WorldWideScience

Sample records for type fuel options

  1. Fuel options for oil sands

    International Nuclear Information System (INIS)

    Wise, T.

    2005-01-01

    This presentation examined fuel options in relation to oil sands production. Options include steam and hydrogen (H 2 ) for upgrading; natural gas by pipeline; bitumen; petroleum coke; and coal. Various cost drivers were also considered for each of the fuel options. It was noted that natural gas has high energy value but the capital cost is low, and that coke's energy value is very low but the capital cost is high. A chart forecasting energy prices was presented. The disposition of Western Canada's northern gas situation was presented. Issues concerning rail transportation for coal were considered. Environmental concerns were also examined. A chart of typical gas requirements for 75,000 B/D oil sands projects was presented. Issues concerning steam generation with gas and mining cogeneration with gas fuel and steam turbines were discussed, as well as cogeneration and H 2 with gas fuels and steam turbines. Various technology and fuel utility options were examined, along with details of equipment and processes. Boiler technologies were reviewed by type as well as fuel and steam quality and pressure. Charts of cogeneration with gas turbine and circulation fluid bed boilers were presented. Gasification processes were reviewed and a supply cost basis was examined. Cost drivers were ranked according to energy, operating considerations and capital investment. Results indicated that fuel costs were significant for gas and coal. Capital costs and capital recovery charge was most significant with coal and gasification technology. Without capital recovery, cash costs favour the use of bitumen and coke. Gasification would need lower capital and lower capital recovery to compete with direct burning. It was concluded that direct burning of bitumen can compete with natural gas. With price volatility anticipated, dual fuel capability for bitumen and gas has merit. Petroleum coke can be produced or retrieved from stockpiles. Utility supply costs of direct burning of coke is

  2. Alternative Fuels Data Center: Biodiesel Equipment Options

    Science.gov (United States)

    Equipment Options to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Equipment Options on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Equipment Options on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Equipment Options on Google Bookmark Alternative Fuels

  3. Sustainability Features of Nuclear Fuel Cycle Options

    Directory of Open Access Journals (Sweden)

    Stefano Passerini

    2012-09-01

    Full Text Available The nuclear fuel cycle is the series of stages that nuclear fuel materials go through in a cradle to grave framework. The Once Through Cycle (OTC is the current fuel cycle implemented in the United States; in which an appropriate form of the fuel is irradiated through a nuclear reactor only once before it is disposed of as waste. The discharged fuel contains materials that can be suitable for use as fuel. Thus, different types of fuel recycling technologies may be introduced in order to more fully utilize the energy potential of the fuel, or reduce the environmental impacts and proliferation concerns about the discarded fuel materials. Nuclear fuel cycle systems analysis is applied in this paper to attain a better understanding of the strengths and weaknesses of fuel cycle alternatives. Through the use of the nuclear fuel cycle analysis code CAFCA (Code for Advanced Fuel Cycle Analysis, the impact of a number of recycling technologies and the associated fuel cycle options is explored in the context of the U.S. energy scenario over 100 years. Particular focus is given to the quantification of Uranium utilization, the amount of Transuranic Material (TRU generated and the economics of the different options compared to the base-line case, the OTC option. It is concluded that LWRs and the OTC are likely to dominate the nuclear energy supply system for the period considered due to limitations on availability of TRU to initiate recycling technologies. While the introduction of U-235 initiated fast reactors can accelerate their penetration of the nuclear energy system, their higher capital cost may lead to continued preference for the LWR-OTC cycle.

  4. Spent fuel reprocessing options

    International Nuclear Information System (INIS)

    2008-08-01

    The objective of this publication is to provide an update on the latest developments in nuclear reprocessing technologies in the light of new developments on the global nuclear scene. The background information on spent fuel reprocessing is provided in Section One. Substantial global growth of nuclear electricity generation is expected to occur during this century, in response to environmental issues and to assure the sustainability of the electrical energy supply in both industrial and less-developed countries. This growth carries with it an increasing responsibility to ensure that nuclear fuel cycle technologies are used only for peaceful purposes. In Section Two, an overview of the options for spent fuel reprocessing and their level of development are provided. A number of options exist for the treatment of spent fuel. Some, including those that avoid separation of a pure plutonium stream, are at an advanced level of technological maturity. These could be deployed in the next generation of industrial-scale reprocessing plants, while others (such as dry methods) are at a pilot scale, laboratory scale or conceptual stage of development. In Section Three, research and development in support of advanced reprocessing options is described. Next-generation spent fuel reprocessing plants are likely to be based on aqueous extraction processes that can be designed to a country specific set of spent fuel partitioning criteria for recycling of fissile materials to advanced light water reactors or fast spectrum reactors. The physical design of these plants must incorporate effective means for materials accountancy, safeguards and physical protection. Section four deals with issues and challenges related to spent fuel reprocessing. The spent fuel reprocessing options assessment of economics, proliferation resistance, and environmental impact are discussed. The importance of public acceptance for a reprocessing strategy is discussed. A review of modelling tools to support the

  5. The feasibility study I on the blanket fuel options for the ATW/HYPER

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Woan; Lee, Byoung Oon; Lee, Bong Sang; Park, Won Seok; Meyer, M.K; Hayes, S.L

    2001-01-01

    The choice of a blanket fuel cycle technology and the fuel type for HYPER/ATW are important to develop an ADS with better economics, performance and safety. Even though several fuel types have been considered as an alternative of the blanket fuels for HYPER/ATW, the metal alloy and the dispersion fuels were selected as the candidate fuels for ADS, and the technical feasibilities for both fuels are evaluated in this report. General performance characteristics, fabrication abilities, technical aspects, safety aspects, economics, and non-proliferation aspects for each fuel type are reviewed and evaluated. And some technological problems are addressed in this report, focused on the development strategy, the roadmaps, and the flexibility to meet the missions and specific designs. This study has been performed at the first stage of conceptual design. Since it is under the lack of physical properties for each fuel material, no an attempt is made to select the best fuel option, but the more better fuel options are recommended.

  6. The feasibility study I on the blanket fuel options for the ATW/HYPER

    International Nuclear Information System (INIS)

    Hwang, Woan; Lee, Byoung Oon; Lee, Bong Sang; Park, Won Seok; Meyer, M.K; Hayes, S.L.

    2001-01-01

    The choice of a blanket fuel cycle technology and the fuel type for HYPER/ATW are important to develop an ADS with better economics, performance and safety. Even though several fuel types have been considered as an alternative of the blanket fuels for HYPER/ATW, the metal alloy and the dispersion fuels were selected as the candidate fuels for ADS, and the technical feasibilities for both fuels are evaluated in this report. General performance characteristics, fabrication abilities, technical aspects, safety aspects, economics, and non-proliferation aspects for each fuel type are reviewed and evaluated. And some technological problems are addressed in this report, focused on the development strategy, the roadmaps, and the flexibility to meet the missions and specific designs. This study has been performed at the first stage of conceptual design. Since it is under the lack of physical properties for each fuel material, no an attempt is made to select the best fuel option, but the more better fuel options are recommended

  7. CANDU fuel cycle options in Korea

    International Nuclear Information System (INIS)

    Boczar, P.G.; Fehrenbach, P.J.; Meneley, D.A.

    1996-04-01

    The easiest first step in CANDU fuel-cycle evolution may be the use of slightly enriched uranium (SEU), including recovered uranium from reprocessed LWR spent fuel. Relatively low enrichment (up to 1.2%) will result in a twoto three-fold reduction in the quantity of spent fuel per unit energy production, reductions in fuel-cycle costs, and greater flexibility in the design of new reactors. The CANFLEX (CANDU FLEXible) fuel bundle would be the optimal fuel carrier. A country that has both CANDU and PWR reactors can exploit the natural synergism between these two reactor types to minimize overall waste production, and maximize energy derived from the fuel. This synergism can be exploited through several different fuel cycles. A high burnup CANDU MOX fuel design could be used to utilize plutonium from conventional reprocessing or more advanced reprocessing options (such as co-processing). DUPIC (Direct Use of Spent PWR Fuel In CANDU) represents a recycle option that has a higher degree of proliferation resistance than does conventional reprocessing, since it uses only dry processes for converting spent PWR fuel into CANDU fuel, without separating the plutonium. Good progress is being made in the current KAERI, AECL, and U.S. Department of State program in demonstrating the technical feasibility of DUPIC. In the longer term, CANDU reactors offer even more dramatic synergistic fuel cycles with PWR or FBR reactors. If the objective of a national fuel-cycle program is the minimization of actinide waste or destruction of long-lived fission products, then studies have shown the superiority of CANDU reactors in meeting this objective. Long-term energy security can be assured either through the thorium cycle or through a CANDU 1 FBR system, in which the FBR would be operated as a 'fuel factory,' providing the fissile material to power a number of lower-cost, high efficiency CANDU reactors. In summary, the CANDU reactor's simple fuel design, high neutron economy, and on

  8. Evaluation of plate type fuel options for small power reactors

    International Nuclear Information System (INIS)

    Andrzejewski, Claudio de Sa

    2005-01-01

    Plate type fuels are generally used in research reactor. The utilization of this kind of configuration improves significantly the overall performance fuel. The conception of new fuels for small power reactors based in plate-type configuration needs a complete review of the safety criteria originally used to conduce power and research reactor projects. In this work, a group of safety criteria is established for the utilization of plate-type fuels in small power reactors taking into consideration the characteristics of power and research reactors. The performance characteristics of fuel elements are strongly supported by its materials properties and the adopted configuration for its fissile particles. The present work makes an orientated bibliographic investigation searching the best material properties (structural materials and fuel compounds) related to the performance fuel. Looking for good parafermionic characteristics and manufacturing exequibility associated to existing facilities in national research centres, this work proposes several alternatives of plate type fuels, considering its utilization in small power reactors: dispersions of UO 2 in stainless steel, of UO 2 in zircaloy, and of U-Mo alloy in zircaloy, and monolithic plates of U-Mo cladded with zircaloy. Given the strong dependency of radiation damage with temperature increase, the safety criteria related to heat transfer were verified for all the alternatives, namely the DNBR; coolant temperature lower than saturation temperature; peak meat temperature to avoid swelling; peak fuel temperature to avoid meat-matrix reaction. It was found that all alternatives meet the safety criteria including the 0.5 mm monolithic U-Mo plate cladded with zircaloy. (author)

  9. NPP fuel cycle and assessment of possible options for long-term fuel supply

    International Nuclear Information System (INIS)

    Ignatenko, E.I.; Lebedev, V.M.; Davidenko, N.N.

    1999-01-01

    The purpose of this paper is to present some results of the analysis of the possible options for Russian NPPs fuel supply. In the classical consideration these are four fuel cycles: uranium cycle based on natural uranium, this cycle has several economical advantages with the use of CANDU type reactors with a heavy-water moderator; uranium cycle based on enriched uranium, it is a basis for the current and future nuclear power; uranium-thorium fuel cycle with capabilities which are very promising but unfortunately difficult to implement in practice; plutonium-uranium cycle, in terms of its potential capabilities it is an excellent option, but it is extremely difficult to implement it in practice due to a high activity and toxicity of nuclear materials under recycle. The nuclear power of Russia is currently aimed at using the cheapest fuel resources, that is first of all, uranium reprocessed from industrial reactor fuel and slag-heaps accumulated on the past in isotope-separation plant sites. These resources are enough for the Russian large-scale nuclear power to be developed [ru

  10. A nuclear fuel cycle system dynamic model for spent fuel storage options

    International Nuclear Information System (INIS)

    Brinton, Samuel; Kazimi, Mujid

    2013-01-01

    Highlights: • Used nuclear fuel management requires a dynamic system analysis study due to its socio-technical complexity. • Economic comparison of local, regional, and national storage options is limited due to the public financial information. • Local and regional options of used nuclear fuel management are found to be the most economic means of storage. - Abstract: The options for used nuclear fuel storage location and affected parameters such as economic liabilities are currently a focus of several high level studies. A variety of nuclear fuel cycle system analysis models are available for such a task. The application of nuclear fuel cycle system dynamics models for waste management options is important to life-cycle impact assessment. The recommendations of the Blue Ribbon Committee on America’s Nuclear Future led to increased focus on long periods of spent fuel storage [1]. This motivated further investigation of the location dependency of used nuclear fuel in the parameters of economics, environmental impact, and proliferation risk. Through a review of available literature and interactions with each of the programs available, comparisons of post-reactor fuel storage and handling options will be evaluated based on the aforementioned parameters and a consensus of preferred system metrics and boundary conditions will be provided. Specifically, three options of local, regional, and national storage were studied. The preliminary product of this research is the creation of a system dynamics tool known as the Waste Management Module (WMM) which provides an easy to use interface for education on fuel cycle waste management economic impacts. Initial results of baseline cases point to positive benefits of regional storage locations with local regional storage options continuing to offer the lowest cost

  11. Burnable poison option for DUPIC fuel

    International Nuclear Information System (INIS)

    Choi, Hang Bok; Cupta, H. P.

    1996-08-01

    The mechanisms of positive coolant void reactivity of CANDU natural uranium and DUPIC fuel have been studied. The design study of DUPIC fuel was performed using the burnable poison material in the center pin to reduce the coolant void reactivity. The amount of burnable poison was determined such that the prompt inverse period of DUPIC fuel upon full coolant voiding is the same as that of natural uranium fuel at equilibrium burnup. A parametric study on various burnable poisons has shown that natural dysprosium has more merit over other materials because it uniformly controls the void reactivity throughout the burnup with reasonable amount of poison. Additional studies on the option of using scattering or absorber material in the center pin position and the option using variable fuel density were performed. In any case of option using variable fuel density were performed. In any case of options to reduce the void reactivity, it was found that either the discharge burnup and/or the relative linear pin power are sacrificed. A preliminary study was performed for the evaluation of reference DUPIC fuel performance especially represented by Stress Corrosion Cracking(SCC) parameters which is mainly influenced by the refueling operations. For the reference 2-bundle shift refueling scheme, the predicted ramped power and power increment of the reference DUPIC fuel are below the SCC thresholds of CANDU natural uranium fuel. For a 4-bundle shift refueling scheme, the envelopes of element ramped power and power increment upon refueling are 8% and 44% higher than those of a 2-bundle shift refueling scheme on the average, respectively, but still have margins to the failure thresholds of natural uranium fuel. 23 tabs., 25 figs., 20 refs. (Author)

  12. CANDU fuel cycle options in Korea

    International Nuclear Information System (INIS)

    Boczar, P. G.; Fehrenbach, P. J.; Meneley, D. A.

    1996-01-01

    There are many reasons for countries embarking on a CANDU R program to start with the natural uranium fuel cycle. Simplicity of fuel design, ease of fabrication, and ready availability of natural uranium all help to localize the technology and to reduce reliance on foreign technology. Nonetheless, at some point, the incentives for using natural uranium fuel may be outweighed by the advantages of alternate fuel cycles. The excellent neutron economy, on-line refuelling, and simple fuel-bundle design provide an unsurpassed degree of fuel-cycle flexibility in CANDU reactors. The easiest first step in CANDU fuel-cycle evolution may be the use of slightly enriched uranium (SEU), including recovered uranium from reprocessed LWR spent fuel. Relatively low enrichment (up to 1.2%) will result in a two- to three-fold reduction in the quantity of spent fuel per unit energy production, reductions in fuel-cycle costs, and greater flexibility in the design of new reactors. The CANFLEX (CANDU FLEXible) fuel bundle would be the optimal fuel carrier. A country that has both CANDU and PWR reactors can exploit the natural synergism between these two reactor types to minimize overall waste production, and maximize energy derived from the fuel. This synergism can be exploited through several different fuel cycles. A high burnup CANDU MOX fuel design could be used to utilize plutonium from conventional reprocessing or more advanced reprocessing options (such as co-processing). DUPIC (Direct Use of Spent PWR Fuel In CANDU) represents a recycle option that has a higher degree of proliferation resistance than dose conventional reprocessing, since it uses only dry processes for converting spent PWR fuel into CANDU fuel, without separating the plutonium. Good progress is being made in the current KAERI, AECL, and U. S. Department of State program in demonstrating the technical feasibility of DUPIC. In the longer term, CANDU reactors offer even more dramatic synergistic fuel cycles with PWR or

  13. 77 FR 19278 - Informational Meeting on Nuclear Fuel Cycle Options

    Science.gov (United States)

    2012-03-30

    ... DEPARTMENT OF ENERGY Informational Meeting on Nuclear Fuel Cycle Options AGENCY: Office of Fuel... activities leading to a comprehensive evaluation and screening of nuclear fuel cycle options in 2013. At this... fuel cycle options developed for the evaluation and screening provides a comprehensive representation...

  14. Spent fuel storage options: a critical appraisal

    International Nuclear Information System (INIS)

    Singh, K.P.; Bale, M.G.

    1990-01-01

    The delayed decisions on nuclear fuel reprocessing strategies in the USA and other countries have forced the development of new long-term irradiated fuel storage techniques, to allow a larger volume of fuel to be held on the nuclear station site after removal from the reactor. The nuclear power industry has responded to the challenge by developing several viable options for long-term onsite storage, which can be employed individually or in tandem. They are: densification of storage in the existing spent fuel pool; building another fuel pool facility at the plant site; onsite cask park, and on site vault clusters. Desirable attributes of a storage option are: Safety: minimise the number of fuel handling steps; Economy: minimise total installed, and O and M cost; Security: protection from anti-nuclear protesters; Site adaptability: available site space, earthquake characteristics of the region and so on; Non-intrusiveness: minimise required modifications to existing plant systems; Modularisation: afford the option to adapt a modular approach for staged capital outlays; and Maturity: extent of industry experience with the technology. A critical appraisal is made of each of the four aforementioned storage options in the light of these criteria. (2 figures, 1 table, 4 references) (Author)

  15. Reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ersoz, Atilla; Olgun, Hayati [TUBITAK Marmara Research Center, Institute of Energy, Gebze, 41470 Kocaeli (Turkey); Ozdogan, Sibel [Marmara University Faculty of Engineering, Goztepe, 81040 Istanbul (Turkey)

    2006-03-09

    PEM fuel cell systems are considered as a sustainable option for the future transport sector in the future. There is great interest in converting current hydrocarbon based transportation fuels into hydrogen rich gases acceptable by PEM fuel cells on-board of vehicles. In this paper, we compare the results of our simulation studies for 100kW PEM fuel cell systems utilizing three different major reforming technologies, namely steam reforming (SREF), partial oxidation (POX) and autothermal reforming (ATR). Natural gas, gasoline and diesel are the selected hydrocarbon fuels. It is desired to investigate the effect of the selected fuel reforming options on the overall fuel cell system efficiency, which depends on the fuel processing, PEM fuel cell and auxiliary system efficiencies. The Aspen-HYSYS 3.1 code has been used for simulation purposes. Process parameters of fuel preparation steps have been determined considering the limitations set by the catalysts and hydrocarbons involved. Results indicate that fuel properties, fuel processing system and its operation parameters, and PEM fuel cell characteristics all affect the overall system efficiencies. Steam reforming appears as the most efficient fuel preparation option for all investigated fuels. Natural gas with steam reforming shows the highest fuel cell system efficiency. Good heat integration within the fuel cell system is absolutely necessary to achieve acceptable overall system efficiencies. (author)

  16. Reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Science.gov (United States)

    Ersoz, Atilla; Olgun, Hayati; Ozdogan, Sibel

    PEM fuel cell systems are considered as a sustainable option for the future transport sector in the future. There is great interest in converting current hydrocarbon based transportation fuels into hydrogen rich gases acceptable by PEM fuel cells on-board of vehicles. In this paper, we compare the results of our simulation studies for 100 kW PEM fuel cell systems utilizing three different major reforming technologies, namely steam reforming (SREF), partial oxidation (POX) and autothermal reforming (ATR). Natural gas, gasoline and diesel are the selected hydrocarbon fuels. It is desired to investigate the effect of the selected fuel reforming options on the overall fuel cell system efficiency, which depends on the fuel processing, PEM fuel cell and auxiliary system efficiencies. The Aspen-HYSYS 3.1 code has been used for simulation purposes. Process parameters of fuel preparation steps have been determined considering the limitations set by the catalysts and hydrocarbons involved. Results indicate that fuel properties, fuel processing system and its operation parameters, and PEM fuel cell characteristics all affect the overall system efficiencies. Steam reforming appears as the most efficient fuel preparation option for all investigated fuels. Natural gas with steam reforming shows the highest fuel cell system efficiency. Good heat integration within the fuel cell system is absolutely necessary to achieve acceptable overall system efficiencies.

  17. Considerations Regarding ROK Spent Nuclear Fuel Management Options

    International Nuclear Information System (INIS)

    Braun, Chaim; Forrest, Robert

    2013-01-01

    In this paper we discuss spent fuel management options in the Republic of Korea (ROK) from two interrelated perspectives: Centralized dry cask storage and spent fuel pyroprocessing and burning in sodium fast reactors (SFRs). We argue that the ROK will run out of space for at-reactors spent fuel storage by about the year 2030 and will thus need to transition centralized dry cask storage. Pyroprocessing plant capacity, even if approved and successfully licensed and constructed by that time, will not suffice to handle all the spent fuel discharged annually. Hence centralized dry cask storage will be required even if the pyroprocessing option is successfully developed by 2030. Pyroprocessing is but an enabling technology on the path leading to fissile material recycling and burning in future SFRs. In this regard we discuss two SFR options under development in the U. S.: the Super Prism and the Travelling Wave Reactor (TWR). We note that the U. S. is further along in reactor development than the ROK. The ROK though has acquired more experience, recently in investigating fuel recycling options for SFRs. We thus call for two complementary joint R and D project to be conducted by U. S. and ROK scientists. One leading to the development of a demonstration centralized away-from-reactors spent fuel storage facility. The other involve further R and D on a combined SFR-fuel cycle complex based on the reactor and fuel cycle options discussed in the paper

  18. Radiological impacts of spent nuclear fuel management options

    International Nuclear Information System (INIS)

    Riotte, H.; Lazo, T.; Mundigl, S.

    2000-01-01

    An important technical study on radiological impacts of spent nuclear fuel management options, recently completed by the NEA, is intended to facilitate informed international discussions on the nuclear fuel cycle. The study compares the radiological impacts on the public and on nuclear workers resulting from two approaches to handling spent fuel from nuclear power plants: - the reprocessing option, that includes the recycling of spent uranium fuel, the reuse of the separated plutonium in MOX fuel, and the direct disposal of spent MOX fuel; and the once-through option, with no reprocessing of spent fuel, and its direct disposal. Based on the detailed research of a group of 18 internationally recognised experts, under NEA sponsorship, the report concludes that: The radiological impacts of both the reprocessing and the non-reprocessing fuel cycles studied are small, well below any regulatory dose limits for the public and for workers, and insignificantly low as compared with exposures caused by natural radiation. The difference in the radiological impacts of the two fuel cycles studied does not provide a compelling argument in favour of one option or the other. The study also points out that other factors, such as resource utilisation efficiency, energy security, and social and economic considerations would tend to carry more weight than radiological impacts in decision-making processes. (authors)

  19. The generation of denatured reactor plutonium by different options of the fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Broeders, C.H.M.; Kessler, G. [Inst. for Neutron Physics and Reactor Technology, Research Center Karlsruhe (Germany)

    2006-11-15

    Denatured (proliferation resistant) reactor plutonium can be generated in a number of different fuel cycle options. First denatured reactor plutonium can be obtained if, instead of low enriched U-235 PWR fuel, re-enriched U-235/U-236 from reprocessed uranium is used (fuel type A). Also the envisaged existing 2,500 t of reactor plutonium (being generated world wide up to the year 2010), mostly stored in intermediate fuel storage facilities at present, could be converted during a transition phase into denatured reactor plutonium by the options fuel type B and D. Denatured reactor plutonium could have the same safeguards standard as present low enriched (<20% U-235) LWR fuel. It could be incinerated by recycling once or twice in PWRs and subsequently by multi-recycling in FRs (CAPRA type or IFRs). Once denatured, such reactor plutonium could remain denatured during multiple recycling. In a PWR, e.g., denatured reactor plutonium could be destroyed at a rate of about 250 kg/GWey. While denatured reactor plutonium could be recycled and incinerated under relieved IAEA safeguards, neptunium would still have to be monitored by the IAEA in future for all cases in which considerable amounts of neptunium are produced. (orig.)

  20. Nuclear Fuel Cycle Options Catalog: FY16 Improvements and Additions

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barela, Amanda Crystal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schetnan, Richard Reed [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-08-31

    The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2016 fiscal year.

  1. Nuclear Fuel Cycle Options Catalog FY15 Improvements and Additions.

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Barela, Amanda Crystal [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Schetnan, Richard Reed [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2015 fiscal year.

  2. Effect of different fuel options on performance of high-temperature PEMFC (proton exchange membrane fuel cell) systems

    International Nuclear Information System (INIS)

    Authayanun, Suthida; Saebea, Dang; Patcharavorachot, Yaneeporn; Arpornwichanop, Amornchai

    2014-01-01

    High-temperature proton exchange membrane fuel cells (HT-PEMFCs) have received substantial attention due to their high CO (carbon monoxide) tolerance and simplified water management. The hydrogen and CO fractions affect the HT-PEMFC performance and different fuel sources for hydrogen production result in different product gas compositions. Therefore, the aim of this study is to investigate the theoretical performance of HT-PEMFCs fueled by the reformate gas derived from various fuel options (i.e., methane, methanol, ethanol, and glycerol). Effects of fuel types and CO poisoning on the HT-PEMFC performance are analyzed. Furthermore, the necessity of a water-gas shift (WGS) reactor as a CO removal unit for pretreating the reformate gas is investigated for each fuel type. The methane steam reforming shows the highest possibility of CO formation, whereas the methanol steam reforming produces the lowest quantity of CO in the reformate gas. The methane fuel processing gives the maximum fraction of hydrogen (≈0.79) when the WGS reactor is included. The most suitable fuel is the one with the lowest CO poisoning effect and the maximum fuel cell performance. It is found that the HT-PEMFC system fueled by methanol without the WGS reactor and methane with WGS reactor shows the highest system efficiency (≈50%). - Highlights: • Performance of HT-PEMFC run on different fuel options is theoretically investigated. • Glycerol, methanol, ethanol and methane are hydrogen sources for the HT-PEMFC system. • Effect of CO poisoning on the HT-PEMFC performance is taken into account. • The suitable fuel for HT-PEMFC system is identified regarding the system efficiency

  3. Life cycle assessment of automobile/fuel options.

    Science.gov (United States)

    MacLean, Heather L; Lave, Lester B

    2003-12-01

    We examine the possibilities for a "greener" car that would use less material and fuel, be less polluting, and would have a well-managed end-of-life. Light-duty vehicles are fundamental to our economy and will continue to be for the indefinite future. Any redesign to make these vehicles greener requires consumer acceptance. Consumer desires for large, powerful vehicles have been the major stumbling block in achieving a "green car". The other major barrier is inherent contradictions among social goals such as fuel economy, safety, low emissions of pollutants, and low emissions of greenhouse gases, which has led to conflicting regulations such as emissions regulations blocking sales of direct injection diesels in California, which would save fuel. In evaluating fuel/vehicle options with the potential to improve the greenness of cars [diesel (direct injection) and ethanol in internal combustion engines, battery-powered, gasoline hybrid electric, and hydrogen fuel cells], we find no option dominates the others on all dimensions. The principles of green design developed by Anastas and Zimmerman (Environ. Sci. Technol. 2003, 37, 94A-101A) and the use of a life cycle approach provide insights on the key sustainability issues associated with the various options.

  4. Uranium Resource Availability Analysis of Four Nuclear Fuel Cycle Options

    International Nuclear Information System (INIS)

    Youn, S. R.; Lee, S. H.; Jeong, M. S.; Kim, S. K.; Ko, W. I.

    2013-01-01

    Making the national policy regarding nuclear fuel cycle option, the policy should be established in ways that nuclear power generation can be maintained through the evaluation on the basis of the following aspects. To establish the national policy regarding nuclear fuel cycle option, that must begin with identification of a fuel cycle option that can be best suited for the country, and the evaluation work for that should be proceeded. Like all the policy decision, however, a certain nuclear fuel cycle option cannot be superior in all aspects of sustain ability, environment-friendliness, proliferation-resistance, economics, technologies, which make the comparison of the fuel cycle options very complicated. For such a purpose, this paper set up four different fuel cycle of nuclear power generation considering 2nd Comprehensive Nuclear Energy Promotion Plan(CNEPP), and analyzed material flow and features in steady state of all four of the fuel cycle options. As a result of an analysis on material flow of each nuclear fuel cycle, it was analyzed that Pyro-SFR recycling is most effective on U resource availability among four fuel cycle option. As shown in Figure 3, OT cycle required the most amount of U and Pyro-SFR recycle consumed the least amount of U. DUPIC recycling, PWR-MOX recycling, and Pyro-SFR recycling fuel cycle appeared to consumed 8.2%, 12.4%, 39.6% decreased amount of uranium respectively compared to OT cycle. Considering spent fuel can be recycled as potential energy resources, U and TRU taken up to be 96% is efficiently used. That is, application period of limited uranium natural resources can be extended, and it brings a great influence on stable use of nuclear energy

  5. Proposal of guidelines for selecting optimum options in packagings and transportation systems of spent fuel

    International Nuclear Information System (INIS)

    Saegusa, T.; Abe, H.; Fukuda, S.

    1983-01-01

    Type and size of spent fuel shipping packagings and packaging transport ships in spent fuel transport system would have been determined separately in response to technical requirements etc. of reactor sites and reprocessing plants. However, since more and more spent fuel will be generated from world's nuclear power plants and will be transported much frequently to reprocessing plants or storage facilities, the current spent fuel transport system will have to be necessarily reexamined from the operational and economical aspects or an optimum transport system may have to be newly determined in the near future. In the literature, a variety of options are found, particularly of spent fuel packagings. This paper listed and classified options of spent fuel packagings and packaging transport ships in the transportation systems of spent fuel on the basis of literature surveys. These options were discussed from viewpoints of designers and users and compared in terms of transport efficiency. Finally, one way to determine an optimum transport system of spent fuel was indicated considering the total transport system in the light of safety, operational efficiency and economy

  6. An analysis of international nuclear fuel supply options

    Science.gov (United States)

    Taylor, J'tia Patrice

    As the global demand for energy grows, many nations are considering developing or increasing nuclear capacity as a viable, long-term power source. To assess the possible expansion of nuclear power and the intricate relationships---which cover the range of economics, security, and material supply and demand---between established and aspirant nuclear generating entities requires models and system analysis tools that integrate all aspects of the nuclear enterprise. Computational tools and methods now exist across diverse research areas, such as operations research and nuclear engineering, to develop such a tool. This dissertation aims to develop methodologies and employ and expand on existing sources to develop a multipurpose tool to analyze international nuclear fuel supply options. The dissertation is comprised of two distinct components: the development of the Material, Economics, and Proliferation Assessment Tool (MEPAT), and analysis of fuel cycle scenarios using the tool. Development of MEPAT is aimed for unrestricted distribution and therefore uses publicly available and open-source codes in its development when possible. MEPAT is built using the Powersim Studio platform that is widely used in systems analysis. MEPAT development is divided into three modules focusing on: material movement; nonproliferation; and economics. The material movement module tracks material quantity in each process of the fuel cycle and in each nuclear program with respect to ownership, location and composition. The material movement module builds on techniques employed by fuel cycle models such as the Verifiable Fuel Cycle Simulation (VISION) code developed at the Idaho National Laboratory under the Advanced Fuel Cycle Initiative (AFCI) for the analysis of domestic fuel cycle. Material movement parameters such as lending and reactor preference, as well as fuel cycle parameters such as process times and material factors are user-specified through a Microsoft Excel(c) data spreadsheet

  7. PWR Core II blanket fuel disposition recommendation of storage option study

    International Nuclear Information System (INIS)

    Dana, C.M.

    1995-01-01

    After review of the options available for current storage of T Plant Fuel the recommended option is wet storage without the use of chillers. A test has been completed that verifies the maximum temperature reached is below the industrial standard for storage of spent fuel. This option will be the least costly and still maintain the fuel in a safe environment. The options that were evaluated included dry storage with and without chillers, and wet storage with and without chillers. Due to the low decay heat of the Shippingport Core II Blanket fuel assemblies the fuel pool temperature will not exceed 100 deg. F

  8. Options contracts in the nuclear fuel industry

    International Nuclear Information System (INIS)

    Fuller, D.M.

    1995-01-01

    This article discusses options trading in the nuclear fuels industry. Although there now exists no formal options market in the nuclear industry, flexibilities, or embedded options, are actually quite common in the long-term supply contracts. The value of these flexibilities can be estimated by applying the methods used to evaluate options. The method used is the Black-Scholes Model, and it is applied to a number of examples

  9. Influence of fuel costs on seawater desalination options

    International Nuclear Information System (INIS)

    Methnani, Mabrouk

    2007-01-01

    Reference estimates of seawater desalination costs for recent mega projects are all quoted in the range of US$0.50/m 3 . This however does not reflect the recent trends of escalating fossil fuel costs. In order to analyze the effect of these trends, a recently updated version of the IAEA Desalination Economic Evaluation Program, DEEP-3, has been used to compare fossil and nuclear seawater desalination options, under varied fuel cost and interest rate scenarios. Results presented for a gas combined-cycle and a modular high-temperature gas-cooled reactor design, show clear cost advantages for the latter, for both Multi-Effect Distillation (MED) and Reverse Osmosis (RO). Water production cost estimates for the Brayton cycle nuclear option are hardly affected by fuel costs, while combined cycle seawater desalination costs show an increase of more than 40% when fuel costs are doubled. For all cases run, the nuclear desalination costs are lower and if the current trend in fossil fuel prices continues as predicted by pessimist scenarios and the carbon tax carried by greenhouse emissions is enforced in the future, the cost advantage for nuclear desalination will be even more pronounced. Increasing the interest rate from 5 to 8% has a smaller effect than fuel cost variations. It translates into a water cost increase in the range of 10-20%, with the nuclear option being the more sensitive. (author)

  10. Final Report on Two-Stage Fast Spectrum Fuel Cycle Options

    International Nuclear Information System (INIS)

    Yang, Won Sik; Lin, C. S.; Hader, J. S.; Park, T. K.; Deng, P.; Yang, G.; Jung, Y. S.; Kim, T. K.; Stauff, N. E.

    2016-01-01

    This report presents the performance characteristics of two ''two-stage'' fast spectrum fuel cycle options proposed to enhance uranium resource utilization and to reduce nuclear waste generation. One is a two-stage fast spectrum fuel cycle option of continuous recycle of plutonium (Pu) in a fast reactor (FR) and subsequent burning of minor actinides (MAs) in an accelerator-driven system (ADS). The first stage is a sodium-cooled FR fuel cycle starting with low-enriched uranium (LEU) fuel; at the equilibrium cycle, the FR is operated using the recovered Pu and natural uranium without supporting LEU. Pu and uranium (U) are co-extracted from the discharged fuel and recycled in the first stage, and the recovered MAs are sent to the second stage. The second stage is a sodium-cooled ADS in which MAs are burned in an inert matrix fuel form. The discharged fuel of ADS is reprocessed, and all the recovered heavy metals (HMs) are recycled into the ADS. The other is a two-stage FR/ADS fuel cycle option with MA targets loaded in the FR. The recovered MAs are not directly sent to ADS, but partially incinerated in the FR in order to reduce the amount of MAs to be sent to the ADS. This is a heterogeneous recycling option of transuranic (TRU) elements

  11. Final Report on Two-Stage Fast Spectrum Fuel Cycle Options

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Won Sik [Purdue Univ., West Lafayette, IN (United States); Lin, C. S. [Purdue Univ., West Lafayette, IN (United States); Hader, J. S. [Purdue Univ., West Lafayette, IN (United States); Park, T. K. [Purdue Univ., West Lafayette, IN (United States); Deng, P. [Purdue Univ., West Lafayette, IN (United States); Yang, G. [Purdue Univ., West Lafayette, IN (United States); Jung, Y. S. [Purdue Univ., West Lafayette, IN (United States); Kim, T. K. [Argonne National Lab. (ANL), Argonne, IL (United States); Stauff, N. E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-30

    This report presents the performance characteristics of two “two-stage” fast spectrum fuel cycle options proposed to enhance uranium resource utilization and to reduce nuclear waste generation. One is a two-stage fast spectrum fuel cycle option of continuous recycle of plutonium (Pu) in a fast reactor (FR) and subsequent burning of minor actinides (MAs) in an accelerator-driven system (ADS). The first stage is a sodium-cooled FR fuel cycle starting with low-enriched uranium (LEU) fuel; at the equilibrium cycle, the FR is operated using the recovered Pu and natural uranium without supporting LEU. Pu and uranium (U) are co-extracted from the discharged fuel and recycled in the first stage, and the recovered MAs are sent to the second stage. The second stage is a sodium-cooled ADS in which MAs are burned in an inert matrix fuel form. The discharged fuel of ADS is reprocessed, and all the recovered heavy metals (HMs) are recycled into the ADS. The other is a two-stage FR/ADS fuel cycle option with MA targets loaded in the FR. The recovered MAs are not directly sent to ADS, but partially incinerated in the FR in order to reduce the amount of MAs to be sent to the ADS. This is a heterogeneous recycling option of transuranic (TRU) elements

  12. Fuel Cells: Power System Option for Space Research

    Science.gov (United States)

    Shaneeth, M.; Mohanty, Surajeet

    2012-07-01

    Fuel Cells are direct energy conversion devices and, thereby, they deliver electrical energy at very high efficiency levels. Hydrogen and Oxygen gases are electrochemically processed, producing clean electric power with water as the only by product. A typical, Fuel Cell based power system involve a Electrochemical power converter, gas storage and management systems, thermal management systems and relevant control units. While there exists different types of Fuel cells, Proton Exchange Membrane (PEM) Fuel Cells are considered as the most suitable one for portable applications. Generally, Fuel Cells are considered as the primary power system option in space missions requiring high power ( > 5kW) and long durations and also where water is a consumable, such as manned missions. This is primarily due to the advantage that fuel cell based power systems offer, in terms of specific energy. Fuel cells have the potential to attain specific energy > 500Wh/kg, specific power >500W/kg, energy density > 400Whr/L and also power density > 200 W/L. This apart, a fuel cell system operate totally independent of sun light, whereas as battery based system is fully dependent on the same. This uniqueness provides added flexibility and capabilities to the missions and modularity for power system. High power requiring missions involving reusable launch vehicles, manned missions etc are expected to be richly benefited from this. Another potential application of Fuel Cell would be interplanetary exploration. Unpredictable and dusty atmospheres of heavenly bodies limits sun light significantly and there fuel cells of different types, eg, Bio-Fuel Cells, PEMFC, DMFCs would be able to work effectively. Manned or unmanned lunar out post would require continuous power even during extra long lunar nights and high power levels are expected. Regenerative Fuel Cells, a combination of Fuel Cells and Electrolysers, are identified as strong candidate. While application of Fuel Cells in high power

  13. Integrated model of Korean spent fuel and high level waste disposal options - 16091

    International Nuclear Information System (INIS)

    Hwang, Yongsoo; Miller, Ian

    2009-01-01

    This paper describes an integrated model developed by the Korean Atomic Energy Research Institute (KAERI) to simulate options for disposal of spent nuclear fuel (SNF) and reprocessing products in South Korea. A companion paper (Hwang and Miller, 2009) describes a systems-level model of Korean options for spent nuclear fuel (SNF) management in the 21. century. The model addresses alternative design concepts for disposal of SNF of different types (Candu, PWR), high level waste, and fission products arising from a variety of alternative fuel cycle back ends. It uses the GoldSim software to simulate the engineered system, near-field and far-field geosphere, and biosphere, resulting in long-term dose predictions for a variety of receptor groups. The model's results allow direct comparison of alternative repository design concepts, and identification of key parameter uncertainties and contributors to receptor doses. (authors)

  14. Mass Flow Data Comparison for Comprehensive Fuel Cycle Options

    International Nuclear Information System (INIS)

    Kim, T.K.; Taiwo, T.A.; Wigeland, R.A.; Dixon, B.W.; Gehin, J.C.; Todosow, M.

    2015-01-01

    One of the key objectives stated in the United States Department of Energy, Nuclear Energy R and D road-map is the development of sustainable nuclear fuel cycles that improve natural resource utilisation and provide adequate capability and capacity to manage wastes produced by the fuel cycle. In order to inform this objective, an evaluation and screening of nuclear fuel cycle options has been conducted. As part of that effort, the entire fuel cycle options space was represented by 40 Evaluation Groups (EGs), and mass flow information for each of the EGs was provided by using an Analysis Example (AE). In this paper, the mass flow data of the 40 AEs are compared to inform on trends in the natural resource utilisation and nuclear waste generation. For the AEs that need enriched uranium support, the natural uranium required is high and the natural resource utilisation is generally lower than 2% regardless of the fuel cycle strategy (i.e., once-through, limited recycle, or continuous recycle). However, the utilisation could be improved by avoiding enriched uranium fuel support. The natural resource utilisation increases to more than 80% by recycling the nuclear fuel continuously without enriched uranium support. The combined mass of spent nuclear fuel (SNF) and high-level waste (HLW), i.e., SNF+HLW mass, is lower by using a continuous recycle option compared to a once-through fuel cycle option, because SNF mass is converted to mass of recycled products and only fission products and other process losses need to be disposed. The combined disposed mass of depleted uranium (DU), recovered uranium (RU) and thorium (RTh), i.e. DU+RU+RTh mass, has a similar trend to the uranium utilisation. For the AEs that need enriched uranium fuel, the DU and RU are the major fraction by mass of the DU+RU+RTh, which are two orders of magnitude higher in mass compared to those for the AEs that do not need enriched uranium fuel. (authors)

  15. Technology assessment of various coal-fuel options

    International Nuclear Information System (INIS)

    Coenen, R.; Findling, B.; Klein-Vielhauer, S.; Nieke, E.; Paschen, H.; Tangen, H.; Wintzer, D.

    1991-01-01

    The technology assessment (TA) study of coal-based fuels presented in this report was performed for the Federal Ministry for Research and Technology. Its goal was to support decision-making of the Federal Ministry for Research and Technology in the field of coal conversion. Various technical options of coal liquefaction have been analyzed on the basis of hard coal as well as lignite -- direct liquefaction of coal (hydrogenation) and different possibilities of indirect liquefaction, that is the production of fuels (methanol, gasoline) by processing products of coal gasification. The TA study takes into consideration the entire technology chain from coal mining via coal conversion to the utilization of coal-based fuels in road transport. The analysis focuses on costs of the various options, overall economic effects, which include effects on employment and public budgets, and on environmental consequences compared to the use of liquid fuels derived from oil. Furthermore, requirements of infrastructure and other problems of the introduction of coal-based fuels as well as prospects for the export of technologies of direct and indirect coal liquefaction have been analyzed in the study. 14 figs., 10 tabs

  16. Nuclear spent fuel management. Experience and options

    International Nuclear Information System (INIS)

    1986-01-01

    Spent nuclear fuel can be stored safely for long periods at relatively low cost, but some form of permanent disposal will eventually be necessary. This report examines the options for spent fuel management, explores the future prospects for each stage of the back-end of the fuel cycle and provides a thorough review of past experience and the technical status of the alternatives. Current policies and practices in twelve OECD countries are surveyed

  17. Options for treating high-temperature gas-cooled reactor fuel for repository disposal

    Energy Technology Data Exchange (ETDEWEB)

    Lotts, A.L.; Bond, W.D.; Forsberg, C.W.; Glass, R.W.; Harrington, F.E.; Micheals, G.E.; Notz, K.J.; Wymer, R.G.

    1992-02-01

    This report describes the options that can reasonably be considered for disposal of high-temperature gas-cooled reactor (HTGR) fuel in a repository. The options include whole-block disposal, disposal with removal of graphite (either mechanically or by burning), and reprocessing of spent fuel to separate the fuel and fission products. The report summarizes what is known about the options without extensively projecting or analyzing actual performance of waste forms in a repository. The report also summarizes the processes involved in convert spent HTGR fuel into the various waste forms and projects relative schedules and costs for deployment of the various options. Fort St. Vrain Reactor fuel, which utilizes highly-enriched {sup 235}U (plus thorium) and is contained in a prismatic graphite block geometry, was used as the baseline for evaluation, but the major conclusions would not be significantly different for low- or medium-enriched {sup 235}U (without thorium) or for the German pebble-bed fuel. Future US HTGRs will be based on the Fort St. Vrain (FSV) fuel form. The whole block appears to be a satisfactory waste form for disposal in a repository and may perform better than light-water reactor (LWR) spent fuel. From the standpoint of process cost and schedule (not considering repository cost or value of fuel that might be recycled), the options are ranked as follows in order of increased cost and longer schedule to perform the option: (1) whole block, (2a) physical separation, (2b) chemical separation, and (3) complete chemical processing.

  18. Options for treating high-temperature gas-cooled reactor fuel for repository disposal

    International Nuclear Information System (INIS)

    Lotts, A.L.; Bond, W.D.; Forsberg, C.W.; Glass, R.W.; Harrington, F.E.; Micheals, G.E.; Notz, K.J.; Wymer, R.G.

    1992-02-01

    This report describes the options that can reasonably be considered for disposal of high-temperature gas-cooled reactor (HTGR) fuel in a repository. The options include whole-block disposal, disposal with removal of graphite (either mechanically or by burning), and reprocessing of spent fuel to separate the fuel and fission products. The report summarizes what is known about the options without extensively projecting or analyzing actual performance of waste forms in a repository. The report also summarizes the processes involved in convert spent HTGR fuel into the various waste forms and projects relative schedules and costs for deployment of the various options. Fort St. Vrain Reactor fuel, which utilizes highly-enriched 235 U (plus thorium) and is contained in a prismatic graphite block geometry, was used as the baseline for evaluation, but the major conclusions would not be significantly different for low- or medium-enriched 235 U (without thorium) or for the German pebble-bed fuel. Future US HTGRs will be based on the Fort St. Vrain (FSV) fuel form. The whole block appears to be a satisfactory waste form for disposal in a repository and may perform better than light-water reactor (LWR) spent fuel. From the standpoint of process cost and schedule (not considering repository cost or value of fuel that might be recycled), the options are ranked as follows in order of increased cost and longer schedule to perform the option: (1) whole block, (2a) physical separation, (2b) chemical separation, and (3) complete chemical processing

  19. ENVI Model Development for Korean Nuclear Spent Fuel Options Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Sunyoung; Jeong, Yon Hong; Han, Jae-Jun; Lee, Aeri; Hwang, Yong-Soo [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2015-10-15

    The disposal facility of the spent nuclear fuel will be operated from 2051. This paper presents the ENVI code developed by GoldSim Software to simulate options for managing spent nuclear fuel (SNF) in South Korea. The ENVI is a simulator to allow decision-makers to assist to evaluate the performance for spent nuclear fuel management. The multiple options for managing the spent nuclear fuel including the storage and transportation are investigated into interim storage, permanent disposal in geological repositories and overseas and domestic reprocessing. The ENVI code uses the GoldSim software to simulate the logistics of the associated activities. The result by the ENVI model not only produces the total cost to compare among the multiple options but also predict the sizes and timings of different facilities required. In order to decide the policy for spent nuclear management this purpose of this paper is to draw the optimum management plan to solve the nuclear spent fuel issue in the economical aspects. This paper is focused on the development of the ENVI's logic and calculations to simulate four options(No Reprocessing, Overseas Reprocessing, Domestic Reprocessing, and Overseas and Domestic Reprocessing) for managing the spent nuclear fuel in South Korea. The time history of the spent nuclear fuel produced from both the existing and future NPP's can be predicted, based on the Goldsim software made available very user friendly model. The simulation result will be used to suggest the strategic plans for the spent nuclear fuel management.

  20. ENVI Model Development for Korean Nuclear Spent Fuel Options Analysis

    International Nuclear Information System (INIS)

    Chang, Sunyoung; Jeong, Yon Hong; Han, Jae-Jun; Lee, Aeri; Hwang, Yong-Soo

    2015-01-01

    The disposal facility of the spent nuclear fuel will be operated from 2051. This paper presents the ENVI code developed by GoldSim Software to simulate options for managing spent nuclear fuel (SNF) in South Korea. The ENVI is a simulator to allow decision-makers to assist to evaluate the performance for spent nuclear fuel management. The multiple options for managing the spent nuclear fuel including the storage and transportation are investigated into interim storage, permanent disposal in geological repositories and overseas and domestic reprocessing. The ENVI code uses the GoldSim software to simulate the logistics of the associated activities. The result by the ENVI model not only produces the total cost to compare among the multiple options but also predict the sizes and timings of different facilities required. In order to decide the policy for spent nuclear management this purpose of this paper is to draw the optimum management plan to solve the nuclear spent fuel issue in the economical aspects. This paper is focused on the development of the ENVI's logic and calculations to simulate four options(No Reprocessing, Overseas Reprocessing, Domestic Reprocessing, and Overseas and Domestic Reprocessing) for managing the spent nuclear fuel in South Korea. The time history of the spent nuclear fuel produced from both the existing and future NPP's can be predicted, based on the Goldsim software made available very user friendly model. The simulation result will be used to suggest the strategic plans for the spent nuclear fuel management

  1. Closing the fuel cycle: A superior option for India

    International Nuclear Information System (INIS)

    Balu, K.; Purushotham, D.S.C.; Kakodkar, A.

    1999-01-01

    The closed fuel cycle option with reprocessing and recycle of uranium and plutonium (U and Pu) for power generation allows better utilization of the uranium resources. On its part, plutonium is a unique energy source. During the initial years of nuclear fuel cycle activities, reprocessing and recycle of uranium and plutonium for power generation was perceived by many countries to be among the best of long term strategies for the management of spent fuel. But, over the years, some of the countries have taken a position that once-through fuel cycle is both economical and proliferation-resistant. However, such perceptions do vary as a function of economic growth and energy security of a given country. This paper deals with techno-economic perspectives of reprocessing and recycling in the Indian nuclear power programme. Experience of developing Mixed Oxide UO 2 -PuO 2 (MOX) fuel and its actual use in a power reactor (BWR) is presented. The paper further deals with the use of MOX in PHWRs in the future and current thinking, in the Indian context, in respect of advanced fuel cycles for the future. From environmental safety considerations, the separation of long-lived isotopes and minor actinides from high level waste (HLW) would enhance the acceptability of reprocessing and recycle option. The separated actinides are suitable for recycling with MOX fuel. However, the advanced fuel cycles with such recycling of Uranium and transuranium elements call for additional sophisticated fuel cycle activities which are yet to be mastered. India is interested in both uranium and thorium fuel cycles. This paper describes the current status of the Indian nuclear power scenario with reference to the program on reactors, reprocessing and radioactive waste management, plutonium recycle options, thorium-U233 fuel cycle studies and investigations on partitioning of actinides from Purex HLW as relevant to PHWR spent fuels. (author)

  2. Completion of Population of and Quality Assurance on the Nuclear Fuel Cycle Options Catalog.

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barela, Amanda Crystal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schetnan, Richard Reed [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Arnold, Matthew Brian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    An Evaluation and Screening team supporting the Fuel Cycle Technologies Program Office of the United States Department of Energy, Office of Nuclear Energy is conducting an evaluation and screening of a comprehensive set of fuel cycle options. These options have been assigned to one of 40 evaluation groups, each of which has a representative fuel cycle option [Todosow 2013]. A Fuel Cycle Data Package System Datasheet has been prepared for each representative fuel cycle option to ensure that the technical information used in the evaluation is high-quality and traceable [Kim, et al., 2013]. The information contained in the Fuel Cycle Data Packages has been entered into the Nuclear Fuel Cycle Options Catalog at Sandia National Laboratories so that it is accessible by the evaluation and screening team and other interested parties. In addition, an independent team at Savannah River National Laboratory has verified that the information has been entered into the catalog correctly. This report documents that the 40 representative fuel cycle options have been entered into the Catalog, and that the data entered into the catalog for the 40 representative options has been entered correctly.

  3. Spent fuel storage - dry storage options and issues

    International Nuclear Information System (INIS)

    Akins, M.J.

    2007-01-01

    The increase in the number of nuclear energy power generation facilities will require the ability to store the spent nuclear fuel for a long period until the host countries develop reprocessing or disposal options. Plants have storage pools which are closely associated with the operating units. These are excellent for short term storage, but require active maintenance and operations support which are not desirable for the long term. Over the past 25 years, dry storage options have been developed and implemented throughout the world. In recent years, protection against terrorist attack has become an increasing source of design objectives for these facilities, as well as the main nuclear plant. This paper explores the current design options of dry storage cask systems and examines some of the current design issues for above ground , in-ground, or below-ground storage of spent fuel in dry casks. (author)

  4. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    International Nuclear Information System (INIS)

    Dixon, B.W.; Piet, S.J.

    2004-01-01

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository. There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected

  5. Steam and partial oxidation reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Directory of Open Access Journals (Sweden)

    Yousri M.A. Welaya

    2012-06-01

    Full Text Available Proton exchange membrane fuel cell (PEM generates electrical power from air and from hydrogen or hydrogen rich gas mixtures. Therefore, there is an increasing interest in converting current hydrocarbon based marine fuels such as natural gas, gasoline, and diesel into hydrogen rich gases acceptable to the PEM fuel cells on board ships. Using chemical flow sheeting software, the total system efficiency has been calculated. Natural gas appears to be the best fuel for hydrogen rich gas production due to its favorable composition of lower molecular weight compounds. This paper presents a study for a 250 kW net electrical power PEM fuel cell system utilizing a partial oxidation in one case study and steam reformers in the second. This study has shown that steam-reforming process is the most competitive fuel processing option in terms of fuel processing efficiency. Partial oxidation process has proved to posses the lowest fuel processing efficiency. Among the options studied, the highest fuel processing efficiency is achieved with natural gas steam reforming system.

  6. Tradeoffs in fuel cycle performance for most promising options - 15346

    International Nuclear Information System (INIS)

    Taiwo, T.; Kim, T.K.; Feng, B.; Stauff, N.; Hoffman, E.; Ganda, F.; Todosow, M.; Brown, N.; Raitses, G.; Gehin, J.; Powers, J.; Youinou, G.; Hiruta, H.; Wigeland, R.

    2015-01-01

    A recent Evaluation and Screening (E/S) study of nuclear fuel cycle options was conducted by grouping all potential options into 40 Evaluation Groups (EGs) based on similarities in fundamental physics characteristics and fuel cycle performance. Through a rigorous evaluation process considering benefit and challenge metrics, 4 of these EGs were identified by the E/S study as 'most promising'. All 4 involve continuous recycle of U/Pu or U/TRU with natural uranium feed in fast critical reactors. However, these most promising EGs also include fuel cycle groups with variations on feed materials, neutron spectra, and reactor criticality. Therefore, the impacts of the addition of natural thorium fuel feed to a system that originally only used natural uranium fuel feed, using an intermediate spectrum instead of a fast spectrum, and using externally-driven systems versus critical reactors were evaluated. It was found that adding thorium to the natural uranium feed mixture leads to lower burnup, higher mass flows, and degrades fuel cycle benefit metrics (waste management, resource utilization, etc.) for fuel cycles that continuously recycle U/Pu or U/TRU. Adding thorium results in fissions of 233 U instead of just 239 Pu and in turn results in a lower average number of neutrons produced per absorption (η) for the fast reactor system. For continuous recycling systems, the lower η results in lower excess reactivity and subsequently lower achievable fuel burnup. This in turn leads to higher mass flows (fabrication, reprocessing, disposal, etc.) to produce a given amount of energy and subsequent lower metrics performance. The investigated fuel cycle options with intermediate spectrum reactors also exhibited degraded performance in the benefit metrics compared to fast spectrum reactors. Similarly, this is due to lower η values as the spectrum softens. The best externally-driven systems exhibited similar performance as fast critical reactors in terms of mass flows

  7. Life cycle assessment integrated with thermodynamic analysis of bio-fuel options for solid oxide fuel cells.

    Science.gov (United States)

    Lin, Jiefeng; Babbitt, Callie W; Trabold, Thomas A

    2013-01-01

    A methodology that integrates life cycle assessment (LCA) with thermodynamic analysis is developed and applied to evaluate the environmental impacts of producing biofuels from waste biomass, including biodiesel from waste cooking oil, ethanol from corn stover, and compressed natural gas from municipal solid wastes. Solid oxide fuel cell-based auxiliary power units using bio-fuel as the hydrogen precursor enable generation of auxiliary electricity for idling heavy-duty trucks. Thermodynamic analysis is applied to evaluate the fuel conversion efficiency and determine the amount of fuel feedstock needed to generate a unit of electrical power. These inputs feed into an LCA that compares energy consumption and greenhouse gas emissions of different fuel pathways. Results show that compressed natural gas from municipal solid wastes is an optimal bio-fuel option for SOFC-APU applications in New York State. However, this methodology can be regionalized within the U.S. or internationally to account for different fuel feedstock options. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Nuclear Fuel Cycle Evaluation and Real Options

    Directory of Open Access Journals (Sweden)

    L. Havlíček

    2008-01-01

    Full Text Available The first part of this paper describes the nuclear fuel cycle. It is divided into three parts. The first part, called Front-End, covers all activities connected with fuel procurement and fabrication. The middle part of the cycle includes fuel reload design activities and the operation of the fuel in the reactor. Back-End comprises all activities ensuring safe separation of spent fuel and radioactive waste from the environment. The individual stages of the fuel cycle are strongly interrelated. Overall economic optimization is very difficult. Generally, NPV is used for an economic evaluation in the nuclear fuel cycle. However the high volatility of uranium prices in the Front-End, and the large uncertainty of both economic and technical parameters in the Back-End, make the use of NPV difficult. The real option method is able to evaluate the value added by flexibility of decision making by a company under conditions of uncertainty. The possibility of applying this method to the nuclear fuel cycle evaluation is studied. 

  9. ATR Spent Fuel Options Study

    International Nuclear Information System (INIS)

    Connolly, Michael James; Bean, Thomas E.; Brower, Jeffrey O.; Luke, Dale E.; Patterson, M. W.; Robb, Alan K.; Sindelar, Robert; Smith, Rebecca E.; Tonc, Vincent F.; Tripp, Julia L.; Winston, Philip L.

    2017-01-01

    The Advanced Test Reactor (ATR) is a materials and fuels test nuclear reactor that performs irradiation services for the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Naval Reactors, the National Nuclear Security Administration (NNSA), and other research programs. ATR achieved initial criticality in 1967 and is expected to operate in support of needed missions until the year 2050 or beyond. It is anticipated that ATR will generate approximately 105 spent nuclear fuel (SNF) elements per year through the year 2050. Idaho National Laboratory (INL) currently stores 2,008 ATR SNF elements in dry storage, 976 in wet storage, and expects to have 1,000 elements in wet storage before January 2017. A capability gap exists at INL for long-term (greater than the year 2050) management, in compliance with the Idaho Settlement Agreement (ISA), of ATR SNF until a monitored retrievable geological repository is open. INL has significant wet and dry storage capabilities that are owned by the DOE Office of Environmental Management (EM) and operated and managed by Fluor Idaho, which include the Idaho Nuclear Technology and Engineering Center's (INTEC's) CPP-666, CPP-749, and CPP-603. In addition, INL has other capabilities owned by DOE-NE and operated and managed by Battelle Energy Alliance, LLC (BEA), which are located at the Materials and Fuel Complex (MFC). Additional storage capabilities are located on the INL Site at the Naval Reactors Facility (NRF). Current INL SNF management planning, as defined in the Fluor Idaho contract, shows INTEC dry fuel storage, which is currently used for ATR SNF, will be nearly full after transfer of an additional 1,000 ATR SNF from wet storage. DOE-NE tasked BEA with identifying and analyzing options that have the potential to fulfill this capability gap. BEA assembled a team comprised of SNF management experts from Fluor Idaho, Savannah River Site (SRS), INL/BEA, and the MITRE Corp with an objective of developing and analyzing

  10. ATR Spent Fuel Options Study

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Michael James [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bean, Thomas E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Brower, Jeffrey O. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Luke, Dale E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Patterson, M. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Robb, Alan K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sindelar, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Rebecca E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tonc, Vincent F. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tripp, Julia L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Winston, Philip L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    The Advanced Test Reactor (ATR) is a materials and fuels test nuclear reactor that performs irradiation services for the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Naval Reactors, the National Nuclear Security Administration (NNSA), and other research programs. ATR achieved initial criticality in 1967 and is expected to operate in support of needed missions until the year 2050 or beyond. It is anticipated that ATR will generate approximately 105 spent nuclear fuel (SNF) elements per year through the year 2050. Idaho National Laboratory (INL) currently stores 2,008 ATR SNF elements in dry storage, 976 in wet storage, and expects to have 1,000 elements in wet storage before January 2017. A capability gap exists at INL for long-term (greater than the year 2050) management, in compliance with the Idaho Settlement Agreement (ISA), of ATR SNF until a monitored retrievable geological repository is open. INL has significant wet and dry storage capabilities that are owned by the DOE Office of Environmental Management (EM) and operated and managed by Fluor Idaho, which include the Idaho Nuclear Technology and Engineering Center’s (INTEC’s) CPP-666, CPP-749, and CPP-603. In addition, INL has other capabilities owned by DOE-NE and operated and managed by Battelle Energy Alliance, LLC (BEA), which are located at the Materials and Fuel Complex (MFC). Additional storage capabilities are located on the INL Site at the Naval Reactors Facility (NRF). Current INL SNF management planning, as defined in the Fluor Idaho contract, shows INTEC dry fuel storage, which is currently used for ATR SNF, will be nearly full after transfer of an additional 1,000 ATR SNF from wet storage. DOE-NE tasked BEA with identifying and analyzing options that have the potential to fulfill this capability gap. BEA assembled a team comprised of SNF management experts from Fluor Idaho, Savannah River Site (SRS), INL/BEA, and the MITRE Corp with an objective of developing and analyzing

  11. Fuel options for public bus fleets in Sweden

    OpenAIRE

    Xylia, Maria; Silveira, Semida

    2015-01-01

    The Swedish public transport sector has defined two major targets, i.e., to run 90% of the total vehicle kilometers of the fleet on non-fossil fuels and double the volume of travel via public transport by 2020, increasing the share of public transport in relation to the total personal transport in the country . The f3 report Fuel options for public bus fleets in Sweden highlights the challenges and solutions encountered, particularly when it comes to the adoption of renewable fuels in the reg...

  12. Fuel Transfer Cask; Procedure Option and Radiation Protection during Transferring the Spent Fuel

    International Nuclear Information System (INIS)

    Muhammad Khairul Ariff Mustafa; Nurhayati Ramli; Ahmad Nabil Abdul Rahim; Mohd Fazli Zakaria

    2011-01-01

    Reactor TRIGA PUSPATI (RTP) has been operating almost 30 years. Many components are ageing. Nuclear Malaysia has taken an initiative to manage this ageing problem to prolong the life of the reactor. Hence, reactor upgrading project already commence started with the reactor console. To upgrade the core, all the fuel must be taken out from the core. A conceptual design of fuel transfer cask already done. This paper will discuss about the option of safe working procedure for transferring the fuel to the spent fuel pool for temporary. Hence, radiation protection for operator should be considered during the process. (author)

  13. The feasibility study on fuel types for the KALIMER

    International Nuclear Information System (INIS)

    Hwang, W.; Nam, C.; Yim, J. S.; Na, B. C.; Hahn, D. H.; Kim, Y. I.; Kim, Y. C.; Park, C. K.

    1997-08-01

    The economics of LMR is largely dependent on the construction cost of the power plant, and the fuel cycle options usually constitute 20 to 30 % of total electricity generation cost. The choice of fuel cycle technology and the fuel type is important in order to develop a LMR with better economics, performance and safety. The LMR fuel types, whose performances have been proven up to 15 at% burnup, are MOX and IFR metal fuel. The base alloy, binary (U-10% Zr) metal fuel with HT9 is used as structural materials of KALIMER. The design concept of KALIMER fuel has been established through the investigation of technical feasibilities on the fuel and recycle systems for MOX and IFR metal fuel. According to the results of comparative analysis for MOX and metal fuel, metal fuel is better than MOX in view of safety, in-reactor performance, nuclear characteristics, economics and non-proliferation, while MOX fuels have advantages in the developmental status and technical cooperation potential. The overall performance of binary (U-10% Zr) metal fuel with HT9 cladding, which is a potential start-up fuel for KALIMER, is not only superior to that of MOX fuel, but also has enough technical feasibility in its high-burnup performance, safety and economics. (author). 54 ref., 13 tabs., 20 figs

  14. Parametric analyses of single-zone thorium-fueled molten salt reactor fuel cycle options

    International Nuclear Information System (INIS)

    Powers, J.J.; Worrall, A.; Gehin, J.C.; Harrison, T.J.; Sunny, E.E.

