Yuji; Nomoto, Ryohei; Osawa, Ro

    2013-01-01

    Lactobacillus delbrueckii strains were assessed for their degradation patterns of various carbohydrates with specific reference to inulin-type fructans in comparison with those of Lactobacillus paracasei strains. Firstly, growth curves on glucose, fructose, sucrose and inulin-type fructans with increasing degrees of fructose polymerization (i.e., 1-kestose, fructo-oligosaccharides and inulin) of the strains were compared. L. paracasei DSM 20020 grew well on all these sugars, while the growth rates of the 4 L. delbrueckii strains were markedly higher on the fructans with a greater degree of polymerization than on fructose and sucrose. Secondly, sugar compositions of spent cultures of the strains of L. delbrueckii and L. paracasei grown in mMRS containing either the fructans or inulin were determined by thin layer chromatography, in which the spent cultures of L. paracasei DSM 20020 showed spots of short fructose and sucrose fractions, whereas those of the L. delbrueckii strains did not show such spots at all. These results suggest that, unlike the L. paracasei strains, the L. delbrueckii strains do not degrade the inulin-type fructans extracellularly, but transport the fructans capable of greater polymerization preferentially into their cells to be degraded intracellularly for their growth.

  7. Use of the VNTR typing technique to determine the origin of Mycobacterium tuberculosis strains isolated from Filipino patients in Korea.

    Science.gov (United States)

    Lee, Jihye; Tupasi, Thelma E; Park, Young Kil

    2014-05-01

    With increasing international interchange of personnel, international monitoring is necessary to decrease tuberculosis incidence in the world. This study aims to develop a new tool to determine origin of Mycobacterium tuberculosis strains isolated from Filipino patients living in Korea. Thirty-two variable number tandem repeat (VNTR) loci were used for discrimination of 50 Filipino M. tuberculosis strains isolated in the Philippines, 317 Korean strains isolated in Korea, and 8 Filipino strains isolated in Korea. We found that the VNTR loci 0580, 0960, 2531, 2687, 2996, 0802, 2461, 2163a, 4052, 0424, 1955, 2074, 2347, 2401, 3171, 3690, 2372, 3232, and 4156 had different mode among copy numbers or exclusively distinct copy number in VNTR typing between Filipino and Korean M. tuberculosis strains. When these differences of the VNTR loci were applied to 8 Filipino M. tuberculosis strains isolated in Korea, 6 of them revealed Filipino type while 2 of them had Korean type. Using the differences of mode or repeated number of VNTR loci were very useful in distinguishing the Filipino strain from Korean strain.

  8. Complete genome sequence of Capnocytophaga ochracea type strain (VPI 2845T)

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, Konstantinos; Gronow, Sabine; Saunders, Elizabeth; Land, Miriam; Lapidus, Alla; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Lucas, Susan; Chen, Feng; Tice1, Hope; Cheng, Jan-Fang; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Pati, Amrita; Ivanova, Natalia; Chen, Amy; Palaniappan, Krishna; Chain, Patrick; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia C.; Brettin, Thomas; Detter, John C.; Han, Cliff; Bristow, James; Goker, Markus; Rohde, Manfred; Eisen, Jonathan A.; Markowitz, Victor; Kyrpides, Nikos C.; Klenk, Hans-Peter; Hugenholtz, Philip

    2009-05-20

    Capnocytophaga ochracea (Prevot et al. 1956) Leadbetter et al. 1982 is the type species of the genus Capnocytophaga. It is of interest because of its location in the Flavobacteriaceae, a genomically yet uncharted family within the order Flavobacteriales. The species grows as fusiform to rod shaped cells which tend to form clumps and are able to move by gliding. C. ochracea is known as a capnophilic organism with the ability to grow under anaerobic as well as under aerobic conditions (oxygen concentration larger than 15percent), here only in the presence of 5percent CO2. Strain VPI 2845T, the type strain of the species, is portrayed in this report as a gliding, Gram-negative bacterium, originally isolated from a human oral cavity. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first completed genome sequence from the flavobacterial genus Capnocytophaga, and the 2,612,925 bp long single replicon genome with its 2193 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  9. Genomic Resource and Genome Guided Comparison of Twenty Type Strains of the Genus Methylobacterium

    Directory of Open Access Journals (Sweden)

    Vasvi Chaudhry

    2017-12-01

    Full Text Available Bacteria of the genus Methylobacterium are widespread in diverse habitats ranging from soil, water and plant (phyllosphere, rhizosphere and endosphere. In the present study, we in house generated genomic data resource of six type strains along with fourteen database genomes of the Methylobacterium genus to carry out phylogenomic, taxonomic, comparative and ecological studies of this genus. Overall, the genus shows high diversity and genetic variation primarily due to its ability to acquire genetic material from diverse sources through horizontal gene transfer. As majority of species identified in this study are plant associated with their genomes equipped with methylotrophy and photosynthesis related gene along with genes for plant probiotic traits. Most of the species genomes are equipped with genes for adaptation and defense for UV radiation, oxidative stress and desiccation. The genus has an open pan-genome and we predicted the role of gain/loss of prophages and CRISPR elements in diversity and evolution. Our genomic resource with annotation and analysis provides a platform for interspecies genomic comparisons in the genus Methylobacterium, and to unravel their natural genome diversity and to study how natural selection shapes their genome with the adaptive mechanisms which allow them to acquire diverse habitat lifestyles. This type strains genomic data display power of Next Generation Sequencing in rapidly creating resource paving the way for studies on phylogeny and taxonomy as well as for basic and applied research for this important genus.

