WorldWideScience

Sample records for type 316ln austenitic

  1. Microstructural features of dissimilar welds between 316LN austenitic stainless steel and alloy 800

    International Nuclear Information System (INIS)

    Sireesha, M.; Sundaresan, S.

    2000-01-01

    For joining type 316LN austenitic stainless steel to modified 9Cr-1Mo steel for power plant application, a trimetallic configuration using an insert piece (such as alloy 800) of intermediate thermal coefficient of expansion (CTE) has been sometimes suggested for bridging the wide gap in CTE between the two steels. Two joints are thus involved and this paper is concerned with the weld between 316LN and alloy 800. These welds were produced using three types of filler materials: austenitic stainless steels corresponding to 316,16Cr-8Ni-2Mo, and the nickel-base Inconel 182 1 . The weld fusion zones and the interfaces with the base materials were characterised in detail using light and transmission electron microscopy. The 316 and Inconel 182 weld metals solidified dendritically, while the 16-8-2(16%Cr-8%Ni-2%Mo) weld metal showed a predominantly cellular substructure. The Inconel weld metal contained a large number of inclusions when deposited from flux-coated electrodes, but was relatively inclusion-free under inert gas-shielded welding. Long-term elevated-temperature aging of the weld metals resulted in embrittling sigma phase precipitation in the austenitic stainless steel weld metals, but the nickel-base welds showed no visible precipitation, demonstrating their superior metallurgical stability for high-temperature service. (orig.)

  2. Cutting characteristics and deformed layer of type 316LN stainless steel

    International Nuclear Information System (INIS)

    Oh, Sun Sae; Yi, Won

    2004-01-01

    The cutting characteristics and the deformed layer of Nitrogen(N)-added type 316LN stainless steel were comparatively investigated to type 316L stainless steel. The cutting force, the surface roughness(Ra) and the tool wear in face milling works were measured with cutting conditions, and the deformed layers were obtained from micro-hardness testing method. The cutting resistance of type 316LN was similar to type 316L in spite of its high strength. The surface roughness of type 316LN was superior to type 316L for all the cutting conditions. In particular, in the high cutting speed above 345m/min, the surface roughness of the two stainless steels was closely same. The deformed layer thickness of the two stainless steels was generated in the 150μm-300μm ranges, and its value of type 316LN was lower than that of type 316L. This is due to the high strength properties by nitrogen effect. It was found that type 316LN was higher in the tool wear than that type 316L, and flank wear was dominant to crater wear. In face milling works of type 316LN steel, tool wear is regarded as a important problem

  3. Fatigue crack nucleation of type 316LN stainless steel

    International Nuclear Information System (INIS)

    Kim, Dae Whan; Kim, Woo Gon; Hong, Jun Hwa; Ryu, Woo Seog

    2000-01-01

    Low Cycle Fatigue (LCF) life decreases drastically with increasing temperature but increases with the addition of nitrogen at room and high temperatures. The effect of nitrogen on LCF life may be related to crack nucleation at high temperatures in austenitic stainless steel because the fraction of crack nucleation in LCF life is about 40%. The influence of nitrogen on the crack nucleation of LCF in type 316LN stainless steel is investigated by observations of crack population and crack depth after testing at 40% of fatigue life. Nitrogen increases the number of cycles to nucleate microcracks of 100 μm but decreases the crack population

  4. Carburization behavior of AISI 316LN austenitic stainless steel - Experimental studies and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sudha, C. [Physical Metallurgy Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India); Sivai Bharasi, N. [Corrosion Science and Technology Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India); Anand, R. [Physical Metallurgy Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India); Shaikh, H., E-mail: hasan@igcar.gov.i [Corrosion Science and Technology Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India); Dayal, R.K. [Corrosion Science and Technology Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India); Vijayalakshmi, M. [Physical Metallurgy Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India)

    2010-07-31

    AISI type 316LN austenitic stainless steel was exposed to flowing sodium at 798 K for 16,000 h in the bi-metallic (BIM) sodium loop. A modified surface layer of 10 {mu}m width having a ferrite structure was detected from X-ray diffraction and electron micro probe based analysis. Beneath the modified surface layer a carburized zone of 60 {mu}m width was identified which was found to consist of M{sub 23}C{sub 6} carbides. A mathematical model based on finite difference technique was developed to predict the carburization profiles in sodium exposed austenitic stainless steel. In the computation, effect of only chromium on carbon diffusion was considered. Amount of carbon remaining in solution was determined from the solubility parameter. The predicted profile showed a reasonably good match with the experimental profile. Calculations were extended to simulate the thickness of the carburized layer after exposure to sodium for a period of 40 years. Attempt was also made to predict the carburization profiles based on equilibrium calculations using Dictra and Thermocalc which contain both thermodynamic and kinetic databases for the system under consideration.

  5. Effect of Ferrite Morphology on Sensitization of 316L Austenitic Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hun; Lee, Jun Ho; Jang, Changheui [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    The sensitization behaviors of L-grade SSs having predominant austenitic structure with small amount of ferrite have not been well understood. In this regard, the effect of ferrite morphology on sensitization was investigated in this study. The sensitization behaviors of three heats of 316L and 316LN SSs were investigated, Stringer type of ferrite (316L - heat A and B) showed the early sensitization by chromium depletion at ferrite. austenite interface. And, later sensitization is due to GB sensitization. On the other hand, blocky type of ferrite (316L - heat C) showed lower DOS and higher resistance to GB sensitization. It could be due to sufficient supply of chromium from relatively large ferrite phase. As a consequence, the sensitization of 316L SSs could be affected by their ferrite morphology rather than ferrite content. The sensitized region was distinguishable from results of DL-EPR tests. It can be used as an effective method for evaluation of type of sensitization.

  6. Rapid nickel diffusion in cold-worked type 316 austenitic steel at 360-500 C

    Energy Technology Data Exchange (ETDEWEB)

    Arioka, Koji [Institute of Nuclear Safety Systems, Inc., Mihama (Japan); Iijima, Yoshiaki [Tohoku Univ., Sendai (Japan). Dept. of Materials Science; Miyamoto, Tomoki [Kobe Material Testing Laboratory Co. Ltd., Harima (Japan)

    2017-10-15

    The diffusion coefficient of nickel in cold-worked Type 316 austenitic steel was determined by the diffusion couple method in the temperature range between 360 and 500 C. A diffusion couple was prepared by electroless nickel plating on the surface of a 20 % cold-worked Type 316 austenitic steel specimen. The growth in width of the interdiffusion zone was proportional to the square root of diffusion time until 14 055 h. The diffusion coefficient of nickel (D{sub Ni}) in cold-worked Type 316 austenitic steel was determined by extrapolating the concentration-dependent interdiffusion coefficient to 11 at.% of nickel. The value of D{sub Ni} at 360 C was about 5 000 times higher than the lattice diffusion coefficient of nickel in Type 316 austenitic steel. The determined activation energy 117 kJ mol{sup -1} was 46.6 % of the activation energy 251 kJ mol{sup -1} for the lattice diffusion of nickel in Type 316 austenitic steel.

  7. Effect of A-TIG Welding Process on the Weld Attributes of Type 304LN and 316LN Stainless Steels

    Science.gov (United States)

    Vasudevan, M.

    2017-03-01

    The specific activated flux has been developed for enhancing the penetration performance of TIG welding process for autogenous welding of type 304LN and 316LN stainless steels through systematic study. Initially single-component fluxes were used to study their effect on depth of penetration and tensile properties. Then multi-component activated flux was developed which was found to produce a significant increase in penetration of 10-12 mm in single-pass TIG welding of type 304LN and 316LN stainless steels. The significant improvement in penetration achieved using the activated flux developed in the present work has been attributed to the constriction of the arc and as well as reversal of Marangoni flow in the molten weld pool. The use of activated flux has been found to overcome the variable weld penetration observed in 316LN stainless steel with TIG welds compared to that of the welds produced by conventional TIG welding on the contrary the transverse strength properties of the 304LN and 316LN stainless steel welds produced by A-TIG welding exceeded the minimum specified strength values of the base metals. Improvement in toughness values were observed in 316LN stainless steel produced by A-TIG welding due to refinement in the weld microstructure in the region close to the weld center. Thus, activated flux developed in the present work has greater potential for use during the TIG welding of structural components made of type 304LN and 316LN stainless steels.

  8. Damage on 316LN stainless steel transformed by powder metallurgy

    International Nuclear Information System (INIS)

    Couturier, R.; Burlet, H.

    1998-01-01

    This study deals with the 316 LN stainless steel elaboration by powder metallurgy. This method allows the realization of structures in austenitic steel less affected by the thermal aging than the cast austenitic-ferritic components. The components are performed by the method of HIP (Hot Isostatic Pressing). Mechanical tests are provided to control mechanical properties

  9. Creep modelling of type 316LN stainless steel

    International Nuclear Information System (INIS)

    Kim, W. G.; Kim, D. H.; Ryu, W. S.

    2000-01-01

    Creep curve for type 316LN stainless steel was modelled by using the K-R damage equations. Seven coefficients used in the model, i. e., A, B, κ, m, λ, r, and q were determined from theoretical and calculated data, and their meanings were also analyzed. To quantify damage formation parameter(ω), cavity amount was measured on the crept specimen taken from an interrupted creep test with time variation, and then the amount was reflected into K-R damage equations. Coefficient λ which is regarded as a creep tolerance feature of a material increased with increase of creep strain. Theoretical curve in λ= 3.0 well coincided with an experimental one to the full level of lifetime. Master curve between damage parameter and life fraction matched with the theoretical one in exponent γ= 24 value, which decreased with increase of parameter ω which increased rapidly after 80% life fraction. It is concluded that K-R equation was reliable as the modelling equation for 316LN stainless steel. Coefficient data obtained from 316LN stainless steel can be utilized for remaining life prediction of operating material

  10. High-energy-beam welding of type 316LN stainless steel for cryogenic applications

    International Nuclear Information System (INIS)

    Siewert, T.A.; Gorni, D.; Kohn, G.

    1988-01-01

    Laser and electron beam welds in 25-mm-thick AISI 316LN specimens containing 0.16 wt.$% N were evaluated for fusion reactor applications and their mechanical properties were compared with those of welds generated by lower productivity processes such as shielded-metal-arc and gas-metal-arc welding. Tensile tests were performed on transverse tensile specimens at 4 K. For both welding processes the fractures occurred in the base metal at a strength level near 950 MPa. This indicated that the weld and heat affected zone had a strength similar to that of the base metal. The 4 K weld fracture toughness was only slightly less than that for the base metal and comparable to the best values achieved with conventional welding processes in 316Ln weld metal. The Charpy V-notch absorbed energies averaged near 70 J at 76 K. Metallographic analysis revealed cellular and fully austenitic solidification with little porosity and no evidence of hot cracking

  11. Mechanical properties of electron beam welds of 316LN austenitic steels at low temperature for ITER gravity support system

    International Nuclear Information System (INIS)

    Lee, P.Y.; Huo, B.L.; Kuai, K.W.

    2007-01-01

    The gravity support system in ITER not only sustains magnet system, the vacuum vessel and in-vessel components, but also endures several large forces, such as electromagnetic force, thermal load and seismic loads. Based on the ITER design report, the maximum displacement of the gravity support system is estimated to be 32 mm in radial direction at the top flange of the flexible plates during the TF coil cool down from room temperature to 80 k. Welds are located in the peak stress region and subject to cyclic loads in the top flange is a potential problem. Therefore, the mechanical properties of the welds are extremely important for this system. 316LN austenitic stainless steel has been selected as the gravity support structure materials. However, there is still lack of the related mechanical data of the welding components of 316LN stainless steel at present. In this study, we are systematically investigated the mechanical properties of the welding components at low temperature. (authors)

  12. Effects of pre-creep on the dislocations of 316LN Austenite stainless steel

    Science.gov (United States)

    Pei, Hai-xiang; Hui, Jun; Hua, Hou; Feng, Zai-xin; Xu, Xiao-long

    2017-09-01

    The 316LN Austenite stainless steels (316LNASS) were pre-creep treated, the evolution of microstructure were investigated. The samples were pre-creep at 593 K and from 500 to 2000 h at 873 K with a stress in the range of 20 to 150 MPa, Then the evolution of microstructure and precipitation were investigated by optical microscope (OM), and transmission electron microscope (TEM). The results show that the crystal surface slipping resulted in dislocations and original dislocations decomposition during the pre-creep process, and generate quadrilateral or hexagonal dislocation network was obviously. The sub-grain boundary gradually became narrow with the increasing of pre-creep treatment time and temperature. When the pre-creep temperature was 593 K and 873 K, dislocation network gradually disappear with the increasing of pre-creep time and load. When the pre-creep temperature was 873 K under 120 MPa, and the treatment time was 2000 h, the hexagonal dislocation network (HDN) would completely disappeared. When the pre-creep temperature was 593 K under 20 MPa, and the treatment time was 500 h, the quadrilateral dislocation network (QDN) would completely disappeared.

  13. Effects of Thermocapillary Forces during Welding of 316L-Type Wrought, Cast and Powder Metallurgy Austenitic Stainless Steels

    CERN Document Server

    Sgobba, Stefano

    2003-01-01

    The Large Hadron Collider (LHC) is now under construction at the European Organization for Nuclear Research (CERN). This 27 km long accelerator requires 1248 superconducting dipole magnets operating at 1.9 K. The cold mass of the dipole magnets is closed by a shrinking cylinder with two longitudinal welds and two end covers at both extremities of the cylinder. The end covers, for which fabrication by welding, casting or Powder Metallurgy (PM) was considered, are dished-heads equipped with a number of protruding nozzles for the passage of the different cryogenic lines. Structural materials and welds must retain high strength and toughness at cryogenic temperature. AISI 316L-type austenitic stainless steel grades have been selected because of their mechanical properties, ductility, weldability and stability of the austenitic phase against low-temperature spontaneous martensitic transformation. 316LN is chosen for the fabrication of the end covers, while the interconnection components to be welded on the protrud...

  14. Study on the dynamic recrystallization model and mechanism of nuclear grade 316LN austenitic stainless steel

    International Nuclear Information System (INIS)

    Wang, Shenglong; Zhang, Mingxian; Wu, Huanchun; Yang, Bin

    2016-01-01

    In this study, the dynamic recrystallization behaviors of a nuclear grade 316LN austenitic stainless steel were researched through hot compression experiment performed on a Gleeble-1500 simulator at temperatures of 900–1250 °C and strain rates of 0.01–1 s −1 . By multiple linear regressions of the flow stress-strain data, the dynamic recrystallization mathematical models of this steel as functions of strain rate, strain and temperature were developed. Then these models were verified in a real experiment. Furthermore, the dynamic recrystallization mechanism of the steel was determined. The results indicated that the subgrains in this steel are formed through dislocations polygonization and then grow up through subgrain boundaries migration towards high density dislocation areas and subgrain coalescence mechanism. Dynamic recrystallization nucleation performs in grain boundary bulging mechanism and subgrain growth mechanism. The nuclei grow up through high angle grain boundaries migration. - Highlights: •Establish the DRX mathematical models of nuclear grade 316LN stainless steel •Determine the DRX mechanism of this steel •Subgrains are formed through dislocations polygonization. •Subgrains grow up through subgrain boundaries migration and coalescence mechanism. •DRX nucleation performs in grain boundary bulging mechanism and subgrain growth mechanism.

  15. Z phase stability in AISI 316LN + Nb austenitic steels during creep at 650 C

    Energy Technology Data Exchange (ETDEWEB)

    Vodarek, Vlastimil [Technical Univ. Ostrava (Czech Republic)

    2010-07-01

    The creep resistance of austenitic CrNi(Mo) steels strongly depends on microstructural stability during creep exposure. Nitrogen additions to CrNi(Mo) austenitic steels can significantly improve the creep strength. One of the most successful methods of improving the long-term creep resistance of austenitic steels is based on increasing the extent of precipitation strengthening during creep exposure. The role of precipitates in the achievements of good creep properties has been extensively studied for a long time. Although many minor phases are now well documented there are still contractions and missing thermodynamic data about some minor phases. This contribution deals with results of microstructural studies on the minor phase evolution in wrought AISI 316LN niobium stabilised steels during long-term creep exposure at 650 C. Microstructural investigations were carried out on specimens taken from both heads and gauge lengths of ruptured test-pieces by means of optical metallography, transmission and scanning electron microscopy. The attention has been paid to evaluation of thermodynamic and dimensional stability of Z phase and other nitrogen bearing minor phases. Only two nitrogen-bearing minor phases formed in the casts investigated: Z phase and M{sub 6}X. The dimensional stability of Z phase particles was very high. (orig.)

  16. Cold deformation effect on the microstructures and mechanical properties of AISI 301LN and 316L stainless steels

    International Nuclear Information System (INIS)

    Silva, Paulo Maria de O.; Abreu, Hamilton Ferreira G. de; Albuquerque, Victor Hugo C. de; Neto, Pedro de Lima; Tavares, Joao Manuel R.S.

    2011-01-01

    As austenitic stainless steels have an adequate combination of mechanical resistance, conformability and resistance to corrosion they are used in a wide variety of industries, such as the food, transport, nuclear and petrochemical industries. Among these austenitic steels, the AISI 301LN and 316L steels have attracted prominent attention due to their excellent mechanical resistance. In this paper a microstructural characterization of AISI 301LN and 316L steels was made using various techniques such as metallography, optical microscopy, scanning electronic microscopy and atomic force microscopy, in order to analyze the cold deformation effect. Also, the microstructural changes were correlated with the alterations of mechanical properties of the materials under study. One of the numerous uses of AISI 301LN and 316L steels is in the structure of wagons for metropolitan surface trains. For this type of application it is imperative to know their microstructural behavior when subjected to cold deformation and correlate it with their mechanical properties and resistance to corrosion. Microstructural analysis showed that cold deformation causes significant microstructural modifications in these steels, mainly hardening. This modification increases the mechanical resistance of the materials appropriately for their foreseen application. Nonetheless, the materials become susceptible to pitting corrosion.

  17. Tensile Deformation Temperature Impact on Microstructure and Mechanical Properties of AISI 316LN Austenitic Stainless Steel

    Science.gov (United States)

    Xiong, Yi; He, Tiantian; Lu, Yan; Ren, Fengzhang; Volinsky, Alex A.; Cao, Wei

    2018-03-01

    Uniaxial tensile tests were conducted on AISI 316LN austenitic stainless steel from - 40 to 300 °C at a rate of 0.5 mm/min. Microstructure and mechanical properties of the deformed steel were investigated by optical, scanning and transmission electron microscopies, x-ray diffraction, and microhardness testing. The yield strength, ultimate tensile strength, elongation, and microhardness increase with the decrease in the test temperature. The tensile fracture morphology has the dimple rupture feature after low-temperature deformations and turns to a mixture of transgranular fracture and dimple fracture after high-temperature ones. The dominating deformation microstructure evolves from dislocation tangle/slip bands to large deformation twins/slip bands with temperature decrease. The deformation-induced martensite transformation can only be realized at low temperature, and its quantity increases with the decrease in the temperature.

  18. Dynamic Recrystallization and Hot Workability of 316LN Stainless Steel

    Directory of Open Access Journals (Sweden)

    Chaoyang Sun

    2016-07-01

    Full Text Available To identify the optimal deformation parameters for 316LN austenitic stainless steel, it is necessary to study the macroscopic deformation and the microstructural evolution behavior simultaneously in order to ascertain the relationship between the two. Isothermal uniaxial compression tests of 316LN were conducted over the temperature range of 950–1150 °C and for the strain rate range of 0.001–10 s−1 using a Gleeble-1500 thermal-mechanical simulator. The microstructural evolution during deformation processes was investigated by studying the constitutive law and dynamic recrystallization behaviors. Dynamic recrystallization volume fraction was introduced to reveal the power dissipation during the microstructural evolution. Processing maps were developed based on the effects of various temperatures, strain rates, and strains, which suggests that power dissipation efficiency increases gradually with increasing temperature and decreasing stain rate. Optimum regimes for the hot deformation of 316LN stainless steel were revealed on conventional hot processing maps and verified effectively through the examination of the microstructure. In addition, the regimes for defects of the product were also interpreted on the conventional hot processing maps. The developed power dissipation efficiency maps allow optimized processing routes to be selected, thus enabling industry producers to effectively control forming variables to enhance practical production process efficiency.

  19. Study of the mechanical properties of stainless steel 316LN prepared by hot isostatic compression. Influence of preparation parameters

    International Nuclear Information System (INIS)

    Couturier, Raphael

    1999-01-01

    This research thesis has been performed within an R and D programme which aimed at optimising and certifying the HIP process (hot isostatic pressing) from a technological as well as metallurgical point of view. The objective has been to improve dimensional reproducibility of fabricated parts, and metallurgical properties of the dense material. Reference parts are those belonging to PWR primary circuit, and are made in cast austenitic-ferritic steel. Thus, the objective has been to show that these parts can be beneficially fabricated by powder metallurgy in austenitic grade. A mock part (a primary circuit pump wheel at the 1/2 scale) has first been fabricated by HIP, and a more complex shape generator has been designed. The author reports the determination of microstructure and mechanical characteristics of the austenitic 316LN steel produced by HIP and used to fabricate mock parts and demonstrator parts, the study of the relationship between dense material properties and fabrication parameters (temperature, pressure, consolidation time), and the analysis of the consequences of an elaboration by HIP on the 316LN steel with comparison with forged parts. After a presentation of the Powder Metallurgy elaboration technique, the author reports a bibliographical study on the precipitation at Prior Particle Boundaries (PPB), reports the study of microstructure and mechanical properties of the HIPed 316LN, and discusses the possibility of a decrease of precipitation at PPBs by adjusting powder degassing or a granulometric sorting. The last part reports the extension of the study of steel coherence to a temperature range which encompasses the primary circuit operation temperature (350 C). Resilience tests are performed as well as mechanical tests on notched axisymmetric samples. A finite element calculation of these samples allows the validation of the use of a Thomson-type model to describe the emergence of defects which are typical of a steel elaborated by powder

  20. Microstructure in 316LN stainless steel fatigued at low temperature

    International Nuclear Information System (INIS)

    Kruml, T.; Polak, J.

    2000-01-01

    The internal structure of AISI 316LN austenitic stainless steel cyclically strained at liquid nitrogen temperature has been studied using transmission electron microscopy and electron diffraction. High amplitude cyclic straining promotes the transformation of austenite with face centred cubic (f.c.c.) structure into ε-martensite with hexagonal close packed (h.c.p.) structure and α'-martensite with distorted base centred cubic (b.c.c.) structure. Thin plates containing ε-martensite were identified in all grains. α'-martensite nucleates at the intersection of the plates in grains with two or more systems of plates and can grow in the bands. The orientation of transformed phases follows the Shoji-Nichiyama and Kurdjumov-Sachs relations. Mechanisms of low temperature cyclic straining are discussed. (orig.)

  1. Influence of dynamic strain ageing on tensile strain energy of type 316L(N) austenitic stainless steel

    International Nuclear Information System (INIS)

    Isaac Samuel, B.; Choudhary, B.K.; Bhanu Sankara Rao, K.

    2010-01-01

    Tensile tests were conducted on type 316 L(N) stainless steel over a wide temperature range of 300-1123 K employing strain rates ranging from 3.16 X 10 -5 to 3.16 X 10 -3/s . The variation of strain energy in terms of modulus of resilience and modulus of toughness over the wide range of temperatures and strain rates were examined. The variation in modulus of resilience with temperature and strain rate did not show the signatures of dynamic strain ageing (DSA). However, the modulus of toughness exhibited a plateau at the intermediate temperatures of 523-1023 K. Further, the distribution of energy absorbed till necking and energy absorbed from necking till fracture were found to characterise the deformation and damage processes, respectively, and exhibited anomalous variations in the temperature range 523-823 K and 823-1023 K, respectively. In addition to the observed manifestations of DSA such as serrated load-elongation curve, peaks/plateaus in flow stress, ultimate tensile strength and work hardening rate, negative strain rate sensitivity and ductility minima, the observed anomalous variations in modulus of toughness at intermediate temperatures (523-1023 K) can be regarded as yet another key manifestation of DSA. At temperatures above 1023 K, a sharp decrease in the modulus of toughness and also in the strain energies up to necking and from necking to fracture observed, with increasing temperature and decreasing strain rate, reveal the onset of dynamic recovery leading to early cross slip and climb processes. (author)

  2. Influence of prior deformation on the sensitization of AISI Type 316LN stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Parvathavarthini, N. (Metallurgy Div., Indira Gandhi Centre for Atomic Research, Tamilnadu (India)); Dayal, R.K. (Metallurgy Div., Indira Gandhi Centre for Atomic Research, Tamilnadu (India)); Gnanamoorthy, J.B. (Metallurgy Div., Indira Gandhi Centre for Atomic Research, Tamilnadu (India))

    1994-02-01

    The sensitization behaviour of a nuclear grade AISI 316LN stainless steel (SS) was studied for various cold-work levels ranging from 0% (mill-annealed) to 25% reduction in thickness. ASTM standard A262 Practices A and E were adopted to detect the susceptibility to intergranular corrosion. The results obtained in these tests were used to construct time-temperature-sensitization (TTS) diagrams. Using these data, the critical linear cooling rate was calculated, above which there is no risk of sensitization. In order to predict the sensitization behaviour during practical cooling conditions, Continuous-cooling-sensitization (CCS) diagrams were established utilising the TTS diagrams by a mathematical method. The influences of prior deformation and nitrogen in the alloy on the sensitization kinetics are discussed. It was found that nitrogen addition retards the sensitization kinetics and that t[sub min] (minimum time required for sensitization at nose temperature) increases by two orders of magnitude in Type 316LN SS compared to that of Type 316 SS at the different prior deformation levels. Cold-working up to 15% accelerates the onset of carbide precipitation and on further cold working there is not much difference in the kinetics. Desensitization is faster in highly cold-worked material, especially at high temperatures. (orig.)