    2013-01-01

    Analyses of fuel cycle options based on thorium-fueled Molten Salt Reactors (MSRs) have been performed in support of fuel cycle screening and evaluation activities for the United States Department of Energy. The MSR options considered are based on thermal spectrum MSRs with 3 different separations levels: full recycling, limited recycling, and 'once-through' operation without active separations. A single-fluid, single-zone 2250 MWth (1000 MWe) MSR concept consisting of a fuel-bearing molten salt with graphite moderator and reflectors was used as the basis for this study. Radiation transport and isotopic depletion calculations were performed using SCALE 6.1 with ENDF/B-VII nuclear data. New methodology developed at Oak Ridge National Laboratory (ORNL) enables MSR analysis using SCALE, modeling material feed and removal by taking user-specified parameters and performing multiple SCALE/TRITON simulations to determine the resulting equilibrium operating conditions. Parametric analyses examined the sensitivity of the performance of a thorium MSR to variations in the separations efficiency for protactinium and fission products. Results indicate that self-sustained operation is possible with full or limited recycling but once-through operation would require an external neutron source. (authors)

  15. Assessment of Used Nuclear Fuel Inventory Relative to Disposition Options

    International Nuclear Information System (INIS)

    Wagner, John C.; Peterson, Joshua L.; Mueller, Don; Gehin, Jess C.; Worrall, Andrew; Taiwo, Temitope; Nutt, Mark; Williamson, Mark A.; Todosow, Mike; Wigeland, Roald; Halsey, William; Omberg, Ronald; Swift, Peter; Carter, Joe

    2013-01-01

    This paper presents a technical assessment of the current inventory [∼70,150 metric tons of heavy metal (MTHM) as of 2011] of U.S.-discharged used nuclear fuel (UNF) to support decisions regarding fuel cycle strategies and research, development and demonstration (RD and D) needs. The assessment considered discharged UNF from commercial nuclear electricity generation and defense and research programs and determined that the current UNF inventory can be divided into the following three categories: 1. Disposal - excess material that is not needed for other purposes; 2. Research - material needed for RD and D purposes to support waste management (e.g., UNF storage, transportation, and disposal) and development of alternative fuel cycles (e.g., separations and advanced fuels/reactors); and 3. Recycle/Recovery - material with inherent and/or strategic value. A set of key assumptions and attributes relative to the disposition options was used to categorize the current UNF inventory. Based on consideration of RD and D needs, time frames and material needs for deployment of alternative fuel cycles, characteristics of the current UNF inventory, and possible uses to support national security interests, it was determined that the vast majority of the category, without the need for retrieval for reuse or research purposes. Access to the material in the Research and Recycle/Recovery categories should be retained to support RD and D needs and national security interests. This assessment does not assume any decision about future fuel cycle options or preclude any potential options, including those with potential recycling of commercial UNF, since the ∼2,000 MTHM that is generated annually could provide the feedstock needed for deployment of alternative fuel cycles.

  16. Assessment of Startup Fuel Options for the GNEP Advanced Burner Reactor (ABR)

    Energy Technology Data Exchange (ETDEWEB)

    Jon Carmack (062056); Kemal O. Pasamehmetoglu (103171); David Alberstein

    2008-02-01

    The Global Nuclear Energy Program (GNEP) includes a program element for the development and construction of an advanced sodium cooled fast reactor to demonstrate the burning (transmutation) of significant quantities of minor actinides obtained from a separations process and fabricated into a transuranic bearing fuel assembly. To demonstrate and qualify transuranic (TRU) fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype is needed. The ABR would necessarily be started up using conventional metal alloy or oxide (U or U, Pu) fuel. Startup fuel is needed for the ABR for the first 2 to 4 core loads of fuel in the ABR. Following start up, a series of advanced TRU bearing fuel assemblies will be irradiated in qualification lead test assemblies in the ABR. There are multiple options for this startup fuel. This report provides a description of the possible startup fuel options as well as possible fabrication alternatives available to the program in the current domestic and international facilities and infrastructure.

  17. Radiological aspects of postfission waste management for light-water reactor fuel cycle options

    Energy Technology Data Exchange (ETDEWEB)

    Shipler, D B; Nelson, I C [Battelle Pacific Northwest Laboratories, Richland, WA (United States)

    1978-12-01

    A generic environmental impact statement on the management of radioactive postfission wastes from various light-water reactor fuel cycles in the United States has been prepared. The environmental analysis for post-fission waste management includes an examination of radiological impacts related to different waste treatment, storage, transportation, and disposal options at the process level. Effects addressed include effluents from plants, and radiological impacts from facility operation (routine and accidents), and decommissioning. Environmental effects are combined for fuel reprocessing plants, mixed-oxide fuel fabrication plants, and waste repositories. Radiological effects are also aggregated for several fuel cycle options over the period 1980 and 2050. Fuel cycles analyzed are (1) once-through cycle in which spent reactor fuel is cooled in water basins for at least 6-1/2 years and then disposed of in deep geologic repositories; (2) spent fuel reprocessing in which uranium only and uranium and plutonium is recycled and solidified high level waste, fuel residues, and non-high-level transuranic wastes are disposed of in deep geologic repositories; and (3) deferred cycle that calls for storage of spent fuel at Federal spent fuel storage facilities until the year 2000 at which time a decision is made whether to dispose of spent fuel as a waste or to reprocess the fuel to recover uranium and plutonium. Key environmental issues for decision-making related to waste management alternatives and fuel cycle options are highlighted. (author)

  18. Radiological impacts of spent nuclear fuel management options. A comparative study

    International Nuclear Information System (INIS)

    2000-01-01

    Given its potential significance for public health and the environment, the impact of radioactive releases during important steps of nuclear energy production must be considered when selecting among different fuel cycles. With this in mind, the OECD Nuclear Energy Agency (NEA) has undertaken a comparative study to the radiological impacts of two main fuel cycle options : one with and one without reprocessing of spent nuclear fuel. The study compares the respective impacts of the two options based on generic models and assumptions as well as actual data. It concludes that the difference between them is not significant. A wealth of recent data assembled and evaluated by an international expert team is provided in annex. (authors)

  19. Spent Nuclear Fuel Option Study on Hybrid Reactor for Waste Transmutation

    International Nuclear Information System (INIS)

    Hong, Seong Hee; Kim, Myung Hyun

    2016-01-01

    DUPIC nuclear fuel can be used in hybrid reactor by compensation of subcritical level through (U-10Zr) fuel. Energy production performance of Hyb-WT with DUPIC is grateful because it has high EM factor and performs waste transmutation at the same time. However, waste transmutation performance should be improved by different fissile fuel instead of (U-10Zr) fuel. SNF (Spent Nuclear Fuel) disposal is one of the problems in the nuclear industry. FFHR (Fusion-Fission Hybrid Reactor) is one of the most attractive option on reuse of SNF as a waste transmutation system. Because subcritical system like FFHR has some advantages compared to critical system. Subcritical systems have higher safety potential than critical system. Also, there is suppressed excess reactivity at BOC (Beginning of Cycle) in critical system, on the other hand there is no suppressed reactivity in subcritical system. Our research team could have designed FFHR for waste transmutation; Hyb-WT. Various researches have been conducted on fuel and coolant option for optimization of transmutation performance. However, Hyb-WT has technical disadvantage. It is required fusion power (Pfus) which is the key design parameter in FFHR is increased for compensation of decreasing subcritical level. As a result, structure material integrity is damaged under high irradiation condition by increasing Pfus. Also, deep burn of reprocessed SNF is limited by weakened integrity of structure material. Therefore, in this research, SNF option study will be conducted on DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactor) fuel, TRU fuel and DUPIC + TRU mixed fuel for optimization of Hyb-WT performance. Goal of this research is design check for low required fusion power and high waste transmutation. In this paper, neutronic analysis is conducted on Hyb-WT with DUPIC nuclear fuel. When DUPIC nuclear fuel is loaded in fast neutron system, supplement fissile materials need to be loaded together for compensation of low criticality

  20. Spent Nuclear Fuel Option Study on Hybrid Reactor for Waste Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Hee; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2016-05-15

    DUPIC nuclear fuel can be used in hybrid reactor by compensation of subcritical level through (U-10Zr) fuel. Energy production performance of Hyb-WT with DUPIC is grateful because it has high EM factor and performs waste transmutation at the same time. However, waste transmutation performance should be improved by different fissile fuel instead of (U-10Zr) fuel. SNF (Spent Nuclear Fuel) disposal is one of the problems in the nuclear industry. FFHR (Fusion-Fission Hybrid Reactor) is one of the most attractive option on reuse of SNF as a waste transmutation system. Because subcritical system like FFHR has some advantages compared to critical system. Subcritical systems have higher safety potential than critical system. Also, there is suppressed excess reactivity at BOC (Beginning of Cycle) in critical system, on the other hand there is no suppressed reactivity in subcritical system. Our research team could have designed FFHR for waste transmutation; Hyb-WT. Various researches have been conducted on fuel and coolant option for optimization of transmutation performance. However, Hyb-WT has technical disadvantage. It is required fusion power (Pfus) which is the key design parameter in FFHR is increased for compensation of decreasing subcritical level. As a result, structure material integrity is damaged under high irradiation condition by increasing Pfus. Also, deep burn of reprocessed SNF is limited by weakened integrity of structure material. Therefore, in this research, SNF option study will be conducted on DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactor) fuel, TRU fuel and DUPIC + TRU mixed fuel for optimization of Hyb-WT performance. Goal of this research is design check for low required fusion power and high waste transmutation. In this paper, neutronic analysis is conducted on Hyb-WT with DUPIC nuclear fuel. When DUPIC nuclear fuel is loaded in fast neutron system, supplement fissile materials need to be loaded together for compensation of low criticality

  1. Fuel cycle options for light water reactors in Germany

    International Nuclear Information System (INIS)

    Broecking, D.; Mester, W.

    1999-01-01

    In Germany 19 nuclear power plants with an electrical output of 22 GWe are in operation. Annually about 450 t of spent fuel are unloaded from the reactors. Currently most of the spent fuel elements are shipped to France and the United Kingdom for reprocessing according to contracts which have been signed since the late 70es. By the amendment of the Atomic Energy Act in 1994 the previous priority for reprocessing of spent nuclear fuel was substituted by a legal equivalency of the reprocessing and direct disposal option. As a consequence some utilities take into consideration the direct disposal of their spent fuel for economical reasons. The separated plutonium will be recycled as MOX fuel in light water reactors. About 30 tons of fissile plutonium will be available to German utilities for recycling by the year 2000. Twelve German reactors are already licensed for the use of MOX fuel, five others have applied for MOX use. Eight reactors are currently using MOX fuel or used it in the past. The spent fuel elements which shall be disposed of without reprocessing will be stored in two interim dry storage facilities at Gorleben and Ahaus. The storage capacities are 3800 and 4200 tHM, respectively. The Gorleben salt dome is currently investigated to prove its suitability as a repository for high level radioactive waste, either in a vitrified form or as conditioned spent fuel. The future development of the nuclear fuel cycle and radioactive waste management depends on the future role of nuclear energy in Germany. According to estimations of the German utilities no additional nuclear power plants are needed in the near future. Around the middle of the next decade it will have to be decided whether existing plants should be substituted by new ones. For the foreseeable time German utilities are interested in a highly flexible approach to the nuclear fuel cycle and waste management keeping open both spent fuel management options: the closed fuel cycle and direct disposal of

  2. Investigation into fuel pin reshuffling options in PWR in-core fuel management for enhancement of efficient use of nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Daing, Aung Tharn, E-mail: atdaing@khu.ac.kr; Kim, Myung Hyun, E-mail: mhkim@khu.ac.kr

    2014-07-01

    Highlights: • This paper discusses an alternative option, fuel pin reshuffling for maximization of cycle energy production. • The prediction results of isotopic compositions of each burnt pin are verified. • The operating performance is analyzed at equilibrium core with fuel pin reshuffling. • The possibility of reuse of spent fuel pins for reduction of fresh fuel assemblies is investigated. - Abstract: An alternative way to enhance efficient use of nuclear fuel is investigated through fuel pin reshuffling options within PWR fuel assembly (FA). In modeling FA with reshuffled pins, as prerequisite, the single pin calculation method is proposed to estimate the isotopic compositions of each pin of burnt FA in the core-wide environment. Subsequently, such estimation has been verified by comparing with the neutronic performance of the reference design. Two scenarios are concerned, i.e., first scenario was targeted on the improvement of the uniform flux spatial distribution and on the enhancement of neutron economy by simply reshuffling the existing fuel pins in once-burnt fuel assemblies, and second one was focused on reduction of fresh fuel loading and discharged fuel assemblies with more economic incentives by reusing some available spent fuel pins still carrying enough reactivity that are mechanically sound ascertained. In scenario-1, the operating time was merely somewhat increased for few minutes when treating eight FAs by keeping enough safety margins. The scenario-2 was proved to reduce four fresh FAs loading without largely losing any targeted parameters from the safety aspect despite loss of 14 effective full power days for operation at reference plant full rated power.

  3. Options for the interim storage of spent fuel

    International Nuclear Information System (INIS)

    Kromar, M.; Kurincic, B.

    1995-01-01

    Different concepts for the interim storage of spent fuel arising from operation of a NPP are discussed. We considered at reactor as well as away from reactor storage options. Included are enhancements of existing storage capabilities and construction of a new wet or dry storage facility. (author)

  4. U.S. weapons-usable plutonium disposition policy: Implementation of the MOX fuel option

    Energy Technology Data Exchange (ETDEWEB)

    Woods, A.L. [ed.] [Amarillo National Resource Center for Plutonium, TX (United States); Gonzalez, V.L. [Texas A and M Univ., College Station, TX (United States). Dept. of Political Science

    1998-10-01

    A comprehensive case study was conducted on the policy problem of disposing of US weapons-grade plutonium, which has been declared surplus to strategic defense needs. Specifically, implementation of the mixed-oxide fuel disposition option was examined in the context of national and international nonproliferation policy, and in contrast to US plutonium policy. The study reveals numerous difficulties in achieving effective implementation of the mixed-oxide fuel option including unresolved licensing and regulatory issues, technological uncertainties, public opposition, potentially conflicting federal policies, and the need for international assurances of reciprocal plutonium disposition activities. It is believed that these difficulties can be resolved in time so that the implementation of the mixed-oxide fuel option can eventually be effective in accomplishing its policy objective.

  5. U.S. weapons-useable plutonium disposition policy: Implementation of the MOX fuel option

    International Nuclear Information System (INIS)

    Woods, A.L.; Gonzalez, V.L.

    1998-10-01

    A comprehensive case study was conducted on the policy problem of disposing of US weapons-grade plutonium, which has been declared surplus to strategic defense needs. Specifically, implementation of the mixed-oxide fuel disposition option was examined in the context of national and international nonproliferation policy, and in contrast to US plutonium policy. The study reveals numerous difficulties in achieving effective implementation of the mixed-oxide fuel option including unresolved licensing and regulatory issues, technological uncertainties, public opposition, potentially conflicting federal policies, and the need for international assurances of reciprocal plutonium disposition activities. It is believed that these difficulties can be resolved in time so that the implementation of the mixed-oxide fuel option can eventually be effective in accomplishing its policy objective

  6. MHR fuel cycle options for future sustainability of nuclear power

    International Nuclear Information System (INIS)

    Baxter, Alan; Venneri, Francesco; Rodriguez, Carmelo; Fikani, Michael

    2005-01-01

    The future sustainability of the nuclear option is not significantly tied to the level of resources. For example, current high quality uranium reserves (∼3.34x10 6 tons) are enough for more than 55 years at present consumption rates (IAEA estimate). Doubling of the present uranium ore price (∼$26/kg) could create about a tenfold increase in resources, providing more than 550 years of supply at present rates (World Nuclear Association estimate). There are also thorium reserves which are estimated to be about three times those of uranium, and would allow for a significant increase in annual consumption levels. The key to a sustainable nuclear future is really tied to the political and technical problems of long term waste disposal, and the perceived risks of nuclear weapons proliferation. Thus fuel cycle options for a sustainable nuclear future must address and solve these issues. High temperature, Gas-Cooled, Graphite Moderated, reactors (MHRs) have nuclear and operational characteristics to provide multiple fuel cycle options to solve these issues. Three fuel cycles for the MHD are described in this paper, and their capabilities for meeting a sustainable nuclear future in terms of nuclear waste minimization and destruction, and reduction of proliferation risk, are discussed. (author)

  7. Augmented lagrange hopfield network for economic dispatch with multiple fuel options

    International Nuclear Information System (INIS)

    Dieu, Vo Ngoc; Ongsakul, Weerakorn; Polprasert, Jirawadee

    2011-01-01

    This paper proposes an augmented Lagrange Hopfield network (ALHN) for solving economic dispatch (ED) problem with multiple fuel options. The proposed ALHN method is a continuous Hopfield neural network with its energy function based on augmented Lagrangian function. The advantages of ALHN over the conventional Hopfield neural network are easier use, more general applications, faster convergence, better optimal solution, and larger scale of problem implementation. The method solves the problem by directly searching the most suitable fuel among the available fuels of each unit and finding the optimal solution for the problem based on minimization of the energy function of the continuous Hopfield neural network. The proposed method is tested on systems up to 100 units and the obtained results are compared to those from other methods in the literature. The results have shown that the proposed method is efficient for solving the ED problem with multiple fuel options and favorable for implementation in large scale problems.

  8. Automobiles and global warming: Alternative fuels and other options for carbon dioxide emissions reduction

    International Nuclear Information System (INIS)

    Sagar, A.D.

    1995-01-01

    Automobiles are a source of considerable pollution at the global level, including a significant fraction of the total greenhouse gas emissions. Alternative fuels have received some attention as potential options to curtail the carbon dioxide emissions from motor vehicles. This article discusses the feasibility and desirability (from a technical as well as a broader environmental perspective) of the large-scale production and use of alternative fuels as a strategy to mitigate automotive carbon dioxide emissions. Other options such as improving vehicle efficiency and switching to more efficient modes of passenger transportation are also discussed. These latter options offer an effective and immediate way to tackle the greenhouse and other pollutant emission from automobiles, especially as the limitations of currently available alternative fuels and the technological and other constraints for potential future alternatives are revealed

  9. 40 CFR 270.235 - Options for incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Options for incinerators, cement kilns... Technology (MACT) Standards § 270.235 Options for incinerators, cement kilns, lightweight aggregate kilns... incinerator, cement kiln, lightweight aggregate kiln, solid fuel boiler, liquid fuel boiler, or hydrochloric...

  10. Assessment of bio-fuel options for solid oxide fuel cell applications

    Science.gov (United States)

    Lin, Jiefeng

    Rising concerns of inadequate petroleum supply, volatile crude oil price, and adverse environmental impacts from using fossil fuels have spurred the United States to promote bio-fuel domestic production and develop advanced energy systems such as fuel cells. The present dissertation analyzed the bio-fuel applications in a solid oxide fuel cell-based auxiliary power unit from environmental, economic, and technological perspectives. Life cycle assessment integrated with thermodynamics was applied to evaluate the environmental impacts (e.g., greenhouse gas emission, fossil energy consumption) of producing bio-fuels from waste biomass. Landfill gas from municipal solid wastes and biodiesel from waste cooking oil are both suggested as the promising bio-fuel options. A nonlinear optimization model was developed with a multi-objective optimization technique to analyze the economic aspect of biodiesel-ethanol-diesel ternary blends used in transportation sectors and capture the dynamic variables affecting bio-fuel productions and applications (e.g., market disturbances, bio-fuel tax credit, policy changes, fuel specification, and technological innovation). A single-tube catalytic reformer with rhodium/ceria-zirconia catalyst was used for autothermal reformation of various heavy hydrocarbon fuels (e.g., diesel, biodiesel, biodiesel-diesel, and biodiesel-ethanol-diesel) to produce a hydrogen-rich stream reformates suitable for use in solid oxide fuel cell systems. A customized mixing chamber was designed and integrated with the reformer to overcome the technical challenges of heavy hydrocarbon reformation. A thermodynamic analysis, based on total Gibbs free energy minimization, was implemented to optimize the operating environment for the reformations of various fuels. This was complimented by experimental investigations of fuel autothermal reformation. 25% biodiesel blended with 10% ethanol and 65% diesel was determined to be viable fuel for use on a truck travelling with

  11. Assessment of Startup Fuel Options for a Test or Demonstration Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Carmack, Jon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hayes, Steven [Idaho National Lab. (INL), Idaho Falls, ID (United States); Walters, L. C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    This document explores startup fuel options for a proposed test/demonstration fast reactor. The fuel options considered are the metallic fuels U-Zr and U-Pu-Zr and the ceramic fuels UO2 and UO2-PuO2 (MOX). Attributes of the candidate fuel choices considered were feedstock availability, fabrication feasibility, rough order of magnitude cost and schedule, and the existing irradiation performance database. The reactor-grade plutonium bearing fuels (U-Pu-Zr and MOX) were eliminated from consideration as the initial startup fuels because the availability and isotopics of domestic plutonium feedstock is uncertain. There are international sources of reactor grade plutonium feedstock but isotopics and availability are also uncertain. Weapons grade plutonium is the only possible source of Pu feedstock in sufficient quantities needed to fuel a startup core. Currently, the available U.S. source of (excess) weapons-grade plutonium is designated for irradiation in commercial light water reactors (LWR) to a level that would preclude diversion. Weapons-grade plutonium also contains a significant concentration of gallium. Gallium presents a potential issue for both the fabrication of MOX fuel as well as possible performance issues for metallic fuel. Also, the construction of a fuel fabrication line for plutonium fuels, with or without a line to remove gallium, is expected to be considerably more expensive than for uranium fuels. In the case of U-Pu-Zr, a relatively small number of fuel pins have been irradiated to high burnup, and in no case has a full assembly been irradiated to high burnup without disassembly and re-constitution. For MOX fuel, the irradiation database from the Fast Flux Test Facility (FFTF) is extensive. If a significant source of either weapons-grade or reactor-grade Pu became available (i.e., from an international source), a startup core based on Pu could be reconsidered.

  12. MOX fuel use as a back-end option: Trends, main issues and impacts on fuel cycle management

    International Nuclear Information System (INIS)

    Fukuda, K.; Choi, J.-S.; Shani, R.; Durpel, L. van den; Bertel, E.; Sartori, E.

    2000-01-01

    In the past decades while the FBIULWR fuel cycle concept was zealously being developed, MOX-fuel use in thermal reactors was taken as an alternative back-end policy option. However, the plutonium recycling with LWRs has evolved to industrial level, gaining high maturity through the incubative period while FBR deployment was envisaged. Today, MOX-fuel use in LWRs makes integral part of the fuel cycle for those countries relying on the recycling policy. Developments to improve the fuel cycle performance, including the minimisation of remaining wastes, and the reactor engineering aspects owing to MOX-fuel use, are continued. This paper jointly presented by IAEA and OECD/NEA brings an integrated overview on MOX use as a back-end policy, covering MOX fuel utilisation, fuel performance and technology, economics, licensing, MOX fuel trends in the coming decades. (author)

  13. R and D for back-end options for irradiated research reactor fuel in Germany

    International Nuclear Information System (INIS)

    Bruecher, H.; Curtius, H.; Fachinger, J.

    2001-01-01

    Out of 11.5 t of irradiated fuel arising from German research reactors until the end of this decade, 3.9 t are intended to be returned to the USA, and 2.3 t are expected to be recycled for reuse of uranium. The remaining 5.3 t, as well as the fuel irradiated after the year 2010, will have to follow the domestic back-end option of extended dry interim storage in Castor-type casks, followed by disposal in a deep geological repository. R and D is going on in the Research Centre Juelich to investigate the long-term behaviour of U-Al based fuel in a salt repository. First results from leaching experiments show I) a fast dissolution of the fuel with mobilization of its radionuclide inventory, and 2) the following formation of amorphous Al-Mg-hydroxide phases. Long-lived actinides from the fuel were shown to be fixed in these phases and hence immobilized. Future R and D will be to investigate the nature and stability of these phases for long-term safety assessments. Investigations will have to be extended to cover alternative disposal sites (granite clay) as well as different (e.g. silicon based) fuels. (author)

  14. Economic Analysis of Different Nuclear Fuel Cycle Options

    International Nuclear Information System (INIS)

    Ko, W.; Gao, F.

    2012-01-01

    An economic analysis has been performed to compare four nuclear fuel cycle options: a once-through cycle (OT), DUPIC recycling, thermal recycling using MOX fuel in a pressurized water reactor (PWR-MOX), and sodium fast reactor recycling employing pyro processing (Pyro-SFR). This comparison was made to suggest an economic competitive fuel cycle for the Republic of Korea. The fuel cycle cost (FCC) has been calculated based on the equilibrium material flows integrated with the unit cost of the fuel cycle components. The levelized fuel cycle costs (LFCC) have been derived in terms of mills/kWh for a fair comparison among the FCCs, and the results are as follows: OT 7.35 mills/kWh, DUPIC 9.06 mills/kWh, PUREX-MOX 8.94 mills/kWh, and Pyro-SFR 7.70 mills/kWh. Due to unavoidable uncertainties, a cost range has been applied to each unit cost, and an uncertainty study has been performed accordingly. A sensitivity analysis has also been carried out to obtain the break-even uranium price (215$/kgU) for the Pyro-SFR against the OT, which demonstrates that the deployment of the Pyro-SFR may be economical in the foreseeable future. The influence of pyro techniques on the LFCC has also been studied to determine at which level the potential advantages of Pyro-SFR can be realized.

  15. Assessment of alternative fuel and powertrain transit bus options using real-world operations data: Life-cycle fuel and emissions modeling

    International Nuclear Information System (INIS)

    Xu, Yanzhi; Gbologah, Franklin E.; Lee, Dong-Yeon; Liu, Haobing; Rodgers, Michael O.; Guensler, Randall L.

    2015-01-01

    applies the FEC to second-by-second GPS position data collected from buses operating in metropolitan Atlanta, GA. These operations, from two different transit agencies, feature distinctly different transit service types: local transit bus operations and longer-distance express bus operations. The results illustrate that the decision as to which bus technology-fuel combination produces the least greenhouse gas emissions is a function of location and route characteristics. For the express bus operations monitored, the case study shows that CNG vehicles offer greater emissions reductions than Biodiesel (B20). For local bus services, battery electric buses show the greatest emissions savings in the fuel cycle, as long as range limitations can be met for the specific routes. The amount of these emissions savings is, however, highly dependent on the power generation mix. Among CNG, B20, parallel hybrid, series hybrid, and fuel cell buses, the least emitting option varies by location, due to complex interactions of factors such as duty cycle, meteorology, and terrain

  16. Social Cost Assessment for Nuclear Fuel Cycle Options in the Republic of Korea

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Ji-eun; Yim, Man-Sung [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    This paper will investigate the vast array of economic factors to estimate the true cost of the nuclear power. There are many studies addressing the external costs of energy production. However, it is only since the 1990s that the external costs of nuclear powered electricity production has been studied in detail. Each investigation has identified their own set of external costs and developed formulas and models using a variety of statistical techniques. The objective of this research is to broaden the scope of the parameters currently consider by adding new areas and expanding on the types of situations considered. Previously the approach to evaluating the external cost of nuclear power did not include various fuel cycle options and influencing parameters. Cost has always been a very important factor in decision-making, in particular for policy choices evaluating the alternative energy sources and electricity generation technologies. Assessment of external costs in support of decision-making should reflect timely consideration of important country specific policy objective. PWR-MOX and FR-Pyro are the best fuel cycle in parameter of environment impacts, but OT or OT-ER is proper than FR-Pyro in human beings. Using the OT fuel cycle is better than FR-Pyro to reduce the conflict cost. When energy supply is deficient, FR-Pyro fuel cycle stands longer than other fuel cycles. Proliferation resistance is shown as 'high' in all fuel cycles, so there are no difference between fuel cycles. When the severe accident occurs, FR-Pyro cycle is economical than other OT based fuel cycles.

  17. 40 CFR 80.552 - What compliance options are available to motor vehicle diesel fuel small refiners?

    Science.gov (United States)

    2010-07-01

    ... to motor vehicle diesel fuel small refiners? 80.552 Section 80.552 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Small Refiner Hardship Provisions § 80.552 What compliance options are available to motor vehicle diesel fuel...

  18. National Option of China's Nuclear Energy Systems for Spent Fuel Management

    Energy Technology Data Exchange (ETDEWEB)

    Gao, R.X. [University of Science and Technology, Daejeon (Korea, Republic of); Ko, W. I.; Lee, S. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Along with safety concerns, these long standing environmental challenges are the major factors influencing the public acceptance of nuclear power. Although nuclear power plays an important role in reducing carbon emissions from energy generation, this could not fully prove it as a sustainable energy source unless we find a consensus approach to treat the nuclear wastes. There are currently no countries that have completed a whole nuclear fuel cycle, and the relative comparison of the reprocessing spent fuel options versus direct disposal option is always a controversial issue. Without exception, nowadays, China is implementing many R and D projects on spent fuel management to find a long-term solution for nuclear fuel cycle system transition, such as deep geological repositories for High Level Waste (HLW), Pu Reduction by Solvent Extraction (PUREX) technology, and fast reactor recycling Mixed U-Pu Oxide (MOX) fuels, etc. This paper integrates the current nation's projects of back-end fuel cycle, analyzes the consequences of potential successes, failures and delays in the project development to future nuclear fuel cycle transition up to 2100. We compared the dynamic results of four scenarios and then assessed relative impact on spent fuel management. The result revealed that the fuel cycle transition of reprocessing and recycling of spent fuel would bring advantages to overall nuclear systems by reducing high level waste inventory, saving natural uranium resources, and reducing plutonium management risk.

  19. Fuel price and technological uncertainty in a real options model for electricity planning

    International Nuclear Information System (INIS)

    Fuss, Sabine; Szolgayova, Jana

    2010-01-01

    Electricity generation is an important source of total CO 2 emissions, which in turn have been found to relate to an acceleration of global warming. Given that many OECD countries have to replace substantial portions of their electricity-generating capacity over the next 10-20 years, investment decisions today will determine the CO 2 -intensity of the future energy mix. But by what type of power plants will old (mostly fossil-fuel-fired) capacity be replaced? Given that modern, less carbon-intensive technologies are still expensive but can be expected to undergo improvements due to technical change in the near future, they may become more attractive, especially if fossil fuel price volatility makes traditional technologies more risky. At the same time, technological progress is an inherently uncertain process itself. In this paper, we use a real options model with stochastic technical change and stochastic fossil fuel prices in order to investigate their impact on replacement investment decisions in the electricity sector. We find that the uncertainty associated with the technological progress of renewable energy technologies leads to a postponement of investment. Even the simultaneous inclusion of stochastic fossil fuel prices in the same model does not make renewable energy competitive compared to fossil-fuel-fired technology in the short run based on the data used. This implies that policymakers have to intervene if renewable energy is supposed to get diffused more quickly. Otherwise, old fossil-fuel-fired equipment will be refurbished or replaced by fossil-fuel-fired capacity again, which enforces the lock-in of the current system into unsustainable electricity generation. (author)

  20. Effects of SO2 emission regulations and fuel prices on levellized energy costs for industrial steam generation options

    International Nuclear Information System (INIS)

    Ozdogan, Sibel; Arikol, Mahir

    1992-01-01

    We discuss the impacts of SO 2 emission regulations and fuel prices on levellized energy costs of industrial steam generation options. A computer model called INDUSTEAM has been utilized. The steam-supply options comprise conventional grate-firing, bubbling and circulating fluidized beds, fuel-oil, and natural-gas-fired systems. Fuels of different SO 2 pollution potential have been evaluated assuming six environmental scenarios and varying fuel prices. A capacity range of 10-90 MW th is covered. (author)

  1. An approach for assessing development and deployment risks in the DOE fuel cycle options evaluation and screening study - 5267

    International Nuclear Information System (INIS)

    Gehin, J.C.; Worrall, A.; Oakley, B.; Jenni, K.; Taiwo, T.; Wigeland, R.

    2015-01-01

    One of the key objectives of the U.S. Department of Energy (DOE) Nuclear Energy Research/development road-map is the development of sustainable nuclear fuel cycles that can improve natural resource utilization and provide solutions to the management of nuclear wastes. Recently, an evaluation and screening (ES) of fuel cycle systems has been conducted to identify those options that provide the best opportunities for obtaining such improvements and also to identify the required research and development activities that can support the development of advanced fuel cycle options. In order to evaluate and screen fuel cycle systems in the ES study, nine criteria were used including Development and Deployment Risk (DDR). More specifically, this criterion was represented by the following metrics: Development time, development cost, deployment cost from prototypic validation to first-of-a-kind commercial, compatibility with the existing nuclear fuel cycle infrastructure, existence of regulations for the fuel cycle and familiarity with licensing, and existence of market incentives and/or barriers to commercial implementation of fuel cycle processes. Given the comprehensive nature of the study, a systematic approach was needed to determine metric data for the DDR criterion. As would be expected, the Evaluation Group representing the once-through use of uranium in thermal reactors is always the highest ranked fuel cycle Evaluation Group for this DDR criterion. Evaluation Groups that consist of once-through fuel cycles that use existing reactor types are consistently ranked very high. The highest ranked limited and continuous recycle fuel cycle Evaluation Groups are those that recycle Pu in thermal reactors. The lowest ranked fuel cycles are predominately continuous recycle single stage and multi-stage fuel cycles that involve TRU and/or U 233 recycle. (authors)

  2. Interim spent-fuel storage options at commercial nuclear power plants

    International Nuclear Information System (INIS)

    Thakkar, A.R.; Hylko, J.M.

    1991-01-01

    Although spent fuel can be stored safely in waterfilled pools at reactor sites, some utilities may not possess sufficient space for life-of-plant storage capability. In-pool storage capability may be increased by reracking assemblies, rod consolidation, double tiering spent-fuel racks, and by shipping spent fuel to other utility-owned facilities. Long-term on-site storage capability for spent fuel may be provided by installing (dry-type) metal casks, storage and transportation casks, concrete casks, horizontal concrete modules, modular concrete vaults, or by constructing additional (pool-type) storage installations. Experience to date has provided valuable information regarding dry-type or pool-type installations, cask handling and staffing requirements, security features, decommissioning activities, and radiological issues

  3. Composition heterogeneity analysis for DUPIC fuel(I) - Statistical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-08-01

    The fuel composition heterogeneity effect on reactor performance parameters was assessed by refueling simulations for three DUPIC fuel options of fuel composition heterogeneity control: the fissile content adjustment, the reactivity control by slightly enriched and depleted uranium, and the reactivity control by natural uranium. For each DUPIC fuel option, the simulations were performed using 30 heterogeneous fuel types which were determined by the agglomerative hierarchical clustering method. The heterogeneity effect was considered during the refueling simulation by randomly selecting fuel types for the refueling operation. The refueling simulations of the heterogeneous core have shown that the key performance parameters such as the maximum channel power (MCP), maximum bundle power (MBP), and channel power peaking factor (CPPF) are close to those of the core that has single fuel type. For the three DUPIC fuel options, the uncertainties of MCP, MBP, and CPPF due to the fuel composition heterogeneity are less than 0.6, 1.5 and 0.8%, respectively, including the uncertainty of the group-average fuel property. This study has shown that the three DUPIC fuel options reduces the composition heterogeneity effectively and the zone power control system has a sufficient margin to adjust the perturbations cased by the fuel composition heterogeneity. 15 refs., 28 figs.,10 tabs. (Author)

  4. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    International Nuclear Information System (INIS)

    Brent W. Dixon; Steven J. Piet

    2004-01-01

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository (63,000 MTiHM commercial, 7,000 MT non-commercial). There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected. The first step in understanding the need for different spent fuel management approaches is to understand the size of potential spent fuel inventories. A full range of potential futures for domestic commercial nuclear energy is considered. These energy futures are as follows: 1. Existing License Completion - Based on existing spent fuel inventories plus extrapolation of future plant-by-plant discharges until the end of each operating license, including known license extensions. 2. Extended License Completion - Based on existing spent fuel inventories plus a plant-by-plant extrapolation of future discharges assuming on all operating plants having one 20-year extension. 3. Continuing Level Energy Generation - Based on extension of the current ∼100 GWe installed commercial base and average spent fuel discharge of 2100 MT/yr through the year 2100. 4. Continuing Market Share Generation - Based on a 1.8% compounded growth of the electricity market through the year 2100, matched by growing nuclear capacity and associated spent fuel discharge. 5. Growing Market Share Generation - Extension of current nuclear capacity and associated spent fuel discharge through 2100 with 3.2% growth representing 1.5% market growth (all energy, not just electricity) and 1.7% share growth. Share growth results in

  5. Analysis of fuel options for the breakeven core configuration of the Advanced Recycling Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Stauff, N.E.; Klim, T.K.; Taiwo, T.A. [Argonne National Laboratory, Argonne, IL (United States); Fiorina, C. [Politecnico di Milano, Milan (Italy); Franceschini, F. [Westinghouse Electric Company LLC., Cranberry Township, Pennsylvania (United States)

    2013-07-01

    A trade-off study is performed to determine the impacts of various fuel forms on the core design and core physics characteristics of the sodium-cooled Toshiba- Westinghouse Advanced Recycling Reactor (ARR). The fuel forms include oxide, nitride, and metallic forms of U and Th. The ARR core configuration is redesigned with driver and blanket regions in order to achieve breakeven fissile breeding performance with the various fuel types. State-of-the-art core physics tools are used for the analyses. In addition, a quasi-static reactivity balance approach is used for a preliminary comparison of the inherent safety performances of the various fuel options. Thorium-fueled cores exhibit lower breeding ratios and require larger blankets compared to the U-fueled cores, which is detrimental to core compactness and increases reprocessing and manufacturing requirements. The Th cores also exhibit higher reactivity swings through each cycle, which penalizes reactivity control and increases the number of control rods required. On the other hand, using Th leads to drastic reductions in void and coolant expansion coefficients of reactivity, with the potential for enhancing inherent core safety. Among the U-fueled ARR cores, metallic and nitride fuels result in higher breeding ratios due to their higher heavy metal densities. On the other hand, oxide fuels provide a softer spectrum, which increases the Doppler effect and reduces the positive sodium void worth. A lower fuel temperature is obtained with the metallic and nitride fuels due to their higher thermal conductivities and compatibility with sodium bonds. This is especially beneficial from an inherent safety point of view since it facilitates the reactor cool-down during loss of power removal transients. The advantages in terms of inherent safety of nitride and metallic fuels are maintained when using Th fuel. However, there is a lower relative increase in heavy metal density and in breeding ratio going from oxide to metallic

  6. Look at potential options for the fast reactor fuel cycle in the United States

    International Nuclear Information System (INIS)

    Burch, W.D.

    1984-01-01

    This paper reviews the status and plans for the fast reactor fuel cycle in the United States, presents some options that are under consideration, and describes how these options are being evaluated at the present time. The United States will undertake some far-reaching examinations of the entire breeder program strategy in the coming year, and the outcome of these reviews cannot be predicted today. In other papers at this conference you have heard various perspectives from both government and industry representatives. The proposed studies to examine the associated fuel cycle strategies as they relate to the overall emerging breeder strategy are described. The present status of and recent developments in the fuel cycle R and D programs will also be summarized and updated in order to present an overall picture of the United States situation

  7. Options Study - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    R. Wigeland; T. Taiwo; M. Todosow; W. Halsey; J. Gehin

    2010-09-01

    The Options Study has been conducted for the purpose of evaluating the potential of alternative integrated nuclear fuel cycle options to favorably address the issues associated with a continuing or expanding use of nuclear power in the United States. The study produced information that can be used to inform decisions identifying potential directions for research and development on such fuel cycle options. An integrated nuclear fuel cycle option is defined in this study as including all aspects of the entire nuclear fuel cycle, from obtaining natural resources for fuel to the ultimate disposal of used nuclear fuel (UNF) or radioactive wastes. Issues such as nuclear waste management, especially the increasing inventory of used nuclear fuel, the current uncertainty about used fuel disposal, and the risk of nuclear weapons proliferation have contributed to the reluctance to expand the use of nuclear power, even though it is recognized that nuclear power is a safe and reliable method of producing electricity. In this Options Study, current, evolutionary, and revolutionary nuclear energy options were all considered, including the use of uranium and thorium, and both once-through and recycle approaches. Available information has been collected and reviewed in order to evaluate the ability of an option to clearly address the challenges associated with the current implementation and potential expansion of commercial nuclear power in the United States. This Options Study is a comprehensive consideration and review of fuel cycle and technology options, including those for disposal, and is not constrained by any limitations that may be imposed by economics, technical maturity, past policy, or speculated future conditions. This Phase II report is intended to be used in conjunction with the Phase I report, and much information in that report is not repeated here, although some information has been updated to reflect recent developments. The focus in this Options Study was to

  8. Health and safety of competing fuel options for fuel cells in the road transport sector

    Energy Technology Data Exchange (ETDEWEB)

    Green, E.; Short, S.; Stutt, E.; Wickramatillake, H.; Harrison, P.

    2000-07-01

    This report presents a critical analysis of the health and safety issues surrounding competing transport fuel options, including those for possible future fuel-cell powered vehicles. The fuels considered in this report are gasoline (unleaded and reformulated), diesel, hydrogen (H{sub 2}), methanol, natural gas and liquefied petroleum gas (LPG). The analysis presented here is based on available information in peer-reviewed, published papers and other sources such as government department or research laboratory reports and websites. An overall evaluation of the fuels in terms of their toxicity and health effects, environmental fate, and fire and explosion safety aspects is presented. The report is based on current knowledge and makes no assumptions as to how fuels may change in the future if they are to be used in fuel-cell vehicles. The report identifies the hazards of the fuels but does not estimate the risks likely to be associated with their eventual use in fuel-cell vehicles. The focus is on the fuels themselves and not their exhaust or reaction products. sNo assessment has been made of the environmental effects data for the fuels. Broad environmental considerations such as ozone forming potential and also global warming are not considered. Basic information on environmental fate is included to provide an understanding of migratory pathways, environmental compartmentalisation and potential routes of human exposure. Other factors such as economics, government incentives or disincentives and public attitudes may have a bearing on which of the fuels are considered most appropriate for future fuel-cell vehicles; these factors are not considered in any detail in this report. (Author)

  9. North American natural gas outlook : does gas remain a fuel option for oil sands?

    International Nuclear Information System (INIS)

    George, R.R.

    2003-01-01

    This paper presents a North America natural gas outlook from Purvin and Gertz, an international energy consulting firm that has 30 years experience in providing strategic, commercial and technical advice to the petroleum industry. In particular, this presentation focuses on natural gas market fundamentals and how they may impact on oil sands development. It includes charts and graphs depicting NYMEX natural gas outlooks to July, 2009 and examines how supply will react to major changes in Canada's supply portfolio. It was noted that oil sands development is a driver for natural gas demand in Alberta. The existing regional gas pipeline infrastructure was presented and the market impact on upgrader options was discussed. The author suggests that if gas prices are too high, there are other fuel options for steam and power generation. These include bitumen, asphalt, coke, coal and nuclear. However, these options have additional costs, uncertainties and environmental issues. A key factor for success would be to have a clear understanding of the benefits and risks between these fuel options. 1 tab., 9 figs

  10. Used fuel rail shock and vibration testing options analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Steven B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Best, Ralph E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Klymyshyn, Nicholas A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jensen, Philip J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maheras, Steven J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-25

    The objective of the rail shock and vibration tests is to complete the framework needed to quantify loads of fuel assembly components that are necessary to guide materials research and establish a technical basis for review organizations such as the U.S. Nuclear Regulatory Commission (NRC). A significant body of experimental and numerical modeling data exists to quantify loads and failure limits applicable to normal conditions of transport (NCT) rail transport, but the data are based on assumptions that can only be verified through experimental testing. The test options presented in this report represent possible paths for acquiring the data that are needed to confirm the assumptions of previous work, validate modeling methods that will be needed for evaluating transported fuel on a case-by-case basis, and inform material test campaigns on the anticipated range of fuel loading. The ultimate goal of this testing is to close all of the existing knowledge gaps related to the loading of used fuel under NCT conditions and inform the experiments and analysis program on specific endpoints for their research. The options include tests that would use an actual railcar, surrogate assemblies, and real or simulated rail transportation casks. The railcar carrying the cradle, cask, and surrogate fuel assembly payload would be moved in a train operating over rail track modified or selected to impart shock and vibration forces that occur during normal rail transportation. Computer modeling would be used to help design surrogates that may be needed for a rail cask, a cask’s internal basket, and a transport cradle. The objective of the design of surrogate components would be to provide a test platform that effectively simulates responses to rail shock and vibration loads that would be exhibited by state-of-the-art rail cask, basket, and/or cradle structures. The computer models would also be used to help determine the placement of instrumentation (accelerometers and strain gauges

  11. Evaluation of plate type fuel options for small power reactors; Avaliacao de alternativas de combustivel tipo placa para reatores de pequeno porte

    Energy Technology Data Exchange (ETDEWEB)

    Andrzejewski, Claudio de Sa

    2005-07-01

    Plate type fuels are generally used in research reactor. The utilization of this kind of configuration improves significantly the overall performance fuel. The conception of new fuels for small power reactors based in plate-type configuration needs a complete review of the safety criteria originally used to conduce power and research reactor projects. In this work, a group of safety criteria is established for the utilization of plate-type fuels in small power reactors taking into consideration the characteristics of power and research reactors. The performance characteristics of fuel elements are strongly supported by its materials properties and the adopted configuration for its fissile particles. The present work makes an orientated bibliographic investigation searching the best material properties (structural materials and fuel compounds) related to the performance fuel. Looking for good parafermionic characteristics and manufacturing exequibility associated to existing facilities in national research centres, this work proposes several alternatives of plate type fuels, considering its utilization in small power reactors: dispersions of UO{sub 2} in stainless steel, of UO{sub 2} in zircaloy, and of U-Mo alloy in zircaloy, and monolithic plates of U-Mo cladded with zircaloy. Given the strong dependency of radiation damage with temperature increase, the safety criteria related to heat transfer were verified for all the alternatives, namely the DNBR; coolant temperature lower than saturation temperature; peak meat temperature to avoid swelling; peak fuel temperature to avoid meat-matrix reaction. It was found that all alternatives meet the safety criteria including the 0.5 mm monolithic U-Mo plate cladded with zircaloy. (author)

  12. Fuel loads and fuel type mapping

    Science.gov (United States)

    Chuvieco, Emilio; Riaño, David; Van Wagtendonk, Jan W.; Morsdof, Felix; Chuvieco, Emilio

    2003-01-01

    Correct description of fuel properties is critical to improve fire danger assessment and fire behaviour modeling, since they guide both fire ignition and fire propagation. This chapter deals with properties of fuel that can be considered static in short periods of time: biomass loads, plant geometry, compactness, etc. Mapping these properties require a detail knowledge of vegetation vertical and horizontal structure. Several systems to classify the great diversity of vegetation characteristics in few fuel types are described, as well as methods for mapping them with special emphasis on those based on remote sensing images.

  13. Enhanced CANDU6: Reactor and fuel cycle options - Natural uranium and beyond

    International Nuclear Information System (INIS)

    Ovanes, M.; Chan, P. S. W.; Mao, J.; Alderson, N.; Hopwood, J. M.

    2012-01-01

    The Enhanced CANDU 6 R (ECo R ) is the updated version of the well established CANDU 6 family of units incorporating improved safety characteristics designed to meet or exceed Generation III nuclear power plant expectations. The EC6 retains the excellent neutron economy and fuel cycle flexibility that are inherent in the CANDU reactor design. The reference design is based on natural uranium fuel, but the EC6 is also able to utilize additional fuel options, including the use of Recovered Uranium (RU) and Thorium based fuels, without requiring major hardware upgrades to the existing control and safety systems. This paper outlines the major changes in the EC6 core design from the existing C6 design that significantly enhance the safety characteristics and operating efficiency of the reactor. The use of RU fuel as a transparent replacement fuel for the standard 37-el NU fuel, and several RU based advanced fuel designs that give significant improvements in fuel burnup and inherent safety characteristics are also discussed in the paper. In addition, the suitability of the EC6 to use MOX and related Pu-based fuels will also be discussed. (authors)

  14. New type fuel exchange system

    International Nuclear Information System (INIS)

    Meshii, Toshio; Maita, Yasushi; Hirota, Koichi; Kamishima, Yoshio.

    1988-01-01

    When the reduction of the construction cost of FBRs is considered from the standpoint of the machinery and equipment, to make the size small and to heighten the efficiency are the assigned mission. In order to make a reactor vessel small, it is indispensable to decrease the size of the equipment for fuel exchange installed on the upper part of a core. Mitsubishi Heavy Industries Ltd. carried out the research on the development of a new type fuel exchange system. As for the fuel exchange system for FBRs, it is necessary to change the mode of fuel exchange from that of LWRs, such as handling in the presence of chemically active sodium and inert argon atmosphere covering it and handling under heavy shielding against high radiation. The fuel exchange system for FBRs is composed of a fuel exchanger which inserts, pulls out and transfers fuel and rotary plugs. The mechanism adopted for the new type fuel exchange system that Mitsubishi is developing is explained. The feasibility of the mechanism on the upper part of a core was investigated by water flow test, vibration test and buckling test. The design of the mechanism on the upper part of the core of a demonstration FBR was examined, and the new type fuel exchange system was sufficiently applicable. (Kako, I.)

  15. Potential External (non-DOE) Constraints on U.S. Fuel Cycle Options

    Energy Technology Data Exchange (ETDEWEB)

    Steven J. Piet

    2012-07-01

    The DOE Fuel Cycle Technologies (FCT) Program will be conducting a screening of fuel cycle options in FY2013 to help focus fuel cycle R&D activities. As part of this screening, performance criteria and go/no-go criteria are being identified. To help ensure that these criteria are consistent with current policy, an effort was initiated to identify the status and basis of potentially relevant regulations, laws, and policies that have been established external to DOE. As such regulations, laws, and policies may be beyond DOE’s control to change, they may constrain the screening criteria and internally-developed policy. This report contains a historical survey and analysis of publically available domestic documents that could pertain to external constraints on advanced nuclear fuel cycles. “External” is defined as public documents outside DOE. This effort did not include survey and analysis of constraints established internal to DOE.

  16. Fuel alternatives for oil sands development - the nuclear option

    Energy Technology Data Exchange (ETDEWEB)

    Bock, D [Atomic Energy of Canada Ltd., Mississauga, ON (Canada); Donnelly, J K

    1996-12-31

    Currently natural gas is the fuel of choice in all oil sand developments. Alberta sources of hydrocarbon based fuels are large but limited. Canadian nuclear technology was studied as a possible alternative for providing steam for the deep commercial in situ oil sand projects which were initiated over ten years ago. Because the in situ technology of that time required steam at pressures in excess of 10 MPa, the nuclear option required the development of new reactor technology, or the use of steam compressors, which was not economical. The current SAGD (steam assisted gravity drainage) technology requires steam at pressures of less than 5 MPa, which is in the reach of existing Canadian nuclear technology. The cost of supplying steam for a SAGD in situ project using a CANDU 3 nuclear reactor was developed. The study indicates that for gas prices in excess of $2.50 per gigajoule, replacing natural gas fuel with a nuclear reactor is economically feasible for in situ projects in excess of 123 thousand barrels per day. (author). 9 refs., 3 tabs., 12 figs.

  17. Fuel alternatives for oil sands development - the nuclear option

    International Nuclear Information System (INIS)

    Bock, D.; Donnelly, J.K.

    1995-01-01

    Currently natural gas is the fuel of choice in all oil sand developments. Alberta sources of hydrocarbon based fuels are large but limited. Canadian nuclear technology was studied as a possible alternative for providing steam for the deep commercial in situ oil sand projects which were initiated over ten years ago. Because the in situ technology of that time required steam at pressures in excess of 10 MPa, the nuclear option required the development of new reactor technology, or the use of steam compressors, which was not economical. The current SAGD (steam assisted gravity drainage) technology requires steam at pressures of less than 5 MPa, which is in the reach of existing Canadian nuclear technology. The cost of supplying steam for a SAGD in situ project using a CANDU 3 nuclear reactor was developed. The study indicates that for gas prices in excess of $2.50 per gigajoule, replacing natural gas fuel with a nuclear reactor is economically feasible for in situ projects in excess of 123 thousand barrels per day. (author). 9 refs., 3 tabs., 12 figs

  18. Fuel management options to extend the IRIS reactor cycle

    International Nuclear Information System (INIS)

    Petrovic, B.; Franceschini, F.

    2004-01-01

    To optimize plant operation, reduce scheduled maintenance outage, and increase capacity factor, IRIS is designed to enable extended cycles of up to four years. However, due to the enrichment licensing limitation (less than 5% enriched uranium oxide) there is a tradeoff between the achievable cycle length and fuel utilization, i.e., the average fuel discharge burnup. The longest individual cycle may be achieved with the single-batch straight burn, but at the expense of a lower burnup. Considering the IRIS basic performance requirements, a cycle length in the range of three to four years is deemed desirable. This paper examines different fuel management options, i.e., the influence of the required cycle length on the corresponding reloading strategy, including a two-batch and a three-batch reloading. A reference two-batch core design has been developed for the first cycle, as well as for the transition cycles leading to equilibrium. Main core performance parameters are evaluated. This core design provides the framework for the safety analyses needed to prepare the IRIS safety evaluations. Alternate designs are also considered.(author)

  19. Impact of minor actinide recycling on sustainable fuel cycle options

    Energy Technology Data Exchange (ETDEWEB)

    Heidet, F.; Kim, T. K.; Taiwo, T. A.

    2017-11-01

    The recent Evaluation and Screening study chartered by the U.S. Department of Energy, Office of Nuclear Energy, has identified four fuel cycle options as being the most promising. Among these four options, the two single-stage fuel cycles rely on a fast reactor and are differing in the fact that in one case only uranium and plutonium are recycled while in the other case minor actinides are also recycled. The two other fuel cycles are two-stage and rely on both fast and thermal reactors. They also differ in the fact that in one case only uranium and plutonium are recycled while in the other case minor actinides are also recycled. The current study assesses the impact of recycling minor actinides on the reactor core design, its performance characteristics, and the characteristics of the recycled material and waste material. The recycling of minor actinides is found not to affect the reactor core performance, as long as the same cycle length, core layout and specific power are being used. One notable difference is that the required transuranics (TRU) content is slightly increased when minor actinides are recycled. The mass flows are mostly unchanged given a same specific power and cycle length. Although the material mass flows and reactor performance characteristics are hardly affected by recycling minor actinides, some differences are observed in the waste characteristics between the two fuel cycles considered. The absence of minor actinides in the waste results in a different buildup of decay products, and in somewhat different behaviors depending on the characteristic and time frame considered. Recycling of minor actinides is found to result in a reduction of the waste characteristics ranging from 10% to 90%. These results are consistent with previous studies in this domain and depending on the time frame considered, packaging conditions, repository site, repository strategy, the differences observed in the waste characteristics could be beneficial and help improve

  20. Evaluation of fuel cycle options for plutonium utilization: 1977 study. Final report

    International Nuclear Information System (INIS)

    Pardue, W.M.; Madia, W.J.; Pobereskin, M.; Tripplett, M.B.; Waddell, J.D.

    1977-05-01

    This is the third in a series of three reports on the analysis of plutonium recycle. Analyses are based upon an October, 1976, middle case ERDA forecast of nuclear growth which predicts 510 GWe of nuclear capacity in the year 2000. Four fuel cycle options were reviewed, ranging from no LWR recycle of uranium of plutonium to recycle options both with and without breeder reactors. A special effort was devoted to the review of various estimates of the costs of reprocessing nuclear fuels, with a resulting value of $190/kg of heavy metal (deflated 1975 dollars). The associated range is estimated to $125/kg to $250/kg. Sensitivity analysis of reprocessing costs, uranium consumption, average generation costs, and total discounted costs of electricity indicate that the long-term economic advantages of plutonium recycle are quite conclusive. Nuclear scenarios which project low growth rates and which delay the start of recycle and introduction of a breeder reactor postpone the apparent economic advantages

  1. Alternative fuel cycle options: performance characteristics and impact on nuclear power growth potential

    International Nuclear Information System (INIS)

    Chang, Y.I.; Till, C.E.; Rudolph, R.R.; Deen, J.R.; King, M.J.

    1977-09-01

    The fuel utilization characteristics for LWR, SSCR, CANDU and LMFBR reactor concepts are quantified for various fuel cycle options, including once-through cycles, thorium cycles, and denatured cycles. The implications of various alternative reactor deployment strategies on the long-term nuclear power growth potential are then quantified in terms of the maximum nuclear capacity that can be achieved and the growth pattern over time, subject to the constraint of a fixed uranium-resource base. The overall objective of this study is to shed light on any large differences in the long-term potential that exist between various alternative reactor/fuel cycle deployment strategies

  2. K Basin spent fuel sludge treatment alternatives study. Volume 2, Technical options

    International Nuclear Information System (INIS)

    Beary, M.M.; Honekemp, J.R.; Winters, N.

    1995-01-01

    Approximately 2100 metric tons of irradiated N Reactor fuel are stored in the KE and KW Basins at the Hanford Site, Richland, Washington. Corrosion of the fuel has led to the formation of sludges, both within the storage canisters and on the basin floors. Concern about the degraded condition of the fuel and the potential for leakage from the basins in proximity to the Columbia River has resulted in DOE's commitment in the Tri-Party Agreement (TPA) to Milestone M-34-00-T08 to remove the fuel and sludges by a December 2002 target date. To support the planning for this expedited removal action, the implications of sludge management under various scenarios are examined. This report, Volume 2 of two volumes, describes the technical options for managing the sludges, including schedule and cost impacts, and assesses strategies for establishing a preferred path

  3. K Basin spent fuel sludge treatment alternatives study. Volume 1, Regulatory options

    International Nuclear Information System (INIS)

    Beary, M.M.; Honekemp, J.R.; Winters, N.

    1995-01-01

    Approximately 2100 metric tons of irradiated N Reactor fuel are stored in the KE and KW Basins at the Hanford Site, Richland, Washington. Corrosion of the fuel has led to the formation of sludges, both within the storage canisters and on the basin floors. Concern about the degraded condition of the fuel and the potential for leakage from the basins in proximity to the Columbia River has resulted in DOE's commitment in the Tri-Party Agreement (TPA) to Milestone M-34-00-T08 to remove the fuel and sludges by a December 2002 target date. To support the planning for this expedited removal action, the implications of sludge management under various scenarios are examined. Volume 1 of this two-volume report describes the regulatory options for managing the sludges, including schedule and cost impacts, and assesses strategies for establishing a preferred path

  4. Spent fuel from RA reactor inspection of state and options for management

    International Nuclear Information System (INIS)

    Aden, V.G.; Bulkin, S. Yu.; Sokolov, A. V.; Matausek, M.V.; Vukadin, Z.

    2001-01-01

    About five thousand spent fuel elements from RA reactor have been stored for over 30 years in sealed aluminum barrels in the spent fuel storage pool. This way of storage does not provide complete information about the state of spent fuel elements or the medium inside the barrels, like pressure or radioactivity. The technology has been developed and the equipment has been manufactured to inspect the state of the spent fuel and to reduce eventual internal pressure inside the aluminum barrels. The realization of this technology was started in 1999 but due to political and financial difficulties was not completed. In September the year 2000 the work was restarted. Two different ways of RA reactor spent fuel elements preparation for transportation or long-term storage are considered: 'all fuel elements canning without leak-tightness testing' and 'all fuel elements leak-tightness testing'. It is believed that the first option offers several distinct advantages, which can be summarized as: greater reliability in the course of transportation or dry storage. Higher safety for workers. Lower expenditures for non-standard equipment manufacturing. Shorter duration of work. (author)

  5. Analysis of radwaste material management options for experimental DUPIC fuel fabrication process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. H.; Park, J. J.; Yang, M. S.; Kim, K. H.; Shin, J. M.; Lee, H. S.; Ko, W. I.; Lee, J. W.; Yim, S. P.; Hong, D. H.; Lee, J. Y.; Baik, S. Y.; Song, W. S.; Yoo, B. O.; Lee, E. P.; Kang, I. S. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    This report is desirable to review management options in advance for radioactive waste generated from manufacturing experiment of DUPIC nuclear fuel as well as residual nuclear material and dismantled equipment. This report was written for helping researchers working in related facilities to DUPIC project understanding management of DUPIC radioactive waste as well as fellows in DUPIC project. Also, it will be used as basic material to prove transparency and safeguardability of DUPIC fuel cycle. In order to meet these purposes, this report includes basic experiment plan for manufacturing DUPIC nuclear fuel, outlines for DUPIC manufacturing facility and equipment, arising source and estimated amount of radioactive waste, waste classification and packing, transport cask, transport procedures. 15 refs., 31 figs., 11 tabs. (Author)

  6. Long-term issues associated with spent nuclear power fuel management options

    International Nuclear Information System (INIS)

    Jae-Sol, Lee; Kosaku, Fukuda; Burcl, R.; Bell, M.

    2003-01-01

    Spent fuel management is perceived as one of the crucial issues to be resolved for sustainable utilisation of nuclear power. In the last decades, spent fuel management policies have shown diverging tendencies among the nuclear power production countries - a group has adhered to reprocessing- recycle and another has turned to direct disposal, while the rest of the countries have not taken decision yet, often with ''wait and see'' position. Both the closed and open fuel cycle options for spent fuel management have been subject to a number of debates with pros and cons on various issues such as proliferation risk, environmental impact, etc. The anticipation for better technical solutions that would mitigate those issues has given rise to the renewal of interest in partitioning and transmutation of harmful nuclides to be disposed of, and in a broader context, the recent initiatives for development of innovative nuclear systems. The current trend toward globalization of market economy, which has already brought important impacts on nuclear industry, might have a stimulating effect on regional-international co-operations for cost-effective efforts to mitigate some of those long-term issues associated with spent fuel management. (author)

  7. K Basin spent fuel sludge treatment alternatives study. Volume 2, Technical options

    Energy Technology Data Exchange (ETDEWEB)

    Beary, M.M.; Honekemp, J.R.; Winters, N. [Science Applications International Corp., Richland, WA (United States)

    1995-01-01

    Approximately 2100 metric tons of irradiated N Reactor fuel are stored in the KE and KW Basins at the Hanford Site, Richland, Washington. Corrosion of the fuel has led to the formation of sludges, both within the storage canisters and on the basin floors. Concern about the degraded condition of the fuel and the potential for leakage from the basins in proximity to the Columbia River has resulted in DOE`s commitment in the Tri-Party Agreement (TPA) to Milestone M-34-00-T08 to remove the fuel and sludges by a December 2002 target date. To support the planning for this expedited removal action, the implications of sludge management under various scenarios are examined. This report, Volume 2 of two volumes, describes the technical options for managing the sludges, including schedule and cost impacts, and assesses strategies for establishing a preferred path.

  8. Evaluation of retention and disposal options for tritium in fuel reprocessing

    International Nuclear Information System (INIS)

    Grimes, W.R.; Hampson, D.C.; Larkin, D.J.; Skolrud, J.O.; Benjamin, R.W.

    1982-08-01

    Five options were evaluated as means of retaining tritium released from light-water reactor or fast breeder reactor fuel during the head-end steps of a typical Purex reprocessing scheme. Cost estimates for these options were compared with a base case in which no retention of tritium within the facility was obtained. Costs were also estimated for a variety of disposal methods of the retained tritium. The disposal costs were combined with the retention costs to yield total costs (capital plus operating) for retention and disposal of tritium under the conditions envisioned. The above costs were converted to an annual basis and to a dollars per curie retained basis. This then was used to estimate the cost in dollars per man-rem saved by retaining the tritium. Only the options that used the least expensive disposal costs could approach the $1000/man-rem cost used as a guide by the Nuclear Regulatory Commission

  9. Gel-sphere-pac reactor fuel fabrication and its application to a variety of fuels

    International Nuclear Information System (INIS)

    Olsen, A.R.; Judkins, R.R.