  10. Complete genome sequence of Capnocytophaga ochracea type strain (VPI 2845T)

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Gronow, Sabine [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Land, Miriam L [ORNL; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Chen, Feng [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Brettin, Thomas S [ORNL; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Bristow, James [U.S. Department of Energy, Joint Genome Institute; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute

    2009-01-01

    Capnocytophaga ochracea (Pr vot et al. 1956) Leadbetter et al. 1982 is the type species of the genus Capnocytophaga. It is of interest because of its location in the Flavobacteriaceae, a genomically not yet charted family within the order Flavobacteriales. The species grows as fusiform to rod shaped cells which tend to form clumps and are able to move by gliding. C. ochracea is known as a capnophilic (CO2-requiring) organism with the ability to grow under anaerobic as well as aerobic conditions (oxygen concentration larger than 15%), here only in the presence of 5% CO2. Strain VPI 2845T, the type strain of the species, is portrayed in this report as a gliding, Gram-negative bacterium, originally isolated from a human oral cavity. Here we describe the features of this organism, together with the complete genome se-quence, and annotation. This is the first completed genome sequence from the flavobacterial genus Capnocytophaga, and the 2,612,925 bp long single replicon genome with its 2193 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  11. Immunity status of adults and children against poliomyelitis virus type 1 strains CHAT and Sabin (LSc-2ab) in Germany.

    Science.gov (United States)

    Eggers, Maren; Terletskaia-Ladwig, Elena; Rabenau, Holger F; Doerr, Hans W; Diedrich, Sabine; Enders, Gisela; Enders, Martin

    2010-12-09

    In October 2007, the working group CEN/TC 216 of the European Committee for standardisation suggested that the Sabin oral poliovirus vaccine type 1 strain (LSc-2ab) presently used for virucidal tests should be replaced by another attenuated vaccine poliovirus type 1 strain, CHAT. Both strains were historically used as oral vaccines, but the Sabin type 1 strain was acknowledged to be more attenuated. In Germany, vaccination against poliomyelitis was introduced in 1962 using the oral polio vaccine (OPV) containing Sabin strain LSc-2ab. The vaccination schedule was changed from OPV to an inactivated polio vaccine (IPV) containing wild polio virus type 1 strain Mahoney in 1998. In the present study, we assessed potential differences in neutralising antibody titres to Sabin and CHAT in persons with a history of either OPV, IPV, or OPV with IPV booster. Neutralisation poliovirus antibodies against CHAT and Sabin 1 were measured in sera of 41 adults vaccinated with OPV. Additionally, sera from 28 children less than 10 years of age and immunised with IPV only were analysed. The neutralisation assay against poliovirus was performed according to WHO guidelines. The neutralisation activity against CHAT in adults with OPV vaccination history was significantly lower than against Sabin poliovirus type 1 strains (Wilcoxon signed-rank test P Sabin 1 varied between 8 and 64. Following IPV booster, anti-CHAT antibodies increased rapidly in sera of CHAT-negative adults with OPV history. Sera from children with IPV history neutralised CHAT and Sabin 1 strains equally. The lack of neutralising antibodies against the CHAT strain in persons vaccinated with OPV might be associated with an increased risk of reinfection with the CHAT polio virus type 1, and this implies a putative risk of transmission of the virus to polio-free communities. We strongly suggest that laboratory workers who were immunised with OPV receive a booster vaccination with IPV before handling CHAT in the laboratory.

  12. Cadmium tolerance, cysteine and thiol peptide levels in wild type and chromium-tolerant strains of Scenedesmus acutus (Chlorophyceae)

    International Nuclear Information System (INIS)

    Torricelli, Elena; Gorbi, Gessica; Pawlik-Skowronska, Barbara; Di Toppi, Luigi Sanita; Corradi, Maria Grazia

    2004-01-01

    Two strains of the unicellular green alga Scenedesmus acutus with different sensitivity to hexavalent chromium were compared for their tolerance of cadmium, by means of growth and recovery tests, and determination of cysteine, reduced glutathione and phytochelatin content, after short-term exposure to various cadmium concentrations (from 1.125 to 27 μM). Growth experiments showed that, after 7-day treatments with cadmium, the chromium-tolerant strain reached a significantly higher cell density and, after 24-h exposure to Cd, was able to resume growth significantly better than the wild type. Constitutive level of cysteine was higher in the chromium-tolerant strain, while glutathione levels were similar in the two strains. The higher content of cysteine and the maintenance of both reduced glutathione and phytochelatin high levels in the presence of cadmium, support the higher cadmium co-tolerance of the chromium-tolerant strain in comparison with the wild type one

  13. Cadmium tolerance, cysteine and thiol peptide levels in wild type and chromium-tolerant strains of Scenedesmus acutus (Chlorophyceae)

    Energy Technology Data Exchange (ETDEWEB)

    Torricelli, Elena; Gorbi, Gessica; Pawlik-Skowronska, Barbara; Di Toppi, Luigi Sanita; Corradi, Maria Grazia

    2004-07-14

    Two strains of the unicellular green alga Scenedesmus acutus with different sensitivity to hexavalent chromium were compared for their tolerance of cadmium, by means of growth and recovery tests, and determination of cysteine, reduced glutathione and phytochelatin content, after short-term exposure to various cadmium concentrations (from 1.125 to 27 {mu}M). Growth experiments showed that, after 7-day treatments with cadmium, the chromium-tolerant strain reached a significantly higher cell density and, after 24-h exposure to Cd, was able to resume growth significantly better than the wild type. Constitutive level of cysteine was higher in the chromium-tolerant strain, while glutathione levels were similar in the two strains. The higher content of cysteine and the maintenance of both reduced glutathione and phytochelatin high levels in the presence of cadmium, support the higher cadmium co-tolerance of the chromium-tolerant strain in comparison with the wild type one.

  14. Zygosaccharomyces kombuchaensis, a new ascosporogenous yeast from 'Kombucha tea'.

    Science.gov (Un