  3. Influence of Thermal Aging on Tensile and Low Cycle Fatigue Behavior of Type 316LN Austenitic Stainless Steel Weld Joint

    Science.gov (United States)

    Suresh Kumar, T.; Nagesha, A.; Ganesh Kumar, J.; Parameswaran, P.; Sandhya, R.

    2018-05-01

    Influence of short-term thermal aging on the low-cycle fatigue (LCF) behavior of 316LN austenitic stainless steel weld joint with 0.07 wt pct N has been investigated. Prior thermal exposure was found to improve the fatigue life compared with the as-welded condition. Besides, the treatment also imparted a softening effect on the weld metal, leading to an increase in the ductility of the weld joint which had a bearing on the cyclic stress response. The degree of cyclic hardening was seen to increase after aging. Automated ball-indentation (ABI) technique was employed toward understanding the mechanical properties of individual zones across the weld joint. It was observed that the base metal takes most of the applied cyclic strain during LCF deformation in the as-welded condition. In the aged condition, however, the weld also participates in the cyclic deformation. The beneficial effect of thermal aging on cyclic life is attributed to a reduction in the severity of the metallurgical notch leading to a restoration of ductility of the weld region. The transformation of δ-ferrite to σ-phase during the aging treatment was found to influence the location of crack initiation. Fatigue cracks were found to initiate in the base metal region of the joint in most of the testing conditions. However, embrittlement in the weld metal caused a shift in the point of crack initiation with increasing strain amplitude under LCF.

  4. Creep characterization of type 316LN and HT-9 stainless steels by the K-R creep damage model

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Kim, Sung Ho; Ryu, Woo Seog

    2001-01-01

    The Kachanov and Rabotnov (K-R) creep damage model was interpreted and applied to type 316LN and HT-9 stainless steels. Seven creep constants of the model, A, B, k, m, λ, γ, and q were determined for type 316LN stainless steel. In order to quantify a damage parameter, the cavity was interruptedly traced during creep for measuring cavity area to be reflected into the damage equation. For type 316LN stainless steel, λ=ε R /ε * and λ f =ε/ε R were 3.1 and increased with creep strain. The creep curve with λ=3.1 depicted well the experimental data to the full lifetime and its damage curve showed a good agreement when γ=24. However for the HT-9 stainless steel, the values of λ and λ f were different as λ=6.2 and λ f =8.5, and their K-R creep curves did not agree with the experimental data. This mismatch in the HT-9 steel was due to the ductile fracture by softening of materials rather than the brittle fracture by cavity growth. The differences of the values in the above steels were attributed to creep ductilities at the secondary and the tertiary creep stages

  5. Plastic deformation and fracture behaviors of nitrogen-alloyed austenitic stainless steels

    International Nuclear Information System (INIS)

    Wang Songtao; Yang Ke; Shan Yiyin; Li Laifeng

    2008-01-01

    The plastic deformation and fracture behaviors of two nitrogen-alloyed austenitic stainless steels, 316LN and a high nitrogen steel (Fe-Cr-Mn-0.66% N), were investigated by tensile test and Charpy impact test in a temperature range from 77 to 293 K. The Fe-Cr-Mn-N steel showed ductile-to-brittle transition (DBT) behavior, but not for the 316LN steel. X-ray diffraction (XRD) confirmed that the strain-induced martensite occurred in the 316LN steel, but no such transformation in the Fe-Cr-Mn-N steel. Tensile tests showed that the temperature dependences of the yield strength for the two steels were almost the same. The ultimate tensile strength of the Fe-Cr-Mn-N steel displayed less significant temperature dependence than that of the 316LN steel. The strain-hardening exponent increased for the 316LN steel, but decreased for the Fe-Cr-Mn-N steel, with decreasing temperature. Based on the experimental results and the analyses, a modified scheme was proposed to explain the fracture behaviors of austenitic stainless steels

  6. Influence of flowing sodium on creep deformation and rupture behaviour of 316L(N) austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, S., E-mail: sravi@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Laha, K.; Mathew, M.D. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Vijayaraghavan, S.; Shanmugavel, M.; Rajan, K.K. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2012-08-15

    The influence of flowing sodium on creep deformation and rupture behaviour of AISI 316L(N) austenitic stainless steel has been investigated at 873 K over a stress range of 235-305 MPa. The results were compared with those obtained from testing in air environment. The steady state creep rates of the material were not influenced appreciably by the testing environments. The time to onset of tertiary stage of creep deformation was delayed in sodium environment. The creep-rupture lives of the material increased in sodium environment, which became more pronounced at lower applied stresses. The increase in rupture life of the material in flowing sodium was accompanied by an increase in rupture ductility. The creep damage on specimen surface as well as inside the specimen was less in specimen tested in sodium. SEM fractographic investigation revealed predominantly transgranular dimple failure for the specimen tested in sodium, whereas predominantly intergranular creep failure was observed in the air tested specimens. Almost no oxidation was observed in the specimens creep tested in the sodium environment. Absence of oxidation and less creep damage cavitation extended the secondary state in liquid sodium tests and lead to increase in creep rupture life and ductility of the material as compared to in air.

  7. A Study of Submicron Grain Boundary Precipitates in Ultralow Carbon 316LN Steels

    Science.gov (United States)

    Downey, S.; Han, K.; Kalu, P. N.; Yang, K.; Du, Z. M.

    2010-04-01

    This article reports our efforts in characterization of an ultralow carbon 316LN-type stainless steel. The carbon content in the material is one-third that in a conventional 316LN, which further inhibits the formation of grain boundary carbides and therefore sensitizations. Our primary effort is focused on characterization of submicron size precipitates in the materials with the electron backscatter diffraction (EBSD) technique complemented by Auger electron spectroscopy (AES). Thermodynamic calculations suggested that several precipitates, such as M23C6, Chi, Sigma, and Cr2N, can form in a low carbon 316LN. In the steels heat treated at 973 K (700 °C) for 100 hours, a combination of EBSD and AES conclusively identified the grain boundary precipitates (≥100 nm) as Cr2N, which has a hexagonal closed-packed crystallographic structure. Increases of the nitrogen content promote formation of large size Cr2N precipitates. Therefore, prolonged heat treatment at relatively high temperatures of ultralow carbon 316LN steels may result in a sensitization.

  8. Long-term Creep Life Prediction for Type 316LN Stainless Steel

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Ryu, Woo Seog; Kim, Sung Ho; Lee, Chan Bok

    2007-01-01

    Since Sodium Fast Cooled Reactor (SFR) components are designed to be use for more than 30 years at a high temperature of 550 .deg. C, one of the most important properties of these components is the long term creep behavior. To accurately predict the long-term creep life of the components, it is essential to achieve reliable long-term test data beyond their design life. But, it is difficult to actually obtain long duration data because it is time-consuming work. So far, a variety of time-temperature parameters (TTPs) have been developed to predict a long-term creep life from shorter-time tests at higher temperatures. Among them, the Larson-Miller, the Orr-Sherby-Dorn, the Manson-Harferd and the Manson-Succop parameters have been typically used. None of these parameters has an overwhelming preference, and they have certain inherent restrictions imposed on their data in the application of the TTPs parameters. Meanwhile, it has been reported that the Minimum Commitment Method (MCM) proposed by Manson and Ensign has a greater flexibility for a creep rupture analysis. Thus, the MCM will be useful as another approach. Until now, the applicability of the MCM has not been investigated for type 316LN SS because of insufficient creep data. In this paper, the MCM was applied to predict a long-term creep life of type 316LN stainless steel (SS). Lots of creep rupture data was collected through literature surveys and the experimental data of KAERI. Using the short-term experimental data for under 2,000 hours, a longer-time rupture above 105 hours was predicted by the MCM at temperatures from 550 .deg. C to 800 .deg. C

  9. Experimental study of fatigue crack propagation in type 316 austenitic stainless steel

    International Nuclear Information System (INIS)

    Mostafa, M.; Vessiere, G.; Hamel, A.; Boivin, M.

    1983-01-01

    In this work, are grouped and compared the crack propagation rates in type 316 austenitic stainless steel in two loading cases: plane strain and plane stress. Plane strain has been obtained on axisymmetric cracked specimens, plane stress on thin notched specimens, subjected to alternative bending. The results show that the crack propagation rate is greater for plane strain, i.e. in the case of the smallest plastic zone. The Elber concept was also used for explaining the different values of the crack propagation rate. It's noteworthy to find out that the Paris' law coefficients for different loading levels and those fo Elber's law are correlated [fr

  10. Corrosion Behavior of the Stressed Sensitized Austenitic Stainless Steels of High Nitrogen Content in Seawater

    Directory of Open Access Journals (Sweden)

    A. Almubarak

    2013-01-01

    Full Text Available The purpose of this paper is to study the effect of high nitrogen content on corrosion behavior of austenitic stainless steels in seawater under severe conditions such as tensile stresses and existence of sensitization in the structure. A constant tensile stress has been applied to sensitized specimens types 304, 316L, 304LN, 304NH, and 316NH stainless steels. Microstructure investigation revealed various degrees of stress corrosion cracking. SCC was severe in type 304, moderate in types 316L and 304LN, and very slight in types 304NH and 316NH. The electrochemical polarization curves showed an obvious second current peak for the sensitized alloys which indicated the existence of second phase in the structure and the presence of intergranular stress corrosion cracking. EPR test provided a rapid and efficient nondestructive testing method for showing passivity, degree of sensitization and determining IGSCC for stainless steels in seawater. A significant conclusion was obtained that austenitic stainless steels of high nitrogen content corrode at a much slower rate increase pitting resistance and offer an excellent resistance to stress corrosion cracking in seawater.

  11. A comparison of the iraddiated tensile properties of a high-manganese austenitic steel and type 316 stainless steel

    International Nuclear Information System (INIS)

    Klueh, R.L.; Grossbeck, M.L.

    1984-01-01

    The USSR steel EP-838 is a high-manganese, low-nickel steel that also has lower chromium and molybdenum than type 316 stainless steel. Tensile specimens of 20%-cold-worked EP-838 and type 316 stainless steel were irradiated in the High Flux Isotope Reactor (HFIR) at the coolant temperature (approx.=50 0 C). A displacement damage level of 5.2 dpa was reached for the EP-838 and up to 9.5 dpa for the type 316 stainless steel. Tensile tests at room temperature and 300 0 C on the two steels indicated that the irradiation led to increased strength and decreased ductility compared to the unirradiated steels. Although the 0.2% yield stress of the type 316 stainless steel in the unirradiated condition was greater than that for the EP-838, after irradiation there was essentially no difference between the strength or ductility of the two steels. The results indicate that the replacement of the majority of the nickel by manganese and a reduction of chromium and molybdenum in an austenitic stainless steel of composition near that for type 316 stainless steel has little effect on the irradiated and unirradiated tensile properties at low temperatures. (orig.)

  12. Cold rolled texture and microstructure in types 304 and 316L austenitic stainless steels

    International Nuclear Information System (INIS)

    Wasnik, D.N.; Samajdar, I.; Gopalakrishnan, I.K.; Yakhmi, J.V.; Kain, V.

    2003-01-01

    Two grades of austenitic stainless steel (ASS), types 304 (UNS S 30400) and 316L (UNS S 31603), were cold rolled to different reductions by unidirectional and by cross-rolling. The steels had reasonable difference in stacking fault energy (estimated respectively as 15 and 61 mJ/m 2 in types 304 and 316L) and also in starting (or pre-deformation) crystallographic texture-being relatively weak and reasonably strong in types 304 and 316L respectively. The cold rolling increased texturing in type 304, but not in type 316L ASS. The more significant effect of cold rolled texture development was in the relative increase of Brass ({011} ) against Copper ({112} ) and S ({231} ) orientations. In type 304 the increase in Brass was significant, while in type 316L the increase in Copper and S was stronger. This effect could be captured by Taylor type deformation texture simulations considering stronger twinning contributions in type 304 - for example the respective 'best-fits' (in terms of matching the changes in the volume fractions of Brass against Copper and S) were obtained by full constraint Taylor model with 1:100 and 1:10 slip:twin activities in types 304 and 316L ASS respectively. Microstructural developments during cold rolling were generalized as strain induced martensite formation and developments of dislocation substructure. The former, as estimated by vibrating sample magnetometer (VSM), increased with cold reduction, being significantly more in type 304 and was also noticeably stronger in both grades under cross-rolling. The most significant aspect of substructural developments was the formation of strain localizations. These were observed as dense dislocation walls (DDWs), micro-bands (MBs) and twin lamellar structures (TLS). The TLS contribution gained significance at higher reductions and during cross-rolling, especially in type 304. Large misorientation development and the accompanying grain splittings were always associated with such strain localizations

  13. Effect of nitrogen on creep properties of type 316L(N) stainless steels

    International Nuclear Information System (INIS)

    Kim, Dae Whan; Lee, Yoon Kyu; Kim, Woo Gon; Ryu, Woo Seog

    2001-01-01

    The effects of nitrogen on the creep properties of type 316(N) stainless steels with three different nitrogen contents from 0.04% to 0.15% were investigated. Creep tests were carried out using constant-load single-lever machines at 550∼650 .deg. C in the air. The time to rupture increased and the minimum creep rate decreased with the addition of nitrogen. At constant stress, the rupture elongation decreased with the addition of nitrogen. Intergranular and transgranular fracture mode were mixed in all specimens. Cavity and carbides were nucleated at grain boundary and the number of cavity and carbide at constant stress was increased with the addition of nitrogen because of the increase in the time to rupture and carbide precipitation due to the addition of nitrogen. The increase of rupture time with the addition of nitrogen for type 316L(N) stainless steel was attributed to the combined effect of the decrease of minimum creep rate due to the increase of tensile strength and the rupture elongation due to the precipitation at grain boundaries

  14. Stress corrosion cracking of austenitic stainless steels in high temperature water and alternative stainless steel

    International Nuclear Information System (INIS)

    Yonezawa, T.

    2015-01-01

    In order to clarify the effect of SFE on SCC resistance of austenitic stainless steels and to develop the alternative material of Type 316LN stainless steel for BWR application, the effect of chemical composition and heat treatment on SFE value and SCCGR in oxygenated high temperature water were studied. The correlation factors between SFE values for 54 heats of materials and their chemical compositions for nickel, molybdenum, chromium, manganese, nitrogen, silicon and carbon were obtained. From these correlation factors, original formulae for SFE values calculation of austenitic stainless steels in the SHTWC, SHTFC and AGG conditions were established. The maximum crack length, average crack length and cracked area of the IGSCC for 33 heats were evaluated as IGSCC resistance in oxygenated high temperature water. The IGSCC resistance of strain hardened nonsensitized austenitic stainless steels in oxygenated high temperature water increases with increasing of nickel contents and SFE values. From this study, it is suggested that the SFE value is a key parameter for the IGSCC resistance of non-sensitized strain hardened austenitic stainless steels. As an alternative material of Type 316LN stainless steel, increased SFE value material, which is high nickel, high chromium, low silicon and low nitrogen material, is recommendable. (author)

  15. Modeling precipitation thermodynamics and kinetics in type 316 austenitic stainless steels with varying composition as an initial step toward predicting phase stability during irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Jae-Hyeok, E-mail: jhshim@kist.re.kr [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Povoden-Karadeniz, Erwin [Christian Doppler Laboratory for Early Stages of Precipitation, Vienna University of Technology, A-1040 Vienna (Austria); Kozeschnik, Ernst [Institute of Materials Science and Technology, Vienna University of Technology, A-1040 Vienna (Austria); Wirth, Brian D. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States)

    2015-07-15

    Highlights: • We model the precipitation kinetics in irradiated 316 austenitic stainless steels. • Radiation-induced phases are predicted to form at over 10 dpa segregation conditions. • The Si content is the most critical for the formation of radiation-induced phases. - Abstract: The long-term evolution of precipitates in type 316 austenitic stainless steels at 400 °C has been simulated using a numerical model based on classical nucleation theory and the thermodynamic extremum principle. Particular attention has been paid to the precipitation of radiation-induced phases such as γ′ and G phases. In addition to the original compositions, the compositions for radiation-induced segregation at a dose level of 5, 10 or 20 dpa have been used in the simulation. In a 316 austenitic stainless steel, γ′ appears as the main precipitate with a small amount of G phase forming at 10 and 20 dpa. On the other hand, G phase becomes relatively dominant over γ′ at the same dose levels in a Ti-stabilized 316 austenitic stainless steel, which tends to suppress the formation of γ′. Among the segregated alloying elements, the concentration of Si seems to be the most critical for the formation of radiation-induced phases. An increase in dislocation density as well as increased diffusivity of Mn and Si significantly enhances the precipitation kinetics of the radiation-induced phases within this model.

  16. Application of Leak Before Break concept in 316LN austenitic steel pipes welded using 316L

    International Nuclear Information System (INIS)

    Cunto, Gabriel Giannini de

    2017-01-01

    This work presents a study of application of the Leak Before Break (LBB) concept, usually applied in nuclear power plants, in a pipe made from steel AISI type 316LN welded a coated electrode AISI type 316L. LBB concept is a criterion based on fracture mechanics analysis to show that a crack leak, present in a pipe, can be detected by leak detection systems, before this crack reaches a critical size that results in pipe fail. In the studied pipe, tensile tests and Ramberg-Osgood analyses were performed, as well as fracture toughness tests for obtaining the material resistance curve J-R. The tests were performed considering the base metal, weld and heat affected zone (HAZ), at the same operating temperatures of a nuclear power plant. For the mechanical properties found in these tests, load limit analyses were performed in order to determine the size of a crack which could cause a detectable leakage and the critical crack size, considering failure by plastic collapse. For the critical crack size found in the weld, which is the region that presented the lowest toughness, Integral J and tearing modulus T analyses were performed, considering failure by tearing instability. Results show a well-defined behavior between the base metal, HAZ and weld zones, where the base metal has a high toughness behavior, the weld has a low toughness behavior and the HAZ showed intermediate mechanical properties between the base metal and the weld. Using the PICEP software, the leak rate curves versus crack size and also the critical crack size were determined by considering load limit analysis. It was observed that after a certain crack size, the leak rate in base metal is much higher than for the HAZ and the weld, considering the same crack length. This occurs because in the base metal crack, it is expected that the crack grows in a more rounded form due to its higher toughness. The lowest critical crack size was found for the base metal presenting circumferential cracks. For the

  17. Effect of welding processes on the impression creep resistance of type 316 LN stainless steel weld joints

    International Nuclear Information System (INIS)

    Vasudevan, M.; Vasantharaja, P.; Sisira, P.; Divya, K.; Ganesh Sundara Raman, S.

    2016-01-01

    Type 316 LN stainless steel is the major structural material used in the construction of fast breeder reactors. Activated Tungsten Inert Gas (A-TIG) welding , a variant of the TIG welding process has been found to enhance the depth of penetration significantly during autogenous welding and also found to enhance the creep rupture life in stainless steels. The present study aims at comparing the effect of TIG and A-TIG welding processes on the impression creep resistance of type 316 LN stainless steel base metal, fusion zone and heat affected zone (HAZ) of weld joints. Optical and TEM have been used to correlate the microstructures with the observed creep rates of various zones of the weld joints. Finer microstructure and higher ferrite content was observed in the TIG weld joint fusion zone. Coarser grain structure was observed in the HAZ of the weld joints. Impression creep rate of A-TIG weld joint fusion zone was almost equal to that of the base metal and lower than that of the TIG weld joint fusion zone. A-TIG weld joint HAZ was found to have lower creep rate compared to that of conventional TIG weld joint HAZ due to higher grain size. HAZ of the both the weld joints exhibited lower creep rate than the base metal. (author)

  18. Study on feasibility of replacing 321 with 316LN stainless steel for main reactor coolant pipe material

    International Nuclear Information System (INIS)

    Luo Yijun

    2013-01-01

    The metallurgical, physical and mechanical performance, and the corrosion and welding properties of 00Cr17Ni12Mo2 (controlled Nitrogen, ANSI316LN) and 0Cr18Ni10Ti (ANSI321SS) for main pipe material were analyzed comparatively in this paper. The feasibility of 316LN pipe material manufacturing was studied too. The analysis results showed that under the operation condition of the nuclear reactor, the general properties of 316LN are better than that of 321SS. Therefore, 316LN could be used for main pipe material, replacing 321SS. (authors)

  19. The Laser Welding with Hot Wire of 316LN Thick Plate Applied on ITER Correction Coil Case

    CERN Document Server

    Fang, Chao; Wu, Weiyue; Wei, Jing; Zhang, Shuquan; Li, Hongwei; Dolgetta, N; Libeyre, P; Cormany, C; Sgobba, S

    2014-01-01

    ITER correction coil (CC) cases have characteristics of small cross section, large dimensions, and complex structure. The cases are made of heavy thick (20 mm), high strength and high toughness austenitic stainless steel 316LN. The multi-pass laser welding with hot wire technology is used for the case closure welding, due to its low heat input and deformation. In order to evaluate the reliability of this welding technology, 20 mm welding samples with the same groove structure and welding depth as the cases were welded. High purity argon was used as the shielding gas to prevent oxidation because of the narrowness and depth of the weld. In this paper investigation of, microstructure characteristics and mechanical properties of welded joints using optimized welding parameters are presented. The results show that the base metal, fusion metal, and heat affected zone (HAZ) are all have fully austenitic microstructure, and that the grain size of fusion metal was finer than that of the base metal. The welding resulte...

  20. Microstructural Evolutions During Reversion Annealing of Cold-Rolled AISI 316 Austenitic Stainless Steel

    Science.gov (United States)

    Naghizadeh, Meysam; Mirzadeh, Hamed

    2018-06-01

    Microstructural evolutions during reversion annealing of a plastically deformed AISI 316 stainless steel were investigated and three distinct stages were identified: the reversion of strain-induced martensite to austenite, the primary recrystallization of the retained austenite, and the grain growth process. It was found that the slow kinetics of recrystallization at lower annealing temperatures inhibit the formation of an equiaxed microstructure and might effectively impair the usefulness of this thermomechanical treatment for the objective of grain refinement. By comparing the behavior of AISI 316 and 304 alloys, it was found that the mentioned slow kinetics is related to the retardation effect of solute Mo in the former alloy. At high reversion annealing temperature, however, an equiaxed austenitic microstructure was achieved quickly in AISI 316 stainless steel due to the temperature dependency of retardation effect of molybdenum, which allowed the process of recrystallization to happen easily. Conclusively, this work can shed some light on the issues of this efficient grain refining approach for microstructural control of austenitic stainless steels.

  1. High Temperature Fatigue Crack Growth Rate Studies in Stainless Steel 316L(N Welds Processed by A-TIG and MP-TIG Welding.

    Directory of Open Access Journals (Sweden)

    Thomas Manuel

    2018-01-01

    Full Text Available Welded stainless steel components used in power plants and chemical industries are subjected to mechanical load cycles at elevated temperatures which result in early fatigue failures. The presence of weld makes the component to be liable to failure in view of residual stresses at the weld region or in the neighboring heat affected zone apart from weld defects. Austenitic stainless steels are often welded using Tungsten Inert Gas (TIG process. In case of single pass welding, there is a reduced weld penetration which results in a low depth-to-width ratio of weld bead. If the number of passes is increased (Multi-Pass TIG welding, it results in weld distortion and subsequent residual stress generation. The activated flux TIG welding, a variant of TIG welding developed by E.O. Paton Institute, is found to reduce the limitation of conventional TIG welding, resulting in a higher depth of penetration using a single pass, reduced weld distortion and higher welding speeds. This paper presents the fatigue crack growth rate characteristics at 823 K temperature in type 316LN stainless steel plates joined by conventional multi-pass TIG (MP-TIG and Activated TIG (A-TIG welding process. Fatigue tests were conducted to characterize the crack growth rates of base metal, HAZ and Weld Metal for A-TIG and MP-TIG configurations. Micro structural evaluation of 316LN base metal suggests a primary austenite phase, whereas, A-TIG weld joints show an equiaxed grain distribution along the weld center and complete penetration during welding (Fig. 1. MP-TIG microstructure shows a highly inhomogeneous microstructure, with grain orientation changing along the interface of each pass. This results in tortuous crack growth in case of MP-TIG welded specimens. Scanning electron microscopy studies have helped to better understand the fatigue crack propagation modes during high temperature testing.