    1979-12-01

    The gel-sphere-pac fuel fabrication option was evaluated for its possible application to commercial scale fuel fabrication for 19 fuel element designs that use oxide fuel in metal clad rods. The dry gel spheres are prepared at the reprocessing plant and are then calcined, sintered, inspected, and loaded into fuel rods and packed by low-energy vibration. A fuel smear density of 83 to 88% theoretical can be obtained. All fuel fabrication process steps were defined and evaluated from fuel receiving to finished fuel element shipping. The evaluation also covers the feasibility of the process, the current status of technology, estimates of the required time and cost to develop the technology to commercial status, and the safety and licensability of commercial scale plants. The primary evaluation was for a Light-Water Reactor fuel element containing (U,Pu)O 2 fuel. The other 18 fuel element types - 3 for Light-Water Reactors, 1 for a Heavy-Water Reactor, 1 for a Gas-Cooled Fast Reactor, 7 for Liquid-Metal-Cooled Fast Breeder Reactors, and 3 pairs for Light-Water Prebreeder and Breeder Reactors - were compared with the Light-Water Reactor. The gel-sphere-pac option was found applicable to 17 of the 19 element types; the characteristics of a commercial scale plant were defined for these for making cost estimates for such plants. The evaluation clearly shows the gel-sphere-pac process to be a viable fuel fabrication option. Estimates indicate a significant potential fabrication cost advantage for the gel-sphere-pac process if a remotely operated and remotely maintained fuel fabrication plant is required

  10. Inert matrix fuel in dispersion type fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Savchenko, A.M. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation)]. E-mail: sav@bochvar.ru; Vatulin, A.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Morozov, A.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Sirotin, V.L. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Dobrikova, I.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Kulakov, G.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Ershov, S.A. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Kostomarov, V.P. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Stelyuk, Y.I. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation)

    2006-06-30

    The advantages of using inert matrix fuel (IMF) as a dispersion fuel in an aluminium alloy matrix are considered, in particular, low temperatures in the fuel centre, achievable high burn-ups, serviceability in transients and an environmentally friendly process of fuel rod fabrication. Two main versions of IMF are under development at A.A. Bochvar Institute, i.e. heterogeneous or isolated distribution of plutonium. The out-of-pile results on IMF loaded with uranium dioxide as plutonium simulator are presented. Fuel elements with uranium dioxide composition fabricated at A.A. Bochvar Institute are currently under MIR tests (RIAR, Dimitrovgrad). The fuel elements reached a burn-up of 88 MW d kg{sup -1} (equivalent to the burn up of the standard uranium dioxide pelletized fuel) without loss of leak-tightness of the cladding. The feasibility of fabricating IMF of these particular types with plutonium dioxide is considered with a view to in-pile irradiation.

  11. Inert matrix fuel in dispersion type fuel elements

    Science.gov (United States)

    Savchenko, A. M.; Vatulin, A. V.; Morozov, A. V.; Sirotin, V. L.; Dobrikova, I. V.; Kulakov, G. V.; Ershov, S. A.; Kostomarov, V. P.; Stelyuk, Y. I.

    2006-06-01

    The advantages of using inert matrix fuel (IMF) as a dispersion fuel in an aluminium alloy matrix are considered, in particular, low temperatures in the fuel centre, achievable high burn-ups, serviceability in transients and an environmentally friendly process of fuel rod fabrication. Two main versions of IMF are under development at A.A. Bochvar Institute, i.e. heterogeneous or isolated distribution of plutonium. The out-of-pile results on IMF loaded with uranium dioxide as plutonium simulator are presented. Fuel elements with uranium dioxide composition fabricated at A.A. Bochvar Institute are currently under MIR tests (RIAR, Dimitrovgrad). The fuel elements reached a burn-up of 88 MW d kg-1 (equivalent to the burn up of the standard uranium dioxide pelletized fuel) without loss of leak-tightness of the cladding. The feasibility of fabricating IMF of these particular types with plutonium dioxide is considered with a view to in-pile irradiation.

  12. Performance and fuel cycle cost analysis of one Janus 30 conceptual design for several fuel element design options

    Energy Technology Data Exchange (ETDEWEB)

    Nurdin, Martias [Research Centre for Nuclear Techniques, National Atomic Energy Agency (Indonesia); Matos, J E; Freese, K E [RERTR Program, Argonne National Laboratory (United States)

    1983-09-01

    The performance and fuel cycle costs for a 25 MW, JANUS 30 reactor conceptual design by INTERATOM, Federal Republic of Germany, for BATAN, Republic of Indonesia have been studied using 19.75% enriched uranium in four fuel element design options. All of these fuel element designs have either been proposed by INTERATOM for various reactors or are currently in use with 93% enriched uranium in reactors in the Federal Republic of Germany. Aluminide, oxide, and silicide fuels were studied for selected designs using the range of uranium densities that are either currently qualified or are being developed and demonstrated internationally. These uranium densities include 1.7-2.3 g/cm{sup 3} in aluminide fuel, 1.7-3.2 g/cm{sup 3} in oxide fuel, and 2.9-6.8 g/cm{sup 3} in silicide fuel. As of November 1982) both the aluminide and the oxide fuels with about 1.7 g U/cm{sup 3} are considered to be fully-proven for licensing purposes. Irradiation screening and proof testing of fuels with uranium densities greater than 1.7 g/cm{sup 3} are currently in progress, and these tests need to be completed in order to obtain licensing authorization for routine reactor use. To assess the long-term fuel adaptation strategy as well as the present fuel acceptance, reactor performance and annual fuel cycle costs were computed for seventeen cases based on a representative end-of-cycle excess reactivity and duty factor. In addition, a study was made to provide data for evaluating the trade-off between the increased safety associated with thicker cladding and the economic penalty due to increased fuel consumption. (author)

  13. Recycling and transmutation of spent fuel as a sustainable option for the nuclear energy development

    International Nuclear Information System (INIS)

    Maiorino, Jose R.; Moreira, Joao M.L.

    2013-01-01

    The objective of this paper is to discuss the option of recycling and transmutation of radioactive waste against Once-through Fuel Cycle (OTC) based on uranium feed under the perspective of sustainability. We use a qualitative analysis to compare OTC with closed fuel cycles based on studies already performed such as the Red Impact Project and the comparative study on accelerator driven systems and fast reactors for advanced fuel cycles performed by the Nuclear Energy Agency. The results show that recycling and transmutation fuel cycles are more attractive than the OTC from the point of view of sustainability. The main conclusion is that the decision about the construction of a deep geological repository for spent fuel disposal must be reevaluated. (author)

  14. Annex 34 : task 1 : analysis of biodiesel options : biomass-derived diesel fuels : final report

    Energy Technology Data Exchange (ETDEWEB)

    McGill, R [Oak Ridge National Laboratory, TN (United States); Aakko-Saksa, P; Nylund, N O [TransEnergy Consulting Ltd., Helsinki (Finland)

    2009-06-15

    Biofuels are derived from woody biomass, non-woody biomass, and organic wastes. The properties of vegetable oil feedstocks can have profound effects on the properties of the finished biodiesel product. However, all biodiesel fuels have beneficial effects on engine emissions. This report discussed the use of biodiesel fuels as replacements for part of the diesel fuel consumed throughout the world. Biodiesel fuels currently being produced from fatty acid esters today were reviewed, as well as some of the more advanced diesel replacement fuels. The report was produced as part of the International Energy Agency (IEA) Advanced Motor Fuels (AMF) Implementing Agreement Annex 34, and was divided into 14 sections: (1) an introduction, (2) biodiesel and biomass, (3) an explanation of biodiesel, (4) properties of finished biodiesel fuels, (5) exhaust emissions of finished biodiesel fuels and blends, (6) life-cycle emissions and energy, (7) international biodiesel (FAME) technical standards and specifications, (8) growth in production and use of biodiesel fuels, (9) biofuel refineries, (10) process technology, (11) development and status of biorefineries, (12) comparison of options to produce biobased diesel fuels, (13) barriers and gaps in knowledge, and (14) references. 113 refs., 37 tabs., 74 figs.

  15. Advanced nuclear fuel cycles and radioactive waste management

    International Nuclear Information System (INIS)

    2006-01-01

    This study analyses a range of advanced nuclear fuel cycle options from the perspective of their effect on radioactive waste management policies. It presents various fuel cycle options which illustrate differences between alternative technologies, but does not purport to cover all foreseeable future fuel cycles. The analysis extends the work carried out in previous studies, assesses the fuel cycles as a whole, including all radioactive waste generated at each step of the cycles, and covers high-level waste repository performance for the different fuel cycles considered. The estimates of quantities and types of waste arising from advanced fuel cycles are based on best available data and experts' judgement. The effects of various advanced fuel cycles on the management of radioactive waste are assessed relative to current technologies and options, using tools such as repository performance analysis and cost studies. (author)

  16. Consolidated fuel reprocessing programme: Analysis of various options for the breeder fuel cycle in the USA

    International Nuclear Information System (INIS)

    Stradley, J.G.; Burch, W.D.; Yook, H.R.

    1986-01-01

    The United States Department of Energy (DOE) has established a programme to develop innovative liquid metal reactor (LMR) designs to assist in developing future U.S. reactor strategy. The paper describes studies in progress to examine various fuel cycle strategies that relate to the reactor strategy. Three potential fuel cycle options that focus on supporting an initial 1300 MW(e) reactor station have been defined: (1) Completion and utilization of the Breeder Reprocessing Engineering Test/Secure Automated Fabrication (BRET/SAF) in the Fuels and Materials Examination Facility (FMEF) at Hanford, Washington; (2) a co-located fuel cycle facility; and (3) delayed closure of the fuel cycle for five to ten years. The BRET, designed as a development facility, has sufficient capacity to service the needs of an initial module at an LMR station. It appears feasible to increase this capacity and to utilize SAF in the FMEF to accommodate the projected output (up to 35 MtHM/year) from the 1300 MW(e) liquid-metal concepts under study. Plans developed within the United States Consolidated Management Office for an initial reactor project have envisioned that cost savings could be realized by delaying the closure of the fuel cycle as long as supplies of plutonium could be obtained relatively inexpensively. This might prove to be only five to ten years, but even that period might be long enough for the fuel cycle costs to be spread over more than one reactor rather than loaded on the initial project. This concept is being explored as is the question of the future coupling of a light water reactor reprocessing industry for plutonium supply to breeder recycle

  17. Fusion option to dispose of spent nuclear fuel and transuranic elements

    International Nuclear Information System (INIS)

    Gohar, Y.

    2000-01-01

    The fusion option is examined to solve the disposition problems of the spent nuclear fuel and the transuranic elements. The analysis of this report shows that the top rated solution, the elimination of the transuranic elements and the long-lived fission products, can be achieved in a fusion reactor. A 167 MW of fusion power from a D-T plasma for sixty years with an availability factor of 0.75 can transmute all the transuranic elements and the long-lived fission products of the 70,000 tons of the US inventory of spent nuclear fuel generated up to the year 2015. The operating time can be reduced to thirty years with use of 334 MW of fusion power, a system study is needed to define the optimum time. In addition, the fusion solution eliminates the need for a geological repository site, which is a major advantage. Meanwhile, such utilization of the fusion power will provide an excellent opportunity to develop fusion energy for the future. Fusion blankets with a liquid carrier for the transuranic elements can achieve a transmutation rate for the transuranic elements up to 80 kg/MW.y of fusion power with k eff of 0.98. In addition, the liquid blankets have several advantages relative to the other blanket options. The energy from this transmutation is utilized to produce revenue for the system. Molten salt (Flibe) and lithium-lead eutectic are identified as the most promising liquids for this application, both materials are under development for future fusion blanket concepts. The Flibe molten salt with transuranic elements was developed and used successfully as nuclear fuel for the molten salt breeder reactor in the 1960's

  18. Greenhouse gas emissions reduction from fossil fuels: options and prospects

    International Nuclear Information System (INIS)

    McDonald, M.M.

    1999-01-01

    If levels of carbon dioxide in the atmosphere are to be stabilized over the next 50 years, net emissions from the use of fossil fuels have to be reduced. One concept worth exploring is the removal of carbon dioxide from plant flue gases and disposing of it in a manner that sequesters it from the atmosphere. A number of technologies, which are either commercially available or under development, promise to make this concept viable. The question of where to dispose of the carbon dioxide removed is not the limiting factor, given the potential for use in enhanced hydrocarbon production as well as other geological disposal options. In the longer term, fossil fuel use will significantly decline, but these extraction and sequestration technologies can provide the time for the transition to take place in a manner which causes least impact to the economies of the world. (author)

  19. Thorium Fuel Options for Sustained Transuranic Burning in Pressurized Water Reactors - 12381

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Fariz Abdul; Lee, John C. [University of Michigan, Ann Arbor, MI (United States); Franceschini, Fausto; Wenner, Michael [Westinghouse Electric Company LLC, Cranberry Township, PA (United States)

    2012-07-01

    As described in companion papers, Westinghouse is proposing the adoption of a thorium-based fuel cycle to burn the transuranics (TRU) contained in the current Used Nuclear Fuel (UNF) and transition towards a less radio-toxic high level waste. A combination of both light water reactors (LWR) and fast reactors (FR) is envisaged for the task, with the emphasis initially posed on their TRU burning capability and eventually to their self-sufficiency. Given the many technical challenges and development times related to the deployment of TRU burners fast reactors, an interim solution making best use of the current resources to initiate burning the legacy TRU inventory while developing and testing some technologies of later use is desirable. In this perspective, a portion of the LWR fleet can be used to start burning the legacy TRUs using Th-based fuels compatible with the current plants and operational features. This analysis focuses on a typical 4-loop PWR, with 17x17 fuel assembly design and TRUs (or Pu) admixed with Th (similar to U-MOX fuel, but with Th instead of U). Global calculations of the core were represented with unit assembly simulations using the Linear Reactivity Model (LRM). Several assembly configurations have been developed to offer two options that can be attractive during the TRU transmutation campaign: maximization of the TRU transmutation rate and capability for TRU multi-recycling, to extend the option of TRU recycling in LWR until the FR is available. Homogeneous as well as heterogeneous assembly configurations have been developed with various recycling schemes (Pu recycle, TRU recycle, TRU and in-bred U recycle etc.). Oxide as well as nitride fuels have been examined. This enabled an assessment of the potential for burning and multi-recycling TRU in a Th-based fuel PWR to compare against other more typical alternatives (U-MOX and variations thereof). Results will be shown indicating that Th-based PWR fuel is a promising option to multi-recycle and

  20. Options for converting excess plutonium to feed for the MOX fuel fabrication facility

    Energy Technology Data Exchange (ETDEWEB)

    Watts, Joe A [Los Alamos National Laboratory; Smith, Paul H [Los Alamos National Laboratory; Psaras, John D [Los Alamos National Laboratory; Jarvinen, Gordon D [Los Alamos National Laboratory; Costa, David A [Los Alamos National Laboratory; Joyce, Jr., Edward L [Los Alamos National Laboratory

    2009-01-01

    The storage and safekeeping of excess plutonium in the United States represents a multibillion-dollar lifecycle cost to the taxpayers and poses challenges to National Security and Nuclear Non-Proliferation. Los Alamos National Laboratory is considering options for converting some portion of the 13 metric tons of excess plutonium that was previously destined for long-term waste disposition into feed for the MOX Fuel Fabrication Facility (MFFF). This approach could reduce storage costs and security ri sks, and produce fuel for nuclear energy at the same time. Over the course of 30 years of weapons related plutonium production, Los Alamos has developed a number of flow sheets aimed at separation and purification of plutonium. Flow sheets for converting metal to oxide and for removing chloride and fluoride from plutonium residues have been developed and withstood the test oftime. This presentation will address some potential options for utilizing processes and infrastructure developed by Defense Programs to transform a large variety of highly impure plutonium into feedstock for the MFFF.

  1. Fuel cells for electricity generation from carbonaceous fuels

    Energy Technology Data Exchange (ETDEWEB)

    Ledjeff-Hey, K; Formanski, V; Roes, J [Gerhard-Mercator- Universitaet - Gesamthochschule Duisburg, Fachbereich Maschinenbau/Fachgebiet Energietechnik, Duisburg (Germany); Heinzel, A [Fraunhofer Inst. for Solar Energy Systems (ISE), Freiburg (Germany)

    1998-09-01

    Fuel cells, which are electrochemical systems converting chemical energy directly into electrical energy with water and heat as by-products, are of interest as a means of generating electricity which is environmentally friendly, clean and highly efficient. They are classified according to the electrolyte used. The main types of cell in order of operating temperature are described. These are: alkaline fuel cells, the polymer electrolyte membrane fuel cell (PEMFC); the phosphoric acid fuel cell (PAFC); the molten carbonate fuel cell (MCFC); the solid oxide fuel cell (SOFC). Applications depend on the type of cell and may range from power generation on a large scale to mobile application in cars or portable systems. One of the most promising options is the PEM-fuel cell stack where there has been significant improvement in power density in recent years. The production from carbonaceous fuels and purification of the cell fuel, hydrogen, is considered. Of the purification methods available, hydrogen separation by means of palladium alloy membranes seems particular effective in reducing CO concentrations to the low levels required for PEM cells. (UK)

  2. The differential option in LWR-WIMS

    International Nuclear Information System (INIS)

    Halsall, M.J.

    1979-04-01

    In an LWRWIMS calculation of a fuel assembly, the user normally designates several fuel pins as being of the same type. If these pins are physically identical, and similarly situated with respect to poisons and water gaps this seems a reasonable thing to do. However, unless the pins so designated are symmetrically placed within the assembly they will in practice burn up at different rates so that at any given irradiation they will have different isotopic compositions and macroscopic cross sections. The simple option in LWRWIMS assumes that all pins designated to be of a certain type deplete at an appropriate average rate and therefore have equal cross sections at all irradiations. The original differential option which attempted to compensate for this approximation has been shown to have serious defects and a new method has been developed to replace it. The new differential option in LWRWIMS, in which each pin is depleted independently at a rate determined by the local flux and spectrum, is a significant improvement on the old method. It is conceptually simpler and therefore less prone to failure, it is particularly suited to calculating isotopic spatial distributions and it costs no more in computing time. (U.K.)

  3. Reactor-based management of used nuclear fuel: assessment of major options.

    Science.gov (United States)

    Finck, Phillip J; Wigeland, Roald A; Hill, Robert N

    2011-01-01

    This paper discusses the current status of the ongoing Advanced Fuel Cycle Initiative (AFCI) program in the U.S. Department of Energy that is investigating the potential for using the processing and recycling of used nuclear fuel to improve radioactive waste management, including used fuel. A key element of the strategies is to use nuclear reactors for further irradiation of recovered chemical elements to transmute certain long-lived highly-radioactive isotopes into less hazardous isotopes. Both thermal and fast neutron spectrum reactors are being studied as part of integrated nuclear energy systems where separations, transmutation, and disposal are considered. Radiotoxicity is being used as one of the metrics for estimating the hazard of used fuel and the processing of wastes resulting from separations and recycle-fuel fabrication. Decay heat from the used fuel and/or wastes destined for disposal is used as a metric for use of a geologic repository. Results to date indicate that the most promising options appear to be those using fast reactors in a repeated recycle mode to limit buildup of higher actinides, since the transuranic elements are a key contributor to the radiotoxicity and decay heat. Using such an approach, there could be much lower environmental impact from the high-level waste as compared to direct disposal of the used fuel, but there would likely be greater generation of low-level wastes that will also require disposal. An additional potential waste management benefit is having the ability to tailor waste forms and contents to one or more targeted disposal environments (i.e., to be able to put waste in environments best-suited for the waste contents and forms). Copyright © 2010 Health Physics Society

  4. Back-end of the nuclear fuel cycle. A comparison of the direct disposal and reprocessing options

    International Nuclear Information System (INIS)

    Allan, C.J.; Baumgartner, P.

    1997-01-01

    Based on the need to address public concerns, the need to ensure long-term safety and an ethical concern for future generations, many countries are developing technology to dispose of nuclear fuel waste. The waste substances in used fuel can be disposed of either by directly disposing of the used fuel assemblies themselves, or by disposing of the long-lived waste from fuel reprocessing. The basic thesis of this paper is that the direct disposal of either used fuel or of the long-lived heat-generating and non-heat generating waste that arise from reprocessing is technically and economically feasible and that both options will meet the fundamental objectives of protecting human health and the environment. Decisions about whether, or when, to reprocess used fuel, or about whether to dispose of used fuel directly, are not fundamentally waste management issues. (author)

  5. Conversion and standardization of university reactor fuels using low-enrichment uranium - options and costs

    International Nuclear Information System (INIS)

    Harris, D.R.; Matos, J.E.; Young, H.H.

    1985-01-01

    The highly-enriched uranium (HEU) fuel used in twenty United States university reactors can be viewed as contributing to the risk of theft or diversion of weapons-useable material. The US Nuclear Regulatory Commission has issued a policy statement expressing its concern and has published a proposed rule on limiting the use of HEU in NRC-licensed non-power reactors. The fuel options, functional impacts, licensing, and scheduling of conversion and standardization of these reactor fuels to use of low-enrichment uranium (LEU) have been assessed. The university reactors span a wide range in form and function, from medium-power intense neutron sources where HEU fuel may be required, to low-power training and research facilities where HEU fuel is unnecessary. Conversion provides an opportunity to standardize university reactor fuels and improve reactor utilization in some cases. The entire program is estimated to cost about $10 million and to last about five years. Planning for conversion and standardization is facilitated by the US Department of Energy. 20 refs., 1 tab

  6. Conversion and standardization of university reactor fuels using low-enrichment uranium - Options and costs

    International Nuclear Information System (INIS)

    Harris, D.R.; Matos, J.E.; Young, H.H.

    1985-01-01

    The highly-enriched uranium (HEU) fuel used in twenty United States university reactors can be viewed as contributing to the risk of theft or diversion of weapons-useable material. The U.S. Nuclear Regulatory Commission has issued a policy statement expressing its concern and has published a proposed rule on limiting the use of HEU in NRC-licensed non-power reactors. The fuel options, functional impacts, licensing, and scheduling of conversion and standardization of these reactor fuels to use of low-enrichment uranium (LEU) have been assessed. The university reactors span a wide range in form and function, from medium-power intense neutron sources where HEU fuel may be required, to low-power training and research facilities where HEU fuel is unnecessary. Conversion provides an opportunity to standardize university reactor fuels and improve reactor utilization in some cases. The entire program is estimated to cost about $10 million and to last about five years. Planning for conversion and standardization is facilitated by the U.S. Department of Energy. (author)

  7. Impact of advanced fuel cycle options on waste management policies

    International Nuclear Information System (INIS)

    Gordelier, Stan; Cavedon, Jean-Marc

    2006-01-01

    OECD/NEA has performed a study on the impact of advanced fuel cycle options on waste management policies with 33 experts from 12 member countries, 1 non-member country and 2 international organizations. The study extends a series of previous ones on partitioning and transmutation (P and T) issues, focusing on the performance assessments for repositories of high-level waste (HLW) arising from advanced fuel cycles. This study covers a broader spectrum than previous studies, from present industrial practice to fully closed cycles via partially closed cycles (in terms of transuranic elements); 9 fuel cycle schemes and 4 variants. Elements of fuel cycles are considered primarily as sources of waste, the internal mass flows of each scheme being kept for the sake of mass conservation. The compositions, activities and heat loads of all waste flows are also tracked. Their impact is finally assessed on the waste repository concepts. The study result confirms the findings from the previous NEA studies on P and T on maximal reduction of the waste source term and maximal use of uranium resources. In advanced fuel cycle schemes the activity of the waste is reduced by burning first plutonium and then minor actinides and also the uranium consumption is reduced, as the fraction of fast reactors in the park is increased to 100%. The result of the repository performance assessments, analysing the effect of different HLW isotopic composition on repository performance and on repository capacity, shows that the maximum dose released to biosphere at any time in normal conditions remains, for all schemes and for all the repository concepts examined, well below accepted radiation protection thresholds. The major impact is on the detailed concept of the repositories, through heat load and waste volume. Advanced fuel cycles could allow a repository to cover waste produced from 5 to 20 times more electricity generation than PWR once-through cycle. Given the flexibility of the advanced fuel

  8. Status of the back-end optional advanced research reactor fuel development in Korea

    International Nuclear Information System (INIS)

    Kim, Chang-Kyu; Lee, Yoon-Sang; Lee, Don-Bae; Oh, Seuk-Jin; Kim, Ki-Hwan; Chae, Hee-Taek; Park, Jong-Man; Sohn Dong-Seong

    2003-01-01

    U-Mo fuel development has been carried out for a reactor upgrade of HANARO and the back-end option in Korea. The 2nd irradiation test of the U-Mo dispersion rod fuels is underway in HANARO in order to find the optimum uranium loading density and to investigate the applicability of the monolithic U-Mo ring fuel as well as other parameters such as particle size and cladding surface-treatment. The optical observation using an immersion camera showed that the cladding surfaces of the two U 3 Si and U-Mo fuels with a high power rate changed in to the darker color, which is not as severe as those of the driving fuels in HANARO. Presumably it would be acceptable. The other fuels were observed as maintaining their initial good conditions. In connection with monolithic U-Mo fuel development, some achievements such as preliminary U-Mo tube production by a continuous casting process and a successful U-Mo foil production using a roll casting process have been obtained. In addition, some investigation on the surface-treatment of multilayer coating and Zr sputtering coating has showed the possibility of eliminating the problem of a temperature rise due to the corrosion layer formation having quite a low conductivity. The next irradiation test will aim mainly at the qualification of the U-Mo dispersion fuel for HANARO around the end of next year. In the 3rd irradiation fuel bundle, some fuels related to the basic investigation tests for the monolithic U-Mo fuel and surface-treatment for anticorrosion will be loaded. (author)

  9. Enrichment measurement in TRIGA type fuels

    International Nuclear Information System (INIS)

    Aguilar H, F.; Mazon R, R.

    2001-05-01

    The Department of Energy of the United States of North America, through the program 'Idaho Operations Nuclear Spent Fuel Program' of the Idaho National Engineering and Environmental Laboratory (INEEL), in Idaho Falls; Idaho USA, hires to Global Technologies Inc. (GTI) to develop a prototype device of detection enrichment uranium (DEU Detection of Enrichment of Uranium) to determine quantitatively the enrichment in remainder U-235 in a TRIGA fuel element at the end of it useful life. The characteristics of the prototype developed by GTI are the following ones: It allows to carry out no-destructive measurements of TRIGA type fuel. Easily transportable due to that reduced of it size. The determination of the enrichment (in grams of U-235) it is obtained with a precision of 5%. The National Institute of Nuclear Research (ININ), in its facilities of the Nuclear Center of Mexico, it has TRIGA type fuel of high and low enrichment (standard and FLIP) fresh and with burnt, it also has the infrastructure (hot cells, armor-plating of transport, etc) and qualified personnel to carry out the necessary maneuvers to prove the operation of the DEU prototype. For this its would be used standard type fuel elements and FLIP, so much fresh as with certain burnt one. In the case of the fresh fuels the measurement doesn't represent any risk, the fuels before and after the measurement its don't contain a quantity of fission products that its represent a radiological risk in its manipulation; but in the case of the fuels with burnt the handling of the same ones represents an important radiological risk reason why for its manipulation it was used the transport armor-plating and the hot cells. (Author)

  10. A scheme of better utilization of PWR spent fuels

    International Nuclear Information System (INIS)

    Chung, Bum Jin; Kang, Chang Soon

    1991-01-01

    The recycle of PWR spent fuels in a CANDU reactor, so called the tandem fuel cycle is investigated in this study. This scheme of utilizing PWR spent fuels will ease the shortage of spent fuel storage capacity as well as will improve the use of uranium resources. The minimum modification the design of present CANDU reactor is seeked in the recycle. Nine different fuel types are considered in this work and are classified into two categories: refabrication and reconfiguration. For refabrication, PWR spent fuels are processed and refabricated into the present 37 rod lattice structure of fuel bundle, and for reconfiguration, meanwhile, spent fuels are simply disassembled and rods are cut to fit into the present grid configuration of fuel bundle without refabrication. For each fuel option, the neutronics calculation of lattice was conducted to evaluate the allowable burn up and distribution. The fuel cycle cost of each option was also computed to assess the economic justification. The results show that most tandem fuel cycle option considered in this study are technically feasible as well as economically viable. (Author)

  11. Evaluation of different fuel cycle options in accordance with nuclear energy production planning in Turkey. Final report for the period 15 December 1995 - 1 July 1998

    International Nuclear Information System (INIS)

    Uzmen, R.

    1998-08-01

    For two decades, Turkey has been considering the implementation of a nuclear power program in order to ensure a secure and ecologically non-pollutant electricity supply, and a site was selected at Akkuyu on the Mediterranean coaast. The energy gap predicted in recent projections could be partly filled by nuclear power. The present plan of the Ministry of Energy schedules the commissioning of at least 2,000 MWe nuclear capacity by 2010. In this report, firstly reference reactors were selected and then requirements of fuel material and services for these reactors were discussed according to Turkey's energy generation scenarios. For this study the reactor selection criteria are: 1) Provenness by operation, 2) Plant power rating, 3) Generic safety, and 4) Licensability. In this study, two types of reactors (PWR and PHWR) that meet the safety and selection criteria were taken into consideration. For Turkey's case, fuel demand and options were discussed according to these reactor types. Status and trends in the world in nuclear electricity generation, nuclear power projection, uranium production, uranium supply and demand relationships, future trends in supply and demand and supply projection were investigated. World uranium market, uranium prices analysis, refining and conversion, enrichment, fuel fabrication, fuel burnup and back-end options were thoroughly discussed. The economics of the nuclear fuel cycle was investigated, fuel costs for PWR and PHWR were calculated. As a result of the obtained reference data a table was prepared for fuel material and services requirements according to reactor type and size. The need for nuclear power in Turkey was discussed in detail, focussing on primary resources in Turkey, demand predictions, usage ratios of domestic and imported resources. Electricity generation scenarios for Turkey were discussed and final conclusions were drawn for Turkey's case. Comparisons of the domestic and imported resources in accordance with the

  12. Fuel assembly for FBR type reactor

    International Nuclear Information System (INIS)

    Hayashi, Hideyuki.

    1995-01-01

    Ordinary sodium bond-type fuel pins using nitride fuels, carbide fuels or metal fuels and pins incorporated with hydride moderators are loaded in a wrapper tube at a ratio of from 2 to 10% based on the total number of fuel pins. The hydride moderators are sealed in the hydride moderator incorporated pins at the position only for a range from the upper end to a reactor core upper position of substantially 1/4 of the height of the reactor core from the upper end of the reactor core as a center. Then, even upon occurrence of ULOF (loss of flow rate scram failure phenomenon), it gives characteristic of reducing the power only by a doppler coefficient and not causing boiling of coolant sodium but providing stable cooling to the reactor core. Therefore, a way of thinking on the assurance of passive safety is simplified to make a verification including on the reactor structure unnecessary. In an LMFBR type reactor using the fuel assembly, a critical experiment for confirming accuracy of nuclear design is sufficient for the item required for study and development, which provides a great economical effect. (N.H.)

  13. Fuel cycle options for light water reactors and heavy water reactors. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1999-11-01

    In the second half of the 20th century nuclear power has evolved from the research and development environment to an industry that supplies 16% of the world's electricity. By the end of 1997, over 8500 reactor-years of operating experience had been accumulated. Global environmental change, and the continuing increase in global energy supply required to provide increasing populations with an improving standard of living, make the contribution from nuclear energy even more important for the next century. For nuclear power to achieve its full potential and make its needed contribution, it must be safe, economical, reliable and sustainable. All of these factors can be enhanced by judicious choice and development of advanced fuel cycle options. The Technical Committee Meeting (TCM) on Fuel Cycle Options for Light Water Reactors and Heavy Water Reactors was hosted by Atomic Energy of Canada Limited (AECL) on behalf of the Canadian Government and was jointly conducted within the frame of activities of the IAEA International Working Group on Advanced Technologies for Light Water Reactors (IWG-LWR) and the IAEA International Working Group on Advanced Technologies for Heavy Water Reactors (IWG-HWR). The TCM provided the opportunity to have in-depth discussions on important technical topics which were highlighted in the International Symposium on Nuclear Fuel Cycle and Reactor Strategies: Adjusting to New Realities, held in Vienna, 3-6 June 1997. The main results and conclusions of the TCM were presented as input for discussion at the first meeting of the IAEA newly formed International Working Group on Fuel Cycle Options

  14. Modeling approach for annular-fuel elements using the ASSERT-PV subchannel code

    International Nuclear Information System (INIS)

    Dominguez, A.N.; Rao, Y.

    2012-01-01

    The internally and externally cooled annular fuel (hereafter called annular fuel) is under consideration for a new high burn-up fuel bundle design in Atomic Energy of Canada Limited (AECL) for its current, and its Generation IV reactor. An assessment of different options to model a bundle fuelled with annular fuel elements is presented. Two options are discussed: 1) Modify the subchannel code ASSERT-PV to handle multiple types of elements in the same bundle, and 2) coupling ASSERT-PV with an external application. Based on this assessment, the selected option is to couple ASSERT-PV with the thermalhydraulic system code CATHENA. (author)

  15. Neutronics Study on LEU Nuclear Thermal Rocket Fuel Options

    Energy Technology Data Exchange (ETDEWEB)

    Venneri, Paolo; Kim, Yong Hee [KAIST, Daejeon (Korea, Republic of); Howe, Steven [CSNR, Idaho (United States)

    2014-10-15

    This has resulted in a non-trivial simplification of the tasks needed to develop such an engine and the quick initial development of the concept. There are, however, a series of key core-design choices that are currently under scrutiny in the field that have to be resolved in order for the LEU-NTR to be fully developed. The most important of these is the choice of fuel: carbide composite or tungsten cermet. This study presents a first comparison of the two fuel types specifically in the neutronic application to the LEU-NTR, keeping in mind the unique neutronic environment and the system requirements of the system. The scope of the study itself is limited to a neutronics study of the two fuels and only a cursory overview of the material properties of the fuels themselves... The results of this study have led to two major conclusions. First of all is that the carbide composite fuel is, from a neutronics standpoint, a much better fuel. It has a low absorption cross-section, is inherently a strong moderator, is able to achieve a higher reactivity using smaller amounts of fissile material, and can potentially enable a smaller reactor. Second is that despite its neutronic difficulties (high absorption, inferior moderating abilities, and lower k-infinity values) the tungsten cermet fuel is still able to perform satisfactorily in an LEU-NTR, largely due to its ability to have an extremely high fuel loading.

  16. Analysis of Technology Options to Reduce the Fuel Consumption of Idling Trucks; FINAL

    International Nuclear Information System (INIS)

    Stodolsky, F.; Gaines, L.; Vyas, A.

    2000-01-01

    Long-haul trucks idling overnight consume more than 838 million gallons (20 million barrels) of fuel annually. Idling also emits pollutants. Truck drivers idle their engines primarily to (1) heat or cool the cab and/or sleeper, (2) keep the fuel warm in winter, and (3) keep the engine warm in the winter so that the engine is easier to start. Alternatives to overnight idling could save much of this fuel, reduce emissions, and cut operating costs. Several fuel-efficient alternatives to idling are available to provide heating and cooling: (1) direct-fired heater for cab/sleeper heating, with or without storage cooling; (2) auxiliary power units; and (3) truck stop electrification. Many of these technologies have drawbacks that limit market acceptance. Options that supply electricity are economically viable for trucks that are idled for 1,000-3,000 or more hours a year, while heater units could be used across the board. Payback times for fleets, which would receive quantity discounts on the prices, would be somewhat shorter

  17. Nuclear fuel cycle. Which way forward for multilateral approaches? An international expert group examines options

    International Nuclear Information System (INIS)

    Pellaud, Bruno

    2005-01-01

    For several years now, the debate on the proliferation of nuclear weapons has been dominated by individuals and countries that violate rules of good behaviour - as sellers or acquirers of clandestine nuclear technology. As a result, the 1968 Treaty on the Non-Proliferation of Nuclear Weapons (NPT) has been declared to be 'inadequate' by some, 'full of loopholes' by others. Two basic approaches have been put forward to tighten up the NPT; both seek to ensure that the nuclear non-proliferation regime maintains its authority and credibility in the face of these very real challenges. One calls for non-nuclear weapon States to accept a partial denial of technology through a reinterpretation of the NPT's provisions governing the rights of access to nuclear technologies. The unwillingness of most non-nuclear-weapon States to accept additional restrictions under the NPT makes this approach difficult. The other approach would apply multinational alternatives to the national operation of uranium-enrichment and plutonium-separation technologies, and to the disposal of spent nuclear fuel. In this perspective, IAEA Director General Mohamed ElBaradei proposed in 2003 to revisit the concept of multilateral nuclear approaches (MNA) that was intensively discussed several decades ago. Several such approaches were adopted at that time in Europe, which became the true homeland of MNAs. Nonetheless, MNAs have failed so far to materialise outside Europe due to different political and economic perceptions. In June 2004, the Director General appointed an international group of experts to consider possible multilateral approaches to the nuclear fuel cycle. The overall purpose was to assess MNAs in the framework of a double objective: strengthening the international nuclear non-proliferation regime and making the peaceful uses of nuclear energy more economical and attractive. In the report submitted to the Director General in February 2005, the Group identified a number of options - options

  18. Fuel exchanger in FBR type reactor

    International Nuclear Information System (INIS)

    Shinden, Kazuhiko; Tanaka, Osamu.

    1990-01-01

    The present invention concerns a fuel exchanger for exchanging fuels in an LMFBR type reactor using liquid metals as coolants. An outer gripper cylinder rotating device for rotating an outer gripper cylinder that holds a gripper is driven, to lower the gripper driving portion and the outer gripper cylinder, fuels are caught by the finger at the top end of the outer gripper cylinder and elevated to extract the fuels from the reactor core. Then, the gripper driving portion casing and the outer gripper cylinder are rotated to rotate the fuels caught by the gripper. Subsequently, the gripper driving portion and the outer gripper cylinder are lowered to charge the fuels in the reactor core. This can directly shuffle the fuels in the reactor core without once transferring the fuels into a reactor storing pot and replacing with other fuels, thereby shortening the shuffling time. (I.N.)

  19. Paired replacement fuel assemblies for BWR-type reactor

    International Nuclear Information System (INIS)

    Oguchi, Kazushige.

    1997-01-01

    There are disposed a large-diameter water rod constituting a non-boiling region at a central portion and paired replacement fuel assemblies for two streams having the same average enrichment degree and different amount of burnable poisons. The paired replacement fuel assemblies comprise a first fuel assembly having a less amount of burnable poisons and a second fuel assembly having a larger amount of burnable poisons. A number of burnable poison-containing fuel rods in adjacent with the large diameter water rod is increased in the second fuel assembly than the first fuel assembly. Then, the poison of the paired replacement fuel assemblies for the BWR type reactor can be annihilated simultaneously at the final stage of the cycle. Accordingly, fuels for a BWR type reactor excellent in economical property and safety and facilitating the design of the replacement reactor core can be obtained. (N.H.)

  20. CANFLEX-RU fuel development programs as one option of advanced fuel cycles in Korea

    International Nuclear Information System (INIS)

    Suk, Ho Chun; Sim, Ki-Seob; Chung, Jang Hwan

    1999-01-01

    As one of the possible fuel cycles in Korea, RU (Recycled Uranium) fuel offers a very attractive alternative to the use of NU (Natural Uranium) and SEU in the CANDU reactors, because Korea is a unique country having both PWR and CANDU reactors. Korea can therefore exploit the natural synergism between the two reactor types to minimise overall waste production, and maximise energy derived from the fuel, by burning the spent fuel from its PWR reactors in CANDU reactors. Potential benefits can be derived from a number of stages in the fuel cycle: no enrichment required, no enrichment tails, direct conversion to UO 2 lower sensitivity to 234 U and 236 U absorption in the CANDU reactor, expected lower cost relative to NU and SEU. These benefits all fit well with the PWR-CANDU fuel cycle synergy. RU arising from the reprocessing of European and Japanese oxide spent fuel by 2000 is projected to be approaching 25,000 te. The use of RU fuel in a CANDU-6 reactor should result in no serious radiological difficulties and no requirements for special precautions and should not require any new technologies for the fuel fabrication and handling. A KAERI's feasibility shows that the use of the CANFLEX bundle as the carrier for RU will be compatible with the reactor design, current safety and operational requirements, and there will be no significant fuel performance difference from the CANDU 37-element NU fuel bundle. Compared with the 37-element NU bundle, the RU fuel has significantly improved fuel cycle economics derived from increased burnups, a large reduction in fuel requirements and spent fuel arisings and the potential lower cost for RU material. There is the potential for annual fuel cost savings to be in the range of one-third to two-thirds, with enhanced operating margins using RU in the CANFLEX bundle design. These benefits provide the rationale for justifying R and D effort on the use of RU fuel for advanced fuel cycles in the CANDU reactors of Korea. The RU fuel

  1. Part 5. Fuel cycle options

    International Nuclear Information System (INIS)

    Lineberry, M.J.; McFarlane, H.F.; Amundson, P.I.; Goin, R.W.; Webster, D.S.

    1980-01-01

    The results of the FBR fuel cycle study that supported US contributions to the INFCE are presented. Fuel cycle technology is reviewed from both generic and historical standpoints. Technology requirements are developed within the framework of three deployment scenarios: the reference international, the secured area, and the integral cycle. Reprocessing, fabrication, waste handling, transportation, and safeguards are discussed for each deployment scenario. Fuel cycle modifications designed to increase proliferation defenses are described and assessed for effectiveness and technology feasibility. The present status of fuel cycle technology is reviewed and key issues that require resolution are identified

  2. Core design options for high conversion BWRs operating in Th–233U fuel cycle

    International Nuclear Information System (INIS)

    Shaposhnik, Y.; Shwageraus, E.; Elias, E.

    2013-01-01

    Highlights: • BWR core operating in a closed self-sustainable Th– 233 U fuel cycle. • Seed blanket optimization that includes assembly size array and axial dimensions. • Fully coupled MC with fuel depletion and thermo-hydraulic feedback modules. • Thermal-hydraulic analysis includes MCPR observation. -- Abstract: Several options of fuel assembly design are investigated for a BWR core operating in a closed self-sustainable Th– 233 U fuel cycle. The designs rely on an axially heterogeneous fuel assembly structure consisting of a single axial fissile zone “sandwiched” between two fertile blanket zones, in order to improve fertile to fissile conversion ratio. The main objective of the study was to identify the most promising assembly design parameters, dimensions of fissile and fertile zones, for achieving net breeding of 233 U. The design challenge, in this respect, is that the fuel breeding potential is at odds with axial power peaking and the core minimum critical power ratio (CPR), hence limiting the maximum achievable core power rating. Calculations were performed with the BGCore system, which consists of the MCNP code coupled with fuel depletion and thermo-hydraulic feedback modules. A single 3-dimensional fuel assembly having reflective radial boundaries was modeled applying simplified restrictions on the maximum centerline fuel temperature and the CPR. It was found that axially heterogeneous fuel assembly design with a single fissile zone can potentially achieve net breeding, while matching conventional BWR core power rating under certain restrictions to the core loading pattern design

  3. Fuel assemblies for PWR type reactors: fuel rods, fuel plates. CEA work presentation

    International Nuclear Information System (INIS)

    Delafosse, Jacques.

    1976-01-01

    French work on PWR type reactors is reported: basic knowledge on Zr and its alloys and on uranium oxide; experience gained on other programs (fast neutron and heavy water reactors); zircaloy-2 or zircaloy-4 clad UO 2 fuel rods; fuel plates consisting of zircaloy-2 clad UO 2 squares of thickness varying between 2 and 4mm [fr

  4. Management of super-grade plutonium in spent nuclear fuel

    International Nuclear Information System (INIS)

    McFarlane, H. F.; Benedict, R. W.

    2000-01-01

    This paper examines the security and safeguards implications of potential management options for DOE's sodium-bonded blanket fuel from the EBR-II and the Fermi-1 fast reactors. The EBR-II fuel appears to be unsuitable for the packaging alternative because of DOE's current safeguards requirements for plutonium. Emerging DOE requirements, National Academy of Sciences recommendations, draft waste acceptance requirements for Yucca Mountain and IAEA requirements for similar fuel also emphasize the importance of safeguards in spent fuel management. Electrometallurgical treatment would be acceptable for both fuel types. Meeting the known requirements for safeguards and security could potentially add more than $200M in cost to the packaging option for the EBR-II fuel

  5. Shungnak Energy Configuration Options.

    Energy Technology Data Exchange (ETDEWEB)

    Rosewater, David Martin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Eddy, John P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Power systems in rural Alaska villages face a unique combination of challenges that can increase the cost of energy and lowers energy supply reliability. In the case of the remote village of Shungnak, diesel and heating fuel is either shipped in by barge or flown in by aircraft. This report presents a technical analysis of several energy infrastructure upgrade and modification options to reduce the amount of fuel consumed by the community of Shungnak. Reducing fuel usage saves money and makes the village more resilient to disruptions in fuel supply. The analysis considers demand side options, such as energy efficiency, alongside the installation of wind and solar power generation options. Some novel approaches are also considered including battery energy storage and the use of electrical home heating stoves powered by renewable generation that would otherwise be spilled and wasted. This report concludes with specific recommendations for Shungnak based on economic factors, and fuel price sensitivity. General conclusions are also included to support future work analyzing similar energy challenges in remote arctic regions.

  6. Assessment of environmental impact of nuclear and other options for electricity generation in Croatia

    International Nuclear Information System (INIS)

    Feretic, D.; Tomsic, Z.; Kovacevic, T.

    1996-01-01

    Possible scenarios of future electricity production and supply, especially their environmental impact and social acceptability, have recently been put in the focus of overall interest. This paper analyzes the air impact and costs of possible developing options, varying the fuel types for future power plants. Nuclear option has also been taken in consideration. Two categories of costs have been introduced: internal cost (investment, O and M and fuel cost) and external cost (monetary equivalent of the environmental damage caused by plant operation). (author)

  7. Fuel assembly

    International Nuclear Information System (INIS)

    Bando, Masaru.

    1993-01-01

    As neutron irradiation progresses on a fuel assembly of an FBR type reactor, a strong force is exerted to cause ruptures if the arrangement of fuel elements is not displaced, whereas the fuel elements may be brought into direct contact with each other not by way of spacers to cause burning damages if the arrangement is displaced. In the present invention, the circumference of fuel elements arranged in a normal triangle lattice is surrounded by a wrapper tube having a hexagonal cross section, wire spacers are wound therearound, and deformable spacers are distributed to optional positions for fuel elements in the wrapper tube. Interaction between the fuel elements caused by irradiation is effectively absorbed, thereby enabling to delay the occurrence of the rupture and burning damages of the elements. (N.H.)

  8. Safety options for the 1300 MWe program

    International Nuclear Information System (INIS)

    Cayol, A.; Dupuis, M.C.; Fourest, B.; Oury, J.M.

    1980-04-01

    Standardization of the nuclear plants built in France implies an examination of the main technical safety options to be taken for a given type of reactor. By this procedure the subjects for which detailed studies will be needed to confirm the decisions made for the project can be defined in advance. In this context the technical safety option analysis for the 1300 MWe plants was conducted from the end of 1975 to the middle of 1978 according to usual regulation examination practice. The main conclusions are presented on the following subjects: safety methods; technical options concerning the containment vessel, primary fluid activity, fuel elements, steam generators; general organization of the lay-out [fr

  9. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    Energy Technology Data Exchange (ETDEWEB)

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

  10. Assessing environmental and health impact of the nuclear fuel cycle. Methodology and application to prospective actinides recycling options

    International Nuclear Information System (INIS)

    Garzenne, Claude; Grouiller, Jean-Paul; Le Boulch, Denis

    2005-01-01

    French Industrial Companies: EDF, AREVA (COGEMA and FRAMATOME-ANP), associated with ANDRA, the organization in charge of the waste management in France, and Public Research Institute CEA and IRSN, involved in the nuclear waste management, have developed in collaboration a methodology intended to assess the environmental and health impact of the nuclear fuel cycle. This methodology, based on fuel cycle simulation, Life Cycle Analysis, and Impact Studies of each fuel cycle facilities, has been applied to a set of nuclear scenarios covering a very contrasted range of waste management options, in order to characterize the effect of High Level Waste transmutation, and to estimate to what extent it could contribute to reduce their overall impact on health and environment. The main conclusion we could draw from this study is that it is not possible to discriminate, as far as health and environmental impacts are concerned, nuclear scenarios implementing very different levels of HLW transmutation, representative of the whole range of available options. The main limitation of this work is due to the hypothesis of normal behavior of all fuel cycle facilities: main future improvement of the methodology would be to take the accidental risk into account. (author)

  11. Agricultural transportation fuels

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The recommendations on the title subject are focused on the question whether advantages and disadvantages of agricultural fuels compared to fossil fuels justify the Dutch policy promotion of the use of agricultural products as basic materials for agricultural fuels. Attention is paid to energetic, environmental and economical aspects of both fuel types. Four options to apply agricultural transportation fuels are discussed: (1) 10% bio-ethanol in euro-unleaded gasoline for engines of passenger cars, equipped with a three-way catalyst; (2) the substitution of 15% methyl tertiair butyl ether (MTBE) by ethyl tertiair butyl ether (ETBE) as a substituent for lead in unleaded super plus gasoline (Sp 98) for engines of passenger cars, equipped with a three-way catalyst; (3) 50% KME (rapeseed oil ester) in low-sulfur diesel (0.05%S D) for engines of vans without a catalyst; and (4) the substitution of 0.05% S D by bio-ethanol or KME for buses with fuel-adjusted engines, equipped with a catalyst. Also the substitution by liquefied petroleum gas (LPG), compressed natural gas (CNG) or E 95 was investigated in option four. Each of the options investigated can contribute to a reduction of the use of fossil energy and the environmental effects of the use of fossil fuels, although some environmental effects from agricultural fuels must be taken into consideration. It is recommended to seriously pay attention to the promotion of agricultural fuels, not only in the Netherlands, but also in an international context. Policy instruments to be used in the stimulation of the use of such fuels are the existing European Community subsidies on fallow lands, exemption of the European Community energy levy, and the use of tax differentiation. Large-scale demonstration projects must be started to quantify hazardous emissions and to solve still existing technical problems. 8 figs., 3 tabs., refs., 4 appendices

  12. Radioactive waste management and spent nuclear fuel storing. Options and priorities

    International Nuclear Information System (INIS)

    Popescu, Ion

    2001-01-01

    As a member of the states' club using nuclear energy for peaceful applications, Romania approaches all the activities implied by natural uranium nuclear fuel cycle, beginning with uranium mining and ending with electric energy generation. Since, in all steps of the nuclear fuel cycle radioactive wastes are resulting, in order to protect the environment and the life, the correct and competent radioactive waste management is compulsory. Such a management implies: a. Separating the radioisotopes in all the effluences released into environment; b. Treating separately the radioisotopes to be each properly stored; c. Conditioning waste within resistant matrices ensuring long term isolation of the radioactive waste destined to final disposal; d. Building radioactive waste repositories with characteristics of isolation guaranteed for long periods of time. To comply with the provisions of the International Convention concerning the safety of the spent nuclear fuel and radioactive waste management, signed on 5 September 1997, Romania launched its program 'Management of Radioactive Wastes and Dry Storing of Spent Nuclear Fuel' having the following objectives: 1. Establishing the technology package for treating and conditioning the low and medium active waste from Cernavoda NPP to prepare them for final disposal; 2. Geophysical and geochemical investigations of the site chosen for the low and medium active final disposal (DFDSMA); 3. Evaluating the impact on environment and population of the DFDSMA; 4. Providing data necessary in the dry intermediate storing of spent nuclear fuel and the continuous and automated surveillance; 5. Establishing multiple barriers for spent nuclear fuel final disposal in order to establish the repository in granitic rocks and salt massives; 6. Designing and testing containers for final disposal of spent nuclear fuel guaranteeing the isolation over at least 500 years; 7. Computational programs for evaluation of radionuclide leakage in environment in

  13. A New Dynamic Model for Nuclear Fuel Cycle System Analysis

    International Nuclear Information System (INIS)

    Choi, Sungyeol; Ko, Won Il

    2014-01-01

    The evaluation of mass flow is a complex process where numerous parameters and their complex interaction are involved. Given that many nuclear power countries have light and heavy water reactors and associated fuel cycle technologies, the mass flow analysis has to consider a dynamic transition from the open fuel cycle to other cycles over decades or a century. Although an equilibrium analysis provides insight concerning the end-states of fuel cycle transitions, it cannot answer when we need specific management options, whether the current plan can deliver these options when needed, and how fast the equilibrium can be achieved. As a pilot application, the government brought several experts together to conduct preliminary evaluations for nuclear fuel cycle options in 2010. According to Table 1, they concluded that the closed nuclear fuel cycle has long-term advantages over the open fuel cycle. However, it is still necessary to assess these options in depth and to optimize transition paths of these long-term options with advanced dynamic fuel cycle models. A dynamic simulation model for nuclear fuel cycle systems was developed and its dynamic mass flow analysis capability was validated against the results of existing models. This model can reflects a complex combination of various fuel cycle processes and reactor types, from once-through to multiple recycling, within a single nuclear fuel cycle system. For the open fuel cycle, the results of the developed model are well matched with the results of other models

  14. CANDU type fuel behavior evaluation - a probabilistic approach

    International Nuclear Information System (INIS)

    Moscalu, D.R.; Horhoianu, G.; Popescu, I.A.; Olteanu, G.

    1995-01-01

    In order to realistically assess the behavior of the fuel elements during in-reactor operation, probabilistic methods have recently been introduced in the analysis of fuel performance. The present paper summarizes the achievements in this field at the Institute for Nuclear Research (INR), pointing out some advantages of the utilized method in the evaluation of CANDU type fuel behavior in steady state conditions. The Response Surface Method (RSM) has been selected for the investigation of the effects of the variability in fuel element computer code inputs on the code outputs (fuel element performance parameters). A new developed version of the probabilistic code APMESRA based on RSM is briefly presented. The examples of application include the analysis of the results of an in-reactor fuel element experiment and the investigation of the calculated performance parameter distribution for a new CANDU type extended burnup fuel element design. (author)

  15. Effect of advanced fuel cycles on waste management policies

    International Nuclear Information System (INIS)

    Cavedon, J.M.; Haapalehto, T.

    2005-01-01

    The study aims at analysing a range of future fuel cycle options from the perspective of their impact on waste repository demand and specification. The study would focus on: Assessment of the characteristics of radioactive wastes arising from advanced nuclear fuel cycle options, repository performance analysis studies using source terms for waste arising from such advanced nuclear fuel cycles, identification of new options for waste management and disposal. Three families of fuel cycles having increasing recycling capabilities are assessed. Each cycle is composed of waste generating and management processes. Examples of waste generating processes are fuel factories (7 types) and reprocessing plants (7 types). Packaging and conditioning plants (7) and disposal facilities are examples of waste management processes. The characteristic of all these processes have been described and then total waste flows are summarised. In order to simplify the situation, three waste categories have been defined based on the IAEA definitions in order to emphasize the major effects of different types of waste. These categories are: short-life waste for surface or sub-surface disposal, long-life low heat producing waste for geological disposal, high-level waste for geological disposal. The feasibilities of the fuel cycles are compared in terms of economics, primary resource consumption and amount of waste generated. The effect of high-level waste composition for the repository performance is one of the tools in these comparisons. The results of this will be published as an NEA publication before the end of 2005. (authors)

  16. Fuel particles in the Chernobyl cooling pond: current state and prediction for remediation options

    International Nuclear Information System (INIS)

    Bulgakov, A.; Konoplev, A.; Smith, J.; Laptev, G.; Voitsekhovich, O.

    2009-01-01

    During the coming years, a management and remediation strategy for the Chernobyl cooling pond (CP) will be implemented. Remediation options include a controlled reduction in surface water level of the cooling pond and stabilisation of exposed sediments. In terrestrial soils, fuel particles deposited during the Chernobyl accident have now almost completely disintegrated. However, in the CP sediments the majority of 90 Sr activity is still in the form of fuel particles. Due to the low dissolved oxygen concentration and high pH, dissolution of fuel particles in the CP sediments is significantly slower than in soils. After the planned cessation of water pumping from the Pripyat River to the Pond, significant areas of sediments will be drained and exposed to the air. This will significantly enhance the dissolution rate and, correspondingly, the mobility and bioavailability of radionuclides will increase with time. The rate of acidification of exposed bottom sediments was predicted on the basis of acidification of similar soils after liming. Using empirical equations relating the fuel particle dissolution rate to soil and sediment pH allowed prediction of fuel particle dissolution and 90 Sr mobilisation for different remediation scenarios. It is shown that in exposed sediments, fuel particles will be almost completely dissolved in 15-25 years, while in parts of the cooling pond which remain flooded, fuel particle dissolution will take about a century

  17. Effect of aviation fuel type and fuel injection conditions on the spray characteristics of pressure swirl and hybrid air blast fuel injectors

    Science.gov (United States)

    Feddema, Rick

    Feddema, Rick T. M.S.M.E., Purdue University, December 2013. Effect of Aviation Fuel Type and Fuel Injection Conditions on the Spray Characteristics of Pressure Swirl and Hybrid Air Blast Fuel Injectors. Major Professor: Dr. Paul E. Sojka, School of Mechanical Engineering Spray performance of pressure swirl and hybrid air blast fuel injectors are central to combustion stability, combustor heat management, and pollutant formation in aviation gas turbine engines. Next generation aviation gas turbine engines will optimize spray atomization characteristics of the fuel injector in order to achieve engine efficiency and emissions requirements. Fuel injector spray atomization performance is affected by the type of fuel injector, fuel liquid properties, fuel injection pressure, fuel injection temperature, and ambient pressure. Performance of pressure swirl atomizer and hybrid air blast nozzle type fuel injectors are compared in this study. Aviation jet fuels, JP-8, Jet A, JP-5, and JP-10 and their effect on fuel injector performance is investigated. Fuel injector set conditions involving fuel injector pressure, fuel temperature and ambient pressure are varied in order to compare each fuel type. One objective of this thesis is to contribute spray patternation measurements to the body of existing drop size data in the literature. Fuel droplet size tends to increase with decreasing fuel injection pressure, decreasing fuel injection temperature and increasing ambient injection pressure. The differences between fuel types at particular set conditions occur due to differences in liquid properties between fuels. Liquid viscosity and surface tension are identified to be fuel-specific properties that affect the drop size of the fuel. An open aspect of current research that this paper addresses is how much the type of aviation jet fuel affects spray atomization characteristics. Conventional aviation fuel specifications are becoming more important with new interest in alternative

  18. Economic evaluation of multilateral nuclear fuel cycle approach

    International Nuclear Information System (INIS)

    Takashima, Ryuta; Kuno, Yusuke; Omoto, Akira; Tanaka, Satoru

    2011-01-01

    Recently previous works have shown that multilateral nuclear fuel cycle approach has benefits not only of non-proliferation but also of cost effectiveness. This is because for most facilities in nuclear fuel cycle, there exist economies of scale, which has a significant impact on the costs of nuclear fuel cycle. Therefore, the evaluation of economic rationality is required as one of the evaluation factors for the multilateral nuclear fuel cycle approach. In this study, we consider some options with respect to multilateral approaches to nuclear fuel cycle in Asian-Pacific region countries that are proposed by the University of Tokyo. In particular, the following factors are embedded into each type: A) no involvement of assurance of services, B) provision of assurance of services including construction of new facility, without transfer of ownership, and C) provision of assurance of service including construction of new joint facilities with ownership transfer of facilities to multilateral nuclear fuel cycle approach. We show the overnight costs taking into account install and operation of nuclear fuel cycle facilities for each option. The economic parameter values such as uranium price, scale factor, and market output expansion influences the total cost for each option. Thus, we show how these parameter values and economic risks affect the total overnight costs for each option. Additionally, the international facilities could increase the risk of transportation for nuclear material compared to national facilities. We discuss the potential effects of this transportation risk on the costs for each option. (author)

  19. Spent fuel management options for research reactors in Latin America

    International Nuclear Information System (INIS)

    2006-06-01

    Research reactors (RRs) have been operated in Latin America since the late 1950s, and a total of 23 RRs have been built in the region. At the time of writing (November 2005), 18 RRs are in operation, 4 have been shut down and 1 has been decommissioned. The number of operating RRs in Latin America represents around 6% of the existing operational RRs worldwide and around 21% of the RRs operating in developing countries. Common to all RRs in the region is a consistent record of safe and successful operation. With the purpose of carrying out a collaborative study of different aspects of the management of spent fuel from RRs, some countries from the region proposed to the IAEA in 2000 the organization of a Regional Project. The project (IAEA TC Regional Project RLA/4/018) that was approved for the biennium 2001-2002 and extended for 2003-2004 included the participation of Argentina, Brazil, Chile, Mexico and Peru. The main objectives of this project were: (a) to define the basic conditions for a regional strategy for managing spent fuel that will provide solutions compatible with the economic and technological realities of the countries involved; and (b) to determine what is needed for the temporary wet and dry storage of spent fuel from the research reactors in the countries of the Latin American region that participated in the project. This TECDOC is based on the results of TC Regional Project RLA/4/018. This project was successful in identifying and assessing a number of viable alternatives for RRSF management in the Latin American region. Options for operational and interim storage, spent fuel conditioning and final disposal have been carefully considered. This report presents the views of Latin American experts on RR spent fuel management and will be useful as reference material for the Latin American RR community, decision making authorities in the region and the public in general

  20. Fuel and Core Design Options to Overcome the Heavy Metal Loading Limit and Improve Performance and Safety of Liquid Salt Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, Bojan [Georgia Inst. of Technology, Atlanta, GA (United States); Maldonado, Ivan [Univ. of Tennessee, Knoxville, TN (United States)

    2016-04-14

    The research performed in this project addressed the issue of low heavy metal loading and the resulting reduced cycle length with increased refueling frequency, inherent to all FHR designs with solid, non-movable fuel based on TRISO particles. Studies performed here focused on AHTR type of reactor design with plate (“plank”) fuel. Proposal to FY12 NEUP entitled “Fuel and Core Design Options to Overcome the Heavy Metal Loading Limit and Improve Performance and Safety of Liquid Salt Cooled Reactors” was selected for award, and the 3-year project started in August 2012. A 4-month NCE was granted and the project completed on December 31, 2015. The project was performed by Georgia Tech (Prof. Bojan Petrovic, PI) and University of Tennessee (Prof. Ivan Maldonado, Co-PI), with a total funding of $758,000 over 3 years. In addition to two Co-PIs, the project directly engaged 6 graduate students (at doctoral or MS level) and 2 postdoctoral researchers. Additionally, through senior design projects and graduate advanced design projects, another 23 undergraduate and 12 graduate students were exposed to and trained in the salt reactor technology. We see this as one of the important indicators of the project’s success and effectiveness. In the process, 1 journal article was published (with 3 journal articles in preparation), together with 8 peer-reviewed full conference papers, 8 peer-reviewed extended abstracts, as well as 1 doctoral dissertation and 2 master theses. The work included both development of models and methodologies needed to adequately analyze this type of reactor, fuel, and its fuel cycle, as well as extensive analyses and optimization of the fuel and core design.

  1. Fuel and Core Design Options to Overcome the Heavy Metal Loading Limit and Improve Performance and Safety of Liquid Salt Cooled Reactors

    International Nuclear Information System (INIS)

    Petrovic, Bojan; Maldonado, Ivan

    2016-01-01

    The research performed in this project addressed the issue of low heavy metal loading and the resulting reduced cycle length with increased refueling frequency, inherent to all FHR designs with solid, non-movable fuel based on TRISO particles. Studies performed here focused on AHTR type of reactor design with plate ('plank') fuel. Proposal to FY12 NEUP entitled 'Fuel and Core Design Options to Overcome the Heavy Metal Loading Limit and Improve Performance and Safety of Liquid Salt Cooled Reactors' was selected for award, and the 3-year project started in August 2012. A 4-month NCE was granted and the project completed on December 31, 2015. The project was performed by Georgia Tech (Prof. Bojan Petrovic, PI) and University of Tennessee (Prof. Ivan Maldonado, Co-PI), with a total funding of $758,000 over 3 years. In addition to two Co-PIs, the project directly engaged 6 graduate students (at doctoral or MS level) and 2 postdoctoral researchers. Additionally, through senior design projects and graduate advanced design projects, another 23 undergraduate and 12 graduate students were exposed to and trained in the salt reactor technology. We see this as one of the important indicators of the project's success and effectiveness. In the process, 1 journal article was published (with 3 journal articles in preparation), together with 8 peer-reviewed full conference papers, 8 peer-reviewed extended abstracts, as well as 1 doctoral dissertation and 2 master theses. The work included both development of models and methodologies needed to adequately analyze this type of reactor, fuel, and its fuel cycle, as well as extensive analyses and optimization of the fuel and core design.

