WorldWideScience

Sample records for type pipe wall

  1. Radiation transmission type pipe wall thinning detection device and measuring instruments utilizing ionizing radiation

    International Nuclear Information System (INIS)

    Higashi, Yasuhiko

    2009-01-01

    We developed the device to detect thinning of pipe thorough heat insulation in Power Plant, etc, even while the plant is under operation. It is necessary to test many parts of many pipes for pipe wall thinning management, but it is difficult within a limited time of the routine test. This device consists of detector and radiation source, which can detect the pipe (less than 500 mm in external diameter, less than 50 mm in thickness) with 1.6%-reproducibility (in a few-minutes measurement), based on the attenuation rate. Operation is easy and effective without removing the heat insulation. We will expand this thinning detection system, and contribute the safety of the Plant. (author)

  2. Ductile fracture behavior of 6-inch diameter type 304 stainless steel and STS 42 carbon steel piping containing a through-wall or part-through crack

    International Nuclear Information System (INIS)

    Shibata, Katsuyuki; Ohba, Toshihiro; Kawamura, Takaichi; Miyazono, Shohachiro; Kaneko, Tadashi; Yokoyama, Norio.

    1986-05-01

    The double ended guillotine break philosophy in the design base accident of the nuclear power plant is considered to be overly conservative from the view point of piping design. Through the past experiences and developments of the fabrication, inspection, and operation of nuclear power plants, it has been recognized that the Leak-Before-Break (LBB) concept can be justified in the LWR pressure boundary pipings. In order to verify the LBB concept, extensive experimental and theoretical works are being conducted in many countries. Furthermore, a revised piping design standard, in which LBB concept is introduced, is under preparation in Japan, U.S.A., and European countries. At JAERI, a research program to investigate the unstable ductile fracture behavior of LWR piping under bending load has been carried out as a part of the LBB verification researches since 1983. This report summarizes the result of the ductile fracture tests conducted at room temperature in 1983 and 84. The 6-inch diameter pipes of type 304 stainless steel and STS 42 carbon steel pipe with a through-wall or part-through crack were tested under bending load with low or high compliance condition at room temperature. Pipe fracture data were obtained from the test as regards to load- displacement curve, crack extension, net section stress, J-resistance curve, and so on. Besides, the influence of the compliance on the fracture behavior was examined. Discussions are performed on the ductile pipe fracture criterion, flaw evaluation criterion, and LBB evaluation method. (author)

  3. Wall thinning of piping in power plants

    International Nuclear Information System (INIS)

    Ohta, Joji; Inada, Fumio; Morita, Ryo; Kawai, Noboru; Yoneda, Kimitoshi

    2005-01-01

    Major mechanisms causing wall thinning of piping in power plants are flow accelerated corrosion (FAC), cavitation erosion and droplet erosion. Their fundamental aspects are reviewed on the basis of literature data. FAC is chemical process and it is affected by hydrodynamic factors, temperature, pH, dissolved oxygen concentration and chemical composition of materials. On the other hand, cavitation erosion and droplet erosion are mechanical process and they are mainly affected by hydrodynamic factors and mechanical properties of materials. Evaluation codes for FAC and mitigation methods of FAC and the erosion are also described. Wall thinning of piping is one of public concerns after an accident of a pipe failure at Mihama Nuclear Power Plant Unit 3, Kansai Electric Power Co., Inc., in August 2004. This paper gives comprehensive understanding of the wall thinning mechanism. (author)

  4. Qualitative and Quantitative Control of Wastewater Dual Wall Polyethylene Pipes

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Salimi

    2008-09-01

    Full Text Available Pipes are the most important components of wastewater collection systems accounting for considerable costs in constructing such systems. In view of this and regarding the growing trend in design and execution of wastewater collection and transmission lines in recent years, various types of pipes have been introduced into the market. Selection of appropriate pipes and their qualitative and quantitative control, therefore, call for due consideration given their high cost share in collection systems. In this paper, efforts are made to consider various types of pipes used in (urban and rural wastewater collection networks in an attempt to signal the significance of qualitative and quantitative control of different dual wall polyethylene pipes used as sewers. Finally, the relevant issues regarding the methods and conditions for technical control and inspection of polyethylene sewer lines during construction and operation stages are provided.

  5. Fabrication of a multi-walled metal pipe

    International Nuclear Information System (INIS)

    Shimamune, Koji; Toda, Saburo; Ishida, Ryuichi; Hatanaka, Tatsuo.

    1969-01-01

    In concentrically arranged metal pipes for simulated fuel elements in the form of a multi-walled pipe, their one end lengthens gradually in the axial direction from inner and outer pipes toward a central pipe for easy adjustment of deformation which occurs when the pipes are drawn. A plastic electrical insulator is disposed between adjacent pipes. Each end of the pipes is equipped with an annular flexible stopper which is allowed to travel in the axial direction so as to prevent the insulator from falling during drawing work. At the other end, all pipes are constricted and joined to each other to thereby form the desired multi-walled pipe. (Mikami, T.)

  6. New portable pipe wall thickness measuring technique

    Science.gov (United States)

    Pascente, Joseph E.

    1998-03-01

    One of the biggest inspection challenges facing many of the process industries; namely the petrochemical, refining, fossil power, and pulp and paper industries is: How to effectively examine their insulated piping? While there are a number of failure mechanisms involved in various process piping systems, piping degradation through corrosion and erosion are by far the most prevalent. This degradation can be in the form of external corrosion under insulation, internal corrosion through a variety of mechanisms, and internal erosion caused by the flow of the product through the pipe. Refineries, chemical plants and electrical power plants have MANY thousands of miles of pipe that are insulated to prevent heat loss or heat absorption. This insulation is often made up of several materials, with calcium based material being the most dense. The insulating material is usually wrapped with an aluminum or stainless steel outer wrap. Verification of wall thickness of these pipes can be accomplished by removing the insulation and doing an ultrasound inspection or by taking x- rays at a tangent to the edge of the pipe through the insulation. Both of these processes are slow and expensive. The time required to obtain data is measured in hours per meter. The ultrasound method requires that the insulation be plugged after the inspection. The surface needs to be cleaned or the resulting data will not be accurate. The tangent x-ray only shows two thicknesses and requires that the area be roped off because of radiation safety.

  7. Failure mode and fracture behavior evaluation of pipes with local wall thinning subjected to bending load

    International Nuclear Information System (INIS)

    Ahn, Seok Hwan; Nam, Ki Woo; Kim, Seon Jin; Kim, Jin Hwan; Kim, Hyun Soo; Do, Jae Yoon

    2003-01-01

    Fracture behaviors of pipes with local wall thinning are very important for the integrity of nuclear power plant. In pipes of energy plants, sometimes, the local wall thinning may result from severe Erosion-Corrosion (E/C) damage. However, the effects of local wall thinning on strength and fracture behaviors of piping system were not well studied. In this paper, the monotonic bending tests were performed of full-scale carbon steel pipes with local wall thinning. A monotonic bending load was applied to straight pipe specimens by four-point loading at ambient temperature without internal pressure. From the tests, fracture behaviors and fracture strength of locally thinned pipe were manifested systematically. The observed failure modes were divided into four types; ovalization, crack initiation/growth after ovalization, local buckling and crack initiating/growth after local buckling. Also, the strength and the allowable limit of piping system with local wall thinning were evaluated

  8. Kimberlite Wall Rock Fragmentation: Venetia K08 Pipe Development

    Science.gov (United States)

    Barnett, W.; Kurszlaukis, S.; Tait, M.; Dirks, P.

    2009-05-01

    Volcanic systems impose powerful disrupting forces on the country rock into which they intrude. The nature of the induced brittle deformation or fragmentation can be characteristic of the volcanic processes ongoing within the volcanic system, but are most typically partially removed or obscured by repeated, overprinting volcanic activity in mature pipes. Incompletely evolved pipes may therefore provide important evidence for the types and stages of wall rock fragmentation, and mechanical processes responsible for the fragmentation. Evidence for preserved stages of fragmentation is presented from a detailed study of the K08 pipe within the Cambrian Venetia kimberlite cluster, South Africa. This paper investigates the growth history of the K08 pipe and the mechanics of pipe development based on observations in the pit, drill core and thin sections, from geochemical analyses, particle size distribution analyses, and 3D modeling. Present open pit exposures of the K08 pipe comprise greater than 90% mega-breccia of country rock clasts (gneiss and schist) with Drill core shows that below about 225 m the CRB includes increasing quantities of kimberlite. The breccia clasts are angular, clast-supported with void or carbonate cement between the clasts. Average clast sizes define sub-horizontal layers tens of metres thick across the pipe. Structural and textural observations indicate the presence of zones of re-fragmentation or zones of brittle shearing. Breccia textural studies and fractal statistics on particle size distributions (PSD) is used to quantify sheared and non- sheared breccia zones. The calculated energy required to form the non-sheared breccia PSD implies an explosive early stage of fragmentation that pre-conditions the rock mass. The pre-conditioning would have been caused by explosions that are either phreatic or phreatomagmatic in nature. The explosions are likely to have been centered on a dyke, or pulses of preceding volatile-fluid phases, which have

  9. Pipe clamp effects on thin-walled pipe design

    International Nuclear Information System (INIS)

    Lindquist, M.R.

    1980-01-01

    Clamp induced stresses in FFTF piping are sufficiently large to require structural assessment. The basic principles and procedures used in analyzing FFTF piping at clamp support locations for compliance with ASME Code rules are given. Typical results from a three-dimensional shell finite element pipe model with clamp loads applied over the clamp/pipe contact area are shown. Analyses performed to categorize clamp induced piping loads as primary or secondary in nature are described. The ELCLAMP Computer Code, which performs analyses at clamp locations combining clamp induced stresses with stresses from overall piping system loads, is discussed. Grouping and enveloping methods to reduce the number of individual clamp locations requiring analysis are described

  10. Development of pipe wall thinning prediction software 'FALSET'

    International Nuclear Information System (INIS)

    Yoneda, Kimitoshi; Morita, Ryo; Inada, Fumio; Fujiwara, Kazutoshi

    2012-01-01

    Pipe wall thinning in power plants has been managed for maintaining plant integrity and safety with great importance. The target thinning phenomena are Flow Accelerated Corrosion (FAC) and Liquid Droplet Impingement Erosion (LDI). At present, the management is based on thinning rate and residual lifetime evaluation using pipe wall thickness measurement results. For the future, more safety and improvement in the management is required, and in this sense, prediction method of wall thinning is willing to be introduced. Therefore, prediction model of FAC and LDI have been constructed in CRIEPI, and to utilize these models to actual plant piping management easily, prediction software 'FALSET' is developed. FALSET has equipped with essential function for pipe wall thinning management in power plants, as follows; (1) Information and condition input of plant piping system and its component, (2) Wall thinning rate evaluation with CRIEPI's FAC/LDI prediction model, (3) Loading of wall thickness measurement data files and graphics of data trend, (4) Residual lifetime evaluation considering both measured and predicted thinning rate, (5) Statistical process and graphics of thinning rate and residual lifetime for multi-piping systems. With further verification and improvement of each function, there will be a perspective for this FALSET to be utilized as a management tool in power plants. (author)

  11. Butt-welding technology for double walled Polyethylene pipe

    International Nuclear Information System (INIS)

    Lee, Bo-Young; Kim, Jae-Seong; Lee, Sang-Yul; Kim, Yeong K.

    2012-01-01

    Highlights: ► We developed a butt welding apparatus for doubled walled Polyethylene pipe. ► We design the welding process by analyzing thermal behaviors of the material. ► We performed the welding and tested the welded structural performances. ► We also applied the same technology to PVC pipes. ► We verified the butt welding was successful and effective for the pipes with irregular sections. -- Abstract: In this study, mechanical analyses of a butt welding technology for joining Polyethylene pipe are presented. The pipe had unique structure with double wall, and its section topology was not flat. For an effective repair of leakage and replacements of the pipe, the butt welding technology was developed and tested. For the material characterizations, thermodynamic analyses such as thermal gravimetric analysis and differential scanning calorimetry were performed. Based on the test results, the process temperature and time were determined to ensure safe joining of the pipes using a hot plate apparatus. The welding process was carefully monitored by measuring the temperature. Then, the joined pipes were tested by various methods to evaluate the quality. The analyses results showed the detail process mechanism during the joining process, and the test results demonstrated the successful application of the technology to the sewage pipe repairs.

  12. NPPs Secondary Circuit Piping Wall-Thinning Management in China

    International Nuclear Information System (INIS)

    Zhong Zhimin; Li Jinsong; Zheng Hui

    2012-01-01

    Since 1980s, secondary circuit piping wall-thinning incidents happened in nuclear power plants (NPPs) worldwide. Particularly Surry 2 and Mihama 3 accidents resulted from flow-accelerated corrosion (FAC), unplanned outage, huge fatalities and economic loss pushed whole industry to pay more attention on the wall-thinning problem.

  13. Magnet fall inside a conductive pipe: motion and the role of the pipe wall thickness

    Energy Technology Data Exchange (ETDEWEB)

    Donoso, G; Ladera, C L; Martin, P [Departamento de Fisica, Universidad Simon BolIvar, Apdo. 89000, Caracas 1080 (Venezuela, Bolivarian Republic of)], E-mail: clladera@usb.ve, E-mail: pmartin@usb.ve

    2009-07-15

    Theoretical models and experimental results are presented for the retarded fall of a strong magnet inside a vertical conductive non-magnetic tube. Predictions and experimental results are in good agreement modelling the magnet as a simple magnetic dipole. The effect of varying the pipe wall thickness on the retarding magnetic drag is studied for pipes of different materials. Conductive pipes of thinner walls produce less dragging force and the retarded fall of the magnet is seen to consist of an initial transient accelerated regime followed by a stage of uniform motion. Alternative models of the magnet field are also presented that improve the agreement between theory and experiments.

  14. Proposal of limit moment equation applicable to planar/non-planar flaw in wall thinned pipes under bending

    International Nuclear Information System (INIS)

    Tsuji, Masataka; Meshii, Toshiyuki

    2011-01-01

    Highlights: → A limit moment equation applicable to planar/non-planar flaw of 0 ≤ θ ≤ π found in wall thinned straight pipes was proposed. → An idea to rationally classify planar/non-planar flaw in wall thinned pipes was proposed. → The equation based on the experimental observation focused on the fracture mode. - Abstract: In this paper, a limit bending moment equation applicable to all types of planar and non-planar flaws in wall-thinned straight pipes under bending was proposed. A system to rationally classify the planar/non-planar flaws in wall-thinned pipes was suggested based on experimental observations focused on the fracture mode. The results demonstrate the importance of distinguishing between axial and circumferential long flaws in wall-thinned pipes.

  15. Development of laser cladding technology for maintenance of pipe wall thinning

    International Nuclear Information System (INIS)

    Terada, Takaya; Nishimura, Akihiko; Oka, Kiyoshi

    2011-01-01

    We are developing the laser welding and cladding device for the maintenance of heat exchanger pipes. In the case of flow accelerated corrosion where pipe wall thinning occurred after a long time operation, laser cladding is mostly expected. A laser processing head was proposed in order to access the pipe wall. A composite-type optical fiber scope was used for real time observation and laser processing. An air-cooled compact fiber laser was used for spot heating. We present the concept of the laser cladding device which have the following features: 1) Wire feeding modules, 2) Module capable of laser irradiation in the vertical heat exchanger pipe, 3) Assist gas injection module. (author)

  16. CHARACTERIZING PIPE WALL DEMAND: IMPLICATIONS FOR WATER QUALITY MODELING

    Science.gov (United States)

    It has become generally accepted that water quality can deteriorate in a distribution system through reactions in the bulk phase and/or at the pipe wall. These reactions may be physical, chemical or microbiological in nature. Perhaps one of the most serious aspects of water qua...

  17. Magnet Fall inside a Conductive Pipe: Motion and the Role of the Pipe Wall Thickness

    Science.gov (United States)

    Donoso, G.; Ladera, C. L.; Martin, P.

    2009-01-01

    Theoretical models and experimental results are presented for the retarded fall of a strong magnet inside a vertical conductive non-magnetic tube. Predictions and experimental results are in good agreement modelling the magnet as a simple magnetic dipole. The effect of varying the pipe wall thickness on the retarding magnetic drag is studied for…

  18. Evaluation of fracture mode for local wall-thinned pipes

    International Nuclear Information System (INIS)

    Herman, Irwan; Suzuki, Tomohisa; Sato, Yasumoto; Meshii, Toshiyuki

    2007-01-01

    In this study, by referring to our burst pressure tests results, firstly, the effects of flaw length δ z and pipe size (mean radius R) on burst pressure p f were investigated by using Finite Element Method (FEM). Then, fracture mode evaluation was made by using history data of strain ratio ε z /ε θ along with load increment. Furthermore, the effect of flaw depth t 1 on fracture mode was studied and finally, the evaluation method of fracture mode for local wall-thinned pipes was introduced. (author)

  19. Elastic-plastic dynamic behavior of guard pipes due to sudden opening of longitudinal cracks in the inner pipe and crash to the guard pipe wall

    International Nuclear Information System (INIS)

    Theuer, E.; Heller, M.

    1979-01-01

    Integrity of guard pipes is an important parameter in the design of nuclear steam supply systems. A guard pipe shall withstand all kinds of postulated inner pipe breaks without failure. Sudden opening of a crack in the inner pipe and crash of crack borders to the guard pipe wall represent a shock problem where complex phenomena of dynamic plastification as well as dynamic behavior of the entire system have to be taken in consideration. The problem was analyzed by means of Finite Element computation using the general purpose program MARC. Equation of motion was resolved by direct integration using the Newmark β-operator. Analysis shows that after 1,2 m sec crack borders touch the guard pipe wall for the first time. At this moment a considerable amount of local plastification appears in the inner pipe wall, while the guard pipe is nearly unstressed. After initial touching, the crack borders begin to slip along the guard pipe wall. Subsequently, a short withdrawal of the crack borders and a new crash occur, while the inner pipe rolls along the guard pipe wall. The analysis procedure described is suitable for designing numerous guard pipe geometries as well as U-Bolt restraint systems which have to withstand high-energy pipe rupture impact. (orig.)

  20. limit loads for wall-thinning feeder pipes under combined bending and internal pressure

    International Nuclear Information System (INIS)

    Je, Jin Ho; Lee, Kuk Hee; Chung, Ha Joo; Kim, Ju Hee; Han, Jae Jun; Kim, Yun Jae

    2009-01-01

    Flow Accelerated Corrosion (FAC) during inservice conditions produces local wall-thinning in the feeder pipes of CANDU. The Wall-thinning in the feeder pipes is main degradation mechanisms affecting the integrity of piping systems. This paper discusses the integrity assessment of wall-thinned feeder pipes using limit load analysis. Based on finite element limit analyses, this paper compare limit loads for wall-thinning feeder pipes under combined bending and internal pressure with proposed limit loads. The limit loads are determined from limit analyses based on rectangular wall-thinning and elastic-perfectly-plastic materials using the large geometry change.

  1. Plastic fracture instability analysis of wall breakthrough in a circumferentially cracked pipe subjected to bending loads

    International Nuclear Information System (INIS)

    Zahoor, A.; Kanninen, M.F.

    1981-01-01

    A method of analyzing internal surface circumferential cracks in ductile reactor piping is presented. The method utilizes an alternate but equivalent definition of the J-integral based on nonlinear structural compliance. The analysis is valid for situations where the cross section containing the crack is fully yielded. Results are obtained for radial and circumferential crack growth for pipes subjected to bending. The stability of radial crack growth (wall breakthrough) is assessed using the J-integral-based tearing modulus approach. The analysis is shown to be in agreement with experimental results on the stability of surface crack growth in Type 304 stainless stee pipes. Example quantitative results for fracture instability assessments for nuclear piping are presented. 23 refs

  2. Plastic fracture instability analysis of wall breakthrough in a circumferentially cracked pipe subjected to bending loads

    Energy Technology Data Exchange (ETDEWEB)

    Zahoor, A.; Kanninen, M.F.

    1981-07-01

    A method of analyzing internal surface circumferential cracks in ductile reactor piping is presented. The method utilizes an alternate but equivalent definition of the J-integral based on nonlinear structural compliance. The analysis is valid for situations where the cross section containing the crack is fully yielded. Results are obtained for radial and circumferential crack growth for pipes subjected to bending. The stability of radial crack growth (wall breakthrough) is assessed using the J-integral-based tearing modulus approach. The analysis is shown to be in agreement with experimental results on the stability of surface crack growth in Type 304 stainless stee pipes. Example quantitative results for fracture instability assessments for nuclear piping are presented. 23 refs.

  3. Ultrasonic guided wave tomography for wall thickness mapping in pipes

    Science.gov (United States)

    Willey, Carson L.

    Corrosion and erosion damage pose fundamental challenges to operation of oil and gas infrastructure. In order to manage the life of critical assets, plant operators must implement inspection programs aimed at assessing the severity of wall thickness loss (WTL) in pipelines, vessels, and other structures. Maximum defect depth determines the residual life of these structures and therefore represents one of the key parameters for robust damage mitigation strategies. In this context, continuous monitoring with permanently installed sensors has attracted significant interest and currently is the subject of extensive research worldwide. Among the different monitoring approaches being considered, significant promise is offered by the combination of guided ultrasonic wave technology with the principles of model based inversion under the paradigm of what is now referred to as guided wave tomography (GWT). Guided waves are attractive because they propagate inside the wall of a structure over a large distance. This can yield significant advantages over conventional pulse-echo thickness gage sensors that provide insufficient area coverage -- typically limited to the sensor footprint. While significant progress has been made in the application of GWT to plate-like structures, extension of these methods to pipes poses a number of fundamental challenges that have prevented the development of sensitive GWT methods. This thesis focuses on these challenges to address the complex guided wave propagation in pipes and to account for parametric uncertainties that are known to affect model based inversion and which are unavoidable in real field applications. The main contribution of this work is the first demonstration of a sensitive GWT method for accurately mapping the depth of defects in pipes. This is achieved by introducing a novel forward model that can extract information related to damage from the complex waveforms measured by pairs of guided wave transducers mounted on the pipe

  4. Terahertz inline wall thickness monitoring system for plastic pipe extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Hauck, J., E-mail: j.hauck@skz.de, E-mail: d.stich@skz.de, E-mail: p.heidemeyer@skz.de, E-mail: m.bastian@skz.de, E-mail: t.hochrein@skz.de; Stich, D., E-mail: j.hauck@skz.de, E-mail: d.stich@skz.de, E-mail: p.heidemeyer@skz.de, E-mail: m.bastian@skz.de, E-mail: t.hochrein@skz.de; Heidemeyer, P., E-mail: j.hauck@skz.de, E-mail: d.stich@skz.de, E-mail: p.heidemeyer@skz.de, E-mail: m.bastian@skz.de, E-mail: t.hochrein@skz.de; Bastian, M., E-mail: j.hauck@skz.de, E-mail: d.stich@skz.de, E-mail: p.heidemeyer@skz.de, E-mail: m.bastian@skz.de, E-mail: t.hochrein@skz.de; Hochrein, T., E-mail: j.hauck@skz.de, E-mail: d.stich@skz.de, E-mail: p.heidemeyer@skz.de, E-mail: m.bastian@skz.de, E-mail: t.hochrein@skz.de [SKZ - German Plastics Center, Wuerzburg (Germany)

    2014-05-15

    Conventional and commercially available inline wall thickness monitoring systems for pipe extrusion are usually based on ultrasonic or x-ray technology. Disadvantages of ultrasonic systems are the usual need of water as a coupling media and the high damping in thick walled or foamed pipes. For x-ray systems special safety requirements have to be taken into account because of the ionizing radiation. The terahertz (THz) technology offers a novel approach to solve these problems. THz waves have many properties which are suitable for the non-destructive testing of plastics. The absorption of electrical isolators is typically very low and the radiation is non-ionizing in comparison to x-rays. Through the electromagnetic origin of the THz waves they can be used for contact free measurements. Foams show a much lower absorption in contrast to acoustic waves. The developed system uses THz pulses which are generated by stimulating photoconductive switches with femtosecond laser pulses. The time of flight of THz pulses can be determined with a resolution in the magnitude of several ten femtoseconds. Hence the thickness of an object like plastic pipes can be determined with a high accuracy by measuring the time delay between two reflections on materials interfaces e.g. at the pipe's inner and outer surface, similar to the ultrasonic technique. Knowing the refractive index of the sample the absolute layer thickness from the transit time difference can be calculated easily. This method in principle also allows the measurement of multilayer systems and the characterization of foamed pipes.

  5. Screening method for piping wall loss by flow accelerated corrosion

    International Nuclear Information System (INIS)

    Ryu, Kyung Ha; Hwang, Il Soon; Lee, Na Young; Oh, Young Jin; Kim, Ji Hyun; Park, Jin Ho; Sohn, Chang Ho

    2008-01-01

    Flow accelerated corrosion (FAC) phenomenon has persisted its impact on plant reliability and personnel safety. Unless we change the operation condition drastically, most parameters affecting FAC will not be effectively controlled. In order to help expand piping inspection coverage, we have developed a screening approach to monitor the wall thinning by direct current potential drop (DCPD) technique. To improve the applicability to the complex piping network such as the secondary cooling water system in PWR's, we devised the equipotential control method that can eliminate undesired leakage currents outside a measurement section. In this paper, we present Wide Range Monitoring (WiRM) and Narrow Range Monitoring (NaRM) with Equipotential Switching Direct Current Potential Drop (ES-DCPD) method to rapidly monitor the thinning of piping. Based on the WiRM results, susceptible locations can be identified for further inspection by ultrasound technique (UT). On-line monitoring of a thinned location can be made by NaRM. Finite element analysis results and a closed-form resistance model are developed for the comparison with measured wall thinning by the developed DCPD technique. Verification experiments were conducted using UT as the reference. The result shows that model predictions and the experimental results agree well to confirm that both WiRM and NaRM based on ES-DCPD can be applicable to FAC management efforts

  6. Screening method for piping wall loss by flow accelerated corrosion

    International Nuclear Information System (INIS)

    Ryu, K.H.; Hwang, I.S.; Lee, N.Y.; Oh, Y.J.; Park, J.H.; Sohn, C.H.

    2007-01-01

    Flow accelerated corrosion (FAC) phenomenon has persisted in its impact on plant reliability and personnel safety. Unless we change the operation condition drastically, most parameters affecting FAC will not be effectively controlled. In order to help expand piping inspection coverage, we have developed a screening approach to monitor the wall thinning by a Direct Current Potential drop (DCPD) technique. To improve the applicability to the complex piping network such as the secondary cooling water system in PWR's, we devised the equipotential control method that can eliminate undesired leakage currents outside a measurement section. In this paper, we present Wide Range Monitoring (WiRM) and Narrow Range Monitoring (NaRM) with Equipotential Switching Direct Current Potential Drop (ES-DCPD) method to rapidly monitor the thinning of piping. Based on the WiRM results, susceptible locations can be identified for further inspection by Ultrasonic Technique (UT). On-line monitoring of a thinned location can be made by NaRM. Finite element analysis results and a closed-form resistance model are developed for the comparison with measured wall thinning by the developed DCPD technique. Verification experiments were conducted using UT as the reference. The result shows that model predictions and the experimental results agree well to confirm that both WiRM and NaRM based on ES-DCPD can be applicable to FAC management efforts. (author)

  7. Long-Term Strength of a Thick-Walled Pipe Filled with an Aggressive Medium, with Account for Damageability of the Pipe Material and Residual Strength

    Science.gov (United States)

    Piriev, S. A.

    2018-01-01

    This paper describes the study of scattered fracture of a thick-walled pipe filled with an aggressive medium, which creates uniform pressure on the inner surface of the pipe. It is assumed that the aggressive medium affects only the value of instantaneous strength. Damageability is described by an integral operator of the hereditary type. The problem is solved with allowance for residual strength of the pipe material behind the fracture front. Numerical calculation is carried out, and relationships between the fracture front coordinate and time for various concentrations of the aggressive medium and residual strength behind the fracture front are constructed.

  8. Wall thinning trend analyses for secondary side piping of Korean NPPs

    International Nuclear Information System (INIS)

    Hwang, K.M.; Jin, T.E.; Lee, S.H.; Jeon, S.C.

    2003-01-01

    Since the mid-1990s, nuclear power plants in Korea have experienced wall thinning, leaks, and ruptures of secondary side piping caused by flow-accelerated corrosion (FAC). The pipe failures have increased as operating time progresses. In order to prevent the FAC-induced pipe failures and to develop an effective FAC management strategy, KEPRI and KOPEC have conducted a study for developing systematic FAC management technology for secondary side piping of all Korean nuclear power plants. As a part of the study, FAC analyses were performed using the CHECWORKS code. The analysis results were used to select components for inspection and to determine inspection intervals on each nuclear power plant. This paper describes the introduction of the FAC analysis method and the wall thinning trend analysis results by reactor type, system, and water treatment amine. This paper also represents the site application feasibility for secondary side piping management. The site application feasibility of the analysis results was proven by comparisons of predicted and measured wear rates. (author)

  9. Slug flow in horizontal pipes with transpiration at the wall

    Science.gov (United States)

    Loureiro, J. B. R.; Silva Freire, A. P.

    2011-12-01

    The present work investigates the behaviour of slug flows in horizontal pipes with a permeable wall. Measurements of pressure drop and of local velocity are given for nine different flow conditions. The liquid phase velocity was measured with laser Doppler anemometry. Single-phase data are compared with the results of other authors. The influence of flow transpiration and of roughness on the features of slug flows is shown to be pronounced. A Shadow Sizer system coupled with Particle Image Velocimetry is used to account for the properties of the slug cell.

  10. Slug flow in horizontal pipes with transpiration at the wall

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, J B R; Freire, A P Silva, E-mail: jbrloureiro@mecanica.ufrj.br [Mechanical Engineering Program, Federal University of Rio de Janeiro (COPPE/UFRJ), C.P. 68503, 21.941-972, Rio de Janeiro, RJ (Brazil)

    2011-12-22

    The present work investigates the behaviour of slug flows in horizontal pipes with a permeable wall. Measurements of pressure drop and of local velocity are given for nine different flow conditions. The liquid phase velocity was measured with laser Doppler anemometry. Single-phase data are compared with the results of other authors. The influence of flow transpiration and of roughness on the features of slug flows is shown to be pronounced. A Shadow Sizer system coupled with Particle Image Velocimetry is used to account for the properties of the slug cell.

  11. Slug flow in horizontal pipes with transpiration at the wall

    International Nuclear Information System (INIS)

    Loureiro, J B R; Freire, A P Silva

    2011-01-01

    The present work investigates the behaviour of slug flows in horizontal pipes with a permeable wall. Measurements of pressure drop and of local velocity are given for nine different flow conditions. The liquid phase velocity was measured with laser Doppler anemometry. Single-phase data are compared with the results of other authors. The influence of flow transpiration and of roughness on the features of slug flows is shown to be pronounced. A Shadow Sizer system coupled with Particle Image Velocimetry is used to account for the properties of the slug cell.

  12. Turbulence Intensity and the Friction Factor for Smooth- and Rough-Wall Pipe Flow

    OpenAIRE

    Nils T. Basse

    2017-01-01

    Turbulence intensity profiles are compared for smooth- and rough-wall pipe flow measurements made in the Princeton Superpipe. The profile development in the transition from hydraulically smooth to fully rough flow displays a propagating sequence from the pipe wall towards the pipe axis. The scaling of turbulence intensity with Reynolds number shows that the smooth- and rough wall level deviates with increasing Reynolds number. We quantify the correspondence between turbulence intensity and th...

  13. A flexible film type EMAT for inspection of small diameter pipe

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Cuixiang; Xiao, Pan; Zhao, Siqi; Chen, Zhenmao [Xi' an Jiaotong University, Xi' an (China); Takagi, Toshiyuki [Institute of Fluid Science, Tohoku University, Sendai (Japan)

    2017-08-15

    Pipe structures are widely applied in industries, and different kinds of defects may occur in the structures during their long-time service. For non-destructive testing of defects in pipes of small diameter, it has to be conducted from the inner side of the pipe when there is no space for detection from the outside or the geometry of the outside tube surface is too complicated. In this work, a flexible film type Electromagnetic acoustic transducer (EMAT) probe with a dual coil configuration is developed. The new probe is flexible and can be inserted into the pipe for inspection. First, the feasibility of the new probe was studied through numerical simulation. Then the feasibility of the proposed flexible EMAT for detection of wall thinning in small diameter pipe was verified experimentally. It was found that the new EMAT method is suitable for the detection of wall thinning defects for small pipes.

  14. Finite element limit loads for non-idealized through-wall cracks in thick-walled pipe

    International Nuclear Information System (INIS)

    Shim, Do-Jun; Han, Tae-Song; Huh, Nam-Su

    2013-01-01

    Highlights: • The lower bound bulging factor of thin-walled pipe can be used for thick-walled pipe. • The limit loads are proposed for thick-walled, transition through-wall cracked pipe. • The correction factors are proposed for estimating limit loads of transition cracks. • The limit loads of short transition cracks are similar to those of idealized cracks. - Abstract: The present paper provides plastic limit loads for non-idealized through-wall cracks in thick-walled pipe. These solutions are based on detailed 3-dimensional finite element (FE) analyses which can be used for structural integrity assessment of nuclear piping. To cover a practical range of interest, the geometric variables and loading conditions affecting the plastic limit loads of thick-walled pipe with non-idealized through-wall cracks were systematically varied. In terms of crack orientation, both circumferential and axial through-wall cracks were considered. As for loading conditions, axial tension, global bending, and internal pressure were considered for circumferential cracks, whereas only internal pressure was considered for axial cracks. Furthermore, the values of geometric factor representing shape characteristics of non-idealized through-wall cracks were also systematically varied. In order to provide confidence in the present FE analyses results, plastic limit loads of un-cracked, thick-walled pipe resulting from the present FE analyses were compared with the theoretical solutions. Finally, correction factors to the idealized through-wall crack solutions were developed to determine the plastic limit loads of non-idealized through-wall cracks in thick-walled pipe

  15. Evaluation of local allowable wall thickness of thinned pipe considering internal pressure and bending moment

    International Nuclear Information System (INIS)

    Kim, J. W.; Park, C. Y.; Kim, B. Y.

    2000-01-01

    This study proposed the local allowable wall thickness (LAWT) evaluation method for local wall thinned pipe subjected by internal pressure and bending moment. Also, LAWT was evaluated for simplified thinned pipe and the effect of axial extent of thinned area on LAWT was investigated. The results showed that LAWT predicted by present method was thinner, about 50%, than that evaluated by construction code and ASME Code Case N-597, while it was thicker, about 2 times, than that calculated by evaluation model based on pipe experiments. LAWT decreased with increasing axial extent of thinned area and was saturated above axial extent of pipe radius, which was a contrast to the results of ASME Code Case N-597 evaluation. The results of stress analysis with applied loading type indicated that the effect of axial extent of thinned area on LAWT was dependent on loading type considering in the evaluation. That is, the dependence of axial extent on LAWT is determined by magnitude of bending moment, and the contrary trend with axial extent in ASME Code Case is because ASME Code Case N-597 considers only internal pressure in the evaluation

  16. Evaluation of wall thinning profile by flow accelerated corrosion in separation and union pipe

    International Nuclear Information System (INIS)

    Watanabe, Shun; Yoneda, Kimitoshi

    2013-01-01

    Flow Accelerated Corrosion (FAC) is a pipe wall thinning phenomena to be monitored and managed in power plants with high priority. At present, its management has been conducted with conservative evaluation of thinning rate and residual lifetime of the piping based on wall thickness measurements. However, noticeable case of wall thinning was occurred at separation and union pipe. In such pipe system, it is a problem to manage section beneath reinforcing plate of T-tube pipe and 'crotch' of T-joint pipe; the region where wall thickness measurement is difficult to conduct with ordinary ultrasonic testing device. In this study, numerical analysis for separation and union part of T-tube and T-joint pipe was conducted, and wall thinning profile by Flow Accelerated Corrosion was evaluated by calculating mass transfer coefficient and geometry factor. Based on these results, we considered applicable wall thinning management for T-tube and T-joint pipe. In the case of union flow from main and branch pipe, the wall thinning profile of T-tube showed the tendency of increase at main pipe like semielliptical region. On the other hand, noticeable profile appeared at 'crotch' in T-joint. Although it was found that geometry factor of T-joint in this case was half the value of T-tube, an alternative evaluation method to previous one might be needed for the profiles of 'semielliptical region' and 'crotch'. (author)

  17. Failure probability assessment of wall-thinned nuclear pipes using probabilistic fracture mechanics

    International Nuclear Information System (INIS)

    Lee, Sang-Min; Chang, Yoon-Suk; Choi, Jae-Boong; Kim, Young-Jin

    2006-01-01

    The integrity of nuclear piping system has to be maintained during operation. In order to maintain the integrity, reliable assessment procedures including fracture mechanics analysis, etc., are required. Up to now, this has been performed using conventional deterministic approaches even though there are many uncertainties to hinder a rational evaluation. In this respect, probabilistic approaches are considered as an appropriate method for piping system evaluation. The objectives of this paper are to estimate the failure probabilities of wall-thinned pipes in nuclear secondary systems and to propose limited operating conditions under different types of loadings. To do this, a probabilistic assessment program using reliability index and simulation techniques was developed and applied to evaluate failure probabilities of wall-thinned pipes subjected to internal pressure, bending moment and combined loading of them. The sensitivity analysis results as well as prototypal integrity assessment results showed a promising applicability of the probabilistic assessment program, necessity of practical evaluation reflecting combined loading condition and operation considering limited condition

  18. Study of failure criterion applicable to elastic-plastic finite element analyses of wall-thinned pipes subjected to multi-axial loading. Case for groove type flaw under combined internal pressure and bending loading

    International Nuclear Information System (INIS)

    Mori, Kosuke; Meshii, Toshiyuki

    2015-01-01

    In this paper, a failure criterion applicable to large-strain finite element analysis (FEA) results was studied to predict the limit bending load M_c of the groove shaped wall-thinned pipes, under combined internal pressure and bending load, that experienced cracking. In our previous studies, Meshii and Ito (2012) considered cracking of pipes with groove shaped flaw (small axial length δ_z in Fig. 1) was due to the plastic instability at the wall-thinned section and proposed the Domain Collapse Criterion (DCC). The DCC could predict M_c of cracking for small δ_z by comparing the von Mises stress σ_M_i_s_e_s with the true tensile strength σ_B. Because the discrepancy in prediction of the M_c in the case of cracking was within 15%, it was considered that the predictability was could be improved further. Thus, in this work, attempt was made to improve the accuracy of M_c prediction with a perspective that multi-axial stress state might affect this plastic instability at the wall-thinned section. As a result of examination of the various failure criteria based on multi-axial stress, it was confirmed that the limit bending load of the groove flawed pipe that experienced cracking in experiment (Hereafter, it was expressed 'flawed pipe that experienced cracking') could be predicted within 5% accuracy by applying Hill's plastic instability onset criterion (Hill, 1952) to the outer surface of the crack penetration section. The accuracy of the predicted limit bending load was improved from DCC's within 15% to within 5%. (author)

  19. 75 FR 82070 - Light-Walled Rectangular Pipe and Tube From China, Korea, and Mexico

    Science.gov (United States)

    2010-12-29

    ...-Walled Rectangular Pipe and Tube From China, Korea, and Mexico AGENCY: United States International Trade... from China, Korea, and Mexico that were found to be sold at less than fair value. Nacional de Acero S... panel proceeding in Light-Walled Rectangular Pipe and Tube from Mexico, USA-MEX-1904-04, to file...

  20. Effect of length of thinning area on the failure behavior of carbon steel pipe containing a defect of wall thinning

    International Nuclear Information System (INIS)

    Kim, Jin Weon; Park, Chi Yong

    2003-01-01

    The present study performed pipe failure tests using 102 mm-Sch. 80 carbon steel pipe with various simulated wall thinning defects, to investigate the effect of axial length of wall thinning and internal pressure on the failure behavior of pipe thinned by flow accelerated corrosion (FAC). The tests were conducted under loading conditions of four-point bending with and without internal pressure. The results showed that a failure mode of pipe with a defect depended on the magnitude of internal pressure and axial thinning length as well as stress type and thinning depth and circumferential angle. Both load carrying capability (LCC) and deformation capability (DC) were depended on stress type in the thinning area and dimensions of thinning defect. For applying tensile stress to the thinned area, the dependence of LCC on the axial length of wall thinning was determined by circumferential thinning angle, and the DC was proportionally increased with increase in axial length of wall thinning regardless of the circumferential angle. For applying compressive stress to thinned area, however, the LCC was decreased with increase in axial length of the thinned area. Also, the effect of internal pressure on failure behavior was characterized by failure mode of thinned pipe, and it promoted crack occurrence and mitigated a local buckling of the thinned area

  1. An investigation of wall temperature characteristics to evaluate thermal fatigue at a T-junction pipe

    International Nuclear Information System (INIS)

    Miyoshi, Koji; Nakamura, Akira; Utanohara, Yoichi; Takenaka, Nobuyuki

    2014-01-01

    Thermal fatigue cracking may initiate at a T-junction pipe where high and low temperature fluids mix. In this study, wall temperature characteristics at a T-junction pipe were investigated to improve the evaluation method for thermal fatigue. The stainless steel test section consisted of a horizontal main pipe (diameter, 150 mm) and a T-junction connected to a vertical branch pipe (diameter, 50 mm). The inlet flow velocities in the main and branch pipes were set to 0.99 m/s and 0.66 m/s respectively to produce a wall jet pattern in which the jet from the branch pipe was bent by the main pipe flow and made to flow along the pipe wall. The temperature difference was 34.1 K. A total of 148 thermocouples were installed to measure the wall temperature on the pipe inner surface in the downstream region. The maximum of temperature fluctuation intensity on the pipe inner surface was measured as 5% of the fluid temperature difference at the inlets. The dominant frequency of the large temperature fluctuations in the region downstream from z = 0.5D m was equal to 0.2 of the Strouhal number, which was equal to the frequency caused by the vortex streets generated around the jet flow. The large temperature fluctuation was also observed with the period of about 10 s. The fluctuation was caused by spreading of the heated region in the circumferential direction. (author)

  2. Influences of overload on low cycle fatigue behaviors of elbow pipe with local wall thinning

    International Nuclear Information System (INIS)

    Sato, Kyohei; Ogino, Kanako; Takahashi, Koji; Ando, Kotoji; Urabe, Yoshio

    2011-01-01

    Low cycle fatigue tests were conducted using 100A elbow pipe specimens with or without local wall thinning. Local wall thinning was machined on the inside of the extrados of test elbows to simulate metal loss due to flow-accelerated corrosion or liquid droplet impingement erosion. Low cycle fatigue tests were carried out under displacement control with an inner pressure of 9 MPa. To simulate seismic events, low cycle fatigue tests were carried out on elbow pipe subjected to cyclic overloads. Regardless of local wall thinning, fatigue life of overload pipe was not so different from that of the non-overload pipe in appearance. Miner's rule can be applied to evaluate fatigue life of the elbow pipes with and without wall thinning, even if overload is applied. (author)

  3. Procedure for manufacturing pipes with wall catalyst especially for steam reforming of hydrocarbons and to obtain methane

    Energy Technology Data Exchange (ETDEWEB)

    Golebiowski, A; Paluch-Paluch, S; Janecki, Z; Polanski, A; Hennel, W; Zielinski, J; Warzec, C; Lisowski, W

    1978-07-13

    Pipes with a wall catalyst must retain a firm connection between the wall and the catalyst system even at high temperatures. According to the invention, this can be achieved if a metal sponge is produced on the pipe wall using an electrolytic process, in which ceramic and catalytic materials are included. The manufacture of the pipes is explained by 7 examples.

  4. 78 FR 42546 - Light-Walled Rectangular Pipe and Tube From China, Korea, Mexico, and Turkey: Notice of...

    Science.gov (United States)

    2013-07-16

    ...-Walled Rectangular Pipe and Tube From China, Korea, Mexico, and Turkey: Notice of Commission... countervailing duty order on light-walled rectangular pipe and tube from China and the antidumping duty orders on light-walled rectangular pipe and tube from China, Korea, Mexico, and Turkey would be likely to lead to...

  5. 78 FR 74161 - Light-Walled Rectangular Pipe and Tube From China, Korea, Mexico, and Turkey; Scheduling of Full...

    Science.gov (United States)

    2013-12-10

    ...-Walled Rectangular Pipe and Tube From China, Korea, Mexico, and Turkey; Scheduling of Full Five-Year... the Antidumping Duty Orders on Light-Walled Rectangular Pipe and Tube From China, Korea, Mexico, and... on light- walled rectangular pipe and tube from China, Korea, Mexico, and Turkey would be likely to...

  6. Study on structural integrity of thinned wall piping against seismic loading-overview and future program

    International Nuclear Information System (INIS)

    Nakamura, Izumi; Otani, Akihito; Shiratori, Masaki

    2005-01-01

    In order to clarify the behavior of thinned wall pipes under seismic events, cyclic in-plane and/or out-of-plane bending tests on thinned straight pipe and elbow and also shaking table tests using degraded piping system models were conducted. Relation between the failure mode and thinned condition and the influence of the final failure mode of degraded piping systems were investigated. In addition to these experiments, elastic-plastic FEM analysis using ABAQUS were conducted on thinned piping elements. It has been found that the strain concentrated point could be predicted and the cause of its generation could be explained by the simulated deformation behavior of the pipe. In order to predict the piping system's maximum response under elastic-plastic response, a simple response prediction method was proposed. Further tests and safety margin analyses of thinned pipes against seismic loading will be performed. (T. Tanaka)

  7. A semi-empirical method for measuring thickness of pipe-wall using gamma scattering technique

    International Nuclear Information System (INIS)

    Vo Hoang Nguyen; Hua Tuyet Le; Le Dinh Minh Quan; Hoang Duc Tam; Le Bao Tran; Tran Thien Thanh; Tran Nguyen Thuy Ngan; Chau Van Tao; VNUHCM-University of Science, Ho Chi Minh City; Huynh Dinh Chuong

    2016-01-01

    In this work, we propose a semi-empirical method for determining the thickness of pipe-wall, of which the determination is performed by combining the experimental and Monte Carlo simulation data. The testing measurements show that this is an efficient method to measure the thickness of pipe-wall. In addition, this work also shows that it could use a NaI(Tl) scintillation detector and a low activity source to measure the thickness of pipe-wall, which is simple, quick and high accuracy method. (author)

  8. Analytical and numerical calculations of resistive wall impedances for thin beam pipe structures at low frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Niedermayer, U., E-mail: u.niedermayer@gsi.de [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstrasse 8, 64289 Darmstadt (Germany); Boine-Frankenheim, O. [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstrasse 8, 64289 Darmstadt (Germany)

    2012-09-21

    The resistive wall impedance is one of the main sources for beam instabilities in synchrotrons and storage rings. The fast ramped SIS18 synchrotron at GSI and the projected SIS100 synchrotron for FAIR both employ thin (0.3 mm) stainless steel beam pipes in order to reduce eddy current effects. The lowest betatron sidebands are at about 100 kHz, which demands accurate impedance predictions in the low frequency (LF) range where the beam pipe and possibly also the structures behind the pipe are the dominating impedance sources. The longitudinal and transverse resistive wall impedances of a circular multi-layer pipe are calculated analytically using the field matching technique. We compare the impedances obtained from a radial wave model, which corresponds to the setup used in bench measurements, with the axial wave model, which corresponds to an actual beam moving with relativistic velocity. For thin beam pipes the induced wall current and the corresponding shielding properties of the pipe are important. In both models the wall current is obtained analytically. The characteristic frequencies for the onset of the wall current are calculated from equivalent lumped element circuits corresponding to the radial model. For more complex structures, like the SIS100 beam pipe, we use a numerical method, in which the impedance is obtained from the total power loss. The method is validated by the analytic expressions for circular beam pipes.

  9. Wall Thickness Measurement Of Insulated Pipe By Tangential Radiography Technique Using Ir 192

    International Nuclear Information System (INIS)

    Soedarjo

    2000-01-01

    Insulation pipe wall thickness by tangential radiography technique has been carried out using 41 Curie Iridium 192 source has activity for two carbon steel pipes. The outer diameter of the first pipe is 90 mm, wall thickness is 75.0 mm, source film film distance is 609.5 mm, source tangential point of insulation is 489.5 mm and exposure time 3 minute and 25 second. From the calculation, the first pipe thickness is found to be 12.54 mm and for the second pipe is 8.42 mm. The thickness is due to inaccuracy in reading the pipe thickness on radiography film and the geometry distortion radiation path

  10. Estimation of gas wall shear stress in horizontal stratified gas-liquid pipe flow

    International Nuclear Information System (INIS)

    Newton, C.H.; Behnia, M.

    1996-01-01

    Two-phase pipe flows occur in many industrial applications, such as condensers and evaporators, chemical processing equipment, nuclear reactors, and oil pipelines. A variety of basic mechanistic flow models for predicting the pressure gradient and liquid loading characteristics of these types of flows to assist in design calculations has emerged over the past two decades, especially for the stratified and slug flow regimes. These models generally rely on a number of basic assumptions and empirical closure equations. Possibly the most notable of these relates to the evaluation of interfacial shear stresses. However, one of the most important yet least discussed assumptions used in most of these models is that the phase wall shear stresses can be accurately estimated from correlations developed for single-phase pipe flows. The object of this article is to present measurements of gas wall shear up to locations in close proximity to the gas-liquid interface for a variety of interface conditions in developed flow, and to determine the effects of the interface on average gas wall friction factors. In this context the interface may be smooth, rippled or wavy

  11. Defect detection of wall thinning defect in pipes using lock-in photo-infrared thermography technique

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Su Ok; Park, Jong Hyun; Choi, Tae Ho; Jung, Hyun Chul; Kim, Kyoung Suk [Chosun Univ., Gwangju (Korea, Republic of)

    2008-07-01

    Piping in the Nuclear Power plants (NPP) are mostly consisted of carbon steel pipe. The wall thinning defect is mainly occurred by the affect of the Flow Accelerated Corrosion (FAC) of fluid which flows in carbon steel pipes. This type of defect becomes the cause of damage or destruction of piping. Therefore, it is very important to measure defect which is existed not only on the welding partbut also on the whole field of pipe. Over the years, Infrared Thermography (IRT) has been used as a non destructive testing methods of the various kinds of materials. This technique has many merits and applied to the industrial field but has limitation to the materials. Therefore, this method was combined with lock-in technique. So IRT detection resolution has been progressively improved using lock-in technique. In this paper, the quantitative analysis results of the location and the size of wall thinning defect that is artificially processed inside the carbon steel pipe by using IRT are obtained.

  12. Ductile fracture of circumferentially cracked type-304 stainless steel pipes in tension

    Energy Technology Data Exchange (ETDEWEB)

    Zahoor, A.; Norris, D.M.

    1984-11-01

    Circumferentially cracked pipes subjected to tensile load were analyzed for finite length and constant depth part-through cracks located at the inside of the pipe wall. The analysis postulated loads sufficient to cause net-section yielding of the flawed section. It was demonstrated that a propensity for predominantly radial growth exists for part-through cracks loaded in tension. This result is similar to the result for bend loading, except that bend loading causes more favorable conditions for wall breakthrough than tension loading. Numerical results were developed for 4-in. and 24-in-dia pipes. Safety margins for displacement controlled loads were described by a safety assessment diagram. This diagram defines a curve delineating leak from fracture in a space of nondimensional crack length and crack depth. 4-india schedule 80 Type-304 stainless steel pipes with length to radius ratio (L/R) of up to 100 exhibited leak-before-break behavior.

  13. Ductile fracture of circumferentially cracked type-304 stainless steel pipes in tension

    International Nuclear Information System (INIS)

    Zahoor, A.; Norris, D.M.

    1984-01-01

    Circumferentially cracked pipes subjected to tensile load were analyzed for finite length and constant depth part-through cracks located at the inside of the pipe wall. The analysis postulated loads sufficient to cause net-section yielding of the flawed section. It was demonstrated that a propensity for predominantly radial growth exists for part-through cracks loaded in tension. This result is similar to the result for bend loading, except that bend loading causes more favorable conditions for wall breakthrough than tension loading. Numerical results were developed for 4-in. and 24-in-dia pipes. Safety margins for displacement controlled loads were described by a safety assessment diagram. This diagram defines a curve delineating leak from fracture in a space of nondimensional crack length and crack depth. 4-india schedule 80 Type-304 stainless steel pipes with length to radius ratio (L/R) of up to 100 exhibited leak-before-break behavior

  14. Development of engineering program for integrity evaluation of pipes with local wall thinned defects

    International Nuclear Information System (INIS)

    Park, Chi Yong; Lee, Sung Ho; Kim, Tae Ryong; Park, Sang Kyu

    2008-01-01

    Integrity evaluation of pipes with local wall thinning by erosion and corrosion is increasingly important in maintenance of wall thinned carbon steel pipes in nuclear power plants. Though a few program for integrity assessment of wall thinned pipes have been developed in domestic nuclear field, however those are limited to straight pipes and methodology proposed in ASME Sec.XI Code Case N-597. Recently, the engineering program for integrity evaluation of pipes with all kinds of local wall defects such as straight, elbow, reducer and branch pipes was developed successfully. The program was designated as PiTEP (Pipe Thinning Evaluation Program), which name was registered as a trademark in the Korea Intellectual Property Office. A developed program is carried out by sequential step of four integrity evaluation methodologies, which are composed of construction code, code case N-597, its engineering method and two developed owner evaluation method. As PiTEP program will be performed through GUI (Graphic User Interface) with user's familiarity, it would be conveniently used by plant engineers with only measured thickness data, basic operation conditions and pipe data

  15. 77 FR 3497 - Light-Walled Rectangular Pipe and Tube From Taiwan

    Science.gov (United States)

    2012-01-24

    ... Rectangular Pipe and Tube From Taiwan Determination On the basis of the record \\1\\ developed in the subject... order on light-walled rectangular pipe and tube from Taiwan would be likely to lead to continuation or recurrence of material injury to an industry in the United States within a reasonably foreseeable time. \\1...

  16. Water hammer with fluid-structure interaction in thick-walled pipes

    NARCIS (Netherlands)

    Tijsseling, A.S.

    2007-01-01

    A one-dimensional mathematical model is presented which describes the acoustic behaviour of thick-walled liquid-filled pipes. The model is based on conventional water-hammer and beam theories. Fluid–structure interaction (FSI) is taken into account. The equations governing straight pipes are derived

  17. Magnetic forces on a ferromagnetic HT-9 first wall/blanket and coolant pipe

    International Nuclear Information System (INIS)

    Lechtenberg, T.A.; Dahms, C.; Attaya, H.; Univ. of Wisconsin, Madison)

    1984-01-01

    The GFUN 3D code was used to model the toroidal fields and determine the magnetic body forces on the STARFIRE design for coolant pipes exiting the first wall sector and first wall/blanket modules. The HT-9 coolant pipes were modeled on the basis of a square bar having the same length and material volume as the coolant pipes. The stress analysis was performed using these magnetic forces applied to a pipe of 4 meters length, 8.25 cm O.D., and 0.75 cm thickness by the MODSAP stress analysis code. For the first wall/blanket module, GFUN 3D does not allow full modeling of the complex thin-walled structure or numerous small tubes because of the element aspect ratio limitations. Therefore, to obtain three dimensional loads, a solid homogeneous equivalent structure was used

  18. The precision cutting control research of automotive stainless steel thin wall pipe

    Directory of Open Access Journals (Sweden)

    Jin Lihong

    2015-01-01

    Full Text Available Stainless steel thin-walled tube are widely used in automobile industry at present, but as a result of thin wall pipe is poor strength and poor rigidity,which lead to deformation, shaped differencer and other problems in the process, it is hard to ensure the processing quality of parts. This paper proposes a method of thin stainless steel thin wall pipe cutting process in vehicle, greatly improved the problems and technical difficulties in the traditional process, the main research is about the cutting system and the hydraulic fixture design, obtained under low cost circumstances, it can realize high precision stainless steel pipes, high degree of automation to automatic cutting,simplified operation steps at the same time, increased the applicability of the system, provided a kind of advanced stainless steel thin wall pipe cutting device for the small and medium-sized enterprises.

  19. Development of a guided wave simulator and its application to monitoring of pipe wall thinning

    International Nuclear Information System (INIS)

    Furukawa, Akinori; Kojima, Fumio

    2009-01-01

    Motivated by growing demand for quantitative nondestructive evaluation of pipe wall thinning, the aim of this paper is to develop a simulator for guided wave analysis. First, an inspection system can be represented by a linear elastic system in cylindrical coordinates. Secondly a dynamical numerical scheme for wave propagation on a pipe wall is proposed based on Fourier-Galerkin approach. Finally, the effectiveness and validity of the proposed method are shown in computational experiments. (author)

  20. Nuclear Power Plants Secondary Circuit Piping Wall-Thinning Management in China

    International Nuclear Information System (INIS)

    Zhong Zhimin; Li Jinsong; Zheng Hui

    2012-01-01

    Research and field feedbacks showed that nuclear power plants secondary circuit steam and water piping are more sensitive than that of fuel plant to the attack of flow-accelerated corrosion (FAC). FAC, Liquid droplet impingement or cavitation erosion will cause secondary circuit piping local wall-thinning in NPPs. Without effective management, the wall-thinning in those high energy piping will cause leakage or pipe rupture during nuclear power plant operation, more seriously cause unplanned shut down, injured and fatality, or heavy economic losses. This paper briefly introduces the history, development and state of the art of secondary circuit piping wall-thinning management in China NPPs. Then, the effectiveness of inspection grid size selecting was analyzed in detail based on field feedbacks. EPRI recommendatory inspection grid, JSME code recommendatory grid and plant specific inspection grid were compared and the detection probabilities of local wall-thinning were estimated. Then, the development and application of NPPs Secondary Circuit Piping Wall Thickness Management Information System, developed, operated and maintained by our team, was briefly introduced and the statistical analysis results of 11 PWR units were shared. It was conclude that the long term, systemic, effective wall-thinning management strategy of high energy piping was very important to the safety and economic operation of NPPs. Furthermore, take into account the actual situation of China nuclear power plants, some advice and suggestion on developing effective nuclear power plant secondary circuit steam and water piping wall-thinning management system are put forward from code development, design and manufacture, operation management, pipeline and locations selection, inspection method selection and application, thickness measurement result evaluation, residual life predication and decision making, feedbacks usage, personnel training and etc. (author)

  1. Revisited the mathematical derivation wall thickness measurement of pipe for radiography

    Energy Technology Data Exchange (ETDEWEB)

    Hamzah, A.R.; Amir, S.M.M. [Non Destructive Testing(NDT) Group, Industrial Technology Div., Malaysian Nuclear Agency, Selangor (Malaysia)

    2007-07-01

    Wall thickness measurement of pipe is very important of the structural integrity of the industrial plant. However, the radiography method has an advantage because the ability of penetrating the insulated pipe. This will have economic benefit for industry. Moreover, the era of digital radiography has more advantages because the speed of radiographic work, less exposure time and no chemical used for film development. Either the conventional radiography or digital radiology, the wall thickness measurement is using the tangential radiography technique (TRT). In case, of a large diameter, pipe (more than inches) the determination maximum penetration wall thickness must be taken into the consideration. This paper is revisited the mathematical derivation of the determination of wall thickness measurement based on tangential radiography technique (TRT). The mathematical approach used in this derivation is the Pythagoras theorem and geometrical principles. In order to derive the maximum penetration wall thickness a similar approach is used. (authors)

  2. Safety assessment of pipes with multiple local wall thinning defects under pressure and bending moment

    International Nuclear Information System (INIS)

    Peng Jian; Zhou Changyu; Xue Jilin; Dai Qiao; He Xiaohua

    2011-01-01

    The safety assessment of pipes with local wall thinning defects is highly important in engineering. Most attention has been paid on the safety assessment of pipe with single local wall thinning defect, while the studies about multiple local wall thinning defects are not nearly enough. However, the interaction of multiple local wall thinning defects in some conditions is great, and may have a great impact on the safety assessment. In the present standard API 579/ASME FFS, the safety assessment of pipes with multiple local wall thinning defects is given, while as well as the influence of load condition, the influences of arrangement and relative depth of defects are ignored, which may influence the safety assessment considerably. In this paper, the influence of the interaction between multiple local wall thinning defects on the remaining strength of pipes at different arrangements and depths of defects under different load conditions (pressure, tension-bending moment and compression-bending moment) are studied. A quantified index is defined to describe the interaction between defects quantitatively. For different arrangements and relative depths of defects, based on a limit value 0.05 of the quantified index of the interaction between defects, a relatively systematic safety assessment of pipes with multiple local wall thinning defects under different load conditions has been proposed.

  3. Evaluation of stresses in large diameter, thin walled piping at support locations

    International Nuclear Information System (INIS)

    Bryan, B.J.; Flanders, H.E. Jr.; Rawls, G.B. Jr.