  2. Time dependent design curves for a high nitrogen grade of 316LN stainless steel for fast reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Ganesh Kumar, J.; Ganesan, V.; Laha, K.; Mathew, M.D., E-mail: mathew@igcar.gov.in

    2013-12-15

    Highlights: • 316LN SS is an important high temperature structural material for sodium cooled fast reactors. • Creep strength of 316LN SS has been increased substantially by increasing the nitrogen content. • Creep design curves based on RCC-MR code procedures have been generated for this new material. • 100,000 h allowable stress at 600 °C increased by more than 40% as a result of doubling the nitrogen content in the steel. - Abstract: Type 316L(N) stainless steel (SS) containing 0.06–0.08 wt.% nitrogen is the major material for reactor assembly components of sodium cooled fast reactors (SFRs). With a view to increase the design life of SFRs to 60 years from the current life of 40 years, studies are being carried out to improve the high temperature creep and low cycle fatigue properties of 316LN SS by increasing the nitrogen content above 0.08 wt.%. In this investigation, the creep properties of a high nitrogen grade of 316LN SS containing 0.14 wt.% nitrogen have been studied. Creep tests were carried out at 550 °C, 600 °C and 650 °C at various stress levels in the range of 140–350 MPa. Creep strength was found to be significantly improved by doubling the nitrogen content in this steel. The maximum rupture life in these tests was 33,000 h. The creep data has been analyzed according to RCC-MR nuclear code procedures in order to generate the creep design curves for the high nitrogen grade of 316LN SS. Allowable stress for 100,000 h at 600 °C increased by more than 38% as a result of doubling the nitrogen content in the steel.

  3. Low temperature plasma carburizing of AISI 316L austenitic stainless steel and AISI F51 duplex stainless steel

    OpenAIRE

    Pinedo,Carlos Eduardo; Tschiptschin,André Paulo

    2013-01-01

    In this work an austenitic AISI 316L and a duplex AISI F51 (EN 1.4462) stainless steel were DC-Plasma carburized at 480ºC, using CH4 as carbon carrier gas. For the austenitic AISI 316L stainless steel, low temperature plasma carburizing induced a strong carbon supersaturation in the austenitic lattice and the formation of carbon expanded austenite (γC) without any precipitation of carbides. The hardness of the carburized AISI 316L steel reached a maximum of 1000 HV due to ∼13 at% c...

  4. Low temperature plasma carburizing of AISI 316L austenitic stainless steel and AISI F51 duplex stainless steel

    OpenAIRE

    Pinedo, Carlos Eduardo; Tschiptschin, André Paulo

    2013-01-01

    In this work an austenitic AISI 316L and a duplex AISI F51 (EN 1.4462) stainless steel were DC-Plasma carburized at 480ºC, using CH4 as carbon carrier gas. For the austenitic AISI 316L stainless steel, low temperature plasma carburizing induced a strong carbon supersaturation in the austenitic lattice and the formation of carbon expanded austenite (γC) without any precipitation of carbides. The hardness of the carburized AISI 316L steel reached a maximum of 1000 HV due to ∼13 at% carbon super...

  5. Comparison of material property specifications of austenitic steels in fast breeder reactor technology

    International Nuclear Information System (INIS)

    Vanderborck, Y.; Van Mulders, E.

    1985-01-01

    Austenitic stainless steels are very widely used in components for European Fast Breeder Reactors. The Activity Group Nr.3 ''Materials'', within Working Group ''Codes and Standards'' of the Fast Reactor Co-Ordination Committee of the European Communities, has decided to initiate a study to compare the material property specifications of the austenitic stainless steel used in the European Fast Breeder Technology. Hence, this study would allow one to view rapidly the designation of a particular steel grade in different European countries and to compare given property values for a same grade. There were dissimilarities, differences or voids appear, it could lead to an attempt to complete and/or to uniformize the nationally given values, so that on a practical level interchangeability, availability and use ease design and construction work. A selection of the materials and of their properties has been made by the Working Group. Materials examined are Stainless Steel AISI 304, 304 L, 304 LN, 316, 316 L, 316 LN, 316''Ti stab.'', 316''Nb stab''., 321, 347

  6. A comprising steady-state creep model for the austenitic AISI 316 L(N) steel

    International Nuclear Information System (INIS)

    Rieth, Michael

    2007-01-01

    Low-stress creep data of a recently finished special long-term program now allows for much better long-term predictions of the ITER related material 316 L(N) and also enables deformation modeling for a broader stress range. The present work focuses mainly on the set-up of a steady-state creep model with help of well-known rate-equations for different deformation mechanisms. In addition, the impact of microstructure changes and precipitation formation on steady-state creep is studied. The resulting creep model consists of a summation of contributions for diffusion creep, power-law creep, and power-law breakdown. The final creep model agrees well with experimental data for temperatures between 550 and 750 deg C and for shear stresses above 30 MPa. The most important finding of this work is that for very low stresses the model predicts far higher creep rates than can be extrapolated from tests performed at the usual stress range of experimental programs

  7. Weld metal design data for 316L(N)

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A.A.F. [Commissariat a l' Energie Atoique, CEA, Saclay (France)

    2007-07-01

    This paper extends the ITER materials properties documentations to weld metal types 316L, 19-12-2 and 16-8-2, used for welding of Type 316L(N), i.e. the structural material retained for manufacturing of ITER main components such as the vacuum vessel. The data presented include those of the low temperature (316L) and high temperature (19-12-2) grades, as well as, the more readily available grade (16-8-2). Weld metal properties data for all three grades are collected, sorted and analyzed according to the French design and construction rules for nuclear components (RCC-MR). Particular attention is paid to the type of weld metal (e.g. wire for TIG, covered electrode for manual arc, flux wire for automatic welding), and the type and the position of welding. Design allowables are derived for each category of weld and compared with those of the base metal. The data sheets established for each physical and mechanical properties follow the presentation established for the ITER Materials Properties Handbook (MPH). They are part of the documentation that when combined with codification and inspection documents should satisfy ITER licensing needs. In most cases, the analyses performed, go beyond conventional analyses required in present international codes and pay attention to specific needs of ITER. These include, possible effects of exposures to high temperatures during various manufacturing stages e.g. HIPing, and effects of irradiation at low and medium temperatures. In general, it is noticed that all three weld metals satisfy the RCC-MR requirements, provided compositions and types of welds used correspond to those specified in RCC-MR. (orig.)

  8. Strain-rate dependent fatigue behavior of 316LN stainless steel in high-temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jibo [CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wu, Xinqiang, E-mail: xqwu@imr.ac.cn [CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Han, En-Hou; Ke, Wei; Wang, Xiang [CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Sun, Haitao [Nuclear and Radiation Safety Center, SEPA, Beijing 100082 (China)

    2017-06-15

    Low cycle fatigue behavior of forged 316LN stainless steel was investigated in high-temperature water. It was found that the fatigue life of 316LN stainless steel decreased with decreasing strain rate from 0.4 to 0.004 %s{sup −1} in 300 °C water. The stress amplitude increased with decreasing strain rate during fatigue tests, which was a typical characteristic of dynamic strain aging. The fatigue cracks mainly initiated at pits and slip bands. The interactive effect between dynamic strain aging and electrochemical factors on fatigue crack initiation is discussed. - Highlights: •The fatigue lives of 316LN stainless steel decrease with decreasing strain rate. •Fatigue cracks mainly initiated at pits and persistent slip bands. •Dynamic strain aging promoted fatigue cracks initiation in high-temperature water.

  9. Precipitation in AISI 316L(N) during creep tests at 550 and 600 °C up to 10 years

    Science.gov (United States)

    Padilha, A. F.; Escriba, D. M.; Materna-Morris, E.; Rieth, M.; Klimenkov, M.

    2007-05-01

    The precipitation behaviour in the gauge lengths and in the heads of initially solution annealed type 316L(N) austenitic stainless steel specimens tested in creep at 550 and 600 °C for periods of up to 85 000 h has been studied using several metallographic techniques. Three phases were detected: M 23C 6, Laves, and sigma phase. The volume fraction of the precipitated sigma phase was significantly higher than that of carbides and the Laves phase. M 23C 6 carbide precipitation occurred very rapidly and was followed by the sigma and Laves phases formation in the delta ferrite islands. Sigma and Laves phases precipitated at grain boundaries after longer times. Two different mechanisms of sigma phase precipitation have been proposed, one for delta ferrite decomposition and another for grain boundary precipitation. Small quantities of the Laves phase were detected in delta ferrite, at grain boundaries and inside the grains.

  10. Research on damage evolution and damage model of 316LN steel during forging

    Energy Technology Data Exchange (ETDEWEB)

    Duan, X.W., E-mail: dxwmike1998@sina.com; Liu, J.S.

    2013-12-20

    The tensile tests and unloading tensile experiments of 316LN steel were conducted. The damage evolution processes were investigated by optical microscope. The fracture was studied using a Scanning Electron Microscope (SEM) and optical microscope, of which, the chemical compositions were analyzed by Energy Dispersive Spectrometer (EDS). The results show that voids nucleate by decohesion of Al{sub 2}O{sub 3} inclusions–matrix interface and mainly along the grain boundary, especially, at triangular grain boundary junctions. The tensile processes were simulated by Deform2D under different deformation conditions. The critical damage values were obtained. The model between the critical damage value, temperature and strain rate was established by regression analysis. A combination of numerical simulation and upsetting experiments was applied for verifying the accuracy and reliability of critical damage value. These damage values can be used to predict the initiation of voids during 316LN steel hot forging. So, they have important instructional effects on designing forging technology of 316LN steel.

  11. An experience with in-service fabrication and inspection of austenitic stainless steel piping in high temperature sodium system

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, S., E-mail: sravi@igcar.gov.in; Laha, K.; Sakthy, S.; Mathew, M.D.; Bhaduri, A.K.

    2015-04-01

    Highlights: • Procedure for changing 304L SS pipe to 316L SS in sodium loop has been established. • Hot leg made of 304L SS was isolated from existing cold leg made of 316LN SS. • Innovative welding was used in joining the new 316L SS pipe with existing 316LN SS. • The old components of 304L SS piping have been integrated with the new piping. - Abstract: A creep testing facility along with dynamic sodium loop was installed at Indira Gandhi Centre for Atomic Research, Kalpakkam, India to assess the creep behavior of fast reactor structural materials in flowing sodium. Type 304L austenitic stainless steel was used in the low cross section piping of hot-leg whereas 316LN austenitic stainless steel in the high cross section cold-leg of the sodium loop. The intended service life of the sodium loop was 10 years. The loop has performed successfully in the stipulated time period. To enhance its life time, it has been decided to replace the 304L piping with 316L piping in the hot-leg. There were more than 300 welding joints involved in the integration of cold-leg with the new 316L hot-leg. Continuous argon gas flow was maintained in the loop during welding to avoid contamination of sodium residue with air. Several innovative welding procedures have been adopted for joining the new hot-leg with the existing cold-leg in the presence of sodium residue adopting TIG welding technique. The joints were inspected for 100% X-ray radiography and qualified by performing tensile tests. The components used in the discarded hot-leg were retrieved, cleaned and integrated in the renovated loop. A method of cleaning component of sodium residue has been established. This paper highlights the in-service fabrication and inspection of the renovation.

  12. Effect of Austenitic and Austeno-Ferritic Electrodes on 2205 Duplex and 316L Austenitic Stainless Steel Dissimilar Welds

    Science.gov (United States)

    Verma, Jagesvar; Taiwade, Ravindra V.

    2016-11-01

    This study addresses the effect of different types of austenitic and austeno-ferritic electrodes (E309L, E309LMo and E2209) on the relationship between weldability, microstructure, mechanical properties and corrosion resistance of shielded metal arc welded duplex/austenitic (2205/316L) stainless steel dissimilar joints using the combined techniques of optical, scanning electron microscope, energy-dispersive spectrometer and electrochemical. The results indicated that the change in electrode composition led to microstructural variations in the welds with the development of different complex phases such as vermicular ferrite, lathy ferrite, widmanstatten and intragranular austenite. Mechanical properties of welded joints were diverged based on compositions and solidification modes; it was observed that ferritic mode solidified weld dominated property wise. However, the pitting corrosion resistance of all welds showed different behavior in chloride solution; moreover, weld with E2209 was superior, whereas E309L exhibited lower resistance. Higher degree of sensitization was observed in E2209 weld, while lesser in E309L weld. Optimum ferrite content was achieved in all welds.

  13. Strain hardening and plastic instability properties of austenitic stainless steels after proton and neutron irradiation

    International Nuclear Information System (INIS)

    Byun, T.S.; Farrell, K.; Lee, E.H.; Hunn, J.D.; Mansur, L.K.

    2001-01-01

    Strain hardening and plastic instability properties were analyzed for EC316LN, HTUPS316, and AL6XN austenitic stainless steels after combined 800 MeV proton and spallation neutron irradiation to doses up to 10.7 dpa. The steels retained good strain-hardening rates after irradiation, which resulted in significant uniform strains. It was found that the instability stress, the stress at the onset of necking, had little dependence on the irradiation dose. Tensile fracture stress and strain were calculated from the stress-strain curve data and were used to estimate fracture toughness using an existing model. The doses to plastic instability and fracture, the accumulated doses at which the yield stress reaches instability stress or fracture stress, were predicted by extrapolation of the yield stress, instability stress, and fracture stress to higher dose. The EC316LN alloy required the highest doses for plastic instability and fracture. Plastic deformation mechanisms are discussed in relation to the strain-hardening properties of the austenitic stainless steels

  14. Study of creep crack growth behavior of 316LN welds

    International Nuclear Information System (INIS)

    Venugopal, S.; Kumar, Yatindra; Sasikala, G.

    2016-01-01

    Creep crack growth (CCG) behavior plays an important role in the assessment of structural integrity of components operating at elevated temperature under load/stress condition. Integrity of the welded components is decided primarily by that of the weld. Creep crack growth behavior of 316LN welds prepared using consumables developed indigenously for welding the 316L(N) SS components for the Prototype Fast Breeder Reactor has been studied. The composition of the consumable is tailored to ensure about 5 FN (ferrite number) of δ ferrite in the weld deposit. Constant load CCG tests were carried out as per ASTM E1457 at different applied loads at temperatures in the range 823-923 K on CT specimens fabricated from 'V-type' weld joints with notch in the weld centre. The creep crack growth rate (α) is commonly correlated to a time dependent fracture mechanics parameter known as C*. The α3-C* correlations (α=D(C*) φ ) were established in the temperature range 823-923 K. The crack growth rates at different temperature have been compared with that given in RCC-MR. Extensive microstructural and fractographic studies using optical and scanning electron microscopy were carried out on the CCG tested specimens to understand the effect of transformation of delta ferrite on the creep damage and fracture mechanisms associated with CCG in the weld metal at different test conditions. (author)

  15. Fatigue properties of type 316LN stainless steel in air and mercury

    International Nuclear Information System (INIS)

    Strizak, J.P.; Tian, H.; Liaw, P.K.; Mansur, L.K.

    2005-01-01

    An extensive fatigue testing program on 316LN stainless steel was recently carried out to support the design of the mercury target container for the spallation neutron source (SNS) that is currently under construction at the Oak Ridge National Laboratory in the United States. The major objective was to determine the effects of mercury on fatigue behavior. The S-N fatigue behavior of 316LN stainless steel is characterized by a family of bilinear fatigue curves which are dependent on frequency, environment, mean stress and cold work. Generally, fatigue life increases with decreasing stress and levels off in the high cycle region to an endurance limit below which the material will not fail. For fully reversed loading as well as tensile mean stress loading conditions mercury had no effect on endurance limit. However, at higher stresses a synergistic relationship between mercury and cyclic loading frequency was observed at low frequencies. As expected, fatigue life decreased with decreasing frequency, but the response was more pronounced in mercury compared with air. As a result of liquid metal embrittlement (LME), fracture surfaces of specimens tested in mercury showed widespread brittle intergranular cracking as opposed to typical transgranular cracking for specimens tested in air. For fully reversed loading (zero mean stress) the effect of mercury disappeared as frequency increased to 10 Hz. For mean stress conditions with R-ratios of 0.1 and 0.3, LME was still evident at 10 Hz, but at 700 Hz the effect of mercury had disappeared (R 0.1). Further, for higher R-ratios (0.5 and 0.75) fatigue curves for 10 Hz showed no environmental effect. Finally, cold working (20%) increased tensile strength and hardness, and improved fatigue resistance. Fatigue behavior at 10 and 700 Hz was similar and no environmental effect was observed

  16. Fatigue properties of type 316LN stainless steel in air and mercury

    Science.gov (United States)

    Strizak, J. P.; Tian, H.; Liaw, P. K.; Mansur, L. K.

    2005-08-01

    An extensive fatigue testing program on 316LN stainless steel was recently carried out to support the design of the mercury target container for the spallation neutron source (SNS) that is currently under construction at the Oak Ridge National Laboratory in the United States. The major objective was to determine the effects of mercury on fatigue behavior. The S- N fatigue behavior of 316LN stainless steel is characterized by a family of bilinear fatigue curves which are dependent on frequency, environment, mean stress and cold work. Generally, fatigue life increases with decreasing stress and levels off in the high cycle region to an endurance limit below which the material will not fail. For fully reversed loading as well as tensile mean stress loading conditions mercury had no effect on endurance limit. However, at higher stresses a synergistic relationship between mercury and cyclic loading frequency was observed at low frequencies. As expected, fatigue life decreased with decreasing frequency, but the response was more pronounced in mercury compared with air. As a result of liquid metal embrittlement (LME), fracture surfaces of specimens tested in mercury showed widespread brittle intergranular cracking as opposed to typical transgranular cracking for specimens tested in air. For fully reversed loading (zero mean stress) the effect of mercury disappeared as frequency increased to 10 Hz. For mean stress conditions with R-ratios of 0.1 and 0.3, LME was still evident at 10 Hz, but at 700 Hz the effect of mercury had disappeared ( R = 0.1). Further, for higher R-ratios (0.5 and 0.75) fatigue curves for 10 Hz showed no environmental effect. Finally, cold working (20%) increased tensile strength and hardness, and improved fatigue resistance. Fatigue behavior at 10 and 700 Hz was similar and no environmental effect was observed.

  17. austenitic steel corrosion by oxygen-containing liquid sodium

    International Nuclear Information System (INIS)

    Rivollier, Matthieu

    2017-01-01

    France is planning to construct the 4. generation of nuclear reactors. They will use liquid sodium as heat transfer fluid and will be made of 316L(N) austenitic steel as structural materials. To guarantee optimal operation on the long term, the behavior of this steel must be verified. This is why corrosion phenomena of 316L(N) steel by liquid sodium have to be well-understood. Literature points out that several corrosion phenomena are possible. Dissolved oxygen in sodium definitely influences each of the corrosion phenomenon. Therefore, the austenitic steel corrosion in oxygen-containing sodium is proposed in this study. Thermodynamics data point out that sodium chromite formation on 316L(N) steel is possible in sodium containing roughly 10 μg.g -1 of oxygen for temperature lower than 650 C (reactor operating conditions).The experimental study shows that sodium chromite is formed at 650 C in the sodium containing 200 μg.g -1 of oxygen. At the same concentration and at 550 C, sodium chromite is clearly observed only for long immersion time (≥ 5000 h). Results at 450 C are more difficult to interpret. Furthermore, the steel is depleted in chromium in all cases.The results suggest the sodium chromite is dissolved in the sodium at the same time it is formed. Modelling of sodium chromite formation - approached by chromium diffusion in steel (in grain and grain boundaries -, and dissolution - assessed by transport in liquid metal - show that simultaneous formation and dissolution of sodium chromite is a possible mechanism able to explain our results. (author) [fr

  18. Effect of cold works on creep-rupture life of type 316LN stainless steel

    International Nuclear Information System (INIS)

    Kim, W. G.; Han, C. H.; Ryu, W. S.

    2003-01-01

    Effect of cold works on creep-rupture life of the cold-worked type 316LN stainless steels, which are fabricated with the various reductions ; 0%(solution annealing), 20%, 30%, 40%, and 50%, was investigated. The creep-rupture time increased gradually up to 30% reduction, but it decreased inversely over 30% reduction. The longest rupture time exhibited at cold-worked reduction of 30%. The reason for this is that fine carbide precipitates are uniformly generated in grain boundary and the dislocations are pinned in the precipitates and the dislocations are sustained for a long time at high temperature. However, it is assumed that the higher cold-work reductions over 30% lead to excessive generation of deformation faults. The SEM fractrographs of the cold-worked specimens showed dense fracture micrographs, and they did not show intergranular structures in creep fracture mode. From this result, it is believed that the cold-worked specimens were superior in creep-rupture time to solution annealed ones

  19. Effect of nitrogen and boron on weldability of austenitic stainless steels

    International Nuclear Information System (INIS)

    Bhaduri, A.K.; Albert, S.K.; Srinivasan, G.; Divya, M.; Das, C.R.

    2012-01-01

    Hot cracking is a major problem in the welding of austenitic stainless steels, particularly the fully austenitic grades. A group of alloys of enhanced-nitrogen 316LN austenitic stainless steel is being developed for structural components of the Indian Fast Reactor programme. Studying the hot cracking behaviour of this nitrogen-enhanced austenitic stainless steel is an important consideration during welding, as this material solidifies without any residual delta ferrite in the primary austenitic mode. Nitrogen has potent effects on the solidification microstructure, and hence has a strong influence on the hot cracking behaviour. Different heats of this material were investigated, which included fully austenitic stainless steels containing 0.070.22 wt% nitrogen. Also, borated austenitic stainless steels, such as type 304B4, have been widely used in the nuclear applications primarily due to its higher neutron absorption efficiency. Weldability is a major concern for this alloy due to the formation of low melting eutectic phase that is enriched with iron, chromium, molybdenum and boron. Fully austenitic stainless steels are prone to hot cracking during welding in the absence of a small amount of delta ferrite, especially for compositions rich in elements like boron that increases the tendency to form low melting eutectics. Detailed weldability investigations were carried out on a grade 304B4 stainless steel containing 1.3 wt% boron. Among the many approaches that have been used to determine the hot cracking susceptibility of different alloys, Variable-Restraint (Varestraint) weld test and Hot Ductility (Gleeble) tests are commonly used to evaluate the weldability of austenitic alloys. Hence, investigations on these materials consisted of detailed metallurgical characterization and weldability studies that included studying both the fusion zone and liquation cracking susceptibility, using Varestraint tests at 0.254.0%, strain levels and Gleeble (thermo

  20. Environmental Degradation of Dissimilar Austenitic 316L and Duplex 2205 Stainless Steels Welded Joints

    Directory of Open Access Journals (Sweden)

    Topolska S.

    2017-12-01

    Full Text Available The paper describes structure and properties of dissimilar stainless steels welded joints between duplex 2205 and austenitic 316L steels. Investigations were focused on environmentally assisted cracking of welded joints. The susceptibility to stress corrosion cracking (SCC and hydrogen embrittlement was determined in slow strain rate tests (SSRT with the strain rate of 2.2 × 10−6 s−1. Chloride-inducted SCC was determined in the 35% boiling water solution of MgCl2 environment at 125°C. Hydrogen assisted SCC tests were performed in synthetic sea water under cathodic polarization condition. It was shown that place of the lowest resistance to chloride stress corrosion cracking is heat affected zone at duplex steel side of dissimilar joins. That phenomenon was connected with undesirable structure of HAZ comprising of large fractions of ferrite grains with acicular austenite phase. Hydrogen assisted SCC tests showed significant reduction in ductility of duplex 2205 steel while austenitic 316L steel remains almost immune to degradation processes. SSR tests of dissimilar welded joints revealed a fracture in the area of austenitic steel.

  1. Microstructure, local mechanical properties and stress corrosion cracking susceptibility of an SA508-52M-316LN safe-end dissimilar metal weld joint by GTAW

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Hongliang; Zhu, Ruolin [Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning KeyLaboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049 (China); Zhang, Zhiming [Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning KeyLaboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, Jianqiu, E-mail: wangjianqiu@imr.ac.cn [Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning KeyLaboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Han, En.-Hou.; Ke, Wei [Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning KeyLaboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Su, Mingxing [Shanghai Research Center for Weld and Detection Engineering Technique of Nuclear Equipment, Shanghai 201306 (China)

    2016-07-04

    The microstructure, local mechanical properties and local stress corrosion cracking susceptibility of an SA508-52M-316LN domestic dissimilar metal welded safe-end joint used for AP1000 nuclear power plant prepared by automatic gas tungsten arc welding was studied in this work by optical microscopy, scanning electron microscopy (with electron back scattering diffraction and an energy dispersive X-ray spectroscopy system), micro-hardness testing, local mechanical tensile testing and local slow strain rate tests. The micro-hardness, local mechanical properties and stress corrosion cracking susceptibility across this dissimilar metal weld joint vary because of the complex microstructure across the fusion area and the dramatic chemical composition change across the fusion lines. Briefly, Type I boundaries and Type II boundaries exist in 52Mb near the SA508-52Mb interface, a microstructure transition was found in SA508 heat affected zone, the residual strain and grain boundary character distribution changes as a function of the distance from the fusion boundary in 316LN heat affected zone, micro-hardness distribution and local mechanical properties along the DMWJ are heterogeneous, and 52Mw-316LN interface has the highest SCC susceptibility in this DMWJ while 316LN base metal has the lowest one.