  2. Effects of Fuel Type and Fuel Delivery System on Pollutant Emissions of Pride and Samand Vehicles

    Directory of Open Access Journals (Sweden)

    Akbar Sarhadi

    2017-04-01

    Full Text Available This research was aimed to study the effect of the type of fuel delivery system (petrol, dedicated or bifuel, the type of consumed fuel (petrol or gas, the portion of consumed fuel and also the duration of dual-fuelling in producing carbon monoxide, carbon dioxide and unburned hydrocarbons from Pride and Samand. According to research objectives, data gathering from 2000 vehicles has been done by visiting Hafiz Vehicle Inspection Center every day for 2 months. The results of this survey indicated that although there is no significant difference between various fuel delivery systems in terms of producing the carbon monoxide, carbon dioxide and unburned hydrocarbons by Samand, considering the emission amount of carbon dioxide, the engine performance of Pride in bifuel and dedicated state in GTXI and 132 types is more unsatisfactory than that of petrol state by 0.3 and 0.4%, respectively. On the other hand, consuming natural gas increases the amount of carbon monoxide emission in dual- fuel Pride by 0.18% and decreases that in dual-fuel Samand by 1.2%, which signifies the better design of Samand in terms of fuel pumps, used kit type and other engine parts to use this alternative fuel compared to Pride. Since the portion of consumed fuel and also duration of dual-fuelling does not have a significant effect on the amount of output pollutants from the studied vehicles, it can be claimed that the output substances from the vehicle exhaust are more related to the vehicle’s condition than the fuel type.

  3. Fuel type characterization based on coarse resolution MODIS satellite data

    Directory of Open Access Journals (Sweden)

    Lanorte A

    2007-01-01

    Full Text Available Fuel types is one of the most important factors that should be taken into consideration for computing spatial fire hazard and risk and simulating fire growth and intensity across a landscape. In the present study, forest fuel mapping is considered from a remote sensing perspective. The purpose is to delineate forest types by exploring the use of coarse resolution satellite remote sensing MODIS imagery. In order to ascertain how well MODIS data can provide an exhaustive classification of fuel properties a sample area characterized by mixed vegetation covers and complex topography was analysed. The study area is located in the South of Italy. Fieldwork fuel type recognitions, performed before, after and during the acquisition of remote sensing MODIS data, were used as ground-truth dataset to assess the obtained results. The method comprised the following three steps: (I adaptation of Prometheus fuel types for obtaining a standardization system useful for remotely sensed classification of fuel types and properties in the considered Mediterranean ecosystems; (II model construction for the spectral characterization and mapping of fuel types based on two different approach, maximum likelihood (ML classification algorithm and spectral Mixture Analysis (MTMF; (III accuracy assessment for the performance evaluation based on the comparison of MODIS-based results with ground-truth. Results from our analyses showed that the use of remotely sensed MODIS data provided a valuable characterization and mapping of fuel types being that the achieved classification accuracy was higher than 73% for ML classifier and higher than 83% for MTMF.

  4. Nuclear fuel cycle in France: today's situation and long term options

    International Nuclear Information System (INIS)

    Boullis, B.; Drevon, C.; Pays, M.

    2015-01-01

    In France plutonium and uranium are recycled as MOX fuel (used in 22 reactors) and URE (enriched uranium from spent fuel). Fission products and minor actinides, that composed ultimate wastes, are vitrified and cast in stainless steel containers. Fuel recycling has reached industrial maturity and about 30.000 tonnes of spent fuels have been processed. This strategy has allowed France to save about 17% of its annual consumption of uranium and to get a least volume of high-level radioactive wastes. This strategy can be pushed forwards by introducing a multi-recycling option in which plutonium and uranium from spent MOX fuels are recycled. Multi-recycling produces a nuclear fuel that is polluted with remainders of actinides and fission products and to compensate this deterioration of its neutronic properties a higher concentration of fissile materials is required. For safety reasons the concentration of plutonium in MOX fuels is limited to 12% so multi-recycling is not a strategy for a fleet of PWRs only. Fast neutron reactors use uranium and plutonium in a more efficiently way and can be a solution for multi-recycling. The study shows that for a constant output of 420 TWh a year a fleet of PWRs need 7600 tonnes of natural uranium. If mono-recycling is allowed this consumption decreases to 6300 tonnes a year and if multi-recycling is allowed by integrating fast reactors in the proportion of 40% of the fleet, this consumption drops to 2700 tonnes a year. The study also shows the changes in the production of wastes in relation with multi-recycling. (A.C.)

  5. Fueling method in LMFBR type reactors

    International Nuclear Information System (INIS)

    Kawashima, Katsuyuki; Inoue, Kotaro.

    1985-01-01

    Purpose: To extend the burning cycle and decrease the number of fuel exchange batches without increasing the excess reactivity at the initial stage of burning cycles upon fuel loading to an LMFBR type reactor. Method: Each of the burning cycles is divided into a plurality of burning sections. Fuels are charged at the first burning section in each of the cycles such that driver fuel assemblies and blanket assemblies or those assemblies containing neutron absorbers such as boron are distributed in mixture in the reactor core region. At the final stage of the first burning section, the blanket assemblies or neutron absorber-containing assemblies present in mixture are partially or entirely replaced with driver fuel assemblies depending on the number of burning sections such that all of them are replaced with the driver fuel assemblies till the start of the final burning section of the abovementioned cycle. The object of this invention can thus be attained. (Horiuchi, T.)

  6. Durability of spent nuclear fuels and facility components in wet storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    Wet storage continues to be the dominant option for the management of irradiated fuel elements and assemblies (fuel units). Fuel types addressed in this study include those used in: power reactors, research and test reactors, and defence reactors. Important decisions must be made regarding acceptable storage modes for a broad variety of fuel types, involving numerous combinations of fuel and cladding materials. A broadly based materials database has the following important functions: to facilitate solutions to immediate and pressing materials problems; to facilitate decisions on the most effective long term interim storage methods for numerous fuel types; to maintain and update a basis on which to extend the licenses of storage facilities as regulatory periods expire; to facilitate cost-effective transfer of numerous fuel types to final disposal. Because examinations of radioactive materials are expensive, access to materials data and experience that provide an informed basis to analyse and extrapolate materials behaviour in wet storage environments can facilitate identification of cost-effective approaches to develop and maintain a valuable materials database. Fuel storage options include: leaving the fuel in wet storage, placing the fuel in canisters with cover gases, stored underwater, or transferring the fuel to one of several dry storage modes, involving a range of conditioning options. It is also important to anticipate the condition of the various materials as periods of wet storage are extended or as decisions to transfer to dry storage are implemented. A sound basis for extrapolation is needed to assess fuel and facility component integrity over the expected period of wet storage. A materials database also facilitates assessment of the current condition of specific fuel and facility materials, with minimal investments in direct examinations. This report provides quantitative and semi-quantitative data on materials behaviour or references sources of data to

  7. Durability of spent nuclear fuels and facility components in wet storage

    International Nuclear Information System (INIS)

    1998-04-01

    Wet storage continues to be the dominant option for the management of irradiated fuel elements and assemblies (fuel units). Fuel types addressed in this study include those used in: power reactors, research and test reactors, and defence reactors. Important decisions must be made regarding acceptable storage modes for a broad variety of fuel types, involving numerous combinations of fuel and cladding materials. A broadly based materials database has the following important functions: to facilitate solutions to immediate and pressing materials problems; to facilitate decisions on the most effective long term interim storage methods for numerous fuel types; to maintain and update a basis on which to extend the licenses of storage facilities as regulatory periods expire; to facilitate cost-effective transfer of numerous fuel types to final disposal. Because examinations of radioactive materials are expensive, access to materials data and experience that provide an informed basis to analyse and extrapolate materials behaviour in wet storage environments can facilitate identification of cost-effective approaches to develop and maintain a valuable materials database. Fuel storage options include: leaving the fuel in wet storage, placing the fuel in canisters with cover gases, stored underwater, or transferring the fuel to one of several dry storage modes, involving a range of conditioning options. It is also important to anticipate the condition of the various materials as periods of wet storage are extended or as decisions to transfer to dry storage are implemented. A sound basis for extrapolation is needed to assess fuel and facility component integrity over the expected period of wet storage. A materials database also facilitates assessment of the current condition of specific fuel and facility materials, with minimal investments in direct examinations. This report provides quantitative and semi-quantitative data on materials behaviour or references sources of data to

  8. The option study of air shipment of DUPIC fuel elements to Canada

    International Nuclear Information System (INIS)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Kim, J. H.; Yang, M. S.; Koo, J. H.

    2003-01-01

    KAERI developed a DUPIC nuclear fuel with the refabrication of spent PWR fuel discharged from domestic nuclear power plant by a dry process at M6 hot-cell in IMEF. To verify the performance of DUPIC nuclear fuel, irradiation test at operating conditions of commercially operating power plant is essential. Since the HANARO research reactor of KAERI does not have Fuel Test Loop(FTL) for irradiating nuclear fuel under high temperature and high pressure conditions, DUPIC fuel cannot be irradiated in the FTL of HANARO until about 2008. In the 13-th PRM among Korea, Canada, USA and IAEA, AECL proposed that KAERI fabricated DUPIC fuel can be irradiated in the FTL of the NRU research reactor without charge of neutrons. The transportation quantity of DUPIC fuel to Canada is 10 elements(about 6 kg). This transportation package is classified as the 7-th class according to 'recommendation on the transport of dangerous goods' made by the United Nations. Air shipment was investigated as a promising option because it is generally understood that air shipment is more appropriate than ship shipment for transportation of small quantity of nuclear materials from the perspectives of cost and transportation period. In case of air shipment, the IATA regulations have been more intensified since the July of 2001. To make matters worse, it becomes more difficult to get the ratification of corresponding authorities due to 9.11 terror. It was found that at present there is no proper air transportation cask for DUPIC fuel. So, air transportation is considered to be impossible. An alternative of using the exemption limit of fissile material was reviewed. Its results showed that in case of going via USA territory, approvals from US DOT should be needed. The approvals include shipping and cask approvals on technical cask testing. Furthermore, since passes through territories of Japan and Russia have to be done in case of using a regular air cargo from Korea to Canada, approvals from Russia and

  9. Technical report: fabrication of PWR type rodlet fuel

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Uno, Hisao; Sasajima, Hideo

    1990-06-01

    With respect to the simulated reactivity initiated accident (RIA) experiments with pre-irradiated LWR type fuel rods at nuclear safety research reactor (NSRR), there were principally three technical difficulties which should be overcome: (1) Fabrication of the rodlet fuel; Fuel rods from the commercial power reactors had an active column length by 3.6m. To utilize this for NSRR pulse experiment, rodlet fuel having an active column length by 0.12m (reduced to one thirtieth) is requested to fabricate without changing the inside fuel conditions. (2) Development of in-core instrumentations: During pre-irradiation stages, a long-sized fuel rod had dimensional changes by waterside corrosion, bowing, creep down and so on. The fuel also had greater amount of radioactive fission products. This condition is significant to in-core instrumentations to be attached to the fuel rods. Well characterized data to be obtained from these, however, are quite necessary and important from research point of view. Remote handling techniques to attach the rod pressure sensor, the cladding extensometer, the fuel extensometer, and the cladding surface thermocouple to pre-irradiated fuel rods are, therefore, requested to develop. (3) Installation of PIE equipments for pulsed rodlet fuels: PIE on the pulsed rodlet fuels are necessary to better understanding the fuel performance detaily. Equipments which can easily detect the data related to PCMI type fuel failure are matter of concern. Since 1986, the technical difficulties have been tried to overcome by all staffs belonging to Reactivity Accident Laboratory, NSRR Operation Division, Department of Reactor Fuel Examination and Hot Laboratory. This report describes the technical achievements obtained through four years work. (author)

  10. Design Evolution Study - Aging Options

    International Nuclear Information System (INIS)

    McDaniel, P.

    2002-01-01

    The purpose of this study is to identify options and issues for aging commercial spent nuclear fuel received for disposal at the Yucca Mountain Mined Geologic Repository. Some early shipments of commercial spent nuclear fuel to the repository may be received with high-heat-output (younger) fuel assemblies that will need to be managed to meet thermal goals for emplacement. The capability to age as much as 40,000 metric tons of heavy metal of commercial spent nuclear he1 would provide more flexibility in the design to manage this younger fuel and to decouple waste receipt and waste emplacement. The following potential aging location options are evaluated: (1) Surface aging at four locations near the North Portal; (2) Subsurface aging in the permanent emplacement drifts; and (3) Subsurface aging in a new subsurface area. The following aging container options are evaluated: (1) Complete Waste Package; (2) Stainless Steel inner liner of the waste package; (3) Dual Purpose Canisters; (4) Multi-Purpose Canisters; and (5) New disposable canister for uncanistered commercial spent nuclear fuel. Each option is compared to a ''Base Case,'' which is the expected normal waste packaging process without aging. A Value Engineering approach is used to score each option against nine technical criteria and rank the options. Open issues with each of the options and suggested future actions are also presented. Costs for aging containers and aging locations are evaluated separately. Capital costs are developed for direct costs and distributable field costs. To the extent practical, unit costs are presented. Indirect costs, operating costs, and total system life cycle costs will be evaluated outside of this study. Three recommendations for aging commercial spent nuclear fuel--subsurface, surface, and combined surface and subsurface are presented for further review in the overall design re-evaluation effort. Options that were evaluated but not recommended are: subsurface aging in a new

  11. U-Mo fuel qualification program in HANARO

    International Nuclear Information System (INIS)

    Lee, K.H.; Lee, C.S.; Kim, H.R.; Kuk, I.H.; Kim, C.K.

    2000-01-01

    Atomized U-Mo fuel has shown good performance from the results of previous out-of-pile tests and post-irradiation examinations. A qualification program of rod type U-Mo fuel is in progress and the fuel will be irradiated in HANARO. 6 gU/cm 3 U-7Mo, U-8Mo and U-9Mo are considered in this program. The laboratory test results of porosity, mechanical property, thermal conductivity, and thermal compatibility test are discussed in this paper. In parallel with this qualification program, the feasibility study on the core conversion from the present U 3 Si fuel to U-Mo in HANARO will be initiated to provide technical bases for the policy making. Several options of core conversion for HANARO are proposed and each option will be addressed briefly in terms of the operation policy, fuel management, and licensing of HANARO. (author)

  12. Partitioning and transmutation: Radioactive waste management option

    International Nuclear Information System (INIS)

    Stanculescu, A.

    2005-01-01

    Growing world population with increasing energy needs, especially in the developing countries, Threat of global warming due to CO 2 emissions demands non-fossil electricity production. Nuclear will have to be part of a sustainable mix of energy production options Figures show that 350 GWe worldwide capacity is 'nuclear'. Present worldwide spent fuel (containing high Pu inventory) and HLW would need large repositories. In view of the previous facts this lecture deals Partitioning and transmutation as radioactive waste management option. Partitioning and transmutation (P and T) is a complex technology i.e. advanced reprocessing, and demand transuranics fuel fabrication plants, as well as innovative and/or dedicated transmutation reactors. In addition to U, Pu, and 129 I, 'partitioning' extracts from the liquid high level waste the minor actinides (MA) and the long-lived fission products (LLFP) 99-Tc, 93-Zr, 135-Cs, 107-Pd, and 79-Se). 'Transmutation' requires fully new fuel fabrication plants and reactor technologies to be developed and implemented on industrial scale. Present LWRs are not suited for MA and LLFP transmutation (safety consideration, plant operation, poor incineration capability). Only specially licensed LWRs can cope with MOX fuel; for increased Pu loadings (up to 100%), special reactor designs (e.g., ABB80+) are required; a combination of these reactor types could allow Pu inventory stabilization. Long-term waste radiotoxicity can be effectively reduced only if transuranics are 'incinerated' through fission with very hard neutron spectra. New reactor concepts (dedicated fast reactors, Accelerator Driven Systems (ADS), fusion/fission hybrid reactors) have been proposed as transmuters/incinerators. Significant Pu+MAs incineration rates can be achieved in symbiotic scenarios: LWR-MOX and dedicated fast reactors; fast neutron spectrum ADS mainly for MA incineration; very high thermal flux ADS concepts could also provide a significant transuranics

  13. Cost reductions of fuel cells for transport applications: fuel processing options

    Energy Technology Data Exchange (ETDEWEB)

    Teagan, W P; Bentley, J; Barnett, B [Arthur D. Little, Inc., Cambridge, MA (United States)

    1998-03-15

    The highly favorable efficiency/environmental characteristics of fuel cell technologies have now been verified by virtue of recent and ongoing field experience. The key issue regarding the timing and extent of fuel cell commercialization is the ability to reduce costs to acceptable levels in both stationary and transport applications. It is increasingly recognized that the fuel processing subsystem can have a major impact on overall system costs, particularly as ongoing R and D efforts result in reduction of the basic cost structure of stacks which currently dominate system costs. The fuel processing subsystem for polymer electrolyte membrane fuel cell (PEMFC) technology, which is the focus of transport applications, includes the reformer, shift reactors, and means for CO reduction. In addition to low cost, transport applications require a fuel processor that is compact and can start rapidly. This paper describes the impact of factors such as fuel choice operating temperature, material selection, catalyst requirements, and controls on the cost of fuel processing systems. There are fuel processor technology paths which manufacturing cost analyses indicate are consistent with fuel processor subsystem costs of under $150/kW in stationary applications and $30/kW in transport applications. As such, the costs of mature fuel processing subsystem technologies should be consistent with their use in commercially viable fuel cell systems in both application categories. (orig.)

  14. Fuel options for the fuel cell vehicle: hydrogen, methanol or gasoline?

    International Nuclear Information System (INIS)

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr.; Kuhn, I.F. Jr.

    2000-01-01

    Fuel cell vehicles can be powered directly by hydrogen or, with an onboard chemical processor, other liquid fuels such as gasoline or methanol. Most analysts agree that hydrogen is the preferred fuel in terms of reducing vehicle complexity, but one common perception is that the cost of a hydrogen infrastructure would be excessive. According to this conventional wisdom, the automobile industry must therefore develop complex onboard fuel processors to convert methanol, ethanol or gasoline to hydrogen. We show here, however, that the total fuel infrastructure cost to society including onboard fuel processors may be less for hydrogen than for either gasoline or methanol, the primary initial candidates currently under consideration for fuel cell vehicles. We also present the local air pollution and greenhouse gas advantages of hydrogen fuel cell vehicles compared to those powered by gasoline or methanol. (Author)

  15. Homogeneous Thorium Fuel Cycles in Candu Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hyland, B.; Dyck, G.R.; Edwards, G.W.R.; Magill, M. [Chalk River Laboratories, Atomic Energy of Canada Limited (Canada)

    2009-06-15

    The CANDU{sup R} reactor has an unsurpassed degree of fuel-cycle flexibility, as a consequence of its fuel-channel design, excellent neutron economy, on-power refueling, and simple fuel bundle [1]. These features facilitate the introduction and full exploitation of thorium fuel cycles in Candu reactors in an evolutionary fashion. Because thorium itself does not contain a fissile isotope, neutrons must be provided by adding a fissile material, either within or outside of the thorium-based fuel. Those same Candu features that provide fuel-cycle flexibility also make possible many thorium fuel-cycle options. Various thorium fuel cycles can be categorized by the type and geometry of the added fissile material. The simplest of these fuel cycles are based on homogeneous thorium fuel designs, where the fissile material is mixed uniformly with the fertile thorium. These fuel cycles can be competitive in resource utilization with the best uranium-based fuel cycles, while building up a 'mine' of U-233 in the spent fuel, for possible recycle in thermal reactors. When U-233 is recycled from the spent fuel, thorium-based fuel cycles in Candu reactors can provide substantial improvements in the efficiency of energy production from existing fissile resources. The fissile component driving the initial fuel could be enriched uranium, plutonium, or uranium-233. Many different thorium fuel cycle options have been studied at AECL [2,3]. This paper presents the results of recent homogeneous thorium fuel cycle calculations using plutonium and enriched uranium as driver fuels, with and without U-233 recycle. High and low burnup cases have been investigated for both the once-through and U-233 recycle cases. CANDU{sup R} is a registered trademark of Atomic Energy of Canada Limited (AECL). 1. Boczar, P.G. 'Candu Fuel-Cycle Vision', Presented at IAEA Technical Committee Meeting on 'Fuel Cycle Options for LWRs and HWRs', 1998 April 28 - May 01, also Atomic Energy

  16. Status of feasibility study for various technical options of FBR systems

    International Nuclear Information System (INIS)

    Kani, Yoshio

    2000-01-01

    JNC (Japan Nuclear Cycle Development Institute) has started a new research project of feasibility studies (F/S) for a wide variety option of fast breeder reactor (FBR) and related fuel cycle in order to develop an economically competitive FBR cycle system fro commercialization. JNC and the electric untilities in Japan have established a new organization in JNC to perform the F/S since July 1, 1999. The organization has undertaken feasibility studies (F/S) in order to determine promising FBR cycle concepts and define necessary RandD tasks. The long-term targets of commercialized FBR cycle system are set as ensuring safety, economic competitiveness relative to future LWRs, efficient utilization of resources, reduction in environmental burden, and enhancement of nuclear non-proliferation. This paper describes the progress of design studies for a wide variety of technical options of FBR plants in the framework of the F/S. We make efforts towards considering all key issues so as not to fail to notice the best concept in a commercialized stage. In the study of technical options, the identified coolant types are sodium, heavy metal (lead and lead-bismuth), gas (carbon dioxide and helium ) and water (boiling water, pressurized water and supercritical water). The classified types of fuel are mixed oxide, nitride and metal. Design studies of small size modular plant concepts are also performed. We study many reactor concepts in combination with a coolant type and a fuel type, understand characteristics of each reactor concept based on our experience and an extensive survey of literature, and make a draft design of each reactor concept for rough estimation of construction costs. We also check how far the concept accomplishes each index (safety, economy, resource utilization, etc.) of design requirements, and will select several promising reactor concepts. (author)

  17. 2005 resource options report

    International Nuclear Information System (INIS)

    Morris, T.

    2005-01-01

    This resource options report (ROR) fulfils regulatory requirements in British Columbia's two-year resource planning process. It identifies a wide range of resources and technologies that could be used to meet BC Hydro's future electricity demand. As such, it facilitates a transparent public review of resource options which include both supply-side and demand-side options. The resource options that will be used in the 2005 integrated electricity plan (IEP) were characterized. This ROR also documents where there is a general agreement or disagreement on the resource type characterization, based on the First Nations and Stakeholder engagement. BC Hydro used current information to provide realistic ranges on volume and cost to characterize environmental and social attributes. The BC Hydro system was modelled to assess the benefit and cost of various resource options. The information resulting from this ROR and IEP will help in making decisions on how to structure competitive acquisition calls and to determine the level of transmission services needed to advance certain BC Hydro projects. The IEP forecasts the nature and quantity of domestic resources required over the next 20 years. A strategic direction on how those needs will be met has been created to guide the management of BC Hydro's energy resources. Supply-side options include near-commercial technologies such as energy storage, ocean waves, tidal, fuel cells and integrated coal gasification combined cycle technology. Supply-side options also include natural gas, coal, biomass, geothermal, wind, and hydro. 120 refs., 39 tabs., 21 figs., 6 appendices

  18. 14 CFR 26.37 - Pending type certification projects: Fuel tank flammability.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Pending type certification projects: Fuel tank flammability. 26.37 Section 26.37 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AIRPLANES Fuel Tank Flammability § 26.37 Pending type certification projects: Fuel tank flammability. (a...

  19. ORIGEN-based Nuclear Fuel Inventory Module for Fuel Cycle Assessment: Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Skutnik, Steven E. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering

    2017-06-19

    The goal of this project, “ORIGEN-based Nuclear Fuel Depletion Module for Fuel Cycle Assessment" is to create a physics-based reactor depletion and decay module for the Cyclus nuclear fuel cycle simulator in order to assess nuclear fuel inventories over a broad space of reactor operating conditions. The overall goal of this approach is to facilitate evaluations of nuclear fuel inventories for a broad space of scenarios, including extended used nuclear fuel storage and cascading impacts on fuel cycle options such as actinide recovery in used nuclear fuel, particularly for multiple recycle scenarios. The advantages of a physics-based approach (compared to a recipe-based approach which has been typically employed for fuel cycle simulators) is in its inherent flexibility; such an approach can more readily accommodate the broad space of potential isotopic vectors that may be encountered under advanced fuel cycle options. In order to develop this flexible reactor analysis capability, we are leveraging the Origen nuclear fuel depletion and decay module from SCALE to produce a standalone “depletion engine” which will serve as the kernel of a Cyclus-based reactor analysis module. The ORIGEN depletion module is a rigorously benchmarked and extensively validated tool for nuclear fuel analysis and thus its incorporation into the Cyclus framework can bring these capabilities to bear on the problem of evaluating long-term impacts of fuel cycle option choices on relevant metrics of interest, including materials inventories and availability (for multiple recycle scenarios), long-term waste management and repository impacts, etc. Developing this Origen-based analysis capability for Cyclus requires the refinement of the Origen analysis sequence to the point where it can reasonably be compiled as a standalone sequence outside of SCALE; i.e., wherein all of the computational aspects of Origen (including reactor cross-section library processing and interpolation, input and output

  20. Analysis of environmental friendliness of DUPIC fuel cycle

    International Nuclear Information System (INIS)

    Ko, Won Il; Kim, Ho Dong

    2001-07-01

    Some properties of irradiated DUPIC fuels are compared with those of other fuel cycles. It was indicated that the toxicity of the DUPIC option based on 1 GWe-yr is much smaller than those of other fuel cycle options, and is just about half the order of magnitude of other fuel cycles. From the activity analysis of 99 Tc and 237 Np, which are important to the long-term transport of fission products stored in geologic media, the DUPIC option, was being contained only about half of those other options. It was found from the actinide content estimation that the MOX option has the lowest plutonium arising based on 1 GWe-year and followed by the DUPIC option. However, fissile Pu content generated in the DUPIC fuel was the lowest among the fuel cycle options. From the analysis of radiation barrier in proliferation resistance aspect, the fresh DUPIC fuel can play a radiation barrier part, better than CANDU spent fuels as well as fresh MOX fuel. It is indicated that the DUPIC fuel cycle has the excellent resistance to proliferation, compared with an existing reprocessing option and CANDU once-through option. In conclusions, DUPIC fuel cycle would have good properties on environmental effect and proliferation resistance, compared to other fuel cycle cases

  1. Treatment of spent fuels from research reactors and reactor development programs in Germany

    International Nuclear Information System (INIS)

    Closs, K.D.

    1999-01-01

    Quite a great number of different types of spent fuel from research reactors and development programs exists in Germany. The general policy is to send back to the USA as long as possible fuel from MTRs and TRIGAs of USA origin. An option is reprocessing in Great Britain or France. This option is pursued as long as reprocessing and reuse of the recovered material is economically justifiable. For those fuels which cannot be returned to the USA or which will not be reprocessed, a domestic back-up solution of spent fuel management has been developed in Germany, compatible with the management of spent fuel from power reactors. It consists in dry storage in special casks and, later on, direct disposal. Preliminary results from experimental R and D investigations with research reactor fuel and experience from LWR fuel lead to the conclusion that the direct disposal option even for research reactor fuel or exotic fuel does not impose major technical difficulties for the German waste management and disposal concept. (author)

  2. Validation concerns for dry storage of foreign research reactor spent nuclear fuel

    International Nuclear Information System (INIS)

    Trumble, E.F.

    1994-01-01

    Recent decisions by the Department of Energy have accelerated the need for storage options to support the return of foreign research reactor (FRR) fuel to the United States. Many of these returns consist of fuel types which contain highly enriched uranium and are aluminum clad. These attributes present many challenges not experienced in the fuel storage designs for commercial nuclear fuels where the fuels have lower enrichment and the cladding is more robust. Historically, returned FRR fuel has been stored for short periods in basins where it is cooled and then sent to be reprocessed. However, a severe lack of basin space and questionable availability of reprocessing facilities necessitates the development of other proposals. One proposed option is to store the FRR fuel in a dry state, thus reducing the corrosion problems associated with aluminum cladding. A drawback to this type of storage, however, is the lack of experimental data for this type of fuel under dry storage conditions. This lack of data has led to recent discussions over the accuracy of some of the current multigroup cross section libraries when applied to dry, fast systems of uranium and aluminum. This concern is evaluated for the specific case of Material Test Reactor (MTR) fuel (MTR is >60% of FRR fuel), a review of applicable experiments is presented and a new experiment is proposed

  3. R and D activities on CANDU-type fuel in Indonesia

    International Nuclear Information System (INIS)

    Suripto, A.; Badruzzaman, M.; Latief, A.

    1997-01-01

    The status of R and D activities in Indonesia with respect of CANDU-type fuel development is presented. The activities have been started since the first feasibility study to introduce nuclear power plants was carried out in 1970s. The early research comprised the in-situ pilot production of yellow-cake in Kalimantan (Borneo) experimental mining site, uranium purification and pellet preparation. This program continued to gain a full support from the Government which culminated in the realisation of the construction by BATAN of a large fuel development laboratory in Serpong, starting from 1984 in co-operation with NIRA Ansaldo of Italy. The laboratory, which is called the Power Reactor Experimental Fuel Element Installation (EFEI) was originally designed as an experimental facility to integrate the acquired domestic R and D results gained so far on the CANDU-type fuel technology and the additional know-how received from NIRA Ansaldo which at that time was engaged, in developing a CANDU-type fuel, called the CIRENE fuel design. In the present days the facility houses the power reactor fuel development activities carried out to build up the national capability on power reactor fuel fabrication technology in anticipation to embark upon the nuclear energy era in the near future. (author)

  4. Fuel assembly for FBR type reactor and reactor core thereof

    International Nuclear Information System (INIS)

    Kobayashi, Kaoru.

    1998-01-01

    The present invention provides a fuel assembly to be loaded to a reactor core of a large sized FBR type reactor, in which a coolant density coefficient can be reduced without causing power peaking in the peripheral region of neutron moderators loaded in the reactor core. Namely, the fuel assembly for the FBR type reactor comprises a plurality of fission product-loaded fuel rods and a plurality of fertile material-loaded fuel rods and one or more rods loading neutron moderators. In this case, the plurality of fertile material-loaded fuel rods are disposed to the peripheral region of the neutron moderator-loaded rods. The plurality of fission product-loaded fuel rods are disposed surrounding the peripheral region of the plurality of fertile material-loaded fuel rods. The neutron moderator comprises zirconium hydride, yttrium hydride and calcium hydride. The fission products are mixed oxide fuels. The fertile material comprises depleted uranium or natural uranium. (I.S.)

  5. 14 CFR 26.33 - Holders of type certificates: Fuel tank flammability.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Holders of type certificates: Fuel tank... Tank Flammability § 26.33 Holders of type certificates: Fuel tank flammability. (a) Applicability. This... part 25 of this chapter. (2) Exception. This paragraph (b) does not apply to— (i) Fuel tanks for which...

  6. Spent fuel management in Canada

    International Nuclear Information System (INIS)

    Khan, A.; Pattantyus, P.

    1999-01-01

    The current status of the Canadian spent fuel storage is presented. This includes wet and dry interim storage. Extension of wet interim storage facilities is nor planned, as dry technologies have found wide acceptance. The Canadian nuclear program is sustained by commercial Ontario Hydro CANDU type reactors, since 1971, representing 13600 MW(e) of installed capacity, able to produce 9200 spent fuel bundles (1800 tU) every year, and Hydro Quebec and New Brunswick CANDU reactors each producing 685 MW(e) and about 100 tU of spent fuel annually. The implementation of various interim (wt and dry) storage technologies resulted in simple, dense and low cost systems. Economical factors determined that the open cycle option be adopted for the CANDU type reactors rather that recycling the spent fuel. Research and development activities for immobilization and final disposal of nuclear waste are being undertaken in the Canadian Nuclear Fuel Waste Management Program

  7. The application of systems engineering principles to the prioritization of sustainable nuclear fuel cycle options

    International Nuclear Information System (INIS)

    Price, Robert R.; Singh, Bhupinder P.; MacKinnon, Robert J.; David Sevougian, S.

    2013-01-01

    We investigate the implementation of the principles of systems engineering in the U.S. Department of Energy’s Fuel Cycle Technologies (FCT) Program to provide a framework for achieving its long-term mission of demonstrating and deploying sustainable nuclear fuel cycle options. A fuel cycle “screening” methodology is introduced that provides a systematic, objective, and traceable method for evaluating and categorizing nuclear fuel cycles according to their performance in meeting sustainability objectives. The goal of the systems engineering approach is to transparently define and justify the research and development (R and D) necessary to deploy sustainable fuel cycle technologies for a given set of national policy objectives. The approach provides a path for more efficient use of limited R and D resources and facilitates dialog among a variety of stakeholder groups interested in U.S. energy policy. Furthermore, the use of systems engineering principles will allow the FCT Program to more rapidly adapt to future policy changes, including any decisions based on recommendations of the Blue Ribbon Commission on America’s Nuclear Future. Specifically, if the relative importance of policy objectives changes, the FCT Program will have a structured process to rapidly determine how this impacts potential fuel cycle performance and the prioritization of needed R and D for associated technologies. - Highlights: ► Systems engineering principles applied in U.S. DOE-NE Fuel Cycle Technology Program. ► Use of decision analysis methods for determining promising nuclear fuel cycles. ► A new screening methodology to help communicate and prioritize U.S. DOE R and D needs. ► Fuel cycles categorized by performance/risk in meeting FCT Program objectives. ► Systems engineering allows DOE-NE to more rapidly adapt to future policy changes

  8. Measurement of the Velocity and Pressure Drop in a Tubular Type Fuel

    International Nuclear Information System (INIS)

    Jonghark Park; Heetaek Chae; Cheol Park; Heonil Kim

    2006-01-01

    We have developed a tubular type fuel assembly design as one of candidates for fuel to be used in the Advanced HANARO Reactor (AHR). The tubular type fuel has several merits over a rod type fuel with respect to the thermal-hydraulic and structural safety; the larger ratio of surface area to volume makes the surface temperature of a fuel element become lower, and curved plate is stronger against longitudinal bending and vibration. In the other side, a disadvantage is expected such that the flow velocity can be distributed unevenly channel by channel because the flow channels are isolated from each other in a tubular type fuel assembly. In addition to the design development, we also investigated the flow characteristics of the tubular fuel experimentally. To examine the flow velocity distribution and pressure drop, we made an experiment facility and a mockup of the tubular fuel assembly. The fuel assembly consists of 6 concentric fuel tubes so that 7 layers are made between fuel tubes. Since each layer is divided into three sections by stiffeners, 21 isolated flow channels are made in total. We employed pitot-tubes to measure the coolant velocity in each channel. The maximum velocity was measured as large as about 28% of the average velocity. It was observed in the innermost channel contrarily to the expectation from the hydraulic diameter. A change in the total flow rate did not affect the flow distribution. Meanwhile, the pressure drop was measured as about 70% of the drop in the rod type fuel assembly in use in HANARO. (authors)

  9. Analyses for licensing of new fuel types at Paks NPP

    International Nuclear Information System (INIS)

    Kereszturi, A.; Bogatyr, S.; Miko, S.; Nemes, I.

    2003-01-01

    In the last years Paks NPP initiated several projects aiming at the introduction of new fuel types and resulting in more economic fuel cycles. The motivations, the reasons, and the economic consequences of the above modifications are detailed. The application of a new fuel type requires the renewal of the relevant chapters of the Safety Analysis Report. The fulfilment of fuel design basis requirements, to be summarised briefly also in the paper, must be investigated during normal and accidental conditions. The characteristics of the different codes, the data transfer between them are detailed. After, the cases of the Normal Operation, Anticipated Operation Occurrence, and the Postulated Accidents, judged as the most relevant ones in case of fuel modifications, are overviewed. In the last part, selected examples of the licensing calculations, performed by the above tools are presented. In conclusion, modifications of the WWER fuel, namely increased enrichment, application of burnable fuel pins, modified geometry make more economic fuel cycles (larger discharge burnup, power up-rate, reduced pressure vessel fluence) are possible. The further step (increased enrichment, burnable poison) of the fuel modernisation at NPP Paks is necessary for more economic fuel cycles and fuel consuming. A sound basis of licensing methodology, safety analysis, and necessary computer codes for the WWER fuel modernisation is available

  10. Fabrication and characterization of MX-type fuels and fuel pins

    International Nuclear Information System (INIS)

    Richter, K.; Bartscher, W.; Benedict, U.; Gueugnon, J.F.; Kutter, H.; Sari, C.; Schmidt, H.E.

    1978-01-01

    This paper summarizes the most important fabrication parameters and characterization of fuel and fuel pins obtained during the investigation of uranium-plutonium carbides, oxicarbides, carbonitrides and nitrides in the past years at the European Institute for Transuranium Elements at Karlsruhe. All preparation methods discussed are based on carbothermic reduction of a mechanical blend of uranium-plutonium oxide and carbon powder. General data for carbothermic reduction processes are discussed (influence of starting material, homogeneity, control of degree of reaction, etc). A survey of different preparation methods investigated is given. Limitations with respect to temperature and atmosphere for both carbothermic reduction processes and sintering conditions for the different compounds are summarized. A special preparation process for mixed carbonitrides with low nitrogen content (U,Pu)sub(1-x)Nsub(x) in the range 0.1 0 C to 1400 0 C by means of a modulated electron beam technique. A scheme is proposed, which allows to predict the thermal properties of MX fuels on the basis of their chemical composition and porosity. Preparation, preirradiation characterization and final controls of fuel test pins for pellet and vibrocompacted type of pins are described and the most important data summarized for all advanced fuels irradiated at Dounreay (DN1) and Rapsodie Fast Reactor (DN2) within the TU irradiation programme

  11. Weapons-grade plutonium dispositioning. Volume 2: Comparison of plutonium disposition options

    International Nuclear Information System (INIS)

    Brownson, D.A.; Hanson, D.J.; Blackman, H.S.

    1993-06-01

    The Secretary of Energy requested the National Academy of Sciences (NAS) Committee on International Security and Arms Control to evaluate disposition options for weapons-grade plutonium. The Idaho National Engineering Laboratory (INEL) offered to assist the NAS in this evaluation by investigating the technical aspects of the disposition options and their capability for achieving plutonium annihilation levels greater than 90%. This report was prepared for the NAS to document the gathered information and results from the requested option evaluations. Evaluations were performed for 12 plutonium disposition options involving five reactor and one accelerator-based systems. Each option was evaluated in four technical areas: (1) fuel status, (2) reactor or accelerator-based system status, (3) waste-processing status, and (4) waste disposal status. Based on these evaluations, each concept was rated on its operational capability and time to deployment. A third rating category of option costs could not be performed because of the unavailability of adequate information from the concept sponsors. The four options achieving the highest rating, in alphabetical order, are the Advanced Light Water Reactor with plutonium-based ternary fuel, the Advanced Liquid Metal Reactor with plutonium-based fuel, the Advanced Liquid Metal Reactor with uranium-plutonium-based fuel, and the Modular High Temperature Gas-Cooled Reactor with plutonium-based fuel. Of these four options, the Advanced Light Water Reactor and the Modular High Temperature Gas-Cooled Reactor do not propose reprocessing of their irradiated fuel. Time constraints and lack of detailed information did not allow for any further ratings among these four options. The INEL recommends these four options be investigated further to determine the optimum reactor design for plutonium disposition

  12. Weapons-grade plutonium dispositioning. Volume 2: Comparison of plutonium disposition options

    Energy Technology Data Exchange (ETDEWEB)

    Brownson, D.A.; Hanson, D.J.; Blackman, H.S. [and others

    1993-06-01

    The Secretary of Energy requested the National Academy of Sciences (NAS) Committee on International Security and Arms Control to evaluate disposition options for weapons-grade plutonium. The Idaho National Engineering Laboratory (INEL) offered to assist the NAS in this evaluation by investigating the technical aspects of the disposition options and their capability for achieving plutonium annihilation levels greater than 90%. This report was prepared for the NAS to document the gathered information and results from the requested option evaluations. Evaluations were performed for 12 plutonium disposition options involving five reactor and one accelerator-based systems. Each option was evaluated in four technical areas: (1) fuel status, (2) reactor or accelerator-based system status, (3) waste-processing status, and (4) waste disposal status. Based on these evaluations, each concept was rated on its operational capability and time to deployment. A third rating category of option costs could not be performed because of the unavailability of adequate information from the concept sponsors. The four options achieving the highest rating, in alphabetical order, are the Advanced Light Water Reactor with plutonium-based ternary fuel, the Advanced Liquid Metal Reactor with plutonium-based fuel, the Advanced Liquid Metal Reactor with uranium-plutonium-based fuel, and the Modular High Temperature Gas-Cooled Reactor with plutonium-based fuel. Of these four options, the Advanced Light Water Reactor and the Modular High Temperature Gas-Cooled Reactor do not propose reprocessing of their irradiated fuel. Time constraints and lack of detailed information did not allow for any further ratings among these four options. The INEL recommends these four options be investigated further to determine the optimum reactor design for plutonium disposition.

  13. The fabrication of nuclear fuel elements in Mexico

    International Nuclear Information System (INIS)

    Guerrero Morillo, H.L.

    1977-01-01

    The situation of the nucleoelectrical generation in Mexico by 1976 is described: two nuclear reactors under construction but no defined program on the type and start-up dates for the next power plants. However the existence of a general plan on nuclear power plants is mentioned, which, according to the last estimates reaches to 10,000 MW installed by 1990. The national intension, definitely expressed in the Law, is to supply domestic nuclear fuel to the power reactors operating in the country, starting with the first reload for the two BWR's at the first national station in Laguna Verde, which will be required at the end of 1981 and of 1982, respectively. Before such circumstances and the relatively short amounts of fuel elements that should be produced for those two unique reactors, Mexico already has to adopt a strategy to follow in respect to fuel elements fabrication. The two main options are analyzed: 1. To delay the local fabrication until a National Nuclear Program may be defined, meanwhile purchasing abroad the necessary reloads and initial cores; and 2. To start as soon as possible the local fuel elements fabrication in order to supply fuel for the first reload of the first unit of Laguna Verde, confronting the economical risks of such posture with the advantages of an immediate action. Both options are analyzed in detail comparing them specially under the economic point of view, standing out immediately the big effect of some factors which are economically imponderable, as experience and independance that would be gained with the second option. Emphasis is made on the advantages and risks of any case. According to the first option and once a National Program is defined, the work would be heavy but of simple strategy. On the contrary, the second option requires the adoption of a more complicated strategy, as either the project of the factory as its initial operation should be made under transient conditions, in view of the expected future expansion still

  14. Development of core technology for research reactors using plate type fuels

    International Nuclear Information System (INIS)

    Ha, Jae Joo; Lee, Doo Jeong; Park, Cheol

    2009-12-01

    Around 250 research reactors are under operation over the world. However, about 2/3 have been operated more than 30 years and demands for replacements are expected in the near future. The number of expected units is around 110, and around 55 units from 40 countries will be expected to be bid in the world market. In 2007, Netherlands started international bidding process to construct a new 80MW RR (named PALLAS) with the target of commercial operation in 2016, which will replace the existing HFR(45MW). KAERI consortium has been participated in that bid. Most of RRs use plate type fuels as a fuel assembly, Be and Graphite as a reflector. On the other hand, in Korea, the KAERI is operating the HANARO, which uses a rod type fuel assembly and heavy water as a reflector. Hence, core technologies for RRs using plate type fuels are in short. Therefore, core technologies should be secured for exporting a RR. In chapter 2, the conceptual design of PALLAS which use plate type fuels are described including core, cooling system and connected systems, layout of general components. Experimental verification tests for the plate type fuel and second shutdown system and the code verification for nuclear design are explained in Chapter 3 and 4, respectively

  15. Spent fuel verification options for final repository safeguards in Finland. A study on verification methods, their feasibility and safety aspects

    International Nuclear Information System (INIS)

    Hautamaeki, J.; Tiitta, A.

    2000-12-01

    The verification possibilities of the spent fuel assemblies from the Olkiluoto and Loviisa NPPs and the fuel rods from the research reactor of VTT are contemplated in this report. The spent fuel assemblies have to be verified at the partial defect level before the final disposal into the geologic repository. The rods from the research reactor may be verified at the gross defect level. Developing a measurement system for partial defect verification is a complicated and time-consuming task. The Passive High Energy Gamma Emission Tomography and the Fork Detector combined with Gamma Spectrometry are the most potential measurement principles to be developed for this purpose. The whole verification process has to be planned to be as slick as possible. An early start in the planning of the verification and developing the measurement devices is important in order to enable a smooth integration of the verification measurements into the conditioning and disposal process. The IAEA and Euratom have not yet concluded the safeguards criteria for the final disposal. E.g. criteria connected to the selection of the best place to perform the verification. Measurements have not yet been concluded. Options for the verification places have been considered in this report. One option for a verification measurement place is the intermediate storage. The other option is the encapsulation plant. Crucial viewpoints are such as which one offers the best practical possibilities to perform the measurements effectively and which would be the better place in the safeguards point of view. Verification measurements may be needed both in the intermediate storages and in the encapsulation plant. In this report also the integrity of the fuel assemblies after wet intermediate storage period is assessed, because the assemblies have to stand the handling operations of the verification measurements. (orig.)

  16. Fuel cells - An option for the future

    International Nuclear Information System (INIS)

    Vielstich, W.

    1984-01-01

    The direct conversion of the energy of a fuel into electrical energy in fuel cells avoids the losses inseparable from the indirect conversion via heat and mechanical energy. The idea to use this concept of energy conversion for the application in power stations would offer the following advantages: a slightly better total energy efficiency; no environmental problems; and flexibility in size according to the construction in the battery stacks. The use of acid and alkaline H 2 /O 2 fuel cells in the U.S. space program has demonstrated the high energy per weight data possible with a fuel cell device including tankage. Therefore, the application of fuel cells in electric vehicles seems to be suitable at least from the technical point of view. Kordesch has converted an Austin A-40 to electric propulsion by replacing the gasoline engine by an 8-kW truck motor powered by a 6-kW alkaline hydrogen-air fuel cell/4-kW lead-acid hybrid system. Two severe handicaps that occurred were the use of gas cylinders for the storage of the hydrogen and the voluminous CO 2 scrubber to prevent carbonization of the alkaline electrolyte. The direct conversion of a liquid fuel like methanol would be advantageous

  17. Extended storage of spent fuel

    International Nuclear Information System (INIS)

    1992-10-01

    This document is the final report on the IAEA Co-ordinated Research Programme on the Behaviour of Spent Fuel and Storage Facility Components during Long Term Storage (BEFAST-II, 1986-1991). It contains the results on wet and dry spent fuel storage technologies obtained from 16 organizations representing 13 countries who participated in the co-ordinated research programme. Considerable quantities of spent fuel continue to arise and accumulate. Many countries are investigating the option of extended spent fuel storage prior to reprocessing or fuel disposal. Wet storage continues to predominate as an established technology with the construction of additional away-from-reactor storage pools. However, dry storage is increasingly used with most participants considering dry storage concepts for the longer term. Depending on the cladding type options of dry storage in air or inert gas are proposed. Dry storage is becoming widely used as a supplement to wet storage for zirconium alloy clad oxide fuels. Storage periods as long as under wet conditions appear to be feasible. Dry storage will also continue to be used for Al clad and Magnox type fuel. Enhancement of wet storage capacity will remain an important activity. Rod consolidation to increase wet storage capacity will continue in the UK and is being evaluated for LWR fuel in the USA, and may start in some other countries. High density storage racks have been successfully introduced in many existing pools and are planned for future facilities. For extremely long wet storage (≥50 years), there is a need to continue work on fuel integrity investigations and LWR fuel performance modelling. it might be that pool component performance in some cases could be more limiting than the FA storage performance. It is desirable to make concerted efforts in the field of corrosion monitoring and prediction of fuel cladding and poll component behaviour in order to maintain good experience of wet storage. Refs, figs and tabs

  18. Fuel assemblies for BWR type reactors

    International Nuclear Information System (INIS)

    Ishizuka, Takao.

    1981-01-01

    Purpose: To enable effective failed fuel detection by the provision of water rod formed with a connecting section connected to a warmed water feed pipe of a sipping device at the lower portion and with a warmed water jetting port in the lower portion in a fuel assembly of a BWR type reactor to thereby carry out rapid sipping. Constitution: Fuel rods and water rods are contained in the channel box of a fuel assembly, and the water rod is provided at its upper portion with a connecting section connected to the warmed water feed pipe of the sipping device and formed at its lower portion with a warmed water jetting port for jetting warmed water fed from the warmed water feed pipe. Upon detection of failed fuels, the reactor operation is shut down and the reactor core is immersed in water. The cover for the reactor container is removed and the cap of the sipping device is inserted to connect the warmed water feed pipe to the connecting section of the water rod. Then, warmed water is fed to the water rod and jetted out from the warmed water jetting port to cause convection and unify the water of the channel box in a short time. Thereafter, specimen is sampled and analyzed for the detection of failed fuels. (Moriyama, K.)

  19. Advanced Reactor Technology Options for Utilization and Transmutation of Actinides in Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    2009-09-01

    Renewed interest in the potential of nuclear energy to contribute to a sustainable worldwide energy mix is strengthening the IAEA's statutory role in fostering the peaceful uses of nuclear energy, in particular the need for effective exchanges of information and collaborative research and technology development among Member States on advanced nuclear power technologies (Articles III-A.1 and III-A.3). The major challenges facing the long term development of nuclear energy as a part of the world's energy mix are improvement of the economic competitiveness, meeting increasingly stringent safety requirements, adhering to the criteria of sustainable development, and public acceptability. The concern linked to the long life of many of the radioisotopes generated from fission has led to increased R and D efforts to develop a technology aimed at reducing the amount of long lived radioactive waste through transmutation in fission reactors or accelerator driven hybrids. In recent years, in various countries and at an international level, more and more studies have been carried out on advanced and innovative waste management strategies (i.e. actinide separation and elimination). Within the framework of the Project on Technology Advances in Fast Reactors and Accelerator Driven Systems (http://www.iaea.org/inisnkm/nkm/aws/fnss/index.html), the IAEA initiated a number of activities on utilization of plutonium and transmutation of long lived radioactive waste, accelerator driven systems, thorium fuel options, innovative nuclear reactors and fuel cycles, non-conventional nuclear energy systems, and fusion/fission hybrids. These activities are implemented under the guidance and with the support of the IAEA Nuclear Energy Department's Technical Working Group on Fast Reactors (TWG-FR). This publication compiles the analyses and findings of the Coordinated Research Project (CRP) on Studies of Advanced Reactor Technology Options for Effective Incineration of Radioactive Waste (2002

  20. Design characteristics of pantograph type in vessel fuel handling system in SFR

    International Nuclear Information System (INIS)

    Kim, S. H.; Koo, G. H.

    2012-01-01

    The pantograph type in vessel fuel handling system in a sodium cooled fast reactor (SFR), which requires installation space for the slot in the upper internal structure attached under the rotating plug, is composed of an in vessel transfer machine (IVTM), a single rotating plug, in vessel storage, and a fuel transfer port (FTP). The pantograph type IVTM can exchange fuel assemblies through a slot, the design requirement of which should be essentially considered in the design of the in vessel fuel handling system. In addition, the spent fuel assemblies temporarily stored in the in vessel storage of the reactor vessel are removed to the outside of the reactor vessel through the FTP. The fuel transfer basket is then provided in the FTP, and a fuel transfer is performed by using it. In this study, the design characteristics for a pantograph type in vessel fuel handling system are reviewed, and the preconceptual designs are studied

  1. Design characteristics of pantograph type in vessel fuel handling system in SFR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. H.; Koo, G. H. [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    The pantograph type in vessel fuel handling system in a sodium cooled fast reactor (SFR), which requires installation space for the slot in the upper internal structure attached under the rotating plug, is composed of an in vessel transfer machine (IVTM), a single rotating plug, in vessel storage, and a fuel transfer port (FTP). The pantograph type IVTM can exchange fuel assemblies through a slot, the design requirement of which should be essentially considered in the design of the in vessel fuel handling system. In addition, the spent fuel assemblies temporarily stored in the in vessel storage of the reactor vessel are removed to the outside of the reactor vessel through the FTP. The fuel transfer basket is then provided in the FTP, and a fuel transfer is performed by using it. In this study, the design characteristics for a pantograph type in vessel fuel handling system are reviewed, and the preconceptual designs are studied.

  2. Alternative Fuels Data Center: Ethanol Fueling Stations

    Science.gov (United States)

    ... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure fueling stations by location or along a route. Infrastructure Development Learn about ethanol fueling infrastructure; codes, standards, and safety; and ethanol equipment options. Maps & Data E85 Fueling Station

  3. Spent-fuel storage: a private sector option

    International Nuclear Information System (INIS)

    Thomas, J.A.; Ross, S.R.

    1983-01-01

    The investigation was performed to delineate the legal and financial considerations for establishing private sector support for the planning and development of an independent spent-fuel storage facility (ISFSF). The preferred institutional structure was found to be one in which a not-for-profit corporation contracts with a limited partnership to handle the spent fuel. The limited partnership acquires the necessary land and constructs the ISFSF facility and then leases the facility to the not-for-profit corporation, which acquires spent-fuel rods from the utilities. The DOE must agree to purchase the spent-fuel rods at the expiration of term and warrant continued operation of the facility if policy changes at the federal level force the removal of the rods prior to completion of the contracted storage cycle. The DOE planning base estimate of spent-fuel storage requirements indicates a market potential adequate to support 10,000 MTU or more of spent-fuel storage prior to the time a government repository is available to accept spent fuel around the turn of the century. The estimated construction cost of a 5000-MTU water basin facility is $552 million. The total capital requirements to finance such a facility are estimated to be $695 million, based on an assumed capital structure of 70 percent debt and 30 percent equity. The estimated total levelized cost of storage, including operating costs, for the assumed 17-year life of the facility is $223 per kilogram of uranium. This is equivalent to a slightly less than one mill per kilowatt-hour increase in nuclear fuel costs at the nuclear power station that was the source of the spent fuel. In conclusion, within the context of the new Nuclear Waste Policy Act of 1982, the study points to both the need for and the advantages of private sector support for one or more ISFSFs and establishes a workable mechanism for the recovery of the costs of owning and operating such facilities. 3 figures, 4 tables

  4. The Northeast heating fuel market: Assessment and options

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-07-01

    In response to a Presidential request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of tie energy markets in the Northeast. In addition, this report explores the potential for nonresidential users to move away from distillate fuel oil and how this might impact future prices, and discusses conversion of distillate fuel oil users to other fuels over the next 5 years. Because the President's and Secretary's request focused on converting factories and other large-volume users of mostly high-sulfur distillate fuel oil to other fuels, transportation sector use of low-sulfur distillate fuel oil is not examined here.

  5. Stressed and strained state for cermetic-rod-type fuel element

    International Nuclear Information System (INIS)

    Kulikov, I.S.

    1987-01-01

    Calculation technique for designing the stress-strained state of a cermetic rod-type fuel element has been proposed. The technique is based on the time-dependent step-by-step method and the solution of the deformation equilibrium equation for continuous and thick-wall long cylinders at every temporal step by the finite difference method. Additional strains, caused by thermal expansion and radiation swelling, have been taken into account. The transion from the non-contact model to the stiff-contact model has been provided in the case of cladding-fuel gap dissappearing in one or a number of cross-sections along the fuel element height. The method is supplemented by the formula for fuel cans stability estimation in the case of high coolant external pressure. The example of estimation of the cermetic-rod-type fuel elements are considered as an example

  6. Fuel performance of rod-type research reactor fuel using a centrifugally atomized U-Mo powder

    International Nuclear Information System (INIS)

    Ryu, Ho Jin; Park, Jong Man; Lee, Yoon Sang; Kim, Chang Kyu

    2009-01-01

    A low enriched uranium nuclear fuel for research reactors has been developed in order to replace a highly enriched uranium fuel according to the non-proliferation policy under the reduced enrichment for research and test reactors (RERTR) program. In KAERI, a rod-type U 3 Si dispersion fuel has been developed for a localization of the HANARO fuel and a U 3 Si/Al dispersion fuel of 3.15 gU/cc has been used at HANARO as a driver fuel since 2005. Although uranium silicide dispersion fuels such as U 3 Si 2 /Al and U 3 Si/Al are being used widely, high uranium density dispersion fuels (8-9 g/cm 3 ) are required for some high performance research reactors. U-Mo alloys have been considered as one of the most promising uranium alloys for a dispersion fuel due to their good irradiation performance. An international qualification program on U-Mo fuel to replace a uranium silicide dispersion fuel with a U-Mo dispersion fuel has been carried out

  7. The prospects of use of alternative types of fuel in road transport ...

    African Journals Online (AJOL)

    The article is devoted to the analysis of possibilities of using alternative types of fuel in transport. Gas engine fuels are considered as potential energy carriers for diesel engines. Since the constructions of vehicles, using gas and traditional types of fuel, have some differences, the most important are the issues of ensuring ...

  8. Multi-fuel reformers for fuel cells used in transportation. Phase 1: Multi-fuel reformers

    Science.gov (United States)

    1994-05-01

    DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.

  9. In-use vs. type-approval fuel consumption of current passenger cars in Europe

    International Nuclear Information System (INIS)

    Ntziachristos, L.; Mellios, G.; Tsokolis, D.; Keller, M.; Hausberger, S.; Ligterink, N.E.; Dilara, P.

    2014-01-01

    In-use fuel consumption data of 924 passenger cars (611 petrol, 313 diesel) were collected from various European sources and were evaluated in comparison to their corresponding type-approval values. The analysis indicated that the average in-use fuel consumption was higher than the type-approval one by 11% for petrol cars and 16% for diesel cars. Comparison of this dataset with the Travelcard database in the Netherlands showed that the deviation increased for late model years and in particular for cars with low type-approval values. The deviation was higher than 60% for vehicles registered in 2012 within the 90–100 gCO 2 /km bin. Unrealistic vehicle resistances used in type-approval were identified as one of the prime reasons of the difference. A simplified linear model developed in the study may be used to predict in-use fuel consumption based on data publicly available. The model utilizes the fuel consumption measured in type-approval, the mass, and the engine capacity to provide in-use fuel consumption. This may be either used to correct fuel consumption factors currently utilized by emission models (e.g. COPERT, HBEFA, VERSIT+, and others) or could be used independently to make projections on how fuel consumption may develop on the basis of changing future passenger cars characteristics. - Highlights: • In-use fuel consumption of petrol and diesel passenger cars is 11% and 16% higher than type-approval, respectively. • The relative difference between in-use and type-approval increases for late model and vehicles with low consumption. • Unrealistically low vehicle resistances are identified as a prime reason of low type-approval fuel consumption. • A model developed predicts in-use consumption on the basis of type-approval consumption, vehicle mass, and engine capacity

  10. Control in fabrication of PWR and BWR type reactor fuel elements

    International Nuclear Information System (INIS)

    Gorskij, V.V.

    1981-01-01

    Both destructive and non-destructive testing methods now in use in fabrication of BWR and PWR type reactor fuel elements at foreign plants are reviewed. Technological procedures applied in fabrication of fuel elements and fuel assemblies are described. Major attention is paid to radiographic, ultrasonic, metallographic, visual and autoclavic testings. A correspondence of the methods applied to the ASTM standards is discussed. The most part of the countries are concluded the apply similar testing methods enabling one to reliably evaluate the quality of primary materials and fabricated fuel elements and thus meeting the demands to contemporary PWR and BWR type reactor fuel elements. Practically all fuel element and pipe fabrication plants in Western Europe, Asia and America use the ASTM standards as the basis for the quality contr [ru

  11. Health and climate benefits of cookstove replacement options

    International Nuclear Information System (INIS)

    Grieshop, Andrew P.; Marshall, Julian D.; Kandlikar, Milind

    2011-01-01

    The health and climate impacts of available household cooking options in developing countries vary sharply. Here, we analyze and compare these impacts (health; climate) and the potential co-benefits from the use of fuel and stove combinations. Our results indicate that health and climate impacts span 2 orders of magnitude among the technologies considered. Indoor air pollution is heavily impacted by combustion performance and ventilation; climate impacts are influenced by combustion performance and fuel properties including biomass renewability. Emission components not included in current carbon trading schemes, such as black carbon particles and carbon monoxide, can contribute a large proportion of the total climate impact. Multiple ‘improved’ stove options analyzed in this paper yield roughly equivalent climate benefits but have different impacts on indoor air pollution. Improvements to biomass stoves can improve indoor air quality, which nonetheless remains significantly higher than for stoves that use liquid or gaseous hydrocarbons. LPG- and kerosene-fueled stoves have unrivaled air quality benefits and their climate impacts are also lower than all but the cleanest stoves using renewable biomass. - Research highlights: ► Cookstoves in developing countries have impacts on users' health and the climate. ► A framework to estimate these impacts from different stove types was developed.► Much of stoves' climate impacts are from emissions excluded from climate treaties.► Improved stoves rank differently in their climate and health impacts.► Stoves using modern fuels like LPG provide unrivaled exposure and climate benefits.

  12. A CAREM type fuel element dynamic analysis

    International Nuclear Information System (INIS)

    Magoia, J.E.

    1990-01-01

    A first analysis on the dynamic behaviour of a fuel element designed for the CAREM nuclear reactor (Central Argentina de Elementos Modulares) was performed. The model used to represent this dynamic behaviour was satisfactorily evaluated. Using primary estimations for some of its numerical parameters, a first approximation to its natural vibrational modes was obtained. Results obtained from fuel elements frequently used in nuclear power plants of the PWR (Pressurized Water Reactors) type, are compared with values resulting from similar analysis. (Author) [es

  13. An integrated appraisal of energy recovery options in the United Kingdom using solid recovered fuel derived from municipal solid waste.

    Science.gov (United States)

    Garg, A; Smith, R; Hill, D; Longhurst, P J; Pollard, S J T; Simms, N J

    2009-08-01

    This paper reports an integrated appraisal of options for utilising solid recovered fuels (SRF) (derived from municipal solid waste, MSW) in energy intensive industries within the United Kingdom (UK). Four potential co-combustion scenarios have been identified following discussions with industry stakeholders. These scenarios have been evaluated using (a) an existing energy and mass flow framework model, (b) a semi-quantitative risk analysis, (c) an environmental assessment and (d) a financial assessment. A summary of results from these evaluations for the four different scenarios is presented. For the given ranges of assumptions; SRF co-combustion with coal in cement kilns was found to be the optimal scenario followed by co-combustion of SRF in coal-fired power plants. The biogenic fraction in SRF (ca. 70%) reduces greenhouse gas (GHG) emissions significantly ( approximately 2500 g CO(2) eqvt./kg DS SRF in co-fired cement kilns and approximately 1500 g CO(2) eqvt./kg DS SRF in co-fired power plants). Potential reductions in electricity or heat production occurred through using a lower calorific value (CV) fuel. This could be compensated for by savings in fuel costs (from SRF having a gate fee) and grants aimed at reducing GHG emission to encourage the use of fuels with high biomass fractions. Total revenues generated from coal-fired power plants appear to be the highest ( 95 pounds/t SRF) from the four scenarios. However overall, cement kilns appear to be the best option due to the low technological risks, environmental emissions and fuel cost. Additionally, cement kiln operators have good experience of handling waste derived fuels. The scenarios involving co-combustion of SRF with MSW and biomass were less favourable due to higher environmental risks and technical issues.

  14. An integrated appraisal of energy recovery options in the United Kingdom using solid recovered fuel derived from municipal solid waste

    International Nuclear Information System (INIS)

    Garg, A.; Smith, R.; Hill, D.; Longhurst, P.J.; Pollard, S.J.T.; Simms, N.J.

    2009-01-01

    This paper reports an integrated appraisal of options for utilising solid recovered fuels (SRF) (derived from municipal solid waste, MSW) in energy intensive industries within the United Kingdom (UK). Four potential co-combustion scenarios have been identified following discussions with industry stakeholders. These scenarios have been evaluated using (a) an existing energy and mass flow framework model, (b) a semi-quantitative risk analysis, (c) an environmental assessment and (d) a financial assessment. A summary of results from these evaluations for the four different scenarios is presented. For the given ranges of assumptions; SRF co-combustion with coal in cement kilns was found to be the optimal scenario followed by co-combustion of SRF in coal-fired power plants. The biogenic fraction in SRF (ca. 70%) reduces greenhouse gas (GHG) emissions significantly (∼2500 g CO 2 eqvt./kg DS SRF in co-fired cement kilns and ∼1500 g CO 2 eqvt./kg DS SRF in co-fired power plants). Potential reductions in electricity or heat production occurred through using a lower calorific value (CV) fuel. This could be compensated for by savings in fuel costs (from SRF having a gate fee) and grants aimed at reducing GHG emission to encourage the use of fuels with high biomass fractions. Total revenues generated from coal-fired power plants appear to be the highest ( Pounds 95/t SRF) from the four scenarios. However overall, cement kilns appear to be the best option due to the low technological risks, environmental emissions and fuel cost. Additionally, cement kiln operators have good experience of handling waste derived fuels. The scenarios involving co-combustion of SRF with MSW and biomass were less favourable due to higher environmental risks and technical issues.