    1992-01-01

    The highest stresses in many thin walled piping systems are the local stresses at the pipe supports. These secondary stresses are caused by saddles or other structural discontinuities that restrain pipe ovalization. A static analysis of a thin walled pipe supported on structural steel saddle under dead weight loading is presented. The finite element analysis is performed using a shell model with distributed gravity and hydrostatic pressure loading. Parametric studies on global and local stress are performed to determine the effect of the pipe diameter to thickness ratio. Two aspects of the saddle design are also investigated: the effect of saddle width, and the effect of saddle wrap angle. Additionally, the computed stresses are compared to closed form solutions

  4. Measurement of pipe wall thinning by ultra acoustic resonance technique using optical fiber

    International Nuclear Information System (INIS)

    Shirai, Takehiro; Machijima, Yuichi

    2009-01-01

    This is the novel system for Pipe Wall Thickness measurement which is combined EAMT(Electro Magnetic Acoustic Transducer) and Optical Fiber Sensor. The conventional ultrasonic thickness meter is using in pipe wall thickness measurement. However, it is necessary to remove a heat insulator from pipe line. A characteristic of this novel system is that it is possible to measure without removing a heat insulator and on-line monitoring, because of measurement probe is attached between pipe surface and heat insulator. As a result of measured with this system, we could measure 30 mm thickness of carbon and stainless steel at the maximum and pipe specimen of elbow shape. Heat-resistant characteristic confirmed at 200 degrees C until about 7000 hours. (author)

  5. Reliability assessment for thickness measurements of pipe wall using probability of detection

    International Nuclear Information System (INIS)

    Nakamoto, Hiroyuki; Kojima, Fumio; Kato, Sho

    2013-01-01

    This paper proposes a reliability assessment method for thickness measurements of pipe wall using probability of detection (POD). Thicknesses of pipes are measured by qualified inspectors with ultrasonic thickness gauges. The inspection results are affected by human factors of the inspectors and include some errors, because the inspectors have different experiences and frequency of inspections. In order to ensure reliability for inspection results, first, POD evaluates experimental results of pipe-wall thickness inspection. We verify that the results have differences depending on inspectors including qualified inspectors. Second, two human factors that affect POD are indicated. Finally, it is confirmed that POD can identify the human factors and ensure reliability for pipe-wall thickness inspections. (author)

  6. Effects of Schmidt number on near-wall turbulent mass transfer in pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chang Woo; Yang, Kyung Soo [Inha University, Incheon (Korea, Republic of)

    2014-12-15

    Large Eddy simulation (LES) of turbulent mass transfer in circular-pipe flow has been performed to investigate the characteristics of turbulent mass transfer in the near-wall region. We consider a fully-developed turbulent pipe flow with a constant wall concentration. The Reynolds number under consideration is Re{sub r} = 500 based on the friction velocity and the pipe radius, and the selected Schmidt numbers (Sc) are 0.71, 5, 10, 20 and 100. Dynamic subgrid-scale (SGS) models for the turbulent SGS stresses and turbulent mass fluxes were employed to close the governing equations. The current paper reports a comprehensive characterization of turbulent mass transfer in circular-pipe flow, focusing on its near-wall characteristics and Sc dependency. We start with mean fields by presenting mean velocity and concentration profiles, mean Sherwood numbers and mean mass transfer coefficients for the selected values of the parameters. After that, we present the characteristics of fluctuations including root-mean-square (rms) profiles of velocity, concentration, and mass transfer coefficient fluctuations. Turbulent mass fluxes and correlations between velocity and concentration fluctuations are also discussed. The near-wall behaviour of turbulent diffusivity and turbulent Schmidt number is shown, and other authors' correlations on their limiting behaviour towards the pipe wall are evaluated based on our LES results. The intermittent characteristics of turbulent mass transfer in pipe flow are depicted by probability density functions (pdf) of velocity and concentration fluctuations; joint pdfs between them are also presented. Instantaneous snapshots of velocity and concentration fluctuations are shown to supplement our discussion on the turbulence statistics. Finally, we report the results of octant analysis and budget calculation of concentration variance to clarify Sc-dependency of the correlation between near-wall turbulence structures and concentration fluctuation in

  7. Effects of Schmidt number on near-wall turbulent mass transfer in pipe flow

    International Nuclear Information System (INIS)

    Kang, Chang Woo; Yang, Kyung Soo

    2014-01-01

    Large Eddy simulation (LES) of turbulent mass transfer in circular-pipe flow has been performed to investigate the characteristics of turbulent mass transfer in the near-wall region. We consider a fully-developed turbulent pipe flow with a constant wall concentration. The Reynolds number under consideration is Re r = 500 based on the friction velocity and the pipe radius, and the selected Schmidt numbers (Sc) are 0.71, 5, 10, 20 and 100. Dynamic subgrid-scale (SGS) models for the turbulent SGS stresses and turbulent mass fluxes were employed to close the governing equations. The current paper reports a comprehensive characterization of turbulent mass transfer in circular-pipe flow, focusing on its near-wall characteristics and Sc dependency. We start with mean fields by presenting mean velocity and concentration profiles, mean Sherwood numbers and mean mass transfer coefficients for the selected values of the parameters. After that, we present the characteristics of fluctuations including root-mean-square (rms) profiles of velocity, concentration, and mass transfer coefficient fluctuations. Turbulent mass fluxes and correlations between velocity and concentration fluctuations are also discussed. The near-wall behaviour of turbulent diffusivity and turbulent Schmidt number is shown, and other authors' correlations on their limiting behaviour towards the pipe wall are evaluated based on our LES results. The intermittent characteristics of turbulent mass transfer in pipe flow are depicted by probability density functions (pdf) of velocity and concentration fluctuations; joint pdfs between them are also presented. Instantaneous snapshots of velocity and concentration fluctuations are shown to supplement our discussion on the turbulence statistics. Finally, we report the results of octant analysis and budget calculation of concentration variance to clarify Sc-dependency of the correlation between near-wall turbulence structures and concentration fluctuation in the

  8. Development of assessment methodology for locally wall-thinned pipe under combined loading

    International Nuclear Information System (INIS)

    Shim, Do Jun; Kim, Yun Jae; Kim, Young Jin; Park, Chi Yong

    2005-01-01

    Recently authors have proposed a new method to estimate failure strength of a pipe with local wall thinning subject to either internal pressure or global bending. The proposed method was based on the equivalent stress averaged over the minimum ligament in the locally wall thinned region, and the simple scheme to estimate the equivalent stress in the minimum ligament was proposed, based on the reference stress concept. This paper extends the new method to combined internal pressure and global bending. The proposed method is validated against FE results for various geometries of local wall thinning under combined loading. The effect of internal pressure is also investigated in the present study. Comparison of maximum moments, predicted according to the proposed method, with published full-scale pipe test data for locally wall-thinned pipes under combined internal pressure and global bending, shows good agreement

  9. Failure pressure of straight pipe with wall thinning under internal pressure

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Suzuki, Tomohisa; Meshii, Toshiyuki

    2008-01-01

    The failure pressure of pipe with wall thinning was investigated by using three-dimensional elastic-plastic finite element analyses (FEA). With careful modeling of the pipe and flaw geometry in addition to a proper stress-strain relation of the material, FEA could estimate the precise burst pressure obtained by the tests. FEA was conducted by assuming three kinds of materials: line pipe steel, carbon steel, and stainless steel. The failure pressure obtained using line pipe steel was the lowest under the same flaw size condition, when the failure pressure was normalized by the value of unflawed pipe defined using the flow stress. On the other hand, when the failure pressure was normalized by the results of FEA obtained for unflawed pipe under various flaw and pipe configurations, the failure pressures of carbon steel and line pipe steel were almost the same and lower than that of stainless steel. This suggests that the existing assessment criteria developed for line pipe steel can be applied to make a conservative assessment of carbon steel and stainless steel

  10. Numerical investigation on residual stress distribution and evolution during multipass narrow gap welding of thick-walled stainless steel pipes

    International Nuclear Information System (INIS)

    Liu, C.; Zhang, J.X.; Xue, C.B.

    2011-01-01

    Research highlights: → We performed pass-by-pass simulation of stresses for welding of thick-walled pipes. → The distributions and evolution of the residual stresses are demonstrated. → After the groove is filled to a height, the through-wall stress is almost unchanged. - Abstracts: The detailed pass-by-pass finite element (FE) simulation is presented to investigate the residual stresses in narrow gap multipass welding of pipes with a wall thickness of 70 mm and 73 weld passes. The simulated residual stress on the outer surface is validated with the experimental one. The distribution and evolution of the through-wall residual stresses are demonstrated. The investigated results show that the residual stresses on the outer and inner surfaces are tensile in the weld zone and its vicinity. The through-wall axial residual stresses at the weld center line and the HAZ line demonstrate a distribution of bending type. The through-wall hoop residual stress within the weld is mostly tensile. After the groove is filled to a certain height, the peak tensile stresses and the stress distribution patterns for both axial and hoop stresses remain almost unchanged.

  11. Heat Conductivity Resistance of Concrete Wall Panel by Water Flowing in Different Orientations of Internal PVC pipe

    Science.gov (United States)

    Umi, N. N.; Norazman, M. N.; Daud, N. M.; Yusof, M. A.; Yahya, M. A.; Othman, M.

    2018-04-01

    Green building technology and sustainability development is current focus in the world nowadays. In Malaysia and most tropical countries the maximum temperature recorded typically at 35°C. Air-conditioning system has become a necessity in occupied buildings, thereby increasing the cost of electric consumption. The aim of this study is to find out the solution in minimizing heat transfer from the external environment and intentions towards going green. In this study, the experimental work includes testing three types of concrete wall panels. The main heat intervention material in this research is 2 inch diameter Polyvinyl Chloride (PVC) pipe embedded at the center of the concrete wall panel, while the EPS foam beads were added to the cement content in the concrete mix forming the outer layer of the wall panel. Water from the rainwater harvesting system is regulated in the PVC pipe to intervene with the heat conductivity through the wall panel. Results from the experimental works show that the internal surface temperature of these heat resistance wall panels is to 3□C lower than control wall panel from plain interlocking bricks.

  12. Economic Analysis of Installing Fixed and Removable Insulation for Pipe Wall Thinning Management

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Kyeongmo; Yun, Hun [KEPCO E and C, Gimcheon (Korea, Republic of)

    2016-12-15

    To perform ultrasonic testing (UT) thickness measurement of the secondary side piping installed in nuclear power plants, the insulation for preventing heat loss should be removed. The type of insulation can be divided into fixed and removable insulation. Fixed and removable insulation have their own strengths and weaknesses. Removable insulation has been installed in the components susceptible to wall thinning caused by FAC and erosion from Shin-Kori unit 1, which commenced its commercial operation in 2011. In this paper, the number of repeated inspections of components and the number of replacements of fixed insulation were estimated and a more economical way was identified based on the manufacturing and installation costs for fixed and removable insulation.

  13. Online monitoring of pipe wall thinning by electromagnetic acoustic resonance method

    International Nuclear Information System (INIS)

    Urayama, Ryoichi; Takagi, Toshiyuki; Uchimoto, Tetsuya; Kanemoto, Shigeru

    2013-01-01

    The electromagnetic acoustic resonance (EMAR) method provides accurate and stable evaluation in high temperature environment, and it is an effective tool for online monitoring. In this study, the EMAR method and the superposition of the n-th compression (SNC) for data processing are applied to online monitoring of pipe wall thinning, and the accuracy and reliability of the measurements are demonstrated through field tests using a large-scale corrosion test loop at high temperature. To measure the thickness of pipes with complicated wall thinning, the SNC extracts thickness information from the spectral responses of the EMAR. Results from monitoring test show that EMAR with SNC can evaluate pipe wall thinning with an accuracy of 10 μm at 165degC. In addition, time evaluation of evaluated thickness decreases monotonically all over the test duration, which indicates high stability of this measurement technique. (author)

  14. Development of NDT simulator with method of mapping for detection of pipe wall thinning using EMAT

    International Nuclear Information System (INIS)

    Yamaguchi, Hiroshi; Kojima, Fumio; Kosaka, Daigo

    2009-01-01

    This paper is concerned with a simulator related to nondestructive test using Electromagnetic Acoustic Transducer (EMAT). The simulator developed here can be applied to pipe wall thinning of stainless steel used in nuclear power plants. First, mathematical models for the inspection are given by a transient eddy current equation and by a time dependent elastic wave equation in two dimensions. Secondly, shape of pipe wall thinning is modeled by B-spline function and is applied to the mathematical models using method of mapping. Finally, the validity of the proposed simulator is shown through numerical experiment. (author)

  15. New developments in velocity profile measurement and pipe wall wear monitoring for hydrotransport lines

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, C.; Maron, R.J. [CiDRA Minerals Processing Inc., Wallingford, CT (United States); Fernald, M.; Bailey, T. [CiDRA Corporate Services, Wallingford, CT (United States); Van der Spek, A. [ZDOOR, Rotterdam (Netherlands)

    2009-07-01

    Sonar array flow measurement technology was initially developed a decade ago with the goal of non-invasively measuring multi-phase flows in the petroleum industry. The same technology was later adapted to the mineral processing industry where it has been rapidly adopted. The specific sensor technology, based on piezoelectric film sensors, provides unique measurement capabilities, including the ability to non-invasively measure localized strains in the walls of pipes. Combined with sonar array processing algorithms, an axial array of such sensors can measure flow velocities within a pipe. The sensors are useful for monitoring and managing slurry flow in horizontal pipes since they provide real-time velocity profiles measurement. The information is useful in determining the approach and onset of solid deposition on the bottom of the pipe. The sensors also provide a non-invasive measurement of pipe wear on slurry lines. Such measurements are currently made by hand-held portable ultrasonic thickness gages. The shortfalls associated with this manual method are overcome with a set of permanently or semi-permanently installed transducers clamped onto the outside of the pipe, where sensors measure the thickness of the pipe. This system and approach results in better repeatability and accuracy compared to manual methods. It also decreases inspection labor costs and pipe access requirements. It was concluded that the potential impact on personnel safety and environmental savings will be significant. 3 refs., 20 figs.

  16. Methodology to calculate wall thickness in metallic pipes

    International Nuclear Information System (INIS)

    Ramirez, G.F.; Feliciano, H.J.

    1992-01-01

    The principal objective in the developing of the activities of industrial type is to carry out a efficient and productive task: that implies necessarily to know the best working conditions of the equipment and installations to be concerned. The applications of the radioisotope techniques have a long time as useful tools in several fields of human work. For example, in the Petroleos Mexicanos petrochemical complexes, by safety reasons and for to avoid until maximum the losses, it must be know with a high possible precision the operation regimes of the lines of tubes that they conduce the hydrocarbons, with the purpose to know when they should be replaced the defective or wasted pieces. In the Mexican Petroleum Institute is carrying out a work that it has by objective to develop a methodology bases in the use of radioisotopes that permits to determine the average thickness of the metallic tubes wall, that they have thermic insulator, with a precision of ±0.127 mm (±5 thousandth inch). The method is based in the radiation use emitted by Cs-137 sources. In this work it is described the methodology development so as the principal results obtained. (Author)

  17. Pipe Wall Thinning Evaluation through the Arrival Time Delay of A0 Lamb Wave Using Magnetostrictive Patch Transducers

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seung Hyun; Kwon, Hyu Sang; Ahn, Bong Young; Lee, Seung Seok [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2008-12-15

    Guided wave technology is advantageous for fast inspection of pipe wall thinning since the guided wave propagates long distance. In this investigation, the method to evaluate gradual wall thinning in a pipe based on the arrival time delay with magnetostrictive patch transducers is presented. Low frequency A0 Lamb waves were generated and measured by the present transducer and it was applied to arrival time delay measurement experiments on a test pipe having gradual wall thinnings artificially manufactured. From experiments, consistent results that wall thinning increases the arrival time delay of A0 waves were obtained. Consequently, the feasibility of the magnetostrictive patch transducers to evaluate wall thinning was verified

  18. Pipe Wall Thinning Evaluation through the Arrival Time Delay of A0 Lamb Wave Using Magnetostrictive Patch Transducers

    International Nuclear Information System (INIS)

    Cho, Seung Hyun; Kwon, Hyu Sang; Ahn, Bong Young; Lee, Seung Seok

    2008-01-01

    Guided wave technology is advantageous for fast inspection of pipe wall thinning since the guided wave propagates long distance. In this investigation, the method to evaluate gradual wall thinning in a pipe based on the arrival time delay with magnetostrictive patch transducers is presented. Low frequency A0 Lamb waves were generated and measured by the present transducer and it was applied to arrival time delay measurement experiments on a test pipe having gradual wall thinnings artificially manufactured. From experiments, consistent results that wall thinning increases the arrival time delay of A0 waves were obtained. Consequently, the feasibility of the magnetostrictive patch transducers to evaluate wall thinning was verified

  19. Assessment of Pipe Wall Loss Using Guided Wave Testing

    International Nuclear Information System (INIS)

    Joo, Kyung Mun; Jin, Seuk Hong; Moon, Yong Sig

    2010-01-01

    Flow accelerated corrosion(FAC) of carbon steel pipes in nuclear power plants has been known as one of the major degradation mechanisms. It could have bad influence on the plant reliability and safety. Also detection of FAC is a significant cost to the nuclear power plant because of the need to remove and replace insulation. Recently, the interest of the guided wave testing(GWT) has grown because it allows long range inspection without removing insulation of the pipe except at the probe position. If GWT can be applied to detection of FAC damages, it will can significantly reduce the cost for the inspection of the pipes. The objective of this study was to determine the capability of GWT to identify location of FAC damages. In this paper, three kinds of techniques were used to measure the amplitude ratio between the first and the second welds at the elbow area of mock-ups that contain real FAC damages. As a result, optimal inspection technique and minimum detectability to detect FAC damages drew a conclusion

  20. Detection of wall thinning of carbon steel pipe covered with insulation using Pulsed Eddy Current technique

    International Nuclear Information System (INIS)

    Park, Duckgun; Kishore, M. B.; Lee, D. H.

    2013-01-01

    The test sample is a ferromagnetic carbon steel pipe having different thickness, covered with a 10 cm plastic insulation laminated by 0.4 mm Al plate to simulate the pipelines in NPPs. The PEC Probe used for the wall thinning detection consists of an excitation coil and a Hall sensor. The excitation coils in the probe is driven by a rectangular bipolar current pulse and the Hall-sensor will detects the resultant field. The Hall sensor output is considered as PEC signal. Results shows that the PEC system can detect wall thinning in an insulated pipeline of the NPPs. Local wall thinning in pipelines affects the structural integrity of industries like nuclear power plants (NPPs). In the present study a pulsed eddy current (PEC) technology to detect the wall thing of carbon steel pipe covered with insulation is developed

  1. ON-POWER DETECTION OF PIPE WALL-THINNED DEFECTS USING IR THERMOGRAPHY IN NPPS

    Directory of Open Access Journals (Sweden)

    JU HYUN KIM

    2014-04-01

    Full Text Available Wall-thinned defects caused by accelerated corrosion due to fluid flow in the inner pipe appear in many structures of the secondary systems in nuclear power plants (NPPs and are a major factor in degrading the integrity of pipes. Wall-thinned defects need to be managed not only when the NPP is under maintenance but also when the NPP is in normal operation. To this end, a test technique was developed in this study to detect such wall-thinned defects based on the temperature difference on the surface of a hot pipe using infrared (IR thermography and a cooling device. Finite element analysis (FEA was conducted to examine the tendency and experimental conditions for the cooling experiment. Based on the FEA results, the equipment was configured before the cooling experiment was conducted. The IR camera was then used to detect defects in the inner pipe of the pipe specimen that had artificially induced defects. The IR thermography developed in this study is expected to help resolve the issues related to the limitations of non-destructive inspection techniques that are currently conducted for NPP secondary systems and is expected to be very useful on the NPPs site.

  2. Exact solution for flow in a porous pipe with unsteady wall suction and/or injection

    Science.gov (United States)

    Tsangaris, S.; Kondaxakis, D.; Vlachakis, N. W.

    2007-10-01

    This paper presents an extension of the exact solution of the steady laminar axisymmetric flow in a straight pipe of circular cross section with porous wall, given by R.M. Terrill, to the case of unsteady wall injection and/or suction. The cases of the pulsating parabolic profile and of the developed pulsating flow are investigated as examples. The pulsating flow in porous ducts has many applications in biomedical engineering and in other engineering areas.

  3. Wall thinning inspection technique for large-diameter piping using guided wave

    International Nuclear Information System (INIS)

    Miki, Masahiro; Nagashima, Yoshiaki; Endou, Masao; Kodaira, Kojiro; Maniwa, Kazuhiko

    2009-01-01

    Guided wave inspection technique is effective for detecting defects like corrosion in piping, because it can perform long range inspection. It is possible to expect this inspection as a method that leads to the decrease of the inspection process and its cost, because the incidental work can be reduced. Especially, the contraction effect of the inspection work is extensive in large-diameter piping inspection. In this paper, we introduce the guided wave inspection system to large-diameter piping. The feature is a guided wave sensor that can freely transform according to the curvature of inspection object, and portable inspection equipment. We discuss the result of detection examination for artificial wall-thinning in large-diameter piping using this system. (author)

  4. Application of numerical analysis technique to make up for pipe wall thinning prediction program

    International Nuclear Information System (INIS)

    Hwang, Kyeong Mo; Jin, Tae Eun; Park, Won; Oh, Dong Hoon

    2009-01-01

    Flow Accelerated Corrosion (FAC) leads to wall thinning of steel piping exposed to flowing water or wet steam. Experience has shown that FAC damage to piping at fossil and nuclear plants can lead to costly outages and repairs and can affect plant reliability and safety. CHEWORKS have been utilized in domestic nuclear plants as a predictive tool to assist FAC engineers in planning inspections and evaluating the inspection data to prevent piping failures caused by FAC. However, CHECWORKS may be occasionally left out local susceptible portions owing to predicting FAC damage by pipeline group after constructing a database for all secondary side piping in nuclear plants. This paper describes the methodologies that can complement CHECWORKS and the verifications of the CHECWORKS prediction results in terms of numerical analysis. FAC susceptible locations based on CHECWORKS for the two pipeline groups of a nuclear plant was compared with those of numerical analysis based on FLUENT.

  5. Effect of longitudinal vibration of fluid-filled pipe with elastic wall on sound transmission character

    Directory of Open Access Journals (Sweden)

    DONG Peng

    2017-01-01

    Full Text Available When one end of a fluid-filled pipe with an elastic wall is fixed and a harmonic force effect acts on the other end,a steady longitudinal vibration will be produced. Compared to the pipeline resonance mode,the amplitude of the steady longitudinal vibration of an elastic pipe is greater,and the effect on the sound is also greater. The study of the steady longitudinal vibration of pipes can better describe the effects of fluid-filled pipelines on the radiation sound field of the pipe opening. Through the contrast between the analysis calculation of the equivalent beam model and the experimental results,the accuracy of the equivalent beam model for the calculation of the steady longitudinal vibration of pipelines is verified,and a method of isolating the steady longitudinal vibration state is proposed and verified.

  6. Crack resistance of austenitic pipes with circumferential through-wall cracks

    International Nuclear Information System (INIS)

    Foerster, K.; Grueter, L.; Setz, W.; Bhandari, S.; Debaene, J.P.; Faidy, C.; Schwalbe, K.H.

    1993-01-01

    For monotonously increasing load the correct evaluation of the crack resistance properties of a structure is essential for safety analyses. Considerable attention has been given to the through-wall case, since this is generally believed to be the controlling case with regard to complete pipe failure. The maximum load conditions for circumferential crack growth in pipes under displacement-controlled loadings has been determined. The need for crack resistance curves, measured on circumferentially through-wall cracked straight pipes of austenitic stainless steel 316L under bending, is emphasized by the limitation in the data range on small specimens and by the differences in the procedures. To answer open questions and to improve calculational methods a joint fracture mechanics program is being performed by Electricite de France, Novatome and Siemens-Interatom. The working program contains experimental and theoretical investigations on the applicability of small-specimen data to real structures. 10 refs., 10 figs., 4 tabs

  7. Conjugate heat transfer for turbulent flow in a thick walled plain pipe

    Directory of Open Access Journals (Sweden)

    Canli Eyub

    2018-01-01

    Full Text Available Laminar and turbulent flow have their own characteristics in respect of heat transfer in pipes. While conjugate heat transfer is a major concern for a thick walled pipe with laminar flow inside it, there are limited studies about a turbulent flow in a thick walled plain pipe considering the conjugate heat transfer. In order to conduct such a work by means of in-house developed code, it was desired to make a preliminary investigation with commercially available CFD codes. ANSYS CFD was selected as the tool since it has a positive reputation in the literature for reliability. Defined heat transfer problem was solved with SIMPLE and Coupled Schemes for pressure velocity coupling and results are presented accordingly.

  8. Advanced management of pipe wall thinning based on prediction-monitor fusion

    International Nuclear Information System (INIS)

    Kojima, Fumio; Uchida, Shunsuke

    2012-01-01

    This article is concerned with pipe wall thinning management system by means of hybrid use of simulation and monitoring. First, the computer-aided simulation for predicting wear rate of piping system is developed based on elucidation of thinning mechanism such as flow-accelerated corrosion (FAC). The accurate prediction of wear rate allows us the useful information on region of interest of inspection. Secondly, several monitoring methods are considered in accordance with interest of inspection. Thirdly, probability of detection (POD) is considered for the reliability of inspection data. The final part of this article is devoted to how to improve safety performance under the hybrid use of predicting and monitoring on the proposed pipe wall management. (author)

  9. Trend of field data on pipe wall thinning for BWR power plants

    International Nuclear Information System (INIS)

    Hakii, Junichi; Hiranuma, Naoki; Hidaka, Akitaka

    2009-01-01

    Strongly motivated by every stakeholder not to repeat Mihama Nuclear Power Station pipe rupture accident in August 2004, JSME Main Committee on Codes and Standards on Power Generation Facilities immediately launched a special task force to develop Rules on Pipe Wall Thinning Management for BWR, PWR and fossil Power Plants respectively. The authors describes the process of the development of Rules for BWR Power Plans from the view point of collections and analysis of fields data of pipe wall thinning. Through its activities, the authors confirmed the existing findings, like the effect of Oxygen injection, turbulence and dependence on coolant temperature, derived from series of laboratory-scaled experiments in FAC and coolant velocities effects in LDI. Further based upon the said proven findings with field data, they explain the adequacy of major concept of the rule such as separate treatment of FAC (Flow Accelerated Corrosion) and LDI (Liquid Droplet Impingement). (author)

  10. The stability of through-wall circumferential cracks in cylindrical pipes subjected to bending loads

    International Nuclear Information System (INIS)

    Smith, E.

    1983-01-01

    Tada, Paris and Gamble have used the tearing modulus approach to show that when a circumferential through-wall crack exists in a 304 SS circular cylindrical pipe, and the pipe is subjected to an applied bending moment, then crack growth requires the rotation at the pipe-ends to be increased, (i.e. crack growth is stable), unless the pipe length is unduly large. On this basis it was concluded that unstable fracture is unlikely to occur in BWR SS piping, when the system is designed in accord with the ASME Code load levels for normal operation and anticipated transients. The Tada-Paris-Gamble analysis focuses on the inter-relation between instability and the onset of crack extension, and does not specifically consider the possibility that a crack might become unstable after some stable crack extension. The paper addresses this aspect of the crack stability problem using a crack tip opening angle criterion for crack extension, which has similarities with the tearing modulus approach. The results show that unstable fracture should not occur even after some stable crack extension, again provided that the pipe length is not unduly large. In other words, guillotine failure of a pipe in a BWR system is unlikely, even though the ASME Code limiting stress levels as might be exceeded, as may be the case with a very severe earthquake. (orig./HP)

  11. Crack-opening area calculations for circumferential through-wall pipe cracks

    Energy Technology Data Exchange (ETDEWEB)

    Kishida, K.; Zahoor, A.

    1988-08-01

    This report describes the estimation schemes for crack opening displacement (COD) of a circumferential through-wall crack, then compares the COD predictions with pipe experimental data. Accurate predictions for COD are required to reliably predict the leak rate through a crack in leak-before-break applications.

  12. Crack-opening area calculations for circumferential through-wall pipe cracks

    International Nuclear Information System (INIS)

    Kishida, K.; Zahoor, A.

    1988-08-01

    This report describes the estimation schemes for crack opening displacement (COD) of a circumferential through-wall crack, then compares the COD predictions with pipe experimental data. Accurate predictions for COD are required to reliably predict the leak rate through a crack in leak-before-break applications

  13. Computed simulation of radiographies of pipes - validation of techniques for wall thickness measurements

    International Nuclear Information System (INIS)

    Bellon, C.; Tillack, G.R.; Nockemann, C.; Wenzel, L.

    1995-01-01

    A macroscopic model of radiographic NDE methods and applications is given. A computer-aided approach for determination of wall thickness from radiographs is presented, guaranteeing high accuracy and reproducibility of wall thickness determination by means of projection radiography. The algorithm was applied to computed simulations of radiographies. The simulation thus offers an effective means for testing such automated wall thickness determination as a function of imaging conditions, pipe geometries, coatings, and media tracking, and likewise is a tool for validation and optimization of the method. (orig.) [de

  14. A consideration on pipe-wall thinning mechanisms from an aspect of fluid-mechanics

    International Nuclear Information System (INIS)

    Inada, Fumio; Yoneda, Kimitoshi; Morita, Ryo; Fujiwara, Kazutoshi; Furuya, Masahiro

    2008-01-01

    The contribution of the fluid mechanics to the piping wall thinning phenomena was investigated. It was shown that the fluid force to the wall was quite different between flow accelerated corrosion (FAC) and erosion. The turbulent mass transfer, which is one of the primary factors of FAC, was analogous to the turbulent heat transfer. The model that the molecular transport in the viscous sublayer nearby soon of wall was predominant was practicable. In addition, the mass transport was predicted using commercial codes of computational fluid dynamics. Some prediction results of the mass transfer in orifice and the elbow using above techniques were explained. (author)

  15. Bacterial community radial-spatial distribution in biofilms along pipe wall in chlorinated drinking water distribution system of East China.

    Science.gov (United States)

    Liu, Jingqing; Ren, Hongxing; Ye, Xianbei; Wang, Wei; Liu, Yan; Lou, Liping; Cheng, Dongqing; He, Xiaofang; Zhou, Xiaoyan; Qiu, Shangde; Fu, Liusong; Hu, Baolan

    2017-01-01

    Biofilms in the pipe wall may lead to water quality deterioration and biological instability in drinking water distribution systems (DWDSs). In this study, bacterial community radial-spatial distribution in biofilms along the pipe wall in a chlorinated DWDS of East China was investigated. Three pipes of large diameter (300, 600, and 600 mm) were sampled in this DWDS, including a ductile cast iron pipe (DCIP) with pipe age of 11 years and two gray cast iron pipes (GCIP) with pipe ages of 17 and 19 years, and biofilms in the upper, middle, and lower parts of each pipe wall were collected. Real-time quantitative polymerase chain reaction (qPCR) and culture-based method were used to quantify bacteria. 454 pyrosequencing was used for bacterial community analysis. The results showed that the biofilm density and total solid (TS) and volatile solid (VS) contents increased gradually from the top to the bottom along the pipe wall. Microorganisms were concentrated in the upper and lower parts of the pipe wall, together accounting for more than 80 % of the total biomass in the biofilms. The bacterial communities in biofilms were significantly different in different areas of the pipe wall and had no strong interaction. Compared with the upper and lower parts of the pipe wall, the bacterial community in the middle of the pipe wall was distributed evenly and had the highest diversity. The 16S rRNA genes of various possible pathogens, including Escherichia coli, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Salmonella enterica, were detected in the biofilms, and the abundances of these possible pathogens were highest in the middle of the pipe wall among three areas. The detachment of the biofilms is the main reason for the deterioration of the water quality in DWDSs. The results of this study suggest that the biofilms in the middle of the pipe wall have highly potential risk for drinking water safety, which provides new ideas for the study of the microbial ecology in

  16. New technical knowledge to be implemented to the revision of rules on pipe wall thinning management for PWR plants

    International Nuclear Information System (INIS)

    Hirai, Junya; Nakamura, Takao; Amano, Yoichi

    2013-01-01

    Rules for PWR plant pipe wall thinning management were formulated by the Japan Society of Mechanical Engineers in 2006. Since then thinning management of Japanese PWR plants has been carried out based on this rule. Pipe wall thinning phenomena to be dealt with in this rule have been identified in many piping components of power plants. New technical knowledge has been accumulated since the issuance of 2006 edition. We have formulated these knowledge and information about the thinning phenomena in PWR power plants. Given the history of application of this rule, we have to make our best effort to carry out a study of latest technical knowledge and implement them to the revision of rule and improve pipe wall thinning management. This paper summarizes the new technical knowledge and basis to be implemented to the revision of rules on pipe wall thinning management for PWR plants in Japan. (author)

  17. Verifications of ES-DCPD method for piping wall thickness monitoring in the SFASL

    International Nuclear Information System (INIS)

    Ryu, Kyung Ha; Kim, Ji Hak; Hwang, Il Soon

    2009-01-01

    Although various monitoring systems, algorithm and the concept of redundant systems were developed for nuclear power plant's (NPP) aged components, accidents in NPPs have been reported continuously such as Surry unit-2 flow accelerated corrosion (FAC) accident and Mihama unit-3 FAC accident. We developed a new piping wall loss monitoring system using equipotential switching direct current potential drop (ES-DCPD) method. This method can be used as a screening method with high speed, thus can also be used as a precise online monitoring method. This method has been developed and planned for a demonstration to a NPP's secondary side piping system in Korea

  18. Ultrasonic measurements on residual stress in autofrettged thick walled petroleum pipes

    International Nuclear Information System (INIS)

    Woias, G.; Mizera, J.

    2008-01-01

    The residual stresses in a component or structure are caused by incompatible permanent deformation and related gradient of plastic/elastic strains. They may be generated or modified at every stage in the components life cycle, from original material production to final disposal. Residual stresses can be measured by non-destructive techniques, including X-ray and neutron diffraction, magnetic and ultrasonic methods. The selection of the optimum measurement technique should take account volumetric resolution, material, geometry and access to the component. For large metallic components neutron diffraction is of prime importance as it provides quantitative information on stresses in relatively large volume of methods disregarding its shape complexity. Residual stresses can play a significant role in explaining or preventing failure of components of industrial installations. One example of residual stresses preventing failure are the ones generated by shot peening, inducing surface compressive stresses that improve the fatigue life. Petroleum refinery piping is generally characterized by large-diameters, operated at elevated temperature and under high pressure. Pipelines of a polyethylene plant working in one of the Polish refineries are subjected to pressures exceeding 300 MPa at temperatures above 200 o C. The pipes considered here were pressurized with pressure of 600 MPa. The wall thickness of the pipes is 27 mm and pipe dimensions are 46 x 100 mm. The material is steel with Re=580 MPa. Due to pressurizing, the components retain compressive stresses at the internal surface. These stresses increase resistance to cracking of the pipes. Over the period of exploitation these stresses diminish due to temperature activated relaxation or creep. The purpose of the project is to verify kinetics of such a relaxation process and calibrate alternative methods of their measurements. To avoid stress relaxation, numerical analysis from Finite Element Modelling (FEM)gave an

  19. Experience of measuring wall thicknesses of district heating pipes in use with free-floating salamanders (pigs)

    International Nuclear Information System (INIS)

    Barbian, O.A.; Goedecke, H.; Krieg, W.

    1992-01-01

    A test system for district heating pipes (laid above ground or in the ground or in the offshore field) is introduced, a so-called 'intelligent' test 'pig' which, like in a pneumatic tube, floats through the pipe with the medium during operation and finds out any corrosion damage. The equipment works on the principle of ultrasonic wall thickness testing in immersed technique, and is equipped with a large number of test heads in order to scan the pipe surface completely in one run-through. The data processing in the pig with the aid of microprocessors and the type of data collection in mass memories is briefly described. The test results are clearly shown by coloured graphics, which makes efficient assessment and evaluation of the faults possible. The ability of the system to supply information (data collection, data storage, assessment and evaluation) is demonstrated by a series of typical faults, which were found worldwide in oil and gas pipes. (orig./HP) [de

  20. Assessment of short through-wall circumferential cracks in pipes. Experiments and analysis: March 1990--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Brust, F.W.; Scott, P.; Rahman, S. [Battelle, Columbus, OH (United States)] [and others

    1995-04-01

    This topical report summarizes the work performed for the Nuclear Regulatory Commission`s (NRC) research program entitled ``Short Cracks in Piping and Piping Welds`` that specifically focuses on pipes with short through-wall cracks. Previous NRC efforts, conducted under the Degraded Piping Program, focused on understanding the fracture behavior of larger cracks in piping and fundamental fracture mechanics developments necessary for this technology. This report gives details on: (1) material property determinations, (2) pipe fracture experiments, and (3) development, modification, and validation of fracture analysis methods. The material property data required to analyze the experimental results are included. These data were also implemented into the NRC`s PIFRAC database. Three pipe experiments with short through-wall cracks were conducted on large diameter pipe. Also, experiments were conducted on a large-diameter uncracked pipe and a pipe with a moderate-size through-wall crack. The analysis results reported here focus on simple predictive methods based on the J-Tearing theory as well as limit-load and ASME Section 11 analyses. Some of these methods were improved for short-crack-length predictions. The accuracy of the various methods was determined by comparisons with experimental results from this and other programs. 69 refs., 124 figs, 49 tabs.

  1. Assessment of short through-wall circumferential cracks in pipes. Experiments and analysis: March 1990--December 1994

    International Nuclear Information System (INIS)

    Brust, F.W.; Scott, P.; Rahman, S.

    1995-04-01

    This topical report summarizes the work performed for the Nuclear Regulatory Commission's (NRC) research program entitled ''Short Cracks in Piping and Piping Welds'' that specifically focuses on pipes with short through-wall cracks. Previous NRC efforts, conducted under the Degraded Piping Program, focused on understanding the fracture behavior of larger cracks in piping and fundamental fracture mechanics developments necessary for this technology. This report gives details on: (1) material property determinations, (2) pipe fracture experiments, and (3) development, modification, and validation of fracture analysis methods. The material property data required to analyze the experimental results are included. These data were also implemented into the NRC's PIFRAC database. Three pipe experiments with short through-wall cracks were conducted on large diameter pipe. Also, experiments were conducted on a large-diameter uncracked pipe and a pipe with a moderate-size through-wall crack. The analysis results reported here focus on simple predictive methods based on the J-Tearing theory as well as limit-load and ASME Section 11 analyses. Some of these methods were improved for short-crack-length predictions. The accuracy of the various methods was determined by comparisons with experimental results from this and other programs. 69 refs., 124 figs, 49 tabs

  2. Heat transfer of pulsating laminar flow in pipes with wall thermal inertia

    International Nuclear Information System (INIS)

    Yuan, Hongsheng; Tan, Sichao; Wen, Jing; Zhuang, Nailiang

    2016-01-01

    The effects of wall thermal inertia on heat transfer of pulsating laminar flow with constant power density within the pipe wall are investigated theoretically. The energy equation of the fully developed flow and heat transfer is solved by separation of variables and Green's function. The effects of the pulsation amplitude and frequency, the Prandtl number and the wall heat capacity on heat transfer features characterized by temperature, heat flux and Nusselt number are analyzed. The results show that the oscillation of wall heat flux increases along with the wall thermal inertia, while the oscillation of temperature and Nusselt number is suppressed by the wall thermal inertia. The influence of pulsation on the average Nusselt number is also obtained. The pulsating laminar flow can reduce the average Nusselt number. The Nusselt number reduction of pipe flow are a little more remarkable than that of flow between parallel plates, which is mainly caused by differences in hydraulic and thermal performances of the channels. (authors)

  3. Application of water flowing PVC pipe and EPS foam bead as insulation for wall panel

    Science.gov (United States)

    Ali, Umi Nadiah; Nor, Norazman Mohamad; Yusuf, Mohammed Alias; Othman, Maidiana; Yahya, Muhamad Azani

    2018-02-01

    Malaysia located in tropical climate which have a typical temperature range between 21 °C to 36 °C. Due to this, air-conditioning system for buildings become a necessity to provide comfort to occupants. In order to reduce the energy consumption of the air-conditioning system, the transmission of heat from outdoor to indoor space should be kept as minimum as possible. This article discuss about a technology to resist heat transfer through concrete wall panel using a hybrid method. In this research, PVC pipe was embedded at the center of concrete wall panel while the EPS foam beads were added about 1% of the cement content in the concrete mix forming the outer layer of the wall panel. Water is regulated in the PVC pipe from the rainwater harvesting system. The aim of this study is to minimize heat transfer from the external environment into the building. Internal building temperature which indicated in BS EN ISO 7730 or ASHRAE Standard 55 where the comfort indoor thermal is below 25°C during the daytime. Study observed that the internal surface temperature of heat resistance wall panel is up to 3°C lower than control wall panel. Therefore, we can conclude that application of heat resistance wall panel can lead to lower interior building temperature.

  4. Erosion corrosion in power plant piping systems - Calculation code for predicting wall thinning

    International Nuclear Information System (INIS)

    Kastner, W.; Erve, M.; Henzel, N.; Stellwag, B.

    1990-01-01

    Extensive experimental and theoretical investigations have been performed to develop a calculation code for wall thinning due to erosion corrosion in power plant piping systems. The so-called WATHEC code can be applied to single-phase water flow as well as to two-phase water/steam flow. Only input data which are available to the operator of the plant are taken into consideration. Together with a continuously updated erosion corrosion data base the calculation code forms one element of a weak point analysis for power plant piping systems which can be applied to minimize material loss due to erosion corrosion, reduce non-destructive testing and curtail monitoring programs for piping systems, recommend life-extending measures. (author). 12 refs, 17 figs

  5. Inspection of piping wall loss with flow accelerated corrosion accelerated simulation test

    International Nuclear Information System (INIS)

    Ryu, Kyung Ha; Kim, Ji Hak; Hwang, Il Soon; Lee, Na Young; Kim, Ji Hyun

    2009-01-01

    Flow Accelerated Corrosion (FAC) has become a hot issue for aging of passive components. Ultrasonic Technique (UT) has been adopted to inspect the secondary piping of Nuclear Power Plants (NPPs). UT, however, uses point detection method, which results in numerous detecting points and thus takes time. We developed an Equipotential Switching Direct Current Potential Drop (ES-DCPD) method to monitor the thickness of piping that covers wide range of piping at once time. Since the ES-DCPD method covers area, not a point, it needs less monitoring time. This can be a good approach to broad carbon steel piping system such as secondary piping of NPPs. In this paper, FAC accelerated simulation test results is described. We realized accelerated FAC phenomenon by 2 times test: 23.7% thinning in 216.7 hours and 51% thinning in 795 hours. These were monitored by ES-DCPD and traditional UT. Some parameters of water chemistry are monitored and controlled to accelerate FAC process. As sensitive factors on FAC, temperature and pH was changed during the test. The wall loss monitored results reflected these changes of water chemistry successfully. Developed electrodes are also applied to simulation loop to monitor water chemistry. (author)

  6. Analysis of the flow close to a hump at the wall of a circular pipe

    International Nuclear Information System (INIS)

    Von Linsingen, I.; Silva Ferreira, R.T. da

    1981-01-01

    To study the laminar fully developed flow close to a circunferencial square hump placed at the wall of a smooth circular pipe is studied. An experimental set up was used to determine the reattachment legth and the velocity and shear stress profiles of the flow for different Reynolds numbers. Simple relations were obtained from the analysis of the data for the reattachment length, maximum velocity and maximum shear stress in different positions along the flow and different Reynolds numbers. (Author) [pt

  7. Creep properties in similar weld joint of a thick-walled P92 steel pipe

    Czech Academy of Sciences Publication Activity Database

    Sklenička, Václav; Kuchařová, Květa; Svobodová, M.; Kvapilová, Marie; Král, Petr; Horváth, P.

    2016-01-01

    Roč. 119, č. 1 (2016), s. 1-12 ISSN 1044-5803 R&D Projects: GA ČR(CZ) GA16-09518S; GA MPO FR-TI4/406 Institutional support: RVO:68081723 Keywords : 9–12%Cr steels * Creep testing * High temperature creep * Thick-walled pipe * Welding Subject RIV: JG - Metallurgy Impact factor: 2.714, year: 2016

  8. Generation of plastic influence functions for J-integral and crack opening displacement of thin-walled pipes with a short circumferential through-wall crack

    International Nuclear Information System (INIS)

    Park, Jeong Soon; Choi, Young Hwan; Im, Seyoung

    2014-01-01

    Fracture mechanics parameters such as the J-integral and crack opening displacement (COD), are necessary for Leak-Before-Break (LBB) evaluation. The famous two estimation methods, the GE/EPRI and the Reference Stress Method (RSM), have their applicability limit with regard to the ratio of a pipe mean radius to thickness (R m /t). In order to extend their applicability limit to a thin walled pipe, several finite element analyses are performed for the J-integral and COD, and then new plastic influence functions are developed for thin-walled pipes with a short circumferential through-wall crack. With the newly generated plastic influence functions, the GE/EPRI and the RSM give closer results with those obtained from detailed finite element analyses. In addition, C*-integral and COD rate are estimated by using the new plastic influence functions and they are well matched with elastic–creep finite element analysis results under the power-law creep condition. Since the LBB concept can be applied to a piping system in a Korean Sodium-cooled Fast Reactor (SFR) which is designed to have thin-walled pipes and to operate in high temperature enough to cause creep, this paper can be applied for the LBB assessment of thin-walled pipes with a short through-wall crack in the SFR

  9. Failure probability estimate of type 304 stainless steel piping

    International Nuclear Information System (INIS)

    Daugherty, W.L.; Awadalla, N.G.; Sindelar, R.L.; Mehta, H.S.; Ranganath, S.

    1989-01-01

    The primary source of in-service degradation of the SRS production reactor process water piping is intergranular stress corrosion cracking (IGSCC). IGSCC has occurred in a limited number of weld heat affected zones, areas known to be susceptible to IGSCC. A model has been developed to combine crack growth rates, crack size distributions, in-service examination reliability estimates and other considerations to estimate the pipe large-break frequency. This frequency estimates the probability that an IGSCC crack will initiate, escape detection by ultrasonic (UT) examination, and grow to instability prior to extending through-wall and being detected by the sensitive leak detection system. These events are combined as the product of four factors: (1) the probability that a given weld heat affected zone contains IGSCC; (2) the conditional probability, given the presence of IGSCC, that the cracking will escape detection during UT examination; (3) the conditional probability, given a crack escapes detection by UT, that it will not grow through-wall and be detected by leakage; (4) the conditional probability, given a crack is not detected by leakage, that it grows to instability prior to the next UT exam. These four factors estimate the occurrence of several conditions that must coexist in order for a crack to lead to a large break of the process water piping. When evaluated for the SRS production reactors, they produce an extremely low break frequency. The objective of this paper is to present the assumptions, methodology, results and conclusions of a probabilistic evaluation for the direct failure of the primary coolant piping resulting from normal operation and seismic loads. This evaluation was performed to support the ongoing PRA effort and to complement deterministic analyses addressing the credibility of a double-ended guillotine break

  10. Assessment of wall-thinning in carbon steel pipe by using laser-generated guided wave

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Yong; Cho, Youn Ho; Lee, Joon Hyun [Pusan National University, School of Mechanical Engineering, Busan (Korea, Republic of)

    2010-10-15

    The objective of this research is to estimate the crack location and size of a carbon steel pipe by using a laser ultrasound guided wave for the wall thinning evaluation of an elbow. The wall thinning of the carbon steel pipe is one of the most serious problems in nuclear power plants, especially the wall thinning of the carbon steel elbow caused by Flow-Accelerated Corrosion (FAC). Therefore, a non-destructive inspection method of elbow is essential for the nuclear power plants to operate safely. The specimens used in this study were carbon steel elbows, which represented the main elements of real nuclear power plants. The shape of the wall thinning was an oval with a width of 120mm, a length of 80mm, and a depth of 5mm. The L(0,1) and L(0,2) modes variation of the ultrasound guided wave signal is obtained from the response of the laser generation/air-coupled detection ultrasonic hybrid system represent the characteristics of the defect. The trends of these characteristics and signal processing were use dto estimate the size and location of wall thinning

  11. Assessment of wall-thinning in carbon steel pipe by using laser-generated guided wave

    International Nuclear Information System (INIS)

    Kim, Do Yong; Cho, Youn Ho; Lee, Joon Hyun

    2010-01-01

    The objective of this research is to estimate the crack location and size of a carbon steel pipe by using a laser ultrasound guided wave for the wall thinning evaluation of an elbow. The wall thinning of the carbon steel pipe is one of the most serious problems in nuclear power plants, especially the wall thinning of the carbon steel elbow caused by Flow-Accelerated Corrosion (FAC). Therefore, a non-destructive inspection method of elbow is essential for the nuclear power plants to operate safely. The specimens used in this study were carbon steel elbows, which represented the main elements of real nuclear power plants. The shape of the wall thinning was an oval with a width of 120mm, a length of 80mm, and a depth of 5mm. The L(0,1) and L(0,2) modes variation of the ultrasound guided wave signal is obtained from the response of the laser generation/air-coupled detection ultrasonic hybrid system represent the characteristics of the defect. The trends of these characteristics and signal processing were use dto estimate the size and location of wall thinning

  12. Reducing the Impact of Electroconductivity and the Gap between the Pipe and the Transducer at Measuring Thickness of Electroconductive Pipe Walls using the Eddy-Current Method

    Directory of Open Access Journals (Sweden)

    Yakimov Evgeny

    2016-01-01

    Full Text Available The paper describes a dual-frequency method for reducing the impact of changes in the gap size between the eddy-current transducer and the pipe, as well as the pipe electrical conductivity on the eddy-current thickness gauge readings. A block-diagram of the dual-frequency eddycurrent thickness gauge is proposed for light-alloy drill pipes. The amplitude and signal phase dependencies on the wall thickness in the range from 6 to 17 mm and the gap in the range from 0 to 13.5 mm were studied, the results are presented. The digital signal processing algorithms based on the piecewise-linear approximation of low-frequency and high-frequency signal phase dependencies on the wall thickness are proposed. It is shown that the proposed correction algorithms can reduce the error caused by variations of electrical conductivity and the gap between the transducer and the pipe.

  13. Analysis of Pipe Wall-thinning Caused by Water Chemistry Change in Secondary System of Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hun; Hwang, Kyeongmo [KEPCO E and C, Gimcheon (Korea, Republic of); Moon, Seung-Jae [Hanyang University, Seoul (Korea, Republic of)

    2015-12-15

    Pipe wall-thinning by flow-accelerated corrosion (FAC) is a significant and costly damage of secondary system piping in nuclear power plants (NPPs). All NPPs have their management programs to ensure pipe integrity from wall-thinning. This study analyzed the pipe wall-thinning caused by changing the amine, which is used for adjusting the water chemistry in the secondary system of NPPs. The pH change was analyzed according to the addition of amine. Then, the wear rate calculated in two different amines was compared at the steam cycle in NPPs. As a result, increasing the pH at operating temperature (Hot pH) can reduce the rate of FAC damage significantly. Wall-thinning is affected by amine characteristics depending on temperature and quality of water.

  14. A Study on Effect of Local Wall Thinning in Carbon Steel Elbow Pipe on Elastic Stress Concentration

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Seo, Jae Seok

    2009-01-01

    Feeder pipes that connect the inlet and outlet headers to the reactor core in CANDU nuclear power plants are considered as safety Class 1 piping items. Therefore, fatigue of feeder pipes should be assessed at design stage in order to verify structural integrity during design lifetime. In accordance with the fatigue assessment result, cumulative usage factors of some feeder pipes have significant values. The feeder pipes made of SA-106 Grade B or C carbon steel have some elbows and bends. An active degradation mechanism for the carbon steel outlet feeder piping is local wall thinning due to flow-accelerated corrosion. Inspection results from plants and metallurgical examinations of removed feeders indicated the presence of localized thinning in the vicinity of the welds in the lower portion of outlet feeders, such as Grayloc hub-to-bend weld, Grayloc hub-to-elbow weld, elbow-to-elbow, and elbow-to-pipe weld. This local wall thinning can cause increase of peak stress due to stress concentration by notch effect. The increase of peak stress results in increase of cumulative usage factor. However, present fatigue assessment doesn't consider the stress concentration due to local wall-thinning. Therefore, it is necessary to assess the effect of local wall thinning on stress concentration. This study investigates the effect of local wall thinning geometry on stress concentration by performing finite element elastic stress analysis

  15. Effective applied moment in circumferential through-wall cracked pipes for leak-before-break evaluation considering pipe restraint effects

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeji; Hwang, Il-Soon [Seoul National University, Seoul 08826 (Korea, Republic of); Oh, Young-Jin, E-mail: yjoh2@kepco-enc.com [KEPCO Engineering and Construction Co. Inc., Gimcheon 39660 (Korea, Republic of)

    2016-05-15

    Highlights: • Effective applied moment at pipe cracked section considering the pipe restraint effect. • Verification of the proposed evaluation methods using finite element analyses. • Applicability for distributed external load of the proposed methods. - Abstract: In the leak-before-break (LBB) design of nuclear power plants, crack opening displacement (COD) is an essential element for determining the length of the leakage size crack. Recent researches regarding the evaluation of COD have indicated that the current practice of the LBB evaluation without consideration of the pressure induced bending (PIB) restraint overestimates COD, which in turn gives non-conservative results. Under a free-ended boundary condition, however, the applied moment at cracked section also can be overestimated, which has conservative effects on LBB evaluation. Therefore, it is necessary to evaluate pipe restraint effects on the applied moment as well as on COD to keep the constancy. In this paper, an evaluation method for the effect of the PIB restraint on COD and an effective applied moment (=crack driving force) at cracked section was developed. Both the linear elastic and elastic–plastic behaviors of the crack were considered. By comparing the behaviors with 3-D finite element analysis results from earlier studies, it was confirmed that the proposed methods make accurate estimations of the PIB restraint effect on COD. Next, the applicability of the proposed method to other types of external loading conditions was examined.

  16. Experimental and numerical study of steel pipe with part-wall defect reinforced with fibre glass sleeve

    International Nuclear Information System (INIS)

    Mazurkiewicz, Lukasz; Tomaszewski, Michal; Malachowski, Jerzy; Sybilski, Kamil; Chebakov, Mikhail; Witek, Maciej; Yukhymets, Peter; Dmitrienko, Roman

    2017-01-01

    The paper presents numerical and experimental burst pressure evaluation of the gas seamless hot-rolled steel pipe. The main goal was to estimate mechanical toughness of pipe wrapped with composite sleeve and verify selected sleeve thickness. The authors used a nonlinear explicit FE code with constitutive models which allows for steel and composite structure failure modelling. Thanks to the achieved numerical and analytical results it was possible to perform the comparison with data received from a capacity test and good correlation between the results were obtained. Additionally, the conducted analyses revealed that local reduction of pipe wall thickness from 6 mm to 2.4 mm due to corrosion defect can reduce high pressure resistance by about 40%. Finally, pipe repaired by a fibre glass sleeve with epoxy resin with 6 mm thickness turned out more resistant than an original steel pipe considering burst pressure. - Highlights: • Numerical and experimental burst pressure evaluation of steel pipe was performed. • Seamless hot-rolled steel pipe with and without corrosion defect were considered. • Local reduction of pipe wall thickness from 6 to 2.4 mm reduces resistance by 40%. • Pipe repaired by a 6 mm fibre glass sleeve was more resistant than an original pipe.

  17. Pipe Wall Thickness Monitoring Using Dry-Coupled Ultrasonic Waveguide Technique

    International Nuclear Information System (INIS)

    Cheong, Yong Moo; Kim, Ha Nam; Kim, Hong Pyo

    2012-01-01

    In order to monitor a corrosion or FAC (Flow Accelerated Corrosion) in a pipe, there is a need to measure pipe wall thickness at high temperature. Ultrasonic thickness gauging is the most commonly used non-destructive testing technique for wall thickness measurement. However, current commonly available ultrasonic transducers cannot withstand high temperatures, such as above 200 .deg. C. It is therefore necessary to carry out manual measurements during plant shutdowns. The current method thus reveals several disadvantages: inspection have to be performed during shutdowns with the possible consequences of prolonging down time and increasing production losses, insulation has to be removed and replaced for each manual measurement, and scaffolding has to be installed to inaccessible areas, resulting in considerable cost for interventions. It has been suggested that a structural health monitoring approach with permanently installed ultrasonic thickness gauges could have substantial benefits over current practices. The main reasons why conventional piezoelectric ultrasonic transducers cannot be used at high temperatures are that the piezo-ceramic becomes depolarized at temperature above the Curie temperature and because differential thermal expansion of the substrate, couplant, and piezoelectric materials cause failure. In this paper, a shear horizontal waveguide technique for wall thickness monitoring at high temperature is investigated. Two different designs for contact to strip waveguide are shown and the quality of output signal is compared and reviewed. After a success of acquiring high quality ultrasonic signal, experiment on the wall thickness monitoring at high temperature is planned

  18. Investigation of secondary flows in turbulent pipe flows with three-dimensional sinusoidal walls

    Science.gov (United States)

    Chan, Leon; MacDonald, Michael; Chung, Daniel; Hutchins, Nicholas; Ooi, Andrew

    2017-11-01

    The occurrence of secondary flows is systematically investigated via Direct Numerical Simulations (DNS) of turbulent flow in a rough wall pipe at friction Reynolds numbers of 540. In this study, the peak-to-trough height of the roughness elements, which consist of three-dimensional sinusoidal roughness, is fixed at 120 viscous units while the wavelength of the roughness elements is varied. The solidity or effective slope (ES) of the roughness ranges from the sparse regime (ES = 0.18) to the closely packed roughness/dense regime (ES = 0.72). The time-independent dispersive stresses, which arise due to the stationary features of the flow, are analysed and are found to increase with increasing roughness wavelength. These dispersive stresses are related to the occurrence of secondary flows and are maximum within the roughness canopy. Above the crest of the roughness elements, the dispersive stresses reduce to zero at wall-normal heights greater than half of the roughness wavelength. This study has found that the size and wall-normal extent of the secondary flows scales with the roughness wavelength and can reach wall-normal heights of almost half of the pipe radius.

  19. An analysis of the vapor flow and the heat conduction through the liquid-wick and pipe wall in a heat pipe with single or multiple heat sources

    Science.gov (United States)

    Chen, Ming-Ming; Faghri, Amir

    1990-01-01

    A numerical analysis is presented for the overall performance of heat pipes with single or multiple heat sources. The analysis includes the heat conduction in the wall and liquid-wick regions as well as the compressibility effect of the vapor inside the heat pipe. The two-dimensional elliptic governing equations in conjunction with the thermodynamic equilibrium relation and appropriate boundary conditions are solved numerically. The solutions are in agreement with existing experimental data for the vapor and wall temperatures at both low and high operating temperatures.

  20. Pipe Flow and Wall Turbulence Using a Modified Navier-Stokes Equation

    International Nuclear Information System (INIS)

    Jirkovsky, L.; Muriel, A.

    2012-01-01

    We use a derived incompressible modified Navier-Stokes equation to model pipe flow and wall turbulence. We reproduce the observed flattened paraboloid velocity profiles of turbulence that cannot be obtained directly using standard incompressible Navier-Stokes equation. The solutions found are in harmony with multi-valued velocity fields as a definition of turbulence. Repeating the procedure for the flow of turbulent fluid between two parallel flat plates we find similar flattened velocity profiles. We extend the analysis to the turbulent flow along a single wall and compare the results with experimental data and the established controversial von Karman logarithmic law of the wall. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  1. Euler–Lagrange simulation of gas–solid pipe flow with smooth and rough wall boundary conditions

    DEFF Research Database (Denmark)

    Mandø, Matthias; Yin, Chungen

    2012-01-01

    Numerical simulation of upward turbulent particle-laden pipe flow is performed with the intention to reveal the influence of surface roughness on the velocity statistics of the particle phase. A rough wall collision model, which models the surface as being sinusoidal, is proposed to account...... for the wall boundary condition ranging for smooth surfaces to very rough surfaces. This model accounts for the entire range of possible surface roughness found in pipes and industrial pneumatic equipment from smooth plastic pipes over machined steel pipes to cast iron surfaces. The model is based...... on a geometric interpretation of the wall collision process where the particle restitution coefficient is based on the data presented by Sommerfeld and Huber [1]. Simulations are performed using the Eulerian–Lagrangian methodology for the dilute one-way coupling regime. Results are reported for 3 different sizes...

  2. Using pipe with corrugated walls for a subterahertz free electron laser

    Directory of Open Access Journals (Sweden)

    Gennady Stupakov

    2015-03-01

    Full Text Available A metallic pipe with corrugated walls supports propagation of a high-frequency mode that is in resonance with a relativistic beam propagating along the axis of the pipe. This mode can be excited by a beam whose length is a fraction of the wavelength. In this paper, we study another option of excitation of the resonant mode—via the mechanism of the free electron laser instability. This mechanism works if the bunch length is much longer than the wavelength of the radiation and, hence, does not require bunch compression. It provides an alternative to excitation by short bunches that can be realized with relatively low energy and low peak-current electron beams.

  3. Targeting specific azimuthal modes using wall changes in turbulent pipe flow

    Science.gov (United States)

    van Buren, Tyler; Hellström, Leo; Marusic, Ivan; Smits, Alexander

    2017-11-01

    We experimentally study turbulent pipe flow at Re =3486 using stereoscopic particle image velocimetry. Using pipe inserts with non-circular geometry to perturb the flow upstream of the measurement location, we excite specific naturally occurring energetic modes. We consider inserts that directly manipulate the flow momentum (vortex generators), and/or induce secondary flows through Reynolds stresses (sinusoidally varying wall shape). These inserts substantially change the mean flow, and produce distinct regions of low and high momentum corresponding to the mode being excited. The inserts add energy in the targeted modes while simultaneously reducing the energy in the non-excited azimuthal modes. In addition, inserts designed to excite two modes simultaneously exhibit non-linear interactions. Supported under ONR Grant N00014-15-1-2402, Program Manager/Director Thomas Fu and the Australian Research Council.

  4. Finite Element Limit Pressures for Circumferential Through-Wall Cracks in the Interface between Elbow and Pipe

    International Nuclear Information System (INIS)

    Jang, Yoon-Young; Han, Tae-Song; Huh, Nam-Su; Jeong, Jae-Uk

    2014-01-01

    Among integrity assessment method based on a fracture mechanics concept for piping system, a limit load method is one of the important way to predict a maximum load carrying capacity in the materials with high ductility in the sense that it is used to either assess directly structural integrity of pipe based on fully plastic fracture mechanics or calculate elasticplastic fracture mechanics parameters based on reference stress concept. In nuclear power plants, piping system often involves elbows welded to straight pipe. Since welded regions are vulnerable to cracking, it is important to predict an accurate limit load for pipes with a crack in the interface between elbows and attached pipes. However, although extensive works have been made for developing limit analysis methods for cracked pipes, they were mainly for straight pipes. Recently, limit moment solutions for elbow that is attached to straight pipe with a circumferential through-wall crack(TWC) in the interface were proposed, whereas limit pressure for this geometry is not suggested yet. In this context, plastic limit pressures of circumferential TWCs between elbow and straight pipe were calculated in the present study considering geometric parameters such as an elbow curvature, a pipe size and a crack length. In the present study, the FE plastic limit analyses for circumferential TWC in the interface between elbow and pipe under internal pressure were conducted based on elastic perfectly plastic assumption. Based on the present FE results, it is found that plastic limit pressures of straight pipes with circumferential TWC are not appropriate for predicting plastic limit pressures of circumferential TWC in the interface between elbow and pipe for shorter crack length

  5. Collapse moment estimation by support vector machines for wall-thinned pipe bends and elbows

    International Nuclear Information System (INIS)

    Na, Man Gyun; Kim, Jin Weon; Hwang, In Joon

    2007-01-01

    The collapse moment due to wall-thinned defects is estimated through support vector machines with parameters optimized by a genetic algorithm. The support vector regression models are developed and applied to numerical data obtained from the finite element analysis for wall-thinned defects in piping systems. The support vector regression models are optimized by using both the data sets (training data and optimization data) prepared for training and optimization, and its performance verification is performed by using another data set (test data) different from the training data and the optimization data. In this work, three support vector regression models are developed, respectively, for three data sets divided into the three classes of extrados, intrados, and crown defects, which is because they have different characteristics. The relative root mean square (RMS) errors of the estimated collapse moment are 0.2333% for the training data, 0.5229% for the optimization data and 0.5011% for the test data. It is known from this result that the support vector regression models are sufficiently accurate to be used in the integrity evaluation of wall-thinned pipe bends and elbows

  6. Improvement of C*-integral and Crack Opening Displacement Estimation Equations for Thin-walled Pipes with Circumferential Through-wall Cracks

    International Nuclear Information System (INIS)

    Park, Jeong Soon; Jhung, Myung Jo

    2012-01-01

    Since the LBB(Leak-Before-Break) concept has been widely applied to high energy piping systems in the pressurized water reactors, a number of engineering estimation methods had been developed for J-integral and COD values. However, those estimation methods were mostly reliable for relatively thick-walled pipes about R m /t=5 or 10. As the LBB concept might be considered in the design stage of the SFR (Sodium-cooled Fast Reactor) which has relatively thin-walled pipes due to its low design pressure, the applicability of current estimation methods should be investigated for thin-walled pipes. Along with the J-integral and COD, the estimation method for creep fracture mechanics parameters, C*- integral and COD rate, is required because operating temperature of SFR is high enough to induce creep in the structural materials. In this study, the applicability of the current C*- integral and COD estimation methods to thin-walled pipes is studied for a circumferential through-wall crack using the finite element (FE) method. Based on the FE results, enhancement of the current estimation methods is made

  7. Heat-affected-zone toughness in heavy wall pipe: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dyck, K.; Glover, A.G.; Varo, D.B.

    1988-02-01

    The objective of this program has been to determine the significance of low toughness regions on the service performance of heat-affected zones in heavy wall pipe materials. The low temperature HAZ toughness of welds in microalloyed and quenched and tempered materials at two heat inputs was established, a test technique to produce fatigue cracks in the HAZ was developed, and four full scale fracture tests were completed at /minus/49/degree/F. Publication available from the American Gas Association Order Processing Department, 1515 Wilson Boulevard, Arlington, Virginia 22209-2470 (703/841-8558). 17 refs. (JL)

  8. Inverse problem of estimating transient heat transfer rate on external wall of forced convection pipe

    International Nuclear Information System (INIS)

    Chen, W.-L.; Yang, Y.-C.; Chang, W.-J.; Lee, H.-L.

    2008-01-01

    In this study, a conjugate gradient method based inverse algorithm is applied to estimate the unknown space and time dependent heat transfer rate on the external wall of a pipe system using temperature measurements. It is assumed that no prior information is available on the functional form of the unknown heat transfer rate; hence, the procedure is classified as function estimation in the inverse calculation. The accuracy of the inverse analysis is examined by using simulated exact and inexact temperature measurements. Results show that an excellent estimation of the space and time dependent heat transfer rate can be obtained for the test case considered in this study

  9. Fluid-structure interaction with pipe-wall viscoelasticity during water hammer

    Science.gov (United States)

    Keramat, A.; Tijsseling, A. S.; Hou, Q.; Ahmadi, A.

    2012-01-01

    Fluid-structure interaction (FSI) due to water hammer in a pipeline which has viscoelastic wall behaviour is studied. Appropriate governing equations are derived and numerically solved. In the numerical implementation of the hydraulic and structural equations, viscoelasticity is incorporated using the Kelvin-Voigt mechanical model. The equations are solved by two different approaches, namely the Method of Characteristics-Finite Element Method (MOC-FEM) and full MOC. In both approaches two important effects of FSI in fluid-filled pipes, namely Poisson and junction coupling, are taken into account. The study proposes a more comprehensive model for studying fluid transients in pipelines as compared to previous works, which take into account either FSI or viscoelasticity. To verify the proposed mathematical model and its numerical solutions, the following problems are investigated: axial vibration of a viscoelastic bar subjected to a step uniaxial loading, FSI in an elastic pipe, and hydraulic transients in a pressurised polyethylene pipe without FSI. The results of each case are checked with available exact and experimental results. Then, to study the simultaneous effects of FSI and viscoelasticity, which is the new element of the present research, one problem is solved by the two different numerical approaches. Both numerical methods give the same results, thus confirming the correctness of the solutions.