  2. FATIGUE PROPERTIES OF MODIFIED 316LN STAINLESS STEEL AT 4 K FOR HIGH FIELD CABLE-IN-CONDUIT APPLICATIONS

    International Nuclear Information System (INIS)

    Toplosky, V. J.; Walsh, R. P.; Han, K.

    2010-01-01

    Cable-In-Conduit-Conductor (CICC) alloys, exposed to Nb 3 Sn reaction heat-treatments, such as modified 316LN require a design specific database. A lack of fatigue life data (S-n curves) that could be applied in the design of the ITER CS and the NHMFL Series Connected Hybrid magnets is the impetus for the research presented here. The modified 316LN is distinguished by a lower carbon content and higher nitrogen content when compared to conventional 316LN. Because the interstitial alloying elements affect the mechanical properties significantly, it is necessary to characterize this alloy in a systematic way. In conjunction, to ensure magnet reliability and performance, several criteria and expectations must be met, including: high fatigue life at the operating stresses, optimal stress management at cryogenic temperatures and thin walled conduit to reduce coil mass. Tension-tension load control axial fatigue tests have good applicability to CICC solenoid magnet design, thus a series of 4 K strength versus fatigue life curves have been generated. In-situ samples of 316LN base metal, seam welded, butt welded and seam plus butt welded are removed directly from the conduit in order to address base and weld material fatigue life variability. The more than 30 fatigue tests show good grouping on the fatigue life curve and allow discretionary 4 K fatigue life predictions for conduit made with modified 316LN.

  3. Effects of metallurgical variables on hydrgen embrittlement in types 316, 321, and 347 stainless steels

    International Nuclear Information System (INIS)

    Rozenak, P.; Eliezer, D.

    1984-01-01

    Hydrogen embrittlement of 316, 321 and 347 types austenitic stainless steels has been studied by charging thin tensile specimens with hydrogen through cathodic polarization. Throughout this study we have compared solution annealed samples having various prior austenitic grain-size with samples given the additional sensitization treatment. The results show that refined grains improves the resistance to hydrogen cracking regardless of the failure mode. The sensitized specimens were predominantly intergranular, while the annealed specimens show massive regions of microvoid coalescence producing ductile rupture. 347 type stainless steel is much more susceptible to hydrogen embrittlement than 321 type steel, and 316 type is the most resistant to hydrogen embrittlement. the practical implication of the experimental conclusions are discussed

  4. Fatigue crack growth of 316NG austenitic stainless steel welds at 325 °C

    Science.gov (United States)

    Li, Y. F.; Xiao, J.; Chen, Y.; Zhou, J.; Qiu, S. Y.; Xu, Q.

    2018-02-01

    316NG austenitic stainless steel is a commonly-used material for primary coolant pipes of pressurized water reactor systems. These pipes are usually joined together by automated narrow gap welding process. In this study, welds were prepared by narrow gap welding on 316NG austenitic stainless steel pipes, and its microstructure of the welds was characterized. Then, fatigue crack growth tests were conducted at 325 °C. Precipitates enriched with Mn and Si were found in the fusion zone. The fatigue crack path was out of plane and secondary cracks initiated from the precipitate/matrix interface. A moderate acceleration of crack growth was also observed at 325°Cair and water (DO = ∼10 ppb) with f = 2 Hz.

  5. Influence of martensitic transformation on the low-cycle fatigue behaviour of 316LN stainless steel at 77 K

    International Nuclear Information System (INIS)

    Botshekan, M.; Degallaix, S.; Desplanques, Y.

    1997-01-01

    Tensile and low-cycle fatigue tests were performed on a 316LN austenitic stainless steel at 300 and 77 K. The tensile and low-cycle fatigue properties were obtained and analysed in terms of influence of temperature on the plastic deformation process, and particularly on the strain-induced martensite formation. The martensite content was measured by a magnetic-at-saturation method. No martensite was detected at 300 K. On the contrary, strain-induced martensite transformation is responsible for the higher tensile elongation at 77 K and for the secondary hardening observed on softening-hardening curves in low-cycle fatigue at 77 K. The induced martensite content in tensile tests is a function of the strain according to Angel's model, and in low-cycle fatigue it is a function of the strain level and of the accumulated plastic strain. (orig.)

  6. A study on corrosion resistance of dissimilar welds between Monel 400 and 316L austenitic stainless steel

    Science.gov (United States)

    Mani, Cherish; Karthikeyan, R.; Vincent, S.

    2018-04-01

    An attempt has been made to study the corrosion resistance of bi-metal weld joints of Monel 400 tube to stainless steel 316 tube by GTAW process. The present research paper contributes to the ongoing research work on the use of Monel400 and 316L austenitic stainless steel in industrial environments. Potentiodynamic method is used to investigate the corrosion behavior of Monel 400 and 316L austenitic stainless steel welded joints. The analysis has been performed on the base metal, heat affected zone and weld zone after post weld heat treatment. Optical microscopy was also performed to correlate the results. The heat affected zone of Monel 400 alloy seems to have the lowest corrosion resistance whereas 316L stainless steel base metal has the highest corrosion resistance.

  7. Analyses of Small Punch Creep Deformation Behavior of 316LN Stainless Steel Having Different Nitrogen Contents

    Science.gov (United States)

    Ganesh Kumar, J.; Laha, K.; Ganesan, V.; Prasad Reddy, G. V.

    2018-04-01

    The small punch creep (SPC) behavior of 316LN stainless steel (SS) containing 0.07, 0.11 and 0.14 wt.% nitrogen has been investigated at 923 K. The transient and tertiary SPC deformation of 316LN SS with various nitrogen contents have been analyzed according to the equation proposed for SPC deflection, δ = δ0 + δT (1 - e^{ - κ t} ) + \\dot{δ }s t + δ3 e^[ φ( t - tr ) ]. The relationships among the rate of exhaustion of transient creep (κ), steady-state deflection rate (\\dot{δ }s ) and the rate of acceleration of tertiary creep (φ) revealed the interrelationships among the three stages of SPC curve. The first-order reaction rate theory was found to be applicable to SPC deformation throughout the transient as well as tertiary region, in all the investigated steels. The initial and final creep deflection rates were decreased, whereas time to attain steady-state deflection rate increased with the increase in nitrogen content. By increasing the nitrogen content in 316LN SS from 0.07 to 0.14 wt.%, each stage of SPC was prolonged, and consequently, the values of κ, \\dot{δ }s and φ were lowered. Using the above parameters, the master curves for both transient and tertiary SPC deflections were constructed for 316LN SS containing different nitrogen contents.

  8. Transformation of austenite to duplex austenite-ferrite assembly in annealed stainless steel 316L consolidated by laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Saeidi, K.; Gao, X. [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm (Sweden); Lofaj, F. [Institute of Materials Research of the Slovak Academy of Sciences, Watsonova 47, Košice (Slovakia); Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, 916 24 Trnava (Slovakia); Kvetková, L. [Institute of Materials Research of the Slovak Academy of Sciences, Watsonova 47, Košice (Slovakia); Shen, Z.J. [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm (Sweden)

    2015-06-05

    Highlights: • Mechanical properties, phase and microstructure stability of laser melted steel was studied. • Duplex austenite-ferrite assembly with improved mechanical properties was formed. • Dissolution of Mo in the steel matrix resulted in ferrite stabilization and stress relief. • Enhanced mechanical properties were achieved compared to conventionally casted and annealed steel. - Abstract: Laser melting (LM), with a focused Nd:YAG laser beam, was used to form solid bodies from 316L austenite stainless steel powder and the laser melted samples were heat treated at various temperatures. The phase changes in heat treated samples were characterized using X-ray diffraction (XRD). Samples heat treated at 800 °C and 900 °C remained single austenite while in samples heat treated at 1100 °C and 1400 °C a dual austenite-ferrite phase assembly was formed. The ferrite formation was further verified by electron back scattering diffraction (EBSD) and selective area diffraction (SAD). Microstructural changes were studied by scanning and transmission electron microscopy (SEM, TEM). In samples heat treated up to 900 °C, coalescence of the cellular-sub grains was noticed, whereas in sample heat treated at and above 1100 °C the formation of ferrite phase was observed. The correlation between the microstructure/phase assembly and the measured strength/microhardness were investigated, which indicated that the tensile strength of the laser melted material was significantly higher than that of the conventional 316L steel even after heat treatment whereas caution has to be taken when laser melted material will be exposed to an application temperature above 900 °C.

  9. Triple ion-beam studies of radiation damage effects in a 316LN austenitic alloy for a high power spallation neutron source

    International Nuclear Information System (INIS)

    Lee, E.H.; Rao, G.R.; Hunn, J.D.; Rice, P.M.; Lewis, M.B.; Cook, S.W.; Farrell, K.; Mansur, L.K.

    1997-09-01

    Austenitic 316LN alloy was ion-irradiated using the unique Triple Ion Beam Facility (TIF) at ORNL to investigate radiation damage effects relevant to spallation neutron sources. The TIF was used to simulate significant features of GeV proton irradiation effects in spallation neutron source target materials by producing displacement damage while simultaneously injecting helium and hydrogen at appropriately high gas/dpa ratios. Irradiations were carried out at 80, 200, and 350 C using 3.5 MeV Fe ++ , 360 keV He + , and 180 keV H + to accumulate 50 dpa by Fe, 10,000 appm of He, and 50,000 appm of H. Irradiations were also carried out at 200 C in single and dual ion beam modes. The specific ion energies were chosen to maximize the damage and the gas accumulation at a depth of ∼ 1 microm. Variations in microstructure and hardness of irradiated specimens were studied using transmission electron microscopy (TEM) and a nanoindentation technique, respectively. TEM investigation yielded varying damage defect microstructures, comprising black dots, faulted and unfaulted loops, and a high number density of fine bubbles (typically less than 1 nm in diameter). With increasing temperature, faulted loops had a tendency to unfault, and bubble microstructure changed from a bimodal size distribution to a unimodal distribution. Triple ion irradiations at the three temperatures resulted in similar increases in hardness of approximately a factor of two. Individually, Fe and He ions resulted in a similar magnitude of hardness increase, whereas H ions showed only a very small effect. The present study has yielded microstructural information relevant to spallation neutron source conditions and indicates that the most important concern may be radiation induced hardening and associated ductility loss

  10. Triple Ion-Beam Studies of Radiation Damage Effects in a 316LN Austenitic Alloy for a High Power Spallation Neutron Source

    International Nuclear Information System (INIS)

    Lee, E.H.

    2001-01-01

    Austenitic 316LN alloy was ion-irradiated using the unique Triple Ion Beam Facility (TIF) at ORNL to investigate radiation damage effects relevant to spallation neutron sources. The TIF was used to simulate significant features of GeV proton irradiation effects in spallation neutron source target materials by producing displacement damage while simultaneously injecting helium and hydrogen at appropriately high gas/dpa ratios. Irradiations were carried out at 80, 200, and 350 C using 3.5 MeV Fe 2 , 360 keV He + , and 180 keV H + to accumulate 50 dpa by Fe, 10,000 appm of He, and 50,000 appm of H. Irradiations were also carried out at 200 C in single and dual ion beam modes. The specific ion energies were chosen to maximize the damage and the gas accumulation at a depth of ∼ 1 microm. Variations in microstructure and hardness of irradiated specimens were studied using transmission electron microscopy (TEM) and a nanoindentation technique, respectively. TEM investigation yielded varying damage defect microstructures, comprising black dots, faulted and unfaulted loops, and a high number density of fine bubbles (typically less than 1 nm in diameter). With increasing temperature, faulted loops had a tendency to unfault, and bubble microstructure changed from a bimodal size distribution to a unimodal distribution. Triple ion irradiations at the three temperatures resulted in similar increases in hardness of approximately a factor of two. Individually, Fe and He ions resulted in a similar magnitude of hardness increase, whereas H ions showed only a very small effect. The present study has yielded microstructural information relevant to spallation neutron source conditions and indicates that the most important concern may be radiation induced hardening and associated ductility loss

  11. Diffusion-bonded 16MND5-Inconel 690-316LN junction: elaboration and process residual stresses modeling

    International Nuclear Information System (INIS)

    Martinez, Michael

    1999-01-01

    The objective of this research thesis is, on the one hand, to elaborate and to characterise a bonded junction of 16MND5 and 316LN steels, and, on the other hand, to develop a simulation tool for the prediction of microstructures after bonding, as well as residual stresses related to this process. The author first reports the study of the use of diffusion bonding by hot isostatic pressing (HIP diffusion bonding) for the bonding of 16MND5 (steel used in French PWR vessel) and 316LN (austenitic stainless steel used in piping), in order to obtain junctions adapted to a use within PWRs. In this case, the use of an Inconel insert material appeared to be necessary to avoid stainless steel carburization. Thus, inserts in Inconel 600 and 690 have been tested. The objective has then been to develop a realistic calculation of residual stresses in this assembly. These stresses are stimulated by quenching. The author notably studied the simulation of temperature dependent phase transformations, and stress induced phase transformations. An existing model is validated and applied to HIP and quenching cycles. The last part reports the calculation of residual stresses by simulation of the mechanical response of the three-component material cooled from 900 C to room temperature and thus submitted to a loading of thermal origin (dilatation) and metallurgical origin (phase transformations in the 16MND5). The effect of carbon diffusion on mechanical properties has also been taken into account. The author discusses problems faced by existing models, and explains the choice of conventional macro-mechanical models. The three materials are supposed to have a plastic-viscoplastic behaviour with isotropic and kinematic strain hardening, and this behaviour is identified between 20 and 900 C [fr

  12. Optimization of hybrid laser - TIG welding of 316LN steel using response surface methodology (RSM)

    Science.gov (United States)

    Ragavendran, M.; Chandrasekhar, N.; Ravikumar, R.; Saxena, Rajesh; Vasudevan, M.; Bhaduri, A. K.

    2017-07-01

    In the present study, the hybrid laser - TIG welding parameters for welding of 316LN austenitic stainless steel have been investigated by combining a pulsed laser beam with a TIG welding heat source at the weld pool. Laser power, pulse frequency, pulse duration, TIG current were presumed as the welding process parameters whereas weld bead width, weld cross-sectional area and depth of penetration (DOP) were considered as the process responses. Central composite design was used to complete the design matrix and welding experiments were conducted based on the design matrix. Weld bead measurements were then carried out to generate the dataset. Multiple regression models correlating the process parameters with the responses have been developed. The accuracy of the models were found to be good. Then, the desirability approach optimization technique was employed for determining the optimum process parameters to obtain the desired weld bead profile. Validation experiments were then carried out from the determined optimum process parameters. There was good agreement between the predicted and measured values.

  13. Creep rupture strength of activated-TIG welded 316L(N) stainless steel

    International Nuclear Information System (INIS)

    Sakthivel, T.; Vasudevan, M.; Laha, K.; Parameswaran, P.; Chandravathi, K.S.; Mathew, M.D.; Bhaduri, A.K.

    2011-01-01

    316L(N) stainless steel plates were joined using activated-tungsten inert gas (A-TIG) welding and conventional TIG welding process. Creep rupture behavior of 316L(N) base metal, and weld joints made by A-TIG and conventional TIG welding process were investigated at 923 K over a stress range of 160-280 MPa. Creep test results showed that the enhancement in creep rupture strength of weld joint fabricated by A-TIG welding process over conventional TIG welding process. Both the weld joints fractured in the weld metal. Microstructural observation showed lower δ-ferrite content, alignment of columnar grain with δ-ferrite along applied stress direction and less strength disparity between columnar and equiaxed grains of weld metal in A-TIG joint than in MP-TIG joint. These had been attributed to initiate less creep cavitation in weld metal of A-TIG joint leading to improvement in creep rupture strength.

  14. Creep rupture strength of activated-TIG welded 316L(N) stainless steel

    Science.gov (United States)

    Sakthivel, T.; Vasudevan, M.; Laha, K.; Parameswaran, P.; Chandravathi, K. S.; Mathew, M. D.; Bhaduri, A. K.

    2011-06-01

    316L(N) stainless steel plates were joined using activated-tungsten inert gas (A-TIG) welding and conventional TIG welding process. Creep rupture behavior of 316L(N) base metal, and weld joints made by A-TIG and conventional TIG welding process were investigated at 923 K over a stress range of 160-280 MPa. Creep test results showed that the enhancement in creep rupture strength of weld joint fabricated by A-TIG welding process over conventional TIG welding process. Both the weld joints fractured in the weld metal. Microstructural observation showed lower δ-ferrite content, alignment of columnar grain with δ-ferrite along applied stress direction and less strength disparity between columnar and equiaxed grains of weld metal in A-TIG joint than in MP-TIG joint. These had been attributed to initiate less creep cavitation in weld metal of A-TIG joint leading to improvement in creep rupture strength.

  15. Creep rupture strength of activated-TIG welded 316L(N) stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Sakthivel, T., E-mail: tsakthivel@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Vasudevan, M.; Laha, K.; Parameswaran, P.; Chandravathi, K.S.; Mathew, M.D.; Bhaduri, A.K. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2011-06-01

    316L(N) stainless steel plates were joined using activated-tungsten inert gas (A-TIG) welding and conventional TIG welding process. Creep rupture behavior of 316L(N) base metal, and weld joints made by A-TIG and conventional TIG welding process were investigated at 923 K over a stress range of 160-280 MPa. Creep test results showed that the enhancement in creep rupture strength of weld joint fabricated by A-TIG welding process over conventional TIG welding process. Both the weld joints fractured in the weld metal. Microstructural observation showed lower {delta}-ferrite content, alignment of columnar grain with {delta}-ferrite along applied stress direction and less strength disparity between columnar and equiaxed grains of weld metal in A-TIG joint than in MP-TIG joint. These had been attributed to initiate less creep cavitation in weld metal of A-TIG joint leading to improvement in creep rupture strength.

  16. Effect of cold work on low-temperature sensitization behaviour of austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Kain, V. E-mail: vivkain@apsara.barc.ernet.in; Chandra, K.; Adhe, K.N.; De, P.K

    2004-09-01

    The effects of cold work and low-temperature sensitization heat treatment of non-sensitized austenitic stainless steels have been investigated and related to the cracking in nuclear power reactors. Types 304, 304L and 304LN developed martensite after 15% cold working. Heat treatment of these cold worked steels at 500 deg. C led to sensitization of grain boundaries and the matrix and a desensitization effect was seen in 11 days due to fast diffusion rate of chromium in martensite. Types 316L and 316LN did not develop martensite upon cold rolling due to its chemical composition suppressing the martensite transformation (due to deformation) temperature, hence these were not sensitized at 500 deg. C. The sensitization of the martensite phase was always accompanied by a hump in the reactivation current peak in the double loop electrochemical potentiokinetic reactivation test, thus providing a test to detect such sensitization. It was shown that bending does not produce martensite and therefore, is a better method to simulate weld heat affected zone. Bending and heating at 500 deg. C for 11 days led to fresh precipitation due to increased retained strain and desensitization of 304LN due to faster diffusion rate of chromium along dislocations. The as received or solution annealed 304 and 304LN with 0.15% nitrogen showed increased sensitization after heat treatment at 500 deg. C, indicating the presence of carbides/nitrides.

  17. Laser borided composite layer produced on austenitic 316L steel

    Directory of Open Access Journals (Sweden)

    Mikołajczak Daria

    2016-12-01

    Full Text Available Abstract Austenitic 316L steel is well-known for its good resistance to corrosion and oxidation. Therefore, this material is often used wherever corrosive media or high temperatures are to be expected. The main drawback of this material is very low hardness and low resistance to mechanical wear. In this study, the laser boriding was used in order to improve the wear behavior of this material. As a consequence, a composite surface layer was produced. The microstructure of laser-borided steel was characterized by only two zones: re-melted zone and base material. In the re-melted zone, a composite microstructure, consisting of hard ceramic phases (borides and a soft austenitic matrix, was observed. A significant increase in hardness and wear resistance of such a layer was obtained.

  18. Low-temperature creep of austenitic stainless steels

    Science.gov (United States)

    Reed, R. P.; Walsh, R. P.

    2017-09-01

    Plastic deformation under constant load (creep) in austenitic stainless steels has been measured at temperatures ranging from 4 K to room temperature. Low-temperature creep data taken from past and unreported austenitic stainless steel studies are analyzed and reviewed. Creep at cryogenic temperatures of common austenitic steels, such as AISI 304, 310 316, and nitrogen-strengthened steels, such as 304HN and 3116LN, are included. Analyses suggests that logarithmic creep (creep strain dependent on the log of test time) best describe austenitic stainless steel behavior in the secondary creep stage and that the slope of creep strain versus log time is dependent on the applied stress/yield strength ratio. The role of cold work, strain-induced martensitic transformations, and stacking fault energy on low-temperature creep behavior is discussed. The engineering significance of creep on cryogenic structures is discussed in terms of the total creep strain under constant load over their operational lifetime at allowable stress levels.

  19. Nitrogen effect on precipitation and sensitization in cold-worked Type 316L(N) stainless steels

    International Nuclear Information System (INIS)

    Oh, Yong Jun; Hong, Jun Hwa

    2000-01-01

    The precipitation behavior and sensitization resistance of Type 316L(N) stainless steels containing different concentrations of nitrogen have been investigated at the aging condition of 700 deg. C for cold work (CW) levels ranging from 0% (as solution annealed) to 40% reduction in thickness. The precipitation of M 23 C 6 carbide and intermetallic compounds (χ, Laves and σ phase) was accelerated by increasing the CW level. Nitrogen in the deformed alloys retarded the inter- and intra-granular precipitation of the carbides at low and high CW levels respectively, whereas it increased the relative amount of the χ phase. Quantitative assessment of the degree of sensitization (DOS) using the double loop-electrochemical potentiokinetic reactivation (DL-EPR) tests indicated that CW levels up to 20% enhanced sensitization while 40% CW suppressed sensitization for all aging times. The increase in nitrogen content accelerated the sensitization at CW levels below 20%. This might be associated with the homogeneous distribution of dislocations and the lower tendency toward recrystallization exhibited in the alloys having higher nitrogen content

  20. Sensitization behaviour of modified 316N and 316L stainless steel weld metals after complex annealing and stress relieving cycles

    International Nuclear Information System (INIS)

    Parvathavarthini, N.; Dayal, R.K.; Khatak, H.S.; Shankar, V.; Shanmugam, V.

    2006-01-01

    Sensitization behaviour of austenitic stainless steel weld metals prepared using indigenously developed modified 316N (C = 0.05%; N = 0.12%) and 316L (C = 0.02%; N = 0.07%) electrodes was studied. Detailed optical and scanning electron microscopic examination was carried out to understand the microstructural changes occurring in the weld metal during isothermal exposure at various temperatures ranging from 500 deg. C to 850 deg. C (773-1123 K). Based on these studies the mechanism of sensitization in the austenite-ferrite weld metal has been explained. Time-temperature-sensitization (TTS) diagrams were established using ASTM A262 Practice E test. From the TTS diagrams, critical cooling rate (CCR) above which there is no risk of sensitization was calculated for both materials. The heating/cooling rates to be followed for avoiding sensitization during heat treatment cycles consisting of solution-annealing and stress-relieving in fabrication of welded components of AISI 316LN stainless steel (SS) were estimated taking into account the soaking time and the number of times the component undergoes thermal excursions in the sensitization regime. The results were validated by performing controlled heating and cooling heat treatment trials on welded specimens

  1. Study of the Sensitization on the Grain Boundary in Austenitic Stainless Steel Aisi 316

    Directory of Open Access Journals (Sweden)

    Kocsisová Edina

    2014-12-01

    Full Text Available Intergranular corrosion (IGC is one of the major problems in austenitic stainless steels. This type of corrosion is caused by precipitation of secondary phases on grain boundaries (GB. Precipitation of the secondary phases can lead to formation of chromium depleted zones in the vicinity of grain boundaries. Mount of the sensitization of material is characterized by the degree of sensitization (DOS. Austenitic stainless steel AISI 316 as experimental material had been chosen. The samples for the study of sensitization were solution annealed on 1100 °C for 60 min followed by water quenching and then sensitization by isothermal annealing on 700 °C and 650 °C with holding time from 15 to 600 min. Transmission electron microscopy (TEM was used for identification of secondary phases. Electron backscattered diffraction (EBSD was applied for characterization of grain boundary structure as one of the factors which influences on DOS.