  15. Analysis on one type of swing option in the energy market

    International Nuclear Information System (INIS)

    Mistry, Hetal A.

    2005-01-01

    In the Nordic electricity market most of the trading takes place in derivates and options. To describe these products theoretically one needs to have knowledge from stochastic analysis. This thesis will derive a price model for one type of swing option in energy market. The main aim of writing this thesis is to introduce coal power plant and how to approach the problem if such power plant is built in Norway. This thesis uses the approach where I start out with a model for the spot price of electricity and coal, and then derive theoretical option prices. I use a Schwartz process for model and Ornstein Uhlenbeck processes to model the spot prices for electricity and coal. This model also incorporates mean-reversion, which is an important aspect of energy prices. Historical data for the spot prices is used to estimate my variables in the Schwartz model. The main objectives of this thesis were to find the price for a tolling contract in energy market and production volume that is producers control function. The first chapters gives an over view about the agreement and the formula used to derive the price. The second chapter provided me with the material I needed to derive these price and production volume such as dynamics for the spot prices for electricity and coal and their solution. Third chapter gives a statistical look on these stochastic processes. In the last chapter I tested the price model for stochastic control problem and found that the swing option can be bound in two ways: 1. Swing option limited as Margrabes solution. 2. Swing option limited as spread option. The use of the model is discussed. (Author)

  16. Electromagnetic Acoustic Test of the Artificial Defects for a Plate-type Nuclear Fuel

    International Nuclear Information System (INIS)

    Jung, Hyun Kyu; Kim, Dong Min; Lee, Yoon Sang; Cheong, Yong Moo

    2011-01-01

    Most research and test reactors use the nuclear fuel plates which are consisted of a fuel meat in aluminum alloy. Last year, KAERI signed a deal with the Jordan Atomic Energy Commission to build the research reactor and have to supply the plate-type nuclear fuels. For the demands of world market, KAERI started the research and development of the plate-type fuel elements and endeavored to achieve a localization of the plate-type fuel fabrication. For the inspection of plate-type fuel elements to be used in Research Reactors, an immersion pulse-echo ultrasonic technique was applied. This inspection was done under immersion condition, so a nuclear fuel was immersed to be prone to corrosion and needed to have time and cost due to an additional process. The sample that will be examined is a non-ferromagnetic material such as aluminum with a good acousto-elastic property, which requires an effective inspection of a bond quality for a nuclear fuel under a manufacturing environment. The purpose of this study is to investigate the feasibility of an Electromagnetic Acoustic Transducer (EMAT) technology for an automated inspection of a nuclear fuel without water

  17. An Improved Quantum-Behaved Particle Swarm Optimization Method for Economic Dispatch Problems with Multiple Fuel Options and Valve-Points Effects

    Directory of Open Access Journals (Sweden)

    Hong-Yun Zhang

    2012-09-01

    Full Text Available Quantum-behaved particle swarm optimization (QPSO is an efficient and powerful population-based optimization technique, which is inspired by the conventional particle swarm optimization (PSO and quantum mechanics theories. In this paper, an improved QPSO named SQPSO is proposed, which combines QPSO with a selective probability operator to solve the economic dispatch (ED problems with valve-point effects and multiple fuel options. To show the performance of the proposed SQPSO, it is tested on five standard benchmark functions and two ED benchmark problems, including a 40-unit ED problem with valve-point effects and a 10-unit ED problem with multiple fuel options. The results are compared with differential evolution (DE, particle swarm optimization (PSO and basic QPSO, as well as a number of other methods reported in the literature in terms of solution quality, convergence speed and robustness. The simulation results confirm that the proposed SQPSO is effective and reliable for both function optimization and ED problems.

  18. An Integrated Fuel Depletion Calculator for Fuel Cycle Options Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Erich [Univ. of Texas, Austin, TX (United States); Scopatz, Anthony [Univ. of Wisconsin, Madison, WI (United States)

    2016-04-25

    Bright-lite is a reactor modeling software developed at the University of Texas Austin to expand upon the work done with the Bright [1] reactor modeling software. Originally, bright-lite was designed to function as a standalone reactor modeling software. However, this aim was refocused t couple bright-lite with the Cyclus fuel cycle simulator [2] to make it a module for the fuel cycle simulator.

  19. Fast reactor fuel pin behavior analyses in a LOF type transient event

    International Nuclear Information System (INIS)

    Mizuno, Tomoyasu; Koyama, Shin-ichi; Kaito, Takeji; Uwaba, Tomoyuki; Tanaka, Kenya

    2013-06-01

    In order to evaluate integrity limiting parameters of fuel pins during fast reactor core transient events, such as fuel center line temperature and cladding maximum temperature, fuel pin behavior calculations were made using the fast reactor fuel pin performance code CEDAR. The temperature histories of fuel pins during a loss of flow (LOF) type transient events was calculated based on Ross and Stoute type gap conductance model and constant gap conductance model, which is used in a core transient calculation code like HIPRAC. The calculated maximum temperatures of cladding and adjacent coolant channel were lower in the case with Ross and Stoute type model than in the case of constant gap conductance model due to the dynamic change of gap conductance of former case. It is indicated that core transient calculations with constant gap conductance give conservative cladding and coolant temperatures than that with Ross and Stoute type gap conductance model which is thought to be realistic. (author)

  20. Proceedings of fuel strategies for conventional and unconventional fuels

    International Nuclear Information System (INIS)

    Mahr, D.; Nechvatal, T.T.

    1991-01-01

    Fuel selection is a major decision for a power engineer. It is the single largest item in the power plant operating budget and has a major effect on power plant economics. Fuel determines plant design requirements and the types of systems that are provided. As a result, it affects capital budgets and financing requirements. In the last few decades, we have seen different fuels of choice at any one time. Coal has always been a staple for power generation. During the 1950s and 1960s, oil became an attractive alternative. Nuclear fuel became a popular choice due to its very low energy cost. After Three-Mile-Island, however, capital budgets went through the roof, resulting in severe financial constraints. Natural gas, which was rationed in some regions a few years ago, is now a popular choice. Some sources predict that its cost will increase faster than other fuels. To mitigate the relative variations in energy cost for different fuels, a balanced energy plan is required. A balanced power generation plan with fuel options provides the flexibility to react to unpredictable changes. The papers in this book are a continuation of the Fuel Strategies theme. Three technical topics are covered: Converting to Orimulsion, A Replacement Fuel for Heavy Oil; Innovations in Handling Conventional and Unconventional Fuels for Power Plants; and Pacific Rim Experience With Coal

  1. Failed fuel rod detector

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Katsuya; Matsuda, Yasuhiko

    1984-05-02

    The purpose of the project is to enable failed fuel rod detection simply with no requirement for dismantling the fuel assembly. A gamma-ray detection section is arranged so as to attend on the optional fuel rods in the fuel assembly. The fuel assembly is adapted such that a gamma-ray shielding plate is detachably inserted into optional gaps of the fuel rods or, alternatively, the fuel assembly can detachably be inserted to the gamma-ray shielding plate. In this way, amount of gaseous fission products accumulated in all of the plenum portions in the fuel rods as the object of the measurement can be determined without dismantling the fuel assembly. Accordingly, by comparing the amounts of the gaseous fission products, the failed fuel rod can be detected.

  2. A database system for enhancing fuel records management capabilities

    International Nuclear Information System (INIS)

    Rieke, Phil; Razvi, Junaid

    1994-01-01

    The need to modernize the system of managing a large variety of fuel related data at the TRIGA Reactors Facility at General Atomics, as well as the need to improve NRC nuclear material reporting requirements, prompted the development of a database to cover all aspects of fuel records management. The TRIGA Fuel Database replaces (a) an index card system used for recording fuel movements, (b) hand calculations for uranium burnup, and (c) a somewhat aged and cumbersome system of recording fuel inspection results. It was developed using Microsoft Access, a relational database system for Windows. Instead of relying on various sources for element information, users may now review individual element statistics, record inspection results, calculate element burnup and more, all from within a single application. Taking full advantage of the ease-of-use features designed in to Windows and Access, the user can enter and extract information easily through a number of customized on screen forms, with a wide variety of reporting options available. All forms are accessed through a main 'Options' screen, with the options broken down by categories, including 'Elements', 'Special Elements/Devices', 'Control Rods' and 'Areas'. Relational integrity and data validation rules are enforced to assist in ensuring accurate and meaningful data is entered. Among other items, the database lets the user define: element types (such as FLIP or standard) and subtypes (such as fuel follower, instrumented, etc.), various inspection codes for standardizing inspection results, areas within the facility where elements are located, and the power factors associated with element positions within a reactor. Using fuel moves, power history, power factors and element types, the database tracks uranium burnup and plutonium buildup on a quarterly basis. The Fuel Database was designed with end-users in mind and does not force an operations oriented user to learn any programming or relational database theory in

  3. Fuel assemblies for use in BWR type reactors

    International Nuclear Information System (INIS)

    Hirukawa, Koji.

    1987-01-01

    Purpose: To moderate the peak configuration of the burnup degree change curve for the infinite multiplication factor by applying an improvement to the arrangement of fuel rods. Constitution: In a fuel assembly for a BWR type reactor comprising a plurality of fuel rods and water rods arranged in a square lattice, fuel rods containing burnable poisons are arranged at four corners at the second and the third layers from the outside of the square lattice arrangement. Among them, the Cd poison effect in the burnable poison incorporated fuel rods disposed at the second layer is somewhat greater at the initial burning stage and then rapidly decreased along with burning. While on the other hand, the poison effect of the burnable poison-incorporated fuel rods at the third layer is smaller than that at the second layer at the initial burning stage and the reduction in the poison effect due to burning is somewhat more moderate. Since these fuel rods are in adjacent with each other, they interfere to each other and also provide an effect of moderating the burning of the burnable poisons. (Takahashi, M.)

  4. A durable and dependable solution for RTR spent fuel management

    International Nuclear Information System (INIS)

    Thomasson, J.

    1999-01-01

    RTR Operators need efficient and cost-effective services for the management of their spent fuel and this, for the full lifetime of their facility. Thanks to the integration of transport, reprocessing and conditioning services, COGEMA provides a cogent solution, with the utmost respect for safety and preservation of the environment, for the short, medium and long terms. As demonstrated in this paper, this option offers the only durable and dependable solution for the RTR spent fuel management, leading to a conditioning for the final residues directly suitable for final disposal. The main advantage of such an option is obviously the significant reduction in terms of volume and radiotoxicity of the ultimate waste when compared to direct disposal of spent fuels. The efficiency of such a solution has been proven, some RTR operators having already trusted COGEMA for the management of their aluminide fuel. With its commitment in R and D activities for the development of a high performance and reprocessable LEU fuels, COGEMA will be able to propose a solution for all types of fuels, HEU and LEU

  5. Dry spent fuel storage experience at overseas nuclear stations focus USA

    International Nuclear Information System (INIS)

    Bradley, T. L.; Kumar, S.; Marcelli, D. G.

    1997-01-01

    This paper provides a summary of US dry spent fuel storage experience, including application of this experience outside the United States. Background information on the US nuclear and spent fuel storage industry is provided as a basis for discussing the various types of options and systems available. An overview of technology options is presented, including systems being used and/or considered by the US government and private sector, as well as a discussion of overall system design, licensing and operation. Factors involved in selecting the best available technology option for a specific site or group of sites are presented, along with a typical timeline for project implementation. Cross-geographical use of technologies under different regulatory and technological regimes is also discussed. The paper concludes that dry storage is safe and reliable based on a successful ten year period. The information presented may be considered for use in the development of dry spent fuel storage in Korea and other countries. (author)

  6. Economic potential of fuel recycling options: A lifecycle cost analysis of future nuclear system transition in China

    International Nuclear Information System (INIS)

    Gao, Ruxing; Choi, Sungyeol; Il Ko, Won; Kim, Sungki

    2017-01-01

    In today's profit-driven market, how best to pursue advanced nuclear fuel cycle technologies while maintaining the cost competitiveness of nuclear electricity is of crucial importance to determine the implementation of spent fuel reprocessing and recycling in China. In this study, a comprehensive techno-economic analysis is undertaken to evaluate the economic feasibility of ongoing national projects and the technical compatibility with China's future fuel cycle transition. We investigated the dynamic impacts of technical and economic uncertainties in the lifecycle of a nuclear system. The electricity generation costs associated with four potential fuel cycle transition scenarios were simulated by probabilistic and deterministic approaches and then compared in detail. The results showed that the total cost of a once-through system is lowest compared those of other advanced systems involving reprocessing and recycling. However, thanks to the consequential uncertainties caused by the further progress toward technology maturity, the economic potential of fuel recycling options was proven through a probabilistic uncertainty analysis. Furthermore, it is recommended that a compulsory executive of closed fuel cycle policy would pose some investment risk in the near term, though the execution of a series of R&D initiatives with a flexible roadmap would be valuable in the long run. - Highlights: • Real-time economic performance of the four scenarios of China's nuclear fuel cycle system transition until 2100. • Systematic assessments of techno-economic feasibility for ongoing national reprocessing projects. • Investigation the cost impact on nuclear electricity generation caused by uncertainties through probabilistic analysis. • Recommendation for sustainable implementation of fuel cycle R&D initiative ingrate with flexible roadmap in the long run.

  7. Dynamic Simulations of Advanced Fuel Cycles

    International Nuclear Information System (INIS)

    Piet, Steven J.; Dixon, Brent W.; Jacobson, Jacob J.; Matthern, Gretchen E.; Shropshire, David E.

    2011-01-01

    Years of performing dynamic simulations of advanced nuclear fuel cycle options provide insights into how they could work and how one might transition from the current once-through fuel cycle. This paper summarizes those insights from the context of the 2005 objectives and goals of the U.S. Advanced Fuel Cycle Initiative (AFCI). Our intent is not to compare options, assess options versus those objectives and goals, nor recommend changes to those objectives and goals. Rather, we organize what we have learned from dynamic simulations in the context of the AFCI objectives for waste management, proliferation resistance, uranium utilization, and economics. Thus, we do not merely describe 'lessons learned' from dynamic simulations but attempt to answer the 'so what' question by using this context. The analyses have been performed using the Verifiable Fuel Cycle Simulation of Nuclear Fuel Cycle Dynamics (VISION). We observe that the 2005 objectives and goals do not address many of the inherently dynamic discriminators among advanced fuel cycle options and transitions thereof.

  8. Effect of engine parameters and gaseous fuel type on the cyclic variability of dual fuel engines

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed Y.E. Selim [United Arab Emirates University, Al-Ain (United Arab Emirates). Mechanical Engineering Department, Faculty of Engineering

    2005-05-01

    This paper presents an analysis of the cycle-to-cycle combustion variation as reflected in the combustion pressure data of a single cylinder, naturally aspirated, four stroke, Ricardo E6 engine converted to run as dual fuel engine on diesel and gaseous fuel of LPG or methane. A measuring set-up consisting of a piezo-electric pressure transducer with charge amplifier and fast data acquisition card installed on an IBM microcomputer was used to gather the data of up to 1200 consecutive combustion cycles of the cylinder under various combination of engine operating and design parameters. These parameters included type of gaseous fuel, engine load, compression ratio, pilot fuel injection timing, pilot fuel mass, and engine speed. The data for each operating conditions were analyzed for the maximum pressure, the maximum rate of pressure rise representing the combustion noise, and indicated mean effective pressure. The cycle-to-cycle variation is expressed as the mean value, standard deviation, and coefficient of variation of these three parameters. It was found that the type of gaseous fuel and engine operating and design parameters affected the combustion noise and its cyclic variation and these effects have been presented. 21 refs., 6 figs., 1 tab.

  9. State-of-the-art and main options to improve fuel-energy complex of ferrous metallurgy

    Energy Technology Data Exchange (ETDEWEB)

    Rozenblit, G I; Pashkov, V D; Romanov, G M

    1981-01-01

    In 1980, the State Institute for the Design and Planning Metallury (Gripromez), elaborated ''The main options of Fuel and energy resources conservation (FERG) in ferrous metallurgy of the USSR program of works for the period 1981-1985 and up to 1990''. The Gipromez technical committee recommended: 1) elaborating feasibility studies and reports, developing branch schemes and starting complexes to separate out FERC measures; 2) inclusion of the FERC measures at the starting complexes as the first stages of main projects construction; 3) that the Ministy of Ferrous Metallurgy of the USSR, general designers and enterprises reconsider the starting complexes of the projects constructed during the present five-year period and incorporate in them the urgent FERC actions on heat-utilizing facilities. Changing the steel smelting process structure through more extensive use of the converter process and installation of continuous blank casting allows achievement of considerable fuel conservation, some 4 m trf per year as compared with its consumption in the scheme of open-hearth furnace - blooming mill (slabbing mill). During the 11th five-year-plan period introduction of metallurgy plant. An installation with discharge of the converter gas without its afterburning and successive utilization as a fuel in the converter shop of the Novolipetsk is planned.

  10. Power distribution gradients in WWER type cores and fuel failure root causes

    Energy Technology Data Exchange (ETDEWEB)

    Mikuš, Ján M., E-mail: JanMikus.nrc@hotmail.com

    2014-02-15

    Highlights: • Power (fission rate) distribution gradients can represent fuel failure root causes. • Positions with above gradients were investigated in WWER type cores on reactor LR-0. • Above gradients were evaluated near core heterogeneities and construction materials. • Results can be used for code validation and fuel failure occurrence investigation. - Abstract: Neutron flux non-uniformity and gradients of neutron current resulting in corresponding power (fission rate) distribution changes can represent root causes of the fuel failure. Such situation can be expected in vicinity of some core heterogeneities and construction materials. Since needed data cannot be obtained from nuclear power plant (NPP), results of some benchmark type experiments performed on light water, zero-power research reactor LR-0 were used for investigation of the above phenomenon. Attention was focused on determination of the spatial power distribution changes in fuel assemblies (FAs): Containing fuel rods (FRs) with Gd burnable absorber in WWER-440 and WWER-1000 type cores, Neighboring the core blanket and dummy steel assembly simulators on the periphery of the WWER-440 standard and low leakage type cores, resp., Neighboring baffle in WWER-1000 type cores, and Neighboring control rod (CR) in WWER-440 type cores, namely (a) power peak in axial power distribution in periphery FRs of the adjacent FAs near the area between CR fuel part and butt joint to the CR absorbing part and (b) decrease in radial power distribution in FRs near CR absorbing part. An overview of relevant experimental results from reactor LR-0 and some information concerning leaking FAs on NPP Temelín are presented. Obtained data can be used for code validation and subsequently for the fuel failure occurrence investigation.

  11. The Northeast heating fuel market: Assessment and options; TOPICAL

    International Nuclear Information System (INIS)

    None

    2000-01-01

    In response to a Presidential request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of tie energy markets in the Northeast. In addition, this report explores the potential for nonresidential users to move away from distillate fuel oil and how this might impact future prices, and discusses conversion of distillate fuel oil users to other fuels over the next 5 years. Because the President's and Secretary's request focused on converting factories and other large-volume users of mostly high-sulfur distillate fuel oil to other fuels, transportation sector use of low-sulfur distillate fuel oil is not examined here

  12. Measurements and observations on microscopic swelling in MX-type fuels

    International Nuclear Information System (INIS)

    Ronchi, C.; Ray, I.L.F.; Thiele, H.; Laar, J. van de.

    1978-01-01

    Microscopic swelling has been investigated by electron microscopy in several MX-type fuels, irradiated in fast and thermal neutron flux. The results show that fission gas bubbles in these compounds grow to large sizes if the in-pile fuel temperature rises above a critical value (swelling critical temperature Tsub(C)). A comparison has been made of the swelling rates in fuels of different composition, showing that Tsub(C) increases from carbides to nitrides. In fuels subjected to in-pile restructuring (highly rated) He-bonded pins microscopic swelling is affected by pore and grain boundary migration. The influence of these phenomena on the fuel swelling performance has been discussed

  13. Dissolution rates of aluminum-based spent fuels relevant to geological disposal

    International Nuclear Information System (INIS)

    Mickalonis, J.I.

    2000-01-01

    The Department of Energy is pursuing the option of direct disposal of a wide variety of spent nuclear fuels under its jurisdiction. Characterization of the various types of spent fuel is required prior to licensing by the Nuclear Regulatory Commission and acceptance of the fuel at a repository site. One category of required data is the expected rate of radionuclide and fissile release to the environment as a result of exposure to groundwater after closure of the repository. To provide this type of data for four different aluminum-based spent fuels, tests were conducted using a flow through method that allows the dissolution rate of the spent fuel matrix to be measured without interference by secondary precipitation reactions that would muddle interpretation of the results. Similar tests had been conducted earlier with light water reactor spent fuel, thereby allowing direct comparisons

  14. Alternative energy options

    International Nuclear Information System (INIS)

    Bennett, K.F.

    1983-01-01

    It is accepted that coal will continue to play the major role in the supply of energy to the country for the remainder of the century. In this paper, however, emphasis has been directed to those options which could supplement coal in an economic and technically sound manner. The general conclusion is that certain forms of solar energy hold the most promise and it is in this direction that research, development and implementation programmes should be directed. Tidal energy, fusion energy, geothermal energy, hydrogen energy and fuel cells are also discussed as alternative energy options

  15. On the nuclear fuel and fossil fuel reserves

    International Nuclear Information System (INIS)

    Fettweis, G.

    1978-01-01

    A short discussion of the nuclear fuel and fossil fuel reserves and the connected problem of prices evolution is presented. The need to regard fuel production under an economic aspect is emphasized. Data about known and assessed fuel reserves, world-wide and with special consideration of Austria, are reviewed. It is concluded that in view of the fuel reserves situation an energy policy which allows for a maximum of options seems adequate. (G.G.)

  16. Study on partitioning and transmutation as a possible option for spent fuel management within a nuclear phase-out scenario

    Energy Technology Data Exchange (ETDEWEB)

    Fazion, C.; Rineiski, A.; Salvatores, M.; Schwenk-Ferrero, A.; Romanello, V.; Vezzoni, B.; Gabrielli, F. [Karlsruhe Institute of Technology - KIT, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2013-07-01

    Most Partitioning and Transmutation (PT) studies implicitly presuppose the continuous use of nuclear energy. In this case the development of new facilities or the modification of the fuel cycle can be justified in the long-term as an important feature in order to improve sustainability by minimizing radioactive waste and reducing the burden at waste disposal. In the case of a country with nuclear energy phase-out policy, the PT option might have also an important role for what concerns the final disposal strategies of the spent fuel. In this work three selected scenarios are analyzed in order to assess the impact of PT implementation in a nuclear energy phase out option. The scenarios are: -) Scenario 1: Identification of Research/Development activities needs for a technological development of PT while postponing the decision of PT implementation; -) Scenario 2: Isolated application of PT in a phase-out context; and -) Scenario 3: Implementation of PT in a European context. In order to facilitate the discrimination among the 3 scenarios, a number of figures of indicators have been evaluated for each scenario. The selected indicators are: the mass of High Level Waste (HLW), Uranium inventory, thermal output of HLW, Radiotoxicity, Fuel cycle secondary waste associated to the PT operation, and Facility capacity/number requirements. The reduction, due to PT implementation, of high level wastes masses and their associated volumes can be significant. For what concerns the thermal output and radiotoxicity a significant impact can be also expected. However, when assessing these two indicators the contribution coming from already vitrified waste should also not be neglected. Moreover, an increase of secondary waste inventory is also expected. On the contrary, the increase of fission product inventories due to the operation of the transmutation system has a relatively limited impact on the fuel cycle.

  17. Re-qualification of MTR-type fuel plates fabrication process

    International Nuclear Information System (INIS)

    Elseaidy, I.M.; Ghoneim, M.M.

    2010-01-01

    The fabricability issues with increased uranium loading due to use low enrichment of uranium (LEU), i.e. less than 20 % of U 235 , increase the problems which occur during compact manufacturing, roll bonding of the fuel plates, potential difficulty in forming during rolling process, mechanical integrity of the core during fabrication, potential difficulty in meat homogeneity, and the ability to fabricate plates with thicker core as a means of increasing total uranium loading. To produce MTR- type fuel plates with high uranium loading (HUL) and keep the required quality of these plates, many of qualification process must be done in the commissioning step of fuel fabrication plant. After that any changing of the fabrication parameters, for example changing of any of the raw materials, devises, operators, and etc., a re- qualification process should be done in order to keep the quality of produced plates. Objective of the present work is the general description of the activities to be accomplished for re-qualification of manufacturing MTR- type nuclear fuel plates. For each process to be re-qualified, a detailed of re-qualification process were established. (author)

  18. CFD thermal-hydraulic analysis of a CANDU fuel channel with SEU43 type fuel bundle

    International Nuclear Information System (INIS)

    Catana, A.; Prisecaru, Ilie; Dupleac, D.; Danila, Nicolae

    2009-01-01

    This paper presents the numerical investigation of a CANDU fuel channel using CFD (Computational Fluid Dynamics) methodology approach, when SEU43 fuel bundles are used. Comparisons with STD37 fuel bundles are done in order to evaluate the influence of geometrical differences of the fuel bundle types on fluid flow properties. We adopted a strategy to analyze only the significant segments of fuel channel, namely : - the fuel bundle junctions with adjacent segments; - the fuel bundle spacer planes with adjacent segments; - the fuel bundle segments with turbulence enhancement buttons; - and the regular segments of fuel bundles. The computer code used is an academic version of FLUENT code, available from UPB. The complex flow domain of fuel bundles contained in pressure tube and operating conditions determine a high turbulence flow and in some parts of fuel channel also a multi-phase flow. Numerical simulation of the flow in the fuel channel has been achieved by solving the equations for conservation of mass, momentum and energy. For turbulence model the standard k-model is employed although other turbulence models can be used. In this paper we do not consider heat generation and heat transfer capabilities of CFD methods. Boundary conditions for CFD analysis are provided by system and sub-channel analysis. In this paper the discussion is focused on some flow parameters behaviour at the bundle junction, spacer's plane configuration, etc. of a SEU43 fuel bundle in conditions of a typical CANDU 6 fuel channel starting from some experience gained in a previous work. (authors)

  19. Moderator configuration options for a low-enriched uranium fueled Kilowatt-class Space Nuclear Reactor

    International Nuclear Information System (INIS)

    King, Jeffrey C.; Mencarini, Leonardo de Holanda; Guimaraes, Lamartine N. F.

    2015-01-01

    The Brazilian Air Force, through its Institute for Advanced Studies (Instituto de Estudos Avancados, IEAv/DCTA), and the Colorado School of Mines (CSM) are studying the feasibility of a space nuclear reactor with a power of 1-5 kW e and fueled with Low-Enriched Uranium (LEU). This type of nuclear reactor would be attractive to signatory countries of the Non-Proliferation Treaty (NPT) or commercial interests. A LEU-fueled space reactor would avoid the security concerns inherent with Highly Enriched Uranium (HEU) fuel. As an initial step, the HEU-fueled Kilowatt Reactor Using Stirling Technology (KRUSTY) designed by the Los Alamos National Laboratory serves as a basis for a similar reactor fueled with LEU fuel. Using the computational code MCNP6 to predict the reactor neutronics performance, the size of the resulting reactor fueled with 19.75 wt% enriched uranium-10 wt% molybdenum alloy fuel is adjusted to match the excess reactivity of KRUSTY. Then, zirconium hydride moderator is added to the core to reduce the size of the reactor. This work presents the preliminary results of the computational modeling, with special emphasis on the comparison between homogeneous and heterogeneous moderator systems, in terms of the core diameter required to meet a specific multiplication factor (k eff = 1.035). This comparison illustrates the impact of moderator configuration on the size and performance of a LEU-fueled kilowatt-class space nuclear reactor. (author)

  20. Moderator configuration options for a low-enriched uranium fueled Kilowatt-class Space Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    King, Jeffrey C., E-mail: kingjc@mines.edu [Nuclear Science and Engineering Program, Colorado School of Mines (CSM), Golden, CO (United States); Mencarini, Leonardo de Holanda; Guimaraes, Lamartine N. F., E-mail: guimaraes@ieav.cta.br, E-mail: mencarini@ieav.cta.br [Instituto de Estudos Avancados (IEAV), Sao Jose dos Campos, SP (Brazil). Divisao de Energia Nuclear

    2015-07-01

    The Brazilian Air Force, through its Institute for Advanced Studies (Instituto de Estudos Avancados, IEAv/DCTA), and the Colorado School of Mines (CSM) are studying the feasibility of a space nuclear reactor with a power of 1-5 kW{sub e} and fueled with Low-Enriched Uranium (LEU). This type of nuclear reactor would be attractive to signatory countries of the Non-Proliferation Treaty (NPT) or commercial interests. A LEU-fueled space reactor would avoid the security concerns inherent with Highly Enriched Uranium (HEU) fuel. As an initial step, the HEU-fueled Kilowatt Reactor Using Stirling Technology (KRUSTY) designed by the Los Alamos National Laboratory serves as a basis for a similar reactor fueled with LEU fuel. Using the computational code MCNP6 to predict the reactor neutronics performance, the size of the resulting reactor fueled with 19.75 wt% enriched uranium-10 wt% molybdenum alloy fuel is adjusted to match the excess reactivity of KRUSTY. Then, zirconium hydride moderator is added to the core to reduce the size of the reactor. This work presents the preliminary results of the computational modeling, with special emphasis on the comparison between homogeneous and heterogeneous moderator systems, in terms of the core diameter required to meet a specific multiplication factor (k{sub eff} = 1.035). This comparison illustrates the impact of moderator configuration on the size and performance of a LEU-fueled kilowatt-class space nuclear reactor. (author)

  1. Options of electric generation and sustainability

    International Nuclear Information System (INIS)

    Martin del Campo M, C.

    2004-01-01

    In this paper a study on the sustainability of the main electricity generation options is presented. The study is based on a matrix of sustainability indicators developed in Switzerland. A revision of some sustainability studies performed in countries with certain energy diversity and with experience in nuclear power plants operation, is done. Studies, in general, are performed for the power plant life cycle, taking into account economic aspects, fuel prices impact on electricity generation costs, fuel reserves indicators and material consumption. Air emission, waste production and human health impact data are also presented. All the results lead to confirm that nuclear energy has a high degree of sustainability vis a vis other options based on fossil fuels and renewable. Finally some comments are presented in order to highlight the importance that nuclear energy might have in the sustainable development of Mexico. (Author)

  2. Tarapur's nuclear fuel uncertainty and India's policy options

    International Nuclear Information System (INIS)

    Subramanian, R.R.

    1978-01-01

    The Indo-US agreement over the turnkey Project of the Tarapur Atomic Power Station (TAPS) signed in 1963 is being reintepreted by the American Government from 'non-proliferation' aspect, particularly after the Pokharan peaceful nuclear explosion in 1974. With the ratification of the new Non-Proliferation Act by the American Congress, the supply of enriched uranium fuel for the TAPS has become uncertain, as India is not prepared to accept comprehensive safeguards on all domestic nuclear facilities. If the contractual obligations for fuel supply and transport of spent fuel back to U.S. are not fulfilled, it is pointed out, that India will have to start reprocessing spent fuel and recycle plutonium. (K.M.)

  3. Trapped in the heat: A post-communist type of fuel poverty

    International Nuclear Information System (INIS)

    Tirado Herrero, Sergio; Ürge-Vorsatz, Diana

    2012-01-01

    Fuel poverty is a still insufficiently researched social and energy challenge with significant climate change implications. Based on evidence from Hungarian panel apartment blocks connected to district heating, this paper introduces a new variant of fuel poverty that may not be properly captured by existing fuel poverty indicators. This newly defined variant can be largely attributed to post-communist legacies – though it might also exist in other contexts – and assumes that consumers living in poor-efficiency, district-heated buildings are trapped in dwellings with adequate indoor temperatures but disproportionately high heating costs because (a) changing supplier or fuel is difficult because of the existing technical and institutional constraints, and (b) they do not realistically have the option to reduce individually their heating costs through individual efficiency improvements. This situation often translates into payment arrears, indebtedness, risk of disconnection, or reduced consumption of other basic goods and services. State-supported policy responses to date have favoured symptomatic solutions (direct consumer support) combined with superficial retrofits, though it is argued that only state-of-the-art retrofits such as the passive house-based SOLANOVA pilot project in Dunaújváros can fully eradicate fuel poverty in this consumer group. - Highlights: ► We identify a new variant of fuel poverty. ► We explore this variant in panel apartment blocks connected to DH in Hungary, where dwellings are warm enough in winter but have disproportionately high energy costs. ► Affected households react in ways that harm their welfare and put them at risk. ► Deep retrofits in dwellings such as these can eradicate fuel poverty while also contributing to other goals.

  4. Advanced waste forms from spent nuclear fuel

    International Nuclear Information System (INIS)

    Ackerman, J.P.; McPheeters, C.C.

    1995-01-01

    More than one hundred spent nuclear fuel types, having an aggregate mass of more than 5000 metric tons (2700 metric tons of heavy metal), are stored by the United States Department of Energy. This paper proposes a method for converting this wide variety of fuel types into two waste forms for geologic disposal. The method is based on a molten salt electrorefining technique that was developed for conditioning the sodium-bonded, metallic fuel from the Experimental Breeder Reactor-II (EBR-II) for geologic disposal. The electrorefining method produces two stable, optionally actinide-free, high-level waste forms: an alloy formed from stainless steel, zirconium, and noble metal fission products, and a ceramic waste form containing the reactive metal fission products. Electrorefining and its accompanying head-end process are briefly described, and methods for isolating fission products and fabricating waste forms are discussed

  5. The Molten Salt Reactor option for beneficial use of fissile material from dismantled weapons

    International Nuclear Information System (INIS)

    Gat, U.; Engel, J.R.; Dodds, H.L.

    1991-01-01

    The Molten Salt Reactor (MSR) option for burning fissile fuel from dismantled weapons is examined. It is concluded that MSRs are very suitable for beneficial utilization of the dismantled fuel. The MSRs can utilize any fissile fuel in continuous operation with no special modifications, as demonstrated in the Molten Salt Reactor Experiment. Thus MSRs are flexible while maintaining their economy. MSRs further require a minimum of special fuel preparation and can tolerate denaturing and dilution of the fuel. Fuel shipments can be arbitrarily small, all of which supports nonproliferation and averts diversion. MSRs have inherent safety features which make them acceptable and attractive. They can burn a fuel type completely and convert it to other fuels. MSRs also have the potential for burning the actinides and delivering the waste in an optimal form, thus contributing to the solution of one of the major remaining problems for deployment of nuclear power. 19 refs

  6. Model development of UO_2-Zr dispersion plate-type fuel behavior at early phase of severe accident and molten fuel meat relocation

    International Nuclear Information System (INIS)

    Zhang Zhuohua; Yu Junchong; Peng Shinian

    2014-01-01

    According to former study on oxygen diffusion, Nb-Zr solid reaction and UO_2-Zr solid reaction, the models of oxidation, solid reaction in fuel meat and relocation of molten fuel meat are developed based on structure and material properties of UO_2-Zr dispersion plate-type fuel, The new models can supply theoretical elements for the safety analysis of the core assembled with dispersion plate-type fuel under severe accident. (authors)

  7. Refining fuels of the heavy gas--oil type

    Energy Technology Data Exchange (ETDEWEB)

    Bruzac, J F.A.

    1930-01-28

    This invention has for its object the production of a new type of gas-oil fuel, obtained from crude petroleum, shale oil, and peat oil, according to the method of treatment mentioned, by means of which is obtained from gas oil, shale oil, lignite oil, and peat oil (deprived of asphaltic, and bituminous, resinous, and sulfur compounds), a fuel suitable for running Diesel, Junkers, and Clerget motors and all others of the same kind, by diminishing considerably the fouling and attack on the metal.

  8. Generic waste management concepts for six LWR fuel cycles

    International Nuclear Information System (INIS)

    DePue, J.D.

    1979-04-01

    This report supplements the treatment of waste management issues provided in the Generic Environmental Statement on the use of recycle plutonium in mixed oxide fuel in light water cooled reactors (GESMO, NUREG-0002). Three recycle and three no-recycle options are described in this document. Management of the radioactive wastes that would result from implementation of either type of fuel cycle alternative is discussed. For five of the six options, wastes would be placed in deep geologic salt repositories for which thermal criteria are considered. Radiation doses to the workers at the repositories and to the general population are discussed. The report also covers the waste management schedule, the land and salt commitments, and the economic costs for the management of wastes generated

  9. Spent fuels conditioning and irradiated nuclear fuel elements examination: the STAR facility and its abilities

    Energy Technology Data Exchange (ETDEWEB)

    Boussard, F.; Huillery, R. [CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. d`Etudes des Combustibles; Averseng, J.L.; Serpantie, J.P. [Novatome Industries, 92 - Le Plessis-Robinson (France)

    1994-12-31

    This paper is a presentation of the STAR facility, a high activity laboratory located in Cadarache Nuclear Research Center (France). The purpose of the STAR facility and of the associated processes, is the treatment, cleaning and conditioning of spent fuels from Gas Cooled Reactors (GCR) and in particular of about 2300 spent GCR fuel cartridges irradiated more than 20 years ago in Electricite de France (EDF) or CEA Uranium Graphite GCR. The processes are: to separate the nuclear fuel from the clad remains, to chemically stabilize the nuclear material and to condition it in sealed canisters. An additional objective of STAR consists in non-destructive or destructive examinations and tests on PWR rods or FBR pins in the frame of fuel development programs. The paper describes the STAR facility conceptual design (safety design rules, hot cells..) and the different options corresponding to the GCR reconditioning process and to further research and development works on various fuel types. (J.S.). 3 figs.

  10. Spent fuels conditioning and irradiated nuclear fuel elements examination: the STAR facility and its abilities

    International Nuclear Information System (INIS)

    Boussard, F.; Huillery, R.

    1994-01-01

    This paper is a presentation of the STAR facility, a high activity laboratory located in Cadarache Nuclear Research Center (France). The purpose of the STAR facility and of the associated processes, is the treatment, cleaning and conditioning of spent fuels from Gas Cooled Reactors (GCR) and in particular of about 2300 spent GCR fuel cartridges irradiated more than 20 years ago in Electricite de France (EDF) or CEA Uranium Graphite GCR. The processes are: to separate the nuclear fuel from the clad remains, to chemically stabilize the nuclear material and to condition it in sealed canisters. An additional objective of STAR consists in non-destructive or destructive examinations and tests on PWR rods or FBR pins in the frame of fuel development programs. The paper describes the STAR facility conceptual design (safety design rules, hot cells..) and the different options corresponding to the GCR reconditioning process and to further research and development works on various fuel types. (J.S.). 3 figs

  11. Fuel type characterization and potential fire behavior estimation in Sardinia and Corsica islands

    Science.gov (United States)

    Bacciu, V.; Pellizzaro, G.; Santoni, P.; Arca, B.; Ventura, A.; Salis, M.; Barboni, T.; Leroy, V.; Cancellieri, D.; Leoni, E.; Ferrat, L.; Perez, Y.; Duce, P.; Spano, D.

    2012-04-01

    Wildland fires represent a serious threat to forests and wooded areas of the Mediterranean Basin. As recorded by the European Commission (2009), during the last decade Southern Countries have experienced an annual average of about 50,000 forest fires and about 470,000 burned hectares. The factor that can be directly manipulated in order to minimize fire intensity and reduce other fire impacts, such as three mortality, smoke emission, and soil erosion, is wildland fuel. Fuel characteristics, such as vegetation cover, type, humidity status, and biomass and necromass loading are critical variables in affecting wildland fire occurrence, contributing to the spread, intensity, and severity of fires. Therefore, the availability of accurate fuel data at different spatial and temporal scales is needed for fire management applications, including fire behavior and danger prediction, fire fighting, fire effects simulation, and ecosystem simulation modeling. In this context, the main aims of our work are to describe the vegetation parameters involved in combustion processes and develop fire behavior fuel maps. The overall work plan is based firstly on the identification and description of the different fuel types mainly affected by fire occurrence in Sardinia (Italy) and Corsica (France) Islands, and secondly on the clusterization of the selected fuel types in relation to their potential fire behavior. In the first part of the work, the available time series of fire event perimeters and the land use map data were analyzed with the purpose of identifying the main land use types affected by fires. Thus, field sampling sites were randomly identified on the selected vegetation types and several fuel variables were collected (live and dead fuel load partitioned following Deeming et al., (1977), depth of fuel layer, plant cover, surface area-to-volume ratio, heat content). In the second part of the work, the potential fire behavior for every experimental site was simulated using

  12. Advanced fuel cycles options for LWRs and IMF benchmark definition

    International Nuclear Information System (INIS)

    Breza, J.; Darilek, P.; Necas, V.

    2008-01-01

    In the paper, different advanced nuclear fuel cycles including thorium-based fuel and inert-matrix fuel are examined under light water reactor conditions, especially VVER-440, and compared. Two investigated thorium based fuels include one solely plutonium-thorium based fuel and the second one plutonium-thorium based fuel with initial uranium content. Both of them are used to carry and burn or transmute plutonium created in the classical UOX cycle. The inert-matrix fuel consist of plutonium and minor actinides separated from spent UOX fuel fixed in Yttria-stabilised zirconia matrix. The article shows analysed fuel cycles and their short description. The conclusion is concentrated on the rate of Pu transmutation and Pu with minor actinides cumulating in the spent advanced thorium fuel and its comparison to UOX open fuel cycle. Definition of IMF benchmark based on presented scenario is given. (authors)

  13. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems--including engines, microturbines, electric motors, and fuel cells--and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  14. SHOSPA-MOD, Hot Spot Factors for Fuel and Clad, Hot Channel Factors

    International Nuclear Information System (INIS)

    Amendola, A.

    1982-01-01

    1 - Nature of the physical problem solved: SHOSPA evaluates the hot spot factors for fuel and cladding as well as the hot channel factor as a function of the confidence level. Moreover, it evaluates the probability on n hot subassemblies. The code has been developed with emphasis on sodium cooled fast reactors, but it is applicable to any type of reactors constituted of bundled fuel rods with single phase coolant. An option for plotting is available in this version. 2 - Restrictions on the complexity of the problem: This code is applicable to any type of reactors constituted of fuel rods with single phase coolant

  15. Feasibility of Electromagnetic Acoustic Evaluation for Quality Test of a Plate-type Nuclear Fuel

    International Nuclear Information System (INIS)

    Jung, Hyun Kyu; Lee, Yoon Sang; Cheong, Yong Moo

    2010-01-01

    Most research and test reactors use the nuclear fuel plates which are consisted of a fuel core in aluminum alloy. Recently KAERI signed a deal with the Jordan Atomic Energy Commission to build the research reactor and have to supply the plate-type nuclear fuels. For the demands of world market, KAERI started the research and development of the plate-type fuel elements and endeavored to achieve a localization of fuel fabrication. For the inspection of plate-type fuel elements to be used in Research Reactors, an immersion pulse-echo ultrasonic technique was applied. This inspection was done with water, so a nuclear fuel was immersed to be prone to corrosion and needed to have time and cost due to an additional process. The sample that will be examined within this paper is a non-ferromagnetic material such as aluminum which has a good acousto-elastic property, for an effective inspection of a bond quality for a nuclear fuel under a manufacturing environment. The purpose of this study is to investigate the feasibility of an EMAT technology for an automated inspection of a nuclear fuel without water

  16. Operation of Nuclear Fuel Based on Reprocessed Uranium for VVER-type Reactors in Competitive Nuclear Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Troyanov, V.; Molchanov, V.; Tuzov, A. [TVEL Corporation, 49 Kashirskoe shosse, Moscow 115409 (Russian Federation); Semchenkov, Yu.; Lizorkin, M. [RRC ' Kurchatov Institute' (Russian Federation); Vasilchenko, I.; Lushin, V. [OKB ' Gidropress' (Russian Federation)

    2009-06-15

    Current nuclear fuel cycle of Russian nuclear power involves reprocessed low-enriched uranium in nuclear fuel production for some NPP units with VVER-type LWR. This paper discusses design and performance characteristics of commercial nuclear fuel based on natural and reprocessed uranium. It presents the review of results of commercial operation of nuclear fuel based on reprocessed uranium on Russian NPPs-unit No.2 of Kola NPP and unit No.2 of Kalinin NPP. The results of calculation and experimental validation of safe fuel operation including necessary isotope composition conformed to regulation requirements and results of pilot fuel operation are also considered. Meeting the customer requirements the possibility of high burn-up achieving was demonstrated. In addition the paper compares the characteristics of nuclear fuel cycles with maximum length based on reprocessed and natural uranium considering relevant 5% enrichment limitation and necessity of {sup 236}U compensation. The expedience of uranium-235 enrichment increasing over 5% is discussed with the aim to implement longer fuel cycles. (authors)

  17. Modeling solid-fuel dispersal during slow loss-of-flow-type transients

    International Nuclear Information System (INIS)

    DiMelfi, R.J.; Fenske, G.R.

    1981-01-01

    The dispersal, under certain accident conditions, of solid particles of fast-reactor fuel is examined in this paper. In particular, we explore the possibility that solid-fuel fragmentation and dispersal can be driven by expanding fission gas, during a slow LOF-type accident. The consequences of fragmentation are studied in terms of the size and speed of dispersed particles, and the overall quantity of fuel moved. (orig.)

  18. Spent fuel storage practices and perspectives for WWER fuel in Eastern Europe

    International Nuclear Information System (INIS)

    Takats, F.

    1999-01-01

    In this lecture the general issues and options in spent fuel management and storage are reviewed. Quantities of spent fuel world-wide and spent fuel amounts in storage as well as spent fuel capacities are presented. Selected examples of typical spent fuel storage facilities are discussed. The storage technologies applied for WWER fuel is presented. Description of other relevant storage technologies is included

  19. Evaluation of plate type fuel elements by eddy current test method

    International Nuclear Information System (INIS)

    Frade, Rangel Teixeira

    2015-01-01

    Plate type fuel elements are used in MTR research nuclear reactors. The fuel plates are manufactured by assembling a briquette containing the fissile material inserted in a frame, with metal plates in both sides of the set, to act as a cladding. This set is rolled under controlled conditions in order to obtain the fuel plate. In Brazil, this type of fuel is manufactured by IPEN and used in the IEA-R1 reactor. After fabrication of three batches of fuel plates, 24 plates, one of them is taken, in order to verify the thickness of the cladding. For this purpose, the plate is sectioned and the thickness measurements are carried out by using optical microscopy. This procedure implies in damage of the plate, with the consequent cost. Besides, the process of sample preparation for optical microscopy analysis is time consuming, it is necessary an infrastructure for handling radioactive materials and there is a generation of radioactive residues during the process. The objective of this study was verify the applicability of eddy current test method for nondestructive measurement of cladding thickness in plate type nuclear fuels, enabling the inspection of all manufactured fuel plates. For this purpose, reference standards, representative of the cladding of the fuel plates, were manufactured using thermomechanical processing conditions similar to those used for plates manufacturing. Due to no availability of fuel plates for performing the experiments, the presence of the plate’s core was simulated using materials with different electrical conductivities, fixed to the thickness reference standards. Probes of eddy current testing were designed and manufactured. They showed high sensitivity to thickness variations, being able to separate small thickness changes. The sensitivity was higher in tests performed on the reference standards and samples without the presence of the materials simulating the core. For examination of the cladding with influence of materials simulating the

  20. A dynamic, dependent type system for nuclear fuel cycle code generation

    Energy Technology Data Exchange (ETDEWEB)

    Scopatz, A. [The University of Chicago 5754 S. Ellis Ave, Chicago, IL 60637 (United States)

    2013-07-01

    The nuclear fuel cycle may be interpreted as a network or graph, thus allowing methods from formal graph theory to be used. Nodes are often idealized as nuclear fuel cycle facilities (reactors, enrichment cascades, deep geologic repositories). With the advent of modern object-oriented programming languages - and fuel cycle simulators implemented in these languages - it is natural to define a class hierarchy of facility types. Bright is a quasi-static simulator, meaning that the number of material passes through a facility is tracked rather than natural time. Bright is implemented as a C++ library that models many canonical components such as reactors, storage facilities, and more. Cyclus is a discrete time simulator, meaning that natural time is tracked through out the simulation. Therefore a robust, dependent type system was developed to enable inter-operability between Bright and Cyclus. This system is capable of representing any fuel cycle facility. Types declared in this system can then be used to automatically generate code which binds a facility implementation to a simulator front end. Facility model wrappers may be used either internally to a fuel cycle simulator or as a mechanism for inter-operating multiple simulators. While such a tool has many potential use cases it has two main purposes: enabling easy performance of code-to-code comparisons and the verification and the validation of user input.

  1. Analysis of scenarios for the direct disposal of spent nuclear fuel disposal conditions as expected in Germany

    International Nuclear Information System (INIS)

    Ashton, P.; Mehling, O.; Mohn, R.; Wingender, H.J.

    1990-01-01

    This report contains an investigation of aspects of the waste management of spent light water reactor fuel by direct disposal in a deep geological formation on land. The areas covered are: interim dry storage of spent fuel with three options of pre-conditioning; conditioning of spent fuel for final disposal in a salt dome repository; disposal of spent fuel (heat-generating waste) in a salt dome repository; disposal of medium and low-level radioactive wastes in the Konrad mine. Dose commitments, effluent discharges and potential incidents were not found to vary significantly for the various conditioning options/salt dome repository types. Due to uncertainty in the cost estimates, in particular the disposal cost estimates, the variation between the three conditioning options examined is not considered as being significant. The specific total costs for the direct disposal strategy are estimated to lie in the range ECU 600 to 700 per kg hm (basis 1988)

  2. Nuclear fuel cycle system analysis

    International Nuclear Information System (INIS)

    Ko, W. I.; Kwon, E. H.; Kim, S. G.; Park, B. H.; Song, K. C.; Song, D. Y.; Lee, H. H.; Chang, H. L.; Jeong, C. J.

    2012-04-01

    The nuclear fuel cycle system analysis method has been designed and established for an integrated nuclear fuel cycle system assessment by analyzing various methodologies. The economics, PR(Proliferation Resistance) and environmental impact evaluation of the fuel cycle system were performed using improved DB, and finally the best fuel cycle option which is applicable in Korea was derived. In addition, this research is helped to increase the national credibility and transparency for PR with developing and fulfilling PR enhancement program. The detailed contents of the work are as follows: 1)Establish and improve the DB for nuclear fuel cycle system analysis 2)Development of the analysis model for nuclear fuel cycle 3)Preliminary study for nuclear fuel cycle analysis 4)Development of overall evaluation model of nuclear fuel cycle system 5)Overall evaluation of nuclear fuel cycle system 6)Evaluate the PR for nuclear fuel cycle system and derive the enhancement method 7)Derive and fulfill of nuclear transparency enhancement method The optimum fuel cycle option which is economical and applicable to domestic situation was derived in this research. It would be a basis for establishment of the long-term strategy for nuclear fuel cycle. This work contributes for guaranteeing the technical, economical validity of the optimal fuel cycle option. Deriving and fulfillment of the method for enhancing nuclear transparency will also contribute to renewing the ROK-U.S Atomic Energy Agreement in 2014

  3. Economic Analysis of Several Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Ko, Won Il; Gao, Fanxing; Kim, Sung Ki

    2012-01-01

    Economics is one of the essential criteria to be considered for the future deployment of the nuclear power. With regard to the competitive power market, the cost of electricity from nuclear power plants is somewhat highly competitive with those from the other electricity generations, averaging lower in cost than fossil fuels, wind, or solar. However, a closer look at the nuclear power production brings an insight that the cost varies within a wide range, highly depending on a nuclear fuel cycle option. The option of nuclear fuel cycle is a key determinant in the economics, and therefrom, a comprehensive comparison among the proposed fuel cycle options necessitates an economic analysis for thirteen promising options based on the material flow analysis obtained by an equilibrium model as specified in the first article (Modeling and System Analysis of Different Fuel Cycle Options for Nuclear Power Sustainability (I): Uranium Consumption and Waste Generation). The objective of the article is to provide a systematic cost comparison among these nuclear fuel cycles. The generation cost (GC) generally consists of a capital cost, an operation and maintenance cost (O and M cost), a fuel cycle cost (FCC), and a decontaminating and decommissioning (D and D) cost. FCC includes a frontend cost and a back-end cost, as well as costs associated with fuel recycling in the cases of semi-closed and closed cycle options. As a part of GC, the economic analysis on FCC mainly focuses on the cost differences among fuel cycle options considered and therefore efficiently avoids the large uncertainties of the Generation-IV reactor capital costs and the advanced reprocessing costs. However, the GC provides a more comprehensive result covering all the associated costs, and therefrom, both GC and FCC have been analyzed, respectively. As a widely applied tool, the levelized cost (mills/KWh) proves to be a fundamental calculation principle in the energy and power industry, which is particularly

  4. Investigation of economics of nuclear fuel cycle options in the Republic of Korea based on once-through - 5468

    International Nuclear Information System (INIS)

    Cho, S.K.; Yim, M.S.

    2015-01-01

    This study performs an economic evaluation of future nuclear fuel cycle options based on once-through strategy. Various factors of the future development in Korea are also considered including nuclear phase-out, continuous use of nuclear energy at varying growth rate, and the reunification of the Korean peninsula. A spreadsheet model is developed as part of the methodology of screening material flow and economic evaluation and results are discussed for policy planning for Korea as well as for nuclear developing countries. Results indicated that economics improves as the size of nuclear power system increases. We found some significant factors that affect LCOE (levelized cost of electricity) of the back end fuel cycle. Expanded nuclear power program with further construction of nuclear power plant (continuous use and/or the reunification) is a major political variable for LCOE. To keep the cost of nuclear power as low as possible, it is very important to have a proper strategy for the back-end fuel cycle including decommissioning. For continued use of nuclear energy, the Korea needs to develop soon a long-term policy for the back-end fuel cycle rather than taking the 'sit and watch' approach to make best out of the use of nuclear power into the future

  5. Global nuclear energy partnership fuels transient testing at the Sandia National Laboratories nuclear facilities : planning and facility infrastructure options

    International Nuclear Information System (INIS)

    Kelly, John E.; Wright, Steven Alan; Tikare, Veena; MacLean, Heather J.; Parma, Edward J.Jr; Peters, Curtis D.; Vernon, Milton E.; Pickard, Paul S.

    2007-01-01

    The Global Nuclear Energy Partnership fuels development program is currently developing metallic, oxide, and nitride fuel forms as candidate fuels for an Advanced Burner Reactor. The Advance Burner Reactor is being designed to fission actinides efficiently, thereby reducing the long-term storage requirements for spent fuel repositories. Small fuel samples are being fabricated and evaluated with different transuranic loadings and with extensive burnup using the Advanced Test Reactor. During the next several years, numerous fuel samples will be fabricated, evaluated, and tested, with the eventual goal of developing a transmuter fuel database that supports the down selection to the most suitable fuel type. To provide a comparative database of safety margins for the range of potential transmuter fuels, this report describes a plan to conduct a set of early transient tests in the Annular Core Research Reactor at Sandia National Laboratories. The Annular Core Research Reactor is uniquely qualified to perform these types of tests because of its wide range of operating capabilities and large dry central cavity which extents through the center of the core. The goal of the fuels testing program is to demonstrate that the design and fabrication processes are of sufficient quality that the fuel will not fail at its design limit--up to a specified burnup, power density, and operating temperature. Transient testing is required to determine the fuel pin failure thresholds and to demonstrate that adequate fuel failure margins exist during the postulated design basis accidents

  6. Global nuclear energy partnership fuels transient testing at the Sandia National Laboratories nuclear facilities : planning and facility infrastructure options.

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, John E.; Wright, Steven Alan; Tikare, Veena; MacLean, Heather J. (Idaho National Laboratory, Idaho Falls, ID); Parma, Edward J., Jr.; Peters, Curtis D.; Vernon, Milton E.; Pickard, Paul S.

    2007-10-01

    The Global Nuclear Energy Partnership fuels development program is currently developing metallic, oxide, and nitride fuel forms as candidate fuels for an Advanced Burner Reactor. The Advance Burner Reactor is being designed to fission actinides efficiently, thereby reducing the long-term storage requirements for spent fuel repositories. Small fuel samples are being fabricated and evaluated with different transuranic loadings and with extensive burnup using the Advanced Test Reactor. During the next several years, numerous fuel samples will be fabricated, evaluated, and tested, with the eventual goal of developing a transmuter fuel database that supports the down selection to the most suitable fuel type. To provide a comparative database of safety margins for the range of potential transmuter fuels, this report describes a plan to conduct a set of early transient tests in the Annular Core Research Reactor at Sandia National Laboratories. The Annular Core Research Reactor is uniquely qualified to perform these types of tests because of its wide range of operating capabilities and large dry central cavity which extents through the center of the core. The goal of the fuels testing program is to demonstrate that the design and fabrication processes are of sufficient quality that the fuel will not fail at its design limit--up to a specified burnup, power density, and operating temperature. Transient testing is required to determine the fuel pin failure thresholds and to demonstrate that adequate fuel failure margins exist during the postulated design basis accidents.

  7. Answering Key Fuel Cycle Questions

    International Nuclear Information System (INIS)

    Piet, S.J.; Dixon, B.W.; Bennett, R.G.; Smith, J.D.; Hill, R.N.

    2004-01-01

    Given the range of fuel cycle goals and criteria, and the wide range of fuel cycle options, how can the set of options eventually be narrowed in a transparent and justifiable fashion? It is impractical to develop all options. We suggest an approach that starts by considering a range of goals for the Advanced Fuel Cycle Initiative (AFCI) and then posits seven questions, such as whether Cs and Sr isotopes should be separated from spent fuel and, if so, what should be done with them. For each question, we consider which of the goals may be relevant to eventually providing answers. The AFCI program has both ''outcome'' and ''process'' goals because it must address both waste already accumulating as well as completing the fuel cycle in connection with advanced nuclear power plant concepts. The outcome objectives are waste geologic repository capacity and cost, energy security and sustainability, proliferation resistance, fuel cycle economics, and safety. The process objectives are rea diness to proceed and adaptability and robustness in the face of uncertainties

  8. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems?including engines, microturbines, electric motors, and fuel cells?and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  9. Fuel management of mixed reactor type power plant systems

    International Nuclear Information System (INIS)

    Csom, Gyula

    1988-01-01

    In equilibrium symbiotic power plant system containing both thermal reactors and fast breeders, excess plutonium produced by the fast breeders is used to enrich the fuel of the thermal reactors. In plutonium deficient symbiotic power plant system plutonium is supplied both by thermal plants and fast breeders. Mathematical models were constructed and different equations solved to characterize the fuel utilization of both systems if they contain only a single thermal type and a single fast type reactor. The more plutonium is produced in the system, the higher output ratio of thermal to fast reactors is achieved in equilibrium symbiotic power plant system. Mathematical equations were derived to calculate the doubling time and the breeding gain of the equilibrium symbiotic system. (V.N.) 2 figs.; 2 tabs

  10. Liquid fuel from biomass

    International Nuclear Information System (INIS)

    Breinholt, T.; Gylling, M.; Parsby, M.; Meyer Henius, U.; Sander Nielsen, B.

    1992-09-01

    Various options for Danish production of liquid motor fuels from biomass have been studied in the context of the impact of EEC new common agricultural policy on prices and production quantities of crops, processes and production economy, restraints concerning present and future markets in Denmark, environmental aspects, in particular substitution of fossil fuels in the overall production and end-use, revenue loss required to assure competition with fossil fuels and national competence in business, industry and research. The options studied are rapeseed oil and derivates, ethanol, methanol and other thermo-chemical conversion products. The study shows that the combination of fuel production and co-generation of heat and electricity carried out with energy efficiency and utilization of surplus electricity is important for the economics under Danish conditions. Considering all aspects, ethanol production seems most favorable but in the long term, pyrolyses with catalytic cracking could be an interesting option. The cheapest source of biomass in Denmark is straw, where a considerable amount of the surplus could be used. Whole crop harvested wheat on land otherwise set aside to be fallow could also be an important source for ethanol production. Most of the options contribute favorably to reductions of fossil fuel consumption, but variations are large and the substitution factor is to a great extent dependent on the individual case. (AB) (32 refs.)

  11. Perspectives for practical application of the combined fuel kernels in VVER-type reactors

    International Nuclear Information System (INIS)

    Baranov, V.; Ternovykh, M.; Tikhomirov, G.; Khlunov, A.; Tenishev, A.; Kurina, I.

    2011-01-01

    The paper considers the main physical processes that take place in fuel kernels under real operation conditions of VVER-type reactors. Main attention is given to the effects induced by combinations of layers with different physical properties inside of fuel kernels on these physical processes. Basic neutron-physical characteristics were calculated for some combined fuel kernels in fuel rods of VVER-type reactors. There are many goals in development of the combined fuel kernels, and these goals define selecting the combinations and compositions of radial layers inside of the kernels. For example, the slower formation of the rim-layer on outer surface of the kernels made of enriched uranium dioxide can be achieved by introduction of inner layer made of natural or depleted uranium dioxide. Other potential goals (lower temperature in the kernel center, better conditions for burn-up of neutron poisons, better retention of toxic materials) could be reached by other combinations of fuel compositions in central and peripheral zones of the fuel kernels. Also, the paper presents the results obtained in experimental manufacturing of the combined fuel pellets. (authors)

  12. Beyond designed functional margins in CANDU type NPP. Radioactive nuclei assessment in an LOCA type accident

    Directory of Open Access Journals (Sweden)

    Budu Andrei Razvan

    2015-01-01

    Full Text Available European Union's energy roadmap up to year 2050 states that in order to have an efficient and sustainable economy, with minimum or decreasing greenhouse gas emissions, along with use of renewable resources, each constituent state has the option for nuclear energy production as one desirable option. Every scenario considered for tackling climate change issues, along with security of supply positions the nuclear energy as a recommended option, an option that is highly competitive with respect to others. Nuclear energy, along with other renewable power sources are considered to be the main pillars in the energy sector for greenhouse gas emission mitigation at European level. European Union considers that nuclear energy must be treated as a highly recommended option since it can contribute to security of energy supply. Romania showed excellent track-records in operating in a safe and economically sound manner of Cernavoda NPP Units 1&2. Both Units are in top 10 worldwide in terms of capacity factor. Due to Romania's need to ensure the security of electricity supply, to meet the environmental targets and to move to low carbon generation technologies, Cernavoda Units 3&4 Project appears as a must. This Project was started in 2010 and it is expected to have the Units running by 2025. Cost effective and safety operation of a Nuclear Power Plant is made taking into consideration functional limits of its equipment. As common practice, every nuclear reactor type (technology used is tested according to the worse credible accident or equipment failure that can occur. For CANDU type reactor, this is a Loss of Cooling Accident (LOCA. In a LOCA type accident in a CANDU NPP, using RELAP/SCDAP code for fuel bundle damage assessment the radioactive nuclei are to be quantified. Recently, CANDU type NPP accidents are studied using the RELAP/SCDAP code only. The code formerly developed for PWR type reactors was adapted for the CANDU geometry and can assess the

  13. Fuel Cycle Scenario Definition, Evaluation, and Trade-offs

    Energy Technology Data Exchange (ETDEWEB)

    Steven J. Piet; Gretchen E. Matthern; Jacob J. Jacobson; Christopher T. Laws; Lee C. Cadwallader; Abdellatif M. Yacout; Robert N. Hill; J. D. Smith; Andrew S. Goldmann; George Bailey

    2006-08-01

    This report aims to clarify many of the issues being discussed within the AFCI program, including Inert Matrix Fuel (IMF) versus Mixed Oxide (MOX) fuel, single-pass versus multi-pass recycling, thermal versus fast reactors, potential need for transmutation of technetium and iodine, and the value of separating cesium and strontium. It documents most of the work produced by INL, ANL, and SNL personnel under their Simulation, Evaluation, and Trade Study (SETS) work packages during FY2005 and the first half of FY2006. This report represents the first attempt to calculate a full range of metrics, covering all four AFCI program objectives - waste management, proliferation resistance, energy recovery, and systematic management/economics/safety - using a combination of "static" calculations and a system dynamic model, DYMOND. In many cases, we examine the same issue both dynamically and statically to determine the robustness of the observations. All analyses are for the U.S. reactor fleet. This is a technical report, not aimed at a policy-level audience. A wide range of options are studied to provide the technical basis for identifying the most attractive options and potential improvements. Option improvement could be vital to accomplish before the AFCI program publishes definitive cost estimates. Information from this report will be extracted and summarized in future policy-level reports. Many dynamic simulations of deploying those options are included. There are few "control knobs" for flying or piloting the fuel cycle system into the future, even though it is dark (uncertain) and controls are sluggish with slow time response: what types of reactors are built, what types of fuels are used, and the capacity of separation and fabrication plants. Piloting responsibilities are distributed among utilities, government, and regulators, compounding the challenge of making the entire system work and respond to changing circumstances. We identify four approaches that would

  14. Fuel Cycle Scenario Definition, Evaluation, and Trade-offs

    International Nuclear Information System (INIS)

    Steven J. Piet; Gretchen E. Matthern; Jacob J. Jacobson; Christopher T. Laws; Lee C. Cadwallader; Abdellatif M. Yacout; Robert N. Hill; J. D. Smith; Andrew S. Goldmann; George Bailey

    2006-01-01

    This report aims to clarify many of the issues being discussed within the AFCI program, including Inert Matrix Fuel (IMF) versus Mixed Oxide (MOX) fuel, single-pass versus multi-pass recycling, thermal versus fast reactors, potential need for transmutation of technetium and iodine, and the value of separating cesium and strontium. It documents most of the work produced by INL, ANL, and SNL personnel under their Simulation, Evaluation, and Trade Study (SETS) work packages during FY2005 and the first half of FY2006. This report represents the first attempt to calculate a full range of metrics, covering all four AFCI program objectives--waste management, proliferation resistance, energy recovery, and systematic management/economics/safety--using a combination of ''static'' calculations and a system dynamic model, DYMOND. In many cases, we examine the same issue both dynamically and statically to determine the robustness of the observations. All analyses are for the U.S. reactor fleet. This is a technical report, not aimed at a policy-level audience. A wide range of options are studied to provide the technical basis for identifying the most attractive options and potential improvements. Option improvement could be vital to accomplish before the AFCI program publishes definitive cost estimates. Information from this report will be extracted and summarized in future policy-level reports. Many dynamic simulations of deploying those options are included. There are few ''control knobs'' for flying or piloting the fuel cycle system into the future, even though it is dark (uncertain) and controls are sluggish with slow time response: what types of reactors are built, what types of fuels are used, and the capacity of separation and fabrication plants. Piloting responsibilities are distributed among utilities, government, and regulators, compounding the challenge of making the entire system work and respond to changing circumstances. We identify four approaches that would

  15. Comparison of the Environment, Health, And Safety Characteristics of Advanced Thorium- Uranium and Uranium-Plutonium Fuel Cycles

    Science.gov (United States)

    Ault, Timothy M.