  10. Influences of lumped passes on welding residual stress of a thick-walled nuclear rotor steel pipe by multipass narrow gap welding

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Long, E-mail: mse.longtan@gmail.com [State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, Jianxun; Zhuang, Dong [State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Liu, Chuan [Provincial Key Lab of Advanced Welding Technology, Jiangsu University of Science and Technology, Zhenjiang 212003 (China)

    2014-07-01

    Highlights: • The internal residual stress of the thick-walled pipe is measured by using the local removal blind hole method. • Two lumped-pass models are developed to reduce computational cost. • The effect of lumped passes on the welding residual stress is discussed. • Reasonable lumped-pass model can guarantee the accuracy and improve the computational efficiency. - Abstract: The purpose of this study is to investigate the effect of the lumped passes simulation on the distribution of residual stresses before and after heat treatment in a thick-walled nuclear power rotor pipe with a 89-pass narrow gap welding process. The local removal blind hole method was used to measure internal residual stress of the thick-walled pipe after post weld heat treatment (PWHT). Based on the ANSYS software, a two-dimensional axisymmetric finite element model is employed. Two lumped-pass models of M-5th model (five weld beads as one lumped pass) and M-10th model (ten weld beads as one lumped pass) were developed to reduce computational cost. Based on the results in this study, the distributions of residual stresses of a thick-walled welded pipe before and after PWHT are developed. Meanwhile, the distribution of the through-wall axial residual stress along the weld center line is demonstrated to be a self-equilibrating type. In addition, the investigation results show that reasonable and reliable lumped-pass model can not only guarantee the accuracy of the simulated results, but also improve the computational efficiency in the thermo-elastic–plastic FE analysis procedure. Therefore, from the viewpoint of engineering application the developed lumped-pass computational procedure is a promising and useful method to predict residual stress of large and complex welded structures.

  11. Influences of lumped passes on welding residual stress of a thick-walled nuclear rotor steel pipe by multipass narrow gap welding

    International Nuclear Information System (INIS)

    Tan, Long; Zhang, Jianxun; Zhuang, Dong; Liu, Chuan

    2014-01-01

    Highlights: • The internal residual stress of the thick-walled pipe is measured by using the local removal blind hole method. • Two lumped-pass models are developed to reduce computational cost. • The effect of lumped passes on the welding residual stress is discussed. • Reasonable lumped-pass model can guarantee the accuracy and improve the computational efficiency. - Abstract: The purpose of this study is to investigate the effect of the lumped passes simulation on the distribution of residual stresses before and after heat treatment in a thick-walled nuclear power rotor pipe with a 89-pass narrow gap welding process. The local removal blind hole method was used to measure internal residual stress of the thick-walled pipe after post weld heat treatment (PWHT). Based on the ANSYS software, a two-dimensional axisymmetric finite element model is employed. Two lumped-pass models of M-5th model (five weld beads as one lumped pass) and M-10th model (ten weld beads as one lumped pass) were developed to reduce computational cost. Based on the results in this study, the distributions of residual stresses of a thick-walled welded pipe before and after PWHT are developed. Meanwhile, the distribution of the through-wall axial residual stress along the weld center line is demonstrated to be a self-equilibrating type. In addition, the investigation results show that reasonable and reliable lumped-pass model can not only guarantee the accuracy of the simulated results, but also improve the computational efficiency in the thermo-elastic–plastic FE analysis procedure. Therefore, from the viewpoint of engineering application the developed lumped-pass computational procedure is a promising and useful method to predict residual stress of large and complex welded structures

  12. Refinement and evaluation of crack-opening-area analyses for circumferential through-wall cracks in pipes

    International Nuclear Information System (INIS)

    Rahman, S.; Brust, F.; Ghadiali, N.; Krishnaswamy, P.; Wilkowski, G.; Choi, Y.H.; Moberg, F.; Brickstad, B.

    1995-04-01

    Leak-before-break (LBB) analyses for circumferentially cracked pipes are currently being conducted in the nuclear industry to justify elimination of pipe whip restraints and jet impingement shields which are present because of the expected dynamic effects from pipe rupture. The application of the LBB methodology frequently requires calculation of leak rates. These leak rates depend on the crack-opening area of a through-wall crack in the pipe. In addition to LBB analyses, which assume a hypothetical flaw size, there is also interest in the integrity of actual leaking cracks corresponding to current leakage detection requirements in NRC Regulatory Guide 1.45, or for assessing temporary repair of Class 2 and 3 pipes that have leaks as are being evaluated in ASME Section 11. This study was requested by the NRC to review, evaluate, and refine current analytical models for crack-opening-area analyses of pipes with circumferential through-wall cracks. Twenty-five pipe experiments were analyzed to determine the accuracy of the predictive models. Several practical aspects of crack-opening such as; crack-face pressure, off-center cracks, restraint of pressure-induced bending, cracks in thickness transition regions, weld residual stresses, crack-morphology models, and thermal-hydraulic analysis, were also investigated. 140 refs., 105 figs., 41 tabs

  13. Influence of circumferential flaw length on internal burst pressure of a wall-thinned pipe

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, Masataka, E-mail: tsuji-m@u-fukui.ac.jp [Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, Fukui (Japan); Meshii, Toshiyuki [Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, Fukui (Japan)

    2013-02-15

    Highlights: ► The effect of θ on p{sub f} was examined by experimental analysis and FEA. ► Here θ is the circumferential angle of a flaw, p{sub f} is the internal burst pressure. ► p{sub f} decreased as θ increased in some cases. ► The effect of θ on p{sub f} should be taken into consideration in evaluating p{sub f}. -- Abstract: This paper examines the effect of the circumferential angle of a flaw θ on the internal burst pressure p{sub f} of pipes with artificial wall-thinned flaws. The effect of θ has conventionally been regarded as unimportant in the evaluation of the p{sub f} of wall-thinned straight pipes. Therefore, a burst pressure equation for an axial crack inside a cylinder (Fig. 1, left), such as Kiefner's equation (Kiefner et al., 1973), has been widely applied (ANSI/ASME B31.G., 1991; Hasegawa et al., 2011). However, the following implicit assumptions notably exist when applying the equation to planar flaws in situations with non-planar flaws. 1)The fracture mode of the non-planar flaw under consideration is identical to that of the crack. 2)The effect of θ on p{sub f}, which is not considered for an axial crack, is small or negligible. However, the experimental results from the systematic burst tests for carbon steel pipes with artificial wall-thinned flaws examined in this paper showed that these implicit assumptions may be incorrect. In this paper the experimental results are evaluated in further detail. The purpose of the evaluation was to clarify the effect of θ on p{sub f}. Specifically, the significance of the flaw configuration (axial length δ{sub z} and wall-thinning ratio t{sub 1}/t) was studied for its effects on θ and p{sub f}. In addition, a simulation of this effect was conducted using a large strain elastic-plastic Finite Element Analysis (FEA) model. As observed from the experimental results, θ tended to affect p{sub f} in cases with large δ{sub z}, and t{sub 1}/t was also correlated with a decrease in p{sub f

  14. Fluid-structure-interaction analysis for welded pipes with flow-accelerated corrosion wall thinning

    Energy Technology Data Exchange (ETDEWEB)

    Sun, L.; Ding, Y., E-mail: lan.sun@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    The flow-accelerated corrosion (FAC) entrance effect results in enhanced wall thinning immediately downstream of a weld if the weld connects an upstream FAC-resistant material with a downstream less resistant material. The weld regions, especially those with local repairs, are susceptible to cracking due to the high residual stresses induced by fabrication. The combined effects of the FAC entrance effect and high stresses at a weld might compromise the structural integrity of the piping and lead to a failure. Weld degradation by FAC entrance effect has been observed at nuclear and fossil power plants. This paper describes an application using fluid-structure-interaction (FSI) modelling to study the combined effects of FAC wall thinning, weld residual stresses, and in-service loads on welded structures. Simplified cases analyzed were based on CANDU outlet feeder conditions. The analysis includes the flow and mass transfer modelling of the FAC entrance effect using computational fluid dynamics (CFD) and nonlinear structural analyses of the welded structures with wall thinning and an assumed weld residual stress and strain distribution. The FSI analyses were performed using ANSYS Workbench, an integrated platform that enables the coupling of CFD and structural analysis solutions. The obtained results show that the combination of FAC, weld residual stresses, in-service loads (including the internal pressure) and (or) extreme loads could cause high stresses and affect the integrity of the welded pipes. The present work demonstrated that the FSI modelling can be used as an effective approach to assess the integrity of welded structures. (author)

  15. Development of carbon steel with superior resistance to wall thinning and fracture for nuclear piping system

    International Nuclear Information System (INIS)

    Rhee, Chang Kyu; Lee, Min Ku; Park, Jin Ju

    2010-07-01

    Carbon steel is usually used for piping for secondary coolant system in nuclear power plant because of low cost and good machinability. However, it is generally reported that carbon steel was failed catastrophically because of its low resistance to wall thinning and fracture toughness. Especially, flow accelerated corrosion (FAC) is one of main problems of the wall thinning of piping in the nuclear power plant. Therefore, in this project, fabrication technology of new advanced carbon steel materials modified by dispersion of nano-carbide ceramics into the matrix is developed first in order to improve the resistance to wall thinning and fracture toughness drastically compared to the conventional one. In order to get highly wettable fine TiC ceramic particles into molten metal, the micro-sized TiC particles were first mechanically milled by Fe (MMed TiC/Fe) in a high energy ball mill machine in Ar gas atmosphere, and then mixed with surfactant metal elements (Sn, Cr, Ni) to obtain better wettability, as this lowered surface tension of the carbon steel melt. According to microscopic images revealed that an addition of MMed TiC/Fe-surfactant mixed powders favorably disperses the fine TiC particles in the carbon steel matrix. It was also found that the grain size refinement of the cast matrix is achieved remarkably when fine TiC particles were added due to the fact that they act as nucleation sites during the solidification process. As a results, a cast carbon steel dispersed with fine TiC particles shows improved mechanical properties such as hardness, tensile strength and cavitation resistance compared to that of without particles. However, the slight decrease of toughness was found

  16. Sulfide flux formed by the anaerobic slime on the surface of the gravity sewer pipe wall. Shizen ryuka no gesuikan ni okeru kenki slime kara no ryukabutsu flux

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimoto, K. (Japan Sewage Works Agency, Tokyo (Japan)); Mori, T. (Shimane Univ., Shimane (Japan). Faculty of Agriculture)

    1992-09-10

    A part of sulfide dissolved in the sewage is oxidized by oxygen dissolved in the sewage from the gas phase inside by the re-aeration. In addition, a part of type of the dissolvable sulfides is diffused in the gas phase as a hydrogen sulfide gas by the turbulence and so on in the sewage. When hydrogen sulfide diffused in the gas phase is oxidized to sulfuric acid by the sulfur oxidation bacteria, the corrosion and deterioration of concrete by that sulfuric acid are concerned even in the gravity sewer pipe as same as in the sewer pipe downstream from the discharge opening of the pressurized transport pipe for a long distance. When the gravity sewer pipe is planned and designed, it is required for establishing the necessary countermeasure at the places where the generation of sulfide is predicted, by estimating the sulfide concentration in the sewage accurately. In this report, making the slime adhered on the gravity sewer pipe wall and the slime grown in the laboratory as the objects, some knowledges on the sulfide flux from the anaerobic slime were obtained by measuring the sulfide flux and so forth. 16 refs., 4 figs., 3 tabs.

  17. Evaluation of clamp effects on LMFBR piping systems

    International Nuclear Information System (INIS)

    Jones, G.L.

    1980-01-01

    Loop-type liquid metal breeder reactor plants utilize thin-wall piping to mitigate through-wall thermal gradients due to rapid thermal transients. These piping loops require a support system to carry the combined weight of the pipe, coolant and insulation and to provide attachments for seismic restraints. The support system examined here utilizes an insulated pipe clamp designed to minimize the stresses induced in the piping. To determine the effect of these clamps on the pipe wall a non-linear, two-dimensional, finite element model of the clamp, insulation and pipe wall was used to determine the clamp/pipe interface load distributions which were then applied to a three-dimensional, finite element model of the pipe. The two-dimensional interaction model was also utilized to estimate the combined clamp/pipe stiffness

  18. The effect of load-controlled bending load on the failure pressure of wall-thinned pipe elbows

    International Nuclear Information System (INIS)

    Kim, Jin Weon; Yoon, Min Soo; Park, Chi Yong

    2013-01-01

    Highlights: • We evaluated bending load effect on the failure pressure of wall-thinned pipe elbows. • Burst tests were conducted on real-scale elbow specimens with local wall thinning. • The tests were performed under combined pressure and load-controlled bending. • Load-controlled bending reduced the failure pressure of wall-thinned elbows. • Bending load effect was significant for opening-mode and intrados wall-thinning case. - Abstract: In this research, burst tests were conducted on real-scale elbow specimens, each with an artificial local wall-thinning defect, under combined internal pressure and constant in-plane bending load, as well as under simple internal pressure, to evaluate the effect of load-controlled bending load on the failure pressure of locally wall-thinned pipe elbows. Ninety-degree, 65A Schedule 80 elbows, with wall-thinning defects in the intrados and extrados, were used as specimens. The bending loads were in-plane opening- and closing-mode bending, applied in load-control mode. The results clearly indicated that a load-controlled in-plane bending load reduced the failure pressure of wall-thinned pipe elbows, in contrast to observations previously made under displacement-controlled bending conditions. The effect of the bending load was more significant for opening-mode than for closing-mode bending, regardless of the wall-thinning location in the elbow. Also, the effect was greater when the wall-thinning defect was located in the intrados region of the elbow, rather than the extrados region. Existing models that have been proposed to evaluate the failure of wall-thinned elbows under simple internal pressure conservatively predicted the failure pressure of elbows subjected to a combined internal pressure and load-controlled bending load

  19. An appraisal of procedures used to give the criterion for instability of a through-wall circumferential crack in a stainless steel piping system

    International Nuclear Information System (INIS)

    Smith, E.

    1989-01-01

    Against the background of the problem of intergranular stress corrosion cracking of 304 stainless steel in Boiling Water Reactor piping systems, this paper presents a critical appraisal of procedures that are currently used to give the criterion for instability of a through-wall circumferential crack in a stainless steel piping system. Particular attention is focussed on a simple procedure developed by Cotter, Chang and Zahoor, which has been applied to specific piping systems, the objective being to underpin its viability. The considerations are applicable to not only Boiling Water Reactor piping systems, but to other piping systems where pipe failure due to circumferential cracking is a potential problem. (author)

  20. Creep fracture mechanics analysis for through-wall cracked pipes under widespread creep condition

    International Nuclear Information System (INIS)

    Huh, Nam Su; Kim, Yun Jae; Kim, Young Jin

    2003-01-01

    This paper compares engineering estimation schemes of C * and creep COD for circumferential and axial through-wall cracked pipes at elevated temperatures with detailed 3-D elastic-creep finite element results. Engineering estimation schemes included the GE/EPRI method, the reference stress method where reference stress is defined based on the plastic limit load and the enhanced reference stress method where the reference stress is defined based on the optimized reference load. Systematic investigations are made not only on the effect of creep-deformation behaviour on C * and creep COD, but also on effects of the crack location, the pipe geometry, the crack length and the loading mode. Comparison of the FE results with engineering estimations provides that for idealized power law creep, estimated C * and COD rate results from the GE/EPRI method agree best with FE results. For general creep-deformation laws where either primary or tertiary creep is important and thus the GE/EPRI method is hard to apply, on the other hand, the enhanced reference stress method provides more accurate and robust estimations for C * and COD rate than the reference stress method

  1. Survey of a wireless NDT service for a nuclear piping wall thinning defect

    International Nuclear Information System (INIS)

    Choi, Yoo Rark; Lee, Jae Cheol

    2008-01-01

    The wireless sensor network has been issued for several years. The nuclear power plants all around world have adapted many kinds of sensor technologies for inspections and diagnostics of main instruments. Even though wireless sensor is more useful than wired sensor, wireless sensor based applications haven't been used in nuclear power plants because of the authorization of a jamming, an electromagnetic interference and so on. A wireless sensor uses a battery for its operations, but this battery can't be used for a long haul. It causes a battery change problem. There aren't any wireless sensor based NDT for a piping wall thinning part. We will describe a method of how to develop it in this paper

  2. Analysis of the coherent and turbulent stresses of a numerically simulated rough wall pipe

    Science.gov (United States)

    Chan, L.; MacDonald, M.; Chung, D.; Hutchins, N.; Ooi, A.

    2017-04-01

    A turbulent rough wall flow in a pipe is simulated using direct numerical simulation (DNS) where the roughness elements consist of explicitly gridded three-dimensional sinusoids. Two groups of simulations were conducted where the roughness semi-amplitude h+ and the roughness wavelength λ+ are systematically varied. The triple decomposition is applied to the velocity to separate the coherent and turbulent components. The coherent or dispersive component arises due to the roughness and depends on the topological features of the surface. The turbulent stress on the other hand, scales with the friction Reynolds number. For the case with the largest roughness wavelength, large secondary flows are observed which are similar to that of duct flows. The occurrence of these large secondary flows is due to the spanwise heterogeneity of the roughness which has a spacing approximately equal to the boundary layer thickness δ.

  3. Research and Development of Heavy Wall DNV485FDU Pipeline Plate for 3500M Deep Water Pipe Applications at Shougang

    Science.gov (United States)

    Ding, Wenhua; Li, Shaopo; Li, Jiading; Li, Qun; Chen, Tieqiang; Zhang, Hai

    In recent years, there has been development of several significant pipeline projects for the transmission of oil and gas from deep water environments. The production of gas transmission pipelines for application demands heavy wall, high strength, good lower temperature toughness and good weldability. To overcome the difficulty of producing consistent mechanical property in heavy wall pipe Shougang Steel Research in cooperation with the Shougang Steel Qinhuangdao China (Shouqin) 4.3m heavy wide plate mill research was conducted.

  4. A Wall Boundary Condition for the Simulation of a Turbulent Non-Newtonian Domestic Slurry in Pipes

    Directory of Open Access Journals (Sweden)

    Dhruv Mehta

    2018-01-01

    Full Text Available The concentration (using a lesser amount of water of domestic slurry promotes resource recovery (nutrients and biomass while saving water. This article is aimed at developing numerical methods to support engineering processes such as the design and implementation of sewerage for concentrated domestic slurry. The current industrial standard for computational fluid dynamics-based analyses of turbulent flows is Reynolds-averaged Navier–Stokes (RANS modelling. This is assisted by the wall function approach proposed by Launder and Spalding, which permits the use of under-refined grids near wall boundaries while simulating a wall-bounded flow. Most RANS models combined with wall functions have been successfully validated for turbulent flows of Newtonian fluids. However, our experiments suggest that concentrated domestic slurry shows a Herschel–Bulkley-type non-Newtonian behaviour. Attempts have been made to derive wall functions and turbulence closures for non-Newtonian fluids; however, the resulting laws or equations are either inconsistent across experiments or lack relevant experimental support. Pertinent to this study, laws or equations reported in literature are restricted to a class of non-Newtonian fluids called power law fluids, which, as compared to Herschel–Bulkley fluids, yield at any amount of applied stress. An equivalent law for Herschel–Bulkley fluids that require a minimum-yield stress to flow is yet to be reported in literature. This article presents a theoretically derived (with necessary approximations law of the wall for Herschel–Bulkley fluids and implements it in a RANS solver using a specified shear approach. This results in a more accurate prediction of the wall shear stress experienced by a circular pipe with a turbulent Herschel–Bulkley fluid flowing through it. The numerical results are compared against data from our experiments and those reported in literature for a range of Reynolds numbers and rheological

  5. Plastic Limit Loads for Slanted Circumferential Through-Wall Cracked Pipes Using 3D Finite-Element Limit Analyses

    International Nuclear Information System (INIS)

    Jang, Hyun Min; Cho, Doo Ho; Kim, Young Jin; Huh, Nam Su; Shim, Do Jun; Choi, Young Hwan; Park, Jung Soon

    2011-01-01

    On the basis of detailed 3D finite-element (FE) limit analyses, the plastic limit load solutions for pipes with slanted circumferential through-wall cracks (TWCs) subjected to axial tension, global bending, and internal pressure are reported. The FE model and analysis procedure employed in the present numerical study were validated by comparing the present FE results with existing solutions for plastic limit loads of pipes with idealized TWCs. For the quantification of the effect of slanted crack on plastic limit load, slant correction factors for calculating the plastic limit loads of pipes with slanted TWCs from pipes with idealized TWCs are newly proposed from extensive 3D FE calculations. These slant-correction factors are presented in tabulated form for practical ranges of geometry and for each set of loading conditions

  6. Thin-plate-type embedded ultrasonic transducer based on magnetostriction for the thickness monitoring of the secondary piping system of a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Tae Hoon; Cho, Seung Hyun [Center for Safety Measurement, Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2016-12-15

    Pipe wall thinning in the secondary piping system of a nuclear power plant is currently a major problem that typically affects the safety and reliability of the nuclear power plant directly. Regular in-service inspections are carried out to manage the piping system only during the overhaul. Online thickness monitoring is necessary to avoid abrupt breakage due to wall thinning. To this end, a transducer that can withstand a high-temperature environment and should be installed under the insulation layer. We propose a thin plate type of embedded ultrasonic transducer based on magnetostriction. The transducer was designed and fabricated to measure the thickness of a pipe under a high-temperature condition. A number of experimental results confirmed the validity of the present transducer.

  7. Crack-tip constraint analyses and constraint-dependent LBB curves for circumferential through-wall cracked pipes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.L.; Wang, G.Z., E-mail: gzwang@ecust.edu.cn; Xuan, F.Z.; Tu, S.T.

    2015-04-15

    Highlights: • Solution of constraint parameter τ* for through-wall cracked pipes has been obtained. • Constraint increases with increasing crack length and radius–thickness ratio of pipes. • Constraint-dependent LBB curve for through-wall cracked pipes has been constructed. • For increasing accuracy of LBB assessments, constraint effect should be considered. - Abstract: The leak-before-break (LBB) concept has been widely applied in the structural integrity assessments of pressured pipes in nuclear power plants. However, the crack-tip constraint effects in LBB analyses and designs cannot be incorporated. In this paper, by using three-dimensional finite element calculations, the modified load-independent T-stress constraint parameter τ* for circumferential through-wall cracked pipes with different geometries and crack sizes has been analyzed under different loading conditions, and the solutions of the crack-tip constraint parameter τ* have been obtained. Based on the τ* solutions and constraint-dependent J–R curves of a steel, the constraint-dependent LBB (leak-before-break) curves have been constructed. The results show that the constraint τ* increases with increasing crack length θ, mean radius R{sub m} and radius–thickness ratio R{sub m}/t of the pipes. In LBB analyses, the critical crack length calculated by the J–R curve of the standard high constraint specimen for pipes with shorter cracks is over-conservative, and the degree of conservatism increases with decreasing crack length θ, R{sub m} and R{sub m}/t. Therefore, the constraint-dependent LBB curves should be constructed to modify the over-conservatism and increase accuracy of LBB assessments.

  8. 76 FR 33200 - Light-Walled Rectangular Pipe and Tube from Turkey; Notice of Preliminary Results of Antidumping...

    Science.gov (United States)

    2011-06-08

    ...) metallic coating; (3) painted/non-painted; (4) perimeter; (5) wall thickness; and (6) shape. See the... pipe and tube from Turkey. Atlas Tube, Inc. and Searing Industries, Inc. are petitioners in this case... through April 2010. Our analysis indicated, based on record evidence, that the appropriate date of sale of...

  9. Pipe support

    International Nuclear Information System (INIS)

    Pollono, L.P.

    1979-01-01

    A pipe support for high temperature, thin-walled piping runs such as those used in nuclear systems is described. A section of the pipe to be suppported is encircled by a tubular inner member comprised of two walls with an annular space therebetween. Compacted load-bearing thermal insulation is encapsulated within the annular space, and the inner member is clamped to the pipe by a constant clamping force split-ring clamp. The clamp may be connected to pipe hangers which provide desired support for the pipe

  10. Estimation of collapse moment for the wall-thinned pipe bends using fuzzy model identification

    International Nuclear Information System (INIS)

    Na, Man Gyun; Kim, Jin Weon; Hwang, In Joon

    2006-01-01

    In this work, the collapse moment due to wall-thinned defects is estimated through fuzzy model identification. A subtractive clustering method is used as the basis of a fast and robust algorithm for identifying the fuzzy model. The fuzzy model is optimized by a genetic algorithm combined with a least squares method. The developed fuzzy model has been applied to the numerical data obtained from the finite element analysis. Principal component analysis is used to preprocess the input signals into the fuzzy model to reduce the sensitivity to the input change and the fuzzy model are trained by using the data set prepared for training (training data) and verified by using another data set different (independent) from the training data. Also, three fuzzy models are trained, respectively, for three data sets divided into the three classes of extrados, intrados, and crown defects, which is because they have different characteristics. The relative root mean square (RMS) errors of the estimated collapse moment are 0.5397% for the training data and 0.8673% for the test data. It is known from this result that the fuzzy models are sufficiently accurate to be used in the integrity evaluation of wall-thinned pipe bends and elbows

  11. The stability of growth of a through-wall circumferential crack in a cylindrical pipe subjected to bending deformation

    International Nuclear Information System (INIS)

    Smith, E.

    1987-01-01

    Tada, Paris and Gamble have used the tearing modulus approach to examine the stability of growth of a through-wall circumferential crack in a 304 stainless steel circular cylindrical pipe subject to bending deformation. They showed that crack growth is stable, in the sense that growth requires the rotation imposed at the pipe-ends to be increased, provided the pipe length is less than a critical length Lsub(c), which is given by their analysis. The Tada-Paris-Gamble analysis focuses on the question of the stability, or otherwise, of crack growth at the onset of crack extension. The analysis does not consider the possibilities that (a) instability might occur after some stable crack growth, and (b) arrest might occur after some unstable growth. A study of these aspects of the circumferential crack growth problem using the tearing modulus approach is precluded by the geometry dependence of the J-crack growth resistance curve. Consequently the present paper uses a crack tip opening angle criterion to describe crack growth, and thereby demonstrates that possibilities (a) and (b) should both occur, depending on the initial crack length and pipe length. In terms of relevance to the technologically important problem of cracking in Boiling Water Reactor piping, the important conclusion stemming from the paper's analysis is that stability of crack growth after the onset of crack extension is assured if the pipe length is less than a critical length L'sub(c). L'sub(c) is less than Lsub(c), the critical length relevant to the onset of crack extension, but it is still appreciably greater than the pipe run lengths in actual reactor piping systems, and safety against guillotine failure of a pipe is therefore generally assured. (author)

  12. Effect of local wall thinning on the collapse behavior of pipe elbows subjected to a combined internal pressure and in-plane bending load

    International Nuclear Information System (INIS)

    Kim, Jin-Weon; Na, Man-Gyun; Park, Chi-Yong

    2008-01-01

    The objective of this study was to investigate the effect of local wall thinning on the collapse behavior of pipe elbows subjected to a combined internal pressure and in-plane bending load. This study evaluated the global deformation behavior and collapse moment of the elbows, which contained various types of local wall-thinning defects at their intrados or extrados, using three-dimensional elastic-plastic finite element analysis. The analysis results showed that the global deformation behavior of locally wall-thinned elbows was largely governed by the mode of the bending and the elbow geometry rather than the wall-thinning parameters, except for elbows with considerably large and deep wall thinning that showed plastic instabilities induced by local buckling and plastic collapsing in the thinned area. The reduction in the collapse moment with wall-thinning depth was considerable when local buckling occurred in the thinned areas, whereas the effect of the thinning depth was small when ovalization occurred. The effects of the circumferential thinning angle and thinning length on the collapse moment of elbows were not major for shallow wall-thinning cases. For deeper wall-thinning cases, however, their effects were significant and the dependence of collapse moment on the axial thinning length was governed by the stress type applied to the wall-thinned area. Typically, the reduction in the collapse moment due to local wall thinning was clearer when the thinning defect was located at the intrados rather than the extrados, and it was apparent for elbows with larger bend radius

  13. New technical knowledge to be implemented to the revision of rules on pipe wall thinning management for PWR Plants. 2006 edition

    International Nuclear Information System (INIS)

    Hirai, Junya; Amano, Yoichi; Nakamura, Takao

    2013-01-01

    Rules for PWR plant pipe wall thinning management were formulated by the Japan Society of Mechanical Engineers in 2006. Since then thinning management of Japanese PWR plants has been carried out based on this rule. Pipe wall thinning phenomena to be dealt with in this rule have been identified in many piping components of power plants. New technical knowledge has been accumulated since the issuance of 2006 edition. We have formulated these knowledge and information about the thinning phenomena in PWR power plants. Given the history of application of this rule, we have to make our best effort to carry out a study of latest technical knowledge and implement them to the revision of rule and improve pipe wall thinning management. This paper summarizes the new technical knowledge and basis to be implemented to the revision of rules on pipe wall thinning management for PWR plants in Japan. (author)

  14. Validation and Application of Computed Radiography (CR) Tangential Technique for Wall Thickness Measurement of 10 Inch Carbon Steel Pipe

    International Nuclear Information System (INIS)

    Norhazleena Azaman; Khairul Anuar Mohd Salleh; Amry Amin Abas; Arshad Yassin; Sukhri Ahmad

    2016-01-01

    Oil and gas industry requires Non Destructive Testing (NDT) to ensure each components, in-service and critical, are fit-for-purpose. Pipes that are used to transfer oil or gas are amongst the critical component that needs to be well maintained and inspected. Typical pipe discontinuities that may lead to unintended incidents are erosion, corrosion, dent, welding defects, etc. Wall thickness assessment, with Radiography Testing (RT) is normally used to inspect such discontinuities and can be performed with two approaches; (a) center line beam tangential technique (b) offset from the centre pipe tangential technique. The latter is a method of choice for this work because of the pipe dimension and limited radiation safe distance at site. Two successful validation approaches (simulation and experimental) were performed to determine the probability of successfulness before the actual RT work with tangential technique is carried out. The pipe was a 10 inch diameter in-service wrapped carbon steel. A 9 Ci Ir-192 and white Imaging Plate (IP) were used as a gamma radiation source and to record the radiographic image. Result of this work suggest that RT with tangential technique for 10 inch wrapped in-service carbon steel pipe can be successfully performed. (author)

  15. Construction of Earthquake - Proof Safety Evaluaiton Methods for Pipes with Wall Thinning

    International Nuclear Information System (INIS)

    Miyano, H.; Sekimura, N.; Takizawa, M.; Mastumoto, M.

    2012-01-01

    Since the Fukushima Dai-ichi accident, the importance of 'system safety' has been recognized anew. Particularly, system safety assessment of plants in operation from the various degradation perspectives, specifically, transition of time is very important. Accordingly, assessment on degradation will focus on the degradation of functions with passing of time, combined with the changes in the safety standards and concept of safety. Reliability assessment will be made on the consolidation of important functions, and not on individual components. The boundary function of the system will be one of the focus of this study. For the purpose of reliability assessment on the system by evaluating and quantifying the damage (or rupture) risk of piping - method for confirming the integrity of the system through the assessment on the damage (rupture) risk of the system when an external force caused by an earthquake is applied (the system is sound if the damage (rupture) risk is small) was examined on the basis of the prediction results for each of the parts in pipe wall thinning. In the next phase, the prediction results will be verified by tests, whereby, the improvement in reliability will be confirmed, and a combined assessment will be made in relation to the degradation factors of other systems. 'System safety' assessment method of plants in operation will be developed in a manner where a comprehensive assessment on the safety of the entire plant can be made. Specifically, the changes in the conditions, such as material degradations that degrade performance will be assessed on the entire system. Whereby, the risk caused by functional failure (damage) due to degradation will be regarded as the total of risk in the assessment. A framework on safety assessment will be structured, where the degree of safety will be measured by functional degradation, taking into consideration the changes made in the safety standards up to present. (author)

  16. Evaluation of wall thinning of piping with reinforcing plates using ECT with controlled exciting field

    International Nuclear Information System (INIS)

    Ichihara, Toshiaki; Xie, Shejuan; Uchimoto, Tetsuya; Takagi, Toshiyuki

    2011-01-01

    No effective inspection method exists at present for detection and evaluation of wall thinning under the reinforcing plates to T-tubes in nuclear power plants, and the establishment of the inspection method is highly required. In this study, eddy current testing (ECT) with controlled exciting field is applied to evaluation of wall thinning under the reinforcing plates of T-tubes, and their feasibility is discussed. In order to induce eddy current field in deep region of doubled plates, pulse excitation and probe structures are investigated. Through experiments using specimens simulating tubes with reinforcing plates, it is shown that pulsed ECT and conventional TR type eddy current probe with optimized configuration have a capability of detecting and sizing the wall thinning under reinforcing plates. (author)

  17. The characteristic investigation on narrow-gap TIG weld joint of heavy wall austenitic stainless steel pipe

    International Nuclear Information System (INIS)

    Shim, Deog Nam; Jung, In Cheol

    2003-01-01

    Although Gas Tungsten Arc Welding (GTAW or TIG welding) is considered as high quality and precision welding process, it also has demerit of low melting rate. Narrow-gap TIG welding which has narrow joint width reduces the groove volume remarkably, so it could be shorten the welding time and decrease the overall shrinkage in heavy wall pipe welding. Generally narrow-gap TIG welding is used as orbital welding process, it is important to select the optimum conditions for the automatic control welding. This paper looks at the application and metallurgical properties on narrow-gap TIG welding joint of heavy wall large austenitic stainless steel pipe to determine the deposition efficiency, the resultant shrinkage and fracture toughness. The fracture toughness depends slightly on the welding heat input

  18. Solid0Core Heat-Pipe Nuclear Batterly Type Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ehud Greenspan

    2008-09-30

    This project was devoted to a preliminary assessment of the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor to have a solid core from which heat is removed by liquid-metal heat pipes (HP).

  19. Online monitoring method using Equipotential Switching Direct Current potential drop for piping wall loss by flow accelerated corrosion

    International Nuclear Information System (INIS)

    Ryu, Kyung Ha; Lee, Tae Hyun; Kim, Ji Hak; Hwang, Il Soon; Lee, Na Young; Kim, Ji Hyun; Park, Jin Ho; Sohn, Chang Ho

    2010-01-01

    The flow accelerated corrosion (FAC) phenomenon persistently impacts plant reliability and personnel safety. We have shown that Equipotential Switching Direct Current Potential Drop (ES-DCPD) can be employed to detect piping wall loss induced by FAC. It has been demonstrated to have sufficient sensitivity to cover both long and short lengths of piping. Based on this, new FAC screening and inspection approaches have been developed. For example, resolution of ES-DCPD can be adjusted according to its monitoring purpose. The developed method shows good integrity during long test periods. It also shows good reproducibility. The Seoul National University FAC Accelerated Simulation Loop (SFASL) has been constructed for ES-DCPD demonstration purposes. During one demonstration, the piping wall was thinned by 23.7% through FAC for a 13,000 min test period. In addition to the ES-DCPD method, ultrasonic technique (UT) has been applied to SFASL for verification while water chemistry was continually monitored and controlled using electrochemical sensors. Developed electrochemical sensors showed accurate and stable water conditions in the SFASL during the test period. The ES-DCPD results were also theoretically predicted by the Sanchez-Caldera's model. The UT, however, failed to detect thinning because of its localized characteristics. Online UT that covers only local areas cannot assure the detection of wall loss.

  20. Analysis of residual stresses in girth welded type 304 stainless steel pipes

    International Nuclear Information System (INIS)

    Brust, F.W.; Kanninen, M.F.

    1981-01-01

    Intergranular stress corrosion cracking (IGSCC) in boiling water reactor (BWR) piping is a problem for the nuclear power industry. Tensile residual stresses induced by welding are an important factor in IGSCC of Type 304 stainless steel pipes. Backlay and heat sink welding can retard IGSCC. 17 refs

  1. Pyrosequencing Reveals Bacterial Communities in Unchlorinated Drinking Water Distribution System: An Integral Study of Bulk Water, Suspended Solids, Loose Deposits, and Pipe Wall Biofilm

    KAUST Repository

    Liu, G.; Bakker, G. L.; Li, S.; Vreeburg, J. H G; Verberk, J. Q J C; Medema, G. J.; Liu, W. T.; Van Dijk, J. C.

    2014-01-01

    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected

  2. Feasibility study on the application of a heat-pipe type adsorption chiller

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sang Hyeok; Chung, Jae Dong [Dept. of Mechanical Engineering, Sejong University, Seoul (Korea, Republic of); Kwon, Oh Kyung [Energy System R and D Group, Korea Institute of Industrial Technology, Cheonan (Korea, Republic of)

    2017-01-15

    A parametric study on a heat-pipe type adsorption chiller with SWS-1L (mesoporous silica gel impregnated with CaCl{sub 2}) and water pair was conducted using a numerical method in this research. A heat pipe that is in direct contact with the adsorbent is applied to the adsorption chiller to improve the heat transfer capacity of the adsorption bed. A feasibility study was performed on the heat-pipe type adsorption bed with a single layer. The Coefficient of performance (COP) and the Specific cooling power (SCP) were 0.231 and 844.8 W/kg, respectively. These values are lower than the system performance values of the existing fin-tube type adsorption bed. However, when the number of bed layers was increased to seven, the COP and SCP of the heat-pipe type adsorption bed were 0.520 and 752.4 W/kg, respectively. These values are 5.25 % and 39.8 % higher than the COP and SCP, respectively, of the fin-tube type adsorption bed. These findings indicate that the heat-pipe type adsorption bed can potentially address the disadvantage caused by the system size of the adsorption chiller. A parametric study was also conducted for six design parameters, namely, number of layers, heat pipe pitch, heat pipe radius, fin width, fin spacing, and hot water temperature.

  3. Feasibility study on the application of a heat-pipe type adsorption chiller

    International Nuclear Information System (INIS)

    Ahn, Sang Hyeok; Chung, Jae Dong; Kwon, Oh Kyung

    2017-01-01

    A parametric study on a heat-pipe type adsorption chiller with SWS-1L (mesoporous silica gel impregnated with CaCl_2) and water pair was conducted using a numerical method in this research. A heat pipe that is in direct contact with the adsorbent is applied to the adsorption chiller to improve the heat transfer capacity of the adsorption bed. A feasibility study was performed on the heat-pipe type adsorption bed with a single layer. The Coefficient of performance (COP) and the Specific cooling power (SCP) were 0.231 and 844.8 W/kg, respectively. These values are lower than the system performance values of the existing fin-tube type adsorption bed. However, when the number of bed layers was increased to seven, the COP and SCP of the heat-pipe type adsorption bed were 0.520 and 752.4 W/kg, respectively. These values are 5.25 % and 39.8 % higher than the COP and SCP, respectively, of the fin-tube type adsorption bed. These findings indicate that the heat-pipe type adsorption bed can potentially address the disadvantage caused by the system size of the adsorption chiller. A parametric study was also conducted for six design parameters, namely, number of layers, heat pipe pitch, heat pipe radius, fin width, fin spacing, and hot water temperature

  4. The plastic instability of clamped-clamped conical thin-walled pipe reducers

    International Nuclear Information System (INIS)

    Awad, Ibrahim; Saleh, Ch.A.R.; Ragab, A.R.

    2016-01-01

    The analytical study for plastic deformation of clamped–clamped conical reducer pipe under internal pressure does not deduce a closed form expression for the pressure at plastic instability. The presented study employs finite element analysis (FEA) to estimate the internal pressure at instability for conical reducers made of different materials and having different dimensional configurations. Forty dimensional configurations, classified as medium type, and five types of materials have been included in the analysis using ABAQUS package. A correlation expression is derived by nonlinear regression to predict the instability pressure. The proposed expression is verified for other dimensional configurations out of the above used forty models and for other materials. Experiments have been conducted by pressurizing conical clamped-clamped reducers until bursting in order to verify the finite element models. Comparison of instability pressures, strains and deflections at specific points along the conical surface shows satisfactory agreement between analysis and experiments. - Highlights: • This study offers a parametric study of the plastic instability pressure of clamped-clamped conical reducers. • A closed form analytical expression for the instability pressure is derived by using nonlinear regression. • The finite element analysis is validated by conducting bursting tests.

  5. Simulation of boiling flow in evaporator of separate type heat pipe with low heat flux

    International Nuclear Information System (INIS)

    Kuang, Y.W.; Wang, Wen; Zhuan, Rui; Yi, C.C.

    2015-01-01

    Highlights: • A boiling flow model in a separate type heat pipe with 65 mm diameter tube. • Nucleate boiling is the dominant mechanism in large pipes at low mass and heat flux. • The two-phase heat transfer coefficient is less sensitive to the total mass flux. - Abstract: The separate type heat pipe heat exchanger is considered to be a potential selection for developing passive cooling spent fuel pool – for the passive pressurized water reactor. This paper simulates the boiling flow behavior in the evaporator of separate type heat pipe, consisting of a bundle of tubes of inner diameter 65 mm. It displays two-phase characteristic in the evaporation section of the heat pipe working in low heat flux. In this study, the two-phase flow model in the evaporation section of the separate type heat pipe is presented. The volume of fluid (VOF) model is used to consider the interaction between the ammonia gas and liquid. The flow patterns and flow behaviors are studied and the agitated bubbly flow, churn bubbly flow are obtained, the slug bubble is likely to break into churn slug or churn froth flow. In addition, study on the heat transfer coefficients indicates that the nucleate boiling is the dominant mechanism in large pipes at low mass and heat flux, with the heat transfer coefficient being less sensitive to the total mass flux

  6. Development of Wall Thinning Distinction Method using the Multi-inspecting UT Data of Carbon Steel Piping

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Kyeong Mo; Yun, Hun; Lee, Chan Kyoo [KEPCO E and C, Yongin (Korea, Republic of)

    2012-05-15

    To manage the wall thinning of carbon steel piping in nuclear power plants, the utility of Korea has performed thickness inspection for some quantity of pipe components during refueling outages and determined whether repair or replacement after evaluating UT (Ultrasonic Test) data. When the existing UT data evaluation methods, such as Band, Blanket, PTP (Point to Point) Methods, are applied to a certain pipe component, unnecessary re-inspecting situations may be generated even though the component does not thinned. In those cases, economical loss caused by repeated inspection and problems of maintaining the pipe integrity followed by decreasing of newly inspected components may be generated. EPRI (Electric Power Research Institute) in USA has suggested several statistical methods, TPM (Total Point Method), LSS (Least Square Slope) Method, etc. to distinguish whether multiple inspecting components have thinned or not. This paper presents the analysis results for multiple inspecting components over three times based on both NAM (Near Area of Minimum) Method developed by KEPCO-E and C and the other methods suggested by EPRI.

  7. Drop Weight Impact Behavior of Al-Si-Cu Alloy Foam-Filled Thin-Walled Steel Pipe Fabricated by Friction Stir Back Extrusion

    Science.gov (United States)

    Hangai, Yoshihiko; Nakano, Yukiko; Utsunomiya, Takao; Kuwazuru, Osamu; Yoshikawa, Nobuhiro

    2017-02-01

    In this study, Al-Si-Cu alloy ADC12 foam-filled thin-walled stainless steel pipes, which exhibit metal bonding between the ADC12 foam and steel pipe, were fabricated by friction stir back extrusion. Drop weight impact tests were conducted to investigate the deformation behavior and mechanical properties of the foam-filled pipes during dynamic compression tests, which were compared with the results of static compression tests. From x-ray computed tomography observation, it was confirmed that the fabricated foam-filled pipes had almost uniform porosity and pore size distributions. It was found that no scattering of the fragments of collapsed ADC12 foam occurred for the foam-filled pipes owing to the existence of the pipe surrounding the ADC12 foam. Preventing the scattering of the ADC12 foam decreases the drop in stress during dynamic compression tests and therefore improves the energy absorption properties of the foam.

  8. Proposal of failure criterion applicable to finite element analysis results for wall-thinned pipes under bending load

    Energy Technology Data Exchange (ETDEWEB)

    Meshii, Toshiyuki, E-mail: meshii@u-fukui.ac.jp [Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui (Japan); Ito, Yoshiaki [Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui (Japan)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Limit bending load (LBL) of wall-thinned pipe by large strain FEA was considered. Black-Right-Pointing-Pointer Net section yield load had sufficient margin to LBL. Black-Right-Pointing-Pointer LBL for collapse was the load when volume with nominal thickness yielded. Black-Right-Pointing-Pointer LBL for cracking was the load when flawed section stress exceeded tensile strength. Black-Right-Pointing-Pointer Failure criterion considering above was named Domain Collapse Criterion. - Abstract: In this work, a failure criterion applicable to large strain Finite Element Analysis (FEA) results was proposed in order to predict both the fracture mode (collapse or cracking) and the limit bending load of wall-thinned straight pipes. This work was motivated from the recent experimental results of ; that is, fracture mode is not always collapse, and the fracture mode affects the limit bending load. The key finding in comparing their test results and a detailed large strain FEA results was that the Mises stress distribution at the limit bending load of a flawed cylinder was similar to that of a flawless cylinder; specifically, in case of collapse, the Mises stress exceeded the true yield stress of a material for the whole 'volume' of a cylinder with a nominal wall thickness. Based on this finding, a failure criterion applicable to large strain FEA results of wall-thinned straight pipes under a bending load that can predict both fracture mode and limit bending load was proposed and was named the Domain Collapse Criterion (DCC). DCC predicts the limit bending load as the lower value of either the M{sub c}{sup FEA}, which is the load at which the Mises stress exceeds the true yield strength of a straight pipe for the whole 'volume' with a nominal wall thickness (fracture mode: collapse), or the M{sub c}{sup FEAb}, which is the load at which the Mises stress in a section of the flaw ligament exceeds the true tensile stress

  9. MODELING OF KINEMATICS OF A PLASTIC SHAPING AT CALIBRATION OF A THIN-WALLED PRECISION PIPE SINKING

    Directory of Open Access Journals (Sweden)

    E. D. Chertov

    2014-01-01

    Full Text Available Summary. The mathematical model of kinematics of a plastic shaping at the sinking of a thin-walled precision pipe applied to calibration of the ends of the unified elements of the pipeline of aircraft from titanic alloys and corrosion-resistant steel before assembly to the route by means of automatic argon-arc welding of ring joints is developed. For modeling, the power criterion of stability with use of kinematic possible fields of speeds is applied to receiving the top assessment of effort of deformation. The developed model of kinematics of a plastic current allows to receive power parameters of the main condition of process of calibration by sinking and can be used for the solution of a task on stability of process of deformation by results of comparison of power (power parameters for the main (steady and indignant states. Modeling is made in cylindrical system of coordinates by comparison of options of kinematic possible fields of the speeds of a current meeting a condition of incompressibility and kinematic regional conditions. The result of the modeling was selected discontinuous field of high-speed, in which the decrease outer radius (R occurs only by increasing the thickness of the pipe wall (t. For this option the size of pressure of sinking had the smallest value, therefore the chosen field of speeds closely to the valid. It is established that with increase in a step of giving 1 at calibration by the multisector tool the demanded pressure of sinking of q decreases. At an identical step of giving 1 pipe with the smaller relative thickness of (t/r needs to be calibrated the smaller pressure of sinking. With increase of a limit of fluidity at shift of material of pipe preparation pressure of sinking of (q increases.

  10. Role of wall-attached structures in the interface of the quiescent core region in turbulent pipe flow

    Science.gov (United States)

    Yang, Jongmin; Hwang, Jinyul; Sung, Hyung Jin

    2017-11-01

    The effects of low- and high-speed structures on the interface of the quiescent core region are explored using direct numerical simulation data of turbulent pipe flow. The quiescent core region is a uniform momentum zone located at the center of the pipe flow, which contains the highest streamwise momentum with a low level of turbulence. The interface of the quiescent core region can be identified from the probability density function of the streamwise modal velocity. In the vicinity of the interface of the quiescent core region, the streamwise velocity changes abruptly. The abrupt jump in velocity causes an increase of the velocity gradient. The interface of the quiescent core region is similar to the laminar superlayer in turbulent/non-turbulent interface. The interface of the quiescent core region contains the low- and high-speed structures. They can be classified into wall-attached and detached structures depending on the distance between the structures and the wall. The influence of the detached structures accounted for most of the number of detected structures is negligible due to its small volume. Conversely, the wall-attached structures adjacent to the interface have a huge influence on the statistical amount of the interface, such as entrainment characteristics. This work was supported by the Creative Research Initiatives (No. 2017-013369) program of the National Research Foundation of Korea (MSIP).

  11. Pyrosequencing reveals bacterial communities in unchlorinated drinking water distribution system: an integral study of bulk water, suspended solids, loose deposits, and pipe wall biofilm.

    Science.gov (United States)

    Liu, G; Bakker, G L; Li, S; Vreeburg, J H G; Verberk, J Q J C; Medema, G J; Liu, W T; Van Dijk, J C

    2014-05-20

    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected. Analyzing the composition and correlation of bacterial communities from different phases helped us to locate where most of the bacteria are and understand the interactions among these phases. In the present study, the bacteria from four critical phases of an unchlorinated DWDS, including bulk water, pipe wall biofilm, suspended solids, and loose deposits, were quantified and identified by adenosine triphosphate analysis and pyrosequencing, respectively. The results showed that the bulk water bacteria (including the contribution of suspended solids) contributed less than 2% of the total bacteria. The bacteria associated with loose deposits and pipe wall biofilm that accumulated in the DWDS accounted for over 98% of the total bacteria, and the contributions of bacteria in loose deposits and pipe wall biofilm were comparable. Depending on the amount of loose deposits, its contribution can be 7-fold higher than the pipe wall biofilm. Pyrosequencing revealed relatively stable bacterial communities in bulk water, pipe wall biofilm, and suspended solids throughout the distribution system; however, the communities present in loose deposits were dependent on the amount of loose deposits locally. Bacteria within the phases of suspended solids, loose deposits, and pipe wall biofilm were similar in phylogenetic composition. The bulk water bacteria (dominated by Polaromonas spp.) were clearly different from the bacteria from the other three phases (dominated by Sphingomonas spp.). This study highlighted that the integral DWDS ecology should include contributions from all of the four phases, especially the bacteria harbored by loose deposits. The accumulation of loose deposits and the aging process create variable microenvironments

  12. Pyrosequencing Reveals Bacterial Communities in Unchlorinated Drinking Water Distribution System: An Integral Study of Bulk Water, Suspended Solids, Loose Deposits, and Pipe Wall Biofilm

    KAUST Repository

    Liu, G.

    2014-05-20

    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected. Analyzing the composition and correlation of bacterial communities from different phases helped us to locate where most of the bacteria are and understand the interactions among these phases. In the present study, the bacteria from four critical phases of an unchlorinated DWDS, including bulk water, pipe wall biofilm, suspended solids, and loose deposits, were quantified and identified by adenosine triphosphate analysis and pyrosequencing, respectively. The results showed that the bulk water bacteria (including the contribution of suspended solids) contributed less than 2% of the total bacteria. The bacteria associated with loose deposits and pipe wall biofilm that accumulated in the DWDS accounted for over 98% of the total bacteria, and the contributions of bacteria in loose deposits and pipe wall biofilm were comparable. Depending on the amount of loose deposits, its contribution can be 7-fold higher than the pipe wall biofilm. Pyrosequencing revealed relatively stable bacterial communities in bulk water, pipe wall biofilm, and suspended solids throughout the distribution system; however, the communities present in loose deposits were dependent on the amount of loose deposits locally. Bacteria within the phases of suspended solids, loose deposits, and pipe wall biofilm were similar in phylogenetic composition. The bulk water bacteria (dominated by Polaromonas spp.) were clearly different from the bacteria from the other three phases (dominated by Sphingomonas spp.). This study highlighted that the integral DWDS ecology should include contributions from all of the four phases, especially the bacteria harbored by loose deposits. The accumulation of loose deposits and the aging process create variable microenvironments

  13. Fracture studies on stainless steel straight pipes under earthquake-type cyclic loading

    International Nuclear Information System (INIS)

    Raghava, G.; Vishnuvardhan, S.; Gandhi, P.; Vaze, K.K.

    2014-01-01

    In order to study the crack growth and cyclic fracture behaviour, which are required for realistic assessment of Leak Before Break (LBB) applicability, experimental investigations were carried out on straight pipes under quasi-crystal loading. Totally 13 pipes were tested; three were stainless steel welded (SSW) using conventional shielded metal arc welding (SMAW) technique and the remaining specimens were Narrow Gap Welded (NGW). The fracture tests were carried out under load control, displacement control and combination of the two; the pipes were subjected to different amplitudes of load or load-line displacement (LLD), which were decided based on the response of the pipes under monotonic loading. Cyclic tearing and crack growth studies on eight straight pipes of the same material reported earlier in published literature are also considered for studying the results and understanding the behaviour. Under load control, with almost equal load amplitude, the NGW pipe exhibited improved life in comparison with SMAW pipe when both are subjected to cyclic loading. The crack growth and tearing instability behaviour of the pipes were studied. The same were found to be different for load control, displacement control and combined control tests. Based in the load-controlled experimental results, material specific plot between cyclic load amplitude (as a percentage of maximum load carrying capacity of a specimen under monotonic fracture) and number of cycles to failure was obtained. The results indicate that the piping components subjected to quasi-cyclic loading may fail in very less number of cycles even when the load amplitude is sufficiently below the monotonic fracture/collapse load. These studies will be helpful in designing nuclear power plant (NPP) piping components subjected to earthquake-type cyclic loading. (author)

  14. Analysis of two-phase flow induced vibrations in perpendiculary supported U-type piping systems

    International Nuclear Information System (INIS)

    Hiramatsu, Tsutomu; Komura, Yoshiaki; Ito, Atsushi.

    1984-01-01

    The perpose of this analysis is to predict the vibration level of a pipe conveying a two-phase flowing fluid. Experiments were carried out with a perpendiculary supported U-type piping system, conveying an air-water two-phase flow in a steady state condition. Fluctuation signals are observed by a void signal sensor, and power spectral densities and probability density functions are obtained from the void signals. Theoretical studies using FEM and an estimation of the exciting forces from the PSD of void signals, provided a good predictional estimation of vibration responses of the piping system. (author)

  15. Inverse estimation for the unknown frost geometry on the external wall of a forced-convection pipe

    International Nuclear Information System (INIS)

    Chen, W.-L.; Yang, Y.-C.

    2009-01-01

    In this study, a conjugate gradient method based inverse algorithm is applied to estimate the unknown frost-layer boundary profile on the external wall of a pipe system using temperature measurements. It is assumed that no prior information is available on the functional form of the unknown profile; hence the procedure is classified as the function estimation in inverse calculation. The temperature data obtained from the direct problem are used to simulate the temperature measurements. The accuracy of the inverse analysis is examined by using simulated exact and inexact temperature measurements. Results show that an excellent estimation on boundary profile can be obtained for the test case considered in this study.

  16. Double-walled tank type reactor

    International Nuclear Information System (INIS)

    Kinoshita, Izumi; Nishiguchi, Yohei.

    1993-01-01

    A secondary vessel containing a steam generator is disposed on a base slab, and a roof slab is disposed to the upper end opening of the base slab. A manometer sealing is formed between the upper end opening of the secondary vessel and the roof slab. A primary vessel is disposed in the second vessel for containing a reactor core therein. A communication pipeline system (equalizer) is disposed for communicating the cover gas space of the secondary vessel with the cover gas space of the primary vessel by way of the roof slab. The communication pipeline system comprises a breakable plate, a check valve which opens from the secondary system to the primary system, a closing valve and pipelines connecting them. Upon occurrence of a sodium-water reaction accident caused by rupture of heat transfer pipes of a steam generator in the secondary vessel, the breakable plate is broken to equalize the gas pressure by way of the communication pipelines. This can avoid external pressure buckling of the primary vessel. (I.N.)

  17. Automatic welding processes for reactor coolant pipes used in PWR type nuclear power plant

    International Nuclear Information System (INIS)

    Hamada, T.; Nakamura, A.; Nagura, Y.; Sakamoto, N.

    1979-01-01

    The authors developed automatic welding processes (submerged arc welding process and TIG welding process) for application to the welding of reactor coolant pipes which constitute the most important part of the PWR type nuclear power plant. Submerged arc welding process is suitable for flat position welding in which pipes can be rotated, while TIG welding process is suitable for all position welding. This paper gives an outline of the two processes and the results of tests performed using these processes. (author)

  18. Refined inelastic analysis of piping systems using a beam-type program

    International Nuclear Information System (INIS)

    Millard, A.; Hoffmann, A.

    1981-08-01

    A finite element for inelastic piping analysis has been presented, which enables accounting for local effects like thermal gradients and supplies local states of stresses and strains, while keeping all the advantages of a classical beam type program (easy to use, simple boundary conditions, cost effectiveness). Thanks to the local description of the cross section, geometrical non-linearity due to inertia modification can be introduced together with material non-linearity. The element can also be degenerated into a straight pipe element

  19. Solid-Core Heat-Pipe Nuclear Batterly Type Reactor

    International Nuclear Information System (INIS)

    Ehud Greenspan

    2008-01-01

    This project was devoted to a preliminary assessment of the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor to have a solid core from which heat is removed by liquid-metal heat pipes (HP). Like the SAFE 400 space nuclear reactor core, the HPENHS core is comprised of fuel rods and HPs embedded in a solid structure arranged in a hexagonal lattice in a 3:1 ratio. The core is oriented horizontally and has a square rather cylindrical cross section for effective heat transfer. The HPs extend from the two axial reflectors in which the fission gas plena are embedded and transfer heat to an intermediate coolant that flows by natural-circulation. The HP-ENHS is designed to preserve many features of the ENHS including 20-year operation without refueling, very small excess reactivity throughout life, natural circulation cooling, walkaway passive safety, and robust proliferation resistance. The target power level and specific power of the HP-ENHS reactor are those of the reference ENHS reactor. Compared to previous ENHS reactor designs utilizing a lead or lead-bismuth alloy natural circulation cooling system, the HP-ENHS reactor offers a number of advantageous features including: (1) significantly enhanced passive decay heat removal capability; (2) no positive void reactivity coefficients; (3) relatively lower corrosion of the cladding (4) a core that is more robust for transportation; (5) higher temperature potentially offering higher efficiency and hydrogen production capability. This preliminary study focuses on five areas: material compatibility analysis, HP performance analysis, neutronic analysis, thermal-hydraulic analysis and safety analysis. Of the four high-temperature structural materials evaluated, Mo TZM alloy is the preferred choice; its upper estimated feasible operating temperature is 1350 K. HP performance is evaluated as a function of working fluid type, operating temperature, wick design and HP diameter and length. Sodium is the

  20. Development of high-strength heavy-wall sour-service seamless line pipe for deep water by applying inline heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Y.; Kondo, K.; Hamada, M.; Hisamune, N.; Murao, N.; Murase, T.; Osako, H. [Sumitomo Metal Industries Ltd., Tokyo (Japan)

    2004-07-01

    This paper provided details of a new high-strength heavy-wall sour service seamless line pipe developed for use in deep water applications. Pig iron was processed in a blast furnace and refined. Molten steel was degassed to reduce impurities and poured into a continuous caster with a round mold. Billets were then heated in a walking-beam furnace and then pierced to form a hollow shell. The shell was then rolled to a specific thickness in a compact mandrel mill and rolled to a specified outer diameter by an extracting sizer. A heating furnace was used to improve the uniformity of the pipes. The heated pipes were then moved to a cooling zone, then rotated quickly while a high-pressured jet flow was injected inside the pipe at the same time as a slit laminar flow was applied to the outside of the pipe. Higher strength was achieved by using the high performance quenching device. It was noted that while pipes manufactured using the inline heat treatment process were able to achieve higher strengths, toughness was reduced. Metallurgical tests were conducted to improve the toughness value of the seamless pipe. Both the microstructure and the fracture surface of test specimens were examined using scanning electron microscopy. Results of the tests showed that lowering sulphur (S) and titanium (Ti) content improved the toughness properties of the pipes. It was concluded that control of microalloys is important to secure improved toughness for pipes manufactured using inline heat treatments. 5 tabs., 12 figs.

  1. Study on the Thick-Walled Pipe Ultrasonic Signal Enhancement of Modified S-Transform and Singular Value Decomposition

    Directory of Open Access Journals (Sweden)

    Haichao Cai

    2015-01-01

    Full Text Available When detecting the ultrasonic flaw of thick-walled pipe, the flaw echo signals are often interrupted by scanning system frequency and background noise. In particular when the thick-walled pipe defect is small, echo signal amplitude is often drowned in noise signal and affects the extraction of defect signal and the position determination accuracy. This paper presents the modified S-transform domain singular value decomposition method for the analysis of ultrasonic flaw echo signals. By changing the scale rule of Gaussian window functions with S-transform to improve the time-frequency resolution. And the paper tries to decompose the singular value decomposition of time-frequency matrix after the S-transform to determine the singular entropy of effective echo signal and realize the adaptive filter. Experiments show that, using this method can not only remove high frequency noise but also remove the low frequency noise and improve the signal-to-noise ratio of echo signal.

  2. Review of industry efforts to manage pressurized water reactor feedwater nozzle, piping, and feedring cracking and wall thinning

    Energy Technology Data Exchange (ETDEWEB)

    Shah, V.N.; Ware, A.G.; Porter, A.M.

    1997-03-01

    This report presents a review of nuclear industry efforts to manage thermal fatigue, flow-accelerated corrosion, and water hammer damage to pressurized water reactor (PWR) feedwater nozzles, piping, and feedrings. The review includes an evaluation of design modifications, operating procedure changes, augmented inspection and monitoring programs, and mitigation, repair and replacement activities. Four actions were taken: (a) review of field experience to identify trends of operating events, (b) review of technical literature, (c) visits to PWR plants and a PWR vendor, and (d) solicitation of information from 8 other countries. Assessment of field experience is that licensees have apparently taken sufficient action to minimize feedwater nozzle cracking caused by thermal fatigue and wall thinning of J-tubes and feedwater piping. Specific industry actions to minimize the wall-thinning in feedrings and thermal sleeves were not found, but visual inspection and necessary repairs are being performed. Assessment of field experience indicates that licensees have taken sufficient action to minimize steam generator water hammer in both top-feed and preheat steam generators. Industry efforts to minimize multiple check valve failures that have allowed backflow of steam from a steam generator and have played a major role in several steam generator water hammer events were not evaluated. A major finding of this review is that analysis, inspection, monitoring, mitigation, and replacement techniques have been developed for managing thermal fatigue and flow-accelerated corrosion damage to feedwater nozzles, piping, and feedrings. Adequate training and appropriate applications of these techniques would ensure effective management of this damage.

  3. Review of industry efforts to manage pressurized water reactor feedwater nozzle, piping, and feedring cracking and wall thinning

    International Nuclear Information System (INIS)

    Shah, V.N.; Ware, A.G.; Porter, A.M.

    1997-03-01

    This report presents a review of nuclear industry efforts to manage thermal fatigue, flow-accelerated corrosion, and water hammer damage to pressurized water reactor (PWR) feedwater nozzles, piping, and feedrings. The review includes an evaluation of design modifications, operating procedure changes, augmented inspection and monitoring programs, and mitigation, repair and replacement activities. Four actions were taken: (a) review of field experience to identify trends of operating events, (b) review of technical literature, (c) visits to PWR plants and a PWR vendor, and (d) solicitation of information from 8 other countries. Assessment of field experience is that licensees have apparently taken sufficient action to minimize feedwater nozzle cracking caused by thermal fatigue and wall thinning of J-tubes and feedwater piping. Specific industry actions to minimize the wall-thinning in feedrings and thermal sleeves were not found, but visual inspection and necessary repairs are being performed. Assessment of field experience indicates that licensees have taken sufficient action to minimize steam generator water hammer in both top-feed and preheat steam generators. Industry efforts to minimize multiple check valve failures that have allowed backflow of steam from a steam generator and have played a major role in several steam generator water hammer events were not evaluated. A major finding of this review is that analysis, inspection, monitoring, mitigation, and replacement techniques have been developed for managing thermal fatigue and flow-accelerated corrosion damage to feedwater nozzles, piping, and feedrings. Adequate training and appropriate applications of these techniques would ensure effective management of this damage

  4. Effect of Polymer Type and Mixing of Polymers on Drag Reduction in Turbulent Pipe Flow

    Directory of Open Access Journals (Sweden)

    Salam Hadi Hussein

    2017-05-01

    Full Text Available The paper reports on studies on effect of the type of polymer on drag reduction. The study conducted through circular pipe using Carboxy Methyl Cellulose (CMC, Xanthan gum (XG and their mixing in equal ratios as additives in pipe of diameter 0.0381m. The study covered range of parameters like concentration, mean velocity and angle of inclination of pipe. The maximum drag reduction observed was about 58%, 46% and 46% for the three polymers respectively. It is found that the drag reduction for the mixture is close to the drag reduction for XG polymer. The SPSS program has been used for correlate the data that have been obtained. The drag reduction percentage is correlated in terms of Reynolds number Re, additive concentration C (ppm and angle of inclination of pipe (deg, and the relations obtained is mentioned.