  2. The influence of plasma nitriding on the fatigue behavior of austenitic stainless steel types AISI 316 and AISI 304

    International Nuclear Information System (INIS)

    Varavallo, Rogerio; Manfrinato, Marcos Dorigao; Rossino, Luciana Sgarbi; Spinelli, Dirceu; Riofano, Rosamel Melita Munoz

    2010-01-01

    The plasma nitriding process has been used as an efficient method to optimize the surface properties of steel and alloy in order to increase their wear, fatigue and corrosion resistance. This paper reports on a study of the composition and influence of the nitrided layer on the high-cycle fatigue properties of the AISI 316 and 304 type austenitic stainless steels. Test specimens of AISI 316 and 304 steel were nitrided at 400 deg C for 6 hours under a pressure of 4.5 mbar, using a gas mixture of 80% volume of H 2 and 20% volume of N 2 . The rotary fatigue limit of both nitrided and non-nitrided steels was determined, and the effect of the treatment on the fatigue limit of the two steels was evaluated. The mechanical properties of the materials were evaluated based on tensile tests, and the nitrided layer was characterized by microhardness tests, scanning electron microscopy and X-ray diffraction. The resulting nitride layer showed high hardness and mechanical strength, increasing the fatigue limit of the nitrided material in comparison with the non-nitrided one. The fatigue limit of the 316 steel increased from 400 MPa to 510 MPa in response to nitriding, while that of the 304 steel increased from 380 MPa to 560 MPa. One of the contributing factors of this increase was the introduction of residual compressive stresses during the surface hardening process, which reduce the onset of crack formation underneath the nitride layer. (author)

  3. Numerical and experimental study of long term creep damage in austenitic stainless steels

    International Nuclear Information System (INIS)

    Cui, Yiting

    2015-01-01

    The creep fracture of 316L(N) austenitic stainless steels has been studied both experimentally and theoretically for temperatures from 525 C up to 700 C and lifetimes up to nineteen years. For short term creep, failure is due to necking. Experimental lifetimes are bounded by the lower and upper bound predictions provided by a necking model and taking into account scatter in input parameters. This model leads to fair predictions of lifetimes up to a few thousand hours at very high temperature. Based on FEG-SEM observations, the transition observed in the failure curves is due to intergranular cavitation. The Riedel modeling of cavity growth by vacancy diffusion along grain boundaries coupled with continuous nucleation is carried out. Lifetimes are predicted fairly well using this model for long term creep failure whatever the considered austenitic stainless steel (316L(N), 304H, 316H, 321H) and the applied temperature (525 C - 700 C). Taking into account low and high stress regimes of Norton-power law, the Riedel model allows us to predict the creep lifetimes up to 25 years which differ from experimental data by less than a factor 3. The effect of the heterogeneity of the microstructure on grain boundary stress concentrations and cavity nucleation is simulated by the finite element method (Cast3M software). It aims to determine the distribution of grain boundary normal stress fields around precipitates depending on time and temperature. The features of the precipitates and the creep behavior of the austenitic matrix are both taking into account. (author) [fr

  4. A Study on Thermal Desorption of Deuterium in D-loaded SS316LN for ITER Tritium Removal System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Myungchul; Kim, Heemoon; Ahn, Sangbok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Jaeyong; Lee, Sanghwa; LanAhn, Nguyen Thi [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    Because Type B radwaste includes tritium on its inside, especially at vicinity of surface, tritium removal from the radwaste is a matter of concern in terms of the radwaste processes. Tritium behavior in materials is related with temperature. Considering a diffusion process, it is expected that tritium removal efficiency is enhanced with increasing baking temperature. However, there is a limitation about temperature due to facility capacity and economic aspect. Therefore, it is necessary to investigate the effect of temperature on the desorption behavior of Tritium in ITER materials. TDS analysis was performed in SS316LN loaded at 120, 240 and 350 °C. D2 concentration and the desorption peak temperature increased with increasing loading temperature. Using peak shift method with three ramp rates of 0.166, 0.332, and 0.5 °C/sec, trap activation energy of D in SS316LN loaded at 350 °C was 56 kJ/mol.

  5. Thick-section weldments in 21-6-9 and 316LN stainless steel for fusion energy applications

    International Nuclear Information System (INIS)

    Alexander, D.J.; Goodwin, G.M.

    1991-01-01

    The mechanical properties of several weldments in 21-6-9 and 316LN stainless steel metals have been measured at 77 K and room temperature. Filler metals for the 211-6-9 included Nitronic 35W and 40W, 21-6-9, Inconel 82, 182, 625, and 625 PLUS. For the 316LN base metal, 316L, 316L-T3, 316L-4K-O, and Inconel 82 filler metals were used. At room temperature all of the filler metals had yield strengths that exceeded those of the base metals. At 77K only the Nitronics and the 21-6-9 filler metals exceeded those of the base metals, and the Inconel filler metals were significantly weaker. The impact properties of the weld metals were very good at room temperature, with the exception of Inconel 625. At 77 K the impact toughness was greatly reduced for all of the filler metals, with the dramatic exception of Inconel 82. The 316L-4K-O filler metal showed higher impact energies than the other ferrite-containing filler metals, although the levels were still much lower than for the Inconel filler metals. The Inconel 82 filler had excellent fracture toughness at both temperatures

  6. Fracture toughness of neutron irradiated solid and powder HIP 316L(N). ITER Task 214, NET deliverable GB6 ECN-5

    International Nuclear Information System (INIS)

    Rensman, J.; Van den Broek, F.P.; Jong, M.; Van Osch, E.V.

    1998-04-01

    The fracture toughness properties of unirradiated and neutron irradiated type 316L(N) stainless steel plate (European Reference Heat ERHII), conventional 316L(N) solid HIP joints (heat PM-130), and 316L(N)-1G powder HIP material have been measured. Compact tension specimens with a thickness of 12 and 5 mm were irradiated in the High Flux Reactor (HFR) in Petten, The Netherlands, simulating the fusion reactor's first wall conditions by a combination of high displacement damage with proportional amounts of helium. The solid HIP (or HIP-bonded) CT-specimens were irradiated in two separate experiments: SIWAS-6 with 1.3 to 2.3 dpa (1.7 dpa av.) at 353 K, and CHARIOT-3 with 2.7 to 3.1 dpa (2.9 dpa av.) at 600 K. The plate material and powder HIP CT-specimens were irradiated in one experiment only, SIWAS-6. The helium content is up to 20 appm for the 2.9 dpa (av.) dose level. Testing temperatures of 353K and 573K have been used for the fracture toughness experiments. The report contains the experimental conditions and summarises the results, which are given in terms of J-resistance curve fits. The main conclusions are that all three materials have very high toughness in the unirradiated state with little difference between them; the solid HIP has the highest toughness, the powder HIP lowest. The toughness of all three materials is reduced significantly by irradiation, the reduction is the least for the plate material and the highest for the powder HIP material. However, many, but not all, of the solid HIP CT specimens showed debonding of the joint during testing. The machined notch of the CT specimens was not exactly on the joint interface, which could lead to unjustified interpretation of the measured values as being the toughness of the joint, the toughness of the joint being probably much lower. The reduction by irradiation of the fracture toughness of the powder HIP material is clearly larger than for plate material, which is confirmed by the observed early initiation

  7. Oxidation Behavior of Surface-modified Stainless Steel 316LN in Supercritical-CO{sub 2} Environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Hwan; Heo, Jin Woo; Kim, Hyunm Yung; Jang, Chang Heui [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Compared to other working fluids such as helium or nitrogen, S-CO{sub 2} offers a higher efficiency at operating temperatures of advanced reactors above 550 .deg. C. Moreover, the S-CO{sub 2} cycle is expected to have a significantly smaller footprint compared to other power conversion cycles, resulting in a broader range of applications with lower capital costs. Currently, stainless steel 316 is considered as the candidate structural material for the SFR. In comparison, it is well known that alumina (Al{sub 2}O{sub 3}) have superior oxidation and carburization resistance specifically at higher temperatures where α-Al{sub 2}O{sub 3} may form. Thus, various surface modification techniques have been applied to mostly Ni-base alloys so that a protective and continuous Al-rich oxide layer forms on the surface, conferring superior oxidation and carburization resistance. In this study, SS 316LN was deposited with Al via physical vapor deposition (PVD) method followed by heat treatment processes to develop an Al-rich layer at the surface. The specimens are to be exposed to high temperature S-CO{sub 2} environment to evaluate the oxidation and carburization resistance. Stainless steel 316LN was surface-modified to develop an Al-rich layer for improvement of oxidation behavior in S-CO{sub 2} environment. As the test temperature of 600 .deg. C is not sufficiently high for the formation of protective α-Al{sub 2}O{sub 3} formation, pre-oxidation of surface modified SS 316LN was conducted.

  8. Corrosion behaviour of electropolished AISI 316L austenitic biomaterial in physiological solution

    Science.gov (United States)

    Zatkalíková, V.; Markovičová, L.; Škorvanová, M.

    2017-11-01

    Due to suitable mechanical properties, satisfactory corrosion resistance and relatively low cost, austenitic stainless steels are important biomaterials for manufacture of implants and various medical instruments and devices. Their corrosion properties and biocompatibility are significantly affected by protective passive surface film quality, which depends on used mechanical and chemical surface treatment. This article deals with corrosion resistance of AISI 316L stainless steel, which is the most widely used Cr-Ni-Mo austenitic biomaterial. Corrosion behaviour of five various surfaces (original, electropolished, three surfaces with combined treatment finished by electropolishing) is evaluated on the bases of cyclic potentiodynamic polarization tests performed in physiological solution at the temperature of 37± 0.5 °C.

  9. Modification of the Strength Anisotropy in an Austenitic ODS Steel

    International Nuclear Information System (INIS)

    Kim, T. K.; Jang, J.; Kim, S. H.; Lee, C. B.; Bae, C. S.; Kim, D. H.

    2007-01-01

    Among many candidate alloys for Gen IV reactors, the oxide dispersion strengthened (ODS) alloy is widely considered as a good candidate material for the in-reactor component, like cladding tube. The ODS alloy is well known due to its good high temperature strength, and excellent irradiation resistance. For the previous two decades in the nuclear community, the ODS alloy developments have been mostly focused on the ferritic martensitic (F-M) steel-based ones. On the other hand, the austenitic stainless steels (e.g. 316L or 316LN) have been used as a structural material due to its good high temperature strength and a good compatibility with a media. However, the austenitic stainless steel showed unfavorable characteristics in the dimensional stability under neutron irradiation and cracking behavior with the media. It is thus expected that the austenitic ODS steels restrain the dimension stability under neutron irradiation. However, the ODS alloys usually reveal the anisotropic characteristic in mechanical strength in the hoop and longitudinal directions, which is attributed to the grain morphology strongly developed parallel to the rolling direction with a high aspect ratio. This study focuses on a modification of the strength anisotropy of an austenitic ODS alloy by a recrystallization heat treatment

  10. A powder metallurgy austenitic stainless steel for application at very low temperatures

    CERN Document Server

    Sgobba, Stefano; Liimatainen, J; Kumpula, M

    2000-01-01

    The Large Hadron Collider to be built at CERN will require 1232 superconducting dipole magnets operating at 1.9 K. By virtue of their mechanical properties, weldability and improved austenite stability, nitrogen enriched austenitic stainless steels have been chosen as the material for several of the structural components of these magnets. Powder Metallurgy (PM) could represent an attractive production technique for components of complex shape for which dimension tolerances, dimensional stability, weldability are key issues during fabrication, and mechanical properties, ductility and leak tightness have to be guaranteed during operation. PM Hot Isostatic Pressed test plates and prototype components of 316LN-type grade have been produced by Santasalo Powdermet Oy. They have been fully characterized and mechanically tested down to 4.2 K at CERN. The fine grained structure, the absence of residual stresses, the full isotropy of mechanical properties associated to the low level of Prior Particle Boundaries oxides ...

  11. Effect of flowing sodium on corrosion and tensile properties of AISI type 316LN stainless steel at 823 K

    Science.gov (United States)

    Sivai Bharasi, N.; Thyagarajan, K.; Shaikh, H.; Balamurugan, A. K.; Bera, Santanu; Kalavathy, S.; Gurumurthy, K.; Tyagi, A. K.; Dayal, R. K.; Rajan, K. K.; Khatak, H. S.

    2008-07-01

    AISI type 316LN stainless steel was exposed to flowing sodium in mass transfer loop (MTL) at 823 K for 16 000 h and then examined for changes in the tensile properties due to the mass transfer and corrosion effects. Comparisons in microstructural and mechanical properties were made between annealed, thermally aged and sodium exposed materials. Microstructural examination of thermally aged and sodium exposed materials revealed precipitation of carbides at the grain boundaries. The sodium exposed samples contained a degraded layer at the surface up to a depth of around 10 μm and a surface carburized layer of about 30 μm. There was about 15% increase in yield strength and a decrease of about 20% in ductility for the sodium exposed material vis-a-vis thermally aged material and this was attributed to carburization effects and microstructural changes.

  12. Effect of flowing sodium on corrosion and tensile properties of AISI type 316LN stainless steel at 823 K

    International Nuclear Information System (INIS)

    Sivai Bharasi, N.; Thyagarajan, K.; Shaikh, H.; Balamurugan, A.K.; Bera, Santanu; Kalavathy, S.; Gurumurthy, K.; Tyagi, A.K.; Dayal, R.K.; Rajan, K.K.; Khatak, H.S.

    2008-01-01

    AISI type 316LN stainless steel was exposed to flowing sodium in mass transfer loop (MTL) at 823 K for 16 000 h and then examined for changes in the tensile properties due to the mass transfer and corrosion effects. Comparisons in microstructural and mechanical properties were made between annealed, thermally aged and sodium exposed materials. Microstructural examination of thermally aged and sodium exposed materials revealed precipitation of carbides at the grain boundaries. The sodium exposed samples contained a degraded layer at the surface up to a depth of around 10 μm and a surface carburized layer of about 30 μm. There was about 15% increase in yield strength and a decrease of about 20% in ductility for the sodium exposed material vis-a-vis thermally aged material and this was attributed to carburization effects and microstructural changes

  13. Assessment of tensile and creep data for types 304 and 316 stainless steel

    International Nuclear Information System (INIS)

    Sikka, V.K.; Booker, M.K.

    1976-01-01

    Austenitic stainless steels of types 304 and 316 are prime construction materials for nuclear fast breeder reactors and will be used in the temperature range where elevated-temperature, tensile, creep, and fatigue properties are required to calculate the design stress limits. This report examines the possible variations in such properties, using data from several sources including data from Japan and the United Kingdom. United States data were shown to contain the largest variations in both tensile and creep properties, with Japanese data the least. For a given country no distinction could be made in variations in tensile properties of types 304 and 316 stainless steels, but variations in standard error of estimate for all creep properties analyzed were significantly lower for type 316 stainless steel than corresponding variations in creep properties of type 304 stainless steel. The data from each of these countries showed the same creep rupture strength (at 10 4 h) for type 316 stainless steel; this was not true for the type 304 stainless steel. Results of the analysis performed in this paper showed that the U.S. and foreign data on types 304 and 316 stainless steels could possibly be combined for the determination of design stress intensity limits

  14. 16-8-2 weld metal design data for 316L(N) steel

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A.-A.F. [Commissariat a l' Energie Atomique, CEA/Saclay, 91191 Gif sur Yvette (France)], E-mail: tavassoli@cea.fr

    2008-12-15

    ITER materials properties documentation is extended to weld metals used for welding Type 316L(N) steel, i.e. the structural material retained for manufacturing ITER major components, such as the vacuum vessel. The data presented here are mainly for the Type 16-8-2 and complete those already reported for the low temperature (Type 316L) and the high temperature (Type 19-12-2) filler metals. The weld metal properties data for Type 16-8-2 filler metal and its joints are collected, sorted and analysed according to the French design and construction rules for nuclear components (RCC-MR). Particular attention is paid to the type of weld metal (e.g. wire for TIG, covered electrode for manual arc, flux wire for automatic welding), as well as, to the weld geometry and welding position. Design allowables are derived from validated data for each category of weld and compared with those of the base metal. In most cases, the analyses performed are extended beyond the conventional analyses required for codes to cover specific needs of ITER. These include effects of exposures to high temperature cycles during component fabrication, e.g. HIPing and low dose neutron irradiation at low and medium temperatures. The ITER Materials Properties Handbook (MPH) is, here, enriched with files for physical and mechanical properties of Type 16-8-2 weld metal. These files, combined with the codification and inspection files, are part of the documentation required for ITER licensing needs. They show that all three weld-metals satisfy the code requirements, provided compositions and types of welds used correspond to those specified in RCC-MR.

  15. Production and several properties of single crystal austenitic stainless steels

    International Nuclear Information System (INIS)

    Okamoto, Kazutaka; Yoshinari, Akira; Kaneda, Junya; Aono, Yasuhisa; Kato, Takahiko

    1998-01-01

    The single crystal austenitic stainless steels Type 316L and 304L were grown in order to improve the resistance to stress corrosion cracking (SCC) using a unidirectional solidification method which can provide the large size single crystals. The mechanical properties and the chemical properties were examined. The orientation and temperature dependence of tensile properties of the single crystals were measured. The yield stress of the single crystal steels are lower than those of the conventional polycrystal steels because of the grain boundary strength cannot be expected in the single crystal steels. The tensile properties of the single crystal austenitic stainless steel Type 316L depend strongly on the orientation. The tensile strength in orientation are about 200 MPa higher than those in the and orientations. The microstructure of the single crystal consists of a mixture of the continuous γ-austenitic single crystal matrix and the δ-ferrite phase so that the effects of the γ/δ boundaries on the chemical properties were studied. The effects of the δ-ferrite phases and the γ/δ boundaries on the resistance to SCC were examined by the creviced bent beam test (CBB test). No crack is observed in all the CBB test specimens of the single crystals, even at the γ/δ boundaries. The behavior of the radiation induced segregation (RIS) at the γ/δ boundaries in the single crystal austenitic stainless steel Type 316L was evaluated by the electron irradiation test in the high voltage electron microscope (HVEM). The depletion of oversized solute chromium at the γ/δ boundary in the single crystal austenitic stainless steel Type 316L is remarkably lower than that at the grain boundary in the polycrystalline-type 316L. (author)

  16. Effect of cold working on nitriding process of AISI 304 and 316 austenitic stainless steel

    International Nuclear Information System (INIS)

    Pereira, Silvio Andre de Lima

    2012-01-01

    The nitriding behavior of AISI 304 and 316 austenitic stainless steel was studied by different cold work degree before nitriding processes. The microstructure, thickness, microhardness and chemical micro-composition were evaluated through optical microscopy, microhardness, scanner electronic microscopy and x ray diffraction techniques. Through them, it was observed that previous plastic deformations do not have influence on layer thickness. However, a nitrided layer thicker can be noticed in the AISI 304 steel. In addition, two different layers can be identified as resulted of the nitriding, composed for austenitic matrix expanded by nitrogen atoms and another thinner immediately below expanded by Carbon atoms. (author)

  17. Low temperature plasma carburizing of AISI 316L austenitic stainless steel and AISI F51 duplex stainless steel Cementação sob plasma à baixa temperatura do aço inoxidável austenítico AISI 316L e do aço inoxidável duplex AISI F51

    OpenAIRE

    Carlos Eduardo Pinedo; André Paulo Tschiptschin

    2013-01-01

    In this work an austenitic AISI 316L and a duplex AISI F51 (EN 1.4462) stainless steel were DC-Plasma carburized at 480ºC, using CH4 as carbon carrier gas. For the austenitic AISI 316L stainless steel, low temperature plasma carburizing induced a strong carbon supersaturation in the austenitic lattice and the formation of carbon expanded austenite (γC) without any precipitation of carbides. The hardness of the carburized AISI 316L steel reached a maximum of 1000 HV due to ∼13 at% c...

  18. Tribological behavior of an austenitic stainless steel AISI 316L nitrurated by DC-pulsed plasma

    International Nuclear Information System (INIS)

    De Las Heras, E; Walther, F; Corengia, P.A; Quinteiro, M.O; Cabo, A; Bruhl, S; Sommadossi, S

    2004-01-01

    Austenitic stainless steels are widely used in different applications because they withstands corrosion. Ionic nitruration has proven to be an adequate technique for modifying this type of steel, in order to improve its resistance to wear without diminishing its resistance to corrosion. While many publications have reported improvements in the tribological properties of the nitrurated AISI 316, systematic studies that evaluate this behavior using industrial equipment for its thermochemical treatment are of interest. This work studied the tribological behavior of an AISI 316L steel nitrurated by DC pulsed plasma in an industrial machine in an atmosphere of 25% N 2 and 75% H 2 for 20 h at 400 o C by means of abrasion tests under different conditions in an A 135 Amsler-disk machine. In order to characterize the abraded samples microhardness, optic and scanning electron microscopy profiles to determine the abrasion mechanisms were performed. The results showed substantial improvement in the abrasion resistance of the nitrurated samples compared to the non nitrurated ones and the different abrasion mechanisms are discussed to explain the test results (CW)

  19. Elevated temperature ductility of types 304 and 316 stainless steel

    International Nuclear Information System (INIS)

    Sikka, V.K.

    1978-01-01

    Austenitic stainless steel types 304 and 316 are known for their high ductility and toughness. However, the present study shows that certain combinations of strain rate and test temperature can result in a significant loss in elevated-temperature ductility. Such a phenomenon is referred to as ductility minimum. The strain rate, below which ductility loss is initiated, decreases with decrease in test temperature. Besides strain rate and temperature, the ductility minimum was also affected by nitrogen content and thermal aging conditions. Thermal aging at 649 0 C was observed to eliminate the ductility minimum at 649 0 C in both types 304 and 316 stainless steel. Such an aging treatment resulted in a higher ductility than the unaged value. Aging at 593 0 C still resulted in some loss in ductility. Current results suggest that ductility-minimum conditions for stainless steel should be considered in design, thermal aging data analysis, and while studying the effects of chemical composition

  20. Microstructural Variations Across a Dissimilar 316L Austenitic: 9Cr Reduced Activation Ferritic Martensitic Steel Weld Joint

    Science.gov (United States)

    Thomas Paul, V.; Karthikeyan, T.; Dasgupta, Arup; Sudha, C.; Hajra, R. N.; Albert, S. K.; Saroja, S.; Jayakumar, T.

    2016-03-01

    This paper discuss the microstructural variations across a dissimilar weld joint between SS316 and 9Cr-RAFM steel and its modifications on post weld heat treatments (PWHT). Detailed characterization showed a mixed microstructure of austenite and martensite in the weld which is in agreement with the phases predicted using Schaeffler diagram based on composition measurements. The presence of very low volume fraction of δ-ferrite in SS316L has been identified employing state of the art electron back-scattered diffraction technique. PWHT of the ferritic steel did not reduce the hardness in the weld metal. Thermal exposure at 973 K (700 °C) showed a progressive reduction in hardness of weld joint with duration of treatment except in austenitic base metal. However, diffusion annealing at 1073 K (800 °C) for 100 hours resulted in an unexpected increase in hardness of weld metal, which is a manifestation of the dilution effects and enrichment of Ni on the transformation characteristics of the weld zone. Migration of carbon from ferritic steel aided the precipitation of fine carbides in the austenitic base metal on annealing at 973 K (700 °C); but enhanced diffusion at 1073 K (880 °C) resulted in coarsening of carbides and thereby reduction of hardness.

  1. Study of magnetism in Ni–Cr hardface alloy deposit on 316LN stainless steel using magnetic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kishore, G.V.K.; Kumar, Anish, E-mail: anish@igcar.gov.in; Chakraborty, Gopa; Albert, S.K; Rao, B. Purna Chandra; Bhaduri, A.K.; Jayakumar, T.

    2015-07-01

    Nickel base Ni–Cr alloy variants are extensively used for hardfacing of austenitic stainless steel components in sodium cooled fast reactors (SFRs) to avoid self-welding and galling. Considerable difference in the compositions and melting points of the substrate and the Ni–Cr alloy results in significant dilution of the hardface deposit from the substrate. Even though, both the deposit and the substrate are non-magnetic, the diluted region exhibits ferromagnetic behavior. The present paper reports a systematic study carried out on the variations in microstructures and magnetic behavior of American Welding Society (AWS) Ni Cr–C deposited layers on 316 LN austenitic stainless steels, using atomic force microscopy (AFM) and magnetic force microscopy (MFM). The phase variations of the oscillations of a Co–Cr alloy coated magnetic field sensitive cantilever is used to quantitatively study the magnetic strength of the evolved microstructure in the diluted region as a function of the distance from the deposit/substrate interface, with the spatial resolution of about 100 nm. The acquired AFM/MFM images and the magnetic property profiles have been correlated with the variations in the chemical compositions in the diluted layers obtained by the energy dispersive spectroscopy (EDS). The study indicates that both the volume fraction of the ferromagnetic phase and its ferromagnetic strength decrease with increasing distance from the deposit/substrate interface. A distinct difference is observed in the ferromagnetic strength in the first few layers and the ferromagnetism is observed only near to the precipitates in the fifth layer. The study provides a better insight of the evolution of ferromagnetism in the diluted layers of Ni–Cr alloy deposits on stainless steel. - Highlights: • Study of evolution of ferromagnetism in Comonoy-6 deposit on austenitic steel. • Magnetic force microscopy (MFM) exhibited ferromagnetic matrix in first two layers. • The maximum MFM

  2. Swelling behaviors in a fuel assembly for the wrapping wire and duct made of modified 316 austenitic stainless steel

    International Nuclear Information System (INIS)

    Yamagata, Ichiro; Akasaka, Naoaki

    2010-01-01

    Swelling behaviors in the wrapping wire and duct made of modified type 316 austenitic stainless steel were investigated in a fuel assembly irradiated in a fast breeder reactor. The temperature dependence of volumetric swelling was measured in the wrapping wire and the duct, and the peak temperatures of swelling were evaluated. The void distribution in the material was measured by microstructure observation with electron microscopy, and it was found that the voids prefentially grew near the surface. This phenomenon seemed to be caused by a surface effect on the neutron-irradiated materials. (author)

  3. Study of magnetism in Ni-Cr hardface alloy deposit on 316LN stainless steel using magnetic force microscopy

    Science.gov (United States)

    Kishore, G. V. K.; Kumar, Anish; Chakraborty, Gopa; Albert, S. K.; Rao, B. Purna Chandra; Bhaduri, A. K.; Jayakumar, T.