    The environment, health, and safety properties of thorium-uranium-based (''thorium'') fuel cycles are estimated and compared to those of analogous uranium-plutonium-based (''uranium'') fuel cycle options. A structured assessment methodology for assessing and comparing fuel cycle is refined and applied to several reference fuel cycle options. Resource recovery as a measure of environmental sustainability for thorium is explored in depth in terms of resource availability, chemical processing requirements, and radiological impacts. A review of available experience and recent practices indicates that near-term thorium recovery will occur as a by-product of mining for other commodities, particularly titanium. The characterization of actively-mined global titanium, uranium, rare earth element, and iron deposits reveals that by-product thorium recovery would be sufficient to satisfy even the most intensive nuclear demand for thorium at least six times over. Chemical flowsheet analysis indicates that the consumption of strong acids and bases associated with thorium resource recovery is 3-4 times larger than for uranium recovery, with the comparison of other chemical types being less distinct. Radiologically, thorium recovery imparts about one order of magnitude larger of a collective occupational dose than uranium recovery. Moving to the entire fuel cycle, four fuel cycle options are compared: a limited-recycle (''modified-open'') uranium fuel cycle, a modified-open thorium fuel cycle, a full-recycle (''closed'') uranium fuel cycle, and a closed thorium fuel cycle. A combination of existing data and calculations using SCALE are used to develop material balances for the four fuel cycle options. The fuel cycle options are compared on the bases of resource sustainability, waste management (both low- and high-level waste, including used nuclear fuel), and occupational radiological impacts. At steady-state, occupational doses somewhat favor the closed thorium option while low

  16. Safety characteristics of mid-sized MOX fueled liquid metal reactor core of high converter type in the initiating phase of unprotected loss of flow accident. Effect of low specific fuel power density on ULOF behavior brought by employment of large diameter fuel pins

    International Nuclear Information System (INIS)

    Ishida, Masayoshi; Kawada, Kenichi; Niwa, Hajime

    2003-07-01

    Safety characteristics in core disruptive accidents (CDAs) of mid-sized MOX fueled liquid metal reactor core of high converter type have been examined by using the CDA initiating phase analysis code SAS4A. The design concept of high converter type reactor core has been studied as one of options in the category of sodium-cooled reactor in Phase II of Feasibility Study on Commercialized Fast Reactor Cycle System. An unprotected loss-of-flow accident (ULOF) has been selected as a representative CDA initiator for this study. A core concept of high converter type, which employed a large diameter fuel pin of 11.1 mm with 1.2 m core height to get a large fuel volume fraction in the core to achieve high internal conversion ratio was proposed in JFY2001. Each fuel subassembly of the core (abbreviated here as UPL120)was provided with an upper sodium plenum directly above the core to reduce the sodium void reactivity worth. Because of the large fuel pin diameter, average specific fuel power density (31 kW/kg-MOX) of UPL120 is about one half of those of conventional large MOX cores. The reactivity worth of sodium voiding is 6$ in the whole core, and -1$ in the all upper plenums. Initiating phase of ULOF accident in UPL120 under the conditions of nominal design and best estimate analysis resulted in a slightly super-prompt critical power burst. The causes of the super-prompt criticality have been identified twofold: (a) the low specific fuel power density of core reduced the effectiveness of prompt negative reactivity feedback of Doppler and axial fuel expansion effects upon increase in reactor power, and (b) the longer core height compared with conventional 1m cores brought, together with the lower specific power density, a remarkable delay in insertion of negative fuel dispersion reactivity after the onset of fuel disruption in sodium voided subassembly due to the lower linear heat rating in the top portion of the core. During the delay, burst-type fuel failures in sodium un

  17. Supply of wood fuel from small-scale woodlands for small-scale heating

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This report summarises the findings of a study aimed at stimulating a market for wood fuels. A desk study of harvesting in existing small woodland was conducted, and thirteen case studies covering early broadleaved thinnings, mixed broadleaved coppice, and crownwood, scrub and residues were examined to obtain information on woodland types, wood fuel supply, and combustion equipment. Details are given of the measurement of moisture content of woodchips and stacked roundwood, wood volume and green density, harvesting options, crop and site variables, and production and costs of wood fuels. Usage of wood fuels, and the drying of small roundwood was considered. (UK)

  18. Nuclear Fuel Cycle System Analysis (II)

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kwon, Eun Ha; Yoon, Ji Sup; Park, Seong Won

    2007-04-15

    As a nation develops strategies that provide nuclear energy while meeting its various objectives, it must begin with identification of a fuel cycle option that can be best suitable for the country. For such a purpose, this paper takes four different fuel cycle options that are likely adopted by the Korean government, considering the current status of nuclear power generation and the 2nd Comprehensive Nuclear Energy Promotion Plan (CNEPP) - Once-through Cycle, DUPIC Recycle, Thermal Reactor Recycle and GEN-IV Recycle. The paper then evaluates each option in terms of sustainability, environment-friendliness, proliferation-resistance, economics and technologies. Like all the policy decision, however, a nuclear fuel cycle option can not be superior in all aspects of sustainability, environment-friendliness, proliferation-resistance, economics, technologies and so on, which makes the comparison of the options extremely complicated. Taking this into consideration, the paper analyzes all the four fuel cycle options using the Multi-Attribute Utility Theory (MAUT) and the Analytic Hierarchy Process (AHP), methods of Multi-Attribute Decision Making (MADM), that support systematical evaluation of the cases with multi- goals or criteria and that such goals are incompatible with each other. The analysis shows that the GEN-IV Recycle appears to be most competitive.

  19. Field experience of new nuclear fuel types on the Kola NPP

    International Nuclear Information System (INIS)

    Adeev, V.; Burlov, S.; Panov, A.; Saprykin, V.

    2008-01-01

    Specificity of the Kola nuclear power plant geographical position, conditions of region economics determine fuel management strategy. Isolation of Kola power supply system and, as a consequence, generating capacities redundancy cause operation of the nuclear power plant on reduced power level. At the same time there is a need to operate the power unit on the maximum power level in the case of not planned conditions. The basis of in-core fuel management is an achievement of the maximal burnup under providing of high installed capacity. At present there are not abilities to improve the fuel cycle based on traditional implementation fuel assemblies. Burnup maximum in these fuel cycles is achieved. At the core periphery installed highest possible quantity of the burned-up assemblies in the view of safety operation margins satisfaction. Works on application of the second generation fuel have been carried out on the Kola NPP since 2002. Fuel assemblies of this type are profiled. Burnable absorber, changed lattice spacing in relation to standard fuel, changed height of a fuel column, thickness of fuel pin clad are applied. In CR fuel followers modernized docking unit (with hafnium plates are intended for energy-release splash suppression) is used. At present 2-nd generation fuel is in experimental operation on unit 3 (18-21 fuel cycles, 2002-2007 years) and unit 4 (18-19 fuel cycles, 2005-2007 years). Safety margins did not exceeded. Coolant activity did not exceed the limiting value. There were not damaged fuel assemblies of second generation. Originally in the project of applications of new fuel it was supposed to refuel annually 78 fresh assemblies. At the moment annual refueling consists of 66 assemblies with effective enrichment 3.82 %. Cycle duration does not exceed 250-260 effective days. The part of assemblies is left on 5-th cycle of operation. In a similar fuel cycle in 2007 on the unit 1 operation with profiled fuel (enrichment of 3.82 %) of shakeproof type

  20. Analysis of fuel centre temperatures and fission gas release data from the IFPE Database

    International Nuclear Information System (INIS)

    Schubert, A.; Lassmann, K.; Van Uffelen, P.; Van de Laar, J.; Elenkov, D.; Asenov, S.; Boneva, S.; Djourelov, N.; Georgieva, M.

    2003-01-01

    The present work has continued the analysis of fuel centre temperatures and fission gas release, calculated with standard options of the TRANSURANUS code. The calculations are compared to experimental data from the International Fuel Performance Experiments (IFPE) database. It is reported an analysis regarding UO 2 fuel for Western-type reactors: Fuel centre temperatures measured in the experiments Contact 1 and Contact 2 (in-pile tests of 2 rods performed at the Siloe reactor in Grenoble, France, closely simulating commercial PWR conditions); Fission gas release data derived from post-irradiation examinations of 9 fuel rods belonging to the High-Burnup Effects Programme, task 3 (HBEP3). The results allow for a comparison of predictions by TRANSURANUS for the mentioned Western-type fuels with those done previously for Russian-type WWER fuel. The comparison has been extended to include fuel centre temperatures as well as fission gas release. The present version of TRANSURANUS includes a model that calculates the production of Helium. The amount of produced Helium is compared to the measured and to the calculated release of the fission gases Xenon and Krypton

  1. Proceedings of the GLOBAL 2009 congress - The Nuclear Fuel Cycle: Sustainable Options and Industrial Perspectives

    International Nuclear Information System (INIS)

    2009-06-01

    TOP FUEL / Water Reactor Fuel Performance which shares some common technical sessions. The exhibition is the same for the two meetings. Intended participants and audiences include personnel working on all aspects of the NFC, such as scientific and technical topics, design challenges, industrial implementation, societal and institutional issues (including regulatory framework), and policy questions. The technical Program includes the following topical areas: 1 - Front End of the Fuel Cycle; 2 - Current Spent Nuclear Fuel Recycling; 3 - Waste Management Technologies And Strategies; 4 - Concepts for Transportation and Interim Storage of Spent Fuels and Conditioned Waste or Other Radioactive Materials; 5 - Nuclear Waste Repository Developments; 6 - Advanced Technologies for Fuel Recycling Including Partitioning of Specific Radionuclides; 7 - Advances in Reactor Cores Design and In-core Fuel Management; 8 - Transmutation Systems for Long Lived Radio Nuclides; 9 - Developments in Nuclear Non-Proliferation Technology, Policy and Implementation; 10 - Sustainable Fuel Cycle Options and Nuclear Material Management; 11 - Dismantling, Decommissioning and Material Management; 12 - Crosscutting Issues, Policies and Programs; 13 - Plenary Sessions

  2. Proceedings of the GLOBAL 2009 congress - The Nuclear Fuel Cycle: Sustainable Options and Industrial Perspectives

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-06-15

    TOP FUEL / Water Reactor Fuel Performance which shares some common technical sessions. The exhibition is the same for the two meetings. Intended participants and audiences include personnel working on all aspects of the NFC, such as scientific and technical topics, design challenges, industrial implementation, societal and institutional issues (including regulatory framework), and policy questions. The technical Program includes the following topical areas: 1 - Front End of the Fuel Cycle; 2 - Current Spent Nuclear Fuel Recycling; 3 - Waste Management Technologies And Strategies; 4 - Concepts for Transportation and Interim Storage of Spent Fuels and Conditioned Waste or Other Radioactive Materials; 5 - Nuclear Waste Repository Developments; 6 - Advanced Technologies for Fuel Recycling Including Partitioning of Specific Radionuclides; 7 - Advances in Reactor Cores Design and In-core Fuel Management; 8 - Transmutation Systems for Long Lived Radio Nuclides; 9 - Developments in Nuclear Non-Proliferation Technology, Policy and Implementation; 10 - Sustainable Fuel Cycle Options and Nuclear Material Management; 11 - Dismantling, Decommissioning and Material Management; 12 - Crosscutting Issues, Policies and Programs; 13 - Plenary Sessions.

  3. Nuclear fuel utilization in Kozloduy NPP

    Energy Technology Data Exchange (ETDEWEB)

    Boyadzhiev, Z; Kharalampieva, Ts; Pejchinov, Ts [Kombinat Atomna Energetika, Kozloduj (Bulgaria)

    1994-12-31

    An assessment of fuel utilization in Kozloduy NPP units 1-6 is made on the basis of operational data obtained for a total of 62 fuel cycles. Basic characteristics of core loading and operation conditions are given. SPPS-1 and BIPR-7 codes are used to calculate assembly-wise power distributions for different full power days of a given cycle and unit. The data are compared with the measured values of these quantities. The analysis performed shows that the core loading option chosen has led to efficient fuel utilization without violation of the nuclear safety criteria. For WWER-440 (Units 1 - 4) this is expressed in effective reduction of the reactor vessel irradiation, maintaining the design duration of the fuel cycles at a reduced number of assemblies by a factor 5 - 5-10%, utilizing fuel with higher enrichment and implementing the 4-year fuel cycle. For WWER-1000 the improvements lead to: adoption of the 3-year fuel cycle utilizing fuel with 4.4% initial enrichment, implementation of improved fuel with a new type of absorbers and more effective low-leakage core loading patterns. 10 tabs., 6 figs., 7 refs.

  4. Study on new-type fuel-related assembly handling tools for PWR NPP

    International Nuclear Information System (INIS)

    Fan Xiumei

    2013-01-01

    This article describes the design and study on a set of new-type fuel-related assembly snatching tools used for PWR NPP. The purpose is mainly to enhance the tool safety, reliability and convenientness by improvement of the mechanism and structure of the tool for snatching preciseness and avoiding from falling and abrasion of fuel-related assemblies for any condition. The new-type fuel-related assembly handling tools are compared with similar equipment in worldwide in terms of function, main technical characteristic, and safety and protection, some of them are better than the similar equipment in that they have reliable loading and unloading and conveying capabilities. (author)

  5. Automobile Buyer Decisions about Fuel Economy and Fuel Efficiency

    OpenAIRE

    Kurani, Ken; Turrentine, Thomas

    2004-01-01

    Much prior research into consumer automotive and fuel purchase behaviors and fuel economy has been shaped by the normative assumptions of economics. Among these assumptions are that consumers should pay attention to costs of fuel and that they are aware of their options to save on fuel over long periods of time, i.e., the life of a vehicle or at least their period of ownership. For example, researchers have analyzed in some depth consumer choices for more fuel economical vehicles in the 1980s...

  6. CANDU flexible and economical fuel technology in China

    Energy Technology Data Exchange (ETDEWEB)

    Mingjun, C. [CNNC Nuclear Power Operation Management Co., Zhejiang (China); Zhenhua, Z.; Zhiliang, M. [CNNC Third Qinshan Nuclear Power Co., Zhejiang (China); Cottrell, C.M.; Kuran, S. [Candu Energy Inc., Mississauga, ON (Canada)

    2014-07-01

    Use in CANDU reactor is one good option of recycled uranium (RU) and thorium (Th) resource. It is also good economy to CANDU fuel. Since 2008 Qinshan CANDU Plant and our partners (Candu Energy and CNNC and NPIC) have made great efforts to develop the engineering technologies of Flexible and Economical Fuel (RU and Th) in CANDU type reactor and finding the CANDU's position in Chinese closed fuel cycle (CFC) system. This paper presents a proposal of developing strategy and implementation plan. Qinshan CANDU reactors will be converted to use recycled and depleted uranium based fuels, a first-of-its-kind. The fuel is composed of both recycled and depleted uranium and simulating natural uranium behavior. This paper discusses its development, design, manufacture and verification tested with success and the full core implementation plan by the end of 2014. (author)

  7. Study of behavior of cermet fuel elements on IGR reactor under RIA type accident condition

    International Nuclear Information System (INIS)

    Vasil'ev, Yu.S.; Vurim, A.D.; Koltyshev, S.M.; Pakhnits, V.A.; Tukhvatulin, Sh.T.; Popov, V.V.; Ryzhkov, A.N.

    1996-01-01

    In 1993 December in IGR reactor of Inst. of Atomic Energy of National Nuclear Center of Republic of Kazakstan the second batch of in-pile testing of perspective cermet fuel elements under the condition, simulating RIA type accident was conducted. In the second batch of testing during eight start-ups 10 cermet fuel elements were examined. Among which 8 of monolith type and 2 fuel elements with false jacket beside cladding (FJF), as well as, 6 standard fuel elements of WWER-1000 type reactor with dioxide fuel were tested. 2 fuel elements - cermet and standard were placed into capsule filled with water. To measure energy release for the each start-up two fission monitor and inside core control gauge were placed. In all the start-ups operation mode of IGR was neutron pulse. Power of fuel element kept changing from 151 to 336 k W; energy release was 38-93 kJ/gr m 235 U; maximum temperature of cermet fuel was 1943-2173 K, of dioxide fuel - 1923-2843 K. The testing has demonstrated that operability of cermet fuel elements under reactivity accident condition with pulse width of 0,2 s is, at least, not less that operability of dioxide fuel elements, through advantages of cermet fuel under these conditions are revealed to the least extent

  8. Core conversion from rod to plate type fuel elements in research reactors

    International Nuclear Information System (INIS)

    Khattab, M.S.; Mina, A.R.

    1997-01-01

    Core thermalhydraulic analysis have been performed for rod and plate types fuel elements without altering the core bundles square grid spacer (68 mm, side) and coolant mass flow rate. The U O 2 -Mg, 10% enrichment rod type fuel elements are replaced by the MTR plate type, U-Al alloy of 20% enrichment. Coolant mass flux increased from 2000 kg/m 2 S to 5000 kg/m 2 S. Reactor power could be upgraded from 2 to 10 MW without significantly altering the steady state, thermal-hydraulic safety margins. Fuel, clad and coolant transient temperatures are determined inside the core hot channel during flow coast down using paret code. Residual heat removal system of 20% coolant capacity is necessary for upgrading reactor power to encounter the case of pumps off at 10 MW nominal operation. 6 figs., 2 tabs

  9. Spatial analysis of fuel treatment options for chaparral on the Angeles national forest

    Science.gov (United States)

    G. Jones; J. Chew; R. Silverstein; C. Stalling; J. Sullivan; J. Troutwine; D. Weise; D. Garwood

    2008-01-01

    Spatial fuel treatment schedules were developed for the chaparral vegetation type on the Angeles National Forest using the Multi-resource Analysis and Geographic Information System (MAGIS). Schedules varied by the priority given to various wildland urban interface areas and the general forest, as well as by the number of acres treated per decade. The effectiveness of...

  10. Fundamental principles of failed fuel detection concepts on nuclear power units of WWER type

    International Nuclear Information System (INIS)

    Lusanova, L.; Miglo, V.; Slavyagin, P.

    2001-01-01

    The subject of the paper is the Russian failed fuel detection concept in both operating and shut down reactors. The philosophy for detection of fission products released from defective fuel during operation and sipping tests and using of these results for regulation of the radiological situation at the NPP during the next cycle is widely spread. In presented work such philosophy is applied to the shut down rectors. An option for sipping test performed in a mast of Refueling Machine (RM) using a wet-gas version of sipping test is briefly described. The use of the FFD method in RM mast allows combining the procedure of Fuel Assemblies (FA) tightness test with transport operation during reloading of the fuel from the core into the cooling pool. This reduces the time for reloading and transport operation with FA and increases the safety of reactor operation. The FFD method in RM mast has passed successful tests on Unit 4 at Balakovskaja NPP and it is expected to apply in other NPP unit with WWER-1000 reactors

  11. Treatment Options for Retinoblastoma

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other places in the body. Treatment Option Overview Key Points There are different types of ...

  12. Performance evaluation of the Loviisa advanced type fuel rods

    International Nuclear Information System (INIS)

    Ranta-Puska, K.; Pihlatie, M.

    2001-01-01

    The fuel vendor TVEL has supplied to Loviisa WWER-440 power plant six lead assemblies of an advanced type which have profiling of the fuel enrichment, demountability of the assembly and a reduced shroud wall thickness. The pool side examination programme of these assemblies is underway including visual inspections, diameter and length measurements between operation cycles, and end-of-life fission gas release measurements, determined from 85 Kr activity in the plenum. Complementary evaluations and testing of models are done with the ENIGMA fuel performance code. The diameters of the corner rods have decreased to 30 μm during the first cycle and 40 to 70 μm after two cycles (with rod burnups of 24-30 MWd/kgU). The extent of creep-down is generally as expected, and agrees with the creep model adjusted for Russian Zr1%Nb cladding type and the Loviisa coolant and neutron flux conditions. The gap closure and reversed hoop strain are to be awaited during the third cycle so the new data will be an interesting validation exercise for the model and ENIGMA. Calculated temperatures stay low, and therefore low fission gas release fractions are anticipated as well

  13. FS65 Disposition Option Report

    Energy Technology Data Exchange (ETDEWEB)

    Wenz, Tracy R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-25

    This report outlines the options for dispositioning the MOX fuel stored in FS65 containers at LANL. Additional discussion regarding the support equipment for loading and unloading the FS65 transport containers is included at the end of the report.

  14. The cost of spent fuel storage

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Palacios H, J. C.; Badillo, V.; Alonso, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    Spent fuel is one of the most important issues in the nuclear industry, currently spent fuel management is been cause of great amount of research, investments, constructing repositories or constructing the necessary facilities to reprocess the fuel, and later to recycle the plutonium recovered in thermal reactors. What is the best solution?, or What is the best technology for an specific solution? Many countries have deferred the decision on selecting an option, while others works actively constructing repositories and others implementing the reprocessing facilities to recycle the plutonium obtained from nuclear spent fuel. In Mexico the nuclear power is limited to two reactors BWR type and medium size. So the nuclear spent fuel discharged has been accommodated at reactor's spent fuel pools. Originally these pools have enough capacity to accommodate spent fuel for the 40 years of designed plant operation. However currently, the plants are under a process for extended power up-rate to 20% of original power and also there are plans to extended operational life for 20 more years. Under these conditions there will not be enough room for spent fuel in the pools. (Author)

  15. ITER fuel cycle

    International Nuclear Information System (INIS)

    Leger, D.; Dinner, P.; Yoshida, H.

    1991-01-01

    Resulting from the Conceptual Design Activities (1988-1990) by the parties involved in the International Thermonuclear Experimental Reactor (ITER) project, this document summarizes the design requirements and the Conceptual Design Descriptions for each of the principal subsystems and design options of the ITER Fuel Cycle conceptual design. The ITER Fuel Cycle system provides for the handling of all tritiated water and gas mixtures on ITER. The system is subdivided into subsystems for fuelling, primary (torus) vacuum pumping, fuel processing, blanket tritium recovery, and common processes (including isotopic separation, fuel management and storage, and processes for detritiation of solid, liquid, and gaseous wastes). After an introduction describing system function and conceptual design procedure, a summary of the design is presented including a discussion of scope and main parameters, and the fuel design options for fuelling, plasma chamber vacuum pumping, fuel cleanup, blanket tritium recovery, and auxiliary and common processes. Design requirements are defined and design descriptions are given for the various subsystems (fuelling, plasma vacuum pumping, fuel cleanup, blanket tritium recovery, and auxiliary/common processes). The document ends with sections on fuel cycle design integration, fuel cycle building layout, safety considerations, a summary of the research and development programme, costing, and conclusions. Refs, figs and tabs

  16. Nuclear Options for Industrialized and Developing Countries for 2020 Results of a Forecast Study

    International Nuclear Information System (INIS)

    Loriette, Ph.; Bootz, J.Ph.

    2002-01-01

    The main objective of the project is to detect one or more nuclear options (consisting of one or several sets of reactors and fuel types) which could present a significant interest for the two horizons of 2020 and 2070. In order to attain this objective it is necessary first to define the energetic context for each of the two horizons. For EDF, the short and medium term issues are essentially to pursue the high quality operation of the existing plants and, on the other hand, to prepare the future in the perspective of the progressive park renewal. The project aims at providing an answer to this second issue. In order to provide the best possible answer, the project will have to address other criteria than the usual technical-economical one and consider every possible option. In particular, the analysis will have to integrate all the aspects: environmental, political, sociological, and market oriented. A forecast study will allow to define scenarios leading to the description of the energetic situation at horizons 2020 and 2070. The general framework of the analysis is defined, among others, by the perspectives concerning the existing park lifetime and economic competitiveness, the different types of energies demand, the European electricity market opening context and the international regulations concerning the greenhouse effect gases emissions. At the same time, the knowledge pertaining to the different innovative concepts will be gathered. Today several technical solutions are proposed by the French and foreign makers and R and D organizations, with varying degrees of development or industrialization. Those solutions concern either the reactors, the fuel or the back end of the cycle or the three topics together. It is therefore necessary to gather the acquired knowledge and to follow the development projects of those options. This activity is a technological watch or state of the art survey. Three types of options are to be distinguished: - evolutionary and

  17. Techno-economical Analysis of High Level Waste Storage and Disposal Options

    International Nuclear Information System (INIS)

    Bace, M.; Trontl, K.; Vrankic, K.

    2002-01-01

    Global warming and instability of gas and oil prices are redefining the role of nuclear energy in electrical energy production. A production of high-level radioactive waste (HLW), during the nuclear power plant operation and a danger of high level waste mitigation to the environment are considered by the public as a main obstacle of accepting the nuclear option. As economical and technical aspects of the back end of fuel cycle will affect the nuclear energy acceptance the techno-economical analysis of different methods for high level waste storage and disposal has to be performed. The aim of this paper is to present technical and economical characteristics of different HLW storage and disposal technologies. The final choice of a particular HLW management method is closely connected to the selection of a fuel cycle type: open or closed. Wet and dry temporary storage has been analyzed including different types of spent fuel pool capacity increase methods, different pool location (at reactor site and away from reactor site) as well as casks and vault system of dry storage. Since deep geological deposition is the only disposal method with a realistic potential, we focused our attention on that disposal technology. Special attention has been given to the new idea of international and regional disposal location. The analysis showed that a coexistence of different storage methods and deep geological deposition is expected in the future, regardless of the fuel cycle type. (author)

  18. Crossflow characteristics of flange type fuel element for very high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Takizuka, Takakazu; Kaburaki, Hideo; Suzuki, Kunihiko; Nakamura, Masahide.

    1987-01-01

    Fuel element design incorporating mating flanges at block end faces has the potential to improve thermal hydraulic performance of a VHTR (very high temperature gas-cooled reactor) core. As part of research and development efforts to establish flange type fuel element design, experiments and analyses were carried out on crossflow through interface gap between elements. Air at atmospheric pressure and ambient temperature was used as a fluid. Crossflow loss coefficient factors were obtained with three test models, having different flange mating clearances, for various interface gap configurations, gap widths and block misalignments. It was found that crossflow loss coefficient factors for flange type fuel element were much larger than those for conventional flat-faced element. Numerical analyses were also made using a simple model devised to represent the crossflow path at the fuel element interface. The close agreement between numerical results and experimental data indicated that this model could predict well the crossflow characteristics of the flange type fuel element. (author)

  19. Lessons Learned From Dynamic Simulations of Advanced Fuel Cycles

    International Nuclear Information System (INIS)

    Piet, Steven J.; Dixon, Brent W.; Jacobson, Jacob J.; Matthern, Gretchen E.; Shropshire, David E.

    2009-01-01

    Years of performing dynamic simulations of advanced nuclear fuel cycle options provide insights into how they could work and how one might transition from the current once-through fuel cycle. This paper summarizes those insights from the context of the 2005 objectives and goals of the Advanced Fuel Cycle Initiative (AFCI). Our intent is not to compare options, assess options versus those objectives and goals, nor recommend changes to those objectives and goals. Rather, we organize what we have learned from dynamic simulations in the context of the AFCI objectives for waste management, proliferation resistance, uranium utilization, and economics. Thus, we do not merely describe 'lessons learned' from dynamic simulations but attempt to answer the 'so what' question by using this context. The analyses have been performed using the Verifiable Fuel Cycle Simulation of Nuclear Fuel Cycle Dynamics (VISION). We observe that the 2005 objectives and goals do not address many of the inherently dynamic discriminators among advanced fuel cycle options and transitions thereof

  20. An evaluation of once-through homogeneous thorium fuel cycle for light water reactors

    International Nuclear Information System (INIS)

    Joo, H. K.; Noh, J. M.; Yoo, J. W.

    2002-01-01

    The other ways enhancing the economic potential of thorium fuel has been assessed ; the utilization of lower enriched uranium in thorium-uranium fuel, duplex thorium fuel concept, thorium utilization in the mixed core with uranium fuel assembly and thorium blanket utilization in the uranium core. The fuel economics of the proposed ways of thorium fuel increased compared to the previous homogeneous thorium fuel cycle. Compared to uranium fuel cycle, however, they do not show any economic incentives. From the view of proliferation resistance potential, thorium fuel option has the advantage to reduce the inventory of plutonium production. Any of proposed thorium options are less economical than uranium fuel option, the thorium fuel option has the potential to be utilized in the future for the sake of the effective consumption of excessive plutonium and the preparation against the using up of uranium resource

  1. Alternatives for nuclear fuel disposal

    International Nuclear Information System (INIS)

    Ramirez S, J. R.; Badillo A, V.; Palacios H, J.; Celis del Angel, L.

    2010-10-01

    The spent fuel is one of the most important issues in the nuclear industry, currently spent fuel management is been cause of great amount of research, investments in the construction of repositories or constructing the necessary facilities to reprocess the fuel, and later to recycle the plutonium recovered in thermal reactors. What is the best solution? or, What is the best technology for a specific solution? Many countries have deferred the decision on selecting an option, while other works actively constructing repositories and others implementing the reprocessing facilities to recycle the plutonium obtained from nuclear spent fuel. In Mexico the nuclear power is limited to two reactors BWR type and medium size. So the nuclear spent fuel discharged has been accommodated at reactor's spent fuel pools. Originally these pools have enough capacity to accommodate spent fuel for the 40 years of designed plant operation. However, currently is under process an extended power up rate to 20% of their original power and also there are plans to extend operational life for 20 more years. Under these conditions there will not be enough room for spent fuel in the pools. So this work describes some different alternatives that have been studied in Mexico to define which will be the best alternative to follow. (Author)

  2. 75 FR 26165 - Regulation of Fuels and Fuel Additives: Alternative Affirmative Defense Requirements for Ultra...

    Science.gov (United States)

    2010-05-11

    ... Regulation of Fuels and Fuel Additives: Alternative Affirmative Defense Requirements for Ultra-Low Sulfur... refiners, importers, distributors, and retailers of highway diesel fuel the option to use an alternative affirmative defense if the Agency finds highway diesel fuel samples above the specified sulfur standard at...

  3. Potential Bioenergy Options in Developed and Developing Countries

    African Journals Online (AJOL)

    Plant –based energy production (energy crops, forest growth) and residue and waste based fuels can substitute fossil fuels in a sustainable and environmental friendly way. In this study, bioenergy includes bio-resources that can be potentially used for modern energy production. Modern bioenergy options offer significant, ...

  4. Bringing biofuels on the market. Options to increase EU biofuels volumes beyond the current blending limits

    Energy Technology Data Exchange (ETDEWEB)

    Kampman, B.; Van Grinsven, A.; Croezen, H. [CE Delft, Delft (Netherlands); Verbeek, R.; Van Mensch, P.; Patuleia, A. [TNO, Delft, (Netherlands)

    2013-07-15

    This handbook on biofuels provides a comprehensive overview of different types of biofuels, and the technical options that exist to market the biofuels volumes expected to be consumed in the EU Member States in 2020. The study concludes that by fully utilizing the current blending limits of biodiesel (FAME) in diesel (B7) and bioethanol in petrol (E10) up to 7.9% share of biofuels in the EU transport sector can be technically reached by 2020. Increasing use of advanced biofuels, particularly blending of fungible fuels into diesel (eg. HVO and BTL) and the use of higher ethanol blends in compatible vehicles (e.g. E20), can play an important role. Also, the increased use of biomethane (in particular bio-CNG) and higher blends of biodiesel (FAME) can contribute. However, it is essential for both governments and industry to decide within 1 or 2 years on the way ahead and take necessary actions covering both, the fuels and the vehicles, to ensure their effective and timely implementation. Even though a range of technical options exist, many of these require considerable time and effort to implement and reach their potential. Large scale implementation of the options beyond current blending limits requires new, targeted policy measures, in many cases complemented by new fuel and vehicle standards, adaptation of engines and fuel distribution, etc. Marketing policies for these vehicles, fuels and blends are also likely to become much more important than in the current situation. Each Member State may develop its own strategy tailored to its market and policy objectives, but the EU should play a crucial facilitating role in these developments.

  5. Thorium Fuel Utilization Analysis on Small Long Life Reactor for Different Coolant Types

    Science.gov (United States)

    Permana, Sidik

    2017-07-01

    A small power reactor and long operation which can be deployed for less population and remote area has been proposed by the IAEA as a small and medium reactor (SMR) program. Beside uranium utilization, it can be used also thorium fuel resources for SMR as a part of optimalization of nuclear fuel as a “partner” fuel with uranium fuel. A small long-life reactor based on thorium fuel cycle for several reactor coolant types and several power output has been evaluated in the present study for 10 years period of reactor operation. Several key parameters are used to evaluate its effect to the reactor performances such as reactor criticality, excess reactivity, reactor burnup achievement and power density profile. Water-cooled types give higher criticality than liquid metal coolants. Liquid metal coolant for fast reactor system gives less criticality especially at beginning of cycle (BOC), which shows liquid metal coolant system obtains almost stable criticality condition. Liquid metal coolants are relatively less excess reactivity to maintain longer reactor operation than water coolants. In addition, liquid metal coolant gives higher achievable burnup than water coolant types as well as higher power density for liquid metal coolants.

  6. HTGR Technology Family Assessment for a Range of Fuel Cycle Missions

    International Nuclear Information System (INIS)

    Piet, Steven J.; Bays, Samuel E.; Soelberg, Nick

    2010-01-01

    This report examines how the HTGR technology family can provide options for the once through, modified open cycle (MOC), or full recycle fuel cycle strategies. The HTGR can serve all the fuel cycle missions that an LWR can; both are thermal reactors. Additional analyses are warranted to determine if HTGR 'full recycle' service could provide improved consumption of transuranic (TRU) material than LWRs (as expected), to analyze the unique proliferation resistance issues associated with the 'pebble bed' approach, and to further test and analyze methods to separate TRISO-coated fuel particles from graphite and/or to separate used HTGR fuel meat from its TRISO coating. The feasibility of these two separation issues is not in doubt, but further R and D could clarify and reduce the cost and enable options not adequately explored at present. The analyses here and the now-demonstrated higher fuel burnup tests (after the illustrative designs studied here) should enable future MOC and full recycle HTGR concepts to more rapidly consume TRU, thereby offering waste management advantages. Interest in 'limited separation' or 'minimum fuel treatment' separation approaches motivates study of impurity-tolerant fuel fabrication. Several issues are outside the scope of this report, including the following: thorium fuel cycles, gas-cooled fast reactors, the reliability of TRISO-coated particles (billions in a reactor), and how soon any new reactor or fuel type could be licensed and then deployed and therefore impact fuel cycle performance measures.

  7. HTGR Technology Family Assessment for a Range of Fuel Cycle Missions

    Energy Technology Data Exchange (ETDEWEB)

    Steven J. Piet; Samuel E. Bays; Nick Soelberg

    2010-08-01

    This report examines how the HTGR technology family can provide options for the once through, modified open cycle (MOC), or full recycle fuel cycle strategies. The HTGR can serve all the fuel cycle missions that an LWR can; both are thermal reactors. Additional analyses are warranted to determine if HTGR “full recycle” service could provide improved consumption of transuranic (TRU) material than LWRs (as expected), to analyze the unique proliferation resistance issues associated with the “pebble bed” approach, and to further test and analyze methods to separate TRISO-coated fuel particles from graphite and/or to separate used HTGR fuel meat from its TRISO coating. The feasibility of these two separation issues is not in doubt, but further R&D could clarify and reduce the cost and enable options not adequately explored at present. The analyses here and the now-demonstrated higher fuel burnup tests (after the illustrative designs studied here) should enable future MOC and full recycle HTGR concepts to more rapidly consume TRU, thereby offering waste management advantages. Interest in “limited separation” or “minimum fuel treatment” separation approaches motivates study of impurity-tolerant fuel fabrication. Several issues are outside the scope of this report, including the following: thorium fuel cycles, gas-cooled fast reactors, the reliability of TRISO-coated particles (billions in a reactor), and how soon any new reactor or fuel type could be licensed and then deployed and therefore impact fuel cycle performance measures.

  8. Economic analyses of LWR fuel cycles

    International Nuclear Information System (INIS)

    Field, F.R.

    1977-05-01

    An economic comparison was made of three options for handling irradiated light-water reactor (LWR) fuel. These options are reprocessing of spent reactor fuel and subsequent recycle of both uranium and plutonium, reprocessing and recycle of uranium only, and direct terminal storage of spent fuel not reprocessed. The comparison was based on a peak-installed nuclear capacity of 507 GWe by CY 2000 and retirement of reactors after 30 years of service. Results of the study indicate that: Through the year 2000, recycle of uranium and plutonium in LWRs saves about $12 billion (FY 1977 dollars) compared with the throwaway cycle, but this amounts to only about 1.3% of the total cost of generating electricity by nuclear power. If deferred costs are included for fuel that has been discharged from reactors but not reprocessed, the economic advantage increases to $17.7 billion. Recycle of uranium only (storage of plutonium) is approximately $7 billion more expensive than the throwaway fuel cycle and is, therefore, not considered an economically viable option. The throwaway fuel cycle ultimately requires >40% more uranium resources (U 3 O 8 ) than does reprocessing spent fuel where both uranium and plutonium are recycled

  9. Calculation device for fuel power history in BWR type reactors

    International Nuclear Information System (INIS)

    Sakagami, Masaharu.

    1980-01-01

    Purpose: To enable calculations for power history and various variants of power change in the power history of fuels in a BWR type reactor or the like. Constitution: The outputs of the process computation for the nuclear reactor by a process computer are stored and the reactor core power distribution is judged from the calculated values for the reactor core power distribution based on the stored data. Data such as for thermal power, core flow rate, control rod position and power distribution are recorded where the changes in the power distribution exceed a predetermined amount, and data such as for thermal power and core flow rate are recorded where the changes are within the level of the predetermined amount, as effective data excluding unnecessary data. Accordingly, the recorded data are taken out as required and the fuel power history and the various variants in the fuel power are calculated and determined in a calculation device for fuel power history and variants for fuel power fluctuation. (Furukawa, Y.)

  10. Perspective on long-range nuclear energy options

    International Nuclear Information System (INIS)

    Harms, W.O.

    1977-01-01

    The study group whose effort is presented here concluded that the United States urgently needs to have a breeder option available for possible deployment before the year 2000 primarily because of uncertainties in the availability of fossil fuels and uranium supplies. It was recommended that the U/Pu LMFBR program proceed as planned, including prompt construction of the CRBRP and its associated fuel cycle facilities. Alternative cycle studies should be pursued, but without significantly delaying the current program. There are technological choices which, in suitable political contexts, may somewhat reduce proliferation risks; of these, only those that employ breeders preserve the breeder option (and the nuclear option in the long term. These alternatives must be coupled with political agreements to have any significant effect on proliferation potential internationally. These same political agreements should suffice to control the U/Pu breeder cycle; there is only a difference in degree between the U/Pu and the denatured Th/U-233 cycles

  11. Nuclear Fuel Cycle System Analysis (I)

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kwon, Eun Ha; Kim, Ho Dong; Yoon, Ji Sup; Park, Seong Won

    2006-12-15

    As a nation develops strategies that provide nuclear energy while meeting its various objectives, it must begin with identification of a fuel cycle option that can be best suitable for the country. For such a purpose, this paper takes four different fuel cycle options - Once-through Cycle, DUPIC Recycle, Thermal Reactor Recycle and GEN-IV Recycle, and evaluates each option in terms of sustainability, environment-friendliness, proliferation-resistance and economics. The analysis shows that the GEN-IV Recycle appears to have an advantage in terms of sustainability, environment-friendliness and long-term proliferation-resistance, while it is expected to be more economically competitive, if uranium ore prices increase or costs of pyroprocessing and fuel fabrication decrease.

  12. Pyroprocessing of oxidized sodium-bonded fast reactor fuel - An experimental study of treatment options for degraded EBR-II fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, S.D.; Gese, N.J. [Separations Department, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 (United States); Wurth, L.A. [Zinc Air Inc., 5314-A US Hwy 2 West, Columbia Falls, MT 59912 (United States)

    2013-07-01

    An experimental study was conducted to assess pyrochemical treatment options for degraded EBR-II fuel. As oxidized material, the degraded fuel would need to be converted back to metal to enable electrorefining within an existing electro-metallurgical treatment process. A lithium-based electrolytic reduction process was studied to assess the efficacy of converting oxide materials to metal with a particular focus on the impact of zirconium oxide and sodium oxide on this process. Bench-scale electrolytic reduction experiments were performed in LiCl-Li{sub 2}O at 650 C. degrees with combinations of manganese oxide (used as a surrogate for uranium oxide), zirconium oxide, and sodium oxide. In the absence of zirconium or sodium oxide, the electrolytic reduction of MnO showed nearly complete conversion to metal. The electrolytic reduction of a blend of MnO-ZrO{sub 2} in LiCl - 1 wt% Li{sub 2}O showed substantial reduction of manganese, but only 8.5% of the zirconium was found in the metal phase. The electrolytic reduction of the same blend of MnO-ZrO{sub 2} in LiCl - 1 wt% Li{sub 2}O - 6.2 wt% Na{sub 2}O showed substantial reduction of manganese, but zirconium reduction was even less at 2.4%. This study concluded that ZrO{sub 2} cannot be substantially reduced to metal in an electrolytic reduction system with LiCl - 1 wt% Li{sub 2}O at 650 C. degrees due to the perceived preferential formation of lithium zirconate. This study also identified a possible interference that sodium oxide may have on the same system by introducing a parasitic and cyclic reaction of dissolved sodium metal between oxidation at the anode and reduction at the cathode. When applied to oxidized sodium-bonded EBR-II fuel (e.g., U-10Zr), the prescribed electrolytic reduction system would not be expected to substantially reduce zirconium oxide, and the accumulation of sodium in the electrolyte could interfere with the reduction of uranium oxide, or at least render it less efficient.

  13. Final environmental statement: US Spent Fuel Policy. Storage of foreign spent power reactor fuel

    International Nuclear Information System (INIS)

    1980-05-01

    In October 1977, the Department of Energy (DOE) announced a Spent Fuel Storage Policy for nuclear power reactors. Under this policy, as approved by the President, US utilities will be given the opportunity to deliver spent fuel to US Government custody in exchange for payment of a fee. The US Government will also be prepared to accept a limited amount of spent fuel from foreign sources when such action would contribute to meeting nonproliferation goals. Under the new policy, spent fuel transferred to the US Government will be delivered - at user expense - to a US Government-approved site. Foreign spent fuel would be stored in Interim Spent Fuel Storage (ISFS) facilities with domestic fuel. This volume of the environmental impact statement includes effects associated with implementing or not implementing the Spent Fuel Storage Policy for the foreign fuels. The analyses show that there are no substantial radiological health impacts whether the policy is implemented or not. In no case considered does the population dose commitment exceed 0.000006% of the world population dose commitment from natural radiation sources over the period analyzed. Full implementation of the US offer to accept a limited amount of foreign spent fuel for storage provides the greatest benefits for US nonproliferation policy. Acceptance of lesser quantities of foreign spent fuel in the US or less US support of foreign spent fuel storage abroad provides some nonproliferation benefits, but at a significantly lower level than full implementation of the offer. Not implementing the policy in regard to foreign spent fuel will be least productive in the context of US nonproliferation objectives. The remainder of the summary provides a brief description of the options that are evaluated, the facilities involved in these options, and the environmental impacts, including nonproliferation considerations, associated with each option

  14. Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion

    Science.gov (United States)

    2014-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored. PMID:24600326

  15. Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion

    Directory of Open Access Journals (Sweden)

    Óscar González-Espasandín

    2014-01-01

    Full Text Available The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC and Direct Methanol Fuel Cells (DMFC, their fuels (hydrogen and methanol, and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored.

  16. Fuel cells: a real option for Unmanned Aerial Vehicles propulsion.

    Science.gov (United States)

    González-Espasandín, Óscar; Leo, Teresa J; Navarro-Arévalo, Emilio

    2014-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored.

  17. Post-pulse detail metallographic examinations of low-enriched uranium silicide plate-type miniature fuel

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    1991-10-01

    Pulse irradiation at Nuclear Safety Research Reactor (NSRR) was performed using low-enriched (19.89 w% 235 U) unirradiated silicide plate-type miniature fuel which had a density of 4.8 gU/cm 3 . Experimental aims are to understand the dimensional stability and to clarify the failure threshold of the silicide plate-type miniature fuel under power transient conditions through post-pulse detail metallographic examinations. A silicide plate-type miniature fuel was loaded into an irradiation capsule and irradiated by a single pulse. Deposited energies given in the experiments were 62, 77, 116 and 154 cal/g·fuel, which lead to corresponding peak fuel plate temperatures, 201 ± 28degC, 187 ± 10degC, 418 ± 74degC and 871 ± 74degC, respectively. Below 400degC, reliability and dimensional stability of the silicide plate fuel was sustained, and the silicide plate fuel was intact. Up to 540degC, wall-through intergranular crackings occurred in the Al-3%Mg alloy cladding. With the increase of the temperature, the melting of the aluminum cladding followed by recrystallization, the denudation of fuel core and the plate-through intergranular cracking were observed. With the increase of the temperature beyond 400degC, the bowing of fuel plate became significant. Above the temperature of 640degC molten aluminum partially reacted with the fuel core, partially flowed downward under the influence of surface tension and gravity, and partially formed agglomerations. Judging from these experimental observations, the fuel-plate above 400degC tends to reduce its dimensional stability. Despite of the apparent silicide fuel-plate failure, neither generation of pressure pulse nor that of mechanical energy occurred at all. (J.P.N.)

  18. Dry spent fuel storage in the 1990's

    International Nuclear Information System (INIS)

    Roberts, J.P.

    1991-01-01

    In the US, for the decade of the 1990's, at-reactor-site dry spent fuel storage has become the predominant option outside of reactor spent fuel pools. This development has resulted from failure, in the 1980's, of a viable reprocessing option for commercial power reactors, and delay in geologic repository development to an operational date at or beyond the year 2010. Concurrently, throughout the 1980's, aggressive technical and regulatory efforts by the Federal Government, coordinated with nuclear industry, have led to successful evolution of dry spent fuel storage as a utility option

  19. Radioactive Waste Generation in Pyro-SFR Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Gao, Fanxing; Park, Byung Heung; Ko, Won Il

    2011-01-01

    Which nuclear fuel cycle option to deploy is of great importance in the sustainability of nuclear power. SFR fuel cycle employing pyroprocessing (named as Pyro- SFR Cycle) is one promising fuel cycle option in the near future. Radioactive waste generation is a key criterion in nuclear fuel cycle system analysis, which considerably affects the future development of nuclear power. High population with small territory is one special characteristic of ROK, which makes the waste management pretty important. In this study, particularly the amount of waste generation with regard to the promising advanced fuel cycle option was evaluated, because the difficulty of deploying an underground repository for HLW disposal requires a longer time especially in ROK

  20. Performance evaluation of CPF shredder type mechanical crusher with simulated core fuel pin

    International Nuclear Information System (INIS)

    Nakahara, Masaumi; Sano, Yuichi; Aose, Shin-ichi

    2006-12-01

    In the advanced aqueous reprocessing system, powder fuel dissolution has been investigated, which is quite effective on the dissolution for highly concentrated solution. As one of the effective means that powder the irradiated MOX fuel, we have been developing shredder type mechanical crusher. This apparatus can automatically crush the sheared fuel pieces by twin-shaft disk blades, powder the crushed fragments by disk blades and screen blade, and recover the powdered fuel. The shredder type mechanical crusher was developed for using in a hot cell in Chemical Processing Facility, and the first crush experiment with this crusher was carried out at July 2004 using the simulated core fuel pin. This experiment showed that the crushed fragments could not be grinded efficiency because screen blade vibrated up and down during the operation. Additionally, the strength of screen blade block was insufficient to crush the sheared fuel pieces stably. Therefore, about 70% of fuel was recovered in maximum. Based on the results of the first experiment, screen blade was fixed up mainly and the second experiment was carried out with improved apparatus at September 2005. In this experiment, about 96% of fuel could be recovered in maximum because screen blade was stable during the operation. (J.P.N.)

  1. Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion

    OpenAIRE

    González_Espasandín, Oscar; Leo Mena, Teresa de Jesus; Navarro Arevalo, Emilio

    2013-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order t...

  2. Status of nuclear fuel reprocessing, spent fuel storage, and high-level waste disposal. Nuclear Fuel Cycle Committee, California Energy Resources Conservation and Development Commission. Draft report

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    An analysis of the current status of technologies and issues in the major portions of the back-end of the nuclear fuel cycle is presented. The discussion on nuclear fuel reprocessing covers the reprocessing requirement, reprocessing technology assessment, technology for operation of reprocessing plants, and approval of reprocessing plants. The chapter devoted to spent fuel storage covers the spent fuel storge problem, the legislative response, options for maintaining full core discharge capacity, prospective availability of alterntive storage options, and the outlook for California. The existence of a demonstrated, developed high-level waste disposal technology is reviewed. Recommendations for Federal programs on high-level waste disposal are made

  3. Reprocessing of research reactor fuel the Dounreay option

    Energy Technology Data Exchange (ETDEWEB)

    Cartwright, P.

    1997-08-01

    Reprocessing is a proven process for the treatment of spent U/Al Research Reactor fuel. At Dounreay 12679 elements have been reprocessed during the past 30 years. For reactors converting to LEU fuel the uranium recovered in reprocessing can be blended down to less than 20% U{sub 235}, enrichment and be fabricated into new elements. For reactors already converted to LEU it is technically possible to reprocess spent silicide fuel to reduce the U{sub 235} burden and present to a repository only stable conditioned waste. The main waste stream from reprocessing which contains the Fission products is collected in underground storage tanks where it is kept for a period of at least five years before being converted to a stable solid form for return to the country of origin for subsequent storage/disposal. Discharges to the environment from reprocessing are low and are limited to the radioactive gases contained in the spent fuel and a low level liquid waste steam. Both of these discharges are independently monitored, and controlled within strict discharge limits set by the UK Government`s Scottish Office. Transportation of spent fuel to Dounreay has been undertaken using many routes from mainland Europe and has utilised over the past few years both chartered and scheduled vessel services. Several different transport containers have been handled and are currently licensed in the UK. This paper provides a short history of MTR reprocessing at Dounreay, and provides information to show reprocessing can satisfy the needs of MTR operators, showing that reprocessing is a valuable asset in non-proliferation terms, offers a complete solution and is environmentally acceptable.

  4. Bi-fuel System - Gasoline/LPG in A Used 4-Stroke Motorcycle - Fuel Injection Type

    Science.gov (United States)

    Suthisripok, Tongchit; Phusakol, Nachaphat; Sawetkittirut, Nuttapol

    2017-10-01

    Bi-fuel-Gasoline/LPG system has been effectively and efficiently used in gasoline vehicles with less pollutants emission. The motorcycle tested was a used Honda AirBlade i110 - fuel injection type. A 3-litre LPG storage tank, an electronic fuel control unit, a 1-mm LPG injector and a regulator were securely installed. The converted motorcycle can be started with either gasoline or LPG. The safety relief valve was set below 48 kPa and over 110 kPa. The motorcycle was tuned at the relative rich air-fuel ratio (λ) of 0.85-0.90 to attain the best power output. From dynamometer tests over the speed range of 65-100 km/h, the average power output when fuelling LPG was 5.16 hp; dropped 3.9% from the use of gasoline91. The average LPG consumption rate from the city road test at the average speed of 60 km/h was 40.1 km/l, about 17.7% more. This corresponded to lower LPG’s energy density of about 16.2%. In emission, the CO and HC concentrations were 44.4% and 26.5% lower. Once a standard gas equipment set with ECU and LPG injector were securely installed and the engine was properly tuned up to suit LPG’s characteristics, the converted bi-fuel motorcycle offers efficiently, safely and economically performance with environmental friendly emission.

  5. Radiation and environmental safety of spent nuclear fuel management options based on direct disposal or reprocessing and disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Vuori, S.

    1996-05-01

    The report considers the various stages of two nuclear fuel cycle options: direct disposal and reprocessing followed by disposal of vitrified high-level waste. The comparative review is based on the results of previous international studies and concentrates on the radiation and environmental safety aspects of technical solutions based on today's technology. (23 refs., 7 figs., 4 tabs.)

  6. Development of simulation code for FBR spent fuel dissolution with rotary drum type continuous dissolver

    International Nuclear Information System (INIS)

    Sano, Yuichi; Katsurai, Kiyomichi; Washiya, Tadahiro; Koizumi, Tsutomu; Matsumoto, Satoshi

    2011-01-01

    Japan Atomic Energy Agency (JAEA) has been studying rotary drum type continuous dissolver for FBR spent fuel dissolution. For estimating the fuel dissolution behavior under several operational conditions in this dissolver, we have been developing the simulation code, PLUM, which mainly consists of 3 modules for calculating chemical reaction, mass transfer and thermal balance in the rotary drum type continuous dissolver. Under the various conditions where dissolution experiments were carried out with the batch-wise dissolver for FBR spent fuel and with the rotary drum type continuous dissolver for UO 2 fuel, it was confirmed that the fuel dissolution behaviors calculated by the PLUM code showed good agreement with the experimental ones. Based on this result, the condition for obtaining the dissolver solution with high HM (heavy metal : U and Pu) concentration (∼500g/L), which is required for the next step, i.e. crystallization process, was also analyzed by this code and appropriate operational conditions with the rotary drum type continuous dissolver, such as feedrate, concentration and temperature of nitric acid, could be clarified. (author)

  7. Recent IAEA activities on CANDU-PHWR fuels and fuel cycles

    International Nuclear Information System (INIS)

    Inozemtsev, V.; Ganguly, C.

    2005-01-01

    Pressurized Heavy Water Reactors (PHWR), widely known as CANDU, are in operation in Argentina, Canada, China, India, Pakistan, Republic of Korea and Romania and account for about 6% of the world's nuclear electricity production. The CANDU reactor and its fuel have several unique features, like horizontal calandria and coolant tubes, on-power fuel loading, thin-walled collapsible clad coated with graphite on the inner surface, very high density (>96%TD) natural uranium oxide fuel and amenability to slightly enriched uranium oxide, mixed uranium plutonium oxide (MOX), mixed thorium plutonium oxide, mixed thorium uranium (U-233) oxide and inert matrix fuels. Several Technical Working Groups (TWG) of IAEA periodically discuss and review CANDU reactors, its fuel and fuel cycle options. These include TWGs on water-cooled nuclear power reactor Fuel Performance and Technology (TWGFPT), on Nuclear Fuel Cycle Options and spent fuel management (TWGNFCO) and on Heavy Water Reactors (TWGHWR). In addition, IAEA-INPRO project also covers Advanced CANDU Reactors (ACR) and DUPIC fuel cycles. The present paper summarises the Agency's activities in CANDU fuel and fuel cycle, highlighting the progress during the last two years. In the past we saw HWR and LWR technologies and fuel cycles separate, but nowadays their interaction is obviously growing, and their mutual influence may have a synergetic character if we look at the world nuclear fuel cycle as at an integrated system where the both are important elements in line with fast neutron, gas cooled and other advanced reactors. As an international organization the IAEA considers this challenge and makes concrete steps to tackle it for the benefit of all Member States. (author)

  8. Evaluation and optimization of LWR fuel cycles

    International Nuclear Information System (INIS)

    Akbas, T.; Zabunoglu, O.; Tombakoglu, M.

    2001-01-01

    There are several options in the back-end of the nuclear fuel cycle. Discharge burn-up, length of interim storage period, choice of direct disposal or recycling and method of reprocessing in case of recycling affect the options and determine/define the fuel cycle scenarios. These options have been evaluated in viewpoint of some tangible (fuel cycle cost, natural uranium requirement, decay heat of high level waste, radiological ingestion and inhalation hazards) and intangible factors (technological feasibility, nonproliferation aspect, etc.). Neutronic parameters are calculated using versatile fuel depletion code ORIGEN2.1. A program is developed for calculation of cost related parameters. Analytical hierarchy process is used to transform the intangible factors into the tangible ones. Then all these tangible and intangible factors are incorporated into a form that is suitable for goal programming, which is a linear optimization technique and used to determine the optimal option among alternatives. According to the specified objective function and constraints, the optimal fuel cycle scenario is determined using GPSYS (a linear programming software) as a goal programming tool. In addition, a sensitivity analysis is performed for some selected important parameters

  9. Diversity of fuel sources for electricity generation in an evolving U.S. power sector

    Science.gov (United States)

    DiLuccia, Janelle G.

    Policymakers increasingly have shown interest in options to boost the relative share of renewable or clean electricity generating sources in order to reduce negative environmental externalities from fossil fuels, guard against possible resource constraints, and capture economic advantages from developing new technologies and industries. Electric utilities and non-utility generators make decisions regarding their generation mix based on a number of different factors that may or may not align with societal goals. This paper examines the makeup of the electric power sector to determine how the type of generator and the presence (or lack) of competition in electricity markets at the state level may relate to the types of fuel sources used for generation. Using state-level electricity generation data from the U.S. Energy Information Administration from 1990 through 2010, this paper employs state and time fixed-effects regression modeling to attempt to isolate the impacts of state-level restructuring policies and the emergence of non-utility generators on states' generation from coal, from fossil fuel and from renewable sources. While the analysis has significant limitations, I do find that state-level electricity restructuring has a small but significant association with lowering electricity generation from coal specifically and fossil fuels more generally. Further research into the relationship between competition and fuel sources would aid policymakers considering legislative options to influence the generation mix.

  10. Options with Extreme Strikes

    Directory of Open Access Journals (Sweden)

    Lingjiong Zhu

    2015-07-01

    Full Text Available In this short paper, we study the asymptotics for the price of call options for very large strikes and put options for very small strikes. The stock price is assumed to follow the Black–Scholes models. We analyze European, Asian, American, Parisian and perpetual options and conclude that the tail asymptotics for these option types fall into four scenarios.

  11. Management of experimental and exotic fuels by Atomic Energy of Canada Ltd

    International Nuclear Information System (INIS)

    Doyle, J.R.

    1999-01-01

    Atomic Energy of Canada (AECL) has been engaged in nuclear research and development at its Chalk River Laboratories since the 1940's. During this time, a wide variety of irradiated research reactor and experimental fuels have been stored in a variety of storage facilities. Some of these fuels are of unique composition and configuration, and some fuels have been degraded as a result of research activities. In preparing decommissioning plans for these storage facilities, AECL has developed a strategy that identifies how each type of fuel will be dispositioned in the future. The goal of this strategy is to ensure that the fuels are maintained in a safe stable state until a repository for these fuels becomes available. This paper describes the current storage facilities, options considered for long-term fuel management, and the strategy selected to manage these fuels. (author)

  12. Candu 6: versatile and practical fuel technology

    International Nuclear Information System (INIS)

    Hopwood, J. M.; Saroudis, J.

    2013-01-01

    CANDU reactor technology was originally developed in Canada as part of the original introduction of peaceful nuclear power in the 1960s and has been continuously evolving and improving ever since. The CANDU reactor system was defined with a requirement to be able to efficiently use natural uranium (NU) without the need for enrichment. This led to the adaptation of the pressure tube approach with heavy water coolant and moderator together with on-power fuelling, all of which contribute to excellent neutron efficiency. Since the beginning, CANDU reactors have used [NU] fuel as the fundamental basis of the design. The standard [NU] fuel bundle for CANDU is a very simple design and the simplicity of the fuel design adds to the cost effectiveness of CANDU fuelling because the fuel is relatively straightforward to manufacture and use. These characteristics -- excellent neutron efficiency and simple, readily-manufactured fuel -- together lead to the unique adaptability of CANDU to alternate fuel types, and advancements in fuel cycles. Europe has been an early pioneer in nuclear power; and over the years has accumulated various waste products from reactor fuelling and fuel reprocessing, all being stored safely but which with passing time and ever increasing stockpiles will become issues for both governments and utilities. Several European countries have also pioneered in fuel reprocessing and recycling (UK, France, Russia) in what can be viewed as a good neighbor policy to make most efficient use of fuel. The fact remains that CANDU is the most fuel efficient thermal reactor available today [NU] more efficient in MW per ton of U compared to LWR's and these same features of CANDU (on-power fuelling, D 2 O, etc) also enable flexibility to adapt to other fuel cycles, particularly recycling. Many years of research (including at ICN Pitesti) have shown CANDU capability: best at Thorium utilization; can use RU without re-enrichment; can readily use MOX. Our premise is that

  13. Enrichment measurement in TRIGA type fuels; Medicion de enriquecimiento en combustibles tipo Triga

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar H, F.; Mazon R, R. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2001-05-15

    The Department of Energy of the United States of North America, through the program 'Idaho Operations Nuclear Spent Fuel Program' of the Idaho National Engineering and Environmental Laboratory (INEEL), in Idaho Falls; Idaho USA, hires to Global Technologies Inc. (GTI) to develop a prototype device of detection enrichment uranium (DEU Detection of Enrichment of Uranium) to determine quantitatively the enrichment in remainder U-235 in a TRIGA fuel element at the end of it useful life. The characteristics of the prototype developed by GTI are the following ones: It allows to carry out no-destructive measurements of TRIGA type fuel. Easily transportable due to that reduced of it size. The determination of the enrichment (in grams of U-235) it is obtained with a precision of 5%. The National Institute of Nuclear Research (ININ), in its facilities of the Nuclear Center of Mexico, it has TRIGA type fuel of high and low enrichment (standard and FLIP) fresh and with burnt, it also has the infrastructure (hot cells, armor-plating of transport, etc) and qualified personnel to carry out the necessary maneuvers to prove the operation of the DEU prototype. For this its would be used standard type fuel elements and FLIP, so much fresh as with certain burnt one. In the case of the fresh fuels the measurement doesn't represent any risk, the fuels before and after the measurement its don't contain a quantity of fission products that its represent a radiological risk in its manipulation; but in the case of the fuels with burnt the handling of the same ones represents an important radiological risk reason why for its manipulation it was used the transport armor-plating and the hot cells. (Author)

  14. Fuel-cycle cost comparisons with oxide and silicide fuels

    International Nuclear Information System (INIS)

    Matos, J.E.; Freese, K.E.