  5. Review of Acceleration Methods for Seismic Analysis of Through-Wall Cracked Piping from the Viewpoint of Linear Elastic Fracture Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Sung; Kim, Yong Woo [Sunchon National University, Suncheon (Korea, Republic of)

    2014-10-15

    Two acceleration methods, an effective force method (or inertia method) and a large mass method, have been applied for performing time history seismic analysis. The acceleration methods for uncracked structures have been verified via previous studies. However, no study has identified the validity of these acceleration methods for cracked piping. In this study, the validity of the acceleration methods for through-wall cracked piping is assessed via time history implicit dynamic elastic seismic analysis from the viewpoint of linear elastic fracture mechanics. As a result, it is identified that both acceleration methods show the same results for cracked piping if a large mass magnitude and maximum time increment are adequately selected.

  6. Review of Acceleration Methods for Seismic Analysis of Through-Wall Cracked Piping from the Viewpoint of Linear Elastic Fracture Mechanics

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Kim, Yong Woo

    2014-01-01

    Two acceleration methods, an effective force method (or inertia method) and a large mass method, have been applied for performing time history seismic analysis. The acceleration methods for uncracked structures have been verified via previous studies. However, no study has identified the validity of these acceleration methods for cracked piping. In this study, the validity of the acceleration methods for through-wall cracked piping is assessed via time history implicit dynamic elastic seismic analysis from the viewpoint of linear elastic fracture mechanics. As a result, it is identified that both acceleration methods show the same results for cracked piping if a large mass magnitude and maximum time increment are adequately selected

  7. Instability predictions for circumferentially cracked Type-304 stainless-steel pipes under dynamic loading. Final report

    International Nuclear Information System (INIS)

    Zahoor, A.; Wilkowski, G.; Abou-Sayed, I.; Marschall, C.; Broek, D.; Sampath, S.; Rhee, H.; Ahmad, J.

    1982-04-01

    This report provides methods to predict margins of safety for circumferentially cracked Type 304 stainless steel pipes subjected to applied bending loads. An integrated combination of experimentation and analysis research was pursued. Two types of experiments were performed: (1) laboratory-scale tests on center-cracked panels and bend specimens to establish the basic mechanical and fracture properties of Type 304 stainless steel, and (2) full-scale pipe fracture tests under quasi-static and dynamic loadings to assess the analysis procedures. Analyses were based upon the simple plastic collapse criterion, a J-estimation procedure, and elastic-plastic large-deformation finite element models

  8. Risk evaluation of embedded, single-walled liquid low-level waste piping at Oak Ridge National Laboratory. ESD Publication 4315

    International Nuclear Information System (INIS)

    1994-10-01

    Four categories of liquid low-level radioactive waste (LLLW) systems are defined in the Federal Facility Agreement (FFA) for the Oak Ridge Reservation (ORR). Categories A and B are new and fully compliant existing systems, respectively: Category C is singly contained and must be removed from service, and Category D is inactive. The FFA requires that secondary containment and leak detection be provided for all Category A and B piping in the LLLW System at Oak Ridge National Laboratory (ORNL); however, as noted in the D2 revision of the secondary containment design demonstration report (DOE 1994), some sections of single-walled embedded piping in Category B underground vaults at three ORNL facilities do not meet this requirement. A risk evaluation was performed in order compare the potential radiation dose to a member of the public that could result from a postulated leak in the single-walled pipes with projected radiation exposure to the workers who would modify the piping to meet FFA requirements. The risk to human health from replacing segments of embedded, single-walled piping in the LLW system is higher than the risk of leaving the piping as it is

  9. Insulated pipe clamp design

    International Nuclear Information System (INIS)

    Anderson, M.J.; Hyde, L.L.; Wagner, S.E.; Severud, L.K.

    1980-01-01

    Thin wall large diameter piping for breeder reactor plants can be subjected to significant thermal shocks during reactor scrams and other upset events. On the Fast Flux Test Facility, the addition of thick clamps directly on the piping was undesired because the differential metal temperatures between the pipe wall and the clamp could have significantly reduced the pipe thermal fatigue life cycle capabilities. Accordingly, an insulated pipe clamp design concept was developed. 5 refs

  10. Prediction of fracture parameters of circumferential through-wall cracks in the interface between an elbow and a pipe under internal pressure

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Youn Young; Huh, Nam Su [Dept. of Mechanical System Design Engineering, Seoul National Univ. of Science and Technology, Seoul (Korea, Republic of); Jeong, Jae Uk [Doosan Heavy Industries and Construction, Changwon (Korea, Republic of)

    2016-09-15

    This paper provides plastic influence functions of GE/EPRI method for calculating J and Crack opening displacement (COD) of pipes with a circumferential Through-wall crack (TWC) in the interface between an elbow and a straight pipe by using 3-dimensional (3-D) elastic-plastic finite element analyses for Ramberg-Osgood (R-O) materials, in which internal pressure was considered as a loading condition. The proposed plastic influence functions are tabulated as a function of the pipe geometries, crack length and strain hardening exponent. In order to provide sufficient confidence for the proposed plastic influence functions, the estimation scheme using the proposed plastic influence functions for J and COD of cracked elbows was validated against FE results using R-O parameters for the SA312 TP316 stainless steel. Moreover, the predicted J and COD for elbows with a TWC in the interface between an elbow and a pipe by the proposed scheme were compared with those for cracked straight pipes to investigate the effect of the elbow geometries on crack behavior of elbows. One important point is that crack behaviors in the interface between an elbow and a straight pipe can be significantly different with those in straight pipes according to pipe thickness, crack length and bend radius of elbows. Thus, the proposed plastic influence functions can be useful to predict accurate J and COD for cracked elbows.

  11. Prediction of fracture parameters of circumferential through-wall cracks in the interface between an elbow and a pipe under internal pressure

    International Nuclear Information System (INIS)

    Jang, Youn Young; Huh, Nam Su; Jeong, Jae Uk

    2016-01-01

    This paper provides plastic influence functions of GE/EPRI method for calculating J and Crack opening displacement (COD) of pipes with a circumferential Through-wall crack (TWC) in the interface between an elbow and a straight pipe by using 3-dimensional (3-D) elastic-plastic finite element analyses for Ramberg-Osgood (R-O) materials, in which internal pressure was considered as a loading condition. The proposed plastic influence functions are tabulated as a function of the pipe geometries, crack length and strain hardening exponent. In order to provide sufficient confidence for the proposed plastic influence functions, the estimation scheme using the proposed plastic influence functions for J and COD of cracked elbows was validated against FE results using R-O parameters for the SA312 TP316 stainless steel. Moreover, the predicted J and COD for elbows with a TWC in the interface between an elbow and a pipe by the proposed scheme were compared with those for cracked straight pipes to investigate the effect of the elbow geometries on crack behavior of elbows. One important point is that crack behaviors in the interface between an elbow and a straight pipe can be significantly different with those in straight pipes according to pipe thickness, crack length and bend radius of elbows. Thus, the proposed plastic influence functions can be useful to predict accurate J and COD for cracked elbows

  12. Dynamic pipe control with a multiple digit automatic measuring device

    International Nuclear Information System (INIS)

    Jenzer, P.

    1984-01-01

    With the flow rotating method, thin-walled pipes can be produced with very tight tolerances and high mechanical sturdiness. The measuring device permits a dynamic control of these pipes, the outer diameter of which can lie between 70 and 300 mm, the length between 500 and 2000 mm and the wall thickness between 0,5 and 10 mm. Depending on the pipe type, up to 27 measurements in a maximum of 5 measuring levels are to be controlled. (orig.) [de

  13. STRAIN CONCENTRATION IN APICES OF RADIAL CRACKS IN A THIN COATED PIPE WALL

    Directory of Open Access Journals (Sweden)

    M. M. Payzulaev

    2017-01-01

    Full Text Available Objectives. The well-known discontinuous solution method, used in the study of infinite and semi-infinite domains, is generalised during the construction of solutions in Fourier series. This makes it possible to reduce the problem of the mechanics of a deformable solid for a limited region containing cuts or inclusions to the solution of an integral equation (or system with respect to discontinuities of the functions being defined.Methods. The method was implemented through the application to the solution of the theoretical elasticity problem for a pipe section (plane deformation weakened by an internal radial crack. The pipe was loaded with hydrostatic pressure and a thin coating is applied on its inner surface, improving its physical and mechanical properties. The applied method, combined with the conventional integral transformation, can be effectively used in the construction of discontinuous solutions of three-dimensional problems of the theory of elasticity.Results. Specially formulated boundary conditions were used as a coating model. In order to verify the adequacy of the adopted model, a series of numerical experiments was carried out. In some cases, calculations were carried out for the cross-section of a coated pipe in finite-element ANSYS and COMSOL software packages. In others, benefiting from the extensive capabilities of the FlexPDE software package, an uncoated pipe model was constructed, although using special boundary conditions. Comparison of the results obtained made it possible to ascertain the adequacy of the models constructed across a certain range of geometric and physical parameters.Conclusion. The problem is reduced to the solution of a singular integral equation with a Cauchy kernel with respect to the derivative of the jump in the tangential component of the displacement vector on the crack edges. Its solution is determined by the collocation method with a pre-selected feature. The ultimate goal of the study is to

  14. Erosion/corrosion-induced pipe wall thinning in US Nuclear Power Plants

    International Nuclear Information System (INIS)

    Wu, P.C.

    1989-04-01

    Erosion/corrosion in single-phase piping systems was not clearly recognized as a potential safety issue before the pipe rupture incident at the Surry Power Station in December 1986. This incident reminded the nuclear industry and the regulators that neither the US Nuclear Regulatory Commission (NRC) nor Section XI of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code require utilities to monitor erosion/corrosion in the secondary systems of nuclear power plants. This report provides a brief review of the erosion/corrosion phenomenon and its major occurrence in nuclear power plants. In addition, efforts by the NRC, the industry, and the ASME Section XI Committee to address this issue are described. Finally, results of the survey and plant audits conducted by the NRC to assess the extent of erosion/corrosion-induced piping degradation and the status of program implementation regarding erosion/corrosion monitoring are discussed. This report will support a staff recommendation for an additional regulatory requirement concerning erosion/corrosion monitoring. 21 refs., 3 tabs

  15. Damage mechanism of piping welded joints made from austenitic Steel for the type RBMK reactor

    International Nuclear Information System (INIS)

    Karzov, G.; Timofeev, B.; Gorbakony, A.; Petrov, V.; Chernaenko, T.

    1999-01-01

    In the process of operation of RBMK reactors the damages were taking place on welded piping, produced from austenitic stainless steel of the type 08X18H10T. The inspection of damaged sections in piping has shown that in most cases crack-like defects are of corrosion and mechanical character. The paper considers in details the reasons of damages appearance and their development for this type of welded joints of downcomers 325xl6 mm, which were fabricated from austenitic stainless steel using TlG and MAW welding methods. (author)

  16. Experimental Study of Pressure Drop and Wall Shear Stress Characteristics of γ /Al2O3-Water Nanofluid in a Circular pipe under Turbulent flow induced vibration.

    Directory of Open Access Journals (Sweden)

    Adil Abbas AL-Moosawy

    2016-09-01

    Full Text Available Experimental study of γ /Al2O3 with mean diameter of less than 50 nm was dispersed in the distilled water that flows through a pipe consist of five sections as work station ,four sections made of carbon steel metal and one sections made of Pyrex glass pipe, with five nanoparticles volume concentrations of 0%,0.1%,0.2%,0.3%,and 0.4% with seven different volume flow rates 100, 200 , 300, 400, 500, 600 ,and 700ℓ/min were investigated to calculated pressure distribution for the cases without rubber ,with 3mm rubber and with 6mm rubber used to support the pipe. Reynolds number was between 20000 and 130000. Frequency value through pipe was measured for all stations of pipe for all cases. The results show that the pressure drop and wall shear stress of the nanofluid increase by increasing the nanoparticles volume concentrations or Reynolds number, the values of frequency through the pipe increase continuously when wall shear stress increases and the ratio of increment increases as nanofluid concentrations increase. Increasing of vibration frequency lead to increasing the friction factor between the pipe and the wall and thus increasing in pressure drop. Several equations between the wall shear stress and frequency for all volume concentration and for three cases without rubber, with rubber has 3mm thickness ,and with rubber has 6mm thickness. Finally, the results led to that γ /Al2O3 could function as a good and alternative conventional working fluid in heat transfer applications. A good agreement is seen between the experimental and those available in the literature

  17. Heat pipe

    International Nuclear Information System (INIS)

    Triggs, G.W.; Lightowlers, R.J.; Robinson, D.; Rice, G.

    1986-01-01

    A heat pipe for use in stabilising a specimen container for irradiation of specimens at substantially constant temperature within a liquid metal cooled fast reactor, comprises an evaporator section, a condenser section, an adiabatic section therebetween, and a gas reservoir, and contains a vapourisable substance such as sodium. The heat pipe further includes a three layer wick structure comprising an outer relatively fine mesh layer, a coarse intermediate layer and a fine mesh inner layer for promoting unimpeded return of condensate to the evaporation section of the heat pipe while enhancing heat transfer with the heat pipe wall and reducing entrainment of the condensate by the upwardly rising vapour. (author)

  18. Laminar flow in porous pipes and ducts with variable suction or injection at the wall

    International Nuclear Information System (INIS)

    Souza Araujo, P.M. de; Stuckenbruck, S.

    1977-01-01

    The laminar flow of an incompressible fluid is analysed along a porous-walled straight circular tube and a flat duct formed by parallel porous plates. The non-similarity of velocity profiles is verified and the analytical solution is obtained by expanding the axial velocity component in a power series. The mass flow through the walls is taken into consideration as an application of Darcy's Law. Adverse axial pressure gradients and occasional reverse flow near the wall are pointed out in the work. (Author) [pt

  19. Differential Hall-sensor Pulsed Eddy Current Probe for the Detection of Wall thinning in an Insulated Stainless Steel Pipe

    International Nuclear Information System (INIS)

    Park, D. G.; Angani, Chandra S.; Cheong, Y. M.; Kim, C. G.

    2010-01-01

    The local wall thinning is one of the most important factors to limit the life-extension of large structures, such as the pipe lines in the NPPs. The pipelines are covered with a thermal insulator for low thermal loss. The PEC testing is the promising technological approach to the NDT, and it has been principally developed for the measurement of surface flaws, subsurface flaws and corrosion. In the pulsed eddy current (PEC) technique, the excitation coil is driven by repeated pulses. According to the skin - depth relationship multiple frequency components penetrate to different depths, hence the PEC technique has the potential for bringing up deeper information about the tested sample. Because of the potential advantages of the PEC, prevalent investigations on this technique have been done. In the present study a differential probe which is used in the Pulsed Eddy Current (PEC) system has been fabricated for the detection of wall thinning of insulated pipelines in a nuclear power plant (NPP). This technique can be used as a potential tool to detect the corrosion or the wall thinning of the pipelines without removing the insulation

  20. Follow-up Study of ITER Safety Analysis : Large In-vessel First Wall Pipe Break with Wet Confinement Bypass

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sung Bo; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    Previous researches have been analyzed risk assessments of fusion reactors that are dangerous in the severe accidents where the radioactive material released from confinement building to the environment. To simulate the severe accidents in ITER, a number of thermal hydraulics simulation codes were used. Before construction of the fusion reactor, to obtain ITER license about safety issue, MELCOR is chosen as one of the several codes to be used to perform ITER safety analyses. Qualification of the simulation code is to simulate the cooling system in ITER, the transport of radionuclides during design basis accidents (DBAs) including beyond design basis accidents (BDBAs). MELCOR is fully integrated code that models the accidents in Light Water Reactor (LWR). To analyze the accidents in ITER, MELCOR 1.8.2 version is modified. In the nuclear fusion system, the amount of released radioactive material is criteria for safety permission. Tritium (or tritiated water: HTO) and radioactive dust aerosol are the source of radioactive leakage. In the Generic Site Safety Report (GSSR) for the ITER plant, Table I lists the release guidelines for tritium and activation products for normal operation, incidents and accidents. Several accident analyses have been studied to know how much radioactive material could be released from the severe accidents. In the present work, The MELCOR input deck of large First Wall (FW) coolant leak (pipe break) is used to study and radioactive material leakage thorough bypass accident are studied to follow up the ITER safety analysis. In this research, follow-up study of the in-vessel inboard/inboard-outboard FW pipe break was analyzed to investigate the amount of leakage of radioactive aerosol. All of the accident cases released the lower amount of radioactive aerosol compared to the IAEA guide lines. In addition, the OBB pipe break made lower HTO aerosol leakage because of condensation of HTO and adsorption between coolant and aerosol.

  1. A proposal on restart rule of nuclear power plants with piping having local wall thinning subjected to an earthquake. Former part. Aiming at further application

    International Nuclear Information System (INIS)

    Urabe, Yoshio

    2011-01-01

    Restart rule of nuclear power plants (NPPs) with piping having local wall thinning subjected to an earthquake was proposed taking account of local wall thinning, seismic effects and restart of NPPs with applicability of 'Guidelines for NPP Response to an Earthquake (EPRI NP-6695)' in Japan. Japan Earthquake Damage Intensity Scale (JEDIS) and Earthquake Ground Motion Level (EGML) were introduced. JEDIS was classified into four scales obtained from damage level of components and structures of NPPs subjected to an earthquake, while EGML was divided into four levels by safe shutdown earthquake ground motion (So), elastic design earthquake ground motion (Sd) and design earthquake ground motion (Ss). Combination of JEDIS and EGML formulated 4 x 4 matrix and determined detailed conditions of restart of NPPs. As a response to an earthquake, operator walk inspections and evaluation of earthquake ground motion were conducted to know the level of JEDIS. JEDIS level requested respective allowable conditions of restart of NPP, which were scale level dependent and consisted of weighted combination of damage inspection (operator walk inspections, focused inspections/tests and expanded inspections), integrity evaluation and repair/replacement. If JEDIS were assigned greater than 3 with expanded inspections, inspection of piping with local wall thinning, its integrity evaluation and repair/replacement if necessary were requested. Inspection and evaluation of piping with local wall thinning was performed based on JSME or ASME codes. Detailed work flow charts were presented. Carbon steel piping and elbow was chosen for evaluation. (T. Tanaka)

  2. FIELD DEMONSTRATION OF INNOVATIVE CONDITION ASSESSMENT TECHNOLOGIES FOR WATER MAINS: ACOUSTIC PIPE WALL ASSESSMENT, INTERNAL INSPECTION, AND EXTERNAL INSPECTIONVOLUME 1: TECHNICAL REPORT AND VOLUME 2: APPENDICES

    Science.gov (United States)

    Nine pipe wall integrity assessment technologies were demonstrated on a 76-year-old, 2,057-ft-long portion of a cement-lined, 24-in. cast iron water main in Louisville, KY. This activity was part of a series of field demonstrations of innovative leak detection/location and condi...

  3. Numerical calculation of the main variables of the laminar flow around a circunferential square obstacle at the wall of a circular pipe

    International Nuclear Information System (INIS)

    Nogueira, A.C.R.

    1981-10-01

    The numerical calculation of the main variables of the laminar, incompressible, axissimmetric, steady flow around a circunferential square obstacle placed at the wall of a circular pipe, is done. The velocity profiles, the separating length and the shape of the separating streamline are compared with experimental available data and a good agreement is achieved. (E.G.) [pt

  4. Paradox of flow reversal caused by protective wall jet in a pipe

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2006-01-01

    Roč. 128, 2-3 (2006), s. 141-154 ISSN 1385-8947 Institutional research plan: CEZ:AV0Z20760514 Keywords : protective fluid film * wall jet * recirculation Subject RIV: BK - Fluid Dynamics Impact factor: 1.594, year: 2006

  5. Fluid-structure interaction with pipe-wall viscoelasticity during water hammer

    NARCIS (Netherlands)

    Keramat, A.; Tijsseling, A.S.; Hou, Q.; Ahmadi, A.

    2011-01-01

    Fluid-structure interaction (FSI) due to water hammer in a pipeline which has viscoelastic wall behaviour is studied. Appropriate governing equations are derived and numerically solved. In the numerical implementation of the hydraulic and structural equations, viscoelasticity is incorporated using

  6. Fluid-structure interaction with pipe-wall viscoelasticity during water hammer

    NARCIS (Netherlands)

    Keramat, A.; Tijsseling, A.S.; Hou, Q.; Ahmadi, A.

    2012-01-01

    Fluid–structure interaction (FSI) due to water hammer in a pipeline which has viscoelastic wall behaviour is studied. Appropriate governing equations are derived and numerically solved. In the numerical implementation of the hydraulic and structural equations, viscoelasticity is incorporated using

  7. Calculation code for erosion-corrosion induced wall thinning in piping systems

    International Nuclear Information System (INIS)

    Henzel, N.; Kastner, W.; Stellwag, B.; Erve, M.

    1988-01-01

    There was great material erosion mainly in consequence of an extremely unfavourable geometry at the damaged place in Surry-2. The pipeline sections affected in Trojan were in the area of action of great sources of turbulence, i.e.: less than 10 pipe diameters from junctions, elbows etc. Because of the many parameters which determine the amount of material removal by erosion-corrosion, the analysis of such damage is only possible using a computer program. The main purpose of such a PC code called WATHEC developed by Siemens/KWU is not the subsequent confirmation of damage which has occurred, but its application for preventive diagnosis in pipeline systems. (orig./DG) [de

  8. Applied model of through-wall crack of coolant vessels of WWER-type reactors

    International Nuclear Information System (INIS)

    Petrosyan, V.; Hovakimyan, T.; Vardanyan, M.; Khachatryan, A.; Minasyan, K.

    2010-01-01

    We propose an applied-model of Through-Wall Crack (TWC) for WWER-type units primary vessels. The model allows to simulate the main morphological parameters of real TWC, i.e. length, area of inlet and outlet openings, channel depth and small and large size unevenness of the crack surface. The model can be used for developing and improving the coolant-leak detectors for the primary circuit vessels of WWER-units. Also, it can be used for research of the coolant two-phase leakage phenomenon through narrow cracks/channels and thermo-physical processes in heat-insulation layer of the Main Coolant Piping (MCP) during the leak

  9. MATHEMATICAL MODELING OF HEAT EXCHANGE IN DIRECT FLAT CHANNELS AND DIRECT ROUND PIPES WITH ROUGH WALLS UNDER THE SYMMETRIC HEAT SUPPLY

    Directory of Open Access Journals (Sweden)

    I E. Lobanov

    2017-01-01

    Full Text Available Objectives. The aim of present work was to carry out mathematical modelling of heat transfer with symmetrical heating in flat channels and round pipes with rough walls.Methods. The calculation was carried out using the L'Hôpital-Bernoulli's method. The solution of the problem of intensified heat transfer in a round tube with rough walls was obtained using the Lyon's integral.Results. Different from existing theories, a methodology of theoretical computational heat transfer determination for flat rough channels and round pipes with rough walls is developed on the basis of the principle of full viscosity superposition in a turbulent boundary layer. The analysis of the calculated heat transfer and hydroresistivity values for flat rough channels and round rough pipes shows that the increase in heat transfer is always less than the corresponding increase in hydraulic resistance, which is a disadvantage as compared to channels with turbulators, with all else being equal. The results of calculating the heat transfer for channels with rough walls in an extended range of determinant parameters, which differ significantly from the corresponding data for the channels with turbulators, determine the level of heat exchange intensification.Conclusion. An increase in the calculated values of the relative average heat transfer Nu/NuGL for flat rough channels and rough pipes with very high values of the relative roughness is significantly contributed by both an increase in the relative roughness height and an increase in the Reynolds number Re. In comparison with empirical dependencies, the main advantage of solutions for averaged heat transfer in rough flat channels and round pipes under symmetrical thermal load obtained according to the developed theory is that they allow the calculation of heat exchange in rough pipes to be made in the case of large and very large relative heights of roughness protrusions, including large Reynolds numbers, typical for pipes

  10. Inelastic analysis of piping systems. A beam-type method for creep and plasticity

    International Nuclear Information System (INIS)

    Roche, R.L.; Hoffmann, A.; Millard, A.

    1979-01-01

    Since many years, piping systems are designed and calculated under elasticity assumptions, using a beam-type method. Thus, the analysis of large systems may be performed at a relatively low cost, using a finite element program. However such a method can not account for inelastic phenomena like plastic deformations or creep. The application of refined three-dimensional shell type method is possible for local components such as curved sections but leads to prohibitive costs for complete piping systems. Therefore simplified methods have been developed, based on a 'global plasticity or creep model'. Following the conventional elastic approach, the pipe element is characterized by variables associated with the center line in the following way: generalized stresses are obtained by integration of local stresses giving way to hoop and tension stresses and to bending and torsional moments; the conjugated strains are identified with uniform hoop and longitudinal strains and variations in neutral axis curvatuves. For plasticity problems, the yield surface is defined by a diagonal quadratic function in terms of the generalized stresses and work hardening parameters. By addition of the Hill's principle and a hardening rule, the formulation is similar to the one commonly used in finite element method. Geometric non linearity due to important deformations of the cross section (often termed 'ovalization') may be treated simultaneously with material non linearity. For this purpose the displacement normal to the pipe surface is represented by trigonometric series expansion, the coefficients of which are determined by minimizing the strain energy over the cross section. The method presented is believed to be a simple economical and accurate tool, for dimensioning computations of large piping systems

  11. Wall-resolved Large Eddy Simulation of a flow through a square-edged orifice in a round pipe at Re = 25,000

    Energy Technology Data Exchange (ETDEWEB)

    Benhamadouche, S., E-mail: sofiane.benhamadouche@edf.fr; Arenas, M.; Malouf, W.J.

    2017-02-15

    Highlights: • Wall-resolved LES can predict the flow through a square-edged orifice at Re = 25,000. • LES results are compared with the available experimental data and ISO 5167-2. • Pressure loss and discharge coefficients are in very good agreement with ISO 5167-2. • The present wall-resolved LES could be used as reference data for RANS validation. - Abstract: The orifice plate is a pressure differential device frequently used for flow measurements in pipes across different industries. The present study demonstrates the accuracy obtainable using a wall-resolved Large Eddy Simulation (LES) approach to predict the velocity, the Reynolds stresses, the pressure loss and the discharge coefficient for a flow through a square-edged orifice in a round pipe at a Reynolds number of 25,000. The ratio of the orifice diameter to the pipe diameter is β = 0.62, and the ratio of the orifice thickness to the pipe diameter is 0.11. The mesh is sized using refinement criteria at the wall and preliminary RANS results to ensure that the solution is resolved beyond an estimated Taylor micro-scale. The inlet condition is simulated using a recycling method, and the LES is run with a dynamic Smagorinsky sub-grid scale (SGS) model. The sensitivity to the SGS model and to the pressure–velocity coupling is shown to be small in the present study. The LES is compared with the available experimental data and ISO 5167-2. In general, the LES shows good agreement with the velocity from the experimental data. The profiles of the Reynolds stresses are similar, but an offset is observed in the diagonal stresses. The pressure loss and discharge coefficients are shown to be in very good agreement with the predictions of ISO 5167-2. Therefore, the wall-resolved LES is shown to be highly accurate in simulating the flow across a square-edged orifice.

  12. Wall-resolved Large Eddy Simulation of a flow through a square-edged orifice in a round pipe at Re = 25,000

    International Nuclear Information System (INIS)

    Benhamadouche, S.; Arenas, M.; Malouf, W.J.

    2017-01-01

    Highlights: • Wall-resolved LES can predict the flow through a square-edged orifice at Re = 25,000. • LES results are compared with the available experimental data and ISO 5167-2. • Pressure loss and discharge coefficients are in very good agreement with ISO 5167-2. • The present wall-resolved LES could be used as reference data for RANS validation. - Abstract: The orifice plate is a pressure differential device frequently used for flow measurements in pipes across different industries. The present study demonstrates the accuracy obtainable using a wall-resolved Large Eddy Simulation (LES) approach to predict the velocity, the Reynolds stresses, the pressure loss and the discharge coefficient for a flow through a square-edged orifice in a round pipe at a Reynolds number of 25,000. The ratio of the orifice diameter to the pipe diameter is β = 0.62, and the ratio of the orifice thickness to the pipe diameter is 0.11. The mesh is sized using refinement criteria at the wall and preliminary RANS results to ensure that the solution is resolved beyond an estimated Taylor micro-scale. The inlet condition is simulated using a recycling method, and the LES is run with a dynamic Smagorinsky sub-grid scale (SGS) model. The sensitivity to the SGS model and to the pressure–velocity coupling is shown to be small in the present study. The LES is compared with the available experimental data and ISO 5167-2. In general, the LES shows good agreement with the velocity from the experimental data. The profiles of the Reynolds stresses are similar, but an offset is observed in the diagonal stresses. The pressure loss and discharge coefficients are shown to be in very good agreement with the predictions of ISO 5167-2. Therefore, the wall-resolved LES is shown to be highly accurate in simulating the flow across a square-edged orifice.

  13. Plastic fracture mechanics prediction of fracture instability in a circumferentially cracked pipe in bending--2. Experimental verification on a Type 304 stainless steel pipe

    International Nuclear Information System (INIS)

    Wilkowski, G.M.; Zahoor, A.; Kanninen, M.F.

    1980-01-01

    The possibility of a pipe fracture emanating from a stress corrosion crack in the heat-affected zones of girth-welds in Type 304 stainless steel pipes was investigated. The J-resistance curve--tearing modulus parameter for the prediction of crack initiation, stable growth and fracture instability--was employed. In the actual experiment, the onset of fracture instability occurred beyond maximum load at an average stable crack growth of 16 to 19 mm (0.63 to 0.75-in.) at each tip. 6 refs

  14. Insulated pipe clamp design

    International Nuclear Information System (INIS)

    Anderson, M.J.; Hyde, L.L.; Wagner, S.E.; Severud, L.K.

    1980-01-01

    Thin wall large diameter piping for breeder reactor plants can be subjected to significant thermal shocks during reactor scrams and other upset events. On the Fast Flux Test Facility, the addition of thick clamps directly on the piping was undesired because the differential metal temperatures between the pipe wall and the clamp could have significantly reduced the pipe thermal fatigue life cycle capabilities. Accordingly, an insulated pipe clamp design concept was developed. The design considerations and methods along with the development tests are presented. Special considerations to guard against adverse cracking of the insulation material, to maintain the clamp-pipe stiffness desired during a seismic event, to minimize clamp restraint on the pipe during normal pipe heatup, and to resist clamp rotation or spinning on the pipe are emphasized

  15. The influence of the tangential velocity of inner rotating wall on axial velocity profile of flow through vertical annular pipe with rotating inner surface

    Directory of Open Access Journals (Sweden)

    Sharf Abdusalam M.

    2014-03-01

    Full Text Available In the oil and gas industries, understanding the behaviour of a flow through an annulus gap in a vertical position, whose outer wall is stationary whilst the inner wall rotates, is a significantly important issue in drilling wells. The main emphasis is placed on experimental (using an available rig and computational (employing CFD software investigations into the effects of the rotation speed of the inner pipe on the axial velocity profiles. The measured axial velocity profiles, in the cases of low axial flow, show that the axial velocity is influenced by the rotation speed of the inner pipe in the region of almost 33% of the annulus near the inner pipe, and influenced inversely in the rest of the annulus. The position of the maximum axial velocity is shifted from the centre to be nearer the inner pipe, by increasing the rotation speed. However, in the case of higher flow, as the rotation speed increases, the axial velocity is reduced and the position of the maximum axial velocity is skewed towards the centre of the annulus. There is a reduction of the swirl velocity corresponding to the rise of the volumetric flow rate.

  16. On detection and automatic tracking of butt weld line in thin wall pipe welding by a mobile robot with visual sensor

    International Nuclear Information System (INIS)

    Suga, Yasuo; Ishii, Hideaki; Muto, Akifumi

    1992-01-01

    An automatic pipe welding mobile robot system with visual sensor was constructed. The robot can move along a pipe, and detect the weld line to be welded by visual sensor. Moreover, in order to make an automatic welding, the welding torch can track the butt weld line of the pipes at a constant speed by rotating the robot head. Main results obtained are summarized as follows: 1) Using a proper lighting fixed in front of the CCD camera, the butt weld line of thin wall pipes can be recongnized stably. In this case, the root gap should be approximately 0.5 mm. 2) In order to detect the weld line stably during moving along the pipe, a brightness distribution measured by the CCD camera should be subjected to smoothing and differentiating and then the weld line is judged by the maximum and minimum values of the differentials. 3) By means of the basic robot system with a visual sensor controlled by a personal computer, the detection and in-process automatic tracking of a weld line are possible. The average tracking error was approximately 0.2 mm and maximum error 0.5 mm and the welding speed was held at a constant value with error of about 0.1 cm/min. (author)

  17. Simulation of bending stress variation in long buried thick-walled pipes under the earth’s movement using combined linear dynamics and beam theories

    Directory of Open Access Journals (Sweden)

    Salau Tajudeen A.O.

    2014-01-01

    Full Text Available This study reported a simulation approach to the understanding of the interactions between a buried pipe and the soil system by computing the bending stress variation of harmonically-excited buried pipes. The established principles of linear dynamics theory and simple beam theory were utilised in the analysis of the problem of buried pipe bending stress accumulation and its dynamics. With regards to the parameters that influence the bending stress variations, the most important are the isolation factor, uniform external load, and the corresponding limiting conditions. The simulated mathematical expressions, containing static and dynamic parameters of the buried pipe and earth, were coded in Fortran programming language and applied in the simulation experiment. The results obtained showed that harmonically-excited buried thick-walled pipe became stable and effective when the ratio of the natural frequency of vibration to the forced frequency is greater than 2.0, whenever the damped factor is used as the control parameter for the maximum bending stress. The mirror image of the stress variation produces variation in the location of the maximum bending stress in quantitative terms. The acceptable pipe materials for the simulated cases must have yield strength in bending greater than or equal to 13.95 MPa. The results obtained in this work fill a gap in the literature and will be useful to pipeline engineers and designers, as well as to environmental scientists in initialising and controlling environmental issues and policy formulation concerning the influence of buried pipe on the soil and water in the environment.

  18. A novel radial anode layer ion source for inner wall pipe coating and materials modification--hydrogenated diamond-like carbon coatings from butane gas.

    Science.gov (United States)

    Murmu, Peter P; Markwitz, Andreas; Suschke, Konrad; Futter, John

    2014-08-01

    We report a new ion source development for inner wall pipe coating and materials modification. The ion source deposits coatings simultaneously in a 360° radial geometry and can be used to coat inner walls of pipelines by simply moving the ion source in the pipe. Rotating parts are not required, making the source ideal for rough environments and minimizing maintenance and replacements of parts. First results are reported for diamond-like carbon (DLC) coatings on Si and stainless steel substrates deposited using a novel 360° ion source design. The ion source operates with permanent magnets and uses a single power supply for the anode voltage and ion acceleration up to 10 kV. Butane (C4H10) gas is used to coat the inner wall of pipes with smooth and homogeneous DLC coatings with thicknesses up to 5 μm in a short time using a deposition rate of 70 ± 10 nm min(-1). Rutherford backscattering spectrometry results showed that DLC coatings contain hydrogen up to 30 ± 3% indicating deposition of hydrogenated DLC (a-C:H) coatings. Coatings with good adhesion are achieved when using a multiple energy implantation regime. Raman spectroscopy results suggest slightly larger disordered DLC layers when using low ion energy, indicating higher sp(3) bonds in DLC coatings. The results show that commercially interesting coatings can be achieved in short time.

  19. Mitigation of inside surface residual stress of type 304 stainless steel pipe welds by inside water cooling method

    International Nuclear Information System (INIS)

    Sasaki, R.

    1980-01-01

    The weld residual stress distributions, macro- and microstructures of heat affected zone and IGSCC susceptibility of Type 304 stainless steel pipe welds by natural and inside water cooling methods have been investigated. The residual stresses of pipe welds by the natural cooling method are high tensile on both the inside and the outside surface. While the residual stresses on the inside surface of pipe welds by the inside water cooling method are compressive in both axial and circumferential directions for each pipe size from 2 to 24 inch diameter. The sensitized zones of welds by the inside water cooling method are closer to the fusion line, much narrower and milder than those by the natural cooling method. According to the constant extension rate test results for specimens taken from the inside surface of pipe welds, the inside water cooled welds are more resistant to IGSCC than naturally cooled ones

  20. Studies on split heat pipe type adsorption ice-making test unit for fishing boats: Choice of heat pipe medium and experiments under unsteady heating sources

    International Nuclear Information System (INIS)

    Wang, L.W.; Wang, R.Z.; Lu, Z.S.; Chen, C.J.

    2006-01-01

    The split heat pipe type compound adsorption ice maker for fishing boats not only has the advantage of large volume cooling density but also has the advantage of less power consumption and high heat transfer performance. The available heat pipe media for the split heat pipe type compound adsorption ice maker, which are methanol, acetone and water are studied and compared in this paper, and the heat pipe medium of water shows the better performance for the reason of its stable heating and cooling process and high heat transfer performance. Considering the waste heat recovered from the diesel engine on fishing boats varies when the velocity of the fishing boat changes, the refrigeration performances at the condition of different values of heating power are studied while water is used as the heat pipe medium. Results show that the cooling power, as while as COP and SCP decrease when the heating power decreases. The highest COP and SCP are 0.41 and 731 W/kg, respectively, at the highest heating power of 4.2 kW, and the values decrease by 22% and 33%, respectively, when the heating power decreases by 15%. The values decrease by 32% and 51%, respectively, when the heating power decreases by 30%. The performance of the adsorption ice maker for the fishing boat with the 6160A type diesel engine is estimated, and the results show that the cooling power and ice productivity are as high as 5.44 kW and 1032 kg ice per day, respectively, even if the recovered waste heat decreases by 30% compared with the normal value. It can satisfy the ice requirements of such a fishing boat

  1. Efficient simulation of flow and heat transfer in arbitrarily shaped pipes

    OpenAIRE

    Rosen Esquivel, P.I.

    2012-01-01

    The transport of fluids through pipes is a very common application. Corrugated pipes have characteristics such as local stiffness and flexibility that makes them convenient in several application areas such as offshore LNG (Liquefied Natural Gas) transfer, cryogenic engineering, domestic appliances, etc. Nonetheless, the introduction of pipes with corrugated walls increases the difficulty of simulating flow and heat transfer in these type of pipes. The present thesis addresses the development...

  2. Parametric studies for stress corrosion in Type 304 stainless steel pipe

    International Nuclear Information System (INIS)

    Horn, R.M.

    1984-01-01

    Stress corrosion tests were conducted in the General Electric Pipe Test Laboratory using 4-inch diameter welded pipe to evaluate the role of stress, oxygen level, cyclic loading rate, temperature, and material composition on the intergranular stress corrosion cracking (IGSCC) behavior of welded Type-304 stainless steel in high temperature, high purity water. The role of applied stress was evaluated in environments containing either 0.2 ppm or 8 ppm oxygen. The tests established that applied stress is the dominant variable among those studied. An increase in applied axial stress from 116 MPa (16.9 ksi) to 254 MPa (36.9 ksi) produced up to a 30 old decrease in lifetime. The change in oxygen level from 0.2 to 8 ppm produced up to a factor of four decrease in lifetime. The role of cyclic loading rate, investigated with only limited tests, was found to accelerate failure at high applied stresses. Finally one test was conducted at 232 0 C with no effect on pipe lifetime. The effects of the above parameters were defined using one heat of material. To compare the results with that of other susceptible heats, additional tests were conducted using material taken from an archive heat that had cracked in the field and from a second heat with lower carbon content that had not cracked in the field. The archive heat exhibited lifetimes that were consistent with the other test results. The low carbon material did not fail demonstrating its much reduced cracking tendency

  3. Chemical laser exhaust pipe design research

    Science.gov (United States)

    Sun, Yunqiang; Huang, Zhilong; Chen, Zhiqiang; Ren, Zebin; Guo, Longde

    2016-10-01

    In order to weaken the chemical laser exhaust gas influence of the optical transmission, a vent pipe is advised to emissions gas to the outside of the optical transmission area. Based on a variety of exhaust pipe design, a flow field characteristic of the pipe is carried out by numerical simulation and analysis in detail. The research results show that for uniform deflating exhaust pipe, although the pipeline structure is cyclical and convenient for engineering implementation, but there is a phenomenon of air reflows at the pipeline entrance slit which can be deduced from the numerical simulation results. So, this type of pipeline structure does not guarantee seal. For the design scheme of putting the pipeline contract part at the end of the exhaust pipe, or using the method of local area or tail contraction, numerical simulation results show that backflow phenomenon still exists at the pipeline entrance slit. Preliminary analysis indicates that the contraction of pipe would result in higher static pressure near the wall for the low speed flow field, so as to produce counter pressure gradient at the entrance slit. In order to eliminate backflow phenomenon at the pipe entrance slit, concerned with the pipeline type of radial size increase gradually along the flow, flow field property in the pipe is analyzed in detail by numerical simulation methods. Numerical simulation results indicate that there is not reflow phenomenon at entrance slit of the dilated duct. However the cold air inhaled in the slit which makes the temperature of the channel wall is lower than the center temperature. Therefore, this kind of pipeline structure can not only prevent the leak of the gas, but also reduce the wall temperature. In addition, compared with the straight pipe connection way, dilated pipe structure also has periodic structure, which can facilitate system integration installation.

  4. Seismic test of high temperature piping for HTGR

    International Nuclear Information System (INIS)

    Kobatake, Kiyokazu; Midoriyama, Shigeru; Ooka, Yuzi; Suzuki, Michiaki; Katsuki, Taketsugu

    1983-01-01

    Since the high temperature pipings for the high temperature gas-cooled reactor contain helium gas at 1000 deg C and 40 kgf/cm 2 , the double-walled pipe type consisting of the external pipe serving as the pressure boundary and the internal pipe with heat insulating structure was adopted. Accordingly, their aseismatic design is one of the important subjects. Recently, for the purpose of grasping the vibration characteristics of these high temperature pipings and obtaining the data required for the aseismatic design, two specimens, that is, a double-walled pipe model and a heat-insulating structure, were made, and the vibration test was carried out on them, using a 30 ton vibration table of Kawasaki Heavy Industries Ltd. In the high temperature pipings of the primary cooling system for the multi-purpose, high temperature gas-cooled experimental reactor, the external pipes of 32 B bore as the pressure boundary and the internal pipes of 26 B bore with internal heat insulation consisting of double layers of fiber and laminated metal insulators as the temperature boundary were adopted. The testing method and the results are reported. As the spring constant of spacers is larger and clearance is smaller, the earthquake wave response of double-walled pipes is smaller, and it is more advantageous. The aseismatic property of the heat insulation structure is sufficient. (Kako, I.)

  5. Verification of the Viability of Equipotential Switching Direct Current Potential Drop Method for Piping Wall Loss Monitoring with Signal Sensitivity Analysis

    International Nuclear Information System (INIS)

    Ryu, Kyung Ha; Hwang, Il Soon; Kim, Ji Hyun

    2008-01-01

    Flow accelerated corrosion (FAC) phenomenon of low alloy carbon steels in nuclear power plant has been known as one of major degradation mechanisms. It has a potential to cause nuclear pipe rupture accident which may directly impact on the plant reliability and safety. Recently, the equipotential switching direct current potential drop (ES-DCPD) method has been developed, by the present authors, as a method to monitor wall loss in a piping. This method can rapidly monitor the thinning of piping, utilizing either the wide range monitoring (WiRM) or the narrow range monitoring (NaRM) technique. WiRM is a method to monitor wide range of straight piping, whereas NaRM focuses significantly on a narrow range such as an elbow. WiRM and NaRM can improve the reliability of the current FAC screening method that is based on computer modeling on fluid flow conditions. In this paper, the measurements by ES-DCPD are performed with signal sensitivity analyses in the laboratory environment for extended period and showed the viability of ES-DCPD for real plant applications.

  6. Microstructural characterization of pipe bomb fragments

    International Nuclear Information System (INIS)

    Gregory, Otto; Oxley, Jimmie; Smith, James; Platek, Michael; Ghonem, Hamouda; Bernier, Evan; Downey, Markus; Cumminskey, Christopher

    2010-01-01

    Recovered pipe bomb fragments, exploded under controlled conditions, have been characterized using scanning electron microscopy, optical microscopy and microhardness. Specifically, this paper examines the microstructural changes in plain carbon-steel fragments collected after the controlled explosion of galvanized, schedule 40, continuously welded, steel pipes filled with various smokeless powders. A number of microstructural changes were observed in the recovered pipe fragments: deformation of the soft alpha-ferrite grains, deformation of pearlite colonies, twin formation, bands of distorted pearlite colonies, slip bands, and cross-slip bands. These microstructural changes were correlated with the relative energy of the smokeless powder fillers. The energy of the smokeless powder was reflected in a reduction in thickness of the pipe fragments (due to plastic strain prior to fracture) and an increase in microhardness. Moreover, within fragments from a single pipe, there was a radial variation in microhardness, with the microhardness at the outer wall being greater than that at the inner wall. These findings were consistent with the premise that, with the high energy fillers, extensive plastic deformation and wall thinning occurred prior to pipe fracture. Ultimately, the information collected from this investigation will be used to develop a database, where the fragment microstructure and microhardness will be correlated with type of explosive filler and bomb design. Some analyses, specifically wall thinning and microhardness, may aid in field characterization of explosive devices.

  7. Fatigue analysis of flexible pipes using alternative element types and bend stiffener data

    OpenAIRE

    Chen, Minghao

    2011-01-01

    The flexible pipe is a vital part of a floating production system. The lifetime of a flexible riser system is crucial for the Health Safety and Environment (HSE) management. As a result of this, it is very necessary to carry out research on the lifetime of flexible pipe. In this thesis we formalized analysis on flexible pipes, utilizing the finite element analysis software BFLEX 2010, developed by MARINTEK. Chapter 1 describes basic knowledge about flexible pipe and relevant facilities. C...

  8. Instability predictions for circumferentially cracked Type-304 stainless steel pipes under dynamic loading. Volume 2. Appendixes. Final report. [BWR

    Energy Technology Data Exchange (ETDEWEB)

    Zahoor, A.; Wilkowski, G.; Abou-Sayed, I.; Marschall, C.; Broek, D.; Sampath, S.; Rhee, H.; Ahmad, J.

    1982-04-01

    This report provides methods to predict margins of safety for circumferentially cracked Type 304 stainless steel pipes subjected to applied bending loads. An integrated combination of experimentation and analysis research was pursued. Two types of experiments were performed: (1) laboratory-scale tests on center-cracked panels and bend specimens to establish the basic mechanical and fracture properties of Type 304 stainless steel, and (2) full-scale pipe fracture tests under quasi-static and dynamic loadings to assess the analysis procedures. Analyses were based upon the simple plastic collapse criterion, a J-estimation procedure, and elastic-plastic large-deformation finite element models.

  9. Instability predictions for circumferentially cracked Type-304 stainless steel pipes under dynamic loading. Volume 2. Appendixes. Final report

    International Nuclear Information System (INIS)

    Zahoor, A.; Wilkowski, G.; Abou-Sayed, I.; Marschall, C.; Broek, D.; Sampath, S.; Rhee, H.; Ahmad, J.

    1982-04-01

    This report provides methods to predict margins of safety for circumferentially cracked Type 304 stainless steel pipes subjected to applied bending loads. An integrated combination of experimentation and analysis research was pursued. Two types of experiments were performed: (1) laboratory-scale tests on center-cracked panels and bend specimens to establish the basic mechanical and fracture properties of Type 304 stainless steel, and (2) full-scale pipe fracture tests under quasi-static and dynamic loadings to assess the analysis procedures. Analyses were based upon the simple plastic collapse criterion, a J-estimation procedure, and elastic-plastic large-deformation finite element models

  10. Instability predictions for circumferentially cracked Type-304 stainless-steel pipes under dynamic loading. Final report. [BWR

    Energy Technology Data Exchange (ETDEWEB)

    Zahoor, A.; Wilkowski, G.; Abou-Sayed, I.; Marschall, C.; Broek, D.; Sampath, S.; Rhee, H.; Ahmad, J.

    1982-04-01

    This report provides methods to predict margins of safety for circumferentially cracked Type 304 stainless steel pipes subjected to applied bending loads. An integrated combination of experimentation and analysis research was pursued. Two types of experiments were performed: (1) laboratory-scale tests on center-cracked panels and bend specimens to establish the basic mechanical and fracture properties of Type 304 stainless steel, and (2) full-scale pipe fracture tests under quasi-static and dynamic loadings to assess the analysis procedures. Analyses were based upon the simple plastic collapse criterion, a J-estimation procedure, and elastic-plastic large-deformation finite element models.

  11. Experimental study on TiN coated racetrack-type ceramic pipe

    Science.gov (United States)

    Wang, Jie; Xu, Yan-Hui; Zhang, Bo; Wei, Wei; Fan, Le; Pei, Xiang-Tao; Hong, Yuan-Zhi; Wang, Yong

    2015-11-01

    TiN film was coated on the internal surface of a racetrack-type ceramic pipe by three different methods: radio-frequency sputtering, DC sputtering and DC magnetron sputtering. The deposition rates of TiN film under different coating methods were compared. The highest deposition rate was 156 nm/h, which was obtained by magnetron sputtering coating. Based on AFM, SEM and XPS test results, the properties of TiN film, such as film roughness and surface morphology, were analyzed. Furthermore, the deposition rates were studied with two different cathode types, Ti wires and Ti plate. According to the SEM test results, the deposition rate of TiN/Ti film was about 800 nm/h with Ti plate cathode by DC magnetron sputtering. Using Ti plate cathode rather than Ti wire cathode can greatly improve the film deposition rate. Supported by National Nature Science Foundation of China (11075157)

  12. Heat pipes

    CERN Document Server

    Dunn, Peter D

    1994-01-01

    It is approximately 10 years since the Third Edition of Heat Pipes was published and the text is now established as the standard work on the subject. This new edition has been extensively updated, with revisions to most chapters. The introduction of new working fluids and extended life test data have been taken into account in chapter 3. A number of new types of heat pipes have become popular, and others have proved less effective. This is reflected in the contents of chapter 5. Heat pipes are employed in a wide range of applications, including electronics cooling, diecasting and injection mo

  13. The thermal performance of a loop-type heat pipe for passively removing residual heat from spent fuel pool

    International Nuclear Information System (INIS)

    Xiong, Zhenqin; Gu, Hanyang; Wang, Minglu; Cheng, Ye

    2014-01-01

    Highlights: • Feasibility of applying loop-type heat pipes for SFP is studied. • The heat transfer rate of the heat pipes was tested. • The heat transfer coefficient was between 200 and 490 W/m 2 /s. • The effect of the water temperature is dominant. • Three kinds of the filling ratio 27%, 21% and 14% are compared. - Abstract: Heat pipe is an efficient heat transfer device without electrically driven parts. Therefore large-scale loop type heat pipe systems have potential uses for passively removing heat from spent fuel pools and reactor cores under the accidental conditions to improve the safety of the nuclear power station. However, temperature difference between the hot water in the spent fuel pool and the ambient air which is the heat sink is small, in the range of 20–60 °C. To understand and predict the heat removal capacity of such a large scale loop type heat pipe in the situation similar to the accidental condition of the spent fuel pool (SFP) for the design purpose, a loop-type heat pipe with a very high and large evaporator has been fabricated and was tested using ammonia as the working fluid. The evaporator with inner diameter of 65 mm and length of 7.6 m is immersed in a hot water tube which simulate the spent fuel pool. The condenser of the loop-type heat pipe is cooled by the air. The tests were performed with the velocity of the hot water in the tube in the range of 0.7–2.1 × 10 −2 m/s, the hot water inlet temperature between 50 and 90 °C and the air velocity ranging from 0.5 m/s to 2.5 m/s. Three kinds of the ammonia volumetric filling ratio in the heat pipe were tested, i.e. 27%, 21% and 14%. It is found that the heat transfer rate was in the range of 1.5–14.9 kW, and the heat transfer coefficient of evaporator was between 200 and 490 W/m 2 /s. It is feasible to use the large scale loop type heat pipe to passively remove the residual heat from SFP. Furthermore, the effect of air velocity, air temperature, water flow rate and

  14. The thermal performance of a loop-type heat pipe for passively removing residual heat from spent fuel pool

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Zhenqin [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China); Gu, Hanyang, E-mail: guhanyang@stu.edu.cn [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China); Wang, Minglu [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China); Cheng, Ye [Shanghai Nuclear Engineering Research and Design Institute, Shanghai 200233 (China)

    2014-12-15

    Highlights: • Feasibility of applying loop-type heat pipes for SFP is studied. • The heat transfer rate of the heat pipes was tested. • The heat transfer coefficient was between 200 and 490 W/m{sup 2}/s. • The effect of the water temperature is dominant. • Three kinds of the filling ratio 27%, 21% and 14% are compared. - Abstract: Heat pipe is an efficient heat transfer device without electrically driven parts. Therefore large-scale loop type heat pipe systems have potential uses for passively removing heat from spent fuel pools and reactor cores under the accidental conditions to improve the safety of the nuclear power station. However, temperature difference between the hot water in the spent fuel pool and the ambient air which is the heat sink is small, in the range of 20–60 °C. To understand and predict the heat removal capacity of such a large scale loop type heat pipe in the situation similar to the accidental condition of the spent fuel pool (SFP) for the design purpose, a loop-type heat pipe with a very high and large evaporator has been fabricated and was tested using ammonia as the working fluid. The evaporator with inner diameter of 65 mm and length of 7.6 m is immersed in a hot water tube which simulate the spent fuel pool. The condenser of the loop-type heat pipe is cooled by the air. The tests were performed with the velocity of the hot water in the tube in the range of 0.7–2.1 × 10{sup −2} m/s, the hot water inlet temperature between 50 and 90 °C and the air velocity ranging from 0.5 m/s to 2.5 m/s. Three kinds of the ammonia volumetric filling ratio in the heat pipe were tested, i.e. 27%, 21% and 14%. It is found that the heat transfer rate was in the range of 1.5–14.9 kW, and the heat transfer coefficient of evaporator was between 200 and 490 W/m{sup 2}/s. It is feasible to use the large scale loop type heat pipe to passively remove the residual heat from SFP. Furthermore, the effect of air velocity, air temperature, water flow

  15. Riser pipe elevator

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, W.; Jimenez, A.F.

    1987-09-08

    This patent describes a method for storing and retrieving a riser pipe, comprising the steps of: providing an upright annular magazine comprised of an inside annular wall and an outside annular wall, the magazine having an open top; storing the riser pipe in a substantially vertically oriented position within the annular magazine; and moving the riser pipe upwardly through the open top of the annular magazine at an angle to the vertical along at least a portion of the length of the riser pipe.

  16. Walker-type velocity oscillations of magnetic domain walls

    International Nuclear Information System (INIS)

    Vella-Coleiro, G.P.

    1976-01-01

    We report stroboscopic observations of the radial motion of a magnetic bubble domain wall in an epitaxial LuGdAl iron garnet film. At high drive fields, initial velocities up to 9500 cm/sec were measured, and the domain wall was observed to move backwards during the field pulse, in agreement with calculations based on the Walker model

  17. Realtime estimation of city gas pipe network damage by lateral flow of liquefied ground behind quay walls

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, E.; Isoyama, R. [Japan Engineering Consultants Co., Ltd., Tokyo (Japan). Public Management Research Center; Koganemaru, K.; Shimuzu, Y. [Tokyo Gas Co. Ltd., Tokyo (Japan). Center for Disaster Management and Supply Control; Morimoto, I. [Kiso-Jiban Consultants Co. Ltd., Tokyo (Japan); Yasuda, S. [Tokyo Denki Univ., Tokyo (Japan). Dept. of Civil and Environmental Engineering

    2004-07-01

    Estimating the degree of damage to city gas pipe networks is difficult because of the lack of damage case data. This paper proposes a method for calculating the amount of earthquake-induced ground displacement at pipe node locations by constructing ground models. Data for the models was obtained from boreholes and by using a simple ground flow formula. The analysis method will make it possible to calculate the allowable limits of damage-causing factors such as ground motion and flow for different pipe network elements. The analysis procedure was conducted using a 2-dimensional liquefaction-induced flow analysis program finite element method. A real time damage estimation system for low pressure gas pipes uses ground motions having a design seismic coefficient of 0.4 in preparing strong earthquake liquefied layer thickness distribution data. Flow calculations were presented as well as a ground revetment database to replace node location data. It was concluded that achieving consistency was desirable. 7 refs., 2 tabs., 5 figs.

  18. Proposal of a Self-baking Single-wall Design for the VI Section of the ATLAS Beam Pipe

    CERN Document Server

    Marco Olcese, MO

    2002-01-01

    A single-wall design for the VI section of the ATLAS beam vacuum chamber is presented. This design would allow for a major cost saving with respect to the current double-wall baseline. All the thermal implications and impact on the B-layer mudules are discussed.

  19. Assessment of Crack Detection in Heavy-Walled Cast Stainless Steel Piping Welds Using Advanced Low-Frequency Ultrasonic Methods

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Michael T.; Crawford, Susan L.; Cumblidge, Stephen E.; Denslow, Kayte M.; Diaz, Aaron A.; Doctor, Steven R.

    2007-03-01

    Studies conducted at the Pacific Northwest National Laboratory in Richland, Washington, have focused on assessing the effectiveness and reliability of novel approaches to nondestructive examination (NDE) for inspecting coarse-grained, cast stainless steel reactor components. The primary objective of this work is to provide information to the U.S. Nuclear Regulatory Commission on the effectiveness and reliability of advanced NDE methods as related to the inservice inspection of safety-related components in pressurized water reactors (PWRs). This report provides progress, recent developments, and results from an assessment of low frequency ultrasonic testing (UT) for detection of inside surface-breaking cracks in cast stainless steel reactor piping weldments as applied from the outside surface of the components. Vintage centrifugally cast stainless steel piping segments were examined to assess the capability of low-frequency UT to adequately penetrate challenging microstructures and determine acoustic propagation limitations or conditions that may interfere with reliable flaw detection. In addition, welded specimens containing mechanical and thermal fatigue cracks were examined. The specimens were fabricated using vintage centrifugally cast and statically cast stainless steel materials, which are typical of configurations installed in PWR primary coolant circuits. Ultrasonic studies on the vintage centrifugally cast stainless steel piping segments were conducted with a 400-kHz synthetic aperture focusing technique and phased array technology applied at 500 kHz, 750 kHz, and 1.0 MHz. Flaw detection and characterization on the welded specimens was performed with the phased array method operating at the frequencies stated above. This report documents the methodologies used and provides results from laboratory studies to assess baseline material noise, crack detection, and length-sizing capability for low-frequency UT in cast stainless steel piping.

  20. The performance of solar collector CPC (compound parabolic concentrator) type with three pipes covered by glass tubes

    Science.gov (United States)

    Gaos, Yogi Sirodz; Yulianto, Muhamad; Juarsa, Mulya; Nurrohman, Marzuki, Edi; Yuliaji, Dwi; Budiono, Kabul

    2017-03-01

    Indonesia is a tropical country that has potential energy of solar radiation worth of 4.5 until 4.8 kWh/m2. However, this potential has not been utilized regularly. This paper will discuss the performance of solar collector compound parabolic concentrator (CPC) type with water as the working fluid. This CPC solar collector utilized three pipes covered by glass tubes. This paper has contribution to provide the temperature achievement between three pipes covered by glass tubes with and without glass cover of solar collector CPC type. The research conducted by varying the water flow rate of 1 l/m up to 6 l/m with three pipes arranged in series and parallel. From the results, the used of solar collector CPC type in the current study shows that the decrease of solar radiation, which was caused by climate change, did not influence the heat absorbance by water in the pipe. Therefore, the design of the solar collector in this research has potential to be used in future when solar radiation are used as the energy source.

  1. Pipe restraints for nuclear power plants

    International Nuclear Information System (INIS)

    Keever, R.E.; Broman, R.; Shevekov, S.

    1976-01-01

    A pipe restraint for nuclear power plants in which a support member is anchored on supporting surface is described. Formed in the support member is a semicylindrical wall. Seated on the semicylindrical wall is a ring-shaped pipe restrainer that has an inner cylindrical wall. The inner cylindrical wall of the pipe restrainer encircles the pressurized pipe. In a modification of the pipe restraint, an arched-shaped pipe restrainer is disposed to overlie a pressurized pipe. The ends of the arch-shaped pipe restrainer are fixed to support members, which are anchored in concrete or to a supporting surface. A strap depends from the arch-shaped pipe restrainer. The pressurized pipe is supported by the depending strap

  2. HPFRCC - Extruded Pipes

    DEFF Research Database (Denmark)

    Stang, Henrik; Pedersen, Carsten

    1996-01-01

    The present paper gives an overview of the research onHigh Performance Fiber Reinforced Cementitious Composite -- HPFRCC --pipes recently carried out at Department of Structural Engineering, Technical University of Denmark. The project combines material development, processing technique development......-w$ relationship is presented. Structural development involved definition of a new type of semi-flexiblecement based pipe, i.e. a cement based pipe characterized by the fact that the soil-pipe interaction related to pipe deformation is an importantcontribution to the in-situ load carrying capacity of the pipe...

  3. Wall Turbulence.

    Science.gov (United States)

    Hanratty, Thomas J.

    1980-01-01

    This paper gives an account of research on the structure of turbulence close to a solid boundary. Included is a method to study the flow close to the wall of a pipe without interferring with it. (Author/JN)

  4. Histology types of chest wall tumours: Fifteen year single center ...

    African Journals Online (AJOL)

    Materials and Methods: We performed a retrospective study of chest wall tumours at our institution(NCTCE, UNTH, Enugu, Nigeria), for a period of 15 years, spanning October, 2001 to September, 2015.The pathologic reports were retrieved from the hospital pathology archives and correlated with patients' copies in the ...

  5. Pipe type poles in transmission power lines; Postes tipo tubo en lineas de transmision

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes E, Mario; Becerril A, Armando [Luz y Fuerza del Centro, Mexico, D. F. (Mexico)

    1997-12-31

    The first supports for transmission power lines were relatively small structures, of simple configuration, to save reduced clearances to resist load in accordance with its need; with the technical development, gradually appeared higher and higher electric tensions and greater obstacles to overcome, consequently the design of the supports had to be adapted to the new conditions. This gave rise to the development of a specific technique that would adequate and incorporate the continuous engineering advances. In this document the initial considerations on the design poles pipe type are examined; within these considerations mention is made of: the design, the manufacture, the prototype tests, installation, quality control and foundations. The type tube pole is portrayed, as well as the steel reinforcement, finally the types of precast foundations are shown [Espanol] Los primeros soportes para lineas de transmision fueron estructuras relativamente pequenas, de configuracion simple, para salvar claros reducidos y resistir cargas proporcionales a sus necesidades, con el desarrollo de la tecnica, fueron apareciendo tensiones electricas cada vez mas elevadas y obstaculos mayores que vencer, por lo que el diseno de los soportes tuvo que adaptarse a las nuevas condiciones. Esto dio origen al desenvolvimiento de una tecnica especifica que fuese adecuando e incorporando los continuos avances de la ingenieria. En este documento se tratan las consideraciones iniciales del diseno de los postes tipo tubo; dentro de estas consideraciones se citan: el diseno, la fabricacion, las pruebas de prototipo, montajes, control de calidad y cimentaciones. Se ilustra el poste tipo tubo, al igual que el armado del poste, por ultimo se muestra los tipos de cimentaciones precoladas

  6. Investigation of the ductile fracture properties of Type 304 stainless steel plate, welds, and 4-inch pipe

    International Nuclear Information System (INIS)

    Vassilaros, M.G.; Hays, R.A.; Gudas, J.P.