    2015-07-01

    Nickel base Ni-Cr alloy variants are extensively used for hardfacing of austenitic stainless steel components in sodium cooled fast reactors (SFRs) to avoid self-welding and galling. Considerable difference in the compositions and melting points of the substrate and the Ni-Cr alloy results in significant dilution of the hardface deposit from the substrate. Even though, both the deposit and the substrate are non-magnetic, the diluted region exhibits ferromagnetic behavior. The present paper reports a systematic study carried out on the variations in microstructures and magnetic behavior of American Welding Society (AWS) Ni Cr-C deposited layers on 316 LN austenitic stainless steels, using atomic force microscopy (AFM) and magnetic force microscopy (MFM). The phase variations of the oscillations of a Co-Cr alloy coated magnetic field sensitive cantilever is used to quantitatively study the magnetic strength of the evolved microstructure in the diluted region as a function of the distance from the deposit/substrate interface, with the spatial resolution of about 100 nm. The acquired AFM/MFM images and the magnetic property profiles have been correlated with the variations in the chemical compositions in the diluted layers obtained by the energy dispersive spectroscopy (EDS). The study indicates that both the volume fraction of the ferromagnetic phase and its ferromagnetic strength decrease with increasing distance from the deposit/substrate interface. A distinct difference is observed in the ferromagnetic strength in the first few layers and the ferromagnetism is observed only near to the precipitates in the fifth layer. The study provides a better insight of the evolution of ferromagnetism in the diluted layers of Ni-Cr alloy deposits on stainless steel.

  4. Forecasting of mechanical - and structural behavior of 316 austenitic stainless steels by deformation charts

    International Nuclear Information System (INIS)

    Monteiro, S.N.

    1980-01-01

    The utilization of deformation charts applied to AISI 316 austenitic stainless steel with the purpose of foreseeing its behavior associated with structural and mechanical phenomena, is evaluated. The ocurrence of phenomena such as dynamic aging, martensite transformation, static aging, failure at creep curve, cells, subgrains and boundary slips is discussed in the different regions of the chart. A practical example of the charts' utilization for components of fast reactors is finally presented. (Author) [pt

  5. Design-relevant mechanical properties of 316-type stainless steels for superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Tobler, R.L.; Nishimura, A.; Yamamoto, J.

    1996-08-01

    Worldwide interest in austenitic alloys for structural applications in superconducting magnets has led to an expanded database for the 316-type stainless steels. We review the cryogenic mechanical properties of wrought, cast, and welded steels at liquid helium temperature (4 K), focussing on aspects of material behavior relevant to magnet design. Fracture mechanics parameters essential to structural reliability assessments are presented, including strength, toughness, and fatigue parameters that are critical for some component designs. (author). 105 refs.

  6. Design-relevant mechanical properties of 316-type stainless steels for superconducting magnets

    International Nuclear Information System (INIS)

    Tobler, R.L.; Nishimura, A.; Yamamoto, J.

    1996-08-01

    Worldwide interest in austenitic alloys for structural applications in superconducting magnets has led to an expanded database for the 316-type stainless steels. We review the cryogenic mechanical properties of wrought, cast, and welded steels at liquid helium temperature (4 K), focussing on aspects of material behavior relevant to magnet design. Fracture mechanics parameters essential to structural reliability assessments are presented, including strength, toughness, and fatigue parameters that are critical for some component designs. (author). 105 refs

  7. Sequential creep-fatigue interaction in austenitic stainless steel type 316L-SPH

    International Nuclear Information System (INIS)

    Tavassoli, A.A.; Mottot, M.; Petrequin, P.

    1986-01-01

    Influence of a prior creep or fatigue exposure on subsequent fatigue or creep properties of stainless steel type 316 L SPH has been investigated. The results obtained are used to verify the validity of time and cycle fraction rule and to obtain information on the effect of very long intermittent hold times on low cycle fatigue properties, as well as on transitory loads occurring during normal service of some structural components of LMFBR reactors. Creep and fatigue tests have been carried out at 600 0 C and under conditions yielding equal or different fatigue saturation and creep stresses. Prior creep damage levels introduced range from primary to tertiary creep, whilst those of fatigue span from 20 to 70 percent of fatigue life. In both creep-fatigue and fatigue-creep sequences in the absence of a permanent prior damage (cavitation or cracking) the subsequent resistance of 316 L-SPH to fatigue or creep is unchanged, if not improved. Thin foils prepared from the specimens confirmed these observations and showed that the dislocation substructure developed during the first mode of testing is quickly replaced by that of the second mode. Grain boundary cavitation does not occur in 316 L-SPH during creep exposures to well beyond the apparent end of secondary stage and as a result prior creep exposures up to approximately 80% of rupture life do not affect fatigue properties. Conversely, significant surface cracks were found in the prior fatigue tested specimens after above about 50% life. In the presence of such cracks the subsequent creep damage was localized at the tip of the main crack and the remaining creep life was found to be usually proportional to the effective specimen cross section. Creep and fatigue sequential damage are not necessarily additive and this type of loadings are in general less severe than the repeated creep-fatigue cycling. 17 refs.

  8. Dissolution and oxidation behaviour of various austenitic steels and Ni rich alloys in lead-bismuth eutectic at 520 °C

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Marion, E-mail: marion.roy@cea.fr [CEA, DEN, DPC, SCCME, Laboratoire d’Etude de la Corrosion Non Aqueuse, F-91191 Gif-sur-Yvette (France); Martinelli, Laure, E-mail: laure.martinelli@cea.fr [CEA, DEN, DPC, SCCME, Laboratoire d’Etude de la Corrosion Non Aqueuse, F-91191 Gif-sur-Yvette (France); Ginestar, Kevin, E-mail: kevin.ginestar@cea.fr [CEA, DEN, DPC, SCCME, Laboratoire d’Etude de la Corrosion Non Aqueuse, F-91191 Gif-sur-Yvette (France); Favergeon, Jérôme, E-mail: jerome.favergeon@utc.fr [Laboratoire Roberval, UMR 7337, Université de Technologie de Compiègne, Centre de Recherche de Royallieu, CS 60319, 60203 Compiègne Cedex (France); Moulin, Gérard [Laboratoire Roberval, UMR 7337, Université de Technologie de Compiègne, Centre de Recherche de Royallieu, CS 60319, 60203 Compiègne Cedex (France)

    2016-01-15

    Ten austenitic steels and Ni rich alloys were tested in static lead-bismuth eutectic (LBE) at 520 °C in order to obtain a selection of austenitic steels having promising corrosion behaviour in LBE. A test of 1850 h was carried out with a dissolved oxygen concentration between 10{sup −9} and 5 10{sup −4} g kg{sup −1}. The combination of thermodynamic of the studied system and literature results leads to the determination of an expression of the dissolved oxygen content in LBE as a function of temperature: RT(K)ln[O](wt%) = −57584/T(K) −55.876T(K) + 254546 (R is the gas constant in J mol{sup −1} K{sup −1}). This relation can be considered as a threshold of oxygen content above which only oxidation is observed on the AISI 316L and AISI 304L austenitic alloys in static LBE between 400 °C and 600 °C. The oxygen content during the test leads to both dissolution and oxidation of the samples during the first 190 h and leads to pure oxidation for the rest of the test. Results of mixed oxidation and dissolution test showed that only four types of corrosion behaviour were observed: usual austenitic steels and Ni rich alloys behaviour including the reference alloy 17Cr-12Ni-2.5Mo (AISI 316LN), the 20Cr-31Ni alloy one, the Si containing alloy one and the Al containing alloy one. According to the proposed criteria of oxidation and dissolution kinetics, silicon rich alloys and aluminum rich alloy presented a promising corrosion behaviour. - Highlights: • 10 austenitic steels and Ni rich alloys were tested in LBE at 520 °C with dissolved oxygen content between 10{sup -9} and 5 10{sup -4} wt%. • It is shown that only thermodynamics cannot explain the Ni rich alloys corrosion behaviour in LBE. • The role of oxygen on corrosion behaviour in LBE was highlighted. • An equilibrium line was defined above which only oxidation has occurred on 316L: RTln[O](wt%) = -57584/T(K)-55.876T(K)+254546. • 18Cr-15Ni-3.7Si, 21Cr-11Ni-1.6Si and 14Cr-25Ni-3.5Al

  9. Stress corrosion cracking and oxidation of austenitic stainless steel 316 L and model alloy in supercritical water reactor

    International Nuclear Information System (INIS)

    Saez-Maderuelo, A.; Gomez-Briceno, D.; Diego, G.

    2015-01-01

    In this work, an austenitic stainless steel type 316 L was tested in deaerated supercritical water at 400 deg. C and 500 deg. C and 25 MPa to determine how variations in water conditions influence its stress corrosion cracking behaviour and to make progress in the understanding of mechanisms involved in SCC processes in this environment. Moreover, the influence of plastic deformation in the resistance of the material to SCC was also studied at both temperatures. In addition to this, previous oxidation experiments at 400 deg. C and 500 deg. C and at 25 MPa were taken into account to gain some insight in this kind of processes. Furthermore, a cold worked model alloy based on the stainless steel 316 L with some variations in the chemical composition in order to simulate the composition of the grain boundary after irradiation was tested at 400 deg. C and 25 MPa in deaerated supercritical water. (authors)

  10. Laser cladding of Colmonoy 6 powder on AISI316L austenitic stainless steel

    International Nuclear Information System (INIS)

    Zhang, H.; Shi, Y.; Kutsuna, M.; Xu, G.J.

    2010-01-01

    Stainless steels are widely used in nuclear power plant due to their good corrosion resistance, but their wear resistance is relatively low. Therefore, it is very important to improve this property by surface treatment. This paper investigates cladding Colmonoy 6 powder on AISI316L austenitic stainless steel by CO 2 laser. It is found that preheating is necessary for preventing cracking in the laser cladding procedure and 450 o C is the proper preheating temperature. The effects of laser power, traveling speed, defocusing distance, powder feed rate on the bead height, bead width, penetration depth and dilution are investigated. The friction and wear test results show that the friction coefficient of specimens with laser cladding is lower than that of specimens without laser cladding, and the wear resistance of specimens has been increased 53 times after laser cladding, which reveals that laser cladding layer plays roles on wear resistance. The microstructures of laser cladding layer are composed of Ni-rich austenitic, boride and carbide.

  11. Tensile properties of neutron irradiated solid HIP 316L(N). ITER Task T214, NET deliverable GB6 ECN-5

    International Nuclear Information System (INIS)

    Van Osch, E.V.; Tjoa, G.L.; Boskeljon, J.; Van Hoepen, J.

    1998-05-01

    The tensile properties of neutron irradiated Hot Isostatically Pressed (HIP) joints of type 316L(N) stainless steel (heat PM-130) have been measured. Cylindrical tensile test specimens of 4 mm diameter were irradiated in the High Flux Reactor (HFR) in Petten, The Netherlands, simulating the first wall conditions by a combination of high displacement damage with proportional amounts of helium. The solid HIP specimens were irradiated up to a target dose level of 5 dpa at a temperature of 550K. The damage levels realized range from 3.0 to 4.1 dpa, with helium contents up to 38 appm. Post irradiation testing temperatures ranged from 300 to 700K. The report contains the experimental conditions and summarises the results, which are given in terms of engineering stresses and strains and reduction of area. The main conclusions are that the unirradiated solid-HIP material is very soft, assumingly due to the relatively large grain size. Neutron irradiation induces both hardening and reduction of ductility, similar to the behaviour of 316L(N) plate. No failures related to debonding were observed for the tests of the unirradiated samples, however one of eight tested irradiated specimens fractured in the HIP joint, showing a flat fracture surface and a low reduction of area. 6 refs

  12. Stress corrosion crack growth studies on nitrogen added AISI type 316 stainless steel and its weld metal in boiling acidified sodium chloride solution using the fracture mechanics approach

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, H.; George, G.; Khatak, H.S. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Div. of Metallurgy; Schneider, F.; Mummert, K. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany). Inst. fuer Metallische Werkstoffe

    2000-10-01

    Compact tension specimens of nitrogen-added AISI type 316 austenitic stainless steel and its weld metal were subject to stress corrosion cracking (SCC) testing in a boiling solution containing 5 M sodium chloride + 0.15 M sodium sulphate + 2.5 ml/l hydrochloric acid solution using the constant extension rate testing (CERT) technique. The extension rate of testing was 10 microns per hour. The threshold values of stress intensify factor (K{sub ISCC}) and J-integral (J{sub ISCC}) were taken as those values of K{sub I} and J{sub I} at which about 25 microns of SCC crack growth was observed. These threshold values were about four times higher and plateau crack growth rates (PCGR) were nearly one order of magnitude lower for the base metal vis-a-vis the weld metal. Fractographic observations indicated failure by transgranular SCC (TGSCC) of austenite in both the base and weld metal. No stress-assisted dissolution of delta-ferrite or its interface with austenite, was observed. (orig.) [German] CT-Proben von Grund- und Schweissnahtwerkstoff des stickstoffhaltigen Stahles AISI 316 LN wurden Spannungsrisskorrosionstests in siedender chloridhaltiger Loesung (5 M Natriumchlorid/0,15 M Natriumsulfat/0,03 M Salzsaeure) unterzogen. Die Tests erfolgten bei konstanter Dehnrate (CERT-Test) von 10 {mu}m/h. Als Schwellwerte der Initiierung von Spannungsrisskorrosion K{sub ISCC} und I{sub ISCC} wurden die Werte des Spannungsintensitaetsfaktors K{sub I} und des J-Integrals J{sub I} ermittelt, bei denen ein Risswachstum von 25 {mu}m auftrat. Dabei wies der Grundwerkstoff 4-fach hoehere Schwellwerte K{sub ISCC} und J{sub ISCC} auf als der Schweissnahtwerkstoff. Auch die Risswachstumsraten im Plateaubereich der Risswachstumsrate-Spannungsintensitaetskruven waren am Grundwerkstoff um eine Groessenordnung geringer als am Schweissnahtwerkstoff. Die fraktorgrahischen Untersuchungen zeigten an beiden Materialien Schaedigung durch transkristalline Spannungsrisskorrosion. Eine

  13. Fatigue and fatigue crack growth properties of 316LN and Incoloy 908 below 10 K

    International Nuclear Information System (INIS)

    Nyilas, A.; Zhang, J.; Obst, B.; Ulbricht, A.

    1992-01-01

    The cyclic loading characteristics of Tokamak type thermonuclear machines demand study of the fatigue response of the materials used in critical components. The large superconducting magnets and their superconductors will operate under cyclic mechanical stress conditions. The present paper is biased towards the current superconductor design of the NET (Next European Torus) model coil concept. The superconductor of this coil will be a cable-in-conduit Nb 3 Sn type with an enveloped stiff external jacket structure. The wall thickness of the jacket structure is within the range of 4-5 mm. The manufacturing of the jacket lengths for several hundred meters require an appropriate joining process due to the prefabricated section pieces available only in short lengths of 5-7 meters. The recently anticipated solution favors the flash butt welding technique. The performance of the superconductors jacket will depend on the material selection and the proper structural design according to the existing low temperature structural materials data base. The wind and react Nb 3 Sn-manufacturing process must also account the materials properties after ageing. A program was set up to elucidate the fatigue-life behavior and fatigue crack growth rate (FCGR) of the selected two candidate materials. These materials were the AISI 316LN with a specified low carbon content to avoid the embrittlement after the ageing process and the Incoloy 908. The 316LN material in the as received condition was tested with respect to its fatigue-life for specimens bearing predefined flaws and cracks. The propagation of surface cracks at 12 K and at 295 K was characterized with non standard specimens. The tests were performed in a cryogenic dynamic test facility under helium gas environment between 7 K and 20 K. Using the reference growth laws obtained from these measurements the total crack propagation starting with the initial crack length of the specimen could be predicted by numerical computation

  14. Modelling of cyclic plasticity for austenitic stainless steels 304L, 316L, 316L(N)-IG

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Palma, Mauro, E-mail: mauro.dallapalma@igi.cnr.it

    2016-11-01

    Highlights: • Stress-strain amplitudes of cyclic stress strain curves defined by design codes are provided as reference data. • A macroinstruction simulating cyclic plasticity and producing hardening parameters of constitutive models is developed. • Hardening parameters of the nonlinear Chaboche model are provided for stainless steels 316l-N, 316L, 304L at different temperatures. • Ratcheting is simulated by using the produced hardening parameters. - Abstract: The integrity assessment of structures subjected to cyclic loading must be verified with regard to cyclic type damage including time-independent fatigue and progressive deformation or ratcheting. Cyclic damage is verified simulating the material elastic-plastic loop and looking at the accumulated net plastic strain during each cycle at all points of the structure subjected to the complete time history of loadings. This work deals with the development of a numerical model producing the Chaboche hardening parameters starting from stress-strain data produced by testing of materials. Then, the total plastic strain can be simulated using the Chaboche inelastic constitutive model requested for finite element analyses. This is particularly demanding for pressure vessels, pressurised piping, boilers, and mechanical components of nuclear installations made of stainless steels. A design optimisation by iterative analyses is developed to approach the stress-strain test data with the Chaboche model. The parameters treated as design variables are the Chaboche parameters and the objective function to be minimised is a combination of the deviations from test data. The optimiser calls a macroinstruction simulating cyclic loading of a sample for different material temperatures. The numerical model can be used to produce hardening parameters of materials for inelastic finite element verifications of structures with complex joints like elbows subjected to a combination of steady sustained and cyclic loads.

  15. Application of Leak Before Break concept in 316LN austenitic steel pipes welded using 316L; Aplicação do conceito 1vazamento antes da falha' (Leak Before Break) em tubulações de aço 316LN soldado com metal de adição 316L

    Energy Technology Data Exchange (ETDEWEB)

    Cunto, Gabriel Giannini de

    2017-07-01

    This work presents a study of application of the Leak Before Break (LBB) concept, usually applied in nuclear power plants, in a pipe made from steel AISI type 316LN welded a coated electrode AISI type 316L. LBB concept is a criterion based on fracture mechanics analysis to show that a crack leak, present in a pipe, can be detected by leak detection systems, before this crack reaches a critical size that results in pipe fail. In the studied pipe, tensile tests and Ramberg-Osgood analyses were performed, as well as fracture toughness tests for obtaining the material resistance curve J-R. The tests were performed considering the base metal, weld and heat affected zone (HAZ), at the same operating temperatures of a nuclear power plant. For the mechanical properties found in these tests, load limit analyses were performed in order to determine the size of a crack which could cause a detectable leakage and the critical crack size, considering failure by plastic collapse. For the critical crack size found in the weld, which is the region that presented the lowest toughness, Integral J and tearing modulus T analyses were performed, considering failure by tearing instability. Results show a well-defined behavior between the base metal, HAZ and weld zones, where the base metal has a high toughness behavior, the weld has a low toughness behavior and the HAZ showed intermediate mechanical properties between the base metal and the weld. Using the PICEP software, the leak rate curves versus crack size and also the critical crack size were determined by considering load limit analysis. It was observed that after a certain crack size, the leak rate in base metal is much higher than for the HAZ and the weld, considering the same crack length. This occurs because in the base metal crack, it is expected that the crack grows in a more rounded form due to its higher toughness. The lowest critical crack size was found for the base metal presenting circumferential cracks. For the

  16. Reheat cracking in austenitic stainless steels; Fissuration en relaxation des aciers inoxydables austenitiques

    Energy Technology Data Exchange (ETDEWEB)

    Auzoux, Q.; Allais, L. [CEA Saclay, Dept. des Materiaux pour le Nucleaire, DMN, 91 - Gif sur Yvette (France); Pineau, A.; Gourgues, A.F. [Centre des Materiaux Pierre-Marie Fourt UMR CNRS 7633, 91 - Evry (France)

    2002-07-01

    Intergranular cracking can occur in heat-affected zones (HAZs) of austenitic stainless steel welded joints when reheated in the temperature range from 500 to 700 deg C. At this temperature, residual stresses due to welding relax by creep flow. HAZ may not sustain this small strain if its microstructure has been sufficiently altered during welding. In order to precise which particular microstructure alteration causes such an intergranular embrittlement, type 316L(N) HAZs were examined by transmission electron microscopy. A marked increase in the dislocation density, due to plastic strain during the welding process, was revealed, which caused an increase in Vickers hardness. Type 316L(N) HAZ were then simulated by the following thermal-mechanical process: annealing treatment and work hardening (pre-strain). Creep rupture tests on smooth specimens were also carried out at 600 deg C on both base metal and simulated HAZ. Pre-straining increased creep strength but reduced ductility. Slow strain rate tests on CT specimens confirmed this trend as well as did relaxation tests on CT specimens, which led to intergranular crack propagation in the pre-strained material only. Metallography and fractography showed no qualitative difference between base metal and HAZs in the creep cavitation around intergranular carbides. Although quantitative study of damage development is not achieved yet, experiments suggest that uniaxial creep strain smaller than one percent could lead to cavity nucleation when the material is pre-strained. Pre-strain as well as stress triaxiality reduce therefore creep ductility and enhance the reheat cracking risk. (authors)

  17. Creep rupture properties of solution annealed and cold worked type 316 stainless steel cladding tubes

    International Nuclear Information System (INIS)

    Mathew, M.D.; Latha, S.; Mannan, S.L.; Rodriguez, P.

    1990-01-01

    Austenitic stainless steels (mainly type 316 and its modifications) are used as fuel cladding materials in all current generation fast breeder reactors. For the Fast Breeder Test Reactor (FBTR) at Kalpakkam, modified type 316 stainless steel (SS) was chosen as the material for fuel cladding tubes. In order to evaluate the influence of cold work on the performance of the fuel element, the investigation was carried out on cladding tubes in three metallurgical conditions (solution annealed, ten percent cold worked and twenty percent cold worked). The results indicate that: (i) The creep strength of type 316 SS cladding tube increases with increasing cold work. (ii) The benificial effects of cold work are retained at almost all the test conditions investigated. (iii) The Larson Miller parameter analysis shows a two slope behaviour for 20PCW material suggesting that caution should be exercised in extrapolating the creep rupture life to stresses below 125 MPa. At very low stress levels, the LMP values fall below the values of the 10 PCW material. (author). 6 refs., 19 figs. , 10 tabs

  18. Low cycle fatigue properties of neutron irradiated solid HIP 316L(N). ITER Task T214, NET deliverable GB6 ECN-5

    International Nuclear Information System (INIS)

    Rensman, J.; Van Osch, E.V.; Tjoa, G.L.; Boskeljon, J.; Van Hoepen, J.

    1998-05-01

    The Low Cycle Fatigue (LCF) properties of neutron irradiated Hot Isostatically Pressed (HIP) joints of type 316L(N) stainless steel (heat PM-130) have been measured, as well as the LCF properties of reference 316L(N)-ERHII. Cylindrical LCF test specimens of 3 mm diameter were irradiated in the High Flux Reactor (HFR) in Petten, The Netherlands, simulating the first wall conditions of future fusion reactors by a combination of high displacement damage with proportional amounts of helium. The solid HIP specimens were irradiated up to a target dose level of 5 dpa at a temperature of 550K. The damage levels realised range from 3.0 to 4.4 dpa, with helium contents up to 41 appm. Testing temperature was equal to the irradiation temperature: 550K. The report contains the experimental conditions and summarises the results, which are given in terms of first cycle stress, the peak stress, the number of cycles where the peak stress is reached, the stress at half life and the plastic strain at half life, and the total number of cycles to failure, N f . The main conclusions are that the unirradiated solid-HIP materials has the same LCF properties as unirradiated 316L(N)-ERHII plate material. The neutron irradiation induces both hardening and reduction of fatigue life. The bond does not seem to have any effect on the fatigue properties for the unirradiated solid HIP 316L(N), whereas a combined effect of irradiation and the bond cannot be established. No failures related to debonding of the joint were observed for the tests. 7 refs

  19. Austenitic stainless steels, status of the properties database and design rule development

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A.-A. [Commissariat a l`Energie Atomique, CEA-Saclay, Gif-sur Yvette (France). CEREM; Touboul, F. [DMT, Commissariat a l`Energie Atomique, CEA Saclay, Gif-sur-Yvette (France)

    1996-10-01

    In parallel with the new tasks initiated to substantiate the existing database for the reference structural material (type 316LN-IG) of ITER, interim design criteria are being developed to guide subsequent design stages. The French RCC-MR codes for fast breeder reactors, incorporating rules from other ITER partner codes and those needed to meet specific fusion requirements, are used for this purpose. This paper presents the current status of materials data and design rules for type 316LN-IG steel and describes how the irradiation effects are taken into account. (orig.).