    1982-01-01

    This paper addresses fuel cycle cost comparisons for a generic 10 MW reactor with HEU aluminide fuel and with LEU oxide and silicide fuels in several fuel element geometries. The intention of this study is to provide a consistent assessment of various design options from a cost point of view. Fuel cycle cost benefits could result if a number of reactors were to utilize fuel elements with the same number or different numbers of the same standard fuel plate. Data are presented to quantify these potential cost benefits. This analysis shows that there are a number of fuel element designs using LEU oxide or silicide fuels that have either the same or lower total fuel cycle costs than the HEU design. Use of these fuels with the uranium densities considered requires that they are successfully demonstrated and licensed

  15. Advanced fuel cycle cost estimation model and its cost estimation results for three nuclear fuel cycles using a dynamic model in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sungki, E-mail: sgkim1@kaeri.re.kr [Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Ko, Wonil [Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Youn, Saerom; Gao, Ruxing [University of Science and Technology, 217 Gajungro, Yuseong-gu, Daejeon 305-350 (Korea, Republic of); Bang, Sungsig, E-mail: ssbang@kaist.ac.kr [Korea Advanced Institute of Science and Technology, Department of Business and Technology Management, 291 Deahak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2015-11-15

    Highlights: • The nuclear fuel cycle cost using a new cost estimation model was analyzed. • The material flows of three nuclear fuel cycle options were calculated. • The generation cost of once-through was estimated to be 66.88 mills/kW h. • The generation cost of pyro-SFR recycling was estimated to be 78.06 mills/kW h. • The reactor cost was identified as the main cost driver of pyro-SFR recycling. - Abstract: The present study analyzes advanced nuclear fuel cycle cost estimation models such as the different discount rate model and its cost estimation results. To do so, an analysis of the nuclear fuel cycle cost of three options (direct disposal (once through), PWR–MOX (Mixed OXide fuel), and Pyro-SFR (Sodium-cooled Fast Reactor)) from the viewpoint of economic sense, focusing on the cost estimation model, was conducted using a dynamic model. From an analysis of the fuel cycle cost estimation results, it was found that some cost gap exists between the traditional same discount rate model and the advanced different discount rate model. However, this gap does not change the priority of the nuclear fuel cycle option from the viewpoint of economics. In addition, the fuel cycle costs of OT (Once-Through) and Pyro-SFR recycling based on the most likely value using a probabilistic cost estimation except for reactor costs were calculated to be 8.75 mills/kW h and 8.30 mills/kW h, respectively. Namely, the Pyro-SFR recycling option was more economical than the direct disposal option. However, if the reactor cost is considered, the economic sense in the generation cost between the two options (direct disposal vs. Pyro-SFR recycling) can be changed because of the high reactor cost of an SFR.

  16. Is fuel poverty in Ireland a distinct type of deprivation?

    OpenAIRE

    Watson, Dorothy; Maitre, Bertrand

    2014-01-01

    In this paper, we draw on the Central Statistics Office SILC data for Ireland to ask whether fuel poverty is a distinctive type of deprivation that warrants a fundamentally different policy response than poverty in general. We examine the overlap between fuel poverty (based on three self-report items) and poverty in general – with a particular emphasis on the national indicator of basic deprivation which is used in the measurement of poverty for policy purposes in Ireland. We examine changes ...

  17. Status of fuel element technology for plate type dispersion fuels with high uranium density

    International Nuclear Information System (INIS)

    Hrovat, M.; Huschka, H.; Koch, K.H.; Nazare, S.; Ondracek, G.

    1983-01-01

    A number of about 20 Material Test and Research Reactors in Germany and abroad is supplied with fuel elements by the company NUKEM. The power of these reactors differs widely ranging from up to about 100 MW. Consequently, the uranium density of the fuel elements in the meat varies considerably depending on the reactor type and is usually within the range from 0.4 to 1.3 g U/cm 3 if HEU is used. In order to convert these reactors to lower uranium enrichment (19.75% 235-U) extensive work is carried out at NUKEM since about two years with the goal to develop fuel elements with high U-density. This work is sponsored by the German Ministry for Research and Technology in the frame of the AF-program. This paper reports on the present state of development for fuel elements with high U-density fuels at NUKEM is reported. The development works were so far concentrated on UAl x , U 3 O 8 and UO 2 fuels which will be described in more detail. In addition fuel plates with new fuels like e.g. U-Si or U-Fe compounds are developed in collaboration with KfK. The required uranium densities for some typical reactors with low, medium, and high power are listed allowing a comparison of HEU and LEU uranium density requirements. The 235-U-content in the case of LEU is raised by 18%. Two different meat thicknesses are considered: Standard thickness of 0.5 mm; and increased thickness of 0.76 mm. From this data compilation the objective follows: in the case of conversion to LEU (19.75% 235-U-enrichment), uranium densities have to be made available up to 24 gU/cm 3 meat for low power level reactors, up to 33 gU/cm 3 meat for medium power level reactors, and between 5.75 and 7.03 g/cm 3 meat for high power level reactors according to this consideration

  18. Transport and supply logistics of biomass fuels: Vol. 1. Supply chain options for biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J; Browne, M; Palmer, H; Hunter, A; Boyd, J

    1996-10-01

    The study which forms part of a wider project funded by the Department of Trade and Industry, looks at the feasibility of generating electricity from biomass-fuelled power stations. Emphasis is placed on supply availabilty and transport consideration for biomass fuels such as wood wastes from forestry, short rotation coppice products, straw, miscanthus (an energy crop) and farm animal slurries. The study details the elements of the supply chain for each fuel from harvesting to delivery at the power station. The delivered cost of each fuel, the environmental impact of the biomass fuel supply and other relevant non-technical issues are addressed. (UK)

  19. Qualification of high-density fuel manufacturing for research reactors at CNEA

    Energy Technology Data Exchange (ETDEWEB)

    Adelfang, P.; Alvarez, L.; Boero, N.; Calabrese, R.; De La Fuente, M.; Echenique, P.; Markiewicz, M.; Pasqualini, E.; Ruggirello, G.; Taboada, H. [CNEA, Buenos Aires (Argentina)

    2001-07-01

    CNEA, the National Atomic Energy Commission of Argentina, is at the present a qualified supplier of uranium oxide fuel for research reactors. A new objective in this field is to develop and qualify the manufacturing of LEU high-density fuel for this type of reactors. According with the international trend Silicide fuel and U-xMo fuel are included in our program as the most suitable options. The facilities to complete the qualification of high-density MTR fuels, like the manufacturing plant installations, the reactor, the pool side fuel examination station and the hot cells are fully operational and equipped to perform all the activities required within the program. The programs for both type of fuels include similar activities: development and set up of the fuel material manufacturing technology, set up of fuel plate manufacturing, fabrication and irradiation of miniplates, fabrication and irradiation of full scale fuel elements, post-irradiation examination and feedback for manufacturing improvements. For silicide fuels most of these steps have already been completed. For U-xMo fuel the activities also include the development of alternative ways to obtain U-xMo powder, feasibility studies for large-scale manufacturing and the economical assessment. Set up of U-xMo fuel plate manufacturing is also well advanced and the fabrication of the first full scale prototype is foreseen during this year. (author)

  20. Cask operation and maintenance for spent fuel storage

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.S. [International Atomic Energy Agency, Vienna (Austria)

    2004-07-01

    Interim storage is an essential platform for any option to be chosen later as an endpoint for spent fuel management. In view of such a circumstance, the most imminent service required for the spent fuel management worldwide is to provide adequate storage for the future spent fuel inventory arising either from the continued operation of nuclear power plants or from the removal of spent fuel in preparation for plant decommissioning. While the bulk of the global inventory of spent fuel are still stored in AR pools, dry storage has become a prominent alternative especially for newly built AFR facilities, with more than 17,000 t HM already stored in dry storage facilities worldwide. Storage in cask under inert conditions has become the preferred option, given the advantages including passive cooling features and modular mode of capacity increase. In terms of economics, dry storage is particularly propitious for long-term storage in that operational costs are minimized by the passive cooling features. The trend toward dry storage, especially in cask type, is likely to continue with an implication that and the supply will closely follow the increasing demand for storage by incremental additions of casks to the effect of minimizing cost penalty of the idle capacities typical of pool facilities. A variety of storage systems have been developed to meet specific requirements of different reactor fuels and a large number of designs based on these generic technologies are now available for the spent fuel containers (horizontal, vertical etc) and storage facilities. Multi-purpose technologies (i.e. a single technology for storage, transportation and disposal) have also been studied. Recent concern on security measures for protection of spent fuel has prompted a consideration on the possibility of placing storage facility underground. The future evolution of requirements and technologies will bring important impacts on cask operation and maintenance for spent fuel storage.

  1. Cask operation and maintenance for spent fuel storage

    International Nuclear Information System (INIS)

    Lee, J.S.

    2004-01-01

    Interim storage is an essential platform for any option to be chosen later as an endpoint for spent fuel management. In view of such a circumstance, the most imminent service required for the spent fuel management worldwide is to provide adequate storage for the future spent fuel inventory arising either from the continued operation of nuclear power plants or from the removal of spent fuel in preparation for plant decommissioning. While the bulk of the global inventory of spent fuel are still stored in AR pools, dry storage has become a prominent alternative especially for newly built AFR facilities, with more than 17,000 t HM already stored in dry storage facilities worldwide. Storage in cask under inert conditions has become the preferred option, given the advantages including passive cooling features and modular mode of capacity increase. In terms of economics, dry storage is particularly propitious for long-term storage in that operational costs are minimized by the passive cooling features. The trend toward dry storage, especially in cask type, is likely to continue with an implication that and the supply will closely follow the increasing demand for storage by incremental additions of casks to the effect of minimizing cost penalty of the idle capacities typical of pool facilities. A variety of storage systems have been developed to meet specific requirements of different reactor fuels and a large number of designs based on these generic technologies are now available for the spent fuel containers (horizontal, vertical etc) and storage facilities. Multi-purpose technologies (i.e. a single technology for storage, transportation and disposal) have also been studied. Recent concern on security measures for protection of spent fuel has prompted a consideration on the possibility of placing storage facility underground. The future evolution of requirements and technologies will bring important impacts on cask operation and maintenance for spent fuel storage

  2. Fast reactor parameter optimization taking into account changes in fuel charge type during reactor operation time

    International Nuclear Information System (INIS)

    Afrin, B.A.; Rechnov, A.V.; Usynin, G.B.

    1987-01-01

    The formulation and solution of optimization problem for parameters determining the layout of the central part of sodium cooled power reactor taking into account possible changes in fuel charge type during reactor operation time are performed. The losses under change of fuel composition type for two reactor modifications providing for minimum doubling time for oxide and carbide fuels respectively, are estimated

  3. Advanced nuclear fuel cycles - Main challenges and strategic choices

    International Nuclear Information System (INIS)

    Le Biez, V.; Machiels, A.; Sowder, A.

    2013-01-01

    A graphical conceptual model of the uranium fuel cycles has been developed to capture the present, anticipated, and potential (future) nuclear fuel cycle elements. The once-through cycle and plutonium recycle in fast reactors represent two basic approaches that bound classical options for nuclear fuel cycles. Chief among these other options are mono-recycling of plutonium in thermal reactors and recycling of minor actinides in fast reactors. Mono-recycling of plutonium in thermal reactors offers modest savings in natural uranium, provides an alternative approach for present-day interim management of used fuel, and offers a potential bridging technology to development and deployment of future fuel cycles. In addition to breeder reactors' obvious fuel sustainability advantages, recycling of minor actinides in fast reactors offers an attractive concept for long-term management of the wastes, but its ultimate value is uncertain in view of the added complexity in doing so,. Ultimately, there are no simple choices for nuclear fuel cycle options, as the selection of a fuel cycle option must reflect strategic criteria and priorities that vary with national policy and market perspectives. For example, fuel cycle decision-making driven primarily by national strategic interests will likely favor energy security or proliferation resistance issues, whereas decisions driven primarily by commercial or market influences will focus on economic competitiveness

  4. Advanced nuclear fuel cycles - Main challenges and strategic choices

    Energy Technology Data Exchange (ETDEWEB)

    Le Biez, V. [Corps des Mines, 35 bis rue Saint-Sabin, F-75011 Paris (France); Machiels, A.; Sowder, A. [Electric Power Research Institute, Inc. 3420, Hillview Avenue, Palo Alto, CA 94304 (United States)

    2013-07-01

    A graphical conceptual model of the uranium fuel cycles has been developed to capture the present, anticipated, and potential (future) nuclear fuel cycle elements. The once-through cycle and plutonium recycle in fast reactors represent two basic approaches that bound classical options for nuclear fuel cycles. Chief among these other options are mono-recycling of plutonium in thermal reactors and recycling of minor actinides in fast reactors. Mono-recycling of plutonium in thermal reactors offers modest savings in natural uranium, provides an alternative approach for present-day interim management of used fuel, and offers a potential bridging technology to development and deployment of future fuel cycles. In addition to breeder reactors' obvious fuel sustainability advantages, recycling of minor actinides in fast reactors offers an attractive concept for long-term management of the wastes, but its ultimate value is uncertain in view of the added complexity in doing so,. Ultimately, there are no simple choices for nuclear fuel cycle options, as the selection of a fuel cycle option must reflect strategic criteria and priorities that vary with national policy and market perspectives. For example, fuel cycle decision-making driven primarily by national strategic interests will likely favor energy security or proliferation resistance issues, whereas decisions driven primarily by commercial or market influences will focus on economic competitiveness.

  5. Nuclear fuel cycle modelling using MESSAGE

    International Nuclear Information System (INIS)

    Guiying Zhang; Dongsheng Niu; Guoliang Xu; Hui Zhang; Jue Li; Lei Cao; Zeqin Guo; Zhichao Wang; Yutong Qiu; Yanming Shi; Gaoliang Li

    2017-01-01

    In order to demonstrate the possibilities of application of MESSAGE tool for the modelling of a Nuclear Energy System at the national level, one of the possible open nuclear fuel cycle options based on thermal reactors has been modelled using MESSAGE. The steps of the front-end and back-end of nuclear fuel cycle and nuclear reactor operation are described. The optimal structure for Nuclear Power Development and optimal schedule for introducing various reactor technologies and fuel cycle options; infrastructure facilities, nuclear material flows and waste, investments and other costs are demonstrated. (author)

  6. Treatment Options for Wilms Tumor

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... come back) after it has been treated. Treatment Option Overview Key Points There are different types of ...

  7. Treatment Options for Myelodysplastic Syndromes

    Science.gov (United States)

    ... special light. Certain factors affect prognosis and treatment options. The prognosis (chance of recovery) and treatment options ... age and general health of the patient. Treatment Option Overview Key Points There are different types of ...

  8. Treatment Option Overview (Prostate Cancer)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  9. Treatment Option Overview (Myelodysplastic Syndromes)

    Science.gov (United States)

    ... special light. Certain factors affect prognosis and treatment options. The prognosis (chance of recovery) and treatment options ... age and general health of the patient. Treatment Option Overview Key Points There are different types of ...

  10. Treatment Option Overview (Esophageal Cancer)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  11. Treatment Option Overview (Childhood Rhabdomyosarcoma)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  12. Treatment Option Overview (Penile Cancer)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  13. Treatment Option Overview (Vulvar Cancer)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  14. Treatment Option Overview (Pancreatic Cancer)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  15. Treatment Option Overview (Adrenocortical Carcinoma)

    Science.gov (United States)

    ... affect the prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  16. Treatment Options for Childhood Rhabdomyosarcoma

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  17. Treatment Options for Kaposi Sarcoma

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  18. Treatment Options for Childhood Craniopharyngioma

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... the brain where it was first found. Treatment Option Overview Key Points There are different types of ...

  19. Fuel assembly for pressure loss variable PWR type reactor

    International Nuclear Information System (INIS)

    Yoshikuni, Masaaki.

    1993-01-01

    In a PWR type reactor, a pressure loss control plate is attached detachably to a securing screw holes on the lower surface of a lower nozzle to reduce a water channel cross section and increase a pressure loss. If a fuel assembly attached with the pressure loss control plate is disposed at a periphery of the reactor core where the power is low and heat removal causes no significant problem, a flowrate at the periphery of the reactor core is reduced. Since this flowrate is utilized for removal of heat from fuel assemblies of high powder at the center of the reactor core where a pressure loss control plate is not attached, a thermal limit margin of the whole reactor core is increased. Thus, a limit of power peaking can be moderated, to obtain a fuel loading pattern improved with neutron economy. (N.H.)

  20. Impact of Fuel Type on the Internal Combustion Engine Condition

    Directory of Open Access Journals (Sweden)

    Zdravko Schauperl

    2012-07-01

    Full Text Available The paper studies the influence of liquefied petroleum gas as alternative fuel on the condition of the internal combustion engine. The traffic, energy, economic and ecological influence as well as the types of fuel are studied and analyzed in an unbiased manner, objectively, and in detail, and the obtained results are compared with the condition of the engine of a vehicle powered by the stipulated fuel, petrol Eurosuper 95. The study was carried out on two identical passenger cars with one being fitted with gas installation. The obtained results show that properly installed gas installations in vehicles and the usage of LPG have no significant influence on the driving performances, but they affect significantly the ecological and economic parameters of using passenger cars.

  1. Fuel cells - an option for decentralized power supply?

    International Nuclear Information System (INIS)

    Ketterer, H.

    1995-01-01

    Development efforts worldwide are made on industrial-scale power stations with high-temperature fuel cells fuelled with coal gas and with off-gases of up to 1000 C, which will improve the high efficiency of the plant even further. As reported at a conference of the VDI-Gesellschaft Energietechnik, it with still take several decades until these base load power station will be in operation. On the other hand, heating power stations with low-temperature fuel cells in the range up to 200 kW have been tested successfully worldwide. (orig.) [de

  2. CARA, new concept of advanced fuel element for HWR

    International Nuclear Information System (INIS)

    Florido, P.C.; Crimello, R.O.; Bergallo, J.E.; Marino, A.C.; Delmastro, D.F.; Brasnarof, D.O.; Gonzalez, J.H.

    1999-01-01

    All Argentinean NPPs (2 in operation, 1 under construction), use heavy water as coolant and moderator. With very different reactor concepts (pressure Vessel and CANDU type designs), the fuel elements are completely different in its concepts too. Argentina produces both types of fuel elements at a manufacturing fuel element company, called CONUAR. The very different fuel element's designs produce a very complex economical behavior in this company, due to the low production scale. The competitiveness of the Argentinean electric system (Argentina has a market driven electric system) put another push towards to increase the economical competitiveness of the nuclear fuel cycle. At present, Argentina has a very active Slightly Enriched Uranium (SEU) Program for the pressure vessel HWR type, but without strong changes in the fuel concept itself. Then, the Atomic Energy Commission in Argentina (CNEA) has developed a new concept of fuel element, named CARA, trying to achieve very ambitious goals, and substantially improved the competitiveness of the nuclear option. The ambitious targets for CARA fuel element are compatibility (a single fuel element for all Argentinean's HWR) using a single diameter fuel rod, improve the security margins, increase the burnup and do not exceed the CANDU fabrication costs. In this paper, the CARA concept will be presented, in order to explained how to achieve all together these goals. The design attracted the interest of the nuclear power operator utility (NASA), and the fuel manufacturing company (CONUAR). Then a new Project is right now under planning with the cooperation of three parts (CNEA - NASA - CONUAR) in order to complete the whole development program in the shortest time, finishing in the commercial production of CARA fuel bundle. At the end of the this paper, future CARA development program will be described. (author)

  3. Fuels planning: science synthesis and integration; economic uses fact sheet 04: My Fuel Treatment Planner

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    In the face of rapidly changing public and political attitudes toward fire and fuel planning, one thing remains constant: the fuel planner is ultimately responsible for making decisions on the land. This fact sheet discusses the options for fuel treatments, and the need, development, and use of the MS Excel-based tool, My Fuel Treatment Planner.

  4. Nuclear fuel cycle cost analysis using a probabilistic simulation technique

    International Nuclear Information System (INIS)

    Won, Il Ko; Jong, Won Choi; Chul, Hyung Kang; Jae, Sol Lee; Kun, Jai Lee

    1998-01-01

    A simple approach was described to incorporate the Monte Carlo simulation technique into a fuel cycle cost estimate. As a case study, the once-through and recycle fuel cycle options were tested with some alternatives (ie. the change of distribution type for input parameters), and the simulation results were compared with the values calculated by a deterministic method. A three-estimate approach was used for converting cost inputs into the statistical parameters of assumed probabilistic distributions. It was indicated that the Monte Carlo simulation by a Latin Hypercube Sampling technique and subsequent sensitivity analyses were useful for examining uncertainty propagation of fuel cycle costs, and could more efficiently provide information to decisions makers than a deterministic method. It was shown from the change of distribution types of input parameters that the values calculated by the deterministic method were set around a 40 th ∼ 50 th percentile of the output distribution function calculated by probabilistic simulation. Assuming lognormal distribution of inputs, however, the values calculated by the deterministic method were set around an 85 th percentile of the output distribution function calculated by probabilistic simulation. It was also indicated from the results of the sensitivity analysis that the front-end components were generally more sensitive than the back-end components, of which the uranium purchase cost was the most important factor of all. It showed, also, that the discount rate made many contributions to the fuel cycle cost, showing the rank of third or fifth of all components. The results of this study could be useful in applications to another options, such as the Dcp (Direct Use of PWR spent fuel In Candu reactors) cycle with high cost uncertainty

  5. Comparison of options for distributed generation in India

    International Nuclear Information System (INIS)

    Banerjee, Rangan

    2006-01-01

    There is renewed interest in distributed generation (DG). This paper reviews the different technological options available for DG, their current status and evaluates them based on the cost of generation and future potential in India. The non-renewable options considered are internal combustion engines fuelled by diesel, natural gas and microturbines and fuel cells fired by natural gas. The renewable technologies considered are wind, solar photovoltaic, biomass gasification and bagasse cogeneration. The cost of generation is dependent on the load factor and the discount rate. Gas engines and Bagasse based cogeneration are found to be the most cost effective DG options while wind and biomass gasifier fired engines are viable under certain conditions. PEM Fuel cells and micro turbines based on natural gas need a few demonstrations projects and cost reductions before becoming viable. A strategy involving pilot projects, tracking of costs and dissemination of information is likely to result in DG meeting 10% of India's power needs by 2012

  6. Analytical Evaluation to Determine Selected PAHs by HPLC in a Type 2 Fuel

    International Nuclear Information System (INIS)

    Garcia Alonso, S.; Perez Pastor, R. M.; Sevillano Castano, M. L.; Escolano Segovia, O.; Garcia Frutos, F. J.

    2009-01-01

    An evaluation of analytical parameters to determine selected PAHs in a fuel oil type II by HPLC coupled to fluorescence and diode detectors is presented. The study was focused on four conventional treatments of these kinds of oil samples and the main objective was giving a measure of confidence level of PAH results in the fuel oil. This study was performed in the frame of the project Assessment of natural attenuation of PAHs in agricultural soil contaminated with fuel from an accidental spill (Spanish National Plain I+D+I, CTM2007-64537). This paper is presented as follows: Analysis of reference material 1582 (NIST) by using the four kinds of sample treatments of interest. Application of variance analysis to compare results obtained from type II fuel by using each sample treatment and chromatographic detector. Finally, a statistic calculation was performed to measure uncertainty components in chromatographic analysis. (Author)

  7. FABRICATION OF TUBE TYPE FUEL ELEMENT FOR NUCLEAR REACTORS

    Science.gov (United States)

    Loeb, E.; Nicklas, J.H.

    1959-02-01

    A method of fabricating a nuclear reactor fuel element is given. It consists essentially of fixing two tubes in concentric relationship with respect to one another to provide an annulus therebetween, filling the annulus with a fissionablematerial-containing powder, compacting the powder material within the annulus and closing the ends thereof. The powder material is further compacted by swaging the inner surface of the inner tube to increase its diameter while maintaining the original size of the outer tube. This process results in reduced fabrication costs of powdered fissionable material type fuel elements and a substantial reduction in the peak core temperatures while materially enhancing the heat removal characteristics.

  8. Technical and regulatory review of the Rover nuclear fuel process for use on Fort St. Vrain fuel

    International Nuclear Information System (INIS)

    Hertzler, T.

    1993-02-01

    This report describes the results of an analysis for processing and final disposal of Fort St. Vrain (FSV) irradiated fuel in Rover-type equipment or technologies. This analysis includes an evaluation of the current Rover equipment status and the applicability of this technology in processing FSV fuel. The analyses are based on the physical characteristics of the FSV fuel and processing capabilities of the Rover equipment. Alternate FSV fuel disposal options are also considered including fuel-rod removal from the block, disposal of the empty block, or disposal of the entire fuel-containing block. The results of these analyses document that the current Rover hardware is not operable for any purpose, and any effort to restart this hardware will require extensive modifications and re-evaluation. However, various aspects of the Rover technology, such as the successful fluid-bed burner design, can be applied with modification to FSV fuel processing. The current regulatory climate and technical knowledge are not adequately defined to allow a complete analysis and conclusion with respect to the disposal of intact fuel blocks with or without the fuel rods removed. The primary unknowns include the various aspects of fuel-rod removal from the block, concentration of radionuclides remaining in the graphite block after rod removal, and acceptability of carbon in the form of graphite in a high level waste repository

  9. Nuclear Waste Vitrification in the U.S.: Recent Developments and Future Options

    International Nuclear Information System (INIS)

    Vienna, John D.

    2010-01-01

    Nuclear power plays a key role in maintaining current world wide energy growth while minimizing the greenhouse gas emissions. A disposition path for used nuclear fuel (UNF) must be found for this technology to achieve its promise. One likely option is the recycling of UNF and immobilization of the high-level waste (HLW) by vitrification. Vitrification is the technology of choice for immobilizing HLW from defense and commercial fuel reprocessing around the world. Recent advances in both recycling technology and vitrification show great promise in closing the nuclear fuel cycle in an efficient and economical fashion. This article summarizes the recent trends developments and future options in waste vitrification for both defense waste cleanup and closing the nuclear fuel cycle in the U.S.

  10. Production of 15N for nitride type nuclear fuel

    International Nuclear Information System (INIS)

    Axente, Damian

    2005-01-01

    Full text: Nitride nuclear fuel is the choice for advanced nuclear reactors and ADS, considering its favorable properties as: melting point, excellent thermal conductivity, high fissile density, lower fission gas release and good radiation tolerance. The application of nitride fuels in different nuclear reactors requires use of 15 N enriched nitrogen to suppress 14 C production due to (n,p) reaction on 14 N. Nitride fuel is a promising candidate for transmutation in ADSs of radioactive minor actinides, which are converted into nitrides with 15 N for that purpose. Taking into account that at present the world wide 15 N market is about 20 - 40 Kg 15 N/y, the supply of that isotope for nitride type nuclear fuel, would demand an increase in production capacity by a factor of 1000. For an industrial plant producing 100 t/y 15 N at 99 at. % 15 N concentration, using present technology of 15 N/ 14 N isotopic exchange in Nitrox system, the first separation stage of the cascade would be fed with 10M HNO 3 solution at a 600 m 3 /h flow-rate. If conversion of HNO 3 into NO, NO 2 , at the enriching end of the columns, would be done with gaseous SO 2 , for an industrial plant of 100 t/y 15 N a consumption of 4 million t SO 2 /y and a production of 70 % H 2 SO 4 waste solution of 4.5 million m 3 /y are estimated. The reconversion of H 2 SO 4 into SO 2 in order to recycle SO 2 is a problem to be solved to compensate the cost of sulfur dioxide and to diminish the amount of sulfuric acid waste solution. It should be taken into consideration an important price reduction of 15 N in order to make possible its utilization for industrial production of nitride type nuclear fuel. (authors)

  11. New options for conversion of vegetable oils to alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, A.; Kara, H. [Selcuk University, Konya (Turkey). Department of Chemical Engineering

    2006-05-15

    Biodiesel from transesterification of vegetable oils is an excellent alternative fuel. There is, however, a need to develop a direct process for conversion of vegetable oils into gasoline-competitive biodiesel and other petroleum products. Methyl esters of vegetable oils have several outstanding advantages among other new-renewable and clean engine fuel alternatives. The purpose of the transesterification process is to lower the viscosity of vegetable oil. Compared to No. 2 diesel fuel, all of the vegetable oils are much more viscous, whereas methyl esters of vegetable oils are slightly more viscous. The methyl esters are more volatile than those of the vegetable oils. Conversion of vegetable oils to useful fuels involves the pyrolysis and catalytic cracking of the oils into lower molecular products. Pyrolysis produces more biogasoline than biodiesel fuel. Soap pyrolysis products of vegetable oils can be used as alternative diesel engine fuel. The soaps obtained from the vegetable oils can be pyrolyzed into hydrocarbon-rich products. Zinc chloride catalyst contributed greatly to high amounts of hydrocarbons in the liquid product. The yield of ZnCl2 catalytic conversion of the soybean oil reached the maximum 79.9% at 660 K. (author)

  12. A methodology for assessing the environmental and health impact of options for the back-end of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Ouzounian, G.H.; Devezeaux de Lavergne, J.G.; Devin, P.; Lioure, A.; Mouney, H.; Le Boulch, D.

    2001-01-01

    Research programs conducted in France in the framework of the 1991 act offer various options for management of the back- end of the fuel cycle. Proposals to be debated in 2006 will rely not only on broad scientific and technical knowledge, but also on the compilation and integration of results, with syntheses and analyses intended to highlight the advantages and the limitations of each of the waste management paths. This presentation introduces a methodology derived from the life cycle analysis as well as some preliminary results. (author)

  13. Compatibility Assessment of Fuel System Infrastructure Plastics with Bio-oil and Diesel Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kass, Michael D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center; Janke, Christopher James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center; Connatser, Raynella M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center; Lewis, Samuel Arthur [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center; Keiser, James R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center; Gaston, Katherine [National Renewable Energy Lab. (NREL), Golden, CO (United States). National Bioenergy Center

    2017-12-05

    We report that bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with 18 plastic types was evaluated using neat diesel fuel as the baseline. The plastic materials included polyphenylene sulfide (PPS), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyoxymethylene (POM), POM copolymer, high density polyethylene (HDPE), polybutylene terephthalate (PBT), polypropylene (PP), polyethylene terephthalate glycol (PETG), polythiourea (PTU), four nylon grades, and four thermosetting resins. Specimens of each material were immersed in the test fuels for a period of 16 weeks to achieve full saturation. Except for PP and HDPE, the plastic materials underwent higher volume expansion in bio-oil than in the baseline diesel (which was negligible in most cases). This volume increase corresponds to the higher polarity of the bio-oil. PPS, PET, and PTFE were unaffected by bio-oil exposure, but modest swelling (between 2 and 5%) occurred for the two acetals (POM and POM copolymer), Nylon-12, PBT, PETG, and the four resin grades. More moderate swelling (8–15%) was noted for Nylon-6, Nylon-6/6, and Nylon-11, and excessive swell (>40%) occurred for PTU. The nonpolar nature of PP and HDPE matches that of diesel, leading to higher solubility (swell) in this fuel type. Finally, the relatively low volume expansion following exposure indicates that many of the existing infrastructure plastics (excluding PTU) should be suitable for use with bio-oil.

  14. CANDU fuel cycles - present and future

    International Nuclear Information System (INIS)

    Mooradian, A.J.

    1976-05-01

    The present commercially proven Canadian nuclear power system is based on a once-through natural uranium fuel cycle characterized by high uranium utilization and a high conversion efficiency. The cycle closes with secure retrievable storage of spent fuel. This cycle is based on a CANDU reactor concept which is now well understood. Both active and passive fuel storage options have been investigated and will be described in this paper. Future development of the CANDU system is focussed on conservation of uranium by plutonium and thorium recycle. The full exploitation of these options requires continued emphasis on neutron conservation, efficiency of extraction and fuel refabrication processes. The results of recent studies are discussed in this paper. (author)

  15. Development of an advanced 16x165 Westinghouse type PWR fuel assembly for Slovenia

    International Nuclear Information System (INIS)

    Boone, M. L.; King, S. J.; Pulver, E. F.; Jeon, K.-L.; Esteves, R.; Kurincic, B.

    2004-01-01

    Industrias Nucleares do Brasil (INB), KEPCO Nuclear Fuel Company, Ltd. (KNFC), and Westinghouse Electric Company (Westinghouse) have jointly designed an advanced 16x16 Westinghouse type PWR fuel assembly. This advanced 16x16 Westinghouse type PWR fuel assembly, which will be implemented in both Kori Unit 2 (in Korea) and Angra Unit 1 (in Brazil) in January and March 2005, respectively, is an integral part of the utilities fuel management strategy. This same fuel design has also been developed for future use in Krsko Unit 1 (in Slovenia). In this paper we will describe the front-end nuclear fuel management activities utilized by the joint development team and describe how these activities played an integral part in defining the direction of the advanced 16x16 Westinghouse type PWR fuel assembly design. Additionally, this paper will describe how this design demonstrates improved margins under high duty plant operating conditions. The major reason for initiating this joint development program was to update the current 16x16 fuel assembly, which is also called 16STD. The current 16STD fuel assembly contains a non-optimized fuel rod diameter for the fuel rod pitch (i.e. 9.5 mm OD fuel rods at a 0.485 inch pitch), non-neutronic efficient components (i.e. Inconel Mid grids), no Intermediate Flow Mixer (IFM) grids, and other mechanical features. The advanced 16x16 fuel assembly is being designed for peak rod average burnups of up to 75 MWd/kgU and will use an optimized fuel rod diameter (i.e. 9.14 mm OD ZIRLO TM fuel rods), neutronic efficient components (i.e. ZIRLO TM Mid grids), ZIRLO TM Intermediate Flow Mixer (IFM) grids to improve Departure from Nucleate Boiling (DNB) margin, and many other mechanical features that improve design margins. Nuclear design activities in the areas of fuel cycle cost and fuel management were performed in parallel to the fuel assembly design efforts. As the change in reactivity due to the change in the fuel rod diameter influences directly

  16. Steam and partial oxidation reforming options for hydrogen production from fossil fuels for PEM fuel cells

    OpenAIRE

    Yousri M.A. Welaya; Mohamed M. El Gohary; Nader R. Ammar

    2012-01-01

    Proton exchange membrane fuel cell (PEM) generates electrical power from air and from hydrogen or hydrogen rich gas mixtures. Therefore, there is an increasing interest in converting current hydrocarbon based marine fuels such as natural gas, gasoline, and diesel into hydrogen rich gases acceptable to the PEM fuel cells on board ships. Using chemical flow sheeting software, the total system efficiency has been calculated. Natural gas appears to be the best fuel for hydrogen rich gas productio...

  17. Fuel assembly for BWR type reactor

    International Nuclear Information System (INIS)

    Kato, Shigeru.

    1993-01-01

    In the fuel assembly of the present invention, a means for mounting and securing short fuel rods is improved. Not only long fuel rods but also short fuel rods are disposed in channel of the fuel assembly to improve reactor safety. The short fuel rods are supported by a screw means only at the lower end plug. The present invention prevents the support for the short fuel rod from being unreliable due to the slack of the screw by the pressure of inflowing coolants. That is, coolant abutting portions such as protrusions or concave grooves are disposed at a portion in the channel box where coolants flowing from the lower tie plate, as an uprising stream, cause collision. With such a constitution, a component caused by the pressure of the flowing coolants is formed. The component acts as a rotational moment in the direction of screwing the male threads of the short fuel rod into the end plug screw hole. Accordingly, the screw is not slackened, and the short fuel rods are mounted and secured certainly. (I.S.)

  18. Spent fuel management overview: a global perspective

    International Nuclear Information System (INIS)

    Bonne, A.; Crijns, M.J.; Dyck, P.H.; Fukuda, K.; Mourogov, V.M.

    1999-01-01

    The paper defines the main spent fuel management strategies and options, highlights the challenges for spent fuel storage and gives an overview of the regional balances of spent fuel storage capacity and spent fuel arising. The relevant IAEA activities in the area of spent fuel management are summarised. (author)

  19. Spent Fuel in Chile

    International Nuclear Information System (INIS)

    López Lizana, F.

    2015-01-01

    The government has made a complete and serious study of many different aspects and possible road maps for nuclear electric power with strong emphasis on safety and energy independence. In the study, the chapter of SFM has not been a relevant issue at this early stage due to the fact that it has been left for later implementation stage. This paper deals with the options Chile might consider in managing its Spent Fuel taking into account foreign experience and factors related to safety, economics, public acceptance and possible novel approaches in spent fuel treatment. The country’s distinctiveness and past experience in this area taking into account that Chile has two research reactors which will have an influence in the design of the Spent Fuel option. (author)

  20. Advanced Fuels Campaign 2012 Accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    Not Listed

    2012-11-01

    The Advanced Fuels Campaign (AFC) under the Fuel Cycle Research and Development (FCRD) program is responsible for developing fuels technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The fiscal year 2012 (FY 2012) accomplishments are highlighted below. Kemal Pasamehmetoglu is the National Technical Director for AFC.

  1. Fuel and nuclear fuel cycle

    International Nuclear Information System (INIS)

    Prunier, C.

    1998-01-01

    The nuclear fuel is studied in detail, the best choice and why in relation with the type of reactor, the properties of the fuel cans, the choice of fuel materials. An important part is granted to the fuel assembly of PWR type reactor and the performances of nuclear fuels are tackled. The different subjects for research and development are discussed and this article ends with the particular situation of mixed oxide fuels ( materials, behavior, efficiency). (N.C.)

  2. Consolidated fuel reprocessing program

    Science.gov (United States)

    1985-04-01

    A survey of electrochemical methods applications in fuel reprocessing was completed. A dummy fuel assembly shroud was cut using the remotely operated laser disassembly equipment. Operations and engineering efforts have continued to correct equipment operating, software, and procedural problems experienced during the previous uranium compaigns. Fuel cycle options were examined for the liquid metal reactor fuel cycle. In high temperature gas cooled reactor spent fuel studies, preconceptual designs were completed for the concrete storage cask and open field drywell storage concept. These and other tasks operating under the consolidated fuel reprocessing program are examined.

  3. Fuel cycles - a key to future CANDU success

    International Nuclear Information System (INIS)

    Kuran, S.; Hopwood, J.; Hastings, I.J.

    2011-01-01

    Globally, fuel cycles are being evaluated as ways of extending nuclear fuel resources, addressing security of supply and reducing back-end spent-fuel management. Current-technology thermal reactors and future fast reactors are the preferred platform for such fuel cycle applications and as an established thermal reactor with unique fuel-cycle capability, CANDU will play a key role in fulfilling such a vision. The next step in the evolution of CANDU fuel cycles will be the introduction of Recovered Uranium (RU), derived from conventional reprocessing. A low-risk RU option applicable in the short term comprises a combination of RU and Depleted Uranium (DU), both former waste streams, giving a Natural Uranium Equivalent (NUE) fuel. This option has been demonstrated in China, and all test bundles have been removed from the Qinshan 1 reactor. Additionally, work is being done on an NUE full core, a Thorium demonstration irradiation and an Advanced Fuel CANDU Reactor(AFCR). AECL is developing other fuel options for CANDU, including actinide waste burning. AECL has developed the Enhanced CANDU 6 (EC6) reactor, upgraded from its best-performing CANDU 6 design. High neutron economy, on-power refueling and a simple fuel bundle provide the EC6 with the flexibility to accommodate a range of advanced fuels, in addition to its standard natural uranium. (author)

  4. Fuel cells and electrolysers in future energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad

    be considered which fuels such technologies can utilise and how these fuels can be distributed. Natural gas is not an option in future renewable energy systems and the de‐ mand for gaseous fuels, such as biogas or syngas, will increase significantly. Hence, fuel cell CHP plants represent a more fuel...... of transport, battery electric vehicles are more suitable than hydrogen fuel cell vehicles in future energy system. Battery electric ve‐ hicles may, for a part of the transport demand, have limitations in their range. Hybrid tech‐ nologies may provide a good option, which can combine the high fuel efficiency......Efficient fuel cells and electrolysers are still at the development stage. In this dissertation, future developed fuel cells and electrolysers are analysed in future renewable energy sys‐ tems. Today, most electricity, heat and transport demands are met by combustion tech‐ nologies. Compared...

  5. Fuels planning: science synthesis and integration; social issues fact sheet 02: Developing personal responsibility for fuels reduction: Types of information to encourage proactive behavior

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    Fuels management responsibilities may include providing local property owners with the information for taking responsibility for reducing fuels on their land. This fact sheet discusses three different types of information that may be useful in programs to engage property owners in fuel reduction activities.

  6. Energy Return on Investment from Recycling Nuclear Fuel

    International Nuclear Information System (INIS)

    2011-01-01

    This report presents an evaluation of the Energy Return on Investment (EROI) from recycling an initial batch of 800 t/y of used nuclear fuel (UNF) through a Recycle Center under a number of different fuel cycle scenarios. The study assumed that apart from the original 800 t of UNF only depleted uranium was available as a feed. Therefore for each subsequent scenario only fuel that was derived from the previous fuel cycle scenario was considered. The scenarios represent a good cross section of the options available and the results contained in this paper and associated appendices will allow for other fuel cycle options to be considered.

  7. Conceptual development of a test facility for spent fuel management

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.W.; Lee, H.H.; Lee, J.Y.; Lee, J.S.; Ro, S.G. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    Spent fuel management is an important issue for nuclear power program, requiring careful planning and implementation. With the wait-and-see policy on spent fuel management in Korea, research efforts are directed at KAERI to develop advanced technologies for safer and more efficient management of the accumulating spent fuels. In support of these research perspectives, a test facility of pilot scale is being developed with provisions for integral demonstration of a multitude of technical functions required for spent fuel management. The facility, baptized SMART (Spent fuel MAnagement technology Research and Test facility), is to be capable of handling full size assembly of spent PWR fuel (as well as CANDU fuel) with a maximum capacity of 10 MTU/y (about 24 assemblies of PWR type). Major functions of the facility are consolidation of spent PWR fuel assembly into a half-volume package and optionally transformation of the fuel rod into a fuel of CANDU type (called DUPIC). Objectives of these functions are to demonstrate volume reduction of spent fuel (for either longer-term dry storage or direct disposal ) in the former case and direct refabrication of the spent PWR fuel into CANDU-type DUPIC fuel for reuse in CANDU reactors in the latter case, respectively. In addition to these major functions, there are other associated technologies to be demonstrated : such as waste treatment, remote maintenance, safeguards, etc. As the facility is to demonstrate not only the functional processes but also the safety and efficiency of the test operations, engineering criteria equivalent to industrial standards are incorporated in the design concept. The hot cell structure enclosing the radioactive materials is configured in such way to maximize costs within the given functional and operational requirements. (author). 3 tabs., 4 figs.

  8. Conceptual development of a test facility for spent fuel management

    International Nuclear Information System (INIS)

    Park, S.W.; Lee, H.H.; Lee, J.Y.; Lee, J.S.; Ro, S.G.

    1997-01-01

    Spent fuel management is an important issue for nuclear power program, requiring careful planning and implementation. With the wait-and-see policy on spent fuel management in Korea, research efforts are directed at KAERI to develop advanced technologies for safer and more efficient management of the accumulating spent fuels. In support of these research perspectives, a test facility of pilot scale is being developed with provisions for integral demonstration of a multitude of technical functions required for spent fuel management. The facility, baptized SMART (Spent fuel MAnagement technology Research and Test facility), is to be capable of handling full size assembly of spent PWR fuel (as well as CANDU fuel) with a maximum capacity of 10 MTU/y (about 24 assemblies of PWR type). Major functions of the facility are consolidation of spent PWR fuel assembly into a half-volume package and optionally transformation of the fuel rod into a fuel of CANDU type (called DUPIC). Objectives of these functions are to demonstrate volume reduction of spent fuel (for either longer-term dry storage or direct disposal ) in the former case and direct refabrication of the spent PWR fuel into CANDU-type DUPIC fuel for reuse in CANDU reactors in the latter case, respectively. In addition to these major functions, there are other associated technologies to be demonstrated : such as waste treatment, remote maintenance, safeguards, etc. As the facility is to demonstrate not only the functional processes but also the safety and efficiency of the test operations, engineering criteria equivalent to industrial standards are incorporated in the design concept. The hot cell structure enclosing the radioactive materials is configured in such way to maximize costs within the given functional and operational requirements. (author). 3 tabs., 4 figs

  9. Development of a 200kW multi-fuel type PAFC power plant

    Energy Technology Data Exchange (ETDEWEB)

    Take, Tetsuo; Kuwata, Yutaka; Adachi, Masahito; Ogata, Tsutomu [NTT Integrated Information & Energy System Labs., Tokyo (Japan)

    1996-12-31

    Nippon Telegraph and Telephone Corporation (NFT) has been developing a 200 kW multi-fuel type PAFC power plant which can generate AC 200 kW of constant power by switching fuel from pipeline town gas to liquefied propane gas (LPG) and vice versa. This paper describes the outline of the demonstration test plant and test results of its fundamental characteristics.

  10. Investigation and proposal of the system to affect nuclear fuel type authorization and analysis code certification

    International Nuclear Information System (INIS)

    2006-03-01

    In order to develop the system to affect more advanced and rational regulations of nuclear fuels and earlier introduction of new technologies in nuclear power plants, domestic and overseas safety regulation systems and state of their implementation for water cooled reactor fuel and safety analysis code had been investigated and new regulation system to affect nuclear fuel type authorization and analysis code certification was proposed. Topical report system for common parts related with nuclear fuel type authorization and analysis code certification was firstly proposed for knowledge base. Maintaining consistent safety examination supported by experts, introduction of domestic efficient system for lead irradiation test fuel, and analysis code certification and quality assurance were also proposed. (T. Tanaka)

  11. Fast Spectrum Molten Salt Reactor Options

    Energy Technology Data Exchange (ETDEWEB)

    Gehin, Jess C [ORNL; Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Patton, Bruce W [ORNL; Howard, Rob L [ORNL; Harrison, Thomas J [ORNL

    2011-07-01

    During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

  12. Studying some regimes of the WWER-440 type reactor failed fuel element operation

    International Nuclear Information System (INIS)

    Aksenov, N.A.; Samsonov, B.V.; Sulaberidze, V.Sh.; Frej, A.K.

    1981-01-01

    The results of investigating the serviceability of experimental fuel elements close by type to that of the WWER-440 type reactor in the cans of which untightness in the form of small opening are made. The tests are carried out in the SM-2 reactor high temperature water loop at the temperature of 473 K, pressure of (1-2)x10 4 kPa, coolant flow rate of 3.7-5.5 m 3 /h. The analysis of the obtained results shows that the character of changes in the fission product (FP) activity in the circuit in a considerable extent is determined bt the thermal-optical conditions of the fuel element operation. If water in the gap between fuel and can does not boil, activity changes smoothly and bursts caused by increased FP release are observed only under transient conditions of reactor operation. In the presence of water boiling in the gap the FP release has of impulse character with the frequency determined besides the untightness dimension by free volume inside the fuel element can (with its increase the pulsation frequency increases). FP release from fuel is connected with their direct escape from an open surface. When water in the gap the FP release from the fuel element occurs practically immediately. Without boiling the FP delay in the gap is determined by their diffusion in a layer of water. The conclusion is drawn that the FP release from failed fuel elements may be reduced by eliminating the water boiling in the gap between the fuel and the can by means of the fuel element power or coolant temperature decrease

  13. Calculation analysis of TRIGA MARK II reactor core composed of two types of fuel elements

    International Nuclear Information System (INIS)

    Ravnik, M.

    1988-11-01

    The most important properties of mixed cores are treated for TRIGA MARK II reactor, composed of standard (20% enriched, 8.5w% U content) and FLIP (70% enriched, 8.5w% U content) fuel elements. Large difference in enrichment and presence of burnable poison in FLIP fuel have strong influence on the main core characteristics, such as: fuel temperature coefficient, power defect, Xe and Sm worth, power and flux distributions, etc. They are significantly different for both types of fuel. Optimal loading of mixed cores therefore strongly depends on the loading pattern of both types of fuel elements. Results of systematic calculational analysis of mixed cores are presented. Calculations on the level of fuel element are performed with WIMSD-4 computer code with extended cross-section library. Core calculations are performed with TRIGAP two-group 1-D diffusion code. Results are compared to measurements and physical explanation is provided. Special concern is devoted to realistic mixed cores, for which optimal in-core fuel management is derived. Refs, figs and tabs

  14. The Role of Friction Stir Welding in Nuclear Fuel Plate Fabrication

    International Nuclear Information System (INIS)

    Burkes, D.; Medvedev, P.; Chapple, M.; Amritkar, A.; Wells, P.; Charit, I

    2009-01-01

    The friction bonding process combines desirable attributes of both friction stir welding and friction stir processing. The development of the process is spurred on by the need to fabricate thin, high density, reduced enrichment fuel plates for nuclear research reactors. The work seeks to convert research and test reactors currently operating on highly enriched uranium fuel to operate on low enriched uranium fuel without significant loss in reactor performance, safety characteristics, or significant increase in cost. In doing so, the threat of global nuclear material proliferation will be reduced. Feasibility studies performed on the process show that this is a viable option for mass production of plate-type nuclear fuel. Adapting the friction stir weld process for nuclear fuel fabrication has resulted in the development of several unique ideas and observations. Preliminary results of this adaptation and process model development are discussed

  15. Rearrangement of fuel assemblies in the RBMK type reactors to flatten power distribution and improve the fuel cycle

    International Nuclear Information System (INIS)

    Mityaev, Yu.I.; Vikulov, V.K.

    1982-01-01

    A possibility of increasing the burnup of uranium fuel unloaded from the RBMK type reactors is investigated. Three variants of a two-zone reactor-refueling are considered: 1. the simplest variant of continuous refueling used at present, when the central and peripherical reactor zones are additionally fueled independently by similar fuel assemblies (FA); 2. the variant under which new FA are loaded to the peripherical zone and are used there up to the same burnup as in the first case, then all the peripherical FA (PFA) are rearranged to the centre and they are used there up to maximum burnup; 3. the same as in the second variant, but not all the PFA are rearranged to the centre but only FA with small fuel burnup. It is shown by calculation that average fuel burnup for the third refueling variant is several per cent higher at the optimal burnup of rearranged FA. Besides, flattening of fuel channel power is improved in this case, that permits to increase uranium enrichment and burnup at the same maximum power. It essentially improves economic parameters of the reactor. It is concluded that realization of the considered variant of fuel refueling will produce the most essential effect for reactors refueled without shutdown

  16. Radiological impact of plutonium recycle in the fuel cycle of LWR type reactors: professional exposure during mormal operation

    International Nuclear Information System (INIS)

    White, I.F.; Kelly, G.N.

    1983-01-01

    The radiological impact of the fuel cycle of light water type reactors using enriched uranium may be changed by plutonium recycle. The impact on human population and on the persons professionally exposed may be different according to the different steps of the fuel cycle. This report analyses the differential radiological impact on the different types of personnel involed in the fuel cycle. Each step of the fuel cycle is separately studied (fuel fabrication, reactor operation, fuel reprocessing), as also the transport of the radioactive materials between the different steps. For the whole fuel cycle, one estimates that, with regard to the fuel cycle using enriched uranium, the plutonium recycle involves a small increase of the professional exposure

  17. Irradiation tests on PHWR type fuel elements in TRIGA research reactor of INR Pitesti

    Energy Technology Data Exchange (ETDEWEB)

    Horhoianu, Grigore [Institute for Nuclear Research, Pitesti (Romania). Nuclear Fuel Engineering Lab.; Sorescu, Ion [Institute for Nuclear Research, Pitesti (Romania). TRIGA Reactor Loop Facility; Parvan, Marcel [Institute for Nuclear Research, Pitesti (Romania). Hot Cells Lab.

    2012-12-15

    Nine PHWR type fuel elements with reduced length were irradiated in loop A of the TRIGA Research Reactor of INR Pitesti. The primary objective of the test was to determine the performance of nuclear fuel fabricated at INR Pitesti at high linear powers in pressurized water conditions. Six fuel elements were irradiated with a ramp power history, achieving a maximum power of 45 kW/m during pre-ramp and of 64 kW/m in the ramp. The maximum discharge burnup was of 216 MWh/kgU. Another three fuel elements with reduced length were irradiated with declining power history. At the beginning of irradiation the fuel elements achieved a maximum linear power of 66 kW/m. The maximum fuel power was about 1.3 times the maximum expected in PHWR. The maximum discharge burnup was 205 MWh/kgU. The elements were destructively examined in the hot cells of INR Pitesti. Temperature-sensitive parameters such as UO{sub 2} grain growth, fission-gas release and sheath deformations were examined. The tests proved the feasibility of irradiating PHWR type fuel elements at linear powers up to 66 kW/m under pressurized water conditions and demonstrated the possibility of more flexible operation of this fuel in power reactors. This paper presents the results of the investigation. (orig.)

  18. Fuel-cycle facilities: preliminary safety and environmental information document. Volume VII

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Information is presented concerning the mining and milling of uranium and thorium; uranium hexafluoride conversion; enrichment; fuel fabrication; reprocessing; storage options; waste disposal options; transportation; heavy-water-production facilities; and international fuel service centers.

  19. Fuel-cycle facilities: preliminary safety and environmental information document. Volume VII

    International Nuclear Information System (INIS)

    1980-01-01

    Information is presented concerning the mining and milling of uranium and thorium; uranium hexafluoride conversion; enrichment; fuel fabrication; reprocessing; storage options; waste disposal options; transportation; heavy-water-production facilities; and international fuel service centers

  20. Graphite fuels combustion off-gas treatment options

    International Nuclear Information System (INIS)

    Kirkham, R.J.; Lords, R.E.

    1993-03-01

    Scenarios for burning bulk graphite and for burning crushed fuel particles from graphite spent nuclear fuels have been considered. Particulates can be removed with sintered metal filters. Subsequent cooling would then condense semi-volatile fission products into or onto a particulate. These particulates would be trapped by a second sintered metal filter or downstream packed bed. A packed bed scrub column can be used to eliminate most of the iodine-129 and tritium. A molecular sieve bed is proposed to collect the residual 129 I and other tramp radionuclides downstream (Ruthenium, etc.). Krypton-85 can be recovered, if need be, either by cryogenics or by the KALC process (Krypton Adsorption in Liquid Carbon dioxide). Likewise carbon-14 in the form of carbon dioxide could be collected with a caustic or lime scrub solution and incorporated into a grout. Sulfur dioxide present will be well below regulatory concern level of 4.0 tons per year and most of it would be removed by the scrubber. Carbon monoxide emissions will depend on the choice of burner and start-up conditions. Should the system exceed the regulatory concern level, a catalytic converter in the final packed bed will be provided. Radon and its daughters have sufficiently short half-lives (less than two minutes). If necessary, an additional holdup bed can be added before the final HEPA filters or additional volume can be added to the molecular sieve bed to limit radon emissions. The calculated total effective dose equivalent at the Idaho National Engineering Laboratory boundary from a single release of all the 3 , 14 C, 85 Kr, and 129 I in the total fuel mass if 0.43 mrem/year

  1. Economics of spent LWR fuel storage

    International Nuclear Information System (INIS)

    Clark, H.J.

    1980-01-01

    A low cost option for spent fuel inventories would be to ship excess fuel from the overburdened reactor to another reactor in the utility's system that has available space. The only cost would be for cask leasing and shipping. Three other alternatives all require considerable capital expenditures: reracking, new at-reactor (AR) storage facilities, and away-from-reactor (AFR) storage facilities. Fuel storage requirements will be met best by transfer of fuel or by re-racking existing reactor basins whenever these options are available. These alternatives represent not only the lowest cost storage options but also the most timely. Fuel can be shipped to other storage pools for about $10/kg depending on the distance, while costs for reracking range from $18 to 25/kg depending on the approach. These alternatives are recognized to face environmental and regulatory obstacles. However, such obstacles should be less severe than similar issues that would be encountered with AR or AFR basin storage. When storage requirements cannot be met by the first two options, the next least costly alternative for most utilities will be use of a Federal AFR. Storage cost of about $137/kg at an AFR are less costly than charges of up to $350/kg that could be incurred by the use of AR basins. AR basins are practical only when a utility requires storage capacity to accommodate annual additions of 100 MT or more of spent fuel. The large reactor complexes discharging this much feul are not currently those that require relief from fuel storage problems. A recent development in Germany may offer an AR alternative of dry storage in transportation/storage casks at a cost of $200/kg; however, this method has not yet been accepted and licensed for use in the US

  2. A neutronics study of LEU fuel options for the HFR-Petten

    International Nuclear Information System (INIS)

    Deen, J.R.; Snelgrove, J.L.

    1985-01-01

    The standard HEU fuel cycle characteristics are compared with those of several different LEU fuel cycles in the new vessel configuration. The primary design goals were to provide similar reactivity performance and neutron flux profiles with a minimal increase in 235 U loading. The fuel cycle advantages of Cd burnable absorbers over 10 B are presented. The LEU fuel cycle requirements were calculated also for an extended 32-day cycle and for a reload batch size reduction from six to five standard elements for the standard 26-day cycle. The effects of typical in-core experiments upon neutron flux profiles and fuel loading requirements are also presented. (author)

  3. Survey of wet and dry spent fuel storage

    International Nuclear Information System (INIS)

    1999-07-01

    Spent fuel storage is one of the important stages in the nuclear fuel cycle and stands among the most vital challenges for countries operating nuclear power plants. Continuous attention is being given by the IAEA to the collection, analysis and exchange of information on spent fuel management. Its role in this area is to provide a forum for exchanging information and for coordinating and encouraging closer co-operation among Member States. Spent fuel management is recognized as a high priority IAEA activity. In 1997, the annual spent fuel arising from all types of power reactors worldwide amounted to about 10,500 tonnes heavy metal (t HM). The total amount of spent fuel accumulated worldwide at the end of 1997 was about 200,000 t HM of which about 130,000 t HM of spent fuel is presently being stored in at-reactor (AR) or away-from-reactor (AFR) storage facilities awaiting either reprocessing or final disposal and 70,000 t HM has been reprocessed. Projections indicate that the cumulative amount generated by 2010 may surpass 340,000 t HM and by the year 2015 395,000 t HM. Part of the spent fuel will be reprocessed and some countries took the option to dispose their spent fuel in a repository. Most countries with nuclear programmes are using the deferral of a decision approach, a 'wait and see' strategy with interim storage, which provides the ability to monitor the storage continuously and to retrieve the spent fuel later for either direct disposal or reprocessing. Some countries use different approaches for different types of fuel. Today the worldwide reprocessing capacity is only a fraction of the total spent fuel arising and since no final repository has yet been constructed, there will be an increasing demand for interim storage. The present survey contains information on the basic storage technologies and facility types, experience with wet and dry storage of spent fuel and international experience in spent fuel transport. The main aim is to provide spent fuel

  4. 48 CFR 2917.207 - Exercising options.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Exercising options. 2917... AND CONTRACT TYPES SPECIAL CONTRACTING METHODS Options 2917.207 Exercising options. The contracting officer must use a standardized determination and finding before exercising an option in accordance with...

  5. Performance and economic penalties of some LEU [low enriched uranium] conversion options for the Australian Reactor HIFAR

    International Nuclear Information System (INIS)

    McCulloch, D.B.; Robinson, G.S.

    1987-01-01

    Performance calculations for the conversion of HIFAR to low enriched uranium (LEU) fuel have been extended to a wide range of 235 U loadings per fuel element. Using a simple approximate algorithm for the likely costs of LEU compared with highly enriched uranium (HEU) fuel elements, the increases in annual fuelling costs for LEU compared with HEU fuel are examined for a range of conversion options involving different performance penalties. No significant operational/safety problems were found for any of the options canvassed. (Author)

  6. HFIR spent fuel management alternatives

    International Nuclear Information System (INIS)

    Begovich, J.M.; Green, V.M.; Shappert, L.B.; Lotts, A.L.

    1992-01-01

    The High Flux Isotope Reactor (HFIR) at Martin Marietta Energy Systems' Oak Ridge National Laboratory (ORNL) has been unable to ship its spent fuel to Savannah River Site (SRS) for reprocessing since 1985. The HFIR storage pools are expected to fill up in the February 1994 to February 1995 time frame. If a management altemative to existing HFIR pool storage is not identified and implemented before the HFIR pools are full, the HFIR will be forced to shut down. This study investigated several alternatives for managing the HFIR spent fuel, attempting to identify options that could be implemented before the HFIR pools are full. The options investigated were: installing a dedicated dry cask storage facility at ORNL, increasing HFIR pool storage capacity by clearing the HFIR pools of debris and either close-packing or stacking the spent fuel elements, storing the spent fuel at another ORNL pool, storing the spent fuel in one or more hot cells at ORNL, and shipping the spent fuel offsite for reprocessing or storage elsewhere

  7. Study of the potential uses of the Barnwell Nuclear Fuel Plant (BNFP). Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-25

    The purpose of this study is to provide an evaluation of possible international and domestic uses for the Barnwell Nuclear Fuel Plant, located in South Carolina, at the conclusion of the International Nuclear Fuel Cycle Evaluation. Four generic categories of use options for the Barnwell plant have been considered: storage of spent LWR fuel; reprocessing of LWR spent fuel; safeguards development and training; and non-use. Chapters are devoted to institutional options and integrated institutional-use options.

  8. Study of the potential uses of the Barnwell Nuclear Fuel Plant (BNFP). Final report

    International Nuclear Information System (INIS)

    1980-01-01

    The purpose of this study is to provide an evaluation of possible international and domestic uses for the Barnwell Nuclear Fuel Plant, located in South Carolina, at the conclusion of the International Nuclear Fuel Cycle Evaluation. Four generic categories of use options for the Barnwell plant have been considered: storage of spent LWR fuel; reprocessing of LWR spent fuel; safeguards development and training; and non-use. Chapters are devoted to institutional options and integrated institutional-use options

  9. 48 CFR 17.107 - Options.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Options. 17.107 Section 17... CONTRACT TYPES SPECIAL CONTRACTING METHODS Multiyear Contracting 17.107 Options. Benefits may accrue by including options in a multiyear contract. In that event, contracting officers must follow the requirements...

  10. Selection of away-from-reactor facilities for spent fuel storage. A guidebook

    International Nuclear Information System (INIS)

    2007-09-01

    This publication aims to provide information on the approaches and criteria that would have to be considered for the selection of away-from-reactor (AFR) type spent fuel storage facilities, needs for which have been growing in an increasing number of Member States producing nuclear power. The AFR facilities can be defined as a storage system functionally independent of the reactor operation providing the role of storage until a further destination such as a disposal) becomes available. Initially developed to provide additional storage space for spent fuel, some AFR storage options are now providing additional spaces for extended storage of spent fuel with a prospect for long term storage, which is becoming a progressive reality in an increasing number of Member States due to the continuing debate on issues associated with the endpoints for spent fuel management and consequent delays in the implementation of final steps, such as disposal. The importance of AFR facilities for storage of spent fuel has been recognized for several decades and addressed in various IAEA publications in the area of spent fuel management. The Guidebook on Spent Fuel Storage (Technical Reports Series No. 240 published in 1984 and revised in 1991) discusses factors to be considered in the evaluation of spent fuel storage options. A technical committee meeting (TCM) on Selection of Dry Spent Fuel Storage Technologies held in Tokyo in 1995 also deliberated on this issue. However, there has not been any stand-alone publication focusing on the topic of selection of AFR storage facilities. The selection of AFR storage facilities is in fact a critical step for the successful implementation of spent fuel management programmes, due to the long operational periods required for storage and fuel handling involved with the additional implication of subsequent penalties in reversing decisions or changing the option mid-stream especially after the construction of the facility. In such a context, the long

  11. Disposition of already separated plutonium in Russia: Consideration of short- and long-term options

    International Nuclear Information System (INIS)

    Diakov, A.S.

    1995-01-01

    The plutonium stockpile presents a serious risk to national and international security. However, the utilization of already separated plutonium involves a complex set of political, technical, economical, and environmental problems. How Russia can best deal with all the problems associated with plutonium stockpiles is the subject of this paper. The official Russian concept of plutonium utilization views it as a valuable energy source. This concept entails the following two measures: (1) storage of both surplus weapons and civil plutonium; (2) fabrication of MOX fuel for future use in a different type of reactor: light-water reactors and fast-neutron reactors. To implement this concept, building four 800-Megawatt fast-neutron reactors and completing the construction of MOX plant is proposed. Technical and economical evaluations are being conducted on plutonium utilization in VVER-1000 reactors. When operating, these reactors (four BN-800 and seven VVER-1000) could dispose of about 9 tons of plutonium per year. But given Russia's current chaotic political and economic conditions, it seems unlikely that these plans will be carried out any time soon. Furthermore, the comparative economic analysis conducted for the different types of fuel cycles shows that due to several factors there is no economic motivation for Russia to use plutonium for fuel fabrication in the near future. These observations indicate that the real question that needs to be answered is what priority needs to be placed on short-, medium-, and long-term to identify and choose between different disposition options? This question is easily answered when one considers the currently turbulent political and economic situation in Russia. The priority that makes the most sense is to concentrate efforts on short-term options

  12. CANDU type fuel activities in Argentina

    International Nuclear Information System (INIS)

    Lavarez, L.; Casario, J.A.; Moreno, C.