    1985-01-01

    J-integral fracture toughness tests were performed on welded 304 stainless steel 2-inch plate and 4-inch diameter pipe. The 2-inch plate was welded using a hot-wire automatic gas tungsten arc process. The tests were performed at 550 0 F, 300 0 F and room temperature. The results of the J-integral tests indicate that the Jsub(Ic) of the base plate ranged from 4400 to 6100 in lbs/in 2 at 550 0 F. The Jsub(Ic) values for the tests performed at 300 0 F and room temperature were beyond the measurement capacity of the specimens and appear to indicate that Jsub(Ic) was greater than 8000 in lb/in 2 . The J-integral tests performed on the weld metal specimens indicate that the Jsub(Ic) values ranged from 930 to 2150 in lbs/in 2 at 550 0 F. The Jsub(Ic) values of the weld metal specimens tested at 300 0 F and room temperature were 2300 and 3000 in lbs/in 2 respectively. One HAZ specimen was tested at 550 0 F and found to have a Jsub(Ic) value of 2980 in lbs/in 2 which indicates that the HAZ is an average of the base metal and weld metal toughness. These test results indicate that there is a significant reduction in the initiation fracture toughness as a result of welding. The second phase of this task dealt with the fracture toughness testing of 4-inch diameter 304 stainless steel pipes containing a gas tungsten arc weld. The pipes were tested at 550 0 F in four point bending. Three tests were performed, two with a through wall flaw growing circumferentially and the third pipe had a part through radial flaw in combination with the circumferential flaw. These tests were performed using unloading compliance and d.c. potential drop crack length estimate methods. The results of these tests indicate that the presence of a complex crack (radial and circumferential) reduces in the initiation toughness and the tearing modulus of the pipe material compared to a pipe with only a circumferentially growing crack. (orig.)

  7. Comparison of critical circumferential through-wall-crack-lengths in welds between pieces of straight pipes to welds between straigth pipes and bends with and without internal pressure at force- and displacement-controlled bending load; Vergleich kritischer Umfangsdurchrisslaengen in Schweissnaehten zwischen Geradrohrstuecken mit Schweissnaehten an Rohrbogen-Geradrohrverbindungen mit und ohne Innendruck bei kraft- und wegkontrollierter Biegebelastung

    Energy Technology Data Exchange (ETDEWEB)

    Steinbuch, R [Fachhochschule fuer Technik und Wirtschaft Reutlingen (Germany). Fachbereich Maschinenbau

    1998-11-01

    Methods for calculation of critical, circumferential through-wall crack lengths in pipes have been developed and verified by several research projects. In applications during the last few years it has been found that the force or displacement-controlled loads have to be considered separately, and this approach was integrated into the recent methods. Methods so far assumed cracks to be located in welds joining straight pipes. But this approach starts from an incomplete picture of reality, as with today`s technology, circumferential welds are less frequent in straight pipes and much more frequent in pipework of other geometry, as for instance in welds joining straight pipes and bends, or bends with longer legs, nozzles, or T-pieces. The non-linear FEM parameter study presented in the paper, covering cases with internal pressure of pipes and one-dimensional bending loads, is based on current geometries of pipework in the primary and secondary loops of industrial plants and compares the conditions induced by circumferential through-wall cracks in welds joining only straight pipes and in those joining bended and straight pipes. At the relevant, displacement-controlled bending loads due to hampered thermal expansion of the pipe system, the critical through-wall cracks lengths occurring in pipe-to-bend welds are of about the same size and importance as those in pipe-to-pipe welds. As for the case of force-controlled loads, the technical codes calculate more serious effects and require lower bending load limits. Within the range of admissible loads given in the codes, the critical through-wall crack lengths occurring in pipe-to-bend welds are similar in size to those in straight pipe welds. It is therefore a conservative or realistic approach to apply the values determined for critical through-wall crack lengths in pipe-to-pipe joints also to pipe-to-bend welds. (orig./CB) [Deutsch] Verfahren zur Berechnung kritischer Umfangdurchrisslaengen in Rohrleitungen wurden in

  8. Formation of wood secondary cell wall may involve two type cellulose synthase complexes in Populus.

    Science.gov (United States)

    Xi, Wang; Song, Dongliang; Sun, Jiayan; Shen, Junhui; Li, Laigeng

    2017-03-01

    Cellulose biosynthesis is mediated by cellulose synthases (CesAs), which constitute into rosette-like cellulose synthase complexe (CSC) on the plasma membrane. Two types of CSCs in Arabidopsis are believed to be involved in cellulose synthesis in the primary cell wall and secondary cell walls, respectively. In this work, we found that the two type CSCs participated cellulose biosynthesis in differentiating xylem cells undergoing secondary cell wall thickening in Populus. During the cell wall thickening process, expression of one type CSC genes increased while expression of the other type CSC genes decreased. Suppression of different type CSC genes both affected the wall-thickening and disrupted the multilaminar structure of the secondary cell walls. When CesA7A was suppressed, crystalline cellulose content was reduced, which, however, showed an increase when CesA3D was suppressed. The CesA suppression also affected cellulose digestibility of the wood cell walls. The results suggest that two type CSCs are involved in coordinating the cellulose biosynthesis in formation of the multilaminar structure in Populus wood secondary cell walls.

  9. Structural integrity of whipping pipes following a postulated circumferential break - a contribution to determining strain levels acceptable under faulted conditions

    International Nuclear Information System (INIS)

    Charalambus, B.; Labes, M.

    1993-01-01

    It is postulated that a break of a thin-walled pipe does not cause a subsequent break in the pipe in the vicinity of a plastic hinge even when the wall is weakened by a 60 circumferential crack of a depth of 30% of the wall thickness on the tension side. This pipe behavior is the result of plastic buckling in the compression side and applies to pipes of diameter-to-thickness ratio larger than 20. For this type of pipe, the axial strains decrease with increasing diameter-to-thickness ratio in the tension side. As the pipe is only loaded in one direction, there is no cyclic behavior that can trigger a subsequent break. (orig.)

  10. Pulsed TIG welding of pipes

    International Nuclear Information System (INIS)

    Killing, U.

    1989-01-01

    The present study investigates into the effects of impulse welding parameters on weld geometry in the joint welding of thin-walled sheets and pipes (d=2.5 mm), and it uses random samples of thick-walled sheets and pipes (d=10 mm), in fixed positions. (orig./MM) [de

  11. A compound crack in a pipe under tension

    International Nuclear Information System (INIS)

    Zahoor, A.

    1992-01-01

    Limit load and J-resistance curve solutions are developed for a compound crack in a pipe subjected to axial tension. The solutions are based on thick-walled cylinder assumption and the J solution can be applied with load-displacement data from one pipe test. The J-R solution can be used to assess the effect of loading type on the material's resistance to crack extension when used with previously published solution for bending moment loading. (orig.)

  12. A compound crack in a pipe under tension

    Energy Technology Data Exchange (ETDEWEB)

    Zahoor, A. (Zenith Corp., Rockville, MD (United States))

    1992-03-01

    Limit load and J-resistance curve solutions are developed for a compound crack in a pipe subjected to axial tension. The solutions are based on thick-walled cylinder assumption and the J solution can be applied with load-displacement data from one pipe test. The J-R solution can be used to assess the effect of loading type on the material's resistance to crack extension when used with previously published solution for bending moment loading. (orig.).

  13. Through wall degradation problem of the turbine extraction steam drain piping due to liquid drop impingement and measures taken for this problem at Fukushima Dai-ichi Nuclear Power Plant Unit 6

    International Nuclear Information System (INIS)

    Inagaki, Takeyuki; Kobayashi, Teruaki; Shimada, Shigeru; Inoue, Ryousuke; Usuba, Satoshi; Kimura, Takeo

    2011-01-01

    Through wall degradation was found on the extraction steam drain piping of Unit 6 of Fukushima Dai-ichi Nuclear Power Plant owned by Tokyo Electric Power Company after replacement of the turbine rotors with those of higher thermal efficiency. The mechanism of this degradation was loss of material due to liquid drop impingement. Since the estimated life time of the piping based on wall thickness measurements before the replacement was at least 9 years, the rapid wall thinning occurred after the replacement. This paper describes a summary of the phenomenon, its degradation mechanism and root cause, a temporary measurement taken for an immediate action and permanent measures taken during the next refueling outage. (author)

  14. Study on Shear Performance of Cold-formed Steel Composite Wall with New Type of stud

    Science.gov (United States)

    Wang, Chungang; Yue, Sizhe; Liu, Hong; Zhang, Zhuangnan

    2018-03-01

    The shear resistance of single oriented-strand board wall and single gypsum board wall can be improved in different degrees by increasing strength of steel. The experimental data of literatures were used, and the test specimens had been simulated and validated by ABAQUS finite element analysis. According to the research, it showed that the compressive bearing capacity of the new stud composite wall was much better than the common stud composite wall, so the establishment and research of all models had been based on the new section stud. The analysis results show that when using new type of stud the shear resistance of the single oriented-strand board wall can be improved efficiently by increasing strength of steel, but the shear resistance of the single gypsum wall can be increased little.

  15. Response of buried pipes to missile impact

    International Nuclear Information System (INIS)

    Vardanega, C.; Cremonini, M.G.; Mirone, M.; Luciani, A.

    1989-01-01

    This paper presents the methodology and results of the analyses carried out to determine an effective layout and the dynamic response of safety related cooling water pipes, buried in backfill, for the Alto Lazio Nuclear Power Plant in Italy, subjected to missile impact loading at the backfill surface. The pipes are composed of a steel plate encased in two layers of high-quality reinforced concrete. The methodology comprises three steps. The first step is the definition of the 'free-field' dynamic response of the backfill soil, not considering the presence of the pipes, through a dynamic finite element direct integration analysis utilizing an axisymmetric model. The second step is the pipe-soil interaction analysis, which is conducted by utilizing the soil displacement and stress time-histories obtained in the previous steps. Soil stress time-histories, combined with the geostatic and other operational stresses (such as those due to temperature and pressure), are used to obtain the actions in the pipe walls due to ring type deformation. For the third step, the analysis of the beam type response, a lumped parameter model is developed which accounts for the soil stiffness, the pipe characteristics and the position of the pipe with respect to the impact area. In addition, the effect of the presence of large concrete structures, such as tunnels, between the ground surface and the pipe is evaluated. The results of the structural analyses lead to defining the required steel thickness and also allow the choice of appropriate embedment depth and layout of redundant lines. The final results of the analysis is not only the strength verification of the pipe section, but also the definition of an effective layout of the lines in terms of position, depth, steel thickness and joint design. (orig.)

  16. Transport of a passive scalar across a protective wall-jet in a pipe. Part II: Analysis and interpretation

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2011-01-01

    Roč. 89, 4A (2011), s. 446-455 ISSN 0263-8762 R&D Projects: GA ČR GA101/07/1499; GA AV ČR IAA200760705 Institutional research plan: CEZ:AV0Z20760514 Keywords : wall-jet * velocity profile * temperature profile * nusselt number Subject RIV: BK - Fluid Dynamics Impact factor: 1.968, year: 2011 http://www.sciencedirect.com/science/article/pii/S026387621000211X

  17. Transport of a passive scalar across a protective wall-jet in a pipe. Part I: Data acquisition

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2011-01-01

    Roč. 89, č. 4A (2011), s. 436-445 ISSN 0263-8762 R&D Projects: GA ČR GA101/07/1499; GA AV ČR IAA200760705 Institutional research plan: CEZ:AV0Z20760514 Keywords : protective fluid film * wall-jet * heat transfer Subject RIV: BK - Fluid Dynamics Impact factor: 1.968, year: 2011 http://www.sciencedirect.com/science/article/pii/S0263876210002108

  18. Application of risk-informed methods to in-service piping inspection in Framatome type nuclear power plants

    International Nuclear Information System (INIS)

    Kim, Jin Hoi; Lee, Jeong Seok; Yun, Eun Sub

    2014-01-01

    The Pressurized water reactor owners group (PWROG) developed and applied a risk-informed in-service inspection (RI-ISI) program, as an alternative to the existing ASME Section XI sampling inspection method. The RI-ISI programs enhance overall safety by focusing inspections of piping at high safety significance (HSS) locations where failure mechanisms are likely to be present. Additionally, the RI-ISI program can reduce nondestructive evaluation (NDE) exams, man-rem exposure for inspectors, and inspection time, among other benefits. The RI-ISI method of in-service piping inspection was applied to 3 units (KSNPs: Korea standard nuclear power plants) and is being deployed to the other units. In this paper, the results of RI-ISI for a Framatome type (France CPI) nuclear power plant are presented. It was concluded that application of RI-ISI to the plant could enhance and maintain plant safety, as well as provide the benefits of greater reliability.

  19. N=1 domain wall solutions of massive type II supergravity as generalized geometries

    International Nuclear Information System (INIS)

    Louis, J.

    2006-05-01

    We study N=1 domain wall solutions of type IIB supergravity compactified on a Calabi-Yau manifold in the presence of RR and NS electric and magnetic fluxes. We show that the dynamics of the scalar fields along the direction transverse to the domain wall is described by gradient flow equations controlled by a superpotential W. We then provide a geometrical interpretation of the gradient flow equations in terms of the mirror symmetric compactification of type IIA. They correspond to a set of generalized Hitchin flow equations of a manifold with SU(3) x SU(3)structure which is fibered over the direction transverse to the domain wall. (Orig.)

  20. AWWA C303-17 concrete pressure pipe, bar-wrapped, steel-cylinder type

    CERN Document Server

    2017-01-01

    This standard describes the manufacture of concrete pressure pipe, reinforced with a steel cylinder that is helically wrapped with mild steel bar reinforcement, in sizes ranging from 10 in. through 72 in. (250 mm through 1,830 mm), inclusive, and for working pressures up to 400 psi (2,760 kPa).

  1. Corrosion monitoring in insulated pipes using x-ray radiography

    International Nuclear Information System (INIS)

    Azali Muhammad; Abd Razak Hamzah; Abd Aziz Mohamed; Abd Nasir Ibrahim; Suffian Saad; Shaharuddin Sayuti; Shukri Ahmad

    2000-01-01

    In engineering plants, detection of corrosion and evaluation of deposit in insulated pipes using radiography method are considered as very challenging tasks. In general, this degradation problem is attributed to water condensation. It causes the formation of deposit and scale inside the pipe, as well as between the insulation and pipe in cold temperature pipes. On the other hand, for hot temperature pipes the main problem is mainly due to corrosion/erosion attack inside the pipe. In the study of corrosion in pipelines, one of the most important parameters to be monitored and measured is the wall thickness. Currently, most pipeline corrosion monitoring and evaluation for both insulated and non-insulated pipes is performed using an ultrasonic method. The most notable disadvantage of using this method is that the insulation covering the pipe has to be removed before the inspection can be carried out and this is considered as not so cost effective. Due to this reason, the possibility of employing other alternative NDT method, namely radiographic testing method was studied. The technique used in this studied are known as tangential technique. In this study it was found that the result found using tangential technique is consistent with the actual thickness of the pipe. Besides the thickness, types of corrosion can also be identified easily. Result of this study is presented and discussed in this paper. (Author)

  2. Residual stress measurement in 304 stainless steel weld overlay pipes

    International Nuclear Information System (INIS)

    Yen, H.J.; Lin, M.C.C.; Chen, L.J.

    1996-01-01

    Welding overlay repair (WOR) is commonly employed to rebuild piping systems suffering from intergranular stress corrosion cracking (IGSCC). To understand the effects of this repair, it is necessary to investigate the distribution of residual stresses in the welding pipe. The overlay welding technique must induce compressive residual stress at the inner surface of the welded pipe to prevent IGSCC. To understand the bulk residual stress distribution, the stress profile as a function of location within wall is examined. In this study the full destructive residual stress measurement technique -- a cutting and sectioning method -- is used to determine the residual stress distribution. The sample is type 304 stainless steel weld overlay pipe with an outside diameter of 267 mm. A pipe segment is cut from the circular pipe; then a thin layer is removed axially from the inner to the outer surfaces until further sectioning is impractical. The total residual stress is calculated by adding the stress relieved by cutting the section away to the stress relieved by axially sectioning. The axial and hoop residual stresses are compressive at the inner surface of the weld overlay pipe. Compressive stress exists not only at the surface but is also distributed over most of the pipe's cross section. On the one hand, the maximum compressive hoop residual stress appears at the pipe's inner surface. The thermal-mechanical induced crack closure from significant compressive residual stress is discussed. This crack closure can thus prevent IGSCC very effectively

  3. Wall-to-wall tree type classification using airborne lidar data and CIR images

    DEFF Research Database (Denmark)

    Schumacher, Johannes; Nord-Larsen, Thomas

    2014-01-01

    analysed at the individual tree level (object-based). However, due to computational challenges, most object-based studies cover only smaller areas and experience of larger areas is lacking. We present an approach for an object-based, unsupervised classification of trees into broadleaf or conifer using......-based classification of the TST plots showed an overall accuracy of 84% and a kappa coefficient () of 0.61 when using all plots, and 92% and 0.79, respectively, when leaving out plots with larch. NFI plots were assigned to conifer- or broadleaf-dominated or mixed depending on the area covered by the segments...... of the two tree types. In areas where lidar data were collected specifically during leaf-off conditions, 71% of the NFI plots were assigned correctly into the three categories with = 0.53. Using only NFI plots dominated by one type (broadleaf or conifer), 78% were categorized correctly with = 0...

  4. Residual stress improvement for pipe weld by means of induction heating pre-flawed pipe

    International Nuclear Information System (INIS)

    Umemoto, T.; Yoshida, K.; Okamoto, A.

    1980-01-01

    The intergranular stress corrosion cracking (IGSCC) has been found in type 304 stainless steel piping of several BWR plants. It is already well known that IGSCC is most likely to occur when three essential factors, material sensitization, high tensile stress and corrosive environment, are present. If the welding residual stress is sufficiently high (200 to approximately 400 MPa) in the inside piping surface near the welded joint, then it may be one of the biggest contributors to IGSCC. If the residual stress is reduced or reversed by some way, the IGSCC will be effectively mitigated. In this paper a method to improve the residual stress named IHSI (Induction Heating Stress Improvement) is explained. IHSI aims to improve the condition of residual stress in the inside pipe surface using the thermal stress induced by the temperature difference in pipe wall, that is produced when the pipe is heated from the outside surface by an induction heating coil and cooled on the inside surface by water simultaneously. This method becomes more attractive when it can be successfully applied to in-service piping which might have some pre-flaw. In order to verify the validity of IHSI for such piping, some experiments and calculations using finite element method were conducted. These results are mainly discussed in this paper from the view-points of residual stress, flaw behaviour during IHSI and material deterioration. (author)

  5. Stress corrosion cracking of steam generator tube and primary pipe in PWR type nuclear power plants

    International Nuclear Information System (INIS)

    Zhang Weiguo; Gao Fengqin; Zhou Hongyi

    1992-03-01

    The behavior of stress corrosion cracking (SCC) was studied by slow strain rate test (SSRT), constant load test (CLT) and low frequency cyclic loading test (LFCLT). The purpose of these tests is to get the test data for evaluating the integrity of pressurized boundary of pipes in Qinshan and Guangdong nuclear power plants (NPPs). Tested materials are 316 nuclear grade stainless steel (SS) for primary pipes in welded heat affected zone (WHAZ) and tubes of heat transfer, such as Incoloy-800, Inconel-600 and 321 SS which are used for steam generator in PWR NPPs. The effects of material metallurgy, shot peening treatment, tensile load, strain rate, cyclic load and water chemistry on the behavior of SCC were considered

  6. Stress corrosion cracking of steam generator tube and primary pipe in PWR type nuclear power plants

    International Nuclear Information System (INIS)

    Zhang Weiguo; Gao Fengqin; Zhou Hongyi

    1993-01-01

    The behavior of stress corrosion cracking (SCC) is studied by slow strain rate test (SSRT), constant load test (CLT) and low frequency cyclic loading test (LFCLT). The purpose of these tests is to get the test data for evaluating the integrity of pressurized boundary of pipes in Qinshan and Guangdong nuclear power plants. Tested materials are 316 nuclear grade stainless steel (SS) for primary pipes in welded heat affected zone (WHAZ) and steam generator tubes, such as Incoloy-800, Inconel-600, Inconel-690 and 321 SS which are used for steam generator in PWR. The effects of material metallurgy, shot-peening treatment, tensile load, strain rate, cyclic load and water chemistry on the behavior of SCC are investigated

  7. Metallurgical investigation of cracking of the isolation valve downstream piping of regenerative heat exchanger at beaver valley unit 1 station

    International Nuclear Information System (INIS)

    Rao, G.V.

    1998-01-01

    A metallurgical investigation was conducted to establish the mechanism and cause of cracking in the regenerative heat exchanger piping at Beaver Valley Unit 1 PWR station in the USA. The investigation, which was centered on an eight inch long pipe section containing the cracking included surface examinations, metallographic and fractographic examinations, and chemistry evaluations. The results of the examinations showed that there were two types of pipe degradation mechanisms that affected the type 304 stainless schedule 40 piping. These consisted of localized corrosive attack on the OD surface due to the presence of chlorides, sulphates and phosphates, and transgranular stress corrosion cracking in the pipe wall due to the presence of chloride contaminants. The overall results of the investigation showed that the introduction of contaminants from external sources other than pipe insulation was the cause of heat exchanger pipe cracking. (author)

  8. COST AND PERFORMANCE REPORT: INNOVATIVE ACOUSTIC SENSOR TECHNOLOGIES FOR LEAK DETECTION IN CHALLENGING PIPE TYPES

    Science.gov (United States)

    2016-12-30

    to limit the drawdown of local water supplies . Implementation of improved leak detection technologies and the timely repair of water mains will...functions and to limit the drawdown of local water supplies . DoD installations lose significant amounts of water through leaking pipe systems that are near... Water Supply Practices M36: Water Audits and Loss Control Programs (2009), leak detection surveys should be conducted every three years. Therefore, it

  9. Piping damping tests evaluating influence of types of support and excitation

    International Nuclear Information System (INIS)

    Arendts, J.G.; Ware, A.G.; Gorman, V.W.

    1985-01-01

    The United States Nuclear Regulatory Commission and the Electric Power Research Institute have jointly sponsored construction of two laboratory piping systems at the ANCO Engineers facility in California. EG and G Idaho used the second of these systems to obtain piping system damping data using different supports and methods of excitation. The 6-in. carbon steel piping system was approximately 50 ft in length with two 3-in. branch lines. It was supported at five locations and excited using a single electrohydraulic shaker. Both random and swept sine methods of excitations were used. A variable support attached near the shaker location allowed four different configurations to be tested: a rigid strut, a mechanical snubber, a hydraulic snubber, and a rigid strut with a gap. Data were recorded for the lowest nine significant modes. Damping for the first three modes ranged for 1 to 3% of critical damping and decreased as frequency increased. The random excitation produced a slightly higher average overall damping of the system

  10. On the equilibrium configuration of the Kittel type domain structure with Bloch walls, l80deg

    International Nuclear Information System (INIS)

    Gavrila, H.

    1975-01-01

    Using a phenomenologic method for appreciating different components of the free energy, the equilibrium configuration of the Kittel-type domain structure with Bloch walls is obtained. By improving the known methods, more accurate magnetostatic energy calculations are reported. In order to determine the equilibrium structure, the total free energy is minimized with respect to two system parameters: the Bloch wall width and the structure half-period. (author)

  11. Falling liquid film flow along cascade-typed first wall of laser-fusion reactor

    International Nuclear Information System (INIS)

    Kunugi, T.; Nakai, T.; Kawara, Z.

    2007-01-01

    To protect from high energy/particle fluxes caused by nuclear fusion reaction such as extremely high heat flux, X rays, Alpha particles and fuel debris to a first wall of an inertia fusion reactor, a 'cascade-typed' first wall with a falling liquid film flow is proposed as the 'liquid wall' concept which is one of the reactor chamber cooling and wall protection schemes: the reactor chamber can protect by using a liquid metal film flow (such as Li 17 Pb 83 ) over the wall. In order to investigate the feasibility of this concept, we conducted the numerical analyses by using the STREAM code and also conducted the flow visualization experiments. The numerical results suggested that the cascade structure design should be improved, so that we redesigned the cascade-typed first wall and performed the flow visualization as a POP (proof-of-principle) experiment. In the numerical analyses, the water is used as the working liquid and an acrylic plate as the wall. These selections are based on two reasons: (1) from the non-dimensional analysis approach, the Weber number (We=ρu 2 δ/σ: ρ is density, u is velocity, δ is film thickness, σ is surface tension coefficient) should be the same between the design (Li 17 Pb 83 flow) and the model experiment (water flow) because of the free-surface instability, (2) the SiC/SiC composite would be used as the wall material, so that the wall may have the less wettability: the acrylic plate has the similar feature. The redesigned cascade-typed first wall for one step (30 cm height corresponding to 4 Hz laser duration) consists of a liquid tank having a free-surface for keeping the constant water-head located at the backside of the first wall, and connects to a slit which is composed of two plates: one plate is the first wall, and the other is maintaining the liquid level. This design solved the trouble of the previous design. The test section for the flow visualization has the same structure and the same height as the reactor design

  12. Deep lateral wall orbital decompression following strabismus surgery in patients with Type II ophthalmic Graves' disease.

    Science.gov (United States)

    Ellis, Michael P; Broxterman, Emily C; Hromas, Alan R; Whittaker, Thomas J; Sokol, Jason A

    2018-01-10

    Surgical management of ophthalmic Graves' disease traditionally involves, in order, orbital decompression, followed by strabismus surgery and eyelid surgery. Nunery et al. previously described two distinct sub-types of patients with ophthalmic Graves' disease; Type I patients exhibit no restrictive myopathy (no diplopia) as opposed to Type II patients who do exhibit restrictive myopathy (diplopia) and are far more likely to develop new-onset worsening diplopia following medial wall and floor decompression. Strabismus surgery involving extra-ocular muscle recession has, in turn, been shown to potentially worsen proptosis. Our experience with Type II patients who have already undergone medial wall and floor decompression and strabismus surgery found, when additional decompression is necessary, deep lateral wall decompression (DLWD) appears to have a low rate of post-operative primary-gaze diplopia. A case series of four Type II ophthalmic Graves' disease patients, all of whom had already undergone decompression and strabismus surgery, and went on to develop worsening proptosis or optic nerve compression necessitating further decompression thereafter. In all cases, patients were treated with DLWD. Institutional Review Board approval was granted by the University of Kansas. None of the four patients treated with this approach developed recurrent primary-gaze diplopia or required strabismus surgery following DLWD. While we still prefer to perform medial wall and floor decompression as the initial treatment for ophthalmic Graves' disease, for proptosis following consecutive strabismus surgery, DLWD appears to be effective with a low rate of recurrent primary-gaze diplopia.

  13. Type I ELM filament heat fluxes on the KSTAR main chamber wall

    Directory of Open Access Journals (Sweden)

    M.-K. Bae

    2017-08-01

    Full Text Available Heat loads deposited on the first wall by mitigated Type I ELMs are expected to be the dominant contributor to the total thermal plasma wall load of the International Thermonuclear Experimental Reactor (ITER, particularly in the upper main chamber regions during the baseline H-mode magnetic equilibrium, due to the fast radial convective heat propagation of ELM filaments before complete loss to the divertor. Specific Type I ELMing H-mode discharges have been performed with a lower single null magnetic geometry, where the outboard separatrix position is slowly (∼7s scanned over a radial distance of 7cm, reducing the wall probe–separatrix distance to a minimum of ∼9cm, and allowing the ELM filament heat loss to the wall to be analyzed as a function of radial propagation distance. A fast reciprocating probe (FRP head is separately held at fixed position toroidally close and 4.7cm radially in front of the wall probe. This FRP monitors the ELM ion fluxes, allowing an average filament radial propagation speed, found to be independent of ELM energy, of 80–100ms−1 to be extracted. Radial dependence of the peak filament wall parallel heat flux is observed to be exponential, with the decay length of λq, ELM ∼25 ± 4mm and with the heat flux of q∥, ELM= 0.05MWm−2 at the wall, corresponding to q∥ ∼ 7.5MWm−2 at the second separatrix. Along with the measured radial propagation speed and the calculated radial profile of the magnetic connection lengths across the SOL, these data could be utilized to analyze filament energy loss model for the future machines.

  14. Quark matter coupled to domain walls in Bianchi types II, VIII and IX ...

    Indian Academy of Sciences (India)

    In this study of Bianchi types II, VIII and IX Universes, quark matter coupled to domain walls in the ... The self-bound state appears to be at ρ ... The observations suggest that the Hubble expansion of the Universe ... Taking motivation from.

  15. Transgenic modification of potato pectic polysaccharides also affects type and level of cell wall xyloglucan

    NARCIS (Netherlands)

    Huang, Jie Hong; Jiang, Rui; Kortstee, Anne; Dees, Dianka C.T.; Trindade, Luisa M.; Gruppen, Harry; Schols, Henk A.

    2017-01-01

    BACKGROUND: Genes encoding pectic enzymes were introduced into wild-type potato Karnico. Cell wall materials were extracted from Karnico and transgenic lines expressing β-galactosidase (β-Gal-14) or rhamnogalacturonan lyase (RGL-18). Pectic polysaccharides from the β-Gal-14 transgenic line exhibited

  16. Quark matter coupled to domain walls in Bianchi types II, VIII and IX ...

    Indian Academy of Sciences (India)

    In this study of Bianchi types II, VIII and IX Universes, quark matter coupled to domain walls in the context of general relativity are explored. To obtain deterministic solution of the Einstein's field equations, various techniques are adopted. The features of the obtained solution are discussed.

  17. Nitrogen heat pipe for cryocooler thermal shunt

    International Nuclear Information System (INIS)

    Prenger F.C.; Hill, D.D.; Daney, D.E.

    1996-01-01

    A nitrogen heat pipe was designed, built and tested for the purpose of providing a thermal shunt between the two stages of a Gifford-McMahan (GM) cryocooler during cooldown. The nitrogen heat pipe has an operating temperature range between 63 and 123 K. While the heat pipe is in this temperature range during the system cooldown, it acts as a thermal shunt between the first and second stage of the cryocooler. The heat pipe increases the heat transfer to the first stage of the cryocooler, thereby reducing the cooldown time of the system. When the heat pipe temperature drops below the triple point, the nitrogen working fluid freezes, effectively stopping the heat pipe operation. A small heat leak between cryocooler stages remains because of axial conduction along the heat pipe wall. As long as the heat pipe remains below 63 K, the heat pipe remains inactive. Heat pipe performance limits were measured and the optimum fluid charge was determined

  18. Nuclear class 1 piping stress analysis

    International Nuclear Information System (INIS)

    Lucas, J.C.R.; Maneschy, J.E.; Mariano, L.A.; Tamura, M.

    1981-01-01

    A nuclear class 1 piping stress analysis, according to the ASME code, is presented. The TRHEAT computer code has been used to determine the piping wall thermal gradient. The Nupipe computer code was employed for the piping stress analysis. Computer results were compared with the allowable criteria from the ASME code. (Author) [pt

  19. Unsteady hydraulic characteristics in pipe with elbow under high Reynolds condition

    Energy Technology Data Exchange (ETDEWEB)

    Ono, A.; Kimura, N.; Kamide, H.; Tobita, A. [Japan Atomic Energy Agency, O-arai, Ibaraki (Japan)

    2011-07-01

    In the design of Japan Sodium-cooled Fast Reactor (JSFR), coolant velocity is beyond 9 m/s in the primary hot leg pipe of 1.27 m diameter. The Reynolds number in the piping reaches 4.2x10{sup 7}. Moreover, a short-elbow (r/D=1.0, r: curvature radius, D: pipe diameter) is adopted in the hot leg pipe in order to achieve compact plant layout and reduce plant construction cost. Therefore, the flow-induced vibration (FIV) arising from the piping geometry may occur in the short-elbow pipe. The FIV is due to the excitation force which is caused by the pressure fluctuation on the wall. The pressure fluctuation on the pipe wall is closely related with the flow fluctuation. In this study, water experiments using two types of 1/8 scaled elbows with different curvature ratio, r/D=1.0 and 1.5 (short-elbow and long-elbow), were conducted in order to investigate the mechanism of velocity and pressure fluctuation in the elbow and its downstream. The experiments were carried out at Re=5.4x10{sup 5} conditions. Measurement of velocity fluctuation and pressure fluctuation in two types of elbows with different curvature revealed that behavior of separation region and the circumferential secondary flow affected the pressure fluctuation on the wall of the elbow greatly. (author)

  20. Pipe whip: a summary of the damage observed in BNL pipe-on-pipe impact tests

    International Nuclear Information System (INIS)

    Baum, M.R.

    1987-01-01

    This paper describes examples of the damage resulting from the impact of a whipping pipe on a nearby pressurised pipe. The work is a by-product of a study of the motion of a whipping pipe. The tests were conducted with small-diameter pipes mounted in rigid supports and hence the results are not directly applicable to large-scale plant applications where flexible support mountings are employed. The results illustrate the influence of whipping pipe energy, impact position and support type on the damage sustained by the target pipe. (author)

  1. The Growth of Aspergillus Niger on a Wood Based Material with 4 Types of Wall Finishing

    Directory of Open Access Journals (Sweden)

    Subramaniam Menega

    2016-01-01

    Full Text Available Buildings are a vital component in a human’s daily life. It provides shelter from the environment, weather and animals. Mold growth within the building might be caused by the moisture problems which directly act on it such as water leaks or indirect factor such as high humidity levels. This growth causes esthetic problems and deterioration of its wall coatings. Spores from the fungi also cause health problems to humans. The fungus species studied in this research is Aspergillus niger. The material is made of wood and its finishing is thick wallpaper, thin wallpaper, acrylic paint and glycerol based paint. ASTMD5590-00 standard was used to evaluate fungal growth and to determine if non antifungal agent was effective in inhibiting the amount of fungal growth on four types of wall finishing used on wooden walls. This research was conducted without using any antifungal agent. Highest percentage of growth of the fungi was found on acrylic paint, followed by glycerol based paint and thin wallpaper. Thick wall paper shows the least growth of fungi. The maximum growth is visible on day 12 which is more than 60% by all the wall finishing.

  2. Pipe line construction for reactor containment buildings

    International Nuclear Information System (INIS)

    Aoki, Masataka; Yoshinaga, Toshiaki

    1978-01-01

    Purpose: To prevent the missile phenomenon caused by broken fragments due to pipe whip phenomenon in a portion of pipe lines connected to a reactor containment from prevailing to other portions. Constitution: Various pipe lines connected to the pressure vessel are disposed at the outside of the containments and they are surrounded with a plurality of protection partition walls respectively independent from each other. This can eliminate the effect of missile phenomena upon pipe rupture from prevailing to the pipe lines and instruments. Furthermore this can afford sufficient spaces for the pipe lines, as well as for earthquake-proof supports. (Horiuchi, T.)

  3. Alpha detection in pipes using an inverting membrane scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Kendrick, D.T.; Cremer, C.D.; Lowry, W. [Science and Engineering Associates, Inc., Albuquerque, NM (United States)] [and others

    1995-10-01

    Characterization of surface alpha emitting contamination inside enclosed spaces such as piping systems presents an interesting radiological measurement challenge. Detection of these alpha particles from the exterior of the pipe is impossible since the alpha particles are completely absorbed by the pipe wall. Traditional survey techniques, using hand-held instruments, simply can not be used effectively inside pipes. Science and Engineering Associates, Inc. is currently developing an enhancement to its Pipe Explorer{trademark} system that will address this challenge. The Pipe Explorer{trademark} uses a unique sensor deployment method where an inverted tubular membrane is propagated through complex pipe runs via air pressure. The inversion process causes the membrane to fold out against the pipe wall, such that no part of the membrane drags along the pipe wall. This deployment methodology has been successfully demonstrated at several DOE sites to transport specially designed beta and gamma, scintillation detectors into pipes ranging in length up to 250 ft.

  4. Radiation transmission pipe thickness measurement system

    International Nuclear Information System (INIS)

    Higashi, Yasuhiko

    2010-01-01

    Fuji Electric Systems can be measured from the outer insulation of the transmission Characteristics and radiation detection equipment had been developed that can measure pipe wall thinning in plant and running, the recruitment of another three-beam calculation method by pipe thickness measurement system was developed to measure the thickness of the pipe side. This equipment has been possible to measure the thickness of the circumferential profile of the pipe attachment by adopting automatic rotation. (author)

  5. Combined aerobic and resistance exercise training decreases peripheral but not central artery wall thickness in subjects with type 2 diabetes.

    NARCIS (Netherlands)

    Schreuder, T.H.A.; Munckhof, I.C.L. van den; Poelkens, F.; Hopman, M.T.; Thijssen, D.H.

    2015-01-01

    OBJECTIVE: Little is known about the impact of exercise training on conduit artery wall thickness in type 2 diabetes. We examined the local and systemic impact of exercise training on superficial femoral (SFA), brachial (BA), and carotid artery (CA) wall thickness in type 2 diabetes patients and

  6. Experimental study on an innovative multifunction heat pipe type heat recovery two-stage sorption refrigeration system

    International Nuclear Information System (INIS)

    Li, T.X.; Wang, R.Z.; Wang, L.W.; Lu, Z.S.

    2008-01-01

    An innovative multifunction heat pipe type sorption refrigeration system is designed, in which a two-stage sorption thermodynamic cycle based on two heat recovery processes was employed to reduce the driving heat source temperature, and the composite sorbent of CaCl 2 and activated carbon was used to improve the mass and heat transfer performances. For this test unit, the heating, cooling and heat recovery processes between two reactive beds are performed by multifunction heat pipes. The aim of this paper is to investigate the cycled characteristics of two-stage sorption refrigeration system with heat recovery processes. The two sub-cycles of a two-stage cycle have different sorption platforms though the adsorption and desorption temperatures are equivalent. The experimental results showed that the pressure evolutions of two beds are nearly equivalent during the first stage, and desorption pressure during the second stage is large higher than that in the first stage while the desorption temperatures are same during the two operation stages. In comparison with conventional two-stage cycle, the two-stage cycle with heat recovery processes can reduce the heating load for desorber and cooling load for adsorber, the coefficient of performance (COP) has been improved more than 23% when both cycles have the same regeneration temperature of 103 deg. C and the cooling water temperature of 30 deg. C. The advanced two-stage cycle provides an effective method for application of sorption refrigeration technology under the condition of low-grade temperature heat source or utilization of renewable energy

  7. 49 CFR 192.125 - Design of copper pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design of copper pipe. 192.125 Section 192.125... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.125 Design of copper pipe. (a) Copper... hard drawn. (b) Copper pipe used in service lines must have wall thickness not less than that indicated...

  8. Type of incision does not predict abdominal wall outcome after emergency surgery for colonic anastomotic leakage

    DEFF Research Database (Denmark)

    Jensen, Kristian Kiim; Oma, Erling; Harling, Henrik

    2017-01-01

    for anastomotic leakage were included with a median follow-up of 5.4 years. Incisional hernia occurred in 41 of 227 (15.3%) patients undergoing midline incision compared with 14 of 81 (14.7%) following transverse incision, P = 1.00. After adjusting for confounders, there was no association between the type...... not predict abdominal wall outcome after emergency surgery for colonic anastomotic leakage....

  9. Replaceable liquid nitrogen piping

    International Nuclear Information System (INIS)

    Yasujima, Yasuo; Sato, Kiyoshi; Sato, Masataka; Hongo, Toshio

    1982-01-01

    This liquid nitrogen piping with total length of about 50 m was made and installed to supply the liquid nitrogen for heat insulating shield to three superconducting magnets for deflection and large super-conducting magnet for detection in the π-meson beam line used for high energy physics experiment in the National Laboratory for High Energy Physics. The points considered in the design and manufacture stages are reported. In order to minimize the consumption of liquid nitrogen during transport, vacuum heat insulation method was adopted. The construction period and cost were reduced by the standardization of the components, the improvement of welding works and the elimination of ineffective works. For simplifying the maintenance, spare parts are always prepared. The construction and the procedure of assembling of the liquid nitrogen piping are described. The piping is of double-walled construction, and its low temperature part was made of SUS 316L. The super-insulation by aluminum vacuum evaporation and active carbon were attached on the external surface of the internal pipe. The final leak test and the heating degassing were performed. The tests on evacuation, transport capacity and heat entry are reported. By making the internal pipe into smaller size, the piping may be more efficient. (Kako, I.)

  10. Axial Compression Behavior of a New Type of Prefabricated Concrete Sandwich Wall Panel

    Science.gov (United States)

    Qun, Xie; Shuai, Wang; Chun, Liu

    2018-03-01

    A novel type of prefabricated concrete sandwich wall panel which could be used as a load-bearing structural element in buildings has been presented in this paper. Compared with the traditional sandwich panels, there are several typical characteristics for this wall system, including core columns confined by spiral stirrup along the cross-section of panel with 600mm spacing, precast foamed concrete block between two structural layers as internal insulation part, and a three-dimensional (3D) steel wire skeleton in each layer which is composed of two vertical steel wire meshes connected by horizontally short steel bar. All steel segments in the panel are automatically prefabricated in factory and then are assembled to form steel system in site. In order to investigate the structural behavior of this wall panel, two full-scale panels have been experimentally studied under axial compressive load. The test results show that the wall panel presents good load-bearing capacity and integral stiffness without out-of-plane flexural failure. Compared to the panel with planar steel wire mesh in concrete layer, the panel with 3D steel wire skeleton presents higher strength and better rigidity even in the condition of same steel ratio in panels which verifies that the 3D steel skeleton could greatly enhance the structural behavior of sandwich panel.

  11. Air filtration plants of wall-type for separation of fission iodine in nuclear reactors

    International Nuclear Information System (INIS)

    Stiehl, H.H.; Neumann, M.; Sinhuber, D.

    1976-01-01

    The increasing density of nuclear power stations and increased safety requirements will lead in future to higher flow rates and longer residence times in the adsorption filter layer of the iodine sorption filter plants of nuclear power stations. The safety requirements in the Federal Republic of Germany have been complied with so far in the conventional way by means of duct-type filter constructions. For the higher flow rates and longer residence times necessary in future, we propose a filter construction of wall-type, which complies with the safety regulations of the Federal Republic of Germany. The economic and technical advantages are discussed

  12. Soil-pipe interaction modeling for pipe behavior prediction with super learning based methods

    Science.gov (United States)

    Shi, Fang; Peng, Xiang; Liu, Huan; Hu, Yafei; Liu, Zheng; Li, Eric

    2018-03-01

    Underground pipelines are subject to severe distress from the surrounding expansive soil. To investigate the structural response of water mains to varying soil movements, field data, including pipe wall strains in situ soil water content, soil pressure and temperature, was collected. The research on monitoring data analysis has been reported, but the relationship between soil properties and pipe deformation has not been well-interpreted. To characterize the relationship between soil property and pipe deformation, this paper presents a super learning based approach combining feature selection algorithms to predict the water mains structural behavior in different soil environments. Furthermore, automatic variable selection method, e.i. recursive feature elimination algorithm, were used to identify the critical predictors contributing to the pipe deformations. To investigate the adaptability of super learning to different predictive models, this research employed super learning based methods to three different datasets. The predictive performance was evaluated by R-squared, root-mean-square error and mean absolute error. Based on the prediction performance evaluation, the superiority of super learning was validated and demonstrated by predicting three types of pipe deformations accurately. In addition, a comprehensive understand of the water mains working environments becomes possible.

  13. Pipe damping

    International Nuclear Information System (INIS)

    Ware, A.G.

    1985-01-01

    Studies are being conducted at the Idaho National Engineering Laboratory to determine whether an increase in the damping values used in seismic structural analyses of nuclear piping systems is justified. Increasing the allowable damping would allow fewer piping supports which could lead to safer, more reliable, and less costly piping systems. Test data from availble literature were examined to determine the important parameters contributing to piping system damping, and each was investigated in separate-effects tests. From the combined results a world pipe damping data bank was established and multiple regression analyses performed to assess the relative contributions of the various parameters. The program is being extended to determine damping applicable to higher frequency (33 to 100 Hz) fluid-induced loadings. The goals of the program are to establish a methodology for predicting piping system damping and to recommend revised guidelines for the damping values to be included in analyses

  14. Analysis of Side-Wall Structure of Grown-in Twin-Type Octahedral Defects in Czochralski Silicon

    Science.gov (United States)

    Ueki, Takemi; Itsumi, Manabu; Takeda, Tadao

    1998-04-01

    We analyzed the side-wall structure of grown-in octahedral defects in Czochralski silicon standard wafers for large-scale integrated circuits. There are two types of twin octahedral defects: an overlapping type and an adjacent type. In the twin octahedral defects of the overlapping type, a hole is formed in the connection part. The side-wall layer in the hole part is formed continually and is the same thickness as the side-wall layers of both octahedrons. In the twin octahedral defects of the adjacent type, a partition layer is formed in the connection part. Our electron energy-loss spectroscopy analyses identified that the side-wall layer includes SiO2.

  15. Pipe damping

    International Nuclear Information System (INIS)

    Ware, A.G.; Arendts, J.G.

    1984-01-01

    A program has been developed to assess the available piping damping data, to generate additional data and conduct seperate effects tests, and to establish a plan for reporting and storing future test results into a data bank. This effort is providing some of the basis for developing higher allowable damping values for piping seismic analyses, which will potentially permit removal of a considerable number of piping supports, particularly snubbers. This in turn will lead to more flexible piping systems which will be less susceptible to thermal cracking, will be easier to maintain and inspect, as well as less costly

  16. Heat pipe and method of production of a heat pipe

    International Nuclear Information System (INIS)

    Kemp, R.S.

    1975-01-01

    The heat pipe consists of a copper pipe in which a capillary network or wick of heat-conducting material is arranged in direct contact with the pipe along its whole length. Furthermore, the interior space of the tube contains an evaporable liquid for pipe transfer. If water is used, the capillary network consists of, e.g., a phosphorus band network. To avoid contamination of the interior of the heat pipe during sealing, its ends are closed by mechanical deformation so that an arched or plane surface is obtained which is in direct contact with the network. After evacuation of the interior space, the remaining opening is closed with a tapered pin. The ratio wall thickness/tube diameter is between 0.01 and 0.6. (TK/AK) [de

  17. The use of radiography for thickness measurement and corrosion monitoring in pipes

    International Nuclear Information System (INIS)

    Edalati, K.; Rastkhah, N.; Kermani, A.; Seiedi, M.; Movafeghi, A.

    2006-01-01

    In this study of pipes of 150 mm diameters, thickness ranging from 4.2 to 15.0 mm was determined by using two radiography techniques: tangential radiography and double wall radiography. It was concluded that thickness losses of 10%, 20% and 50% could be determined by these methods. Formulae were developed for the double wall radiography method with a high precision of thickness measurement for non-insulated pipes. The precision was comparable with ultrasonic measurement results. Corrosion type and corrosion surface could be observed by these methods. Internal or external corrosion produced different effects in tangential radiography. Insulation removal was not necessary using the radiographic techniques

  18. The use of radiography for thickness measurement and corrosion monitoring in pipes

    Energy Technology Data Exchange (ETDEWEB)

    Edalati, K. [Department of NDT, Nuclear Safety and Radiation Protection Technological Centre, AEOI, P.O. Box 14155-1399, Tehran (Iran, Islamic Republic of)]. E-mail: NDT99@aeoi.org.ir; Rastkhah, N. [Department of NDT, Nuclear Safety and Radiation Protection Technological Centre, AEOI, P.O. Box 14155-1399, Tehran (Iran, Islamic Republic of); Kermani, A. [Department of NDT, Nuclear Safety and Radiation Protection Technological Centre, AEOI, P.O. Box 14155-1399, Tehran (Iran, Islamic Republic of); Seiedi, M. [Department of NDT, Nuclear Safety and Radiation Protection Technological Centre, AEOI, P.O. Box 14155-1399, Tehran (Iran, Islamic Republic of); Movafeghi, A. [Department of NDT, Nuclear Safety and Radiation Protection Technological Centre, AEOI, P.O. Box 14155-1399, Tehran (Iran, Islamic Republic of)

    2006-10-15

    In this study of pipes of 150 mm diameters, thickness ranging from 4.2 to 15.0 mm was determined by using two radiography techniques: tangential radiography and double wall radiography. It was concluded that thickness losses of 10%, 20% and 50% could be determined by these methods. Formulae were developed for the double wall radiography method with a high precision of thickness measurement for non-insulated pipes. The precision was comparable with ultrasonic measurement results. Corrosion type and corrosion surface could be observed by these methods. Internal or external corrosion produced different effects in tangential radiography. Insulation removal was not necessary using the radiographic techniques.

  19. Numerical analysis of liquid metal MHD flows through circular pipes based on a fully developed modeling

    International Nuclear Information System (INIS)

    Zhang, Xiujie; Pan, Chuanjie; Xu, Zengyu

    2013-01-01

    Highlights: ► 2D MHD code based on a fully developed modeling is developed and validated by Samad analytical results. ► The results of MHD effect of liquid metal through circular pipes at high Hartmann numbers are given. ► M type velocity profile is observed for MHD circular pipe flow at high wall conductance ratio condition. ► Non-uniform wall electrical conductivity leads to high jet velocity in Robert layers. -- Abstract: Magnetohydrodynamics (MHD) laminar flows through circular pipes are studied in this paper by numerical simulation under the conditions of Hartmann numbers from 18 to 10000. The code is developed based on a fully developed modeling and validated by Samad's analytical solution and Chang's asymptotic results. After the code validation, numerical simulation is extended to high Hartmann number for MHD circular pipe flows with conducting walls, and numerical results such as velocity distribution and MHD pressure gradient are obtained. Typical M-type velocity is observed but there is not such a big velocity jet as that of MHD rectangular duct flows even under the conditions of high Hartmann numbers and big wall conductance ratio. The over speed region in Robert layers becomes smaller when Hartmann numbers increase. When Hartmann number is fixed and wall conductance ratios change, the dimensionless velocity is through one point which is in agreement with Samad's results, the locus of maximum value of velocity jet is same and effects of wall conductance ratio only on the maximum value of velocity jet. In case of Robert walls are treated as insulating and Hartmann walls as conducting for circular pipe MHD flows, there is big velocity jet like as MHD rectangular duct flows of Hunt's case 2

  20. BWR pipe crack remedies evaluation

    International Nuclear Information System (INIS)

    Shack, W.J.; Kassner, T.F.; Maiya, P.S.; Park, J.Y.; Ruther, W.; Kuzay, T.; Rybicki, E.F.; Stonesifer, R.B.

    1988-01-01

    Piping in light-water-reactor power systems has been affected by several types of environmental degradation. This paper presents results from studies of (1) stress corrosion crack growth in fracture mechanics specimens of modified Type 347 SS and Type 304/308L SS weld overlay material, (2) heat-to-heat variations in stress corrosion cracking (SCC) of Types 316NG and 347 SS, (3) SCC of sensitized Type 304 SS in water with cupric ion or organic acid impurities, (4) electrochemical potential (ECP) measurements under gamma irradiation, (5) SCC of ferritic steels, (6) strain-controlled fatigue of Type 316NG SS in air at ambient temperature, and (7) through-wall residual stress measurements and finite-element calculation of residual stresses in weldments treated by a mechanical stress improvement process (MSIP). Fracture-mechanics crack-growth-rate tests on Type 316NG SS have shown that transgranular cracking can occur even in high purity environments, whereas no crack growth was observed in Type 347 SS even in impurity environments. In tests on weld overlay specimens, no cracks penetrated into the overlay even in impurity environments. Instead, the cracks branched when they approached the overlay, and then grew parallel to interface. In SCC tests on sensitized Type 304 SS, cupric ions at concentrations greater than ∼1 ppm were found to be deleterious, whereas organic acids at this concentration were not detrimental. Tests on several ferritic steels indicate a strong correlation between the sulfur content of the steels and susceptibility to SCC. External gamma radiation fields produced a large positive shift in the ECP of Type 304 SS at low dissolved-oxygen concentrations (<5 ppb), whereas in the absence of an external gamma field there was no difference in the ECP values of irradiated and nonirradiated material. Fatigue data for Type 316NG SS are consistent with the ASME code mean curve at high strains, but fall below the curve at low strains. Calculations of the

  1. Residual stress state in pipe cut ring specimens for fracture toughness testing

    Energy Technology Data Exchange (ETDEWEB)

    Damjanovic, Darko [J.J. Strossmayer Univ. of Osijek, Slavonski Brod (Croatia). Mechanical Engineering Faculty; Kozak, Drazan [Zagreb Univ. (Croatia). Dept. for Mechanical Design; Marsoner, Stefan [Materials Center, Leoben (Austria).; Gubeljak, Nenad [Maribor Univ. (Slovenia). Chair of Mechanics

    2017-07-01

    Thin-walled pipes are not suitable for measuring fracture toughness parameters of vital importance because longitudinal crack failure is the most common failure mode in pipes. This is due to the impossibility to manufacture standard specimens for measuring fracture toughness, such as SENB or CT specimens, from the thin wall of the pipe. Previous works noticed this problem, but until now, a good and convenient solution has not been found or developed. To overcome this problem, very good alternative solution was proposed, the so-called pipe ring notched bend specimen (PRNB) [1-5]. Until now, only the idealized geometry PRNB specimen is analyzed, i. e., a specimen which is not cut out from an actual pipe but produced from steel plate. Based on that, residual stresses are neglected along with the imperfections in geometry (elliptical and eccentricity). The aim of this research is to estimate the residual stress state(s) in real pipes used in the boiler industry produced by hot rolling technique. These types of pipes are delivered only in normalized condition, but not stress relieved. Therefore, there are residual stresses present due to the manufacturing technique, but also due to uneven cooling after the production process. Within this paper, residual stresses are estimated by three methods: the incremental hole drilling method (IHMD), X-ray diffraction (XRD) and the splitting method (SM). Knowing the residual stress state in the ring specimen, it is possible to assess their impact on fracture toughness measured on the corresponding PRNB specimen(s).

  2. Experimental and analytical studies on creep failure of reactor coolant piping

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Akio; Maruyama, Yu; Hashimoto, Kazuichiro; Harada, Yuhei; Shibazaki, Hiroaki; Kudo, Tamotsu; Hidaka, Akihide; Sugimoto, Jun [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nakamura, N.

    1999-07-01

    Thermal and structural responses of reactor coolant piping under and elevated internal pressure and temperature are being investigated in WIND project at JAERI. In a recent failure test in which a nuclear grade type 316 stainless steel pipe with an outer diameter of 114.3 mm and a wall thickness of 13.5 mm was used and an internal pressure was kept at approximately 15 MPa. A failure of the piping was observed when the temperature was sustained at 970degC for one hour. In parallel with conducting the tests, post-test analyses were performed. The objective of the analyses is to assess analytical models for the creep deformation and failure of the piping at elevated internal pressure and temperature simulating thermal-hydraulic conditions during a severe accident. The major material properties needed for the analysis were measured at elevated temperatures. Coefficients of a creep constitutive equation including the tertiary stage were determined with the measured creep data and incorporated into ABAQUS code. The analysis reasonably reproduced the time history of the enlargement of the piping diameter, and the wall thickness and the diameter of the piping at the failure. It was also found that the piping failure timing obtained from the analysis agreed well with the test result. (author)

  3. Experimental and analytical studies on creep failure of reactor coolant piping

    International Nuclear Information System (INIS)

    Maeda, Akio; Maruyama, Yu; Hashimoto, Kazuichiro; Harada, Yuhei; Shibazaki, Hiroaki; Kudo, Tamotsu; Hidaka, Akihide; Sugimoto, Jun; Nakamura, N.

    1999-01-01

    Thermal and structural responses of reactor coolant piping under and elevated internal pressure and temperature are being investigated in WIND project at JAERI. In a recent failure test in which a nuclear grade type 316 stainless steel pipe with an outer diameter of 114.3 mm and a wall thickness of 13.5 mm was used and an internal pressure was kept at approximately 15 MPa. A failure of the piping was observed when the temperature was sustained at 970degC for one hour. In parallel with conducting the tests, post-test analyses were performed. The objective of the analyses is to assess analytical models for the creep deformation and failure of the piping at elevated internal pressure and temperature simulating thermal-hydraulic conditions during a severe accident. The major material properties needed for the analysis were measured at elevated temperatures. Coefficients of a creep constitutive equation including the tertiary stage were determined with the measured creep data and incorporated into ABAQUS code. The analysis reasonably reproduced the time history of the enlargement of the piping diameter, and the wall thickness and the diameter of the piping at the failure. It was also found that the piping failure timing obtained from the analysis agreed well with the test result. (author)

  4. Analytical solution for stress, strain and plastic instability of pressurized pipes with volumetric flaws

    International Nuclear Information System (INIS)

    Cunha, Sérgio B.; Netto, Theodoro A.

    2012-01-01

    The mechanical behavior of internally pressurized pipes with volumetric flaws is analyzed. The two possible modes of circumferentially straining the pipe wall are identified and associated to hypothesized geometries. The radial deformation that takes place by bending the pipe wall is studied by means of axisymmetric flaws and the membrane strain developed by unequal hoop deformation is analyzed with the help of narrow axial flaws. Linear elastic shell solutions for stress and strain are developed, the plastic behavior is studied and the maximum hoop stress at the flaw is related to the undamaged pipe hoop stress by means of stress concentration factors. The stress concentration factors are employed to obtain equations predicting the pressure at which the pipe fails by plastic instability for both types of flaw. These analytical solutions are validated by comparison with burst tests on 3″ diameter pipes and finite element simulations. Forty-one burst tests were carried out and two materials with very dissimilar plastic behavior, carbon steel and austenitic stainless steel, were used in the experiments. Both the analytical and the numerical predictions showed good correlation with the experimentally observed burst pressures. - Highlights: ► An analytical model for the burst of a pipe with a volumetric flaw is developed. ► Deformation, strain and stress are modeled in the elastic and plastic domains. ► The model is comprehensively validated by experiments and numerical simulations. ► The burst pressure model’s accuracy is equivalent to finite element simulations.

  5. Ratcheting failure of pressurised straight pipes and elbows under reversed bending

    International Nuclear Information System (INIS)

    Vishnuvardhan, S.; Raghava, G.; Gandhi, P.; Saravanan, M.; Goyal, Sumit; Arora, Punit; Gupta, Suneel K.; Bhasin, Vivek

    2013-01-01

    Ratcheting studies were carried out on Type 304LN stainless steel straight pipes and elbows subjected to steady internal pressure and cyclic bending load. The internal pressure for all the straight pipes was 35 MPa and in the case of elbows the internal pressure was varied for different elbows, ranging from 27.6 MPa to 39.2 MPa. Cyclic bending load was applied on the specimens by subjecting them to different levels of load-line displacement. The specimens have undergone significant ratchet swelling (ballooning), ovalization and consequent thinning of the cross-section during ratcheting. The straight pipes failed either by occurrence of through-wall crack accompanied by simultaneous ballooning, or bursting with simultaneous ballooning. All the elbows failed by occurrence of through-wall crack accompanied by simultaneous ballooning. Ratcheting behaviour of straight pipes and elbows were compared and it was generally inferred that ratcheting was more pronounced in straight pipes than in elbows. -- Graphical abstract: Strain history for the specimen QCE-RAT-6-L1. Highlights: • Studies were carried out under combined internal pressure and cyclic bending. • Ratcheting strains were measured at critical locations of the specimens. • Quantified the percentage of ballooning, ovalization and reduction in thickness. • Modes of ratcheting failure of straight pipes and elbows are studied. • Inferred that ratcheting is more pronounced in straight pipes than in elbows

  6. Residual stress state in pipe cut ring specimens for fracture toughness testing

    International Nuclear Information System (INIS)

    Damjanovic, Darko; Kozak, Drazan; Marsoner, Stefan; Gubeljak, Nenad

    2017-01-01

    Thin-walled pipes are not suitable for measuring fracture toughness parameters of vital importance because longitudinal crack failure is the most common failure mode in pipes. This is due to the impossibility to manufacture standard specimens for measuring fracture toughness, such as SENB or CT specimens, from the thin wall of the pipe. Previous works noticed this problem, but until now, a good and convenient solution has not been found or developed. To overcome this problem, very good alternative solution was proposed, the so-called pipe ring notched bend specimen (PRNB) [1-5]. Until now, only the idealized geometry PRNB specimen is analyzed, i. e., a specimen which is not cut out from an actual pipe but produced from steel plate. Based on that, residual stresses are neglected along with the imperfections in geometry (elliptical and eccentricity). The aim of this research is to estimate the residual stress state(s) in real pipes used in the boiler industry produced by hot rolling technique. These types of pipes are delivered only in normalized condition, but not stress relieved. Therefore, there are residual stresses present due to the manufacturing technique, but also due to uneven cooling after the production process. Within this paper, residual stresses are estimated by three methods: the incremental hole drilling method (IHMD), X-ray diffraction (XRD) and the splitting method (SM). Knowing the residual stress state in the ring specimen, it is possible to assess their impact on fracture toughness measured on the corresponding PRNB specimen(s).

  7. Pipe connector

    International Nuclear Information System (INIS)

    Sullivan, T.E.; Pardini, J.A.

    1978-01-01

    A safety test facility for testing sodium-cooled nuclear reactor components includes a reactor vessel and a heat exchanger submerged in sodium in the tank. The reactor vessel and heat exchanger are connected by an expansion/deflection pipe coupling comprising a pair of coaxially and slidably engaged tubular elements having radially enlarged opposed end portions of which at least a part is of spherical contour adapted to engage conical sockets in the ends of pipes leading out of the reactor vessel and in to the heat exchanger. A spring surrounding the pipe coupling urges the end portions apart and into engagement with the spherical sockets. Since the pipe coupling is submerged in liquid a limited amount of leakage of sodium from the pipe can be tolerated

  8. Flow conditions of fresh mortar and concrete in different pipes

    International Nuclear Information System (INIS)

    Jacobsen, Stefan; Haugan, Lars; Hammer, Tor Arne; Kalogiannidis, Evangelos

    2009-01-01

    The variation in fresh concrete flow rate over the pipe cross section was investigated on differently coloured and highly flowable concrete mixes flowing through pipes of different materials (rubber, steel, acryl). First, uncoloured (gray) concrete was poured through the pipe and the pipe blocked. Similar but coloured (black) concrete was then poured into the pipe filled with gray concrete, flowing after the gray concrete for a while before being blocked and hardened. The advance of the colouring along the pipe wall (showing boundary flow rate) was observed on the moulded concrete surface appearing after removing the pipe from the hardened concrete. The shapes of the interfaces between uncoloured and coloured concrete (showing variation of flow rate over the pipe cross section) were observed on sawn surfaces of concrete half cylinders cut along the length axes of the concrete-filled pipe. Flow profiles over the pipe cross section were clearly seen with maximum flow rates near the centre of the pipe and low flow rate at the pipe wall (typically rubber pipe with reference concrete without silica fume and/or stabilizers). More plug-shaped profiles, with long slip layers and less variation of flow rate over the cross section, were also seen (typically in smooth acrylic pipes). Flow rate, amount of concrete sticking to the wall after flow and SEM-images of pipe surface roughness were observed, illustrating the problem of testing full scale pumping.

  9. CONTECH(R) A-2000 polyvinyl chloride (PVC) plastic pipe.

    Science.gov (United States)

    2015-03-01

    Determine the effectiveness and long-term durability of the Contech A-2000 PVC pipe : in an irrigation application. This type of pipe may prove to be a viable alternative to : reinforced concrete pipe (RCP).