  20. Demonstrating the Effect of Precipitation on the Mechanical Stability of Fine-Grained Austenite in Reversion-Treated 301LN Stainless Steel

    Directory of Open Access Journals (Sweden)

    Antti Järvenpää

    2017-09-01

    Full Text Available According to recent investigations, a huge difference exists in the mechanical stability of austenite between the grain-refined structure states obtained in reversion annealing at 800–700 °C or at 900 °C, in a 301LN type austenitic stainless steel. Precipitation of chromium nitride occurring at these lower temperatures has been argued to be the factor reducing the stability. To prove this argument, a fine-grained, very stable austenitic structure was created at 900 °C in 1 s, and subsequently annealed at lower temperatures between 850 and 750 °C, up to 1000 s. It was found that the subsequent annealing at 750 and 800 °C resulted in prominent gradual decrease of the mechanical stability under tensile straining, detectable after 10 s annealing duration and continued until 1000 s. Only minimal grain growth occurred, which decreased the stability very marginally. The degree of the stability drop followed the predicted kinetics of the Cr2N precipitation with regards as its dependence on annealing duration and temperature. Further, the tensile yield strength of the fine-grained structure increased slightly due to the annealing. The presence of nano-sized Cr2N particles was verified after 1000 s holding at 750 °C. These observations and predictions yield firm evidence for the imperative contribution of precipitation to the highly reduced mechanical stability of grain-refined austenite in this steel.

  1. High temperature tensile properties of 316 stainless steel implanted with helium

    International Nuclear Information System (INIS)

    Hasegawa, Akira; Yamamoto, Norikazu; Shiraishi, Haruki

    1993-01-01

    Helium embrittlement is one of the problems in structural materials for fusion reactors. Recently, martensitic steels have been developed which have a good resistance to high-temperature helium embrittlement, but the mechanism has not yet been clarified. In this paper, tensile behaviors of helium implanted austenitic stainless steels, which are sensitive to the helium embrittlement, were studied and compared with those of martensitic steels under the same experimental conditions, and the effect of microstructure on helium embrittlement was discussed. Helium was implanted by 300 appm at 573-623 K to miniature tensile speciments of 316 austenitic steels using a cyclotron accelerator. Solution annealed (316SA) and 20% cold worked (316CW) specimens were used. Post-implantation tensile tests were carried out at 573, 873 and 973 K. Yield stress at 573 K increased with the helium implantation in 316SA and 316CW, but the yield stress changes of 316SA at 873 and 973 K were different from that of 316CW. Black-dots were observed in the as-implanted specimen and bubbles were observed in the speciments tensile-tested at 873 and 973 K. Intergranular fracture was observed at only 973 K in both of the 316SA and 316CW specimens. Therefore, cold work did not suppress the high-temperature helium embrittlement under this experimental condition. The difference in the influence of helium on type 316 steel and 9Cr martensitic steels were discussed. Test temperature change of reduction in are showed clearly that helium embrittlement did not occur in 9Cr martensitic steels but occurred in 316 austenitic steels. Fine microstructures of 9Cr martensitic steels should suppress helium embrittlement at high temperatures. (author)

  2. Effect of the low temperature ion nitriding on the wear and corrosion resistance of 316L austenitic stainless steel biomaterials

    International Nuclear Information System (INIS)

    Sudjatmoko; Bambang Siswanto; Wirjoadi; Lely Susita RM

    2012-01-01

    In the present study has been completed done the ion nitriding process and characterization of the 316L SS samples. The ion nitriding process has been conducted on the samples for nitriding temperature variation of 350, 400, 450, 500, and 550 °C, the optimum nitrogen gas pressure of 1.8 mbar and optimum nitriding time of 3 hours. The micro-structure, elemental composition and the phase structure of the nitride layer formed on the surface of samples were observed using the techniques of SEM-EDAX and XRD, respectively. It is known that a thin layer of iron nitrides has been formed on the surface of the samples. Iron nitride layer has a phase structure including ε-Fe_2_-_3N, γ'-Fe_4N, CrN, Cr_2N and expanded austenite γN. The characterization results of the wear resistance of the 316L SS samples showed an increasing of about 2.6 times the wear resistance of standard samples after nitriding temperature of 350 °C. From the corrosion test by using the Hanks solution was obtained 29.87 mpy corrosion rate or the increasing of corrosion resistance of about 137%. Thus it can be seen that by using ion nitriding technique the iron nitride layer has been formed on the surface of the 316L SS samples, and they have an excellent properties of wear resistance and corrosion resistance, which were caused especially due to the formation of an expanded austenite γN. Properties of the high hardness and has the good corrosion resistance, especially due to the formation of iron nitride and expanded austenite phases γN at low temperature nitriding process. (author)

  3. Small punch creep test in a 316 austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Saucedo-Muñoz, Maribel L.

    2015-03-01

    Full Text Available The small punch creep test was applied to evaluate the creep behavior of a 316 type austenitic stainless steel at temperatures of 650, 675 and 700 °C. The small punch test was carried out using a creep tester with a specimen size of 10×10×0.3 mm at 650, 675 and 700 °C using loads from 199 to 512 N. The small punch creep curves show the three stages found in the creep curves of the conventional uniaxial test. The conventional creep relationships which involve parameters such as creep rate, stress, time to rupture and temperature were followed with the corresponding parameters of small punch creep test and they permitted to explain the creep behavior in this steel. The mechanism and activation energy of the deformation process were the grain boundary sliding and diffusion, respectively, during creep which caused the intergranular fracture in the tested specimens.El ensayo de termofluencia por indentación se utilizó para evaluar el comportamiento a la termofluencia en un acero inoxidable austenítico 316. Este ensayo se realizó en una máquina de indentación con muestras de 10×10×0,3 mm a temperaturas de 650, 675 y 700 °C con cargas de 199 a 512 N. Las curvas de termofluencia del ensayo mostraron las tres etapas características observadas en el ensayo convencional de tensión. Asimismo, las principales relaciones de termofluencia entre parámetros como velocidad de termofluencia, esfuerzo, tiempo de ruptura y temperatura se observaron en los parámetros correspondientes al ensayo de indentación, lo que permitió caracterizar el comportamiento de termofluencia en este acero. El mecanismo y la energía de activación del proceso de deformación en la termofluencia corresponden al deslizamiento de los límites de grano y la difusión a través de los mismos, respectivamente, lo cual causó la fractura intergranular en las muestras ensayadas.

  4. Evaluation of the Sensitization of 316L Stainless Steels After the Post Weld Heat Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Junho; Jang, Changheui [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Lee, Kyoung Soo [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2014-05-15

    It was observed that the PWSCC growth rate of alloy 182 was markedly decreased after PWHT. However, the PWHT of components made of stainless steels (SSs) would be limited because of the concerns about sensitization when they are exposed to temperature range of 500 to 800 .deg. C. Also, the sensitization of austenitic stainless steels could increase the susceptibility to intergrannular stress corrosion cracking. Therefore, the effect of PWHT on the sensitization behaviors of 316L SSs having predominant austenitic structure with small amount of ferrite was investigated to assess the applicability of PWHT to dissimilar weld area with austenitic stainless steels. The sensitization behaviors of two heats of 316L SSs with small amount of ferrite were investigated after heat treatment at 600, 650 and 700 .deg. C. Grain boundary sensitization was not observed in 316L SSs after the heat treatment at 600, 650 and 700 .deg. C up to 30 h. The increase in degree of sensitization (DOS) was caused by reduction of corrosion resistance in ferrite phase due to formation of chromium carbide and intermatallic phases during heat treatment. The DOS value of 316L SSs depended on the ferrite morphology. The stringer type of ferrite (316L-heat A) showed relatively higher DOS in comparison with 316L containing blocky type of ferrite (316L-heat B). It could be due to sufficient supplement of chromium in larger size of ferrite phase.

  5. Evaluation of the Sensitization of 316L Stainless Steels After the Post Weld Heat Treatment

    International Nuclear Information System (INIS)

    Lee, Junho; Jang, Changheui; Lee, Kyoung Soo

    2014-01-01

    It was observed that the PWSCC growth rate of alloy 182 was markedly decreased after PWHT. However, the PWHT of components made of stainless steels (SSs) would be limited because of the concerns about sensitization when they are exposed to temperature range of 500 to 800 .deg. C. Also, the sensitization of austenitic stainless steels could increase the susceptibility to intergrannular stress corrosion cracking. Therefore, the effect of PWHT on the sensitization behaviors of 316L SSs having predominant austenitic structure with small amount of ferrite was investigated to assess the applicability of PWHT to dissimilar weld area with austenitic stainless steels. The sensitization behaviors of two heats of 316L SSs with small amount of ferrite were investigated after heat treatment at 600, 650 and 700 .deg. C. Grain boundary sensitization was not observed in 316L SSs after the heat treatment at 600, 650 and 700 .deg. C up to 30 h. The increase in degree of sensitization (DOS) was caused by reduction of corrosion resistance in ferrite phase due to formation of chromium carbide and intermatallic phases during heat treatment. The DOS value of 316L SSs depended on the ferrite morphology. The stringer type of ferrite (316L-heat A) showed relatively higher DOS in comparison with 316L containing blocky type of ferrite (316L-heat B). It could be due to sufficient supplement of chromium in larger size of ferrite phase

  6. Response of cast austenitic stainless steel to low temperature plasma carburizing.

    OpenAIRE

    Sun, Yong

    2008-01-01

    The response of a cast 316 type austenitic stainless steel to the novel low temperature plasma carburizing process has been investigated in this work. The cast steel has a dendritic structure with a mix of austenite, ferrite and carbide phases. The results show that such a complex structure responds well to the carburizing process, and the inter-dendrite regions containing ferrite and carbides can be transformed to expanded austenite to form a continuous and uniform layer supersat...

  7. Optimized chemical composition, working and heat treatment condition for resistance to irradiation assisted stress corrosion cracking of cold worked 316 and high-chromium austenitic stainless steel

    International Nuclear Information System (INIS)

    Yonezawa, Toshio; Iwamura, Toshihiko; Fujimoto, Koji; Ajiki, Kazuhide

    2000-01-01

    The authors have reported that the primary water stress corrosion cracking (PWSCC) in baffle former bolts made of austenitic stainless steels for PWR after long-term operation is caused by irradiation-induced grain boundary segregation. The resistance to PWSCC of simulated austenitic stainless steels whose chemical compositions are simulated to the grain boundary chemical composition of 316 stainless steel after irradiation increased with decrease of the silicon content, increases of the chromium content, and precipitation of M 23 C 6 carbides at the grain boundaries. In order to develop resistance to irradiation assisted stress corrosion cracking in austenitic stainless steels, optimized chemical compositions and heat treatment conditions for 316CW and high-chromium austenitic stainless steels for PWR baffle former bolts were investigated. For 316CW stainless steel, ultra-low-impurities and high-chromium content are beneficial. About 20% cold working before aging and after solution treatment has also been recommended to recover sensitization and make M 23 C 6 carbides coherent with the matrix at the grain boundaries. Heating at 700 to 725degC for 20 to 50 h was selected as a suitable aging procedure. Cold working of 5 to 10% after aging produced the required mechanical properties. The optimized composition of the high-chromium austenitic stainless steel contents 30% chromium, 30% nickel, and ultra-low impurity levels. This composition also reduces the difference between its thermal expansion coefficient and that of 304 stainless steel for baffle plates. Aging at 700 to 725degC for longer than 40 h and cold working of 10 to 15% after aging were selected to meet mechanical property specifications. (author)

  8. Austenitic stainless steels and high strength copper alloys for fusion components

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.; Zinkle, S.J.; Alexander, D.J.; Stubbins, J.F.

    1998-01-01

    An austenitic stainless steel (316LN), an oxide-dispersion-strengthened copper alloy (GlidCop A125), and a precipitation-hardened copper alloy (Cu-Cr-Zr) are the primary structural materials for the ITER first wall/blanket and divertor systems. While there is a long experience of operating 316LN stainless steel in nuclear environments, there is no prior experience with the copper alloys in neutron environments. The ITER first wall (FW) consists of a stainless steel shield with a copper alloy heat sink bonded by hot isostatic pressing (HIP). The introduction of bi-layer structural material represents a new materials engineering challenge; the behavior of the bi-layer is determined by the properties of the individual components and by the nature of the bond interface. The development of the radiation damage microstructure in both classes of materials is summarized and the effects of radiation on deformation and fracture behavior are considered. The initial data on the mechanical testing of bi-layers indicate that the effectiveness of GlidCop A125 as a FW heat sink material is compromised by its strongly anisotropic fracture toughness and poor resistance to crack growth in a direction parallel to the bi-layer interface. (orig.)

  9. Thick-section weldments in 21-6-9 and 316LN stainless steel for fusion energy applications

    International Nuclear Information System (INIS)

    Alexander, D.J.; Goodwin, G.M.

    1991-01-01

    The Burning Plasma Experiment (BPX), formerly known as the Compact Ignition Tokomak, will be a major advance in the design of a fusion reactor. The successful construction of fusion reactors will require extensive welding of thick-section stainless steel plates. Severe service conditions will be experienced by the structure. Operating temperatures will range from room temperature (300 K) to liquid nitrogen temperature (77 K), and perhaps even lower. The structure will be highly stressed, and subject to sudden impact loads if plasma disruptions occur. This demands a combination of high strength and high toughness from the weldments. Significant portions of the welding will be done in the field, so preweld and postweld heat treatments will be difficult. The thick sections to be welded will require a high deposition rate process, and will result in significant residual stresses in the materials. Inspection of these thick sections in complex geometries will be very difficult. All of these constraints make it essential that the welding procedures and alloys be well understood, and the mechanical properties of the welds and their heat-affected zones must be adequately characterized. The candidate alloy for structural applications in the BPX such as the magnet cases was initially selected as 21-6-9 austenitic stainless steel, and later changed to 316LN stainless steel. This study examined several possible filler materials for thick-section (25 to 50 mm) weldments in these two materials. The tensile and Charpy V-notch properties were measured at room temperature and 77 K. The fracture toughness was measured for promising materials

  10. The Effect of Constant and Pulsed Current Gas Tungsten Arc Welding on Joint Properties of 2205 Duplex Stainless Steel to 316L Austenitic Stainless Steel

    Science.gov (United States)

    Neissi, R.; Shamanian, M.; Hajihashemi, M.

    2016-05-01

    In this study, dissimilar 316L austenitic stainless steel/2205 duplex stainless steel (DSS) joints were fabricated by constant and pulsed current gas tungsten arc welding process using ER2209 DSS as a filler metal. Microstructures and joint properties were characterized using optical and electron scanning microscopy, tensile, Charpy V-notch impact and micro-hardness tests, and cyclic polarization measurements. Microstructural observations confirmed the presence of chromium nitride and delta ferrite in the heat-affected zone of DSS and 316L, respectively. In addition, there was some deviation in the austenite/ferrite ratio of the surface welding pass in comparison to the root welding pass. Besides having lower pitting potential, welded joints produced by constant current gas tungsten arc welding process, consisted of some brittle sigma phase precipitates, which resulted in some impact energy reduction. The tensile tests showed high tensile strength for the weld joints in which all the specimens were broken in 316L base metal.

  11. Erosion-corrosion resistance properties of 316L austenitic stainless steels after low-temperature liquid nitriding

    Science.gov (United States)

    Zhang, Xiangfeng; Wang, Jun; Fan, Hongyuan; Pan, Dong

    2018-05-01

    The low-temperature liquid nitriding of stainless steels can result in the formation of a surface zone of so-called expanded austenite (S-phase) by the dissolution of large amounts of nitrogen in the solid solution and formation of a precipitate-free layer supersaturated with high hardness. Erosion-corrosion measurements were performed on low-temperature nitrided and non-nitrided 316L stainless steels. The total erosion-corrosion, erosion-only, and corrosion-only wastages were measured directly. As expected, it was shown that low-temperature nitriding dramatically reduces the degree of erosion-corrosion in stainless steels, caused by the impingement of particles in a corrosive medium. The nitrided 316L stainless steels exhibited an improvement of almost 84% in the erosion-corrosion resistance compared to their non-nitrided counterparts. The erosion-only rates and synergistic levels showed a general decline after low-temperature nitriding. Low-temperature liquid nitriding can not only reduce the weight loss due to erosion but also significantly reduce the weight loss rate of interactions, so that the total loss of material decreased evidently. Therefore, 316L stainless steels displayed excellent erosion-corrosion behaviors as a consequence of their highly favorable corrosion resistances and superior wear properties.

  12. Protection of type 316 austenitic stainless steel from intergranular stress corrosion cracking by thermo-mechanical treatment

    International Nuclear Information System (INIS)

    Kiuchi, Kiyoshi; Tsuji, Hirokazu; Kondo, Tatsuo

    1980-03-01

    Thermomechanical treatment that causes carbide stabilizing aging of cold worked material followed by recrystallization heating made standard stainless steels highly resistant to intergranular corrosion and stress corrosion cracking in different test environments. After a typical thermal history of simulated welding, several IGSCC susceptibility tests were made. The results showed that the treatment was successful in type 316 steel in wide range of conditions, while type 304 was protected only to a small extent even by closely controlled treatment. Response of the materials to the sensitizing heating in terms of impurity segregation at grain boundaries was also examined by means of microchemical analysis. Advantage of method is that no special care is required in selecting heats of material, so that conventional type 316 is usable by improving the mechanical properties substantially through the treatment. In some optimized cases the mechanical property improvement was typically recognized by the yield strength by about 20% higher at room temperature, compared with the material mill annealed. (author)

  13. Tailoring plasticity of austenitic stainless steels for nuclear applications: Review of mechanisms controlling plasticity of austenitic steels below 400 °C

    Energy Technology Data Exchange (ETDEWEB)

    Meric de Bellefon, G., E-mail: mericdebelle@wisc.edu [University of Wisconsin-Madison (United States); Duysen, J.C. van [EDF R& D (France); University of Tennessee-Knoxville (United States); Unité Matériaux et Transformation (UMET) CNRS, Université de Lille (France)

    2016-07-15

    AISI 304 and 316 austenitic stainless steels were invented in the early 1900s and are still trusted by materials and mechanical engineers in numerous sectors because of their good combination of strength, ductility, and corrosion resistance, and thanks to decades of experience and data. This article is part of an effort focusing on tailoring the plasticity of both types of steels to nuclear applications. It provides a synthetic and comprehensive review of the plasticity mechanisms in austenitic steels during tensile tests below 400 °C. In particular, formation of twins, extended stacking faults, and martensite, as well as irradiation effects and grain rotation are discussed in details. - Highlights: • This article is part of an effort to tailor the plasticity of 304L and 316L steels for nuclear applications. • It reviews mechanisms controlling plasticity of austenitic steels during tensile tests. • Formation of twins, extended stacking faults, and martensite, grain rotation, and irradiation effects are discussed.

  14. Joint dissolution and oxidation behaviour of 316LN steel at 550 C. in liquid sodium containing low concentration of oxygen - 15417

    International Nuclear Information System (INIS)

    Courouau, J.L.; Rivollier, M.; Lorentz, V.; Tabarant, M.

    2015-01-01

    The sodium cooled fast reactor is selected in France as the 4. generation of nuclear power plant. 4. generation's reactor vessel, primary loop structures and heat exchangers will be made of austenitic stainless steels (316LN). To assess reactor service life time, corrosion of austenitic stainless steel by liquid sodium is studied in normal operating conditions as well as in transient conditions either expected or not. Oxygen, one of the main impurities, but present in trace amounts (1 to 10 μg/g or ppm weight), plays a major role on corrosion phenomena of the steel, although not totally understood yet. Literature reports an increased dissolution rate of steel or even of pure iron with increasing oxygen content although no thermodynamically stable iron oxide exists at low oxygen content. Oxygen is only known to form sodium chromite scale (NaCrO 2 ), those behaviour is, however, little documented. Based on corrosion tests performed in the static sodium test device (CorroNa) at 550 C. degrees for an oxygen content initially of about 1 ppm in weight or lower, and about 5-10 ppm after 4600 h of test, either a really small dissolution rate or small sodium chromite scale formation (NaCrO 2 ) are observed. Dissolution and carburation are observed for specimen immersed since the beginning of the test, while oxidation is the main feature observed for the specimen immersed during the last periods of the test. Some aspects of the morphologies of this oxide scale obtained by scanning electron microscopy (SEM) or transmission electron microscopy (TEM) as well as by Glow Discharge Optical Emission Spectroscopy (GD-OES) are presented. Discussions and explanations of these apparently opposing results are given based on thermodynamic analysis, as well as their possible consequences for reactor operation. (authors)

  15. Tensile Fracture Behavior of 316L Austenitic Stainless Steel Manufactured by Hot Isostatic Pressing

    Science.gov (United States)

    Cooper, A. J.; Brayshaw, W. J.; Sherry, A. H.

    2018-02-01

    Herein we investigate how the oxygen content in hot isostatically pressed (HIP'd) 316L stainless steel affects the mechanical properties and tensile fracture behavior. This work follows on from previous studies, which aimed to understand the effect of oxygen content on the Charpy impact toughness of HIP'd steel. We expand on the work by performing room-temperature tensile testing on different heats of 316L stainless steel, which contain different levels of interstitial elements (carbon and nitrogen) as well as oxygen in the bulk material. Throughout the work we repeat the experiments on conventionally forged 316L steel as a reference material. The analysis of the work indicates that oxygen does not contribute to a measureable solution strengthening mechanism, as is the case with carbon and nitrogen in austenitic stainless steels (Werner in Mater Sci Eng A 101:93-98, 1988). Neither does oxygen, in the form of oxide inclusions, contribute to precipitation hardening due to the size and spacing of particles. However, the oxide particles do influence fracture behavior; fractography of the failed tension test specimens indicates that the average ductile dimple size is related to the oxygen content in the bulk material, the results of which support an on-going hypothesis relating oxygen content in HIP'd steels to their fracture mechanisms by providing additional sites for the initiation of ductile damage in the form of voids.

  16. Effect of nitrogen ion dose on the corrosion resistance, the microstructure and the phase structure of the biomaterials austenitic stainless steel 316L

    International Nuclear Information System (INIS)

    Lely Susita RM; Bambang Siswanto; Ihwanul Aziz; Anjar Anggraini H

    2016-01-01

    The succeed of the use of biomaterials for orthopedic implant device is determined by its mechanical properties, chemical stability and biocompatibility in tissues and body fluids. The corrosion resistance is one of the main property of biomaterials to determine for successful orthopedic implant in body tissues. Surface modification is carried out to improve biomaterial surface properties of austenitic stainless steel 316L with nitrogen ion implantation technique and ion nitriding. Nitrogen ion implantation performed on 60 keV ion energy and ion dose variations 2 x 10"1"6 ions/cm"2- 2 x 10"1"7 ions/cm"2. The corrosion resistance of austenitic stainless steel 316L in Hanks solution is measured by using a potentiostat, and corrosion resistance optimum of a sample is obtained at an ion dose of 5 x 10"1"6 ions/cm"2 and increase by a factor of 2.1 if compared to the sample without the nitrogen ion implantation. Further the sample of austenitic stainless steel 316L with the optimum corrosion resistance is processed by ion nitriding technique at a nitriding temperature of 350 °C and nitriding time of 4 hours. Based on corrosion test of the sample produced by ion nitriding is obtained an increasing the corrosion resistance by a factor of 2.96 when compared to the sample before nitrogen ion implantation. The improvement of corrosion resistance of the sample is caused by the formation of iron nitride ξ-Fe2N and γ- Fe4N which has excellent corrosion resistance properties. (author)

  17. Numerical simulation of tearing-fatigue interactions in 316l(N) austenitic stainless steel

    International Nuclear Information System (INIS)

    Sherry, A.H.; Wilkes, M.A.

    2005-01-01

    The loading history of engineering components can influence the behaviour of defects in service. This paper presents, the results of a numerical study aimed at using the Gurson ductile damage model, calibrated against J R-curve data, to simulate load-history effects on ductile tearing behaviour in austenitic materials. The work has demonstrated that ductile crack growth resistance is influenced by sub-critical crack growth by an intervening mechanism such as fatigue. Fatigue crack growth under a positive R-ratio leads to increase in subsequent tearing resistance through three main mechanisms: (i) re-sharpening of the crack tip; (ii) crack extension through the fracture process zone; and (iii) cyclic loading effects on void development. The ratio of minimum to maximum stress during fatigue loading (R-ratio) has been shown to influence subsequent tearing resistance, with an R-ratio of 0.2 generally leading to a greater enhancement in tearing resistance than an R-ratio of 0.1. This behaviour is due to the influence of R-ratio on void development ahead of the fatigue crack tip. Finally, relevant experimental data compare favourably with the predicted J R-curves

  18. A comparative study of creep rupture behaviour of modified 316L(N) base metal and 316L(N)/16-8-2 weldment in air and liquid sodium environments

    International Nuclear Information System (INIS)

    Mishra, M.P.; Mathew, M.D.; Mannan, S.L.; Rodriguez, P.; Borgstedt, H.U.