    2003-01-01

    Domestic fuel performance in Embalse NPP during the last two years has been excellent without a significant occurrence of fuel failures. The defect rate level was reasonably low with a lowest value of 0.02 % in 2002. The implementation of fuel design optimizations to increase uranium content was fully completed by the end of year 2000. The in-reactor performance was not affected and shows the high degree of maturity reached for both the design and the manufacturing procedures and capabilities. A feasibility study for the utilization of SEU in Embalse NPP mainly conducted by NA-SA and AECL is almost completed. Some fuel related activities are still in progress. As part of them fuel behavior simulations using simplified power histories were performed to assess the influence of SEU fuel burnup extension. (author)

  13. National Options for a Sustainable Nuclear Energy System: MCDM Evaluation Using an Improved Integrated Weighting Approach

    Directory of Open Access Journals (Sweden)

    Ruxing Gao

    2017-12-01

    Full Text Available While the prospects look bright for nuclear energy development in China, no consensus about an optimum transitional path towards sustainability of the nuclear fuel cycle has been achieved. Herein, we present a preliminary study of decision making for China’s future nuclear energy systems, combined with a dynamic analysis model. In terms of sustainability assessment based on environmental, economic, and social considerations, we compared and ranked the four candidate options of nuclear fuel cycles combined with an integrated evaluation analysis using the Multi-Criteria Decision Making (MCDM method. An improved integrated weighting method was first applied in the nuclear fuel cycle evaluation study. This method synthesizes diverse subjective/objective weighting methods to evaluate conflicting criteria among the competing decision makers at different levels of expertise and experience. The results suggest that the fuel cycle option of direct recycling of spent fuel through fast reactors is the most competitive candidate, while the fuel cycle option of direct disposal of all spent fuel without recycling is the least attractive for China, from a sustainability perspective. In summary, this study provided a well-informed decision-making tool to support the development of national nuclear energy strategies.

  14. Societal lifecycle costs of cars with alternative fuels/engines

    International Nuclear Information System (INIS)

    Ogden, Joan M.; Williams, Robert H.; Larson, Eric D.

    2004-01-01

    Effectively addressing concerns about air pollution (especially health impacts of small-particle air pollution), climate change, and oil supply insecurity will probably require radical changes in automotive engine/fuel technologies in directions that offer both the potential for achieving near-zero emissions of air pollutants and greenhouse gases and a diversification of the transport fuel system away from its present exclusive dependence on petroleum. The basis for comparing alternative automotive engine/fuel options in evolving toward these goals in the present analysis is the 'societal lifecycle cost' of transportation, including the vehicle first cost (assuming large-scale mass production), fuel costs (assuming a fully developed fuel infrastructure), externality costs for oil supply security, and damage costs for emissions of air pollutants and greenhouse gases calculated over the full fuel cycle. Several engine/fuel options are considered--including current gasoline internal combustion engines and a variety of advanced lightweight vehicles: internal combustion engine vehicles fueled with gasoline or hydrogen; internal combustion engine/hybrid electric vehicles fueled with gasoline, compressed natural gas, Diesel, Fischer-Tropsch liquids or hydrogen; and fuel cell vehicles fueled with gasoline, methanol or hydrogen (from natural gas, coal or wind power). To account for large uncertainties inherent in the analysis (for example in environmental damage costs, in oil supply security costs and in projected mass-produced costs of future vehicles), lifecycle costs are estimated for a range of possible future conditions. Under base-case conditions, several advanced options have roughly comparable lifecycle costs that are lower than for today's conventional gasoline internal combustion engine cars, when environmental and oil supply insecurity externalities are counted--including advanced gasoline internal combustion engine cars, internal combustion engine

  15. The high temperature reactor and its fuel cycle options

    International Nuclear Information System (INIS)

    1979-07-01

    The status of the HTR system in the Federal Republic of Germany as well as the consecutive steps and the probable cost of further development are presented. The considerations are based on a recycling Th/highly enriched uranium (HEU) fuel cycle which has been chosen as the main line of the German HTR R and D efforts. Alternative fuel cycles such as medium-enriched uranium (MEU) and low-enriched uranium (LEU) are discussed as well

  16. Baseline energy forecasts and analysis of alternative strategies for airline fuel conservation

    Energy Technology Data Exchange (ETDEWEB)

    1976-07-01

    To evaluate the impact of fuel conservation strategies, baseline forecasts of airline activity and energy consumption to 1990 were developed. Alternative policy options to reduce fuel consumption were identified and analyzed for three baseline levels of aviation activity within the framework of an aviation activity/energy consumption model. By combining the identified policy options, a strategy was developed to provide incentives for airline fuel conservation. Strategies and policy options were evaluated in terms of their impact on airline fuel conservation and the functioning of the airline industry as well as the associated social, environmental, and economic costs. (GRA)

  17. Treatment Options by Stage (Pancreatic Cancer)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  18. Treatment Options by Stage (Esophageal Cancer)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  19. Treatment Options by Stage (Vulvar Cancer)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  20. Treatment Options by Stage (Penile Cancer)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  1. Treatment Options for Non-Hodgkin Lymphoma

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... lymphoma may come back as indolent lymphoma. Treatment Option Overview Key Points There are different types of ...

  2. Treatment Options by Stage (Prostate Cancer)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  3. Treatment Options by Stage (Adrenocortical Carcinoma)

    Science.gov (United States)

    ... affect the prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  4. Treatment Options for Childhood Hodgkin Lymphoma

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... the lungs , liver , bones, or bone marrow . Treatment Option Overview Key Points There are different types of ...

  5. Treatment Options for Adult Hodgkin Lymphoma

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  6. Treatment Option Overview (Chronic Lymphocytic Leukemia)

    Science.gov (United States)

    ... examination under a microscope. Certain factors affect treatment options and prognosis (chance of recovery). Treatment options depend ... that does not get better with treatment. Treatment Option Overview Key Points There are different types of ...

  7. Hairy Cell Leukemia Treatment Option Overview

    Science.gov (United States)

    ... or a swollen spleen. Certain factors affect treatment options and prognosis (chance of recovery). The treatment options ... cell leukemia has not responded to treatment. Treatment Option Overview Key Points There are different types of ...

  8. Treatment Option Overview (Small Intestine Cancer)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  9. Treatment Option Overview (Adult Hodgkin Lymphoma)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  10. Treatment Option Overview (Merkel Cell Carcinoma)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... common for Merkel cell carcinoma to recur. Treatment Option Overview Key Points There are different types of ...

  11. Treatment Option Overview (Childhood Hodgkin Lymphoma)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... the lungs , liver , bones, or bone marrow . Treatment Option Overview Key Points There are different types of ...

  12. Treatment Options for AIDS-Related Lymphoma

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... nervous system is not primary CNS lymphoma. Treatment Option Overview Key Points There are different types of ...

  13. Treatment Options for Renal Cell Cancer

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  14. Treatment Options for Gastrointestinal Carcinoid Tumors

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... body. Has not gotten better with treatment. Treatment Option Overview Key Points There are different types of ...

  15. Treatment Options by Stage (Gastric Cancer)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... such as the liver or lymph nodes . Treatment Option Overview Key Points There are different types of ...

  16. Treatment Options by Stage (Thyroid Cancer)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  17. Treatment Options for Chronic Myelogenous Leukemia

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... of blast cells increases after a remission . Treatment Option Overview Key Points There are different types of ...

  18. Examination of fuel reinsertion strategies for out-of core fuel management

    International Nuclear Information System (INIS)

    Comes, S.A.; Turinsky, P.J.

    1986-01-01

    A computer code for determining out-of-core fuel loading strategies in order to minimize levelized fuel cycle cost within constraints has been developed and previously reported by the authors. While past work in this area has dealt with optimizations during equilibrium operating conditions, this work has considered the more realistic conditions of nonequilibrium cycles. The code, called OCEON, seeks to determine a family of economically attractive fuel reload strategies through the optimum selection of feed batch sizes, enrichments, and partially burned fuel reinsertion strategies within operating constraints. This paper presents recent work on expanding the code to allow for different fuel reinsertion options when determining the family of near-optimum fuel reload strategies

  19. Economic aspects of Dukovany NPP fuel cycle

    International Nuclear Information System (INIS)

    Vesely, P.; Borovicka, M.

    2001-01-01

    The paper discusses some aspects of high burnup program implementation at Dukovany NPP and its influence on the fuel cycle costs. Dukovany internal fuel cycle is originally designed as a three years cycle of the Out-In-In fuel reloading patterns. These reloads are not only uneconomical but they additionally increased the radiation load of the reactor pressure vessel due to high neutron leakage typical for Out-In-In loading pattern. To avoid the high neutron leakage from the core a transition to 4-year fuel cycle is started in 1987. The neutron leakage from the core is sequentially decreased by insertion of older fuel assemblies at the core periphery. Other developments in fuel cycle are: 1) increasing of enrichment in control assemblies (3.6% of U-235); 2) improvement in fuel assembly design (reduce the assembly shroud thickness from 2.1 to 1.6 mm); 3) introduction of Zr spacer grid instead of stainless steel; 4) introduction of new type of assembly with profiled enrichment with average value of 3.82%. Due to increased reactivity of the new assemblies the transition to the partial 5-year fuel cycle is required. Typical fuel loading pattern for 3, 3.5, 4 and 5-year cycles are shown in the presented paper. An evaluation of fuel cost is also discussed by using comparative analysis of different fuel cycle options. The analysis shows that introduction of the high burnup program has decrease relative fuel cycle costs

  20. Contact-type displacement measuring mechanism for fuel assembly in reactor

    International Nuclear Information System (INIS)

    Yokota, Yoshio; Ko, Kuniaki.

    1995-01-01

    The measuring mechanism of the present invention, which is used in a lmfbr type reactor, is suspended by a gripper of a fuel handing machine, and it comprises a combination of a displacement amount measuring jig allowed to be inserted into a handling head of a fuel assembly and a displacement amount measuring ring disposed at the lower portion in the handling head. The displacement amount measuring jig has a structure comprising a releasable handle and a columnar or cylindrical measuring portion allowable to be inserted into the handling head formed at the lower portion of the handle, which are connected with each other. When an interference (contact) occurred between the displacement amount measuring jig and the stepwise displacement amount measuring ring during the measurement, change of load and a phenomenon that the fuel handing machine can not be lowered are recognized, so that core displacement amount can be recognized based on the stroke of the gripper portion. Then, remote measurement is possible for displacement and deformation of the fuel assembly in the reactor container, and the measurement can be conducted by the same procedures and in the same period of time as in a case of ordinary fuel exchange operation. A flow channel for coolants passing through the fuel assembly can be ensured, thereby enabling to measure the amount of core displacement which is closer to an actual value in the reactor. (N.H.)

  1. Techno-economic analysis of a local district heating plant under fuel flexibility and performance

    DEFF Research Database (Denmark)

    Rudra, Souman; Rosendahl, Lasse

    2017-01-01

    are calculated using the same procedure according to the use of various local renewable fuels known as “biogas option,” “solar option,” “heat pump option,” and “imported heat option.” A comparison has been made between the reference option and other options. The greatest reduction in heat cost is obtained from......, an investigation has been made to reduce the use of fossil fuels for district heating system and make use of the local renewable resources (biogas, solar, and heat pump) for district heating purposes. In this article, the techno-economic assessment is achieved through the development of a suite of models...... the biogas option by replacing a new engine, where 66 % of the current fuel is substituted with biogas....

  2. The fabrication of nuclear fuel elements in Mexico

    International Nuclear Information System (INIS)

    Guerrero Morillo, H.L.

    1977-01-01

    The situation of nuclear electricity generation in Mexico in 1976 is described: two nuclear reactors were under construction but no definite programme on the type and start-up dates for the next power plants existed. However, the existence of a general plan on nuclear power plants is mentioned, which, according to the latest estimates, will provide 10,000MW installed by 1990. The national intention, as laid down in an appropriate Law, is to supply domestic nuclear fuel to the power reactors operating in the country, starting with the first reloading of the two BWRs at the first national station in Laguna Verde, required at the end of 1981 and 1982, respectively. Before this can be achieved and to provide the relatively small amounts of fuel elements for the two reactors, Mexico must adopt a strategy of fuel elements fabrication. The two main options are analysed: (1) to delay local fabrication until a national nuclear programme has been defined, meanwhile purchasing abroad the necessary initial cores and refuelling; (2) to start local fabrication of fuel elements as soon as possible in order to provide the first refuelling of the first unit of Laguna Verde, confronting the economic risks of such a decision with the advantages of immediate action. Both options are analysed in detail, comparing them especially from the economic point of view. Current information from potential licensors for design and manufacture are used in the analysis. (author)

  3. A comparison study on radioactive waste management effectiveness in various nuclear fuel cycles

    International Nuclear Information System (INIS)

    Ko, Won Il; Kim, Ho Dong

    2001-07-01

    This study examines whether the DUPIC (Direct Use of Spent PWR Fuel In CANDU) fuel cycle make radioactive waste management more effective, by comparing it with other fuel cycles such as the PWR (Pressurized Water Reactor) once-through cycle, the HWR (Pressurized Heavy Water Reactor) once-through cycle and the thermal recycling option to use an existing PWR with MOX (Mixed Oxide) fuel. This study first focuses on the radioactive waste volume generated in all fuel cycle steps, which could be one of the measures of effectiveness of the waste management. Then the total radioactive waste disposition cost is estimated based on two units measuring; m3/GWe-yr and US$/GWe-yr. We find from the radioactive waste volume estimation that the DUPIC fuel cycle could have lower volumes for milling tailings, low level waste and spent fuel than those of other fuel cycle options. From the results of the disposition cost analysis, we find that the DUPIC waste disposition cost is the lowest among fuel cycle options. If the total waste disposition cost is used as a proxy for quantifying the easiness or difficulty in managing wastes, then the DUPIC option actually make waste management easier

  4. A review of microstructural analysis on U3Si2-Al plate-type fuel

    International Nuclear Information System (INIS)

    Ti Zhongxin; Guo Yibai

    1995-12-01

    The microstructure of U 3 Si 2 -Al plate-type fuel, that is the microstructure of fuel particles, compatibility of the fuel particles and Al matrix, fuel particles distribution, dogbone area morphology, clad and meat thickness, bone quality of clad/frame and clad/fuel core, and the effect of these factors on products quality were comprehensively investigated and analyzed by means of optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectrometry (EDX), image processing technique, etc.. The main results are as following: U-7.7%Si alloy contains two phases: primary U 3 Si 2 and small amount of USi (about 12%), free-uranium was not detected in fuel particles; the dogbone area is the key factor affecting fuel plate quality (1 ref., 16 figs., 4 tabs.)

  5. Prediction for the flow distribution and the pressure drop of a plate type fuel assembly

    International Nuclear Information System (INIS)

    Park, Jong Hark; Jo, Dea Sung; Chae, Hee Taek; Lee, Byung Chul

    2011-01-01

    A plate type fuel assembly widely used in many research reactors does not allow the coolant to mix with neighboring fuel channels due to the completely separated flow channels. If there is a serious inequality of coolant distribution among channels, it can reduce thermal-hydraulic safety margin, as well as it can cause a deformation of fuel plates by the pressure difference between neighboring channels, thus the flow uniformity in the fuel assembly should be confirmed. When designing a primary cooling system (PCS), the pressure drop through a reactor core is a dominant value to determine the PCS pump size. The major portion of reactor core pressure drop is caused by the fuel assemblies. However it is not easy to get a reasonable estimation of pressure drop due to the geometric complexity of the fuel assembly and the thin gaps between fuel assemblies. The flow rate through the gap is important part to determine the total flow rate of PCS, so it should be estimated as reasonable as possible. It requires complex and difficult jobs to get useful data. In this study CFD analysis to predict the flow distribution and the pressure drop were conducted on the plate type fuel assembly, which results would be used to be preliminary data to determine the PCS flow rate and to improve the design of a fuel assembly

  6. 48 CFR 317.107 - Options.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Options. 317.107 Section... CONTRACT TYPES SPECIAL CONTRACTING METHODS Multi-year Contracting 317.107 Options. When used as part of a multi-year contract, options shall not be used to extend the performance of the original requirement for...

  7. Human reliability and risk management in the transportation of spent nuclear fuel

    International Nuclear Information System (INIS)

    Tuler, S.; Kasperson, R.E.; Ratick, S.

    1989-01-01

    This paper summarizes work on human factor contributions to risks from spent nuclear fuel transportation. Human participation may have significant effects on the levels and types of risks by enabling or initiating incidents and exacerbating adverse consequences. Human errors are defined to be the result of mismatches between perceived system state and actual system state. In complex transportation systems such mismatches may be distributed in time (e.g., during different stages of design, implementation, operation, maintenance) and location (e.g., human error, its identification, and its recovery may be geographically and institutionally separate). Risk management programs may decrease the probability of undesirable events or attenuate the consequences of mismatches. This paper presents a methodology to identify the scope and types of human-task mismatches and to identify potential management options for their prevention, mitigation, or recovery. A review of transportation accident databases, in conjunction with human error models, is used to develop a taxonomy of human errors during design for the pre-identification of potential mismatches or after incidents have occurred to evaluate their causes. Risk management options to improve human reliability are identified by a matrix that relates the multiple stages of a spent nuclear fuel transportation system to management options (e.g., training, data analysis, regulation). The paper concludes with examples to illustrate how the methodology may be applied. (author)

  8. Improved fuel design economics - a new evaluation tool

    International Nuclear Information System (INIS)

    Aboudara, J.L.

    1987-01-01

    Advanced fuel design technology is now beginning to be implemented with new reload regions for large pressurized water reactors. Until recently there has not been an integrated computer modeling product that would allow easy assessment of the economics of various advanced fuel design alternatives now available to utilities. The Fuel Cycle Scoping System (FCSS) was designed to fill this need. The FCSS is a personnel computer (PC) software package that is used to evaluate alternative strategies for supplying and using nuclear fuel in nuclear power reactors. The FCSS is an extremely flexible package that permits evaluation of in-core and out-of-core fuel management strategy options. For each strategy option, unit and reactor operating assumptions and assumptions for uranium supply, conversion, enrichment, fabrication, and spent fuel disposal can be made

  9. Exotic Options: a Chooser Option and its Pricing

    Directory of Open Access Journals (Sweden)

    Raimonda Martinkutė-Kaulienė

    2012-12-01

    Full Text Available Financial instruments traded in the markets and investors’ situation in such markets are getting more and more complex. This leads to more complex derivative structures used for hedging that are harder to analyze and which risk is harder managed. Because of the complexity of these instruments, the basic characteristics of many exotic options may sometimes be not clearly understood. Most scientific studies have been focused on developing models for pricing various types of exotic options, but it is important to study their unique characteristics and to understand them correctly in order to use them in proper market situations. The paper examines main aspects of options, emphasizing the variety of exotic options and their place in financial markets and risk management process. As the exact valuation of exotic options is quite difficult, the article deals with the theoretical and practical aspects of pricing of chooser options that suggest a broad range of usage and application in different market conditions. The calculations made in the article showed that the price of the chooser is closely correlated with the choice time and low correlated with its strike price. So the first mentioned factor should be taken into consideration when making appropriate hedging and investing decisions.

  10. Oxy-fuel combustion of solid fuels

    DEFF Research Database (Denmark)

    Toftegaard, Maja Bøg; Brix, Jacob; Jensen, Peter Arendt

    2010-01-01

    Oxy-fuel combustion is suggested as one of the possible, promising technologies for capturing CO2 from power plants. The concept of oxy-fuel combustion is removal of nitrogen from the oxidizer to carry out the combustion process in oxygen and, in most concepts, recycled flue gas to lower the flame...... provide additional options for improvement of process economics are however likewise investigated. Of particular interest is the change of the combustion process induced by the exchange of carbon dioxide and water vapor for nitrogen as diluent. This paper reviews the published knowledge on the oxy......-fuel process and focuses particularly on the combustion fundamentals, i.e. flame temperatures and heat transfer, ignition and burnout, emissions, and fly ash characteristics. Knowledge is currently available regarding both an entire oxy-fuel power plant and the combustion fundamentals. However, several...

  11. Bruce used fuel dry storage project evolution from Pickering to Bruce

    International Nuclear Information System (INIS)

    Young, R.E.

    1996-01-01

    Additional fuel storage capacity is required at Bruce Nuclear Generating Station, which otherwise would soon fill up all its pool storage capacity. The recommended option was to use a dry storage container similar to that at Pickering. The changes made to the Pickering type of container included: fuel to be stored in trays; the container's capacity increased to 600 bundles; the container's lid to be changed to a metal one; the single concrete lid to be changed to a double metal lid system; the container not to be transportable; the container would be dry-loaded. 7 figs

  12. Bruce used fuel dry storage project evolution from Pickering to Bruce

    Energy Technology Data Exchange (ETDEWEB)

    Young, R E [Ontario Hydro, Tiverton, ON (Canada). Bruce Nuclear Generating Station-A

    1997-12-31

    Additional fuel storage capacity is required at Bruce Nuclear Generating Station, which otherwise would soon fill up all its pool storage capacity. The recommended option was to use a dry storage container similar to that at Pickering. The changes made to the Pickering type of container included: fuel to be stored in trays; the container`s capacity increased to 600 bundles; the container`s lid to be changed to a metal one; the single concrete lid to be changed to a double metal lid system; the container not to be transportable; the container would be dry-loaded. 7 figs.

  13. Dry syngas purification process for coal gas produced in oxy-fuel type integrated gasification combined cycle power generation with carbon dioxide capturing feature.

    Science.gov (United States)

    Kobayashi, Makoto; Akiho, Hiroyuki

    2017-12-01

    Electricity production from coal fuel with minimizing efficiency penalty for the carbon dioxide abatement will bring us sustainable and compatible energy utilization. One of the promising options is oxy-fuel type Integrated Gasification Combined Cycle (oxy-fuel IGCC) power generation that is estimated to achieve thermal efficiency of 44% at lower heating value (LHV) base and provide compressed carbon dioxide (CO 2 ) with concentration of 93 vol%. The proper operation of the plant is established by introducing dry syngas cleaning processes to control halide and sulfur compounds satisfying tolerate contaminants level of gas turbine. To realize the dry process, the bench scale test facility was planned to demonstrate the first-ever halide and sulfur removal with fixed bed reactor using actual syngas from O 2 -CO 2 blown gasifier for the oxy-fuel IGCC power generation. Design parameter for the test facility was required for the candidate sorbents for halide removal and sulfur removal. Breakthrough test was performed on two kinds of halide sorbents at accelerated condition and on honeycomb desulfurization sorbent at varied space velocity condition. The results for the both sorbents for halide and sulfur exhibited sufficient removal within the satisfactory short depth of sorbent bed, as well as superior bed conversion of the impurity removal reaction. These performance evaluation of the candidate sorbents of halide and sulfur removal provided rational and affordable design parameters for the bench scale test facility to demonstrate the dry syngas cleaning process for oxy-fuel IGCC system as the scaled up step of process development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. FY2014 Fuel & Lubricant Technologies Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Stork, Kevin [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2016-02-01

    Annual progress report for Fuel & Lubricant Technologies. The Fuel & Lubricant Technologies Program supports fuels and lubricants research and development (R&D) to provide vehicle manufacturers and users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement.

  15. Evaluation of methods for decladding LWR fuel for a pyroprocessing-based reprocessing plant

    International Nuclear Information System (INIS)

    Bond, W.D.; Mailen, J.C.; Michaels, G.E.

    1992-10-01

    The first step in reprocessing disassembled light-water reactor (LWR) spent fuel is to separate the zirconium-based cladding from the UO 2 fuel. A survey of decladding technologies has been performed to identify candidate decladding processes suitable for LWR fuel and compatible with downstream pyropr for separation of actinides and fission products. Technologies for the primary separation of Zircaloy cladding from oxide fuel and for secondary separations (in most cases, a further decontamination of the cladding) were reviewed. Because cutting of the fuel cladding is a necessary step in all flowsheet options, metal cutting technologies were also briefly evaluated. The assessment of decladding processes resulted in the identification of the three or four potentially attractive options that may warrant additional near-term evaluation. These options are summarized, and major strengths and issues of each option are discussed

  16. Evaluation of methods for decladding LWR fuel for a pyroprocessing-based reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Bond, W.D.; Mailen, J.C.; Michaels, G.E.

    1992-10-01

    The first step in reprocessing disassembled light-water reactor (LWR) spent fuel is to separate the zirconium-based cladding from the UO[sub 2] fuel. A survey of decladding technologies has been performed to identify candidate decladding processes suitable for LWR fuel and compatible with downstream pyropr for separation of actinides and fission products. Technologies for the primary separation of Zircaloy cladding from oxide fuel and for secondary separations (in most cases, a further decontamination of the cladding) were reviewed. Because cutting of the fuel cladding is a necessary step in all flowsheet options, metal cutting technologies were also briefly evaluated. The assessment of decladding processes resulted in the identification of the three or four potentially attractive options that may warrant additional near-term evaluation. These options are summarized, and major strengths and issues of each option are discussed.

  17. Evaluation of methods for decladding LWR fuel for a pyroprocessing-based reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Bond, W.D.; Mailen, J.C.; Michaels, G.E.

    1992-10-01

    The first step in reprocessing disassembled light-water reactor (LWR) spent fuel is to separate the zirconium-based cladding from the UO{sub 2} fuel. A survey of decladding technologies has been performed to identify candidate decladding processes suitable for LWR fuel and compatible with downstream pyropr for separation of actinides and fission products. Technologies for the primary separation of Zircaloy cladding from oxide fuel and for secondary separations (in most cases, a further decontamination of the cladding) were reviewed. Because cutting of the fuel cladding is a necessary step in all flowsheet options, metal cutting technologies were also briefly evaluated. The assessment of decladding processes resulted in the identification of the three or four potentially attractive options that may warrant additional near-term evaluation. These options are summarized, and major strengths and issues of each option are discussed.

  18. Deployment Evaluation Methodology for the Electrometallurgical Treatment of DOE-EM Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Ramer, Ronald James; Adams, James Paul; Rynearson, Michael Ardel; Dahl, Christian Adam

    1999-01-01

    The Department of Energy - Environmental Management (DOE-EM) National Spent Nuclear Fuel Program (NSNFP) is charged with the disposition of legacy Spent Nuclear Fuel (SNF). The NSNFP, conducted by Lockheed Martin Idaho Technology Co. (LMITCO) at the Idaho National Engineering and Environmental Laboratory (INEEL), is evaluating final disposition of SNF in the DOE complex. While direct repository disposal of the SNF is the preferred disposition option, some DOE SNF may need treatment to meet acceptance criteria at various disposition sites. Evaluations of treatment needs and options have been previously prepared, and further evaluations are ongoing activities in the DOE-EM NSNFP. The treatments may range from electrometallurgical treatment (EMT) and chemical dissolution to engineering controls. As a planning basis, a need is assumed for a treatment process, either as a primary or backup technology, that is compatible with, and cost-effective for, this portion of the DOE-EM inventory. The current planning option for treating this SNF, pending completion of development work and National Environmental Policy Act (NEPA) analysis, is the EMT process under development by Argonne National Laboratory - West (ANL-W). A decision on the deployment of the EMT is pending completion of an engineering scale demonstration currently in progress at ANL-W. Treatment options and treatment locations will depend on fuel type and location of the fuel. One of the first steps associated with selecting one or more sites for treating SNF in the DOE complex is to determine the cost of each option. An economic analysis will assist in determining which fuel treatment alternative attains the optimum disposition of SNF at the lowest possible cost to the government and the public. One of the major issues associated with SNF treatment is final disposition of treatment products and associated waste streams. During conventional SNF treatment, various chemicals are added that may increase the product

  19. Design and analytic evaluation of a rim effect reduction type LWR fuel for extending burnup

    International Nuclear Information System (INIS)

    Matsumura, Tetsuo; Kameyama, Takanori; Kinoshita, Motoyasu

    1991-01-01

    We have designed a new concept fuel design 'Rim effect reduction type fuel' which has thin natural UO 2 layer on surface of a UO2 pellet. Our neutronic analyses with ANRB code show this fuel design can reduce rim effect (burnup at plelet rim) by about 30 GWd/t comparing a normal fuel. It is known that a high burnup fuel has different microstructure from as-fabricated one at fuel rim (which is called as rim region) due to rim effect. Therefore this fuel design can expect smaller rim region than a normal fuel. Our fuel performance analyses with EIMUS code show this fuel design can reduce fuel center temperature at high burnup if thermal conductivity of fuel pellet decreases with burnup in inverse proportion. However, this fuel design increases fuel center temperature at low and middle burnup than a normal fuel due to increase of thermal power density at pellet center. Additionally Irradiation experiment of this fuel design can be considered to offer important data which make clear the relation between rim effect and fuel performance. (author)

  20. Alternative Fuels in Transportation : Workforce needs and opportunities in support of reducing reliance on petroleum fuels

    Science.gov (United States)

    2016-01-01

    An overreliance on foreign oil and the negative impacts of using petroleum fuels on the worlds climate have prompted energy policies that support the diversification of transport fuels and aggressive work to transition to non-petroleum options. Th...

  1. Technological options for acid rain control

    International Nuclear Information System (INIS)

    Princiotta, F.T.; Sedman, C.B.

    1993-01-01

    The paper discusses technological options for acid rain control. Compliance with Title IV of the Clean Air Act Amendments of 1990 will require careful scrutiny of a number of issues before selecting control options to reduce sulfur dioxide (SO2) and nitrogen oxide (NOx) emissions. One key consideration is the effect of fuel switching or control technology upon the existing dust collector, with additional air toxics legislation looming ahead. A number of likely SO2 and NOx retrofit technologies and estimated costs are presented, along with results of retrofit case studies. New hybrid particulate controls are also being developed to meet future requirements

  2. Accelerators and alternative nuclear fuel management options

    International Nuclear Information System (INIS)

    Harms, A.A.

    1983-01-01

    The development of special accelerators suggests the po tential for new directions in nuclear energy systems evolution. Such directions point towards a more acceptable form of nuclear energy by reason of the consequent accessibility of enhanced fuel management choices. Essential and specifically directed research and development activity needs to be under taken in order to clarify and resolve a number of technical issues

  3. Analysis on small long life reactor using thorium fuel for water cooled and metal cooled reactor types

    International Nuclear Information System (INIS)

    Permana, Sidik

    2009-01-01

    Long-life reactor operation can be adopted for some special purposes which have been proposed by IAEA as the small and medium reactor (SMR) program. Thermal reactor and fast reactor types can be used for SMR and in addition to that program the utilization of thorium fuel as one of the candidate as a 'partner' fuel with uranium fuel which can be considered for optimizing the nuclear fuel utilization as well as recycling spent fuel. Fissile U-233 as the main fissile material for thorium fuel shows higher eta-value for wider energy range compared with other fissile materials of U-235 and Pu-239. However, it less than Pu-239 for fast energy region, but it still shows high eta-value. This eta-value gives the reactor has higher capability for obtaining breeding condition or high conversion capability. In the present study, the comparative analysis on small long life reactor fueled by thorium for different reactor types (water cooled and metal cooled reactor types). Light water and heavy water have been used as representative of water-cooled reactor types, and for liquid metal-cooled reactor types, sodium-cooled and lead-bismuth-cooled have been adopted. Core blanket arrangement as general design configuration, has been adopted which consist of inner blanket region fueled by thorium oxide, and two core regions (inner and out regions) fueled by fissile U-233 and thorium oxide with different percentages of fissile content. SRAC-CITATION and JENDL-33 have been used as core optimization analysis and nuclear data library for this analysis. Reactor operation time can reaches more than 10 years operation without refueling and shuffling for different reactor types and several power outputs. As can be expected, liquid metal cooled reactor types can be used more effective for obtaining long life reactor with higher burnup, higher power density, higher breeding capability and lower excess reactivity compared with water-cooled reactors. Water cooled obtains long life core operation

  4. Study for the selection of a supplementary spent fuel storage facility for KANUPP

    International Nuclear Information System (INIS)

    Ahmed, W.; Iqbal, M.J.; Arshad, M.

    1999-01-01

    Steps taken for construction of the spent fuel facility of Karachi Nuclear Power Plant (KANUPP) are the following: choice of conceptual design and site selection; preliminary design and preparation of Preliminary Safety Analysis Report (PSAR); Construction of the facility and preparation of PSAR; testing/commissioning and loading of the storage facility. Characterisation of the spent fuel is essential for design of the storage facility. After comparison of various storage types, it seems that construction of dry storage facility based on concrete canisters at KANUPP site is a suitable option to enhance the storage capacity

  5. Lighting Options for Homes.

    Energy Technology Data Exchange (ETDEWEB)

    Baker, W.S.

    1991-04-01

    This report covers many aspects of various lighting options for homes. Types of light sources described include natural light, artificial light, incandescent lamps, fluorescent lamps, and high intensity discharge lamps. A light source selection guide gives the physical characteristics of these, design considerations, and common applications. Color, strategies for efficient lighting, and types of lighting are discussed. There is one section giving tips for various situations in specific rooms. Rooms and types of fixtures are shown on a matrix with watts saved by using the recommended type lighting for that room and room location. A major emphasis of this report is saving energy by utilizing the most suitable, recommended lighting option. (BN)

  6. Fuel exchange device for FBR type reactor

    International Nuclear Information System (INIS)

    Onuki, Koji.

    1993-01-01

    The device of the present invention can provide fresh fuels with a rotational angle aligned with the direction in the reactor core, so that the fresh fuels can be inserted being aligned with apertures of the reactor core even if a self orientation mechanism should fail to operate. That is, a rotational angle detection means (1) detects the rotational angle of fresh fuels before insertion to the reactor core. A fuel rotational angle control means (2) controls the rotational angle of the fresh fuels by comparing the detection result of the means (1) and the data for the insertion position of the reactor core. A fuel rotation means (3) compensates the rotational angel of the fresh fuels based on the control signal from the means (2). In this way, when the fresh fuels are inserted to the reactor core, the fresh fuels set at the same angle as that for the aperture of the reactor core. Accordingly, even if the self orientation mechanism should not operate, the fresh fuels can be inserted smoothly. As a result, it is possible to save loss time upon fuel exchange and mitigate operator's burden during operation. (I.S.)

  7. Fuel cladding tube and fuel rod for BWR type reactor

    International Nuclear Information System (INIS)

    Urata, Megumu; Mitani, Shinji.

    1995-01-01

    A fuel cladding tube has grooves fabricated, on the surface thereof, with a predetermined difference between crest and bottom (depth of the groove) in the circumferential direction. The cross sectional shape thereof is sinusoidal. The distribution of the grain size of iron crud particles in coolants is within a range about from 2μm to 12μm. If the surface roughness of the fuel cladding tube (depth of the groove) is determined greater than 1.6μm and less than 12.5, iron cruds in coolants can be positively deposited on the surface of the fuel cladding tube. In addition, once deposited iron cruds can be prevented from peeling from the surface of the fuel cladding tube. With such procedures, iron cruds deposited and radioactivated on the fuel cladding tube can be prevented from peeling, to prevent and reduce the increase of radiation dose on the surface of the pipelines without providing any additional device. (I.N.)

  8. 48 CFR 517.207 - Exercise of options.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Exercise of options. 517... METHODS AND CONTRACT TYPES SPECIAL CONTRACTING METHODS Options 517.207 Exercise of options. Before exercising an option, you must: (a) Synopsize it unless you meet of the following conditions: (1) The option...

  9. 24 CFR 982.625 - Homeownership option: General.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Homeownership option: General. 982... Types Homeownership Option § 982.625 Homeownership option: General. (a) The homeownership option is used... family assisted under the homeownership option may be a newly admitted or existing participant in the...

  10. Loss-of-flow test L5 on FFTF-type irradiated fuel

    International Nuclear Information System (INIS)

    Simms, R.; Gehl, S.M.; Lo, R.K.; Rothman, A.B.

    1978-03-01

    Test L5 simulated a hypothetical loss-of-flow accident in an LMFBR using three (Pu, U)O 2 fuel elements of the FTR type. The test elements were irradiated before TREAT Test L5 in the General Electric Test Reactor to 8 at. % burnup at about 40 kW/m. The preirradiation in GETR caused a fuel-restructuring range characteristic of moderate-power structure relative to the FTR. The test transient was devised so that a power burst would be initiated at incipient cladding melting after the loss of flow. The test simulation corresponds to a scenario for FTR in which fuel in high-power-structure subassemblies slump, resulting in a power excursion. The remaining subassemblies are subjected to this power burst. Test L5 addressed the fuel-motion behavior of the subassemblies in this latter category. Data from test-vehicle sensors, hodoscope, and post-mortem examinations were used to construct the sequence of events within the test zone. From these observations, the fuel underwent a predominantly dispersive event just after reaching a peak power six times nominal at, or after, scram. The fuel motion was apparently driven by the release of entrained fission-product gases, since fuel vapor pressure was deliberately kept below significant levels for the transient. The test remains show a wide range of microstructural evolution, depending on the extent of heat deposition along the active fuel column. Extensive fuel swelling was also observed as a result of the lack of the cladding restraint. The results of the thermal-hydraulic calculations with the SAS3A code agreed qualitatively with the postmortem results with respect to the extent of the melting and the dispersal of cladding and fuel. However, the calculated times of certain events did not agree with the observed times

  11. Unlocking Solar for Low- and Moderate-Income Residents: A Matrix of Financing Options by Resident, Provider, and Housing Type

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Jeffrey J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bird, Lori A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-01-02

    Historically the low and moderate income (LMI) market has been underserved by solar photovoltaics (PV), in part due to the unique barriers LMI residents face to participation in the PV market. The intent of this report is to identify the most promising strategies state policymakers might consider to finance PV for LMI customers across three housing types: single family, multi-family, and manufactured housing. The result is a financing matrix that documents the first and second tier financing options states may consider for each housing type. The first tier options were selected based upon their potential impact on LMI PV deployment. Second tier financing approaches could also be used to achieve state policy goals, but may not have as much effect on the relevant LMI market segment. Nevertheless, each financing option comes with tradeoffs that state policymakers may wish to consider when they make decisions about which financing approaches are best suited to achieve their LMI PV deployment goals.

  12. Porosity in MX-type fuels and its stability

    International Nuclear Information System (INIS)

    Sari, C.

    1978-01-01

    Radial and axial temperature gradients were generated in MX-type fuels (U,Pu)C, (U,Pu)CN and (U,Pu)N in regions of temperature between 1000 and 2000 0 C. Typical temperature gradients were between 150 and 350 0 C/mm. Experiments show that under these conditions important restructuring of the fuel occurs after less than 40 hours. Densification in the thermal gradient was observed at temperature as low as 1100 0 C and the densification decreases with the increase of the nitrogen content. The grain growth rates decrease with the increase of the nitrogen content, thus paralleling the results of densification. Evidence of pore migration was found in the region with T approximately equal to 1500 0 C. Data of pore migration in MC and in carbon rich MCN plotted in an Arrhenius diagram gives a ΔH approximately equal to 95kcal/mole in approximate agreement with the values of evaporation enthalpy

  13. Behavior of EBR-II Mk-V-type fuel elements in simulated loss-of-flow tests

    International Nuclear Information System (INIS)

    Liu, Y.Y.; Tsai, H.; Billone, M.C.; Holland, J.W.; Kramer, J.M.

    1992-11-01

    This report discusses three furnace heating tests which were conducted with irradiated, HT9-clad and U-19wt.%Pu-l0wt.%Zr-alloy fuel, Mk-V-type fuel elements in the Alpha-Gamma Hot Cell Facility at Argonne National Laboratory, Illinois. In general, very significant safety margins for fuel-element cladding breaching have been demonstrated in these tests, under conditions that would envelop a bounding unlikely loss-of-flow event in EBR-II. Highlights of the test results will be given, as well as discussions of the cladding breaching mechanisms, axial fuel motion, and fuel surface liquefaction found in high-temperature testing of irradiated metallic fuel elements

  14. Nuclear Fuel Cycle Evaluation and Screening Findings on Partitioning and Transmutation

    International Nuclear Information System (INIS)

    Wigeland, R.A.; Taiwo, T.A.; Gehin, J.C.; Jubin, R.; Todosow, M.

    2015-01-01

    A Nuclear Fuel Cycle Evaluation and Screening (E and S) study has recently been completed in the United States. The study considered the entire fuel cycle, included considerations for both once-through and recycle fuel cycle options, evaluated a set of 40 fuel cycles that allowed a comprehensive assessment of fuel cycle performance, identified a relatively small number of promising fuel cycle options that have the potential for achieving substantial improvements compared to the current nuclear fuel cycle in the United States, and allowed the identification of research and development (R and D) activities needed to support the development of the promising fuel cycle options. Nine high-level criteria (Nuclear Waste Management, Proliferation Risk, Nuclear Material Security Risk, Safety, Environmental Impact, Resource Utilisation, Development and Deployment Risk, Institutional Issues, and Financial Risk and Economics) and associated metrics were used in the study to compare the performance of nuclear fuel cycle options to that of the current fuel cycle practiced in the United States. The study also evaluated a number of fuel cycle characteristics that may have the potential to impact future R and D directions. These included for example: 1) The fuel resources used, i. e., uranium and/or thorium. 2) Impact of extremely high burnup fuels. 3) Minor actinide recycle. 4) The impact of losses during separations (partitioning). 5) Critical versus subcritical (externally-driven) systems for material irradiation. 6) Impact of spectrum of irradiation system, i.e., fast, thermal or intermediate. 7) Waste generation reduction, all of which were quantified in the study. The E and S study has implemented a framework that can be used now and in the future to objectively inform on the potential of alternative nuclear fuel cycles, providing decision-makers and others with perspective on fuel cycle capabilities. (authors)

  15. Cost analysis methodology of spent fuel storage

    International Nuclear Information System (INIS)

    1994-01-01

    The report deals with the cost analysis of interim spent fuel storage; however, it is not intended either to give a detailed cost analysis or to compare the costs of the different options. This report provides a methodology for calculating the costs of different options for interim storage of the spent fuel produced in the reactor cores. Different technical features and storage options (dry and wet, away from reactor and at reactor) are considered and the factors affecting all options defined. The major cost categories are analysed. Then the net present value of each option is calculated and the levelized cost determined. Finally, a sensitivity analysis is conducted taking into account the uncertainty in the different cost estimates. Examples of current storage practices in some countries are included in the Appendices, with description of the most relevant technical and economic aspects. 16 figs, 14 tabs

  16. Innovative inert matrix-thoria fuels for in-reactor plutonium disposition

    International Nuclear Information System (INIS)

    Vettraino, F.; Padovani, E.; Luzzi, L.; Lombardi, C.; Thoresen, H.; Oberlander, B.; Iversen, G.; Espeland, M.

    1999-01-01

    The present leading option for plutonium disposition, either civilian or weapons Pu, is to burn it in LWRs after having converted it to MOX fuel. However, among the possible types of fuel which can be envisaged to burn plutonium in LWRs, innovative U-free fuels such as inert matrix and thoria fuel are novel concept in view of a more effective and ultimate solution from both security and safety standpoint. Inert matrix fuel is an non-fertile oxide fuel consisting of PuO 2 , either weapon-grade or reactor-grade, diluted in inert oxides such as for ex. stabilized ZrO 2 or MgAl 2 O 4 , its primary advantage consisting in no-production of new plutonium during irradiation, because it does not contain uranium (U-free fuel) whose U-238 isotope is the departure nuclide for breeding Pu-239. Some thoria addition in the matrix (thoria-doped fuel) may be required for coping with reactivity feedback needs. The full thoria-plutonia fuel though still a U-free variant cannot be defined non-fertile any more because the U-233 generation. The advantage of such a fuel option consisting basically on a remarkable already existing technological background and a potential acceleration in getting rid of the Pu stocks. All U-free fuels are envisaged to be operated under a once-through cycle scheme being the spent fuel outlooked to be sent directly to the final disposal in deep geological formations without requiring any further reprocessing treatment, thanks to the quality-poor residual Pu and a very high chemical stability under the current fuel reprocessing techniques. Besides, inert matrix-thoria fuel technology is suitable for in-reactor MAs transmutation. An additional interest in Th containing fuel refers to applicability in ADS, the innovative accelerated driven subcritical systems, specifically aimed at plutonium, minor actnides and long lived fission products transmutation in a Th-fuel cycle scheme which enables to avoid generations of new TRUs. A first common irradiation experiment

  17. Improvement of the vibration of the test fuel(Type-B) with a guide tube under operational condition

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Dong Seung; Yim, Jeong Sik; Lim, I. C. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-04-01

    The Type-B test fuel for the Hanaro has a flexible guide tube on top of the fuel to lead and guide the instrumentation wires. Depending on the flow condition in the reactor, the fuel is susceptible to vibration. During the test operation of the fuel, a fairly large amplitude vibration was observed and the possibility of flow tube contact with adjacent flow tubes, due to the excessive vibration of the fuel, and consequent wear or defect of the flow tubes were raised. Thus, to know the vibration characteristics as well as whether the flow tube contact each other, analyses of the Type-B fuel the dummy fuel were performed by BEVIRA and ANSYS. Besides the analyses, vibration tests using the dummy fuel in air and with Type-B fuel in the core at zero power under operational flow condition were executed. The results from the analyses were compared with those from tests to validate the analyses. From the deflection test of the dummy fuel in air to get the maximum displacement of the flow tube at the top, the flow tube were found to contact each other. For the prevention of the contact of the flow tubes caused by the excessive vibration of the guide tube, an additional support to the guide tube was proposed. With the additional support, analysis and in core vibration test under operational flow condition were conducted and there found to be no excessive vibration any more. 6 refs., 16 figs., 6 tabs. (Author)

  18. Progress of the Russian RERTR program: Development of new-type fuel elements for Russian-built research reactors

    International Nuclear Information System (INIS)

    Vatulin, A. V.; Stetskiy, Y.A.; Mishunin, V.A.; Suprun, V.B.; Dobrikova, I.V.

    2002-01-01

    The new design of pin-type fuel elements and fuel assembly on their basis for Russian research reactors has been developed. The number of following activities has been performed: computational and experimental substantiation of fuel element design; development of fabrication process of fuel elements; manufacturing of experimental assembly for lifetime in-pile tests. The relevant fuel assemblies are considered to be perspective for usage as low-enriched fuel for Russian research reactors. (author)

  19. Treatment Options for Actinic Keratosis

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) depends mostly on ... helped by lip balm or petroleum jelly . Treatment Option Overview Key Points There are different types of ...

  20. Treatment Option Overview (Vaginal Cancer)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) depends on the ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  1. Treatment Option Overview (Anal Cancer)

    Science.gov (United States)

    ... affect the prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) depends on the ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  2. 48 CFR 3017.202 - Use of options.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Use of options. 3017.202... ACQUISITION REGULATION (HSAR) CONTRACT METHODS AND CONTRACT TYPES SPECIAL CONTRACTING METHODS Options. 3017.202 Use of options. (a) Contracting officers shall not use unpriced options. ...

  3. Options Study Documenting the Fast Reactor Fuels Innovative Design Activity

    Energy Technology Data Exchange (ETDEWEB)

    Jon Carmack; Kemal Pasamehmetoglu

    2010-07-01

    This document provides presentation and general analysis of innovative design concepts submitted to the FCRD Advanced Fuels Campaign by nine national laboratory teams as part of the Innovative Transmutation Fuels Concepts Call for Proposals issued on October 15, 2009 (Appendix A). Twenty one whitepapers were received and evaluated by an independent technical review committee.

  4. The Economic, repository and proliferation implications of advanced nuclear fuel cycles

    International Nuclear Information System (INIS)

    Deinert, Mark; Cady, K.B.

    2011-01-01

    The goal of this project was to compare the effects of recycling actinides using fast burner reactors, with recycle that would be done using inert matrix fuel burned in conventional light water reactors. In the fast reactor option, actinides from both spent light water and fast reactor fuel would be recycled. In the inert matrix fuel option, actinides from spent light water fuel would be recycled, but the spent inert matrix fuel would not be reprocessed. The comparison was done over a limited 100-year time horizon. The economic, repository and proliferation implications of these options all hinge on the composition of isotopic byproducts of power production. We took the perspective that back-end economics would be affected by the cost of spent fuel reprocessing (whether conventional uranium dioxide fuel, or fast reactor fuel), fuel manufacture, and ultimate disposal of high level waste in a Yucca Mountain like geological repository. Central to understanding these costs was determining the overall amount of reprocessing needed to implement a fast burner, or inert matrix fuel, recycle program. The total quantity of high level waste requiring geological disposal (along with its thermal output), and the cost of reprocessing were also analyzed. A major advantage of the inert matrix fuel option is that it could in principle be implemented using the existing fleet of commercial power reactors. A central finding of this project was that recycling actinides using an inert matrix fuel could achieve reductions in overall actinide production that are nearly very close to those that could be achieved by recycling the actinides using a fast burner reactor.

  5. Coupling fuel cycles with repositories: how repository institutional choices may impact fuel cycle design

    International Nuclear Information System (INIS)

    Forsberg, C.; Miller, W.F.

    2013-01-01

    The historical repository siting strategy in the United States has been a top-down approach driven by federal government decision making but it has been a failure. This policy has led to dispatching fuel cycle facilities in different states. The U.S. government is now considering an alternative repository siting strategy based on voluntary agreements with state governments. If that occurs, state governments become key decision makers. They have different priorities. Those priorities may change the characteristics of the repository and the fuel cycle. State government priorities, when considering hosting a repository, are safety, financial incentives and jobs. It follows that states will demand that a repository be the center of the back end of the fuel cycle as a condition of hosting it. For example, states will push for collocation of transportation services, safeguards training, and navy/private SNF (Spent Nuclear Fuel) inspection at the repository site. Such activities would more than double local employment relative to what was planned for the Yucca Mountain-type repository. States may demand (1) the right to take future title of the SNF so if recycle became economic the reprocessing plant would be built at the repository site and (2) the right of a certain fraction of the repository capacity for foreign SNF. That would open the future option of leasing of fuel to foreign utilities with disposal of the SNF in the repository but with the state-government condition that the front-end fuel-cycle enrichment and fuel fabrication facilities be located in that state

  6. Categorization of Used Nuclear Fuel Inventory in Support of a Comprehensive National Nuclear Fuel Cycle Strategy

    International Nuclear Information System (INIS)

    Wagner, John C.; Peterson, Joshua L.; Mueller, Don; Gehin, Jess C.; Worrall, Andrew; Taiwo, Temitope; Nutt, Mark; Williamson, Mark A.; Todosow, Mike; Wigeland, Roald; Halsey, William; Omberg, Ronald; Swift, Peter; Carter, Joe

    2013-01-01

    A technical assessment of the current inventory [∼70,150 metric tons of heavy metal (MTHM) as of 2011] of U.S.-discharged used nuclear fuel (UNF) has been performed to support decisions regarding fuel cycle strategies and research, development and demonstration (RD and D) needs. The assessment considered discharged UNF from commercial nuclear electricity generation and defense and research programs and determined that the current UNF inventory can be divided into the following three categories: 1. Disposal - excess material that is not needed for other purposes; 2. Research - material needed for RD and D purposes to support waste management (e.g., UNF storage, transportation, and disposal) and development of alternative fuel cycles (e.g., separations and advanced fuels/reactors); and 3. Recycle/Recovery - material with inherent and/or strategic value. A set of key assumptions and attributes relative to the various disposition options were used to categorize the current UNF inventory. Based on consideration of RD and D needs, time frames and material needs for deployment of alternative fuel cycles, characteristics of the current UNF inventory, and possible uses to support national security interests, it was determined that the vast majority of the current UNF inventory should be placed in the Disposal category, without the need to make fuel retrievable from disposal for reuse or research purposes. Access to the material in the Research and Recycle/Recovery categories should be retained to support RD and D needs and national security interests. This assessment does not assume any decision about future fuel cycle options or preclude any potential options, including those with potential recycling of commercial UNF.

  7. Energy options for residential buildings assessment

    International Nuclear Information System (INIS)

    Rezaie, Behnaz; Dincer, Ibrahim; Esmailzadeh, Ebrahim

    2013-01-01

    Highlights: ► Studying various building energy options. ► Assessing these options from various points. ► Comparing these options for better environment and sustainability. ► Proposing renewable energy options as potential solutions. - Abstract: The building sector, as one of the major energy consumers, demands most of the energy research to assess different energy options from various aspects. In this paper, two similar residential buildings, with either low or high energy consumption patterns, are chosen as case studies. For these case studies, three different renewable energy technology and three different hybrid systems are designed for a specified size. Then, the environmental impact indices, renewable energy indices, and the renewable exergy indices have been estimated for every energy options. Results obtained show that the hybrid systems (without considering the economics factors) are superior and having top indices. The importance of the energy consumption patterns in buildings are proven by the indices. By cutting the energy consumption to about 40% the environment index would increase by more than twice (2.1). Utilization of the non-fossil fuels is one part of the solution to environmental problems while energy conservation being the other. It has been shown that the re-design of the energy consumption model is less complex but more achievable for buildings.

  8. The nuclear fuel cycle, an overview

    International Nuclear Information System (INIS)

    Ballery, J.L.; Cazalet, J.; Hagemann, R.

    1995-01-01

    Because uranium is widely distributed on the face of the Earth, nuclear energy has a very large potential as an energy source in view of future depletion of fossil fuel reserves. Also future energy requirements will be very sizeable as populations of developing countries are often growing and make the energy question one of the major challenges for the coming decades. Today, nuclear contributes some 340 GWe to the energy requirements of the world. Present and future nuclear programs require an adequate fuel cycle industry, from mining, refining, conversion, enrichment, fuel fabrication, fuel reprocessing and the storage of the resulting wastes. The commercial fuel cycle activities amount to an annual business in the 7-8 billions of US Dollars in the hands of a large number of industrial operators. This paper gives details about companies and countries involved in each step of the fuel cycle and about the national strategies and options chosen regarding the back end of the fuel cycle (waste storage and reprocessing). These options are illustrated by considering the policy adopted in three countries (France, United Kingdom, Japan) versed in reprocessing. (J.S.). 13 figs., 2 tabs

  9. Lunar Cube Transfer Trajectory Options

    Science.gov (United States)

    Folta, David; Dichmann, Donald James; Clark, Pamela E.; Haapala, Amanda; Howell, Kathleen

    2015-01-01

    Numerous Earth-Moon trajectory and lunar orbit options are available for Cubesat missions. Given the limited Cubesat injection infrastructure, transfer trajectories are contingent upon the modification of an initial condition of the injected or deployed orbit. Additionally, these transfers can be restricted by the selection or designs of Cubesat subsystems such as propulsion or communication. Nonetheless, many trajectory options can b e considered which have a wide range of transfer duration, fuel requirements, and final destinations. Our investigation of potential trajectories highlights several options including deployment from low Earth orbit (LEO) geostationary transfer orbits (GTO) and higher energy direct lunar transfer and the use of longer duration Earth-Moon dynamical systems. For missions with an intended lunar orbit, much of the design process is spent optimizing a ballistic capture while other science locations such as Sun-Earth libration or heliocentric orbits may simply require a reduced Delta-V imparted at a convenient location along the trajectory.

  10. Reactor-Based Plutonium Disposition: Opportunities, Options, and Issues

    International Nuclear Information System (INIS)

    Greene, S.R.

    1999-01-01

    The end of the Cold War has created a legacy of surplus fissile materials (plutonium and highly enriched uranium) in the United States (U.S.) and the former Soviet Union. These materials pose a danger to national and international security. During the past few years, the U.S. and Russia have engaged in an ongoing dialog concerning the safe storage and disposition of surplus fissile material stockpiles. In January 1997, the Department of Energy (DOE) announced the U. S. would pursue a dual track approach to rendering approximately 50 metric tons of plutonium inaccessible for use in nuclear weapons. One track involves immobilizing the plutonium by combining it with high-level radioactive waste in glass or ceramic ''logs''. The other method, referred to as reactor-based disposition, converts plutonium into mixed oxide (MOX) fuel for nuclear reactors. The U.S. and Russia are moving ahead rapidly to develop and demonstrate the technology required to implement the MOX option in their respective countries. U.S. MOX fuel research and development activities were started in the 1950s, with irradiation of MOX fuel rods in commercial light water reactors (LWR) from the 1960s--1980s. In all, a few thousand MOX fuel rods were successfully irradiated. Though much of this work was performed with weapons-grade or ''near'' weapons-grade plutonium--and favorable fuel performance was observed--the applicability of this data for licensing and use of weapons-grade MOX fuel manufactured with modern fuel fabrication processes is somewhat limited. The U.S. and Russia are currently engaged in an intensive research, development, and demonstration program to support implementation of the MOX option in our two countries. This paper focuses on work performed in the U.S. and provides a brief summary of joint U.S./Russian work currently underway

  11. Reactor-based plutonium disposition: Opportunities, options, and issues

    International Nuclear Information System (INIS)

    Greene, S.

    2000-01-01

    The end of the Cold War has created a legacy of surplus fissile materials (plutonium and highly enriched uranium) in the United States (U.S.) and the former Soviet Union. These materials pose a danger to national and international security. During the past few years, the U.S. and Russia have engaged in an ongoing dialog concerning the safe storage and disposition of surplus fissile material stockpiles. In January 1997, the Department of Energy (DOE) announced the U.S. would pursue a dual track approach to rendering approximately 50 metric tons of plutonium inaccessible for use in nuclear weapons. One track involves immobilizing the plutonium by combining it with high-level radioactive waste in glass or ceramic ''logs''. The other method, referred to as reactor-based disposition, converts plutonium into mixed oxide (MOX) fuel for nuclear reactors. The U.S. and Russia are moving ahead rapidly to develop and demonstrate the technology required to implement the MOX option in their respective countries. U.S. MOX fuel research and development activities were started in the 1950s with irradiation of MOX fuel rods in commercial light water reactors (LWR) from the 1960s-1980s. In all, a few thousand MOX fuel rods were successfully irradiated. Though much of this work was performed with weapons-grade or ''near'' weapons-grade plutonium - and favorable fuel performance was observed - the applicability of this data for licensing and use of weapons-grade MOX fuel manufactured with modem fuel fabrication processes is somewhat limited. The U.S. and Russia are currently engaged in an intensive research, development, and demonstration program to support implementation of the MOX option in our two countries. This paper focuses on work performed in the U.S. and provides a brief summary of joint U.S./Russian work currently underway. (author)

  12. Progress with Scottish Nuclear Limited's dry fuel store proposals

    International Nuclear Information System (INIS)

    Cathro, I.S.

    1994-01-01

    At present Scottish Nuclear plc's largest operating cost, associated with the Advanced Gas Cooled Reactors that it manages, is the reprocessing of spent fuels. Looking to reduce the costs, the company has considered alternative disposal options. Dry vault storage has emerged as a clear leader. An adaption of the United States Modular Vault Dry Storage design is being studied in order to examine the feasibility of a store of this type at each of its power stations. (UK)

  13. MANAGEMENT OF RESEARCH AND TEST REACTOR ALUMINUM SPENT NUCLEAR FUEL - A TECHNOLOGY ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Vinson, D.

    2010-07-11

    The Department of Energy's Environmental Management (DOE-EM) Program is responsible for the receipt and storage of aluminum research reactor spent nuclear fuel or used fuel until ultimate disposition. Aluminum research reactor used fuel is currently being stored or is anticipated to be returned to the U.S. and stored at DOE-EM storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper assesses the technologies and the options for safe transportation/receipt and interim storage of aluminum research reactor spent fuel and reviews the comprehensive strategy for its management. The U.S. Department of Energy uses the Appendix A, Spent Nuclear Fuel Acceptance Criteria, to identify the physical, chemical, and isotopic characteristics of spent nuclear fuel to be returned to the United States under the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The fuel is further evaluated for acceptance through assessments of the fuel at the foreign sites that include corrosion damage and handleability. Transport involves use of commercial shipping casks with defined leakage rates that can provide containment of the fuel, some of which are breached. Options for safe storage include wet storage and dry storage. Both options must fully address potential degradation of the aluminum during the storage period. This paper focuses on the various options for safe transport and storage with respect to technology maturity and application.

  14. A Feasibility Study on LPG as Marine Fuel; En foerstudie paa gasol som marint braensle

    Energy Technology Data Exchange (ETDEWEB)

    Kjartansson, Sveinbjoern

    2012-06-15

    With the upcoming stricter emission rules fast approaching and the requirements for higher quality fuel, it is inevitable that there will be a change of fuel from HFO to cleaner options. These changes are driven by the knowledge of the health problems associated with emissions from ships in coastal areas. One viable option for meeting these demands for reduced emission is to utilize LPG as a marine fuel. This thesis investigates the harmful chemicals that are present in the exhaust gases, followed by an introduction on LPG as marine fuel. Transport options for LPG and existing engine technology is presented and the feasibility of LPG as a fuel option on the European / Swedish market is studied. The conclusion from this study is that sufficient infrastructure for distribution of LPG is in place to serve potential marine market demand. Engine technology for using LPG as fuel has been developed for a wide range of power outputs. The economic incentive in the fuel price difference alone is likely to attract ship owners to invest in LPG fueled fleets.

  15. Developing the Model of Fuel Injection Process Efficiency Analysis for Injector for Diesel Engines

    Science.gov (United States)

    Anisimov, M. Yu; Kayukov, S. S.; Gorshkalev, A. A.; Belousov, A. V.; Gallyamov, R. E.; Lysenko, Yu D.

    2018-01-01

    The article proposes an assessment option for analysing the quality of fuel injection by the injector constituting the development of calculation blocks in a common injector model within LMS Imagine.Lab AMESim. The parameters of the injector model in the article correspond to the serial injector Common Rail-type with solenoid. The possibilities of this approach are demonstrated with providing the results using the example of modelling the modified injector. Following the research results, the advantages of the proposed approach to analysing assessing the fuel injection quality were detected.

  16. Flexibility and Project Value: Interactions and Multiple Real Options

    Science.gov (United States)

    Čulík, Miroslav

    2010-06-01

    This paper is focused on a project valuation with embedded portfolio of real options including their interactions. Valuation is based on the criterion of Net Present Value on the simulation basis. Portfolio includes selected types of European-type real options: option to expand, contract, abandon and temporarily shut down and restart a project. Due to the fact, that in reality most of the managerial flexibility takes the form of portfolio of real options, selected types of options are valued not only individually, but also in combination. The paper is structured as follows: first, diffusion models for forecasting of output prices and variable costs are derived. Second, project value is estimated on the assumption, that no real options are present. Next, project value is calculated with the presence of selected European-type options; these options and their impact on project value are valued first in isolation and consequently in different combinations. Moreover, intrinsic value evolution of given real options with respect to the time of exercising is analysed. In the end, results are presented graphically; selected statistics and risk measures (Value at Risk, Expected Shortfall) of the NPV's distributions are calculated and commented.

  17. Evaluation of the recycling costs, as a disposal form of the spent nuclear fuel

    International Nuclear Information System (INIS)

    Ramirez S, J.R.; Alonso V, G.; Palacios, J.C.

    2006-01-01

    At the moment there are 2 BWR reactors operating in the Nuclear Power station of Laguna Verde in Mexico. At the end of the programmed life of the reactors (40 years) its will have completed 26 operation cycles, with will have 6712 spent fuel assemblies will be in the pools of the power station. Up to now, the decision on the destination of the high level wastes (spent nuclear fuel) it has not been determined in Mexico, the same as in other countries, adopting a politics of 'to wait to see that it happens in the world', in this respect, in the world two practical alternatives exist, one is to store the fuel in repositories designed for that end, another is reprocess the fuel to recycle the plutonium contained in it, both solutions have their particular technical and economic problematic. In this work it is evaluated from the economic point of view the feasibility of having the spent fuel, using the one recycled fuel, for that which thinks about a consistent scenario of a BWR reactor in which the fuel discharged in each operation cycle is reprocessed and its are built fuel assemblies of the MOX type to replace partly to the conventional fuel. This scenario shows an alternative to the indefinite storage of the high level radioactive waste. The found results when comparing from the economic point of view both options, show that the one recycled, even with the current costs of the uranium it is of the order of 7% more expensive that the option of storing the fuel in repositories constructed for that purpose. However the volumes of spent fuel decrease in 66%. (Author)

  18. 48 CFR 317.207 - Exercise of options.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Exercise of options. 317... METHODS AND CONTRACT TYPES SPECIAL CONTRACTING METHODS Options 317.207 Exercise of options. (h) Before exercising an option for a subsequent performance period/additional quantity under a multiple-year contract...

  19. 48 CFR 1517.207 - Exercise of options.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Exercise of options. 1517... CONTRACTING METHODS AND CONTRACT TYPES SPECIAL CONTRACTING METHODS Options 1517.207 Exercise of options. (a) Unless otherwise approved by the Chief of the Contracting Office, contracts for services employing option...

  20. 24 CFR 982.636 - Homeownership option: Portability.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Homeownership option: Portability... Types Homeownership Option § 982.636 Homeownership option: Portability. (a) General. A family may... described in §§ 982.353 and 982.355 apply to the homeownership option and the administrative...