  10. Effect of p-type multi-walled carbon nanotubes for improving hydrogen storage behaviors

    International Nuclear Information System (INIS)

    Lee, Seul-Yi; Yop Rhee, Kyong; Nahm, Seung-Hoon; Park, Soo-Jin

    2014-01-01

    In this study, the hydrogen storage behaviors of p-type multi-walled carbon nanotubes (MWNTs) were investigated through the surface modification of MWNTs by immersing them in sulfuric acid (H 2 SO 4 ) and hydrogen peroxide (H 2 O 2 ) at various ratios. The presence of acceptor-functional groups on the p-type MWNT surfaces was confirmed by X-ray photoelectron spectroscopy. Measurement of the zeta-potential determined the surface charge transfer and dispersion of the p-type MWMTs, and the hydrogen storage capacity was evaluated at 77 K and 1 bar. From the results obtained, it was found that acceptor-functional groups were introduced onto the MWNT surfaces, and the dispersion of MWNTs could be improved depending on the acid-mixed treatment conditions. The hydrogen storage was increased by acid-mixed treatments of up to 0.36 wt% in the p-type MWNTs, compared with 0.18 wt% in the As-received MWNTs. Consequently, the hydrogen storage capacities were greatly influenced by the acceptor-functional groups of p-type MWNT surfaces, resulting in increased electron acceptor–donor interaction at the interfaces. - Graphical abstract: Hydrogen storage behaviors of the p-type MWNTs with the acid-mixed treatments are described. Display Omitted Display Omitted

  11. Ductile failure analysis of API X65 pipes with notch-type defects using a local fracture criterion

    International Nuclear Information System (INIS)

    Oh, Chang-Kyun; Kim, Yun-Jae; Baek, Jong-Hyun; Kim, Young-Pyo; Kim, Woo-Sik

    2007-01-01

    A local failure criterion for API X65 steel is applied to predict ductile failure of full-scale API X65 pipes with simulated corrosion and gouge defects under internal pressure. The local failure criterion is the stress-modified fracture strain as a function of the stress triaxiality (defined by the ratio of the hydrostatic stress to the effective stress). Based on detailed finite element (FE) analyses with the proposed local failure criterion, burst pressures of defective pipes are estimated and compared with experimental data. For pipes with simulated corrosion defects, FE analysis with the proposed local fracture criterion indicates that predicted failure takes place after the defective pipes attain maximum loads for all cases, possibly due to the fact that the material has sufficient ductility. For pipes with simulated gouge defects, on the other hand, it is found that predicted failure takes place before global instability, and the predicted burst pressures are in good agreement with experimental data, providing confidence in the present approach

  12. Glycemic control in type 2 diabetes mellitus prevents coronary arterial wall infection

    Directory of Open Access Journals (Sweden)

    Morteza Izadi

    2014-05-01

    Full Text Available BACKGROUND: Diabetes mellitus (DM is a very well-known risk factor for development of atherosclerosis, and it has been hypothesized that poor glycemic control and hyperglycemia plays a major role in this process. In the current study, we aimed to evaluate the associates of poor glycemic control in Iranian patients who have already undergone coronary artery bypass grafting (CABG, with especial focus on the inhabitation of infectious agents within the coronary arterial wall. METHODS: In January 2010, 52 consecutive patients with type 2 DM who undergone CABG at the Department of Cardiovascular Surgery of Baqiyatallah University of Medical Sciences (Tehran, Iran were included into this cross-sectional study and biopsy specimens from their coronary plaques were taken and analyzed by polymerase chain reaction (PCR methods for detecting Helicobacter species, cytomegalovirus (CMV and Chlamydia pneumoniae, and their potential relation to the glycemic control status in these patients. RESULTS: Compared to that in diabetic patients with mean fasting blood sugar (FBS levels FBS < 126, atherosclerotic lesions in type 2 diabetic patients with poor glycemic control (FBS > 126 were significantly more likely to be positive for CMV PCR test (41% vs. 9%, respectively; P = 0.05. In laboratorial test results, mean triglyceride level was significantly higher among patients of poor glycemic control (168 ± 89 vs. 222 ± 125 mg/dl, respectively; P = 0.033. Hypertension was also significantly more prevalent in this population (73% vs. 36%, respectively; P = 0.034. CONCLUSION: Type 2 diabetic patients with poor glycemic control can be at higher risk for developing CMV infection in their coronary arterial wall, which can promote atherosclerosis formation process in this patient population. According to the findings of this study, we recommend better control of serum glucose levels in type 2 diabetic patients to prevent formation/progression of atherosclerosis.   Keywords

  13. Automated ultrasonic pipe weld inspection. Part 1

    International Nuclear Information System (INIS)

    Karl Deutsch, W.A.; Schulte, P.; Joswig, M.; Kattwinkel, R.

    2006-01-01

    This article contains a brief overview on automated ultrasonic welded inspection for various pipe types. Some inspection steps might by carried out with portable test equipment (e.g. pipe and test), but the weld inspection in all internationally relevant specification must be automated. The pipe geometry, the production process, and the pipe usage determine the number of required probes. Recent updates for some test specifications enforce a large number of ultrasonic probes, e.g. the Shell standard. Since seamless pipes are sometimes replaced by ERW pipes and LSAW pipes (in both cases to save production cost), the inspection methods change gradually between the various pipe types. Each testing system is unique and shows its specialties which have to be discussed by supplier, testing system user and final customer of the pipe. (author)

  14. Probing Charge Transfer between Shells of Double-Walled Carbon Nanotubes Sorted by Outer-Wall Electronic Type

    Czech Academy of Sciences Publication Activity Database

    Kalbáč, Martin; Green, A. A.; Hersam, M. C.; Kavan, Ladislav

    2011-01-01

    Roč. 17, č. 35 (2011), s. 9806-9815 ISSN 0947-6539 R&D Projects: GA AV ČR IAA400400911; GA AV ČR IAA400400804; GA AV ČR KAN200100801; GA ČR GAP204/10/1677; GA MŠk LC510; GA MŠk ME09060 Institutional research plan: CEZ:AV0Z40400503 Keywords : density-gradient ultracentrifugation * double-walled carbon nanotubes * electrochemistry Subject RIV: CG - Electrochemistry Impact factor: 5.925, year: 2011

  15. Pipe-CUI-profiler: a portable nucleonic system for detecting corrosion under insulation (CUI) of steel pipes

    International Nuclear Information System (INIS)

    Jaafar Abdullah; Rasif Mohd Zain; Roslan Yahya

    2003-01-01

    Corrosion under insulation (CUI) on the external wall of steel pipes is a common problem in many types of industrial plants. This is mainly due to the presence of moisture or water in the insulation materials. A portable nucleonic system that can be used to detect CUI without the need to remove the insulation materials, has been developed. The system is based on dual-beam gamma-ray absorption technique. It is designed to inspect pipes of internal diameter 50, 65, 80, 90, 100 and 150 mm. Pipeline of these sizes with aluminium or thin steel sheathing, containing fibre-glass or calcium silicate insulation to thicknesses of 25, 40 and 50 mm can be inspected. The system has proven to be a safe, fast and effective method of inspecting insulated pipes. This paper describes the new nucleonic system that has been developed. This paper describes the basic principle of the system and outlines its performance. (Author)

  16. Theoretical and experimental investigation into structural and fluid motions at low frequencies in water distribution pipes

    Science.gov (United States)

    Gao, Yan; Liu, Yuyou

    2017-06-01

    Vibrational energy is transmitted in buried fluid-filled pipes in a variety of wave types. Axisymmetric (n = 0) waves are of practical interest in the application of acoustic techniques for the detection of leaks in underground pipelines. At low frequencies n = 0 waves propagate longitudinally as fluid-dominated (s = 1) and shell-dominated (s = 2) waves. Whilst sensors such as hydrophones and accelerometers are commonly used to detect leaks in water distribution pipes, the mechanism governing the structural and fluid motions is not well documented. In this paper, the low-frequency behaviour of the pipe wall and the contained fluid is investigated. For most practical pipework systems, these two waves are strongly coupled; in this circumstance the ratios of the radial pipe wall displacements along with the internal pressures associated with these two wave types are obtained. Numerical examples show the relative insensitivity of the structural and fluid motions to the s = 2 wave for both metallic and plastic pipes buried in two typical soils. It is also demonstrated that although both acoustic and vibration sensors at the same location provide the identical phase information of the transmitted signals, pressure responses have significantly higher levels than acceleration responses, and thus hydrophones are better suited in a low signal-to-noise ratio (SNR) environment. This is supported by experimental work carried out at a leak detection facility. Additional pressure measurements involved excitation of the fluid and the pipe fitting (hydrant) on a dedicated water pipe. This work demonstrates that the s = 1 wave is mainly responsible for the structural and fluid motions at low frequencies in water distribution pipes as a result of water leakage and direct pipe excitation.

  17. Investigation of cascade-type falling liquid-film along first wall of laser-fusion reactor

    International Nuclear Information System (INIS)

    Kunugi, T.; Nakai, T.; Kawara, Z.; Norimatsu, T.; Kozaki, Y.

    2008-01-01

    To protect the first wall of an inertia fusion reactor from extremely high heat flux, X-rays, alpha particles and fuel debris caused by a nuclear fusion reaction, a 'cascade-type' falling liquid-film flow is proposed as a 'liquid-wall' concept. The flow visualization experiment to investigate the feasibility of this liquid-wall concept has been conducted. The preliminary numerical simulation results suggest that the current cascade structure design should be improved because less thermal-mixing is expected. The cascade-type structure has, therefore, been redesigned. This new cascade-type first wall consists of a liquid reservoir which has a free-surface to maintain a constant water head in the rear, and connects to a slit composed of two plates, i.e., the first wall is connected to a slit which is partially made up of the first wall to begin with it. The numerical simulations were performed on the new cascade-type first wall and they show the stable liquid-film flow on it. Moreover, the POP (proof-of-principle) flow visualization experiments, which satisfy the Weber number coincident condition, are carried out using water as the working fluid. By comparing the numerical and experimental results, it was found that the liquid-film flow with 3-5 mm thickness could be stably established. According to these results for the new cascade-type first wall concept, it was confirmed that the coolant flow rate and the thickness of the liquid-film could be controlled if the Weber number coincident condition was satisfied

  18. Studies on the characteristics of the separated type heat pipe system with non-condensible gas for the use of the passive decay heat removal in reactor systems

    International Nuclear Information System (INIS)

    Hayashi, Takao; Iigaki, Kazuhiko; Ohashi, Kazutaka; Hayakawa, Hitoshi; Yamada, Masao.

    1995-01-01

    This study is the fundamental research by experiments to aim at the development of the complete passive decay heat removal system on the modular reactor systems by the form of the separated type of heat pipe system utilizing the features of both the big latent heat for vaporization from water to steam and easy transportation characteristics. Special intention in our study on the fundamental experiments is to look for the effects in such a separated type of heat pipe system to introduce non-condensible gas such as nitrogen gas together with the working fluid of water. Many interesting findings have been obtained so far on the experiments for the variable conductance heat pipe characteristics from viewpoint of the actual application on the aim said above. This study has been carried out by the joint study between Tokai University and Fuji Electric Co., Ltd. and this paper is made up from the several papers presented so far at both the national and international symposiums under the name of joint study of the both bodies. (author)

  19. Effect of Wall Material on H– Production in a Plasma Sputter-Type Ion Source

    Directory of Open Access Journals (Sweden)

    Y. D. M. Ponce

    2004-12-01

    Full Text Available The effect of wall material on negative hydrogen ion (H– production was investigated in a multicusp plasma sputter-type ion source (PSTIS. Steady-state cesium-seeded hydrogen plasma was generated by a tungsten filament, while H– was produced through surface production using a molybdenum sputter target. Plasma parameters and H– yields were determined from Langmuir probe and Faraday cup measurements, respectively. At an input hydrogen pressure of 1.2 mTorr and optimum plasma discharge parameters Vd = –90 V and Id = –2.25 A, the plasma parameters ne was highest and T–e was lowest as determined from Langmuir probe measurements. At these conditions, aluminum generates the highest ion current density of 0.01697 mA/cm2, which is 64% more than the 0.01085 mA/cm2 that stainless steel produces. The yield of copper, meanwhile, falls between the two materials at 0.01164 mA/cm2. The beam is maximum at Vt = –125 V. Focusing is achieved at VL = –70 V for stainless steel, Vt = –60 V for aluminum, and Vt = –50 V for copper. The results demonstrate that proper selection of wall material can greatly enhance the H– production of the PSTIS.

  20. Review: heat pipe heat exchangers at IROST

    OpenAIRE

    E. Azad

    2012-01-01

    The use of the heat pipe as a component in a heat recovery device has gained worldwide acceptance. Heat pipes are passive, highly reliable and offer high heat transfer rates. This study summarizes the investigation of different types of heat pipe heat recovery systems (HPHRSs). The studies are classified on the basis of the type of the HPHRS. This research is based on 30 years of experience on heat pipe and heat recovery systems that are presented in this study. Copyright , Oxford University ...

  1. IPM Pipe

    Science.gov (United States)

    Submit A Report View Reports List [+] View Reports Map [+] CDM Alert System Sign Up For Alerts User Login Annual Epidemic Histories Annual Season Summaries Contact Us ipmPIPE User Login Web Administrator Login

  2. Improvement in accuracy of the measurements of residual stresses due to circumferential welds in thin-walled pipe using Rayleigh wave method

    International Nuclear Information System (INIS)

    Akhshik, Siamak; Moharrami, Rasool

    2009-01-01

    To achieve an acceptable safety in many industrial applications such as nuclear power plants and power generation, it is extremely important to gain an understanding of the magnitudes and distributions of the residual stresses in a pipe formed by joining two sections with a girth butt weld. Most of the methods for high-accuracy measurement of residual stress are destructive. These destructive measurement methods cannot be applied to engineering systems and structures during actual operation. In this paper, we present a method based on the measurement of ultrasonic Rayleigh wave velocity variations versus the stress state for nondestructive evaluation of residual stress in dissimilar pipe welded joint. We show some residual stress profile obtained by this method. These are then compared with other profiles determined using a semi-destructive technique (hole-drilling) that makes it possible to check our results. According to the results, we also present a new method for adjusting the ultrasonic measurements to improve the agreement with the results obtained from other techniques.

  3. Pipe grabber

    Energy Technology Data Exchange (ETDEWEB)

    Sharafutdinov, I.G.; Mubashirov, S.G.; Prokopov, O.I.

    1981-05-15

    A pipe grabber is suggested which contains a housing, clamping elements and centering mechanism with drive installed on the lower end of the housing. In order to improve the reliable operation of the pipe grabber, the centering mechanism is made in the form of a reinforced ringed flexible shaft, while the drive is made in the form of elastic rotating discs. In this case the direction of rotation of the discs and the flexible shaft is the opposite.

  4. Absorptive reduction and width narrowing in λ-type atoms confined between two dielectric walls

    International Nuclear Information System (INIS)

    Li Yuanyuan; Hou Xun; Bai Jintao; Yan Junfeng; Gan Chenli; Zhang Yanpeng

    2008-01-01

    This paper investigates the absorptive reduction and the width narrowing of electromagnetically induced transparency (EIT) in a thin vapour film of λ-type atoms confined between two dielectric walls whose thickness is comparable with the wavelength of the probe field. The absorptive lines of the weak probe field exhibit strong reductions and very narrow EIT dips, which mainly results from the velocity slow-down effects and transient behaviour of atoms in a confined system. It is also shown that the lines are modified by the strength of the coupling field and the ratio of L/λ, with L the film thickness and λ the wavelength of the probe field. A simple robust recipe for EIT in a thin medium is achievable in experiment. (general)

  5. Distribution of natural occurring radionuclide in some industral residues used in new type wall materials

    International Nuclear Information System (INIS)

    Chen Yingmin; Li Fusheng; Xu Jiaang; Deng Daping; Yuan Ming; Ma Shi; Chen Yue

    2006-01-01

    Objective: To study the natural radioactive nuclide distribution characteristic of fly ash, gangue and various kinds of slag used in the new-type wall material and offer scientific basis for reducing the radiation dosage that the public suffers. Methods: The activity concentrations of the contents of natural radioactive nuclides of different industral waste residues have been determined by HPGe gamma-ray spectrometry. Results: The mean Raeq is successively fly ash (279.13 Bq kg -1 ), slag (225.69 Bq kg -1 ), gangue (141.26 Bq kg -1 ) from high to low and all of the samples is lower than the limit set in the OECD. The arithmetic mean activities of 236 Ra, 232 Th, 40 K in fly-ash samples are 127.88, 93.83, 221.75 Bq kg -1 ; for coal slag samples are 73.89, 97.13, 283.44 Bq kg -1 and for coal gangue samples are 47.85, 45.21, 413.56 Bq kg -1 . For the same power plant, the radioactive nuclide activity of the fly ash gathered in different time may have very great differences, the maximum can reach more than 2 times of the minimum. Conclusion: the fly ash and slag should be controlled strictly on rational proportion, which should not exceed 70% of the total mass. The mixing of the average radioactive level of the gangue is nearly equal that of to clay, it can be unrestricted in the mixing proportion in process of production. The manufacturer of new-type wall materials should often measure the radioactive level of the industrial waste residue in production. Make the content of radioactive nuclide in the products reach the rational level as low as possible. (authors)

  6. Development of new damping devices for piping

    International Nuclear Information System (INIS)

    Kobayashi, Hiroe

    1991-01-01

    An increase of the damping ratio is known to be very effective for the seismic design of a piping system. Increasing the damping ratio and reducing the seismic response of the piping system, the following three types of damping devices for piping systems are introduced: (1) visco-elastic damper, (2) elasto-plastic damper and (3) compact dynamic damper. The dynamic characteristics of these damping devices were investigated by the component test and the applicability of them to the piping system was confirmed by the vibration test using a three dimensional piping model. These damping devices are more effective than mechanical snubbers to reduce the vibration of the piping system. (author)

  7. Pipe inspection using the pipe crawler. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-05-01

    The US Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. In several of the buildings at the Fernald Site, there is piping that was used to transport process materials. As the demolition of these buildings occur, disposal of this piping has become a costly issue. Currently, all process piping is cut into ten-foot or less sections, the ends of the piping are wrapped and taped to prevent the release of any potential contaminants into the air, and the piping is placed in roll off boxes for eventual repackaging and shipment to the Nevada Test Site (NTS) for disposal. Alternatives that allow for the onsite disposal of process piping are greatly desired due to the potential for dramatic savings in current offsite disposal costs. No means is currently employed to allow for the adequate inspection of the interior of piping, and consequently, process piping has been assumed to be internally contaminated and thus routinely disposed of at NTS. The BTX-II system incorporates a high-resolution micro color camera with lightheads, cabling, a monitor, and a video recorder. The complete probe is capable of inspecting pipes with an internal diameter (ID) as small as 1.4 inches. By using readily interchangeable lightheads, the same system is capable of inspecting piping up to 24 inches in ID. The original development of the BTX system was for inspection of boiler tubes and small diameter pipes for build-up, pitting, and corrosion. However, the system is well suited for inspecting the interior of most types of piping and other small, confined areas. The report describes the technology, its performance, uses, cost, regulatory and policy issues, and lessons learned

  8. Pipe inspection using the pipe crawler. Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The US Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. In several of the buildings at the Fernald Site, there is piping that was used to transport process materials. As the demolition of these buildings occur, disposal of this piping has become a costly issue. Currently, all process piping is cut into ten-foot or less sections, the ends of the piping are wrapped and taped to prevent the release of any potential contaminants into the air, and the piping is placed in roll off boxes for eventual repackaging and shipment to the Nevada Test Site (NTS) for disposal. Alternatives that allow for the onsite disposal of process piping are greatly desired due to the potential for dramatic savings in current offsite disposal costs. No means is currently employed to allow for the adequate inspection of the interior of piping, and consequently, process piping has been assumed to be internally contaminated and thus routinely disposed of at NTS. The BTX-II system incorporates a high-resolution micro color camera with lightheads, cabling, a monitor, and a video recorder. The complete probe is capable of inspecting pipes with an internal diameter (ID) as small as 1.4 inches. By using readily interchangeable lightheads, the same system is capable of inspecting piping up to 24 inches in ID. The original development of the BTX system was for inspection of boiler tubes and small diameter pipes for build-up, pitting, and corrosion. However, the system is well suited for inspecting the interior of most types of piping and other small, confined areas. The report describes the technology, its performance, uses, cost, regulatory and policy issues, and lessons learned.

  9. Diffusion in flexible pipes

    Energy Technology Data Exchange (ETDEWEB)

    Brogaard Kristensen, S.

    2000-06-01

    This report describes the work done on modelling and simulation of the complex diffusion of gas through the wall of a flexible pipe. The diffusion and thus the pressure in annulus depends strongly on the diffusion and solubility parameters of the gas-polymer system and on the degree of blocking of the outer surface of the inner liner due to pressure reinforcements. The report evaluates the basis modelling required to describe the complex geometries and flow patterns. Qualitatively results of temperature and concentration profiles are shown in the report. For the program to serve any modelling purpose in 'real life' the results need to be validated and possibly the model needs corrections. Hopefully, a full-scale test of a flexible pipe will provide the required temperatures and pressures in annulus to validate the models. (EHS)

  10. Diffusion in flexible pipes

    Energy Technology Data Exchange (ETDEWEB)

    Brogaard Kristensen, S

    2000-06-01

    This report describes the work done on modelling and simulation of the complex diffusion of gas through the wall of a flexible pipe. The diffusion and thus the pressure in annulus depends strongly on the diffusion and solubility parameters of the gas-polymer system and on the degree of blocking of the outer surface of the inner liner due to pressure reinforcements. The report evaluates the basis modelling required to describe the complex geometries and flow patterns. Qualitatively results of temperature and concentration profiles are shown in the report. For the program to serve any modelling purpose in 'real life' the results need to be validated and possibly the model needs corrections. Hopefully, a full-scale test of a flexible pipe will provide the required temperatures and pressures in annulus to validate the models. (EHS)

  11. Using of Multiwall Carbon Nanotube Based Nanofluid in the Heat Pipe to Get Better Thermal Performance

    Directory of Open Access Journals (Sweden)

    Y. Bakhshan

    2014-09-01

    Full Text Available Thermal performance of a cylindrical heat pipe is investigated numerically. Three different types of water based nanofluids, namely, Al2O3 + Water, Diamond + Water, and Multi-Wall Carbon Nano tube (MWCNT + Water, have been used. The influence of using the simple nanofluids and MWCNT nanofluid on the heat pipe characteristics such as liquid velocity, pressure profile, temperature profile, thermal resistance, and heat transfer coefficient of heat pipe has been studied. A new correlation developed by Bakhshan and Saljooghi (2014 for viscosity of nanofluids has been implemented. The results show, a good agreement with the available analytical and experimental data. Also the results show, that the MWCNT based nanofluid has lower thermal resistance, higher heat transfer coefficient, and lower temperature difference between evaporator and condenser sections, so it has good thermal specifications as a working fluid for use in heat pipes. The prepared code has capability for parametric studies also.

  12. The impacts of cooling construction on the ability distract the heat of condensation part of the heat pipe

    Directory of Open Access Journals (Sweden)

    Gavlas S.

    2013-04-01

    Full Text Available Heat pipes as cooling devices have a high potential. Their power to affect a variety of factors – the vapour pressure, the amount of media work etc. Itis therefore necessary to verify the calculated parameters also practically. To determine the performance of transmitted heat pipe is the best calorimetric method. When it is out of the flow and the temperature difference the cooling part of the heat pipe determines its transmitted power. The contribution is focused on comparison of two types of coolers. The first type is looped capillary cooler for the condenser section. The small diameter capillary is secured high coolant turbulence and hence heat dissipation. The second type is non-contact cooling, where cooling fluid washes direct heat pipe wall.

  13. The influence of prefabricated pipe cement coatings and those made during pipe renovation on drinking water quality

    Directory of Open Access Journals (Sweden)

    Młyńska Anna

    2017-01-01

    Full Text Available Nowadays, cement coatings are often used as an anticorrosion protection of the internal surfaces of manufactured ductile iron water pipes. The protective cement linings are also commonly used for old water pipe renovation. In both cases, the cement lining is an excellent anticorrosion protection of the pipelines, effectively separating the pipe wall from the flowing water. Moreover, cement linings protect the pipelines not only by a mechanical barrier, but also by a chemical barrier creating a highly alkaline environment in water contact with the metal pipe wall. In addition, cement coatings have an ability for so-called self-regeneration and provide the improvement of hydraulic conditions inside the pipelines. In turn, the differences between the analysed cement coatings mainly depend on the types of cements used and techniques of cement mortar spraying. As was expected, they influence the quality of water having contact with the coating. A comparison of the impact of cement coatings manufactured in factories and sprayed on building sites during the renovation on drinking water quality parameters was performed in the study. The experiments were conducted in laboratory conditions, using the test stands prepared for this purpose. The results include analysis of selected water quality parameters for the samples contacting with cement mortar and collected during the investigation.

  14. Heat Pipes

    Science.gov (United States)

    1990-01-01

    Bobs Candies, Inc. produces some 24 million pounds of candy a year, much of it 'Christmas candy.' To meet Christmas demand, it must produce year-round. Thousands of cases of candy must be stored a good part of the year in two huge warehouses. The candy is very sensitive to temperature. The warehouses must be maintained at temperatures of 78-80 degrees Fahrenheit with relative humidities of 38- 42 percent. Such precise climate control of enormous buildings can be very expensive. In 1985, energy costs for the single warehouse ran to more than 57,000 for the year. NASA and the Florida Solar Energy Center (FSEC) were adapting heat pipe technology to control humidity in building environments. The heat pipes handle the jobs of precooling and reheating without using energy. The company contacted a FSEC systems engineer and from that contact eventually emerged a cooperative test project to install a heat pipe system at Bobs' warehouses, operate it for a period of time to determine accurately the cost benefits, and gather data applicable to development of future heat pipe systems. Installation was completed in mid-1987 and data collection is still in progress. In 1989, total energy cost for two warehouses, with the heat pipes complementing the air conditioning system was 28,706, and that figures out to a cost reduction.

  15. Temperature control with high performance gravity-assist heat pipes

    International Nuclear Information System (INIS)

    Kemme, J.E.; Deverall, J.E.; Keddy, E.S.; Phillips, J.R.; Ranken, W.A.

    1975-01-01

    The development of high performance heat pipes for controlling the temperature of irradiation experiments in the Experimental Breeder Reactor (EBR-II) is described. Because this application involves vertical operation in a gravity-assist mode with the evaporator down, several tests were made with sodium and potassium heat pipes in this position to establish their performance limits as a function of operating temperature. Best performance was achieved with a new wick structure consisting of a fine porous liner next to the heat-pipe wall and four helical channels next to the vapor passage. Also, a new modification of heat-pipe theory was discovered for determining performance limits for this type of wick. In its most rudimentary form, this modification says that the dynamic pressure gradient in the vapor stream cannot exceed the gravity gradient causing return of liquid. Once this modification was expressed in the form of a limiting equation, and a term was added to account for the slight capillary force developed in the channels, good agreement was obtained between calculated limits and those measured in several tests with both sodium and potassium. These tests showed rather conclusively that only half of the liquid head in the evaporator section was causing return of condensate, whereas existing theory predicts that the full head of liquid in the heat pipe is available for condensate return. (U.S.)

  16. Gas lensing in a heated spinning pipe

    CSIR Research Space (South Africa)

    Mafusire, C

    2006-07-01

    Full Text Available ; and (II) the aberrations introduced to the laser are a function of the distance from the edge of the pipe, as well as the speed of the pipe spin- ning. This is because of the turbulence near the pipe wall. The speed of the pipe will be used...- merically. This work forms the basis for an extended study of the dynamics of beam propa- gation through turbulent systems, and in particular, the following aspects will be explored in future work: (I) Using the recent advances in lasers beam propagation...

  17. Subprogram Calculating The Distance Between Pipe And Plane For Automatic Piping System Design

    International Nuclear Information System (INIS)

    Satmoko, Ari

    2001-01-01

    DISTLNPL subprogram was created using Auto LISP software. This subprogram is planned to complete CAPD (Computer Aided Piping Design) software being developed. The CAPD works under the following method: suggesting piping system line and evaluating whether any obstacle allows the proposed line to be constructed. DISTLNPL is able to compute the distance between pipe and any equipment having plane dimension such as wall, platform, floors, and so on. The pipe is modeled by using a line representing its axis, and the equipment is modeled using a plane limited by some lines. The obtained distance between line and plane gives information whether the pipe crosses the equipment. In the case of crashing, the subprogram will suggest an alternative point to be passed by piping system. So far, DISTLNPL has not been able to be accessed by CAPD yet. However, this subprogram promises good prospect in modeling wall, platform, and floors

  18. Using an equation based on flow stress to estimate structural integrity of annealed Type 304 stainless steel plate and pipes containing surface defects

    International Nuclear Information System (INIS)

    Reuter, W.G.; Place, T.A.

    1981-01-01

    An accurate assessment of the influence of defects on structural component integrity is needed. Generally accepted analytical techniques are not available for the very ductile materials used in many nuclear reactor components. Some results are presented from a test programme to obtain data by which to evaluate proposed models. Plate and pipe specimens containing surface flaws were fabricated from annealed Type 304 stainless steel and tested at room temperature. An evaluation of an empirical equation based on flow stress is presented. In essentially all instances the flow stress is not a constant but varies as a function of the size of the surface flaw. (author)

  19. Investigation of cascade-typed falling liquid film flow along first wall of laser-fusion reactor

    International Nuclear Information System (INIS)

    Kunugi, Tomoaki; Nakai, Tadakatsu; Kawara, Zensaku

    2007-01-01

    To protect from high energy/particle fluxes caused by nuclear fusion reaction such as extremely high heat flux, X rays, Alpha particles and fuel debris to a first wall of an inertia fusion reactor, a ''cascade-typed'' falling liquid film flow is proposed as the ''liquid wall'' concept which is one of the reactor chamber cooling and wall protection schemes: the reactor chamber can protect by using a liquid metal film flow (such as Li 17 Pb 83 ) over the wall. In order to investigate the feasibility of this concept, we conducted the numerical analyses by using the commercial code (STREAM: unsteady three-dimensional general purpose thermofluid code) and also conducted the flow visualization experiments. The numerical results suggested that the cascade structure design should be improved, so that we redesigned the cascade-typed first wall and performed the flow visualization as a POP (proof-of-principle) experiment. In the numerical analyses, the water is used as the working liquid and an acrylic plate as the wall. These selections are based on two reasons: (1) from the non-dimensional analysis approach, the Weber number (We=ru 2 d/s: r is density, u is velocity, d is film thickness, s is surface tension coefficient) should be the same between the design (Li 17 Pb 83 flow) and the model experiment (water flow) because of the free-surface instability, (2) the SiC/SiC composite would be used as the wall material, so that the wall may have the less wettability: the acrylic plate has the similar feature. The redesigned cascade-typed first wall for one step (30 cm height corresponding to 4 Hz laser duration) consists of a liquid tank having a free-surface for keeping the constant waterhead located at the backside of the first wall, and connects to a slit which is composed of two plates: one plate is the first wall, and the other is maintaining the liquid level. This design solved the trouble of the previous design. The test section for the flow visualization has the same

  20. N-type doping effect of single-walled carbon nanotubes with aromatic amines

    Energy Technology Data Exchange (ETDEWEB)

    Koizhaiganova, Raushan B.; Hwang, Doo Hee; Lee, Cheol Jin; Dettlaff-Weglikowska, Urszula [School of Electrical Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Roth, Siegmar [School of Electrical Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Sineurop Nanotech GmbH, Nobelstreet15, 70569 Stuttgart (Germany)

    2010-12-15

    We investigated the chemical doping of the single-walled carbon nanotubes (SWCNTs) networks by a treatment with aromatic amines. Adsorption and intercalation of amine molecules in bundled SWCNTs leads to typical n-type doping observed already for alkali metals. The electron donation to SWCNTs is demonstrated by the X-ray-induced photoelectron spectra (XPS), where the carbon C 1s peak observed at 284.4 eV for the sp{sup 2} carbon in pristine samples is shifted by up to 0.3 eV to higher binding energy upon chemical treatment. The development of a Breit-Wigner-Fano component on the lower energy side of the G{sup -} mode in the Raman spectrum as well as a shift of the G{sup +} to lower frequency provide evidence for charge accumulation in the nanotube {pi} system, and indication for the n-type doping. The spectroscopic changes are accompanied by the modification of the electrical properties of the SWCNTs. A reduction of conductivity depends on the doping level and implies the decreasing concentration of the charge carriers in the naturally p-doped tubes. Comparing the two selected n-type dopants, the tetramethyl-p-phenylenediamine, shows more pronounced changes in the XPS and the Raman spectra than tetramethylpyrazine, indicating that the sp{sup 3} hybridization of nitrogen in the amine groups attached to phenyl ring is much more effective in interaction with the tube {pi} system than the sp{sup 2} hybridization of nitrogen in the aromatic pyrazine ring. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Role of 17 beta-estradiol on type IV collagen fibers volumetric density in the basement membrane of bladder wall.

    Science.gov (United States)

    de Fraga, Rogerio; Dambros, Miriam; Miyaoka, Ricardo; Riccetto, Cássio Luís Zanettini; Palma, Paulo César Rodrigues

    2007-10-01

    The authors quantified the type IV collagen fibers volumetric density in the basement membrane of bladder wall of ovariectomized rats with and without estradiol replacement. This study was conducted on 40 Wistar rats (3 months old) randomly divided in 4 groups: group 1, remained intact (control); group 2, submitted to bilateral oophorectomy and daily replacement 4 weeks later of 17 beta-estradiol for 12 weeks; group 3, sham operated and daily replacement 4 weeks later of sesame oil for 12 weeks; and group 4, submitted to bilateral oophorectomy and killed after 12 weeks. It was used in immunohistochemistry evaluation using type IV collagen polyclonal antibody to stain the fibers on paraffin rat bladder sections. The M-42 stereological grid system was used to analyze the fibers. Ovariectomy had an increase effect on the volumetric density of the type IV collagen fibers in the basement membrane of rat bladder wall. Estradiol replacement in castrated animals demonstrated a significative difference in the stereological parameters when compared to the castrated group without hormonal replacement. Surgical castration performed on rats induced an increasing volumetric density of type IV collagen fibers in the basement membrane of rats bladder wall and the estradiol treatment had a significant effect in keeping a low volumetric density of type IV collagen fibers in the basement membrane of rats bladder wall.

  2. Welding simulation of large-diameter thick-walled stainless steel pipe joints. Fast computation of residual stress and influence of heat source model

    International Nuclear Information System (INIS)

    Maekawa, Akira; Serizawa, Hisashi; Nakacho, Keiji; Murakawa, Hidekazu

    2011-01-01

    There are many weld zones in the apparatus and piping installed in nuclear power plants and residual stress generated in the zone by weld process is the most important influence factor for maintaining structural integrity. Though the weld residual stress is frequently evaluated using numerical simulation, fast simulation techniques have been demanded because of the enormous calculation times used. Recently, the fast weld residual stress evaluation based on three-dimensional accurate analysis became available through development of the Iterative Substructure Method (ISM). In this study, the computational performance of the welding simulation code using the ISM was improved to get faster computations and more accurate welding simulation. By adding functions such as parallel processing, the computation speed was much faster than that of the conventional finite element method code. Furthermore, the accuracy of the improved code was validated by measurements. The influence of two different weld heat source models on the simulation results was also investigated and it was found that the moving heat source was effective to achieve accurate weld simulation for multi-pass welds. (author)

  3. A theoretical study of the fundamental torsional wave in buried pipes for pipeline condition assessment and monitoring

    Science.gov (United States)

    Muggleton, J. M.; Kalkowski, M.; Gao, Y.; Rustighi, E.

    2016-07-01

    Waves that propagate at low frequencies in buried pipes are of considerable interest in a variety of practical scenarios, for example leak detection, remote pipe detection, and pipeline condition assessment and monitoring. Whilst there has been considerable research and commercial attention on the accurate location of pipe leakage for many years, the various causes of pipe failures and their identification, have not been well documented; moreover, there are still a number of gaps in the existing knowledge. Previous work has focused on two of the three axisymmetric wavetypes that can propagate: the s=1, fluid-dominated wave; and the s=2, shell-dominated wave. In this paper, the third axisymmetric wavetype, the s=0 torsional wave, is investigated. The effects of the surrounding soil on the characteristics of wave propagation and attenuation are analysed for a compact pipe/soil interface for which there is no relative motion between the pipe wall and the surrounding soil. An analytical dispersion relationship is derived for the torsional wavenumber from which both the wavespeed and wave attenuation can be obtained. How torsional waves can subsequently radiate to the ground surface is then investigated. Analytical expressions are derived for the ground surface displacement above the pipe resulting from torsional wave motion within the pipe wall. A numerical model is also included, primarily in order to validate some of the assumptions made whilst developing the analytical solutions, but also so that some comparison in the results may be made. Example results are presented for both a cast iron pipe and an MDPE pipe buried in two typical soil types.

  4. Modeling of residual stress mitigation in austenitic stainless steel pipe girth weldment

    International Nuclear Information System (INIS)

    Li, M.; Atteridge, D.G.; Anderson, W.E.; West, S.L.

    1994-01-01

    This study provides numerical procedures to model 40-cm-diameter, schedule 40, Type 304L stainless steel pipe girth welding and a newly proposed post-weld treatment. The treatment can be used to accomplish the goal of imparting compressive residual stresses at the inner surface of a pipe girth weldment to prevent/retard the intergranular stress corrosion cracking (IGSCC) of the piping system in nuclear reactors. This new post-weld treatment for mitigating residual stresses is cooling stress improvement (CSI). The concept of CSI is to establish and maintain a certain temperature gradient across the pipe wall thickness to change the final stress state. Thus, this process involves sub-zero low temperature cooling of the inner pipe surface of a completed girth weldment, while simultaneously keeping the outer pipe surface at a slightly elevated temperature with the help of a certain heating method. Analyses to obtain quantitative results on pipe girth welding and CSI by using a thermo-elastic-plastic finite element model are described in this paper. Results demonstrate the potential effectiveness of CSI for introducing compressive residual stresses to prevent/retard IGSCC. Because of the symmetric nature of CSI, it shows great potential for industrial application

  5. ANSPipe: An IBM-PC interactive code for pipe-break assessment

    International Nuclear Information System (INIS)

    Fullwood, R.R.; Harrington, M.

    1988-01-01

    The advanced neutron source (ANS) being designed at Oak Ridge National Laboratory will be the world's highest flux neutron source and best facility for associated basic and applied research. The ANSPipe code was written as an aid for the piping configuration and material selection to enhance safety and availability. The primary calculation is based on the Thomas mode. which models pipe leak or break probabilities as proportional to the length of the segment and diameter and the inverse square of the wall thickness. This scaling, based on experience, is adjusted for radiation effects, using the Regulatory Guide 1.99 model, and for cyclic fatigue, stress corrosion, and inspection, using adaptations form the PRAISE-B code. The key to an ANSPipe analysis is the definition of the pipe segments. A pipe segment is defined as a length of pipe in which all the parameters affecting the pipe are constant or reasonably so. Thus, a segment would be a length of pipe of constant diameter, thickness, material type, internal pressure, flux distribution, stress, and submergence or nonsubmergence

  6. [Relationship of the quality of drinking water to its use regimens and the types of water supply pipes].

    Science.gov (United States)

    Mysiakin, A E; Korolik, V V

    2010-01-01

    Drinking water running along the pipes made from different materials was investigated. Two experiments could determine the material that assured at least of all the quality of drinking water in accordance with SanPin 2.1.4.1074-01. The mechanism for worsening the quality of water supplied to a user was revealed in relation to the water use regimen. Short-term flow stoppage of water was found to result in its lower oxygen levels, a larger number of different groups of iron- and manganese-reducing bacteria and an enhanced bacterial reduction of oxides. The latter was accompanied by the dissolution of heavy metals, which induced secondary water contamination.

  7. Pipe crawler with extendable legs

    International Nuclear Information System (INIS)

    Zollinger, W.T.

    1992-01-01

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long as a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler. 8 figs

  8. Pipe crawler with extendable legs

    Science.gov (United States)

    Zollinger, W.T.

    1992-06-16

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long as a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler. 8 figs.

  9. Acoustic Signal Processing for Pipe Condition Assessment (WaterRF Report 4360)

    Science.gov (United States)

    Unique to prestressed concrete cylinder pipe (PCCP), individual wire breaks create an excitation in the pipe wall that may vary in response to the remaining compression of the pipe core. This project was designed to improve acoustic signal processing for pipe condition assessment...

  10. Casing of preinsulated district heating pipes. Functional Requirements. Scientific report

    Energy Technology Data Exchange (ETDEWEB)

    Bryder, K.L.; Feld, T.; Randloev, P.; Vestergaard, J.B.; Noergaard Pedersen, H.; Palle, S.; Amby, L.

    1996-10-01

    Requirements for the wall thickness of the casing pipes in Europe were formulated to clarify the laying conditions, representative for the European district heating areas. We achieved a broad estimate by defining four scenarios for the laying of district heating pipes. It is common to the four scenarios that that all bends, branches etc. are always laid in sand. The four scenarios are differentiated by soil types. The soil types include: Uniform sand, Well graded gravel, Sand with fines and Sand with crushed stone. In the following analysis it was possible to examine the influence from following parameters: Casing thickness; Diameter of steel pipe; Diameter of casing; Material properties (PUR and PE); Soil type. The results from the model showed that uniform sand is the absolute best soil type. Based on the results from and earlier project a laboratory method has been developed. The result was a test method based on the indentation of three mandrels with a diameter of {phi}30 mm with a taper with an angle of 45 deg. and with roundings on the apex of R5 mm, R10 mm and R15 mm, respectively. The mandrels simulate stones. The examinations among other things showed that even a 1.5 mm casing demands an indentation of 20 mm with a R5 mm mandrel before it is perforated. The demanded force is 1.6 kN, which is considerably higher than the theoretically highest force in an actual situation. On this background it is recommended that the minimum requirement for the wall thickness of the casings with diameters less than 200 mm should still follow the EN 253, whereas the minimum requirement for the larger casing pipes securely can be reduced. Based on the tests and an evaluation of the safety factors it is proposed that the wall thickness for the largest pipes can be reduced 50%. Thus the wall thickness of an 800 mm casing should be 6.6 mm with a linear reduction down to 3 mm for 180 mm casing. (EG)

  11. Casing of preinsulated district heating pipes. Functional Requirements. Enclosures

    Energy Technology Data Exchange (ETDEWEB)

    Bryder, K.L.; Feld, T.; Randloev, P.; Vestergaard, J.B.; Noergaard Pedersen, H.; Palle, S.; Amby, L.

    1996-10-01

    Requirements for the wall thickness of the casing pipes in Europe were formulated. In order to clarify the laying conditions, representative for the European district heating areas. It was possible to achieve a sufficiently broad estimate by defining four scenarios for the laying of district heating pipes. It is common to the four scenarios that that all bends, branches etc. are always laid in sand. The four scenarios are differentiated by soil types. The soil types include: Uniform sand, Well graded gravel, Sand with fines and Sand with crushed stone. In the following analysis it was possible to examine the influence from following parameters: Casing thickness; Diameter of steel pipe; Diameter of casing; Material properties (PUR and PE); Soil type. The results from the model showed that uniform sand is the absolute best soil type. Based on the results from and earlier project a laboratory method has been developed. The result was a test method based on the indentation of three mandrels with a diameter of {phi}30 mm with a taper with an angle of 45 deg. and with roundings on the apex of R5 mm, R10 mm and R15 mm, respectively. The mandrels simulate stones. The examinations among other things showed that even a 1.5 mm casing demands an indentation of 20 mm with a R5 mm mandrel before it is perforated. The demanded force is 1.6 kN, which is considerably higher than the theoretically highest force in an actual situation. On this background it is recommended that the minimum requirement for the wall thickness of the casings with diameters less than 200 mm should still follow the EN 253, whereas the minimum requirement for the larger casing pipes securely can be reduced. Based on the tests and an evaluation of the safety factors it is proposed that the wall thickness for the largest pipes can be reduced 50%. Thus the wall thickness of an 800 mm casing should be 6.6 mm with a linear reduction down to 3 mm for 180 mm casing. (EG)

  12. Thermostructural applications of heat pipes for cooling leading edges of high-speed aerospace vehicles

    Science.gov (United States)

    Camarda, Charles J.; Glass, David E.

    1992-01-01

    Heat pipes have been considered for use on wing leading edge for over 20 years. Early concepts envisioned metal heat pipes cooling a metallic leading edge. Several superalloy/sodium heat pipes were fabricated and successfully tested for wing leading edge cooling. Results of radiant heat and aerothermal testing indicate the feasibility of using heat pipes to cool the stagnation region of shuttle-type space transportation systems. The test model withstood a total seven radiant heating tests, eight aerothermal tests, and twenty-seven supplemental radiant heating tests. Cold-wall heating rates ranged from 21 to 57 Btu/sq ft-s and maximum operating temperatures ranged from 1090 to 1520 F. Follow-on studies investigated the application of heat pipes to cool the stagnation regions of single-stage-to-orbit and advanced shuttle vehicles. Results of those studies indicate that a 'D-shaped' structural design can reduce the mass of the heat-pipe concept by over 44 percent compared to a circular heat-pipe geometry. Simple analytical models for heat-pipe startup from the frozen state (working fluid initially frozen) were adequate to approximate transient, startup, and steady-state heat-pipe performance. Improvement in analysis methods has resulted in the development of a finite-element analysis technique to predict heat-pipe startup from the frozen state. However, current requirements of light-weight design and reliability suggest that metallic heat pipes embedded in a refractory composite material should be used. This concept is the concept presently being evaluated for NASP. A refractory-composite/heat-pipe-cooled wing leading edge is currently being considered for the National Aero-Space Plane (NASP). This concept uses high-temperature refractory-metal/lithium heat pipes embedded within a refractory-composite structure and is significantly lighter than an actively cooled wing leading edge because it eliminates the need for active cooling during ascent and descent. Since the

  13. Relationship between Pipeline Wall Thickness (Gr. X60) and Water Depth towards Avoiding Failure during Installation

    Science.gov (United States)

    Razak, K. Abdul; Othman, M. I. H.; Mat Yusuf, S.; Fuad, M. F. I. Ahmad; yahaya, Effah

    2018-05-01

    Oil and gas today being developed at different water depth characterized as shallow, deep and ultra-deep waters. Among the major components involved during the offshore installation is pipelines. Pipelines are a transportation method of material through a pipe. In oil and gas industry, pipeline come from a bunch of line pipe that welded together to become a long pipeline and can be divided into two which is gas pipeline and oil pipeline. In order to perform pipeline installation, we need pipe laying barge or pipe laying vessel. However, pipe laying vessel can be divided into two types: S-lay vessel and J-lay vessel. The function of pipe lay vessel is not only to perform pipeline installation. It also performed installation of umbilical or electrical cables. In the simple words, pipe lay vessel is performing the installation of subsea in all the connecting infrastructures. Besides that, the installation processes of pipelines require special focus to make the installation succeed. For instance, the heavy pipelines may exceed the lay vessel’s tension capacities in certain kind of water depth. Pipeline have their own characteristic and we can group it or differentiate it by certain parameters such as grade of material, type of material, size of diameter, size of wall thickness and the strength. For instances, wall thickness parameter studies indicate that if use the higher steel grade of the pipelines will have a significant contribution in pipeline wall thickness reduction. When running the process of pipe lay, water depth is the most critical thing that we need to monitor and concern about because of course we cannot control the water depth but we can control the characteristic of the pipe like apply line pipe that have wall thickness suitable with current water depth in order to avoid failure during the installation. This research will analyse whether the pipeline parameter meet the requirements limit and minimum yield stress. It will overlook to simulate pipe

  14. Evaporation and condensation heat transfer in a suppression chamber of the water wall type passive containment cooling system

    International Nuclear Information System (INIS)

    Fujii, Tadashi; Kataoka, Yoshiyuki; Murase, Michio

    1996-01-01

    To evaluate the system pressure response of a water wall type containment cooling system, which is one of the passive safety systems, the evaporation and condensation behaviors in a suppression chamber have been experimentally examined. In the system, the suppression pool water evaporates from the pool surface, passing into the wetwell due to pool temperature rise, while steam in the wetwell condenses on the steel containment vessel wall due to the heat release through the wall. The wetwell is a gas phase region in the suppression chamber and its pressure, which is expressed as the sum of the noncondensable gas pressure and saturated steam pressure, is strongly affected by the evaporation heat transfer from the suppression pool surface and condensation heat transfer on the containment vessel wall. Based on the measured temperature profiles near the heat transfer surface and the wetwell pressure using two apparatuses, evaporation and condensation heat transfer coefficients were evaluated. The following results were obtained. (1) Both heat transfer coefficients increased as the ratio of the steam partial pressure to the total pressure increased. (2) Comparison of the results from two types of test apparatuses confirmed that the size of the heat transfer surface did not affect the heat transfer characteristics within these tests. (3) The heat transfer coefficients were expressed by the ratio of the steam to noncondensable gas logarithmic mean concentration, which considered the steam and gas concentration gradient from the heat transfer surface to the wetwell bulk. (author)

  15. Application of miniature heat pipe for notebook PC cooling

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S.H.; Hwang, G.; Choy, T.G. [Electronics and Telecommunications research Institute, Taejeon (Korea)

    2001-06-01

    Miniature heat pipe(MHP) with woven-wired wick was used to cool the CPU of a notebook PC. The pipe with circular cross-section was pressed and bent for packaging the MHP into a notebook PC with very limited compact packaging space. A cross-sectional area of the pipe is reduced about 30% as the MHP with 4 mm diameter is pressed to 2 mm thickness. In the present study a performance test has been performed in order to review varying of operating performance according to pressed thickness variation and heat dissipation capacity of MHP cooling module that is packaged on a notebook PC. New wick type was considered for overcoming low heat transfer limit when MHP is pressed to thin-plate. The limiting thickness of pressing is shown to be within the range of 2 mm {approx} 2.5 mm through the performance test with varying the pressing thickness. When the wall thickness of 0.4 mm is reduced to 0.25 mm for minimizing conductive thermal resistance through the wall of heat pipe, heat transfer limit and thermal resistance of MHP were improved about 10%. In the meantime, it is shown that the thermal resistance and heat transfer limit for the MHP with central wick type are higher than those of MHP with existing wick types. The results of performance test for MHP cooling modules with woven-wired wick to cool notebook PC shows the stability as cooling system since T{sub j}(Temperature of Processor Junction) satisfy a demand condition of 0 {approx} 100 deg.C under 11.5 W of CPU heat. (author). 6 refs., 7 figs.

  16. Development of Wall-Thinning Evaluation Procedure for Nuclear Power Plant Piping—Part 1: Quantification of Thickness Measurement Deviation

    Directory of Open Access Journals (Sweden)

    Hun Yun

    2016-06-01

    Full Text Available Pipe wall thinning by flow-accelerated corrosion and various types of erosion is a significant and costly damage phenomenon in secondary piping systems of nuclear power plants (NPPs. Most NPPs have management programs to ensure pipe integrity due to wall thinning that includes periodic measurements for pipe wall thicknesses using nondestructive evaluation techniques. Numerous measurements using ultrasonic tests (UTs; one of the nondestructive evaluation technologies have been performed during scheduled outages in NPPs. Using the thickness measurement data, wall thinning rates of each component are determined conservatively according to several evaluation methods developed by the United States Electric Power Research Institute. However, little is known about the conservativeness or reliability of the evaluation methods because of a lack of understanding of the measurement error. In this study, quantitative models for UT thickness measurement deviations of nuclear pipes and fittings were developed as the first step for establishing an optimized thinning evaluation procedure considering measurement error. In order to understand the characteristics of UT thickness measurement errors of nuclear pipes and fittings, round robin test results, which were obtained by previous researchers under laboratory conditions, were analyzed. Then, based on a large dataset of actual plant data from four NPPs, a quantitative model for UT thickness measurement deviation is proposed for plant conditions.

  17. Secondary pipe rupture at Mihama unit 3

    International Nuclear Information System (INIS)

    Hajime Ito; Takehiko Sera

    2005-01-01

    The secondary system pipe rupture occurred on August 9, 2004, while Mihama unit 3 was operating at the rated thermal power. The rupture took place on the condensate line-A piping between the No.4 LP heater and the deaerator, downstream of an orifice used for measuring the condensate flux. The pipe is made of carbon steel, and normally has 558.8 mm diameter and 10 mm thickness. The pipe wall had thinned to 0.4 mm at the point of minimum thickness. It is estimated that the disturbed flow of water downstream of the orifice caused erosion/corrosion and developed wall thinning, leading to a rupture at the thinnest section under internal pressure, about 1MPa. Observation of the pipe internal surface revealed a scale-like pattern typical in this kind of phenomenon. Eleven workers who were preparing for an annual outage that was to start from August 14 suffered burn injuries, of who five died. Since around 1975, we, Kansai Electric, have been checking pipe wall thickness while focusing on the thinning of carbon steel piping in the secondary system. Summarizing the results from such investigation and reviewing the latest technical knowledge including operating experience from overseas utilities, we compiled the pipe thickness management guideline for PWR secondary pipes, 1990. The pipe section that ruptured at the Mihama unit 3 should have been included within the inspection scopes according to the guideline but was not registered on the inspection list. It had not been corrected for almost thirty years. As the result, this pipe section had not been inspected even once since the beginning of the plant operation, 1976. It seems that the quality assurance and maintenance management had not functioned well regarding the secondary system piping management, although we were responsible for the safety of nuclear power plants as licensee. We will review the secondary system inspection procedure and also improve the pipe thickness management guideline. And also, we would replace

  18. Ductile fracture of circumferentially cracked pipes subjected to bending loads

    International Nuclear Information System (INIS)

    Zahoor, A.; Kanninen, M.F.

    1981-01-01

    A plastic fracture mechanics methodology is presented for part-through cracks in pipes under bending. A previous analysis result on the behavior of part-through cracks in pipes is reviewed. Example quantitative results for the initiation and instability of radial growth of part-through cracks are presented and compared with the experimental data to demonstrate the applicability of the method. The analyses in our previous work are further developed to include the instability of circumferential growth of part-through cracks. Numerical results are then presented for a compliant piping system, under displacement controlled bending, which focus on (1) instability of radial growth (unstable wall breakthrough) and (2) instability of circumferential growth of the resulting throughthe-thickness crack. The combined results of the above two types of analyses are presented on a safety assessment diagram. This diagram defines a curve of critical combination of length and depth of part-through cracks which delineates leak from fracture. The effect of piping compliance on the leak-before-break assessment is discussed

  19. Ductile fracture of circumferentially cracked pipes subjected to bending loads

    Energy Technology Data Exchange (ETDEWEB)

    Zahoor, A.; Kanninen, M.F.

    1981-10-01

    A plastic fracture mechanics methodology is presented for part-through cracks in pipes under bending. A previous analysis result on the behavior of part-through cracks in pipes is reviewed. Example quantitative results for the initiation and instability of radial growth of part-through cracks are presented and compared with the experimental data to demonstrate the applicability of the method. The analyses in our previous work are further developed to include the instability of circumferential growth of part-through cracks. Numerical results are then presented for a compliant piping system, under displacement controlled bending, which focus on (1) instability of radial growth (unstable wall breakthrough) and (2) instability of circumferential growth of the resulting throughthe-thickness crack. The combined results of the above two types of analyses are presented on a safety assessment diagram. This diagram defines a curve of critical combination of length and depth of part-through cracks which delineates leak from fracture. The effect of piping compliance on the leak-before-break assessment is discussed.

  20. Reduction of heat losses on the skid pipe system of a pusher type furnace; Verringerung der Waermeverluste am Tragrohrsystem eines Stossofens

    Energy Technology Data Exchange (ETDEWEB)

    Hoffelner, Mario; Winter, Franz [voestalpine Grobblech GmbH, Linz (Austria); Springer, Michael; Huegel, Frank [FBB Engineering GmbH, Moenchengladbach (Germany); Buhr, Andreas [Almatis GmbH, Frankfurt (Germany); Kockegey-Lorenz, Rainer [Almatis GmbH, Ludwigshafen (Germany)

    2013-06-15

    This paper discusses how energy consumption and energy loss can be reduced in reheating furnaces of hot rolling mills by new lightweight refractory materials and a new modular lining concept for the skid pipe insulation using pre-fabricated shells. The target is to optimise the hot rolling process from an energy point of view, and to reduce the operational cost of the furnaces. The new lightweight pre-fabricated shells based on the microporous castable and a thermotechnical optimised sandwich design can significantly reduce the heat losses compared to dense castable. Industrial application of the new system in a 110 t/h pusher type furnace at voestalpine Grobblech GmbH in Linz, Austria, resulted in reduction of heat loss about 30 %. The annualised energy saving gives a cost reduction of more than Euro 200,000 a year. Costs for the complete new lining about Euro 170,000 result in a payback period of less than one year. (orig.)

  1. Heat pipes

    CERN Document Server

    Dunn, Peter D

    1982-01-01

    A comprehensive, up-to-date coverage of the theory, design and manufacture of heat pipes and their applications. This latest edition has been thoroughly revised, up-dated and expanded to give an in-depth coverage of the new developments in the field. Significant new material has been added to all the chapters and the applications section has been totally rewritten to ensure that topical and important applications are appropriately emphasised. The bibliography has been considerably enlarged to incorporate much valuable new information. Thus readers of the previous edition, which has established

  2. Dual manifold heat pipe evaporator

    Science.gov (United States)

    Adkins, D.R.; Rawlinson, K.S.

    1994-01-04

    An improved evaporator section is described for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes. 1 figure.

  3. Comparison of ICEPEL predictions with single elbow flexible piping system experiment

    International Nuclear Information System (INIS)

    A-Moneim, M.T.; Chang, Y.W.

    1978-01-01

    The ICEPEL Code for coupled hydrodynamic-structural response analysis of piping systems is used to analyze an experiment on the response of flexible piping systems to internal pressure pulses. The piping system consisted of two flexible Nickel-200 pipes connected in series through a 90 0 thick-walled stainless steel elbow. A tailored pressure pulse generated by a calibrated pulse gun is stabilized in a long thick-walled stainless steel pipe leading to the flexible piping system which ended with a heavy blind flange. The analytical results of pressure and circumferential strain histories are discussed and compared against the experimental data obtained by Stanford Research Institute

  4. The Second International Piping Integrity Research Group (IPIRG-2) program. Final report, October 1991--April 1996

    International Nuclear Information System (INIS)

    Hopper, A.; Wilowski, G.; Scott, P.; Olson, R.

    1997-03-01

    The IPIRG-2 program was an international group program managed by the US NRC and funded by organizations from 15 nations. The emphasis of the IPIRG-2 program was the development of data to verify fracture analyses for cracked pipes and fittings subjected to dynamic/cyclic load histories typical of seismic events. The scope included: (1) the study of more complex dynamic/cyclic load histories, i.e., multi-frequency, variable amplitude, simulated seismic excitations, than those considered in the IPIRG-1 program, (2) crack sizes more typical of those considered in Leak-Before-Break (LBB) and in-service flaw evaluations, (3) through-wall-cracked pipe experiments which can be used to validate LBB-type fracture analyses, (4) cracks in and around pipe fittings, such as elbows, and (5) laboratory specimen and separate effect pipe experiments to provide better insight into the effects of dynamic and cyclic load histories. Also undertaken were an uncertainty analysis to identify the issues most important for LBB or in-service flaw evaluations, updating computer codes and databases, the development and conduct of a series of round-robin analyses, and analyst's group meetings to provide a forum for nuclear piping experts from around the world to exchange information on the subject of pipe fracture technology. 17 refs., 104 figs., 41 tabs

  5. Analytical solution for stress, strain and plastic instability of pressurized pipes with volumetric flaws

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Sergio B., E-mail: sbcunha@petrobras.com.br [PETROBRAS/TRANSPETRO, Av. Pres. Vargas 328 - 7th floor, Rio de Janeiro, RJ 20091-060 (Brazil); Netto, Theodoro A., E-mail: tanetto@lts.coppe.ufrj.br [COPPE, Federal University ot Rio de Janeiro, Ocean Engineering Department, PO BOX 68508, Rio de Janeiro - RJ (Brazil)

    2012-01-15

    The mechanical behavior of internally pressurized pipes with volumetric flaws is analyzed. The two possible modes of circumferentially straining the pipe wall are identified and associated to hypothesized geometries. The radial deformation that takes place by bending the pipe wall is studied by means of axisymmetric flaws and the membrane strain developed by unequal hoop deformation is analyzed with the help of narrow axial flaws. Linear elastic shell solutions for stress and strain are developed, the plastic behavior is studied and the maximum hoop stress at the flaw is related to the undamaged pipe hoop stress by means of stress concentration factors. The stress concentration factors are employed to obtain equations predicting the pressure at which the pipe fails by plastic instability for both types of flaw. These analytical solutions are validated by comparison with burst tests on 3 Double-Prime diameter pipes and finite element simulations. Forty-one burst tests were carried out and two materials with very dissimilar plastic behavior, carbon steel and austenitic stainless steel, were used in the experiments. Both the analytical and the numerical predictions showed good correlation with the experimentally observed burst pressures. - Highlights: Black-Right-Pointing-Pointer An analytical model for the burst of a pipe with a volumetric flaw is developed. Black-Right-Pointing-Pointer Deformation, strain and stress are modeled in the elastic and plastic domains. Black-Right-Pointing-Pointer The model is comprehensively validated by experiments and numerical simulations. Black-Right-Pointing-Pointer The burst pressure model's accuracy is equivalent to finite element simulations.

  6. Contributions of Modranska potrubni a.s. to the safety improvement of piping systems and valves of NPS type VVER 440 and VVER 1000

    International Nuclear Information System (INIS)

    Slach, J.

    2004-01-01

    The following activities are described: (i) Installation of pipe whip restraints on piping for high pressure and temperature steam and feed piping; (ii) Installation of air receivers for quick-acting valves with air actuator on VVER 440 units at the Jaslovske Bohunice V2 NPP; (iii) Replacement of the technical water distribution system material in the reactor hall of the Temelin VVER 1000 units; Installation of measuring nozzles on main steam piping DN 600 at the Temelin VVER 1000 units. (P.A.)

  7. Radiation shielding method for pipes, etc

    International Nuclear Information System (INIS)

    Nagao, Tetsuya; Takahashi, Shuichi.

    1988-01-01

    Purpose: To constitute shielding walls of a dense structure around pipes and enable to reduce the wall thickness thereof upon periodical inspection, etc. for nuclear power plants. Constitution: For those portions of pipes requring shieldings, cylindrical vessels surrounding the portions are disposed and connected to a mercury supply system, a mercury discharge system and a freezing system for solidifying mercury. After charging mercury in a tank by way of a supply hose to the cylindrical vessels, the temperature of the mercury is lowered below the freezing point thereof to solidify the mercury while circulating cooling medium, to thereby form dense cylindrical radioactive-ray shielding walls. The specific gravity of mercury is greater than that of lead and, accordingly, the thickness of the shielding walls can be reduced as compared with the conventional wall thickness of the entire laminates. (Takahashi, M.)

  8. The measurement of the dielectric constant of concrete pipes and clay pipes

    Science.gov (United States)

    McGraw, David

    To optimize the effectiveness of the rehabilitation of underground utilities, taking in consideration limitation of available resources, there is a need for a cost effective and efficient sensing systems capable of providing effective, in real time and in situ, measurement of infrastructural characteristics. To carry out accurate non-destructive condition assessment of buried and above ground infrastructure such as sewers, bridges, pavements and dams, an advanced ultra-wideband (UWB) based radar was developed at Trenchless Technology Centre (TTC) and Centre for Applied Physics Studies (CAPS) at Louisiana Tech University (LTU). One of the major issues in designing the FCC compliant UWB radar was the contribution of the pipe wall, presence of complex soil types and moderate-to-high moisture levels on penetration depth of the electromagnetic (EM) energy. The electrical properties of the materials involved in designing the UWB radar exhibit a significant variation as a result of the moisture content, mineral content, bulk density, temperature and frequency of the electromagnetic signal propagating through it. Since no measurements of frequency dependence of the dielectric permittivity and conductivities of the pipe wall material in the FCC approved frequency range exist, in this thesis, the dielectric constant of concrete and clay pipes are measured over a microwave frequency range from 1 Ghz to 10 Ghz including the effects of moisture and chloride content. A high performance software package called MU-EPSLN(TM) was used for the calculations. Data reduction routines to calculate the complex permeability and permittivity of materials as well as other parameters are also provided. The results obtained in this work will be used to improve the accuracy of the numerical simulations and the performances of the UWB radar system.

  9. Construction Time of Three Wall Types Made of Locally Sourced Materials: A Comparative Study

    OpenAIRE

    Wojciech Drozd; Agnieszka Leśniak; Sebastian Zaworski

    2018-01-01

    Similarly to any other industry, the construction sector puts emphasis on innovativeness, unconventional thinking, and alternative ideas. At present, when sustainable development, ecology, and awareness of people’s impact on the environment grow in importance, low impact buildings can become an innovative alternative construction technology for the highly industrialized construction sector. The paper presents a comparative study of three walls made of available materials used locally, which c...

  10. OPDE-The international pipe failure data exchange project

    Energy Technology Data Exchange (ETDEWEB)

    Lydell, Bengt [OPDE Clearinghouse, 16917 S. Orchid Flower Trail, Vail, AZ 85641-2701 (United States)], E-mail: boylydell@msn.com; Riznic, Jovica [Canadian Nuclear Safety Commission, Operational Engineering Assessment Division, PO Box 1046, Station B, Ottawa, Ont. K1P 5S9 (Canada)], E-mail: jovica.riznic@cnsc-ccsn.gc.ca

    2008-08-15

    Certain member countries of the Organization for Economic Cooperation and development (OECD) in 2002 established the OECD pipe failure data exchange project (OPDE) to produce an international database on the piping service experience applicable to commercial nuclear power plants. OPDE is operated under the umbrella of the OECD Nuclear Energy Agency (NEA). The Project collects pipe failure data including service-induced wall thinning, part through-wall crack, pinhole leak, leak, and rupture/severance (i.e., events involving large through-wall flow rates up to and beyond the make-up capacity of engineered safeguards systems). The part through-wall events include degradation in excess of design code allowable for pipe wall thinning or crack depth. OPDE also addresses such degradation that could have generic implications regarding the reliability of in-service inspection. Currently the OPDE database includes approximately 3,700 records on pipe failure affecting ASME Code Class 1 through 3 and non-safety-related (non-Code) piping. This paper presents the motivations and objectives behind the establishment of the OPDE project. The paper also summarizes the unique data quality considerations that are associated with the reporting and recording of piping component degradation and failure. An overview of the database content is included to place it in perspective relative to past efforts to systematically collect and evaluate service experience data on piping performance. Finally, a brief summary is given of current database application studies.

  11. OPDE-The international pipe failure data exchange project

    International Nuclear Information System (INIS)

    Lydell, Bengt; Riznic, Jovica

    2008-01-01

    Certain member countries of the Organization for Economic Cooperation and development (OECD) in 2002 established the OECD pipe failure data exchange project (OPDE) to produce an international database on the piping service experience applicable to commercial nuclear power plants. OPDE is operated under the umbrella of the OECD Nuclear Energy Agency (NEA). The Project collects pipe failure data including service-induced wall thinning, part through-wall crack, pinhole leak, leak, and rupture/severance (i.e., events involving large through-wall flow rates up to and beyond the make-up capacity of engineered safeguards systems). The part through-wall events include degradation in excess of design code allowable for pipe wall thinning or crack depth. OPDE also addresses such degradation that could have generic implications regarding the reliability of in-service inspection. Currently the OPDE database includes approximately 3,700 records on pipe failure affecting ASME Code Class 1 through 3 and non-safety-related (non-Code) piping. This paper presents the motivations and objectives behind the establishment of the OPDE project. The paper also summarizes the unique data quality considerations that are associated with the reporting and recording of piping component degradation and failure. An overview of the database content is included to place it in perspective relative to past efforts to systematically collect and evaluate service experience data on piping performance. Finally, a brief summary is given of current database application studies

  12. Alpha detection in pipes using an inverting membrane scintillator

    International Nuclear Information System (INIS)

    Kendrick, D.T.; Cremer, C.D.; Lowry, W.; Cramer, E.

    1995-01-01

    Characterization of surface alpha emitting contamination inside enclosed spaces such as piping systems presents an interesting radiological measurement challenge. Detection of these alpha particles from the exterior of the pipe is impossible since the alpha particles are completely absorbed by the pipe wall. Traditional survey techniques, using hand-held instruments, simply can not be used effectively inside pipes. Science and Engineering Associates, Inc. is currently developing an enhancement to its Pipe Explorer trademark system that will address this challenge. The Pipe Explorer trademark uses a unique sensor deployment method where an inverted tubular membrane is propagated through complex pipe runs via air pressure. The inversion process causes the membrane to fold out against the pipe wall, such that no part of the membrane drags along the pipe wall. This deployment methodology has been successfully demonstrated at several DOE sites to transport specially designed beta and gamma scintillation detectors into pipes ranging in length up to 250 ft. The measurement methodology under development overcomes the limitations associated with conventional hand-held survey instruments by remotely emplacing an alpha scintillator in direct contact with the interior pipe surface over the entire length to be characterized. This is accomplished by incorporating a suitable scintillator into the otherwise clear membrane material. Alpha particles emitted from the interior pipe surface will intersect the membrane, resulting in the emission of light pulses from the scintillator. A photodetector, towed by the inverting membrane, is used to count these light pulses as a function of distance into the pipe, thereby producing a log of the surface alpha contamination levels. It is anticipated that the resulting system will be able to perform measurements in pipes as small as two inches in diameter, and several hundred feet in length

  13. Lifshitz-type formulas for graphene and single-wall carbon nanotubes: van der Waals and Casimir interactions

    International Nuclear Information System (INIS)

    Bordag, M.; Geyer, B.; Klimchitskaya, G. L.; Mostepanenko, V. M.

    2006-01-01

    Lifshitz-type formulas are obtained for the van der Waals and Casimir interaction between graphene and a material plate, graphene and an atom or a molecule, and between a single-wall carbon nanotube and a plate. The reflection properties of electromagnetic oscillations on graphene are governed by the specific boundary conditions imposed on the infinitely thin positively charged plasma sheet, carrying a continuous fluid with some mass and charge density. The obtained formulas are applied to graphene interacting with Au and Si plates, to hydrogen atoms and molecules interacting with graphene, and to single-wall carbon nanotubes interacting with Au and Si plates. The generalizations to more complicated carbon nanostructures are discussed

  14. Analysis of the failure performance of internally pressurized piping with surface flaws

    International Nuclear Information System (INIS)

    Iorio, A.F; Crespi, J.C.

    1987-01-01

    Due to frequent failures an Atucha I PHWR moderator circuit branch piping, made of stainless steel type AISI 347 (DIN 1.4550), studies have been made, involving the application of several fracture mechanics criteria, in order to determine the conditions of leak-before-break (L.BB) and the critical crack length of the piping. These studies lead to the conclusions that, for a straight pipe of outer diameter of 219 mm and 16 mm wall thickness, with a circumferential flaw and the principal stress being in the bending, the L.BB criteria are satisfied, being the critical crack length of the order of 400 mm. A better mechanical finishing and heat treatment was suggested in order to improve the resistance to crack initiation. (Author)

  15. Experimental investigations of piping phenomena in bentonite based buffer material

    International Nuclear Information System (INIS)

    Suzuki, K.; Asano, H.; Kobayashi, I.; Sellin, P.; Svemar, C.; Holmqvist, M.

    2012-01-01

    Document available in extended abstract form only. Formation of channels in a clay based buffer material is often referred to as 'piping'. Piping is likely to occur in bentonite based buffer materials in a fractured host rock during the early evolution of the repository when strong hydraulic gradients are present. After water saturation of the repository and reestablishment of the hydraulic gradients piping will not be an issue. However, piping in the early phase may still have implications for long-term performance: 1. if the pipes fail to close there may be remaining conductive pathways in the engineered barrier, and 2. piping may lead to erosion or redistribution of material which needs to be taken into account in the long-term performance assessment. This means that the piping process may affect requirements on rock characterization, water inflow and water management during the installation phase, buffer material properties and buffer installation methodology. As a part of the 'Bentonite re-saturation' program, RWMC has initiated and performed studies of the piping process. The main objectives of the studies are to answer: 1. Under what conditions can pipes form? 2. How do pipes evolve with time? 3. When and how do pipes close/reseal? 4. How does piping affect the buffer properties? 5. How much mass can be lost by erosion? The answers will be used in the development of the requirements stated above as well as input to long term performance assessments. overview of the experiment Test apparatuses were manufactured for investigation of the piping phenomena, see Figure 1. The apparatuses have drainage gutter to prevent clogging to take place with eroded material, and to keep an advection field around specimens. There is also a storage chamber for eroded material on the apparatuses. In the investigation, specimens of bentonite block and pellets were used. The block specimen consisted of a mixture of Japanese Na type bentonite, termed Kunigel V1, and 30 wt% silica

  16. Remaining life case history studies for high energy piping systems using equivalent stress

    International Nuclear Information System (INIS)

    Cohn, M.J.

    1987-01-01

    As the development of plant life extension for high energy piping systems is progressing, conventional piping system design methodologies are also being reevaluated. Traditional guidelines such as American National Standard Institute/American Society of Mechanical Engineers B31.1 (ANSI/ASME) were developed for plants having design lives in the 25- to 30-year regime based upon relatively short-term base metal creep data. These guidelines use a simplified approach for the piping analysis. Two types of stress criteria must be satisfied. The first type is longitudinal plus torsion stress checks for several types of loading conditions versus the material allowable stresses. The second type is an independent minimum wall thickness check which considers the hoop stress versus the material allowable stress. Seven case histories have been evaluated to estimate the minimum piping system creep life based on the current ANSI/ASME B31.1 finite element type of analysis, which is a traditional approach, versus a multiaxial stress state type of analysis. In nearly every case, the equivalent stress methodology predicted significantly higher stresses. Consequently, the equivalent stress methodology resulted in 11 to 96% lower time to rupture values as compared to the values predicted using ANSI/ASME B31.1 stresses

  17. Water driven turbine/brush pipe cleaner

    Science.gov (United States)

    Werlink, Rudy J. (Inventor)

    1995-01-01

    Assemblies are disclosed for cleaning the inside walls of pipes and tubes. A first embodiment includes a small turbine with angled blades axially mounted on one end of a standoff support. An O-ring for stabilizing the assembly within the pipe is mounted in a groove within the outer ring. A replaceable circular brush is fixedly mounted on the opposite end of the standoff support and can be used for cleaning tubes and pipes of various diameters, lengths and configurations. The turbine, standoff support, and brush spin in unison relative to a hub bearing that is fixedly attached to a wire upstream of the assembly. The nonrotating wire is for retaining the assembly in tension and enabling return of the assembly to the pipe entrance. The assembly is initially placed in the pipe or tube to be cleaned. A pressurized water or solution source is provided at a required flow-rate to propel the assembly through the pipe or tube. The upstream water pressure propels and spins the turbine, standoff support and brush. The rotating brush combined with the solution cleans the inside of the pipe. The solution flows out of the other end of the pipe with the brush rotation controlled by the flow-rate. A second embodiment is similar to the first embodiment but instead includes a circular shaped brush with ring backing mounted in the groove of the exterior ring of the turbine, and also reduces the size of the standoff support or eliminates the standoff support.

  18. Ion target impact energy during Type I edge localized modes in JET ITER-like Wall

    Czech Academy of Sciences Publication Activity Database

    Guillemaut, C.; Jardin, A.; Horáček, Jan; Autrique, A.; Arnoux, G.; Boom, J.; Brezinsek, S.; Coenen, J.W.; De La Luna, E.; Devaux, S.; Eich, T.; Giroud, C.; Harting, D.; Kirschner, A.; Lipschutz, B.; Matthews, G.F.; Moulton, D.; O’Mullane, M.; Stamp, M.

    2015-01-01

    Roč. 57, č. 8 (2015), č. článku 085006. ISSN 0741-3335 R&D Projects: GA MŠk LG14002 EU Projects: European Commission(XE) 633053 Institutional support: RVO:61389021 Keywords : magnetic confinement fusion * edge localized modes * JET ITER-like wall * plasma * tokamak Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.404, year: 2015 http://dx.doi.org/10.1088/0741-3335/57/8/085006

  19. In-pipe aerodynamic characteristics of a projectile in comparison with free flight for transonic Mach numbers

    Science.gov (United States)

    Hruschka, R.; Klatt, D.

    2018-03-01

    The transient shock dynamics and drag characteristics of a projectile flying through a pipe 3.55 times larger than its diameter at transonic speed are analyzed by means of time-of-flight and pipe wall pressure measurements as well as computational fluid dynamics (CFD). In addition, free-flight drag of the 4.5-mm-pellet-type projectile was also measured in a Mach number range between 0.5 and 1.5, providing a means for comparison against in-pipe data and CFD. The flow is categorized into five typical regimes the in-pipe projectile experiences. When projectile speed and hence compressibility effects are low, the presence of the pipe has little influence on the drag. Between Mach 0.5 and 0.8, there is a strong drag increase due to the presence of the pipe, however, up to a value of about two times the free-flight drag. This is exactly where the nose-to-base pressure ratio of the projectile becomes critical for locally sonic speed, allowing the drag to be estimated by equations describing choked flow through a converging-diverging nozzle. For even higher projectile Mach numbers, the drag coefficient decreases again, to a value slightly below the free-flight drag at Mach 1.5. This behavior is explained by a velocity-independent base pressure coefficient in the pipe, as opposed to base pressure decreasing with velocity in free flight. The drag calculated by CFD simulations agreed largely with the measurements within their experimental uncertainty, with some discrepancies remaining for free-flying projectiles at supersonic speed. Wall pressure measurements as well as measured speeds of both leading and trailing shocks caused by the projectile in the pipe also agreed well with CFD.

  20. Computation of the temperatures of a fluid flowing through a pipe from temperature measurements on the pipe's outer surface

    International Nuclear Information System (INIS)

    Sauer, G.

    1999-01-01

    A method for computing the temperatures of a fluid flowing through a pipe on the basis of temperatures recorded at the pipe's outer surface is presented. The heat conduction in the pipe wall is described by one-dimensional heat conduction elements. Heat transfer between fluid, pipe and surrounding is allowed for. The equation system resulting from the standard finite element discretization is reformulated to enable the computation of temperature events preceding the recorded temperature in time. It is shown that the method can be used to identify the actual fluid temperature from temperature data obtained only at the outer surface of the pipe. The temperatures in the pipe wall are computed with good accuracy even in the case of a severe thermal shock. (orig.) [de

  1. Multiple blowdown pipe experiments with the PPOOLEX facility

    International Nuclear Information System (INIS)

    Puustinen, M.; Laine, J.; Raesaenen, A.

    2011-03-01

    pressure pulses caused by water hammer was considerably larger in the steel pipe experiments. It seemed like the flow mode was different with the polycarbonate pipes from that with the steel pipes. Due to minimal heat conduction through the polycarbonate pipe wall condensation tended to happen at the pipe outlet and therefore no high pressure loads due to water hammer were experienced inside the pipe. (Author)

  2. Multiple blowdown pipe experiments with the PPOOLEX facility

    Energy Technology Data Exchange (ETDEWEB)

    Puustinen, M.; Laine, J.; Raesaenen, A. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2011-03-15

    pressure pulses caused by water hammer was considerably larger in the steel pipe experiments. It seemed like the flow mode was different with the polycarbonate pipes from that with the steel pipes. Due to minimal heat conduction through the polycarbonate pipe wall condensation tended to happen at the pipe outlet and therefore no high pressure loads due to water hammer were experienced inside the pipe. (Author)

  3. Study of tensile test behavior of austenitic stainless steel type 347 seamless thin-walled tubes in cold worked condition

    Energy Technology Data Exchange (ETDEWEB)

    Terui, Clarice, E-mail: clarice.terui@marinha.mil.br [Centro Tecnológico da Marinha em São Paulo (CINA/CTMSP), Iperó, SP (Brazil). Centro Industrial Nuclear da Marinha; Lima, Nelson B. de, E-mail: nblima@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    These austenitic stainless steel type 347 seamless thin-walled tubes are potential candidates to be used in fuel elements of nuclear power plants (as PWR - Pressurized Water Reactor). So, their metallurgical condition and mechanical properties, as the tensile strength and yield strength, normally are very restrict in demanding project and design requirements. Several full size tensile tests at room temperature and high temperature (315 deg C) were performed in these seamless tubes in cold-worked condition. The results of specified tensile and yield strengths were achieved but the elongation of the tube, in the geometry of the component, could not be measured at high temperature due to unconventional mode of rupture (helical mode without separation of parts). The average value of elongation was obtained from stress-strain curves of hot tensile tests and was around 5%. The results obtained in this research show that this behavior of the full size tensile test samples of thin-walled tube (wall thickness less than 0.5 mm) in high temperature (315°C) is due to the combination of the manufacturing process, the material (crystallographic structure and chemical composition) and the final geometry of the component. In other words, the strong crystallographic texture of material induced by tube drawing process in addition with the geometry of the component are responsible for the behavior in hot uniaxial tensile tests. (author)

  4. Structural integrity of a reinforced concrete structure and a pipe outlet under hydrogen detonation conditions

    International Nuclear Information System (INIS)

    Saarenheimo, A.; Silde, A.; Calonius, K.

    2002-05-01

    Structural integrity of a reinforced concrete wall and a pipe penetration under detonation conditions in a selected reactor building room of Olkiluoto BWR were studied. Hydrogen leakage from the pressurised containment to the sur rounding reactor building is possible during a severe accident. Leaked hydrogen tends to accumulate in the reactor building rooms where the leak is located leading to a stable stratification and locally very high hydrogen concentration. If ignited, a possibility to flame acceleration and detonation cannot be ruled out. The structure may survive the peak detonation transient because the eigenperiod of the structure is considerably longer than the duration of the peak detonation. However, the relatively slowly decreasing static type pressure after a peak detonation damages the wall more severely. Elastic deformations in reinforcement are recoverable and cracks in these areas will close after the pressure decrease. But there will be remarkable compression crushing and the static type slowly decreasing over pressure clearly exceeds the loading capacity of the wall. Structural integrity of a pipe outlet was considered also under detonation conditions. The effect of drag forces was taken into account. Damping and strain rate dependence of yield strength were not taken into consideration. The boundary condition at the end of the pipe line model was varied in order to find out the effect of the stiffness of the pipeline outside the calculation model. The calculation model where the lower pipe end is free to move axially, is conservative from the pipe penetration integrity point of view. Even in this conservative study, the highest peak value for the maximum plastic deformation is 3.5%. This is well below the success criteria found in literature. (au)

  5. Fundamentals of piping design

    CERN Document Server

    Smith, Peter

    2013-01-01

    Written for the piping engineer and designer in the field, this two-part series helps to fill a void in piping literature,since the Rip Weaver books of the '90s were taken out of print at the advent of the Computer Aid Design(CAD) era. Technology may have changed, however the fundamentals of piping rules still apply in the digitalrepresentation of process piping systems. The Fundamentals of Piping Design is an introduction to the designof piping systems, various processes and the layout of pipe work connecting the major items of equipment forthe new hire, the engineering student and the vetera

  6. The influence of prefabricated pipe cement coatings and those made during pipe renovation on drinking water quality

    OpenAIRE

    Młyńska Anna; Zielina Michał

    2017-01-01

    Nowadays, cement coatings are often used as an anticorrosion protection of the internal surfaces of manufactured ductile iron water pipes. The protective cement linings are also commonly used for old water pipe renovation. In both cases, the cement lining is an excellent anticorrosion protection of the pipelines, effectively separating the pipe wall from the flowing water. Moreover, cement linings protect the pipelines not only by a mechanical barrier, but also by a chemical barrier creating ...

  7. Low cycle fatigue of pressurized pipes with circumferential flaws under cyclic bending moment

    International Nuclear Information System (INIS)

    Stoppler, W.; Sturm, D.

    1993-01-01

    Pipes of 706 mm inner diameter, 47 mm wall thickness and about 5,000 mm in length were provided with circumferential surface cracks and loaded by internal pressure of 15 MPa whilst being simultaneously subjected to an alternating external bending moment. Usually a load ratio R of -1 (M min /M max ), in one case R = 0.1, was applied. The pipes were fabricated of two types of ferritic steel: one, grade 20 MnMoNi 5 5, with a high upper shelf impact energy of about 200 J and one, MnMoNiV-special melt, with a low upper shelf impact energy of about 60 J. Deformation and crack growth in the wall thickness and circumferential direction were determined and compared with calculated values. 9 refs., 13 figs

  8. Experimental investigation of thermal mixing phenomena in a tee pipe

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mei-Shiue; Hsieh, Huai-En; Zhang, Zhi-Yu; Pei, Bau-Shi [National Tsing Hua Univ., Taiwan (China). Inst. of Nuclear Engineering and Science

    2015-05-15

    T-pipe designs have been widely used in the industry. Among them, mixing of hot and cold water is a common application. In the mixing process, cold and hot fluids are respectively injected through main and branch pipes, and are mixed in the downstream area of T-tube. High temperature hot water flows through the main pipe for a long time; hence, the pipe wall is at high temperatures. The fluid injected into the branch pipe is a cooling fluid. After mixing, the wall of the main pipe is under high thermal fluctuations causing strong thermal stresses, which will eventually lead to pipe damage and water loss. Through flow rate adjustments of the branch and main pipes, when the branch/main velocity ratio was greater than 7.8, showing that cold water hit the bottom of the main pipe and created a reverse flow. This reverse flow created large thermal stresses on the wall. Hence, the branch/main velocity ratio and the hot-water-mixing phenomenon are the focus of this study.

  9. Plastic fracture mechanics prediction of fracture instability in a circumferentially cracked pipe in bending - 1. J-integral analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zahoor, A.; Kanninen, M.F.

    1981-11-01

    A method of evaluating the J-integral for a circumferentially cracked pipe in bending is proposed. The method allows a J-resistance curve to be evaluated directly from the load-displacement record obtained in a pipe fracture experiment. It permits an analysis for fracture instability in a circumferential crack growth using a J-resistance curve and the tearing modulus parameter. The influence of the system compliance on fracture instability is discussed in conjunction with the latter application. The importance of using a J-resistance curve that is consistent with the type of constraint for a given application is emphasized. The possibility of a pipe fracture emanating from a stress corrosion crack in the heat-affected zones of girth-welds in Type 304 stainless steel pipes was investigated. The J-resistance curve was employed. A pipe fracture experiment was performed using a spring-loaded four-point bending system that simulated an 8.8-m long section of unsupported 102-mm-dia pipe. An initial through-wall crack of length equal to 104 mm was used. Fracture instability was predicted to occur between 15.2 and 22.1 mm of stable crack growth at each tip. In the actual experiment, the onset of fracture instability occurred beyond maximum load at an average stable crack growth of 11.7 to 19 mm at each tip. 24 refs.

  10. Plastic fracture mechanics prediction of fracture instability in a circumferentially cracked pipe in bending - 1. J-integral analysis

    International Nuclear Information System (INIS)

    Zahoor, A.; Kanninen, M.F.

    1981-01-01

    A method of evaluating the J-integral for a circumferentially cracked pipe in bending is proposed. The method allows a J-resistance curve to be evaluated directly from the load-displacement record obtained in a pipe fracture experiment. It permits an analysis for fracture instability in a circumferential crack growth using a J-resistance curve and the tearing modulus parameter. The influence of the system compliance on fracture instability is discussed in conjunction with the latter application. The importance of using a J-resistance curve that is consistent with the type of constraint for a given application is emphasized. The possibility of a pipe fracture emanating from a stress corrosion crack in the heat-affected zones of girth-welds in Type 304 stainless steel pipes was investigated. The J-resistance curve was employed. A pipe fracture experiment was performed using a spring-loaded four-point bending system that simulated an 8.8-m long section of unsupported 102-mm-dia pipe. An initial through-wall crack of length equal to 104 mm was used. Fracture instability was predicted to occur between 15.2 and 22.1 mm of stable crack growth at each tip. In the actual experiment, the onset of fracture instability occurred beyond maximum load at an average stable crack growth of 11.7 to 19 mm at each tip. 24 refs

  11. Pipe support optimization in nuclear power plants

    International Nuclear Information System (INIS)

    Cleveland, A.B.; Kalyanam, N.

    1984-01-01

    A typical 1000 MWe nuclear power plant consists of 80,000 to 100,000 feet of piping which must be designed to withstand earthquake shock. For the required ground motion, seismic response spectra are developed for safety-related structures. These curves are used in the dynamic analysis of piping systems with pipe-stress analysis computer codes. To satisfy applicable Code requirements, the piping systems also require analysis for weight, thermal and possibly other lasting conditions. Bechtel Power Corporation has developed a design program called SLAM (Support Location Algorithm) for optimizing pipe support locations and types (rigid, spring, snubber, axial, lateral, etc.) while satisfying userspecified parameters such as locations, load combinations, stress and load allowables, pipe displacement and cost. This paper describes SLAM, its features, applications and benefits

  12. Ductile fracture mechanics methodology for complex cracks in nuclear piping

    Energy Technology Data Exchange (ETDEWEB)

    Zahoor, A.

    1988-02-01

    Limit load and J-integral estimation solutions are developed for circumferentially complex-cracked pipes in bending. The limit load solution is developed using thick-walled cylinder analysis which included the effects of flaw depth accurately. J-integral estimation solutions are developed that are suitable for a wide range of loading from linear elastic, elastic-plastic to net-section yielding of the flawed section. Mode I stress intensity factor solution is developed from experimental compliance data. Two types of J solutions are developed. First, J solutions for determining the J-resistance curve from single load-displacement record are presented. Next, elastic-plastic J solution in the format of EPRI J estimation scheme is presented. The latter solution was used to predict the load carrying capacity of complex-cracked pipes made of Type-304 stainless steel, Inconel 600, and A106 GrB materials. Predictions were compared against pipe tests to demonstrate the accuracy of the limit load and J estimation solutions.

  13. Ductile fracture mechanics methodology for complex cracks in nuclear piping

    International Nuclear Information System (INIS)

    Zahoor, A.

    1988-01-01

    Limit load and J-integral estimation solutions are developed for circumferentially complex-cracked pipes in bending. The limit load solution is developed using thick-walled cylinder analysis which included the effects of flaw depth accurately. J-integral estimation solutions are developed that are suitable for a wide range of loading from linear elastic, elastic-plastic to net-section yielding of the flawed section. Mode I stress intensity factor solution is developed from experimental compliance data. Two types of J solutions are developed. First, J solutions for determining the J-resistance curve from single load-displacement record are presented. Next, elastic-plastic J solution in the format of EPRI J estimation scheme is presented. The latter solution was used to predict the load carrying capacity of complex-cracked pipes made of Type-304 stainless steel, Inconel 600, and A106 GrB materials. Predictions were compared against pipe tests to demonstrate the accuracy of the limit load and J estimation solutions. (orig.)

  14. Seismic design of piping systems

    International Nuclear Information System (INIS)

    Anglaret, G.; Beguin, J.L.

    1986-01-01

    This paper deals with the method used in France for the PWR nuclear plants to derive locations and types of supports of auxiliary and secondary piping systems taking earthquake in account. The successive steps of design are described, then the seismic computation method and its particular conditions of applications for piping are presented. The different types of support (and especially seismic ones) are described and also their conditions of installation. The method used to compare functional tests results and computation results in order to control models is mentioned. Some experiments realised on site or in laboratory, in order to validate models and methods, are presented [fr

  15. Enhancement of First Wall Damage in Iter Type Tokamak due to Lenr Effects

    Science.gov (United States)

    Lipson, Andrei G.; Miley, George H.; Momota, Hiromu

    In recent experiments with pulsed periodic high current (J ~ 300-500 mA/cm2) D2-glow discharge at deuteron energies as low as 0.8-2.45 keV a large DD-reaction yield has been obtained. Thick target yield measurement show unusually high DD-reaction enhancement (at Ed = 1 keV the yield is about nine orders of magnitude larger than that deduced from standard Bosch and Halle extrapolation of DD-reaction cross-section to lower energies) The results obtained in these LENR experiments with glow discharge suggest nonnegligible edge plasma effects in the ITER TOKAMAK that were previously ignored. In the case of the ITER DT plasma core, we here estimate the DT reaction yield at the metal edge due to plasma ion bombardment of the first wall and/or divertor materials.

  16. Enhancement of first wall damage in ITER type tokamak due to LENR effects

    International Nuclear Information System (INIS)

    Lipson, Andrei G.; Miley, George H.; Momota, Hiromu

    2006-01-01

    In recent experiments with pulsed periodic high current (J - 300-500 mA/cm 2 ) D 2 -glow discharge at deuteron energies as low as 0.8-2.45 keV a large DD-reaction yield has been obtained. Thick target yield measurement show unusually high DD-reaction enhancement (at E d =1 keV the yield is about nine orders of magnitude larger than that deduced from standard Bosch and Halle extrapolation of DD-reaction cross-section to lower energies). The results obtained in these LENR experiments with glow discharge suggest nonnegligible edge plasma effects in the ITER TOKAMAK that were previously ignored. In the case of the ITER DT plasma core, we here estimate the DT reaction yield at the metal edge due to plasma ion bombardment of the first wall and/or divertor materials. (author)

  17. Analysis of pipe stress using CAESAR II code

    International Nuclear Information System (INIS)

    Sitandung, Y.B.; Bandriyana, B.

    2002-01-01

    Analysis of this piping stress with the purpose of knowing stress distribution piping system in order to determine pipe supports configuration. As an example of analysis, Gas Exchanger to Warm Separator Line was chosen with, input data was firstly prepared in a document, i.e. piping analysis specification that its content named as pipe characteristics, material properties, operation conditions, guide equipment's and so on. Analysis result such as stress, load, displacement and the use support type were verified based on requirements in the code, standard, and regularities were suitable with piping system condition analyzed. As the proof that piping system is in safety condition, it can be indicated from analysis results (actual loads) which still under allowable load. From the analysis steps that have been done CAESAR II code fulfill requirements to be used as a tool of piping stress analysis as well as nuclear and non nuclear installation piping system

  18. Computer simulation of LMFBR piping systems

    International Nuclear Information System (INIS)

    A-Moneim, M.T.; Chang, Y.W.; Fistedis, S.H.

    1977-01-01

    Integrity of piping systems is one of the main concerns of the safety issues of Liquid Metal Fast Breeder Reactors (LMFBR). Hypothetical core disruptive accidents (HCDA) and water-sodium interaction are two examples of sources of high pressure pulses that endanger the integrity of the heat transport piping systems of LMFBRs. Although plastic wall deformation attenuates pressure peaks so that only pressures slightly higher than the pipe yield pressure propagate along the system, the interaction of these pulses with the different components of the system, such as elbows, valves, heat exchangers, etc.; and with one another produce a complex system of pressure pulses that cause more plastic deformation and perhaps damage to components. A generalized piping component and a tee branching model are described. An optional tube bundle and interior rigid wall simulation model makes such a generalized component model suited for modelling of valves, reducers, expansions, and heat exchangers. The generalized component and the tee branching junction models are combined with the pipe-elbow loop model so that a more general piping system can be analyzed both hydrodynamically and structurally under the effect of simultaneous pressure pulses

  19. Heat Pipes Reduce Engine-Exhaust Emissions

    Science.gov (United States)

    Schultz, D. F.

    1986-01-01

    Increased fuel vaporization raises engine efficiency. Heat-pipe technology increased efficiency of heat transfer beyond that obtained by metallic conduction. Resulted in both improved engine operation and reduction in fuel consumption. Raw material conservation through reduced dependence on strategic materials also benefit from this type of heat-pipe technology. Applications result in improved engine performance and cleaner environment.

  20. Corrosion and deposit evaluation in large diameter pipes using radiography

    International Nuclear Information System (INIS)

    Boateng, A.

    2012-01-01

    The reliability and safety of industrial equipment in the factories and processing industries are substantially influenced by degradation processes such as corrosion, erosion, deposits and blocking of pipes. These might lead to low production, unpredictable and costly shutdowns due to repair and replacement and sometimes combined environmental pollution and risk of personnel injuries. Only periodic inspection for the integrity of pipes and equipment can reduce the risk in connection with other maintenance activities. The research explored two methods of radiographic inspection techniques, the double wall technique and the tangential radiographic technique using Ir-192 for evaluating deposits and corrosion attacks across the inner and outer walls of steel pipes with diameter greater than 150 mm with or without insulation. The application of both techniques was conducted depending on pipe diameter, wall thickness, radiation source (Ir-92) and film combination. The iridium source was positioned perpendicular with respect to the pipe axis projecting the double wall of the pipe on the plated radiographic film. With the tangential radiographic technique, the source was placed tangential to the pipe wall and because of its large diameter, the source was collimated to prevent backscatter and also to focus the beam at the target area of interest. All measurements were performed on special designed test pieces to simulate corrosion attack and deposits on industrial pipes. Pitting corrosion measurements based on Tangential Radiographic Technique were more sophisticated, and therefore magnification factor and correction were used to establish the estimated pit depth on the film. The insulating material used to conserve the thermodynamic properties of the transported media had relatively negligible attenuation coefficient compared to the concrete deposit. The two explored techniques were successful in evaluating corrosion attack and deposit on the walls of the pipe and the risk

  1. Thinned pipe management program of Korean NPPs

    International Nuclear Information System (INIS)

    Lee, S.H.; Kim, T.R.; Jeon, S.C.; Hwang, K.M.

    2003-01-01

    Wall thinning of carbon steel pipe components due to Flow-Accelerated Corrosion (FAC) is one of the most serious threats to the integrity of steam cycle systems in Nuclear Power Plants (NPP). If the thickness of a pipe component is reduced below the critical level, it cannot sustain stress and consequently results in leakage or rupture. In order to minimize the possibility of excessive wall thinning, Thinned Pipe Management Program (TPMP) has been set up and being implemented to all Korean NPPs. Important elements of the TPMP include the prediction of the FAC rate for each component based on model analysis, prioritization of pipe components for inspection, thickness measurement, calculation of wear and wear rate for each component. Additionally, decision making associated with replacement or continuous service for thinned pipe components and establishment of long-term strategic management plan based on diagnosis of plant condition regarding overall wall thinning also are essential part of the TPMP. From pre-service inspection data, it has been found that initial thickness is varies, which influences wear and wear rate calculations. (author)

  2. Heat pipe thermal control of slender optics probes

    International Nuclear Information System (INIS)

    Prenger, F.C.

    1979-01-01

    The thermal design for a stereographic viewing system is presented. The design incorporates an annular heat pipe and thermal isolation techniques. Test results are compared with design predictions for a prototype configuration. Test data obtained during heat pipe startup showing temperature gradients along the evaporator wall are presented. Correlations relating maximum wall temperature differences to a liquid Reynolds number were obtained at low power levels. These results are compared with Nusselt's Falling Film theory

  3. 46 CFR 58.30-15 - Pipe, tubing, valves, fittings, pumps, and motors.

    Science.gov (United States)

    2010-10-01

    ... hydraulic and pneumatic systems listed in § 58.30-1. (b) Materials used in the manufacture of tubing, pipes... 6, the wall thickness may be established on the basis of an applicable thick-wall cylinder equation...

  4. Plastics pipe couplings

    International Nuclear Information System (INIS)

    Glover, J.B.

    1980-07-01

    A method is described of making a pipe coupling of the type comprising a plastics socket and a resilient annular sealing member secured in the mouth thereof, in which the material of at least one component of the coupling is subjected to irradiation with high energy radiation whereby the material is caused to undergo cross-linking. As examples, the coupling may comprise a polyethylene or plasticised PVC socket the material of which is subjected to irradiation, and the sealing member may be moulded from a thermoplastic elastomer which is subjected to irradiation. (U.K.)

  5. Continuous thickness control of extruded pipes with assistance of microcomputers

    International Nuclear Information System (INIS)

    Breil, J.

    1983-06-01

    Because of economic and quality securing reasons a constant wall thickness of extruded pipes in circumference and extrusion direction is an important production aim. Therefore a microcomputer controlled system was developed, which controls die centering with electric motors. The control of wall thickness distribution; was realized with two conceptions: a dead time subjected control with a rotating on line wall thickness measuring instrument and an adaptive control with sensors in the pipe die. With a PI-algorithm excentricities of 30% of the wall thickness could be controlled below a trigger level of 2% within three dead times. (orig.) [de

  6. Sound transmission through a periodic cascade with application to drill pipes

    NARCIS (Netherlands)

    Lous, N.J.C.; Rienstra, S.W.; Adan, I.J.B.F.

    1998-01-01

    Acoustical data transmission through the wall of drill pipes is considered. Drill pipes are known to behave like bandpass filters; the position of the pass bands can be determined analytically. This work extends the frequency domain drill pipe models presented by Barnes and Kirkwood [J. Acoust. Soc.

  7. 49 CFR 195.585 - What must I do to correct corroded pipe?

    Science.gov (United States)

    2010-10-01

    ... TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.585 What must I do to correct corroded pipe? (a) General corrosion. If you find pipe so generally corroded that the remaining wall thickness...; or (2) Repair the pipe by a method that reliable engineering tests and analyses show can permanently...

  8. Experimental study of particle-driven secondary flow in turbulent pipe flows

    NARCIS (Netherlands)

    Belt, R.J.; Daalmans, A.C.L.M.; Portela, L.M.

    2012-01-01

    In fully developed single-phase turbulent flow in straight pipes, it is known that mean motions can occur in the plane of the pipe cross-section, when the cross-section is non-circular, or when the wall roughness is non-uniform around the circumference of a circular pipe. This phenomenon is known as

  9. Measurements of local mass transfer coefficient of Flow Accelerated Corrosion at feeder outlet pipes in CANDU using Plaster of Paris method

    International Nuclear Information System (INIS)

    Hyuk Kwon; Dong Un Seo; Goon-Cherl Park

    2005-01-01

    Full text of publication follows: Flow Accelerated Corrosion (FAC) is a corrosion mechanism that results in wall thinning in piping systems and components. FAC on carbon steels in pure water has occurred in a number of industry and power plant. A pipe wall thinning due to the FAC at nuclear power plant is just reported in confined to carbon steel pipe on the secondary system which does not equip a radioactive component. Recently, at Canadian Deuterium Uranium type reactor, it is reported that the feeder lines suffer the wall thinning on the primary system to equip 380 feeder pipes. Differently from the fast FAC rate of the secondary system on PWR, FAC rate of feeder pipes on CANDU is not more than the 0.2 mm/year. Although the FAC rate of feeder pipe is relatively slow, the narrow thickness margin of 2.6089 mm is endangered sufficiently by only the slow FAC rate. The FAC is governed by the mass transfer coefficient which is determined by the flow field. To well predict the FAC rate, mass transfer coefficient should be well measured or calculated. New measurement method of mass transfer coefficient is developed to obtain the coefficient for the complex shape like feeder pipe. The method evaluated the naphthalene sublimation method to apply it under the water flow. The naphthalene sublimation method can be used to study mass and heat transfer with confidence for a variety of applications, but with certain restrictions. At present, Plaster of paris method can modified the sublimation method to overcome the restrictions. This method is particularly useful in complex flows on geometries and for flows with large gradients in wall transport rate. The test specimen can be easily prepared by several methods, including dipping, machining, spraying, and casting. The local transfer coefficients can be determined with high accuracy and in detail by automated measurement systems that eliminate most human errors during the measurement process. To evaluate the method, the

  10. Large-scale separation of single-walled carbon nanotubes by electronic type using click chemistry

    Science.gov (United States)

    Um, Jo-Eun; Song, Sun Gu; Yoo, Pil J.; Song, Changsik; Kim, Woo-Jae

    2018-01-01

    Single-walled carbon nanotubes (SWCNTs) can be either metallic or semiconducting, making their separation critical for applications in nanoelectronics, biomedical materials, and solar cells. Herein, we investigate a novel solution-phase separation method based on click chemistry (azide-alkyne Huisgen cycloaddition) and determine its efficiency and scalability. In this method, metallic SWCNTs in metallic/semiconducting SWCNT mixtures are selectively functionalized with alkyne groups by being reacted with 4-propargyloxybenezenediazonium tetrafluoroborate. Subsequently, silica nanoparticles are functionalized with azide groups and reacted with alkyne-bearing metallic SWCNTs in the SWCNT mixture in the presence of a Cu catalyst. As a result, metallic SWCNTs are anchored on silica powder, whereas non-functionalized semiconducting SWCNTs remain in solution. Low-speed centrifugation effectively removes the silica powder with attached metallic SWCNTs, furnishing a solution of highly pure semiconducting SWCNTs, as confirmed by Raman and UV-vis/near-infrared absorption measurements. This novel separation scheme exhibits the advantage of simultaneously separating both metallic and semiconducting SWCNTs from their mixtures, being cost-effective and therefore applicable at an industrial scale.

  11. On the shakedown analysis of welded pipes

    International Nuclear Information System (INIS)

    Li Tianbai; Chen Haofeng; Chen Weihang; Ure, James

    2011-01-01

    This paper presents the shakedown analysis of welded pipes subjected to a constant internal pressure and a varying thermal load. The Linear Matching Method (LMM) is applied to investigate the upper and lower bound shakedown limits of the pipes. Individual effects of i) geometry of weld metal, ii) ratio of inner radius to wall thickness and iii) all material properties of Weld Metal (WM), Heat Affected Zone (HAZ) and Parent Material (PM) on shakedown limits are investigated. The ranges of these variables are chosen to cover the majority of common pipe configurations. Corresponding individual influence functions on the shakedown limits are generated. These are then combined to allow the creation of a safety shakedown envelope, which can be used for the design of any welded pipes within the specified ranges. The effect of temperature-dependent yield stress (in PM, HAZ and WM) on these shakedown limits is also investigated.

  12. Defect Depth Measurement of Straight Pipe Specimen Using Shearography

    International Nuclear Information System (INIS)

    Chang, Ho Seob; Kim, Kyung Suk

    2012-01-01

    In the nuclear industry, wall thinning defect of straight pipe occur the enormous loss in life evaluation and safety evaluation. To use non-destructive technique, we measure deformation, vibration, defect evaluation. But, this techniques are a weak that is the measurement of the wide area is difficult and the time is caught long. In the secondary side of nuclear power plants mostly used steel pipe, artificiality wall thinning defect make in the side and different thickness make to the each other, wall thinning defect part of deformation measure by using shearography. In addition, optical measurement through deformation, vibration, defect evaluation evaluate pipe and thickness defects of pressure vessel is to evaluate quantitatively. By shearography interferometry to measure the pipe's internal wall thinning defect and the variation of pressure use the proposed technique, the quantitative defect is to evaluate the thickness of the surplus. The amount of deformation use thickness of surplus prediction of the actual thickness defect and approximately 7 percent error by ensure reliability. According to pressure the amount of deformation and the thickness of the surplus through DB construction, nuclear power plant pipe use wall thinning part soundness evaluation. In this study, pressure vessel of thickness defect measure proposed nuclear pipe of wall thinning defect prediction and integrity assessment technology development. As a basic research defected theory and experiment, pressure vessel of advanced stability and soundness and maintainability is expected to contribute foundation establishment

  13. Turbulent Heat Transfer in Curved Pipe Flow

    Science.gov (United States)

    Kang, Changwoo; Yang, Kyung-Soo

    2013-11-01

    In the present investigation, turbulent heat transfer in fully-developed curved pipe flow with axially uniform wall heat flux has been numerically studied. The Reynolds numbers under consideration are Reτ = 210 (DNS) and 1,000 (LES) based on the mean friction velocity and the pipe radius, and the Prandtl number (Pr) is 0.71. For Reτ = 210 , the pipe curvature (κ) was fixed as 1/18.2, whereas three cases of κ (0.01, 0.05, 0.1) were computed in the case of Reτ = 1,000. The mean velocity, turbulent intensities and heat transfer rates obtained from the present calculations are in good agreement with the previous numerical and experimental results. To elucidate the secondary flow structures due to the pipe curvature, the mean quantities and rms fluctuations of the flow and temperature fields are presented on the pipe cross-sections, and compared with those of the straight pipe flow. To study turbulence structures and their influence on turbulent heat transfer, turbulence statistics including but not limited to skewness and flatness of velocity fluctuations, cross-correlation coefficients, an Octant analysis, and turbulence budgets are presented and discussed. Based on our results, we attempt to clarify the effects of Reynolds number and the pipe curvature on turbulent heat transfer. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0008457).

  14. Quantification and localization of internal pipe damage

    NARCIS (Netherlands)

    Vogelaar, B.B.S.A.; Golombok, M.

    2016-01-01

    Internal pipeline defects are detectable and locatable from guided acoustic wave reflections using sensors mounted on the outer wall of a pipe. We demonstrate pipeline integrity monitoring with only two single acoustic sensors. Multi-mode dispersion imaging of shear displacement shows that the pure

  15. Situation of secondary system piping wearing in overseas nuclear power plants

    International Nuclear Information System (INIS)

    Chiba, Goro

    2005-01-01

    In consideration of secondary system piping rupture accident at Mihama Nuclear Power Station Unit 3 of Kansai Electric Power Company in August 2004, the management system of secondary pipe wall thickness of Japan and foreign countries were investigated. Moreover, the tendency of the secondary piping thinning events on overseas which the Institute of Nuclear Safety System, Inc. (INSS) obtained was analyzed in order to verify the validity of the Japanese management system. Consequently, it was shown that in the U.S., the fault phenomenon of secondary system piping was reported continuously, and there were also many cases of both degradation and penetration of pipe wall. (author)

  16. Preventive testing and leakage detection in pipe-lines of steam condensers and generators of a PWR type reactor

    International Nuclear Information System (INIS)

    Canalini, A.; Carvalho, N.C. de

    1985-01-01

    The non-destructive methods: Spum, Helium and Hydrostatic used in leakage detection in condenser pipelines for PWR type reactors are presented. The time, costs, sensitivity, resources necessary and personnel development factors are considered to choose adequated method, in function of nuclear power plant conditions. The leakage tests are applied in pressurized systems or vacuum. Eddy Current testing is used in condensers and steam generators aiming to avoid leakage in these equipments. The spume testing for leakage detection in condenser pipelines - which operation - and hydrostatic testing for leakage detection through reaming with shutdown - were most efficients. The Helium testing applied in pressurized systems or submitted to vacuum systems presented satisfactory results. The Eddy Current testing in condenser and steam generator pipelines reached desired objective, reducing leakage in the first and preserving the integrity in the second. (M.C.K.) [pt

  17. Pipe drafting and design

    CERN Document Server

    Parisher, Roy A; Parisher

    2000-01-01

    Pipe designers and drafters provide thousands of piping drawings used in the layout of industrial and other facilities. The layouts must comply with safety codes, government standards, client specifications, budget, and start-up date. Pipe Drafting and Design, Second Edition provides step-by-step instructions to walk pipe designers and drafters and students in Engineering Design Graphics and Engineering Technology through the creation of piping arrangement and isometric drawings using symbols for fittings, flanges, valves, and mechanical equipment. The book is appropriate primarily for pipe

  18. An experimental investigation of pneumatic swirl flow induced by a three lobed helical pipe

    International Nuclear Information System (INIS)

    Fokeer, S.; Lowndes, I.; Kingman, S.

    2009-01-01

    This paper presents a discussion of the results and conclusions drawn from a series of experiments conducted to investigate the swirl flow that are generated by a three lobed helical pipe mounted within a laboratory scale pneumatic conveying rig. The experiments employed Laser Doppler Anemometry (LDA) to quantify the strength of the induced vortex formations and the decay rates of the observed downstream swirl flows over a range of Reynolds number in the turbulent regime. Instantaneous point velocity measurements were resolved in three directions across regular measurement grids transcribed across parallel planes located at four distances downstream of the swirl inducing pipe section. The equivalent axial, radial and tangential velocities were subsequently computed at these grids points. The degree of swirl measured across each measurement plane was expressed in terms of a defined swirl number. It was concluded that the three lobed helical pipe gave rise to a wall jet type of swirl whose rate of observed downstream decay is related to the Reynolds number of the upstream flow and the distance downstream of the swirl pipe. The decay rates for the swirl flows were found to be inversely proportional to the Reynolds number of the upstream flow. The swirl pipe was observed to create a redistribution of the downstream velocity field from axial to tangential, accompanied by a transfer of axial to angular momentum. The findings of this paper are believed to improve understanding to assist the selective use of swirl flow within lean phase particles pneumatic transport systems.

  19. An experimental investigation of pneumatic swirl flow induced by a three lobed helical pipe

    Energy Technology Data Exchange (ETDEWEB)

    Fokeer, S. [Department of Aeronautical and Automotive Engineering, University of Loughborough LE11 3TU (United Kingdom)], E-mail: S.Fokeer@lboro.ac.uk; Lowndes, I.; Kingman, S. [Division of Process and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2009-04-15

    This paper presents a discussion of the results and conclusions drawn from a series of experiments conducted to investigate the swirl flow that are generated by a three lobed helical pipe mounted within a laboratory scale pneumatic conveying rig. The experiments employed Laser Doppler Anemometry (LDA) to quantify the strength of the induced vortex formations and the decay rates of the observed downstream swirl flows over a range of Reynolds number in the turbulent regime. Instantaneous point velocity measurements were resolved in three directions across regular measurement grids transcribed across parallel planes located at four distances downstream of the swirl inducing pipe section. The equivalent axial, radial and tangential velocities were subsequently computed at these grids points. The degree of swirl measured across each measurement plane was expressed in terms of a defined swirl number. It was concluded that the three lobed helical pipe gave rise to a wall jet type of swirl whose rate of observed downstream decay is related to the Reynolds number of the upstream flow and the distance downstream of the swirl pipe. The decay rates for the swirl flows were found to be inversely proportional to the Reynolds number of the upstream flow. The swirl pipe was observed to create a redistribution of the downstream velocity field from axial to tangential, accompanied by a transfer of axial to angular momentum. The findings of this paper are believed to improve understanding to assist the selective use of swirl flow within lean phase particles pneumatic transport systems.

  20. Heat pipes in modern heat exchangers

    International Nuclear Information System (INIS)

    Vasiliev, Leonard L.

    2005-01-01

    Heat pipes are very flexible systems with regard to effective thermal control. They can easily be implemented as heat exchangers inside sorption and vapour-compression heat pumps, refrigerators and other types of heat transfer devices. Their heat transfer coefficient in the evaporator and condenser zones is 10 3 -10 5 W/m 2 K, heat pipe thermal resistance is 0.01-0.03 K/W, therefore leading to smaller area and mass of heat exchangers. Miniature and micro heat pipes are welcomed for electronic components cooling and space two-phase thermal control systems. Loop heat pipes, pulsating heat pipes and sorption heat pipes are the novelty for modern heat exchangers. Heat pipe air preheaters are used in thermal power plants to preheat the secondary-primary air required for combustion of fuel in the boiler using the energy available in exhaust gases. Heat pipe solar collectors are promising for domestic use. This paper reviews mainly heat pipe developments in the Former Soviet Union Countries. Some new results obtained in USA and Europe are also included

  1. Costs reduced by innovative plastic distribution pipe use

    International Nuclear Information System (INIS)

    Maxwell, F.W.

    1995-01-01

    As part of a strategic corporate cost-reduction initiative, Pacific Gas and Electric Company's Gas Distribution Group has achieved some quick but significant cash savings. System design, construction, and the purchasing function were areas that produced some fast paybacks while maintaining reliability and safety. The primary savings were made by optimizing pipe specifications to match system operating parameters. This allowed the use of smaller diameter pipes and/or thinner wall pipes which conserved the materials cost of the pipeline. Other realized savings in the form of coiled pipe, purchasing changes, and backfilling specifications are also described

  2. Pipe support for use in a nuclear system

    International Nuclear Information System (INIS)

    Pollono, L.P.; Mello, R.M.

    1976-01-01

    Description is given of a vertical pipe support system. It comprises a tubular pipe support structure having the same inside diameter and the same wall thickness as the pipe, the pipe support structure having a generally triangularly shaped extension formed integral with and extending circumferentially around its outward side, the bottom side of this extension generally forming a ledge; an annular load-bearing insulation formed adjacent to the extension; means for clamping the load-bearing insulation to extension; and means for providing constant vertical support to means for clamping [fr

  3. Changes in the structural and biochemical composition of the arterial wall in type 2 diabetes patients

    DEFF Research Database (Denmark)

    Rørdam Preil, Simone

    Arteriel stivhed er et normalt aldersbetinget fænomen. Hos patienter med type 2 diabetes synes udviklingen af arteriel stivhed accelereret, hvilket kunne være årsagen til den forøgede incidens af kardiovaskulære sygdomme hos disse patienter. Ophobningen af kollagen og/eller nedbrydningen af elastin...... ikke-atherosclerotisk arterievæv fra patienter med og uden type 2 diabetes. Arteriesnittene fra mammaria arterierne blev farvet for makrofager, elastin, kollagen og α smooth muscle actin, hvorefter vi målte området for kollagen og elastin og antallet af celler, der farves for α smooth muscle actin, ved...... laget signifikant lavere hos patienter med diabetes, og kollagen farvningen viste et større farvet område i intima og media lagene hos type 2 diabetes patienter end for patienterne uden diabetes. Ydermere forholder det sig således, at størstedelen af patienter med type 2 diabetes bliver behandlet med...

  4. On the numerical investigation of sound transmission through double-walled structures with membrane-type acoustic metamaterials.

    Science.gov (United States)

    Marinova, Polina; Lippert, Stephan; von Estorff, Otto

    2017-10-01

    Acoustic metamaterials appear to be of great help in the design of reliable and effective noise reduction measures in the low frequency range. The current contribution is concerned with the modeling of a low-frequency noise shield, based on a double wall arrangement, which includes membrane-type acoustic metamaterials (MAMs), considered as the most promising approach when it comes especially to the tonal noise at frequencies below 300 Hz. MAMs consist of small-sized membranes loaded with a mass. Due to their robustness and relatively simple production, MAMs have been proven to decrease the sound transmission in frequency ranges, for which poro-elastic materials have a rather negligible effect. A simulation model of a double wall panel, whose acoustic cavity is furnished with layers of metamaterials, has been developed and the sound transmission loss (STL) through the structure was calculated, using the finite element method. In order to validate the modelling approach, the STL estimation from the finite element analysis was compared to experimental measurements. The achieved results indicate a noise-decreasing possibility in tunable narrow bands as well as a broadband noise reduction for frequencies less than 300 Hz without significantly adding to the panel mass.

  5. Turbulent spots and scalar flashes in pipe transition

    Science.gov (United States)

    Adrian, Ronald; Wu, Xiaohua; Moin, Parviz

    2017-11-01

    Recent study (Wu et al., PNAS, 1509451112, 2015) demonstrated the feasibility and accuracy of direct computation of the Osborne Reynolds' pipe transition experiment without the unphysical axially periodic boundary condition. Here we use this approach to address three questions: (1) What are the dynamics of turbulent spot generation in pipe transition? (2) How is the succession of scalar flashes, as observed and sketched by Osborne Reynolds, created? (3) What happens to the succession of flashes further downstream? In this study, the inlet disturbance is of radial-mode type imposed through a narrow, three-degree numerical wedge; and the simulation Reynolds number is 6500. Numerical dye is introduced at the inlet plane locally very close to the pipe axis, similar to the needle injection by O. Reynolds. Inception of infant turbulent spots occurs when normal, forward inclined hairpin packets form near the walls from the debris of the inlet perturbations. However, the young and mature turbulent spots consist almost exclusively of reverse, backward leaning hairpin vortices. Scalar flashes appear successively downstream and persist well into the fully-developed turbulent region. Their creation mechanism is addressed. RJA gratefully acknowledges support of the National Science Foundation with NSF Award CBET-0933848.

  6. Computer program TMOC for calculating of pressure transients in fluid filled piping networks

    International Nuclear Information System (INIS)

    Siikonen, T.

    1978-01-01

    The propagation of a pressure wave in fluid filles tubes is significantly affected by the pipe wall motion and vice versa. A computer code TMOC (Transients by the Method of Characteristics) is being developed for the analysis of the coupled fluid and pipe wall transients. Because of the structural feedback, the pressure can be calculated more accurately than in the programs commonly used. (author)

  7. Annual investigation of vertical type ground source heat pump system performance on a wall heating and cooling system in Istanbul

    Energy Technology Data Exchange (ETDEWEB)

    Akbulut, U.; Yoru, Y.; Kincay, O. [Department of Mechanical Engineering, Yildiz Technical University (Turkey)], email: akbulutugur@yahoo.com, email: yilmazyoru@gmail.com, email: okincay@yildiz.edu.tr

    2011-07-01

    Wall heating and cooling systems (WHCS) are equipped with heating serpentines or panels for water circulation. These systems operate in a low temperature range so they are preferable to other, conventional systems. Furthermore, when these systems are connected to a ground source heat pump (GSHP) system, energy performance and thermal comfort are further enhanced. The purpose of this paper is to report the results of an annual inspection done on a vertical type ground-coupled heat pump systems (V-GSHP) WHCS in Istanbul and present the results. The performance data from the Yildiz Renewable Energy House at Davutpasa Campus of Yildiz Technical University, Istanbul, Turkey, during the year 2010 were collected and analyzed. The conclusions drawn from the inspection and analysis were listed in this paper. Using renewable energy sources effectively will bring both economic and environmental benefits and it is hoped that the use of these energy efficient WHCS systems will become widespread.

  8. The response of liquid-filled pipes to vapour collapse

    International Nuclear Information System (INIS)

    Tijsseling, A.S.; Fan, D.

    1991-01-01

    The collapse of vapour cavities in liquid is usually accompanied with almost instantaneous pressure rises. These pressure rises impose severe loads on liquid-conveying pipes whenever the cavities become sufficiently large. Due to the impact nature of loadings, movement of the pipe walls can be expected. Tests are performed in a water-filled closed pipe suspended by thin steel wires. Vaporous cavities are induced in the liquid by hitting the pipe axially by a steel rod. The volume of the cavities can be varied by changing the initial pressure of the water. The developing and collapsing of cavities in the liquid is inferred from pressure measurements. Strain gauges and a laser Doppler vibrometer are used to record the response of the pipe to these pressures. The test results are compared with predictions from a numerical model. The model describes 1) axial stress wave propagations in the pipe and 2) water hammer and cavitation phenomena in the liquid. Pipe and liquid interact via 1) the radial expansion and contraction of the pipe wall and 2) the closed ends of the pipe, where large vapour cavities may develop. (author)

  9. Pipe-to-pipe impact program

    International Nuclear Information System (INIS)

    Alzheimer, J.M.; Bampton, M.C.C.; Friley, J.R.; Simonen, F.A.

    1984-06-01

    This report documents the tests and analyses performed as part of the Pipe-to-Pipe Impact (PTPI) Program at the Pacific Northwest Laboratory. This work was performed to assist the NRC in making licensing decisions regarding pipe-to-pipe impact events following postulated breaks in high energy fluid system piping. The report scope encompasses work conducted from the program's start through the completion of the initial hot oil tests. The test equipment, procedures, and results are described, as are analytic studies of failure potential and data correlation. Because the PTPI Program is only partially completed, the total significance of the current test results cannot yet be accurately assessed. Therefore, although trends in the data are discussed, final conclusions and recommendations will be possible only after the completion of the program, which is scheduled to end in FY 1984

  10. Method of and system for cleaning and/or drying the inner walls of pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Steinhaus, H.

    1989-04-04

    For cleaning and/or drying the inner walls of long distance pipelines the pressure in the interior of the pipeline is decreased and the vapour formed by evaporation of the substance adhering to the pipe inner wall (and, if applicable, foreign gases present) are exhausted from the pipeline. Upon exit from the pipeline and prior to entry into the exhausting apparatus, the exhausted medium passes through a condensating apparatus whose cooling surfaces are maintained at a temperature that is lower than the pipe wall temperature. With a temperature difference sufficient to condense the substance vapour on said cooling surfaces, it is possible to enhance the drying rate considerably, compared to pure vacuum-type drying. 1 fig.

  11. Improved methods for binding acma-type protein anchor fusions yo cell-wall material of micro-organisms

    NARCIS (Netherlands)

    Leenhouts, Cornelis; Ramasamy, R.; Steen, Anton; Kok, Jan; Buist, Girbe; Kuipers, Oscar

    2002-01-01

    The invention provides a method for improving binding of a proteinaceous substance to cell-wall material of a Gram-positive bacterium, said substance comprising an AcmA cell wall binding domain or homolog or functional derivative thereof, said method comprising treating said cell-wall material with

  12. [Expression, purification and protective antigen analysis of cell wall protein MRP of Streptococcus suis type 2].

    Science.gov (United States)

    Wang, Ping-ping; Pian, Ya-ya; Yuan, Yuan; Zheng, Yu-ling; Jiang, Yong-qiang; Xiong, Zheng-ying

    2012-02-01

    To amplify the mrp gene of Streptococcus suis type 2 05ZYH33, express it in E.coli BL21 in order to acquire high purity recombinant protein MRP, then evaluate the protective antigen of recombinant protein MRP. Using PCR technology to obtain the product of mrp gene of 05ZYH33, and then cloned it into the expression vector pET28a(+). The recombinant protein was purified by affinity chromatography, later immunized New Zealand rabbit to gain anti-serum, then test the anti-serum titer by ELISA. The opsonophagocytic killing test demonstrated the abilities of protective antigen of MRP. The truncated of MRP recombinant protein in E.coli BL21 expressed by inclusion bodies, and purified it in high purity. After immunoprotection, the survival condition of CD-1 was significantly elevated. The survival rate of wild-type strain 05ZYH33 in blood was apparently decreased after anti-serum opsonophagocyticed, but the mutant delta; MRP showed no differences. MRP represent an important protective antigen activity.

  13. Solar heating pipe

    Energy Technology Data Exchange (ETDEWEB)

    Hinson-Rider, G.

    1977-10-04

    A fluid carrying pipe is described having an integral transparent portion formed into a longitudinally extending cylindrical lens that focuses solar heat rays to a focal axis within the volume of the pipe. The pipe on the side opposite the lens has a heat ray absorbent coating for absorbing heat from light rays that pass through the focal axis.

  14. Fatigue check of nuclear safety class 1 reactor coolant pipe

    International Nuclear Information System (INIS)

    Wang Qing; Fang Yonggang; Chu Qibao; Xu Yu; Li Hailong

    2015-01-01

    Fatigue and thermal ratcheting analyses of nuclear safety Class 1 reactor coolant pipe in a nuclear power plant were independently carried out in this paper. The software used for calculation is ROCOCO, which is based on RCC-M code. The difference of nuclear safety Class 1 pipe fatigue evaluation between RCC-M code and ASME code was compared. The main aspects of comparison include the calculation scoping of fatigue design, the calculation method of primary plus secondary stress intensity, the elastic-plastic correction coefficient calculation, and the dynamic load combination method etc. By correcting inconsistent algorithm of ASME code within ROCOCO, the fatigue usage factor and thermal ratcheting design margin of 65 mm and 55 mm wall thickness of the pipe were obtained. The results show that the minimum wall thickness of the pipe must exceed 55 mm and the design value of the thermal ratcheting of 55 mm wall thickness reaches 95% of the allowable value. (authors)

  15. Performance correlations for high temperature potassium heat pipes

    International Nuclear Information System (INIS)

    Merrigan, M.A.; Keddy, E.S.; Sena, J.T.

    1987-01-01

    Potassium heat pipes designed for operation at a nominal temperature of 775K have been developed for use in a heat pipe cooled reactor design. The heat pipes operate in a gravity assist mode with a maximum required power throughput of approximately 16 kW per heat pipe. Based on a series of sub-scale experiments with 2.12 and 3.2 cm diameter heat pipes the prototypic heat pipe diameter was set at 5.7 cm with a simple knurled wall wick used in the interests of mechanical simplicity. The performance levels required for this design had been demonstrated in prior work with gutter assisted wicks and emphasis in the present work was on the attainment of similar performance with a simplified wick structure. The wick structure used in the experiment consisted of a pattern of knurled grooves in the internal wall of the heat pipe. The knurl depth required for the planned heat pipe performance was determined by scaling of wick characteristic data from the sub-scale tests. These tests indicated that the maximum performance limits of the test heat pipes did not follow normal entrainment limit predictions for textured wall gravity assist heat pipes. Test data was therefore scaled to the prototype design based on the assumption that the performance was controlled by an entrainment parameter based on the liquid flow depth in the groove structure. This correlation provided a reasonable fit to the sub-scale test data and was used in scale up of the design from the 8.0 cm 2 cross section of the largest sub-scale heat pipe to the 25.5 cm 2 cross section prototype. Correlation of the model predictions with test data from the prototype is discussed

  16. Parametric calculations of fatigue-crack growth in piping

    International Nuclear Information System (INIS)

    Simonen, F.A.; Goodrich, C.W.

    1983-06-01

    This study presents calculations of the growth of piping flaws produced by fatigue. Flaw growth was predicted as a function of the initial flaw size, the level and number of stress cycles, the piping material, and environmental factors. The results indicate that the present flaw acceptance standards of ASME Section XI provide a relatively consistent set of allowable flaw sizes because the predicted life of flawed piping is relatively insensitive to pipe wall thickness, flaw aspect ratio, and piping material (ferritic versus austenitic). On the other hand, the results show that flaws that are acceptable under ASME Section XI can grow at unacceptable rates if the cyclic stresses are at the maximum level permitted by the design rules of ASME Section III. However, a review of the conservatisms inherent to the ASME code rules is presented to explain the low occurrence of piping fatigue failures in service. It is concluded that decreases in the allowable flaw sizes are not justified

  17. A numerical analysis on thermal stratification phenomenon in the SCS piping

    International Nuclear Information System (INIS)

    Kim, Kwang Chu; Park, Man Heung; Youm, Hag Ki; Lee, Sun Ki; Kim, Tae Ryong

    2003-01-01

    A numerical study is performed to estimate on an unsteady thermal stratification phenomenon in the Shutdown Cooling System(SCS) piping branched off the Reactor Coolant System(RCS) piping of Nuclear Power Plant. In the results, turbulent penetration reaches to the 1 st isolation valve. At 500sec, the maximum temperature difference between top and bottom inner wall in piping is observed at the starting point of horizontal piping passing elbow. The temperature of coolant in the rear side of the 1 st isolation valve disk is very slowly increased and the inflection point in temperature difference curve for time is observed at 2700sec. At the beginning of turbulent penetration from RCS piping, the fast inflow generates the higher temperature for the inner wall than the outer wall in the SCS piping. In the case the hot-leg injection piping and the drain piping are connected to the SCS piping, the effect of thermal stratification in the SCS piping is decreased due to an increase of heat loss compared with no connection case. The hot-leg injection piping affected by turbulent penetration from the SCS piping has a severe temperature difference that exceeds criterion temperature stated in reference. But the drain piping located in the rear compared with the hot-leg injection piping shows a tiny temperature difference. In a viewpoint of designer, for the purpose of decreasing the thermal stratification effect, it is necessary to increase the length of vertical piping in the SCS piping, and to move the position of the hot-leg injection piping backward

  18. Ultrasonic testing with the phased array method at the pipe connection inner edges in pipings

    International Nuclear Information System (INIS)

    Brekow, G.; Wuestenberg, H.; Hesselmann, H.; Rathgeb, W.

    1991-01-01

    Ultrasonic testing with the phased array method at the pipe connection inner edges in pipings. The pipe connection inner corner tests in feedwater lines to the main coolant pipe were carried out by Preussen-Elektra in cooperation with Siemens KWU and the BAM with the ultrasonic phased array method. The testing plan was developed by means of a computed model. For a trial of the testing plan, numerous ultrasonic measurements with the phased array method were carried out using a pipe test piece with TH-type inner edges, which was a 1:1 model of the reactor component to be tested. The data measured at several test notches in the pipe connection inner edge area covered by a plating of 6 mm were analyzed. (orig./MM) [de

  19. Nuclear piping system damping data studies

    International Nuclear Information System (INIS)

    Ware, A.G.; Arendts, J.G.

    1985-01-01

    A programm has been conducted at the Idaho National Engineering Laboratory to study structural damping data for nuclear piping systems and to evaluate if changes in allowable damping values for structural seismic analyses are justified. The existing pipe damping data base was examined, from which a conclusion was made that there were several sets of data to support higher allowable values. The parameters which most influence pipe damping were identified and an analytical investigation demonstrated that increased damping would reduce the required number of seismic supports. A series of tests on several laboratory piping systems was used to determine the effect of various parameters such as types of supports, amplitude of vibration, frequency, insulation, and pressure on damping. A multiple regression analysis was used to statistically assess the influence of the various parameters on damping, and an international pipe damping data bank has been formed. (orig.)

  20. Resolution of thermal striping issue downstream of a horizontal pipe elbow in stratified pipe flow

    International Nuclear Information System (INIS)

    Kuzay, T.M.; Kasza, K.E.

    1985-01-01

    A thermally stratified pipe flow produced by a thermal transient when passing through a horizontal elbow as a result of secondary flow gives rise to large thermal fluctuations on the inner curvature wall of the downstream piping. These fluctuations were measured in a specially instrumented horizontal pipe and elbow system on a test set-up using water in the Mixing Components Technology Facility (MCTF) at Argonne National Laboratory (ANL). This study is part of a larger program which is studying the influence of thermal buoyancy on general reactor component performance. This paper discusses the influence of pipe flow generated thermal oscillations on the thermal stresses induced in the pipe walls. The instrumentation was concentrated around the exit plane of the 90 0 sweep elbow, since prior tests had indicated that the largest thermal fluctuations would occur within about one hydraulic diameter downstream of the elbow exit. The thermocouples were located along the inner curvature of the piping and measured the near surface fluid temperature. The test matrix involved thermal downramps under turbulent flow conditions

  1. Resolution of thermal striping issue downstream of a horizontal pipe elbow in stratified pipe flow. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Kuzay, T.M.; Kasza, K.E.

    1985-01-01

    A thermally stratified pipe flow produced by a thermal transient when passing through a horizontal elbow as a result of secondary flow gives rise to large thermal fluctuations on the inner curvature wall of the downstream piping. These fluctuations were measured in a specially instrumented horizontal pipe and elbow system on a test set-up using water in the Mixing Components Technology Facility (MCTF) at Argonne National Laboratory (ANL). This study is part of a larger program which is studying the influence of thermal buoyancy on general reactor component performance. This paper discusses the influence of pipe flow generated thermal oscillations on the thermal stresses induced in the pipe walls. The instrumentation was concentrated around the exit plane of the 90/sup 0/ sweep elbow, since prior tests had indicated that the largest thermal fluctuations would occur within about one hydraulic diameter downstream of the elbow exit. The thermocouples were located along the inner curvature of the piping and measured the near surface fluid temperature. The test matrix involved thermal downramps under turbulent flow conditions.

  2. Study on unstable fracture characteristics of light water reactor piping

    International Nuclear Information System (INIS)

    Kurihara, Ryoichi

    1998-08-01

    Many testing studies have been conducted to validate the applicability of the leak before break (LBB) concept for the light water reactor piping in the world. It is especially important among them to clarify the condition that an inside surface crack of the piping wall does not cause an unstable fracture but ends in a stable fracture propagating only in the pipe thickness direction, even if the excessive loading works to the pipe. Pipe unstable fracture tests performed in Japan Atomic Energy Research Institute had been planned under such background, and clarified the condition for the cracked pipe to cause the unstable fracture under monotonous increase loading or cyclic loading by using test pipes with the inside circumferential surface crack. This paper examines the pipe unstable fracture by dividing it into two parts. One is the static unstable fracture that breaks the pipe with the inside circumferential surface crack by increasing load monotonously. Another is the dynamic unstable fracture that breaks the pipe by the cyclic loading. (author). 79 refs

  3. Corrosion Surveillance In Pipe By Computed Radiography

    International Nuclear Information System (INIS)

    Nguyen The Man; Dao Duy Dung; Dang Thu Hong; Le Duc Thinh; Ha Hong Thu; Nguyen Trong Nghia

    2014-01-01

    Computed Radiography (CR) is a technique of digital industrial radiology which is developed to replace conventional radiography. With a CR system, the detection of the outer and inner wall surface of the pipe is done usually by edge detection and filter algorithms of the profile line at the position under investigation. Applying in industries, radiographic examination shall be performed in accordance with a written procedure. This paper summarizes collected knowledge and experimental results to establish a procedure for radiography applications in monitoring corrosion in small bore pipes. (author)

  4. Pipe rupture test results; 4 inch pipe whip tests under BWR operational condition-clearance parameter experiments

    International Nuclear Information System (INIS)

    Ueda, Syuzo; Isozaki, Toshikuni; Miyazaki, Noriyuki; Kurihara, Ryoichi; Kato, Rokuro; Saito, Kazuo; Miyazono, Shohachiro

    1981-05-01

    The purpose of pipe rupture studies in JAERI is to perform the model tests on pipe whip, restraint behavior, jet impingement and jet thrust force, and to establish the computational method for analyzing these phenomena. This report describes the experimental results of pipe whip on the pipe specimens of 4 inch in diameter under BWR condition on which the pressure is 6.77 MPa and the temperature is 285 0 C. The pipe specimens were 114.3 mm (4 inch) in diameter and 8.6 mm in thickness and 4500 mm in length. Four pipe whip restraints used in the tests were the U-bar type of 8 mm in diameter and fabricated from type 304 stainless steel. The experimental parameter was the clearance (30, 50 and 100 mm). The dynamic strain behavior of the pipe specimen and the restraints was investigated by strain gages and their residual deformation was obtained by measuring marking points provided on their surface. The Pressure-time history in the pipe specimens was also obtained by pressure gages. The maximum pipe strain is caused near the restraints and increases with increase of the clearance. The experimental results of pipe whip tests indicate the effectiveness of pipe whip restraints. The ratio of absorbed strain energy of the pipe specimen to that of the restraints is nearly constant for different clearances at the overhang length of 400 mm. (author)

  5. Culture medium type affects endocytosis of multi-walled carbon nanotubes in BEAS-2B cells and subsequent biological response.

    Science.gov (United States)

    Haniu, Hisao; Saito, Naoto; Matsuda, Yoshikazu; Tsukahara, Tamotsu; Maruyama, Kayo; Usui, Yuki; Aoki, Kaoru; Takanashi, Seiji; Kobayashi, Shinsuke; Nomura, Hiroki; Okamoto, Masanori; Shimizu, Masayuki; Kato, Hiroyuki

    2013-09-01

    We examined the cytotoxicity of multi-walled carbon nanotubes (MWCNTs) and the resulting cytokine secretion in BEAS-2B cells or normal human bronchial epithelial cells (HBEpCs) in two types of culture media (Ham's F12 containing 10% FBS [Ham's F12] and serum-free growth medium [SFGM]). Cellular uptake of MWCNT was observed by fluorescent microscopy and analyzed using flow cytometry. Moreover, we evaluated whether MWCNT uptake was suppressed by 2 types of endocytosis inhibitors. We found that BEAS-2B cells cultured in Ham's F12 and HBEpCs cultured in SFGM showed similar biological responses, but BEAS-2B cells cultured in SFGM did not internalize MWCNTs, and the 50% inhibitory concentration value, i.e., the cytotoxicity, was increased by more than 10-fold. MWCNT uptake was suppressed by a clathrin-mediated endocytosis inhibitor and a caveolae-mediated endocytosis inhibitor in BEAS-2B cells cultured in Ham's F12 and HBEpCs cultured in SFGM. In conclusion, we suggest that BEAS-2B cells cultured in a medium containing serum should be used for the safety evaluation of nanomaterials as a model of normal human bronchial epithelial cells. However, the culture medium composition may affect the proteins that are expressed on the cytoplasmic membrane, which may influence the biological response to MWCNTs. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Determination of the concentration profile and homogeneity of antioxidants and degradation products in a cross-linked polyethylene type A (PEXa) pipe

    DEFF Research Database (Denmark)

    Denberg, Martin; Mosbæk, Hans; Hassager, Ole

    2009-01-01

    , the concentration profile was measured at four different places on a 100 m PEXa pipe. A two-way ANOVA analysis showed that the composition of Irganox (R) 1076 was homogenous in the radial direction and heterogeneous in the longitudinal direction. Two degradation products of antioxidants were detected, 2,6-di...

  7. Low-frequency and multiple-bands sound insulation using hollow boxes with membrane-type faces

    Science.gov (United States)

    Yu, Wei-wei; Fan, Li; Ma, Ren-hao; Zhang, Hui; Zhang, Shu-yi

    2018-04-01

    Hollow boxes with their faces made up of elastic membranes are used to block acoustic waves. It is demonstrated that placing a cuboid membrane-type box inside a pipe can effectively insulate acoustic waves even if the box is smaller than the cross-section of the pipe. The sound insulation is achieved within multiple frequency-bands below 500 Hz based on different mechanisms, which originate from the coaction of the cavity, membrane-type faces, and the intervals between the box and pipe walls. Furthermore, by adjusting the structural parameters and establishing an array of boxes, we can achieve better sound insulation at more frequency-bands.

  8. Chitinase-like (CTL) and cellulose synthase (CESA) gene expression in gelatinous-type cellulosic walls of flax (Linum usitatissimum L.) bast fibers.

    Science.gov (United States)

    Mokshina, Natalia; Gorshkova, Tatyana; Deyholos, Michael K

    2014-01-01

    Plant chitinases (EC 3.2.1.14) and chitinase-like (CTL) proteins have diverse functions including cell wall biosynthesis and disease resistance. We analyzed the expression of 34 chitinase and chitinase-like genes of flax (collectively referred to as LusCTLs), belonging to glycoside hydrolase family 19 (GH19). Analysis of the transcript expression patterns of LusCTLs in the stem and other tissues identified three transcripts (LusCTL19, LusCTL20, LusCTL21) that were highly enriched in developing bast fibers, which form cellulose-rich gelatinous-type cell walls. The same three genes had low relative expression in tissues with primary cell walls and in xylem, which forms a xylan type of secondary cell wall. Phylogenetic analysis of the LusCTLs identified a flax-specific sub-group that was not represented in any of other genomes queried. To provide further context for the gene expression analysis, we also conducted phylogenetic and expression analysis of the cellulose synthase (CESA) family genes of flax, and found that expression of secondary wall-type LusCESAs (LusCESA4, LusCESA7 and LusCESA8) was correlated with the expression of two LusCTLs (LusCTL1, LusCTL2) that were the most highly enriched in xylem. The expression of LusCTL19, LusCTL20, and LusCTL21 was not correlated with that of any CESA subgroup. These results defined a distinct type of CTLs that may have novel functions specific to the development of the gelatinous (G-type) cellulosic walls.

  9. Drill pipe bridge plug

    International Nuclear Information System (INIS)

    Winslow, D.W.; Brisco, D.P.

    1991-01-01

    This patent describes a method of stopping flow of fluid up through a pipe bore of a pipe string in a well. It comprises: lowering a bridge plug apparatus on a work string into the pipe string to a position where the pipe bore is to be closed; communicating the pipe bore below a packer of the bridge plug apparatus through the bridge plug apparatus with a low pressure zone above the packer to permit the fluid to flow up through the bridge plug apparatus; engaging the bridge plug apparatus with an internal upset of the pipe string; while the fluid is flowing up through the bridge plug apparatus, pulling upward on the work string and the bridge plug apparatus and thereby sealing the packer against the pipe bore; isolating the pipe bore below the packer from the low pressure zone above the packer and thereby stopping flow of the fluid up through the pipe bore; disconnecting the work string from the bridge plug apparatus; and maintaining the bridge plug apparatus in engagement with the internal upset and sealed against the pipe bore due to an upward pressure differential applied to the bridge plug apparatus by the fluid contained therebelow

  10. Pipe whip analysis using the TEDEL code

    International Nuclear Information System (INIS)

    Millard, D.; Hoffmann, A.

    1985-02-01

    In view of their abundance, piping systems are one of the main components in power industries and in particular in nuclear power plants. They must be designed for normal as well as faulted conditions, for safety requirements. The prediction of the dynamic behaviour of the free pipe requires accounting for several nonlinearities. For this purpose, a beam type finite element program (TEDEL) has been used. The aim of this paper is to enlight the main features of this program, when applied to pipe whip analysis. An example of application to a real case will also be presented

  11. Right coronary wall cmr in the older asymptomatic advance cohort: positive remodeling and associations with type 2 diabetes and coronary calcium

    Directory of Open Access Journals (Sweden)

    Courtney Brian K

    2010-12-01

    Full Text Available Abstract Background Coronary wall cardiovascular magnetic resonance (CMR is a promising noninvasive approach to assess subclinical atherosclerosis, but data are limited in subjects over 60 years old, who are at increased risk. The purpose of the study was to evaluate coronary wall CMR in an asymptomatic older cohort. Results Cross-sectional images of the proximal right coronary artery (RCA were acquired using spiral black-blood coronary CMR (0.7 mm resolution in 223 older, community-based patients without a history of cardiovascular disease (age 60-72 years old, 38% female. Coronary measurements (total vessel area, lumen area, wall area, and wall thickness had small intra- and inter-observer variabilities (r = 0.93~0.99, all p Conclusions Right coronary wall CMR in asymptomatic older subjects showed increased coronary atherosclerosis in subjects with type 2 diabetes as well as coronary calcification. Coronary wall CMR may contribute to the noninvasive assessment of subclinical coronary atherosclerosis in older, at-risk patient groups.

  12. Steam-assisted crystallization of TPA+-exchanged MCM-41 type mesoporous materials with thick pore walls

    International Nuclear Information System (INIS)

    Chen, Hong Li; Zhang, Kun; Wang, Yi Meng

    2012-01-01

    Highlights: ► Mesoporous Ti-containing silica with thicker pore walls was synthesized. ► Ion-exchange and steam-assisted crystallization led to MCM-41/MFI composite. ► The introduction of Ti inhibited the formation of separated MFI particles. ► Lower temperature favored retaining mesoporous characteristics and morphology. -- Abstract: Hierarchical MCM-41/MFI composites were synthesized through ion-exchange of as-made MCM-41 type mesoporous materials with tetrapropylammonium bromide and subsequent steam-assisted recrystallization. The obtained samples were characterized by powder X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis, FT-IR, 1 H– 13 C CP/MAS and nitrogen adsorption–desorption. The XRD patterns show that the MCM-41/MFI composite possesses both ordered MCM-41 phase and zeolite MFI phase. SEM and TEM images indicate that the recrystallized materials retained the mesoporous characteristics and the morphology of as-made mesoporous materials without the formation of bulky zeolite, quite different from the mechanical mixture of MCM-41 and MFI structured zeolite. Among others, lower recrystallization temperature and the introduction of the titanium to the parent materials are beneficial to preserve the mesoporous structure during the recrystallization process.

  13. Composite Behavior of a Novel Insulated Concrete Sandwich Wall Panel Reinforced with GFRP Shear Grids: Effects of Insulation Types.

    Science.gov (United States)

    Kim, JunHee; You, Young-Chan

    2015-03-03

    A full-scale experimental program was used in this study to investigate the structural behavior of novel insulated concrete sandwich wall panels (SWPs) reinforced with grid-type glass-fiber-reinforced polymer (GFRP) shear connectors. Two kinds of insulation-expanded polystyrene (EPS) and extruded polystyrene (XPS) with 100 mm thickness were incased between the two concrete wythes to meet the increasing demand for the insulation performance of building envelope. One to four GFRP shear grids were used to examine the degree of composite action of the two concrete wythes. Ten specimens of SWPs were tested under displacement control subjected to four-point concentrated loads. The test results showed that the SWPs reinforced with GFRP grids as shear connectors developed a high degree of composite action resulting in high flexural strength. The specimens with EPS foam exhibited an enhanced load-displacement behavior compared with the specimens with XPS because of the relatively stronger bond between insulation and concrete. In addition, the ultimate strength of the test results was compared to the analytical prediction with the mechanical properties of only GRFP grids. The specimens with EPS insulation presented higher strength-based composite action than the ones with XPS insulation.

  14. The effect of pressure loadings on the conservatism of the net-section stress criterion for the failure of cracked stainless steel piping

    International Nuclear Information System (INIS)

    Smith, E.

    1994-01-01

    The technological problem of intergranular stress corrosion cracking (IGSCC) of type 304 stainless steel piping in boiling water reactor piping systems, has provided the motivation for the considerable research interest in the integrity of cracked piping systems that are fabricated by ductile materials. IGSCC cracks are able to form at the inner surfaces of pipes. The cracks are circumferential and are able to grow slowly in service by a time dependent environmentally assisted mechanism. From a safety standpoint, it is important to know whether accident condition loadings will drive a part-through IGSCC crack unstably across the pipe thickness by a non-environmentally assisted fracture mechanism, and the resulting through-wall crack then propagate around the pipe circumference leading to a complete pipe severance. A methodology that has been developed to address this problem is a net-section stress methodology. The net-section stress approach for predicting the onset of crack extension in a piping system can give overly conservative predictions because a piping system is built-in at its end points and because crack extension requires some plastic deformation. The present paper is concerned with identifying the role of system pressure on the degree of conservatism, and two effects are important. Firstly, by inducing an axial tensile force at the cracked section, it is shown that the factor of conservatism can be increased. Secondly it is shown that the pressure induced moment at the cracked section behaves no differently to other contributions to this moment, in that all sources are associated with the same limited amount of elastic follow-up. All sources are associated with the same elastic flexibility parameter L*, which depends solely on the flexibility of the system and not on the nature of the loading

  15. Miniature Heat Pipes

    Science.gov (United States)

    1997-01-01

    Small Business Innovation Research contracts from Goddard Space Flight Center to Thermacore Inc. have fostered the company work on devices tagged "heat pipes" for space application. To control the extreme temperature ranges in space, heat pipes are important to spacecraft. The problem was to maintain an 8-watt central processing unit (CPU) at less than 90 C in a notebook computer using no power, with very little space available and without using forced convection. Thermacore's answer was in the design of a powder metal wick that transfers CPU heat from a tightly confined spot to an area near available air flow. The heat pipe technology permits a notebook computer to be operated in any position without loss of performance. Miniature heat pipe technology has successfully been applied, such as in Pentium Processor notebook computers. The company expects its heat pipes to accommodate desktop computers as well. Cellular phones, camcorders, and other hand-held electronics are forsible applications for heat pipes.

  16. Harnessing light energy with a planar transparent hybrid of graphene/single wall carbon nanotube/n-type silicon heterojunction solar cell

    DEFF Research Database (Denmark)

    Chen, Leifeng; Yu, Hua; Zhong, Jiasong

    2015-01-01

    The photovoltaic conversion efficiency of a solar cell fabricated by a simple electrophoretic method with a planar transparent hybrid of graphenes (GPs) and single wall carbon nanotubes (SCNTs)/n-type silicon heterojunction was significantly increased compared to GPs/n-Si and SCNTs/n-Si solar cells...

  17. Transient Resistive Wall Wake for Very Short Bunches

    International Nuclear Information System (INIS)

    Stupakov, G.; SLAC

    2005-01-01

    The catch up distance for the resistive wall wake in a round pipe is approximately equal to the square of the pipe radius divided by the bunch length. The standard formulae for this wake are applicable at distances much larger than the catch up distance. In this paper, we calculate the resistive wall wake at distances compared with the catch up distance assuming a constant wall conductivity

  18. Introduction to Heat Pipes

    Science.gov (United States)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. NCTS 21070-15. Course Description: This course will present operating principles of the heat pipe with emphases on the underlying physical processes and requirements of pressure and energy balance. Performance characterizations and design considerations of the heat pipe will be highlighted. Guidelines for thermal engineers in the selection of heat pipes as part of the spacecraft thermal control system, testing methodology, and analytical modeling will also be discussed.

  19. Piping engineering and operation

    International Nuclear Information System (INIS)

    1993-01-01

    The conference 'Piping Engineering and Operation' was organized by the Institution of Mechanical Engineers in November/December 1993 to follow on from similar successful events of 1985 and 1989, which were attended by representatives from all sectors of the piping industry. Development of engineering and operation of piping systems in all aspects, including non-metallic materials, are highlighted. The range of issues covered represents a balance between current practices and implementation of future international standards. Twenty papers are printed. Two, which are concerned with pressurized pipes or steam lines in the nuclear industry, are indexed separately. (Author)

  20. Piping equipment; Materiel petrole

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This 'blue bible' of the perfect piping-man appeals to end-users of industrial facilities of the petroleum and chemical industries (purchase services, standardization, new works, maintenance) but also to pipe-makers and hollow-ware makers. It describes the characteristics of materials (carbon steels, stainless steels, alloyed steels, special alloys) and the dimensions of pipe elements: pipes, welding fittings, flanges, sealing products, forged steel fittings, forged steel valves, cast steel valves, ASTM standards, industrial valves. (J.S.)

  1. Solar Walls in tsbi3

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne

    tsbi3 is a user-friendly and flexible computer program, which provides support to the design team in the analysis of the indoor climate and the energy performance of buildings. The solar wall module gives tsbi3 the capability of simulating solar walls and their interaction with the building....... This version, C, of tsbi3 is capable of simulating five types of solar walls say: mass-walls, Trombe-walls, double Trombe-walls, internally ventilated walls and solar walls for preheating ventilation air. The user's guide gives a description of the capabilities and how to simulate solar walls in tsbi3....

  2. Dynamic response of piping system subject to flow acoustic excitation

    International Nuclear Information System (INIS)

    Wang, T.; Sun, Y.S.

    1988-01-01

    Through the use of a theoretically derived and test data-calibrated forcing function, the dynamic response of a piping system subject to flow-acoustic induced vibration is analyzed. It is shown that the piping behavior can be predicted when consideration is given to both the wall flexural vibration and the piping system vibration. Piping responded as a system to the transversal excitation due to the swirling motion of the fluid flow, as well as flexurally to the high-frequency acoustic excitations. The transverse piping system response was calculated using a lumped mass piping model. The piping model has more stringent requirements than its counterpart for waterhammer and seismic modeling due to the shorter spiral wavelength and higher frequency of the forcing function. Proper modeling ensured that both the moment stress caused by system excitation and the local stress induced by the support reaction load were properly accounted for. Flexural vibration not only poses a threat to nipples and branch connections, but also contributes substantially to the resultant total stress experienced by the pipe. The forcing function approach has the advantage that the critical locations on the piping system can be identified by means of analysis, facilitating surveillance and inspection, as well as fatigue evaluation

  3. Experimental study on the thermal performance of a new type of thermal energy storage based on flat micro-heat pipe array

    International Nuclear Information System (INIS)

    Li, Feng-fei; Diao, Yan-hua; Zhao, Yao-hua; Zhu, Ting-ting; Liu, Jing

    2016-01-01

    Highlights: • A novel thermal energy storage based on flat micro-heat pipe array is proposed. • The thermal storage shows excellent thermal performance in the working process. • The novel thermal storage has the advantage of low flow resistance. - Abstract: The thermal performance of an air-based phase change storage unit is analyzed and discussed in this study. The thermal energy storage uses flat micro-heat pipe array (FMHPA) as the core heat transfer component and lauric acid as phase change material (PCM). An experimental system is devised to test the heat storage–release property of the storage unit under different inlet temperatures and flow rates of the heat transfer medium. The performance of the storage unit and the melting/solidification curves of the phase change material are obtained based on extensive experimental data. Experimental results indicate that the flat micro-heat pipe array exhibits excellent temperature uniformity in the heat storage–release process, and the performance of the storage unit is efficient and steady.

  4. Fatigue of LMFBR piping due to flow stratification

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, W.S.

    1983-01-01

    Flow stratification due to reverse flow was simulated in a 1/5-scale water model of a LMFBR primary pipe loop. The stratified flow was observed to have a dynamic interface region which oscillated in a wave pattern. The behavior of the interface was characterized in terms of location, local temperature fluctuation and duration for various reverse flow conditions. A structural assessment was performed to determine the effects of stratified flow on the fatigue life of the pipe. Both the static and dynamic aspects of flow stratification were examined. The dynamic interface produces thermal striping on the inside of the pipe wall which is shown to have the most deleterious effect on the pipe wall and produce significant fatigue damage relative to a static interface.

  5. Fatigue of LMFBR piping due to flow stratification

    International Nuclear Information System (INIS)

    Woodward, W.S.

    1983-01-01

    Flow stratification due to reverse flow was simulated in a 1/5-scale water model of a LMFBR primary pipe loop. The stratified flow was observed to have a dynamic interface region which oscillated in a wave pattern. The behavior of the interface was characterized in terms of location, local temperature fluctuation and duration for various reverse flow conditions. A structural assessment was performed to determine the effects of stratified flow on the fatigue life of the pipe. Both the static and dynamic aspects of flow stratification were examined. The dynamic interface produces thermal striping on the inside of the pipe wall which is shown to have the most deleterious effect on the pipe wall and produce significant fatigue damage relative to a static interface

  6. The method for measuring residual stress in stainless steel pipes

    International Nuclear Information System (INIS)

    Shimov, Georgy; Rozenbaum, Mikhail; Serebryakov, Alexandr; Serebryakov, Andrey

    2016-01-01

    The main reason of appearance and growth of corrosion damages of the nuclear steam generator heat exchanger tubes is the process of stress-corrosion cracking of metal under the influence of residual tensile stress. Methods used in the production for estimating residual stresses (such as a method of ring samples) allow measuring only the average tangential stress of the pipe wall. The method of ring samples does not allow to assess the level of residual stress in the surface layer of the pipe. This paper describes an experimental method for measuring the residual stresses on the pipe surface by etching a thin surface layer of the metal. The construction and working principle of a trial installation are described. The residual stresses in the wall of the tubes 16 × 1.5 mm (steel AISI 321) for nuclear steam generators is calculated. Keywords: heat exchange pipes, stress corrosion cracking, residual stresses, stress distribution, stress measurement.

  7. Oxygen control as a possible BWR pipe cracking remedy

    International Nuclear Information System (INIS)

    Gordon, B.M.; Gordon, G.M.; Kiss, E.

    1982-01-01

    Intergranular Stress Corrosion Cracking (IGSCC) of weld sensitized Type 304 stainless steel piping has occurred in both Pressurised and Boiling Water Reactors (PWRs and BWRs). Although not a safety problem, IGSCC has resulted in loss of plant availability and high costs for subsequent repair. For the BWRs, the problem has been resolved in plants under construction with qualified highly resistant piping alloys such as the low carbon Types 316 or 304 Nuclear Grade stainless steel, or by the use of fully qualified improved weld processing techniques or solution annealing that eliminates the weld sensitized material in contact with the environment. The Induction Heating Stress Improvement (IHSI) technique produces a very favorable weld residual tensile stress through the use of induction heating to create a through-wall stress gradient. Another potential mitigating technique that looks promising is the suppression of the oxygen in the primary system through the use of hydrogen overpressure. This technique offers unique advantages to older operating plants and can provide an even greater margin to plants using improved weld processing techniques. The effectiveness of using hydrogen to achieve oxygen suppression is discussed and results which indicate that this technique has a high probability of mitigating stress corrosion cracking are presented. (author)

  8. Fatigue strength of socket welded pipe joint

    International Nuclear Information System (INIS)

    Iida, K.; Matsuda, F.; Sato, M.; Higuchi, M.; Nakagawa, A.

    1994-01-01

    Fully reversed four point bending fatigue tests were carried out of small diameter socket welded joints made of carbon steels. Experimental parameters are pipe diameter, thickness of pipe and socket wall, throat depth and shape of fillet welds, slip-on and diametral gaps in the socket welding, lack of penetration at the root of fillet welds, and peening of fillet welds. In most cases a fatigue crack started from the root of the fillet, but in the case of higher stress amplitude, it tended to start from the toe of fillet. The standard socket welded joint of 50 mm diameter showed relatively low fatigue strength, 46 MPa in stress amplitude at the 10 7 cycles failure life. This value corresponds to about 1/5 of that of the smoothed base metal specimens in axial fatigue. The fatigue strength showed decrease with increasing pipe diameter, and increase with increasing the thickness of pipe and socket wall. The effects of throat depth and shape of fillet welds on fatigue strength were not significant. Contrary to the expectation, the fatigue strength of the socket welded joint without slip-on gap is higher than that of the joint with the normal gap. A lack of penetration at the root deleteriously reduced fatigue strength, showing 14 MPa in stress amplitude at the 10 7 cycles failure life for the 50 mm diameter socket joint. (orig.)

  9. An analysis of a pipe bend subjected to in-plane loads

    International Nuclear Information System (INIS)

    Hellen, T.K.

    1979-01-01

    This report describes a set of finite element analyses conducted on a pipe bend subjected to in-plane loads. The pipe is thin-walled, and two types of finite element, shells and solid bricks, are compared elastically. An alternative semi-analytical technique has also been used and experimental results are available, all of which show good correlative agreement. The use of suitable mesh refinement and order of numerical integration is examined. Finally, the solid elements are used to follow a loading sequence incorporating elasto-plastic behaviour as conducted by experiment. This work is an updated version of that used for the CEC benchmark calculations for the Fast Reactor Codes and Standards Working Group, Activity No 2, on Structural Analysis. (author)

  10. Short cracks in piping and piping welds. Seventh program report, March 1993-December 1994. Volume 4, Number 1

    Energy Technology Data Exchange (ETDEWEB)

    Wilkowski, G.M.; Ghadiali, N.; Rudland, D.; Krishnaswamy, P.; Rahman, S.; Scott, P. [Battelle, Columbus, OH (United States)

    1995-04-01

    This is the seventh progress report of the U.S. Nuclear Regulatory Commission`s research program entitled {open_quotes}Short Cracks in Piping and Piping Welds{close_quotes}. The program objective is to verify and improve fracture analyses for circumferentially cracked large-diameter nuclear piping with crack sizes typically used in leak-before-break (LBB) analyses and in-service flaw evaluations. All work in the eight technical tasks have been completed. Ten topical reports are scheduled to be published. Progress only during the reporting period, March 1993 - December 1994, not covered in the topical reports is presented in this report. Details about the following efforts are covered in this report: (1) Improvements to the two computer programs NRCPIPE and NRCPIPES to assess the failure behavior of circumferential through-wall and surface-cracked pipe, respectively; (2) Pipe material property database PIFRAC; (3) Circumferentially cracked pipe database CIRCUMCK.WKI; (4) An assessment of the proposed ASME Section III design stress rule changes on pipe flaw tolerance; and (5) A pipe fracture experiment on a section of pipe removed from service degraded by microbiologically induced corrosion (MIC) which contained a girth weld crack. Progress in the other tasks is not repeated here as it has been covered in great detail in the topical reports.

  11. Short cracks in piping and piping welds. Seventh program report, March 1993-December 1994. Volume 4, Number 1

    International Nuclear Information System (INIS)

    Wilkowski, G.M.; Ghadiali, N.; Rudland, D.; Krishnaswamy, P.; Rahman, S.; Scott, P.

    1995-04-01

    This is the seventh progress report of the U.S. Nuclear Regulatory Commission's research program entitled open-quotes Short Cracks in Piping and Piping Weldsclose quotes. The program objective is to verify and improve fracture analyses for circumferentially cracked large-diameter nuclear piping with crack sizes typically used in leak-before-break (LBB) analyses and in-service flaw evaluations. All work in the eight technical tasks have been completed. Ten topical reports are scheduled to be published. Progress only during the reporting period, March 1993 - December 1994, not covered in the topical reports is presented in this report. Details about the following efforts are covered in this report: (1) Improvements to the two computer programs NRCPIPE and NRCPIPES to assess the failure behavior of circumferential through-wall and surface-cracked pipe, respectively; (2) Pipe material property database PIFRAC; (3) Circumferentially cracked pipe database CIRCUMCK.WKI; (4) An assessment of the proposed ASME Section III design stress rule changes on pipe flaw tolerance; and (5) A pipe fracture experiment on a section of pipe removed from service degraded by microbiologically induced corrosion (MIC) which contained a girth weld crack. Progress in the other tasks is not repeated here as it has been covered in great detail in the topical reports

  12. Piping inspection round robin

    International Nuclear Information System (INIS)

    Heasler, P.G.; Doctor, S.R.

    1996-04-01

    The piping inspection round robin was conducted in 1981 at the Pacific Northwest National Laboratory (PNNL) to quantify the capability of ultrasonics for inservice inspection and to address some aspects of reliability for this type of nondestructive evaluation (NDE). The round robin measured the crack detection capabilities of seven field inspection teams who employed procedures that met or exceeded the 1977 edition through the 1978 addenda of the American Society of Mechanical Engineers (ASME) Section 11 Code requirements. Three different types of materials were employed in the study (cast stainless steel, clad ferritic, and wrought stainless steel), and two different types of flaws were implanted into the specimens (intergranular stress corrosion cracks (IGSCCs) and thermal fatigue cracks (TFCs)). When considering near-side inspection, far-side inspection, and false call rate, the overall performance was found to be best in clad ferritic, less effective in wrought stainless steel and the worst in cast stainless steel. Depth sizing performance showed little correlation with the true crack depths

  13. An inspection of pipe by snake robot

    Directory of Open Access Journals (Sweden)

    František Trebuňa

    2016-10-01

    Full Text Available The article deals with development and application of snake robot for inspection pipes. The first step involves the introduction of a design of mechanical and electrical parts of the snake robot. Next, the analysis of the robot locomotion is introduced. For the curved pipe, potential field method is used. By this method, the system is able to generate path for the head and rear robot, linking the environment with obstacles, which are represented by the walls of the pipe. Subsequently, the solution of potential field method is used in inverse kinematic model, which respects tasks as obstacle avoidance, joint limit avoidance, and singularity avoidance. Mentioned approach is then tested on snake robot in provisional pipe with rectangular cross section. For this research, software Matlab (2013b is used as the control system in cooperation with the control system of robot, which is based on microcontrollers. By experiments, it is shown that designed robot is able to pass through straight and also curved pipe.

  14. Metallized ceramic vacuum pipe for particle beams

    International Nuclear Information System (INIS)

    Butler, B.L.; Featherby, M.

    1990-01-01

    A ceramic vacuum chamber segment in the form of a long pipe of rectangular cross section has been assembled from standard shapes of alumina ceramic using glass bonding techniques. Prior to final glass bonding, the internal walls of the pipe are metallized using an electroplating technology. These advanced processes allow for precision patterning and conductivity control of surface conducting films. The ability to lay down both longitudinal and transverse conductor patterns separated by insulating layers of glass give the accelerator designer considerable freedom in tailoring longitudinal and transverse beam pipe impedances. Assembly techniques of these beam pipes are followed through two iterations of semi-scale pipe sections made using candidate materials and processes. These demonstrate the feasibility of the concepts and provide parts for electrical characterization and for further refinement of the approach. In a parallel effort, a variety of materials, joining processes and assembly procedures have been tried to assure flexibility and reliability in the construction of 10-meter long sections to any required specifications

  15. Electron beam welding in the fabrication of thick-walled large-size pipes of C-Mn steels. Final report; Elektronenstrahlschweissen bei der Fertigung von dickwandigen Grossrohren aus C-Mn-Staehlen. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Woeste, K

    2001-11-01

    This research project investigates electron beam welding as a method of fabrication of large-size pipes with longitudinal welds. The effects of the welding speed on the mechanical and technological properties of the weld are investigated. From the economic view, electron beam welding is much more favourable than submerged-arc welding. [German] Dieses Forschungsprojekt soll dazu beitragen, das Elektronenstrahlschweissen als Fertigungsverfahren fuer laengsnahtgeschweisste Grossrohre zu qualifizieren. Dabei wird der Einfluss der Schweissgeschwindigkeit auf die mechanisch-technologischen Eigenschaften der Schweissung untersucht. Im Wirtschaftlichkeitsvergleich schneidet Elektronenstrahlschweissverfahren gegenueber dem Unterpulverschweissverfahren eindeutig besser ab.

  16. Assessment of cracked pipes in primary piping systems of PWR nuclear reactors

    International Nuclear Information System (INIS)

    Jong, Rudolf Peter de

    2004-01-01

    Pipes related to the Primary System of Pressurized Water Reactors (PWR) are manufactured from high toughness austenitic and low alloy ferritic steels, which are resistant to the unstable growth of defects. A crack in a piping system should cause a leakage in a considerable rate allowing its identification, before its growth could cause a catastrophic rupture of the piping. This is the LBB (Leak Before Break) concept. An essential step in applying the LBB concept consists in the analysis of the stability of a postulated through wall crack in a specific piping system. The methods for the assessment of flawed components fabricated from ductile materials require the use of Elasto-Plastic Fracture Mechanics (EPFM). Considering that the use of numerical methods to apply the concepts of EPFM may be expensive and time consuming, the existence of the so called simplified methods for the assessment of flaws in piping are still considered of great relevance. In this work, some of the simplified methods, normalized procedures and criteria for the assessment of the ductile behavior of flawed components available in literature are described and evaluated. Aspects related to the selection of the material properties necessary for the application of these methods are also discussed. In a next .step, the methods are applied to determine the instability load in some piping configurations under bending and containing circumferential through wall cracks. Geometry and material variations are considered. The instability loads, obtained for these piping as the result of the application of the selected methods, are analyzed and compared among them and with some experimental results obtained from literature. The predictions done with the methods demonstrated that they provide consistent results, with good level of accuracy with regard to the determination of maximum loads. These methods are also applied to a specific Study Case. The obtained results are then analyzed in order to give

  17. Transients in pipes

    International Nuclear Information System (INIS)

    Marchesin, D.; Paes-Leme, P.J.S.; Sampaio, R.

    1981-01-01

    The motion of a fluid in a pipe is commonly modeled utilizing the one space dimension conservation laws of mass and momentum. The development of shocks and spikes utilizing the uniform sampling method is studied. The effects of temperature variations and friction are compared for gas pipes. (Author) [pt

  18. These Pipes Are "Happening"

    Science.gov (United States)

    Skophammer, Karen

    2010-01-01

    The author is blessed with having the water pipes for the school system in her office. In this article, the author describes how the breaking of the pipes had led to a very worthwhile art experience for her students. They practiced contour and shaded drawing techniques, reviewed patterns and color theory, and used their reasoning skills--all while…

  19. Piping research program plan

    International Nuclear Information System (INIS)

    1988-09-01

    This document presents the piping research program plan for the Structural and Seismic Engineering Branch and the Materials Engineering Branch of the Division of Engineering, Office of Nuclear Regulatory Research. The plan describes the research to be performed in the areas of piping design criteria, environmentally assisted cracking, pipe fracture, and leak detection and leak rate estimation. The piping research program addresses the regulatory issues regarding piping design and piping integrity facing the NRC today and in the foreseeable future. The plan discusses the regulatory issues and needs for the research, the objectives, key aspects, and schedule for each research project, or group of projects focussing of a specific topic, and, finally, the integration of the research areas into the regulatory process is described. The plan presents a snap-shot of the piping research program as it exists today. However, the program plan will change as the regulatory issues and needs change. Consequently, this document will be revised on a bi-annual basis to reflect the changes in the piping research program. (author)

  20. Experimental Studies on the Behavior of a Newly-Developed Type of Self-Insulating Concrete Masonry Shear Wall under in-Plane Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Abu-Bakre Abdelmoneim Elamin Mohamad

    2017-04-01

    Full Text Available This study aimed to investigate the inelastic behavior of a newly-developed type of self-insulating concrete masonry shear wall (SCMSW under in-plane cyclic loading. The new masonry system was made from concrete blocks with special configurations to provide a stronger bond between units than ordinary concrete masonry units. A total of six fully-grouted SCMSWs were prepared with different heights (1.59 to 5.78 m and different vertical steel configurations. The developed masonry walls were tested under in-plane cyclic loading and different constant axial load ratios. In addition, the relationship between the amount of axial loading, the amount of the flexural reinforcement and the wall aspect ratios and the nonlinear hysteretic response of the SCMSW was evaluated. The results showed that the lateral load capacity of SCMSW increases with the amount of applied axial load and the amount of vertical reinforcement. However, the lateral load capacity decreases as the wall aspect ratio increases. The existence of the boundary elements at the SCMSW ends increases the ductility and the lateral load capacity. Generally, the SCMSW exhibited predominantly flexural behavior. These results agreed with those reported in previous research for walls constructed with ordinary units.

  1. Current results for the NRC's short cracks in piping and piping welds research program

    International Nuclear Information System (INIS)

    Wilkowski, G.; Krishnaswamy, P. Brust, F.; Francini, R.; Ghadiali, N.; Kilinski, T.; Marschall, C.; Rahman, S.; Rosenfield, A.; Scott, P.

    1994-01-01

    The overall objective of the Short Cracks in Piping and Piping Welds Program is to verify and improve engineering analyses to predict the fracture behavior of circumferentially cracked pipe under quasi-static loading with particular attention to crack lengths typically used in LBB or flaw evaluation criteria. The program consists of 8 technical tasks as listed below. Task 1 Short through-wall-cracked (TWC) pipe evaluations. Task 2 Short surface-cracked pipe evaluations. Task 3 Bi-metallic weld crack evaluations. Task 4 Dynamic strain aging and crack instabilities. Task 5 Fracture evaluations of anisotropic pipe. Task 6 Crack-opening-area evaluations. Task 7 NRCPIPE Code improvements. Task 8 Additional efforts. Since the last WRSM meeting several additional tasks have been initiated in this program. These are discussed in Task 8. Based on results to date, the first seven tasks have also been modified as deemed necessary. The most significant accomplishments in each of these tasks since the last WRSIM meeting are discussed below. The details of all the results presented here are published in the semiannual reports from this program

  2. Assessment of water pipes durability under pressure surge

    Science.gov (United States)

    Pham Ha, Hai; Minh, Lanh Pham Thi; Tang Van, Lam; Bulgakov, Boris; Bazhenova, Soafia

    2017-10-01

    Surge phenomenon occurs on the pipeline by the closing valve or pump suddenly lost power. Due to the complexity of the water hammer simulation, previous researches have only considered water hammer on the single pipe or calculation of some positions on water pipe network, it have not been analysis for all of pipe on the water distribution systems. Simulation of water hammer due to closing valve on water distribution system and the influence level of pressure surge is evaluated at the defects on pipe. Water hammer on water supply pipe network are simulated by Water HAMMER software academic version and the capacity of defects are calculated by SINTAP. SINTAP developed from Brite-Euram projects in Brussels-Belgium with the aim to develop a process for assessing the integrity of the structure for the European industry. Based on the principle of mechanical fault, indicating the size of defects in materials affect the load capacity of the product in the course of work, the process has proposed setting up the diagram to fatigue assessment defect (FAD). The methods are applied for water pipe networks of Lien Chieu district, Da Nang city, Viet Nam, the results show the affected area of wave pressure by closing the valve and thereby assess the greatest pressure surge effect to corroded pipe. The SINTAP standard and finite element mesh analysis at the defect during the occurrence of pressure surge which will accurately assess the bearing capacity of the old pipes. This is one of the bases to predict the leakage locations on the water distribution systems. Amount of water hammer when identified on the water supply networks are decreasing due to local losses at the nodes as well as the friction with pipe wall, so this paper adequately simulate water hammer phenomena applying for actual water distribution systems. The research verified that pipe wall with defect is damaged under the pressure surge value.

  3. Low frequency oscillatory flow in a rotating curved pipe

    Institute of Scientific and Technical Information of China (English)

    陈华军; 章本照; 苏霄燕

    2003-01-01

    The low frequency oscillatory flow in a rotating curved pipe was studied by using the method of bi-parameter perturbation. Perturbation solutions up to the second order were obtained and the effects of rotationon the low frequency oscillatory flow were examined in detail, The results indicated that there exists evident difference between the low frequency oscillatory flow in a rotating curved pipe and in a curved pipe without ro-tation. During a period, four secondary vortexes may exist on the circular cross-section and the distribution of axial velocity and wall shear stress are related to the ratio of the Coriolis foree to centrifugal foree and the axial pressure gradient.

  4. Low frequency oscillatory flow in a rotating curved pipe

    Institute of Scientific and Technical Information of China (English)

    陈华军; 章本照; 苏霄燕

    2003-01-01

    The low frequency oscillatory flow in a rotating curved pipe was studied by using the method of bi-parameter perturbation. Perturbation solutions up to the second order were obtained and the effects of rotation on the low frequency oscillatory flow were examined in detail. The results indicated that there exists evident difference between the low frequency oscillatory flow in a rotating curved pipe and in a curved pipe without rotation. During a period, four secondary vortexes may exist on the circular cross-section and the distribution of axial velocity and wall shear stress are related to the ratio of the Coriolis force to centrifugal force and the axial pressure gradient.

  5. Acoustic imaging in a water filled metallic pipe

    International Nuclear Information System (INIS)

    Kolbe, W.F.; Turko, B.T.; Leskovar, B.

    1984-04-01

    A method is described for the imaging of the interior of a water filled metallic pipe using acoustical techniques. The apparatus consists of an array of 20 acoustic transducers mounted circumferentially around the pipe. Each transducer is pulsed in sequence, and the echos resulting from bubbles in the interior are digitized and processed by a computer to generate an image. The electronic control and digitizing system and the software processing of the echo signals are described. The performance of the apparatus is illustrated by the imaging of simulated bubbles consisting of thin walled glass spheres suspended in the pipe

  6. Acoustic imaging in a water filled metallic pipe

    International Nuclear Information System (INIS)

    Kolbe, W.F.; Leskovar, B.; Turko, B.T.

    1985-01-01

    A method is described for the imaging of the interior of a water filled metallic pipe using acoustical techniques. The apparatus consists of an array of 20 acoustic transducers mounted circumferentially around the pipe. Each transducer is pulsed in sequence, and the echos resulting from bubbles in the interior are digitized and processed by a computer to generate an image. The electronic control and digitizing system and the software processing of the echo signals are described. The performance of the apparatus is illustrated by the imaging of simulated bubbles consisting of thin walled glass spheres suspended in the pipe

  7. Rupture hardware minimization in pressurized water reactor piping

    International Nuclear Information System (INIS)

    Mukherjee, S.K.; Ski, J.J.; Chexal, V.; Norris, D.M.; Goldstein, N.A.; Beaudoin, B.F.; Quinones, D.F.; Server, W.L.

    1989-01-01

    For much of the high-energy piping in light reactor systems, fracture mechanics calculations can be used to assure pipe failure resistance, thus allowing the elimination of excessive rupture restraint hardware both inside and outside containment. These calculations use the concept of leak-before-break (LBB) and include part-through-wall flaw fatigue crack propagation, through-wall flaw detectable leakage, and through-wall flaw stability analyses. Performing these analyses not only reduces initial construction, future maintenance, and radiation exposure costs, but also improves the overall safety and integrity of the plant since much more is known about the piping and its capabilities than would be the case had the analyses not been performed. This paper presents the LBB methodology applied a Beaver Valley Power Station- Unit 2 (BVPS-2); the application for two specific lines, one inside containment (stainless steel) and the other outside containment (ferrutic steel), is shown in a generic sense using a simple parametric matrix. The overall results for BVPS-2 indicate that pipe rupture hardware is not necessary for stainless steel lines inside containment greater than or equal to 6-in. (152-mm) nominal pipe size that have passed a screening criteria designed to eliminate potential problem systems (such as the feedwater system). Similarly, some ferritic steel line as small as 3-in. (76-mm) diameter (outside containment) can qualify for pipe rupture hardware elemination

  8. Pipe rupture hardware minimization in pressurized water reactor system

    International Nuclear Information System (INIS)

    Mukherjee, S.K.; Szyslowski, J.J.; Chexal, V.; Norris, D.M.; Goldstein, N.A.; Beaudoin, B.; Quinones, D.; Server, W.

    1987-01-01

    For much of the high energy piping in light water reactor systems, fracture mechanics calculations can be used to assure pipe failure resistance, thus allowing the elimination of excessive rupture restraint hardware both inside and outside containment. These calculations use the concept of leak-before-break (LBB) and include part-through-wall flaw fatigue crack propagation, through-wall flaw detectable leakage, and through-wall flaw stability analyses. Performing these analyses not only reduces initial construction, future maintenance, and radiation exposure costs, but the overall safety and integrity of the plant are improved since much more is known about the piping and its capabilities than would be the case had the analyses not been performed. This paper presents the LBB methodology applied at Beaver Valley Power Station - Unit 2 (BVPS-2); the application for two specific lines, one inside containment (stainless steel) and the other outside containment (ferritic steel), is shown in a generic sense using a simple parametric matrix. The overall results for BVPS-2 indicate that pipe rupture hardware is not necessary for stainless steel lines inside containment greater than or equal to 6-in (152 mm) nominal pipe size that have passed a screening criteria designed to eliminate potential problem systems (such as the feedwater system). Similarly, some ferritic steel lines as small as 3-in (76 mm) diameter (outside containment) can qualify for pipe rupture hardware elimination

  9. Oscillating heat pipes

    CERN Document Server

    Ma, Hongbin

    2015-01-01

    This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation,  theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary  factors affecting oscillating motions and heat transfer,  neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes.  The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...

  10. Applications of equivalent linearization approaches to nonlinear piping systems

    International Nuclear Information System (INIS)

    Park, Y.; Hofmayer, C.; Chokshi, N.

    1997-01-01

    The piping systems in nuclear power plants, even with conventional snubber supports, are highly complex nonlinear structures under severe earthquake loadings mainly due to various mechanical gaps in support structures. Some type of nonlinear analysis is necessary to accurately predict the piping responses under earthquake loadings. The application of equivalent linearization approaches (ELA) to seismic analyses of nonlinear piping systems is presented. Two types of ELA's are studied; i.e., one based on the response spectrum method and the other based on the linear random vibration theory. The test results of main steam and feedwater piping systems supported by snubbers and energy absorbers are used to evaluate the numerical accuracy and limitations

  11. Effects of swirl in turbulent pipe flows : computational studies

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, Frode

    2011-07-01

    The primary objective of this doctoral thesis was to investigate the effect of swirl in steady turbulent pipe flows. The work has been carried out by a numerical approach, with direct numerical simulations as the method of choice. A key target to pursue was the effects of the swirl on the wall friction in turbulent pipe flows. The motivation came from studies of rotating pipe flows in which drag reduction was achieved. Drag reduction was reported to be due to the swirl favourably influencing the coherent turbulent structures in the near-wall region. Based on this, it was decided to investigate if similar behaviour could be obtained by inducing a swirl in a pipe with a stationary wall. To do a thorough investigation of the general three-dimensional swirl flow and particularly of the swirl effects; chosen variations of mean and turbulent flow parameters were explored together with complementary flow visualizations. Two different approaches in order to induce the swirl in the turbulent pipe flow, have been carried out. However, the present thesis might be regarded to be comprised of three parts. The first part consists of the first approach to induce the swirl. Here a prescribed circumferential force was implemented in a serial open source Navier-Stokes solver. In the second approach, the swirl was intended induced by implementing structures at the wall. Simulations of flows through a pipe with one or more helical fin(s) at the pipe wall was decided to be performed. In order to pursue this approach, it was found necessary to do a parallelization of the existing serial numerical code. The key element of this parallelization has been included as a part of the present work. Additionally, the helical fin(s) were implemented into the code by use of an immersed boundary method. A validation of this work is also documented in the thesis. The work done by parallelizing the code and implementing an immersed boundary method constitutes the second part of the present thesis. The

  12. Structural alterations of the coronary arterial wall are associated with myocardial flow heterogeneity in type 2 diabetes mellitus

    International Nuclear Information System (INIS)

    Schindler, Thomas H.; Facta, Alvaro D.; Prior, John O.; Cadenas, Jerson; Zhang, Xiao-Li; Sayre, James; Goldin, Jonathan; Schelbert, Heinrich R.

    2009-01-01

    To determine the relationship between carotid intima-media thickness (IMT), coronary artery calcification (CAC), and myocardial blood flow (MBF) at rest and during vasomotor stress in type 2 diabetes mellitus (DM). In 68 individuals, carotid IMT was measured using high-resolution vascular ultrasound, while the presence of CAC was determined with electron beam tomography (EBT). Global and regional MBF was determined in milliliters per gram per minute with 13 N-ammonia and positron emission tomography (PET) at rest, during cold pressor testing (CPT), and during adenosine (ADO) stimulation. There was neither a relationship between carotid IMT and CAC (r = 0.10, p = 0.32) nor between carotid IMT and coronary circulatory function in response to CPT and during ADO (r = -0.18, p = 0.25 and r = 0.10, p = 0.54, respectively). In 33 individuals, EBT detected CAC with a mean Agatston-derived calcium score of 44 ± 18. There was a significant difference in regional MBFs between territories with and without CAC at rest and during ADO-stimulated hyperemia (0.69 ± 0.24 vs. 0.74 ± 0.23 and 1.82 ± 0.50 vs. 1.95 ± 0.51 ml/g/min; p ≤ 0.05, respectively) and also during CPT in DM but less pronounced (0.81 ± 0.24 vs. 0.83 ± 0.23 ml/g/min; p = ns). The increase in CAC was paralleled with a progressive regional decrease in resting as well as in CPT- and ADO-related MBFs (r = -0.36, p ≤ 0.014; r = -0.46, p ≤ 0.007; and r = -0.33, p ≤ 0.041, respectively). The absence of any correlation between carotid IMT and coronary circulatory function in type 2 DM suggests different features and stages of early atherosclerosis in the peripheral and coronary circulation. PET-measured MBF heterogeneity at rest and during vasomotor stress may reflect downstream fluid dynamic effects of coronary artery disease (CAD)-related early structural alterations of the arterial wall. (orig.)

  13. Corrosion and deposit determination in large diameter pipes by radiography

    International Nuclear Information System (INIS)

    Harara, W.

    2006-08-01

    Two steel reference pipes with outer diameters of 8 and 12 inches were machined to make artificial defects on each of them, such as inside and outside steps of different wall thicknesses, inside and outside flat bottomed holes (FBH) of different diameters and depths on steps, flat area (FA), and ground patch (GP). The artificial defect were made to simulate natural corrosion attack as regular corrosion and pitting. The two reference pipes were tested according to tangential radiography technique and double wall single image technique. Tangential radiography technique had been applied using Co-60 radio-isotope to determine the steps thicknesses, the FBH, the remaining wall thickness under the FA, the remaining wall thickness above the GP, and the minimum detectable thickness of the artificial cement deposit on the two reference pipes, with and without insulation. Double wall single image technique had also been applied on the two reference pipes with and without insulation using Ir-192 radio-isotope to measure the flat bottomed holes depths, GP depth, and FA depth by density measurement. The measurement results obtained from the radiographs confirm that, tangential radiography technique can be applied to detect and evaluate the inside and outside regular corrosion attack in the large diameter pipes. It can also be applied to detect and evaluate the outside FBH with depth equal or greater than 10%. Inside 10% FBH and inside 20% FBH can not be detected if their diameters are not larger than certain value related to diameter and wall thickness of the pipe under test. Increasing the film density up to 5 outside the pipe did not provide any detection improvement of 10% and 20% inside FBH. Tangential radiography technique can also be applied to detect and measure the deposit inside the pipes. Double wall technique can be applied as an alternative method of the tangential radiography technique to detect and to evaluate the shallow and small diameter, 10% and 20% inside FBH

  14. Failure Behavior of Elbows with Local Wall Thinning

    Science.gov (United States)

    Lee, Sung-Ho; Lee, Jeong-Keun; Park, Jai-Hak

    Wall thinning defect due to corrosion is one of major aging phenomena in carbon steel pipes in most plant industries, and it results in reducing load carrying capacity of the piping components. A failure test system was set up for real scale elbows containing various simulated wall thinning defects, and monotonic in-plane bending tests were performed under internal pressure to find out the failure behavior of them. The failure behavior of wall-thinned elbows was characterized by the circumferential angle of thinned region and the loading conditions to the piping system.

  15. First wall of thermonuclear device

    International Nuclear Information System (INIS)

    Kizawa, Makoto; Koizumi, Makoto; Nishihara, Yoshihiro.

    1990-01-01

    The first wall of a thermonuclear device is constituted with inner wall tiles, e.g. made of graphite and metal substrates for fixing them. However, since the heat expansion coefficient is different between the metal substrates and intermediate metal members, thermal stresses are caused to deteriorate the endurance of the inner wall tiles. In view of the above, low melting metals are disposed at the portion of contact between the inner wall tiles and the metal substrates and, further, a heat pipe structure is incorporated into the metal substrates. Under the thermal load, for example, during operation of the thermonuclear device, the low melting metals at the portion of contact are melted into liquid metals to enhance the state of contact between the inner wall tiles and the metal substrate to reduce the heat resistance and improve the heat conductivity. Even if there is a difference in the heat expansion coefficient between the inner wall tiles and the metal substrates, neither sharing stresses not thermal stresses are caused. Further, since the heat pipe structure is incorporated into the metal substrates, the lateral unevenness of the temperature in the metal substrates can be eliminated. Thus, the durability of the inner wall tiles can be improved. (N.H.)

  16. Pipe rupture test results; 6 in. pipe whip test under BWR LOCA conditions

    International Nuclear Information System (INIS)

    Kurihara, Ryoichi; Yano, Toshikazu; Ueda, Shuzo; Isozaki, Toshikuni; Miyazaki, Noriyuki; Kato, Rokuro; Miyazono, Shohachiro

    1983-02-01

    A series of pipe rupture tests has been performed in JAERI to demonstrate the safety of the primary coolant circuits in the event of pipe rupture, in nuclear power plants. The present report summarizes the results of 6 in. pipe whip tests (RUN 5605, 5606), under BWR LOCA conditions (285 0 C, 6.8 MPa), which were performed in August, 1981. The test pipe is made of Type 304 stainless steel and its outer diameter is 6 in. and its thickness is 11.1 mm. The restraints are made of Type 304 stainless steel and its diameter is 16.0 mm. Two restraints were set on the restraint support with clearance of 100 mm. Overhang length was varied as the parameter in these tests and was 300 mm or 700 mm. The following results are obtained. (1) The deformations of a pipe and restraints are limited effectively by shorter overhang length of 300. However, they become larger when the overhang length is 700 mm, and the pipe deforms especially at the setting point of restraints. (2) Velocity at the free end of pipe becomes about 30 m/sec just after the break. However, velocity at the setting point of restraint becomes about only 4 m/sec just after the break. (3) It seems from the comparison between the 4 in. tests and 6 in. tests that the maximum restraint force of 6 in. tests is about two times as large as that of 4 in. tests. (author)

  17. Destabilizing turbulence in pipe flow

    Science.gov (United States)

    Kühnen, Jakob; Song, Baofang; Scarselli, Davide; Budanur, Nazmi Burak; Riedl, Michael; Willis, Ashley P.; Avila, Marc; Hof, Björn

    2018-04-01

    Turbulence is the major cause of friction losses in transport processes and it is responsible for a drastic drag increase in flows over bounding surfaces. While much effort is invested into developing ways to control and reduce turbulence intensities1-3, so far no methods exist to altogether eliminate turbulence if velocities are sufficiently large. We demonstrate for pipe flow that appropriate distortions to the velocity profile lead to a complete collapse of turbulence and subsequently friction losses are reduced by as much as 90%. Counterintuitively, the return to laminar motion is accomplished by initially increasing turbulence intensities or by transiently amplifying wall shear. Since neither the Reynolds number nor the shear stresses decrease (the latter often increase), these measures are not indicative of turbulence collapse. Instead, an amplification mechanism4,5 measuring the interaction between eddies and the mean shear is found to set a threshold below which turbulence is suppressed beyond recovery.

  18. Estimation of piping temperature fluctuations based on external strain measurements

    International Nuclear Information System (INIS)

    Morilhat, P.; Maye, J.P.

    1993-01-01

    Due to the difficulty to carry out measurements at the inner sides of nuclear reactor piping subjected to thermal transients, temperature and stress variations in the pipe walls are estimated by means of external thermocouples and strain-gauges. This inverse problem is solved by spectral analysis. Since the wall harmonic transfer function (response to a harmonic load) is known, the inner side signal will be obtained by convolution of the inverse transfer function of the system and of the strain measurement enables detection of internal temperature fluctuations in a frequency range beyond the scope of the thermocouples. (authors). 5 figs., 3 refs

  19. Volcanology of Tuzo pipe (Gahcho Kué cluster) — Root-diatreme processes re-interpreted

    Science.gov (United States)

    Seghedi, I.; Maicher, D.; Kurszlaukis, S.

    2009-11-01

    The Middle Cambrian (~ 540 Ma) Gahcho Kué Kimberlite Field is situated about 275 km ENE of Yellowknife, NWT, Canada. The kimberlites were emplaced into 2.6 Ga Archean granitic rocks of the Yellowknife Supergroup. Four larger kimberlite bodies (5034, Tesla, Tuzo, and Hearne) as well as a number of smaller pipes and associated sheets occur in the field. In plan view, the Tuzo pipe has a circular outline at the surface, and it widens towards deeper levels. The pipe infill consists of several types of coherent and fragmental kimberlite facies. Coherent or apparent coherent (possibly welded) kimberlite facies dominate at depth, but also occur at shallow levels, as dikes intruded late in the eruptive sequence or individual coherent kimberlite clasts. The central and shallower portions of the pipe consist of several fragmental kimberlite varieties that are texturally classified as Tuffisitic Kimberlites. The definition, geometry and extent of the geological units are complex and zones controlled by vertical elements are most significant. The fluidal outlines of some of the coherent kimberlite clasts suggest that at least some are the product of disruption of magma that was in a semi-plastic state or even of welded material. Ragged clasts at low levels are inferred to form part of a complex peperite-like system that intrudes the base of the root zone. A variable, often high abundance of local wall-rock xenoliths between and within the kimberlite phases is observed, varying in size from sub-millimeter to several tens of meters. Wall-rock fragments are common at all locations within the pipe but are especially frequent in a domain with a belt-like geometry between 120 and 200 m depth in the pipe. Steeply outward-dipping bedded deposits made up of wall-rock fragments occur in deep levels of the pipe and are especially common under the downward-widening roof segments. The gradational contact relationships of these deposits with the surrounding kimberlite-bearing rocks as well

  20. A benchmark study for the crown-type splashing dynamics of one- and two-component droplet wall-film interactions

    Science.gov (United States)

    Geppert, A.; Terzis, A.; Lamanna, G.; Marengo, M.; Weigand, B.

    2017-12-01

    The present paper investigates experimentally the impact dynamics of crown-type splashing for miscible two- and one-component droplet wall-film interactions over a range of Weber numbers and dimensionless film thicknesses. The splashing outcome is parametrised in terms of a set of quantifiable parameters, such as crown height, top and base diameter, wall inclination, number of fingers, and secondary droplet properties. The results show that the outcome of a splashing event is not affected by the choice of similar or dissimilar fluids, provided the dimensionless film thickness is larger than 0.1. Below this threshold, distinctive features of two-component interactions appear, such as hole formation and crown bottom breakdown. The observation of different crown shapes (e.g. V-shaped, cylindrical, and truncated-cone) confirms that vorticity production induces changes in the crown wall inclination, thus affecting the evolution of the crown height and top diameter. The evolution of the crown base diameter, instead, is mainly dependent on the relative importance of liquid inertia and viscous losses in the wall-film. The maximum number of liquid fingers decreases with increasing wall, film thickness, due to the enhanced attenuation of the effect of surface properties on the fingering process. The formation of secondary droplets is also affected by changes in the crown wall inclination. In particular, for truncated-cone shapes the occurrence of crown rim contraction induces a large scatter in the secondary droplet properties. Consequently, empirical models for the maximum number and mean diameter of the secondary droplets are derived for V-shaped crowns, as observed for the hexadecane-Hyspin interactions.