    1997-01-01

    Creep rupture behaviour of modified type 316L(N) stainless steel base metal and weldments prepared with 16-8-2 filler wire has been investigated in air and flowing sodium environments at 823 K. No adverse environmental effects have been noticed due to sodium on the creep rupture behaviour of these weldments for tests up to 10 000 h. Rupture lives of the weldment were higher in the sodium environment than those in air. Rupture lives of the weldments were found to be lower than those of the base metal by a factor of two to five in both air and sodium environments. Minimum creep rates were essentially the same for the weldment as well as for the base metal in both the environments, whereas rupture strain was usually lower for the weldment than that of the base metal. The reduction in area of the weldment specimens increased with increase in stress. Failures in the specimens of weldments were in the weld metal region. Microstructural studies carried out on failed weldment specimens after the creep rupture tests revealed extensive cavitation in the weld metal region in air tested specimens predominantly at the austerite/δ-ferrite interphase. However, no cavitation was observed in specimens tested in sodium. (author)

  19. Study of precipitation phenomena during the creep of austenitic stainless steels

    International Nuclear Information System (INIS)

    Le May, I.; Bassett, B.J.; White, W.E.

    1975-01-01

    Creep-rupture data for two austenitic stainless steels, AISI Types 310 and 316, are presented, together with observations of precipitation taking place during creep. While the effects of creep deformation on precipitation in the Type 310 were negligible, ferrite precipitation was considerably greater in the Type 316 undergoing creep than in unstressed material. Ferrite precipitation appears to promote grain boundary cavitation and internal cracking, thus reducing creep resistance and a correlation has been noted between increased ferrite precipitation and apparent further weakening of the Type 316 over the temperature range 730 to 800 0 C approximately, as evidenced by breaks in the isostress lines on a plot of log (time to rupture) versus temperature

  20. Microstructural aspects of thermal ageing of AISI type 316 LN stainless steels

    International Nuclear Information System (INIS)

    Shankar, P.; Sundararaman, D.; Raghunathan, V.S.; Ranganathan, S.

    1995-01-01

    The various stages of precipitation of Cr 2 N in austenite and the associated microstructural features are presented. The role of nitrogen on the interface structure is discussed. The fine sub-structure of the cellular bands are described based on high resolution transmission electron microscope studies. (author). 2 refs., 2 tabs., 6 figs

  1. The Influence of Porosity on Corrosion Attack of Austenitic Stainless Steel

    Science.gov (United States)

    Abdullah, Z.; Ismail, A.; Ahmad, S.

    2017-10-01

    Porous metals also known as metal foams is a metallic body having spaces orpores through which liquid or air may pass. Porous metals get an attention from researchers nowadays due to their unique combination of properties includes excellent mechanical and electrical, high energy absorption, good thermal and sound insulation and water and gas permeability. Porous metals have been applied in numerous applications such as in automotive, aerospace and also in biomedical applications. This research reveals the influence of corrosion attack in porous austenitic stainless steel 316L. The cyclic polarization potential analysis was performed on the porous austenitic stainless steel 316L in 3.5% NaCl solution. The morphology and the element presence on the samples before and after corrosion attack was examined using scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) respectively to determine the corrosion mechanism structure. The cyclic polarization potential analysis showed the result of (E corr ) for porous austenitic stainless steel type 316L in the range of -0.40v to -0.60v and breakdown potential (E b ) is -0.3v to -0.4v in NaCl solution.

  2. Characterisation of Ceramic-Coated 316LN Stainless Steel Exposed to High-Temperature Thermite Melt and Molten Sodium

    Science.gov (United States)

    Ravi Shankar, A.; Vetrivendan, E.; Shukla, Prabhat Kumar; Das, Sanjay Kumar; Hemanth Rao, E.; Murthy, S. S.; Lydia, G.; Nashine, B. K.; Mallika, C.; Selvaraj, P.; Kamachi Mudali, U.

    2017-11-01

    Currently, stainless steel grade 316LN is the material of construction widely used for core catcher of sodium-cooled fast reactors. Design philosophy for core catcher demands its capability to withstand corium loading from whole core melt accidents. Towards this, two ceramic coatings were investigated for its application as a layer of sacrificial material on the top of core catcher to enhance its capability. Plasma-sprayed thermal barrier layer of alumina and partially stabilised zirconia (PSZ) with an intermediate bond coat of NiCrAlY are selected as candidate material and deposited over 316LN SS substrates and were tested for their suitability as thermal barrier layer for core catcher. Coated specimens were exposed to high-temperature thermite melt to simulate impingement of molten corium. Sodium compatibility of alumina and PSZ coatings were also investigated by exposing samples to molten sodium at 400 °C for 500 h. The surface morphology of high-temperature thermite melt-exposed samples and sodium-exposed samples was examined using scanning electron microscope. Phase identification of the exposed samples was carried out by x-ray diffraction technique. Observation from sodium exposure tests indicated that alumina coating offers better protection compared to PSZ coating. However, PSZ coating provided better protection against high-temperature melt exposure, as confirmed during thermite melt exposure test.

  3. A study of precipitation phenomena during the creep of austenitic stainless steels

    International Nuclear Information System (INIS)

    Le May, I.; White, W.E.; Bassett, B.J.

    1975-01-01

    Creep-rupture data for two austenitic stainless steels, AISI Types 310 and 316, are presented, together with observations of precipitation taking place during creep. While the effects of creep deformation on precipitation in the Type 310 were negligible, ferrite precipitation was considerably greater in the Type 316 undergoing creep than in unstressed material. Ferrite precipitation appears to promote grain boundary cavitation and internal cracking, thus reducing creep resistance, and a correlation has been noted between increased ferrite precipitation and apparent further weakening of the Type 316 over the temperature range 730 0 C to 800 0 C approximately, as evidenced by breaks in the isostress lines on a plot of log (time to rupture) versus temperature. (author)

  4. Evaluation of the onset of tertiary creep for types 304 and 316 stainless steels

    International Nuclear Information System (INIS)

    Staerk, E.; Picker, C.; Felsen, M.F.

    1989-01-01

    Austenitic stainless steels Types 304 and 316 are used for LMFBR components. Although at high temperature many codes base the allowable stress on the stress rupture strength, some recent codes eg ASME Code Case N47 and RCC-MR also take account of the onset of tertiary creep. In order to examine this latter aspect creep deformation data on Type 304 and Type 316 steel have been collected and analysed. The ratio time to onset of tertiary creep against the time to rupture has been analysed as a function of temperature. At temperatures below 750 0 C the ratio is found to decrease slightly with increasing temperature. Monkman Grant and Lambda relationships have also been investigated. In relation to the ASME S t allowable stress criteria it is shown that below 600 0 C the allowable stress is likely to be governed by the stress rupture strength rather than the onset of tertiary creep criterion. Recommendations are given concerning the determination of the onset of tertiary creep, the fitting of the Leyda/Rowe relationship and a method to compute the maximum allowable stress S t from equation describing the time-temperature dependency of the three constituents of S t

  5. Investigations on the creep-rupture behaviour of the austenitic stainless steel AISI 316 NET

    International Nuclear Information System (INIS)

    Schirra, M.; Ritter, B.

    1988-12-01

    The report describes the creep-rupture tests carried out with a 17/13/2 CrNiMo-steel in the frame of the German-Spanish collaboration (KfK-CIEMAT). The material studied is the austenitic steel AISI 316(L) selected as potential first-wall material for NET (Next European Torus). The test programme on base material with a NET specified batch encompasses until now in the temperature range 500-750 0 C the rupture-time-range till 20 000 h. The results permit statements to the creep- and creep-rupture behaviour and ductility. Metallography examinations give information about fracture behaviour and demonstrate the complex precipitation happening. The results are compared with the literature and own test results from two batches of the Fast-Breeder-Program. (orig.) [de

  6. An integrated electron and optical metallographic procedure for the identification of precipitate phases in type 316 stainless steel

    International Nuclear Information System (INIS)

    Slattery, G.F.; O'Riordan, P.; Lambert, M.E.; Green, S.M.

    1981-01-01

    A sequential and integrated metallographic procedure has been developed and successfully employed to differentiate between carbide, sigma, chi, Laves and ferrite phases which are commonly encountered in type 316 austenitic steel. The experimental techniques of optical and electron microscopy to identify these phases have been outlined and provide a rapid and convenient method of characterizing the microstructure of the steel. The techniques sequence involves selective metallographic etching, Nomarski interference microscopy, scanning electron microscopy, energy dispersive microanalysis, transmission electron microscopy and electron diffraction. (author)

  7. Effect of composition on the electrochemical behavior of austenitic stainless steel in Ringer's solution

    International Nuclear Information System (INIS)

    Bandy, R.; Cahoon, J.R.

    1977-01-01

    Potentiodynamic cyclic polarization tests on Type 316L stainless steel, a common orthopedic implant alloy, in Ringer's solution show considerable hysteresis and a protection potential more active than the open circuit corrosion potential. This implies that chances of repassivation of actively growing pits in this alloy are limited. Tests in Ringer's solution containing hydrochloric acid show that the open circuit potential of Type 316L steel in this solution may exceed in the noble direction the critical pitting potential in the same solution. This signifies that spontaneous breakdown of passivity may occur in a bulk environment which grossly simulates the electrochemical environment within a crevice. Alloying elements such as Mo, Ni, Cr, all improve the corrosion resistance of Type 316L stainless steel in that the critical pitting potential shifts in the noble direction in the alloys having any of the three alloying elements in a higher proportion than in Type 316L steel. Polarization tests in Ringer's solution on a 20% Cr, 25% Ni, 4.5% Mo, 1.5% Cu austenitic stainless steel, having Mo, Cr, and Ni--all in higher proportions than in Type 316L steel, does not show any critical pitting potential or hysteresis at potentials below that for dissociation of water. However, test in 4% NaCl solution at 60 C, a more aggressive chloride environment than Ringer'ssolution, reveals considerable hysteresis and a very active protection potential, indicating that this behavior is a common feature of austenitic stainless steel in sufficiently aggressive, chloride media

  8. Laboratory results gained from cold worked type 316Ti under simulated PWR primary environment

    International Nuclear Information System (INIS)

    Devrient, B.; Kilian, R.; Koenig, G.; Widera, M.; Wermelinger, T.

    2015-01-01

    Beginning in 2005, intergranular stress corrosion cracking (IGSCC) of barrel bolts made from cold worked type 316Ti (German Material No. 1.4571 K) was observed in several S/KWU type PWRs. This mechanism was so far less understood for PWR primary conditions. Therefore an extended joint research program was launched by AREVA GmbH and VGB e.V. to clarify the specific conditions which contributed to the observed findings on barrel bolts. In the frame of this research program beneath the evaluation of the operational experience also laboratory tests on the general cracking behavior of cold worked type 316Ti material, which followed the same production line as for barrel bolt manufacturing in the eighties, with different cold work levels covering up to 30 % were performed to determine whether there is a specific susceptibility of cold worked austenitic stainless steel specimens to suffer IGSCC under simulated PWR primary conditions. All these slow strain rate tests on tapered specimens and component specimens came to the results that first, much higher cold work levels than used for the existing barrel bolts are needed for IGSCC initiation. Secondly, additional high active plastic deformation is needed to generate and propagate intergranular cracking. And thirdly, all specimens finally showed ductile fracture at the applied strain rates. (authors)

  9. An improved method to identify grain boundary creep cavitation in 316H austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, B., E-mail: b.chen@bristol.ac.uk [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom); Flewitt, P.E.J. [Interface Analysis Centre, University of Bristol, 121 St. Michael' s Hill, Bristol BS2 8BS (United Kingdom); H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Smith, D.J. [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom); Jones, C.P. [Interface Analysis Centre, University of Bristol, 121 St. Michael' s Hill, Bristol BS2 8BS (United Kingdom)

    2011-04-15

    Inter-granular creep cavitation damage has been observed in an ex-service 316H austenitic stainless steel thick section weldment. Focused ion beam cross-section milling combined with ion channelling contrast imaging is used to identify the cavitation damage, which is usually associated with the grain boundary carbide precipitates in this material. The results demonstrate that this technique can identify, in particular, the early stage of grain boundary creep cavitation unambiguously in materials with complex phase constituents. -- Research highlights: {yields} FIB milling plus ion channelling contrast optimise the observation of cavity. {yields} Identification of the creep cavities unambiguously, using an FIB technique. {yields} The FIB technique can retain the polyhedral shape of cavity. {yields} Various stages of creep cavitation can be observed, using the FIB technique.

  10. Effects of nitrogen and pulsed mean welding current in AISI 316 austenitic stainless steel solidification cracks; Efecto del nitrogeno y la corriente media pulsada de soldadura en la formacion de grietas de solidificacion en aceros inoxidables AISI 316L

    Energy Technology Data Exchange (ETDEWEB)

    Trevisan, R. E.; Braga, E.; Fals, H. C.

    2002-07-01

    An analysis of the influence of nitrogen concentration in the weld zone and the pulsed mean welding current in the solidification crack formation is presented in this paper. The AISI 316L austenitic stainless steel was employed as the metal base. The welding was done using CC+ pulsed flux cored are welding process and AWS E316L wire type. The tests were conducted using CO{sub 2} shielding gas with four different nitrogen levels (0,5; 10 and 15%) in order to induce different nitrogen weld metal concentrations. The pulsed mean welding current was varied in three levels and the. Transvarestraint tangential strain test was fixed of 5%. The results showed that the solidification cracking decreased as the pulsed mean welding current increase. It was also verified that an increase of the weld zone nitrogen level was associated with a decrease in both the total length of solidification crack and the amount of {delta} ferrite. (AUthor) 20 refs.

  11. Non local approach in crystalline plasticity: study of mechanical behaviour of AISI 316LN stainless steel during low cycle fatigue

    International Nuclear Information System (INIS)

    Schwartz, J.

    2011-01-01

    If fatigue crack initiation is currently quite well understood for pure single crystals, its comprehension and prediction in cases of polycrystal alloys such as AISI 316LN stainless steel remain complicated. Experimentally our study focuses on the characterisation of the mechanical behaviour and on the study at different scales of the phenomenon leading to low cycle fatigue crack initiation in 316LN stainless steel. For straining amplitudes of?e/2 = 0,3 and 0,5%, the cyclic softening observed during testing has been related to the organisation of dislocations in band structures. These bands, formed due to the activation of slip systems having the greatest Schmid's factor, carry the most part of the deformation. Their emergence at free surfaces leads to the formation of intrusions and extrusions which help cracks initiate and spread. Numerically we worked on the mesoscopic scale, proposing a new model of crystalline plasticity. This model integrates geometrically necessary dislocations (GND) directly computed from the lattice curvature. Implemented in the finite element code Abaqus TM and Cast3m TM , it is based on single crystal finite deformations laws proposed by Peirce et al. (1983) and Teodosiu et al. (1993). Extended for polycrystals by Hoc (2001) and Erieau (2003), it has been improved by the introduction of GND (Acharya and Bassani, 2000). The simulations performed on different types of aggregates (2D/3D) have shown that taking GND into account enables:- the prediction of the grain size effect on a macroscopic and on a local scale,- a finer computation of local stress field.The influence of the elasticity and interaction matrices on the values and the evolution of the isotropic and kinematic mean stresses has been shown. The importance of boundary conditions on computed mechanical fields could also be pointed out. (author)

  12. Influence of deformation on SCC susceptibility of austenitic stainless steel in PWR primary water

    Energy Technology Data Exchange (ETDEWEB)

    Kaneshima, Yoshiari; Totsuka, Nobuo; Nakajima, Nobuo [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    Slow strain rate tests (SSRT) were carried out to evaluate the SCC susceptibility of four types of austenitic stainless steels (SUS304, SUS316, SUS304L and SUS316L) in PWR primary water. The influence of deformation on SCC susceptibility of SUS316 was studied. All types of stainless steel were susceptible to SCC, and the SCC susceptibility varied depending on the steel type. The comparison of the SSRT results and tensile test in air based on the reduction of area measurement showed that the SCC susceptibility increased with increasing the degree of deformation. For explaining the influence of deformation on SCC susceptibility, it is necessary to evaluate both intergranular and transgranular fractures. (author)

  13. Effect of welding processes and joint configuration on the residual stresses and distortion in type 316 LN stainless steel weld joints

    International Nuclear Information System (INIS)

    Vasantharaja, P.; Vasudevan, M.; Palanichamy, P.

    2012-01-01

    Fabrication by welding introduces significant residual stresses in the welded structure/component due to non-uniform heat distribution during heating and cooling cycle. To control, reduce, or beneficially redistribute the residual stresses in weld joints, the stress distribution needs to be known. In the present study, weld joints of 16 mm thick 316LN stainless steel were made by multi-pass TIG, A-TIG welding and combination of TIG and A-TIG welding processes with various joint configurations. While V-groove edge preparation was required for making multi-pass TIG weld joint, square-edge preparation was sufficient for making A-TIG weld joint. Ultrasonic nondestructive technique based on the critically refracted longitudinal waves (LCR waves) has been used for the quantitative surface/sub-surface residual stress measurements in the weld joints. Distortion measurements were carried out before and after welding using height gauge. A-TIG weld joint was found to exhibit significant reduction in tensile residual stresses and distortion in comparison to that of other joints. (author)

  14. Hydrogen embrittlement of austenitic stainless steels revealed by deformation microstructures and strain-induced creation of vacancies

    International Nuclear Information System (INIS)

    Hatano, M.; Fujinami, M.; Arai, K.; Fujii, H.; Nagumo, M.

    2014-01-01

    Hydrogen embrittlement of austenitic stainless steels has been examined with respect to deformation microstructures and lattice defects created during plastic deformation. Two types of austenitic stainless steels, SUS 304 and SUS 316L, uniformly hydrogen-precharged to 30 mass ppm in a high-pressure hydrogen environment, are subjected to tensile straining at room temperature. A substantial reduction of tensile ductility appears in hydrogen-charged SUS 304 and the onset of fracture is likely due to plastic instability. Fractographic features show involvement of plasticity throughout the crack path, implying the degradation of the austenitic phase. Electron backscatter diffraction analyses revealed prominent strain localization enhanced by hydrogen in SUS 304. Deformation microstructures of hydrogen-charged SUS 304 were characterized by the formation of high densities of fine stacking faults and ε-martensite, while tangled dislocations prevailed in SUS 316L. Positron lifetime measurements have revealed for the first time hydrogen-enhanced creation of strain-induced vacancies rather than dislocations in the austenitic phase and more clustering of vacancies in SUS 304 than in SUS 316L. Embrittlement and its mechanism are ascribed to the decrease in stacking fault energies resulting in strain localization and hydrogen-enhanced creation of strain-induced vacancies, leading to premature fracture in a similar way to that proposed for ferritic steels

  15. Tailoring plasticity of austenitic stainless steels for nuclear applications: Review of mechanisms controlling plasticity of austenitic steels below 400 °C

    Science.gov (United States)

    Meric de Bellefon, G.; van Duysen, J. C.

    2016-07-01

    AISI 304 and 316 austenitic stainless steels were invented in the early 1900s and are still trusted by materials and mechanical engineers in numerous sectors because of their good combination of strength, ductility, and corrosion resistance, and thanks to decades of experience and data. This article is part of an effort focusing on tailoring the plasticity of both types of steels to nuclear applications. It provides a synthetic and comprehensive review of the plasticity mechanisms in austenitic steels during tensile tests below 400 °C. In particular, formation of twins, extended stacking faults, and martensite, as well as irradiation effects and grain rotation are discussed in details.

  16. Detection of crevice corrosion in AISI type 316LN stainless steel in presence of pseudomonas bacteria using electrochemical noise technique

    International Nuclear Information System (INIS)

    Pujar, M.G.; George, R.P.; Ramya, S.; Kamachi Mudali, U.

    2011-01-01

    Gram-negative pseudomonas sp. was used as the test organism for the biofilm formation and growth on 316 LN stainless and electrochemical noise (EN) monitoring studies, since this genus has been identified as the major biofilm former on stainless steels. EN studies were conducted for 21 days on the galvanically coupled specimens exposed to the dilute nutrient culture with pseudomonas sp. The visual records of the current potential EN, analysis of statistical and power spectral density (PSD) parameters of current and potential along with shot-noise parameters showed increase in the localized corrosion during initial 2-11 days exposure; thereafter the specimens showed passive behaviour. Raman spectra taken inside the pit for the specimen exposed for 21 days showed the peak corresponding to Cr 3+ ions signifying repassivation process. Similarly, Raman spectra on the surface outside the pits on the specimens exposed for 7, 10 and 15 days showed steady growth of the peak corresponding to Cr 3+ ions. This implied steady enrichment of Cr on the surface of the specimen which accounted for the gradual passivation with increased exposure time. (author)

  17. The stress rupture properties of austenitic steel weld metals

    International Nuclear Information System (INIS)

    Wood, D.S.

    Elevated temperature stress rupture data on Mo containing and Mo free austenitic weld metals have been collected from French, Dutch, German and UK sources and the results analysed. The stress rupture strength of Mo containing weld metal is significantly higher than that of Mo free weld metal. At 10,000h the rupture strength of Mo containing weld metal is higher than that of Type 316 steel whereas the Mo free weld metal is about 20% lower than that of Type 304 steel. Austenitic weld metal can give low stress rupture ductility values. It is concluded that there are insufficient data to permit reliable extrapolations to long times and it is recommended that long term tests are performed to overcome this situation

  18. Creep of ex-service AISI-316H steel at very low strain rates

    Energy Technology Data Exchange (ETDEWEB)

    Kloc, Lubos; Sklenicka, Vaclav [Academy of Sciences of the Czech Republic, Brno (Czech Republic). Inst. of Physics of Materials; Spindler, Michael [British Energy Generation, Barbwood, Gloucester (United Kingdom)

    2010-07-01

    The creep response of ex-service Type 316H austenitic steel was investigated at temperatures from 470 to 550 C and stresses from 80 to 120 MPa. These conditions lead to very low strain rates. Both helicoid spring specimen tests and conventional uniaxial creep tests were used to measure these very low creep strains. An internal stress model was used to analyse the creep curves and the results were compared to creep curves obtained on a Type 316H in the as-received condition, which for austenitic steels is after solution heat treatment. The creep behavior of the ex-service steel was very similar to that of the as-received steel. Thus, no creep damage or significant change of microstructure was detected during the service period of 65,000 hours at {proportional_to} 520 C. It was found that the helicoid spring specimen technique provides results compatible with that of conventional creep tests, but with superior accuracy with very low creep strains. (orig.)

  19. Microstructural sensitivity of 316H austenitic stainless steel: Residual stress relaxation and grain boundary fracture

    Energy Technology Data Exchange (ETDEWEB)

    Chen, B., E-mail: b.chen@bristol.ac.uk [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom); Flewitt, P.E.J. [Interface Analysis Centre, University of Bristol, 121 St Michael' s Hill, Bristol BS2 8BS (United Kingdom); H.H. Wills Physics Laboratory, School of Physics, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Smith, D.J. [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom)

    2010-10-25

    Research highlights: {yields} Triaxial residual macro-stresses have been measured by neutron diffraction. {yields} Rates of stress relaxation are shown to be a function of the microstructure. {yields} Quantification of M{sub 23}C{sub 6} precipitation was undertaken by a novel approach. {yields} Intergranular M{sub 23}C{sub 6} precipitation promotes the potential to intergranular fracture. {yields} Phosphorous segregation further enhances the potential to intergranular fracture. - Abstract: The present work considers the role of thermo-mechanical history on the generation and relaxation of residual stresses, typical of those encountered in Type 316H austenitic stainless steel thick section weldments. A series of thermo-mechanical pre-treatments have been developed and applied to simulate the critical microstructures observed within the heat affected zone of the thick section parent material. The through thickness distributions of the residual macro-stresses in cylindrical specimens have been measured by neutron diffraction and then the rates of the relaxation are shown to be a function of microstructure. The susceptibility to intergranular brittle fracture at a temperature of -196 deg. C is shown to be a function of M{sub 23}C{sub 6} carbide precipitates and phosphorous segregation at the grain boundaries. Finally, the link of the present study to the understanding of the reheat cracking is briefly discussed.

  20. Effect of Tempering Temperature and Time on the Corrosion Behaviour of 304 and 316 Austenitic Stainless Steels in Oxalic Acid

    OpenAIRE

    Ayo S. Afolabi; Johannes H. Potgieter; Ambali S. Abdulkareem; Nonhlanhla Fungura

    2011-01-01

    The effect of different tempering temperatures and heat treatment times on the corrosion resistance of austenitic stainless steels in oxalic acid was studied in this work using conventional weight loss and electrochemical measurements. Typical 304 and 316 stainless steel samples were tempered at 150oC, 250oC and 350oC after being austenized at 1050oC for 10 minutes. These samples were then immersed in 1.0M oxalic acid and their weight losses were measured at every five days for 30 days. The r...

  1. Dissolution corrosion of 316L austenitic stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500 °C

    Science.gov (United States)

    Lambrinou, Konstantina; Charalampopoulou, Evangelia; Van der Donck, Tom; Delville, Rémi; Schryvers, Dominique

    2017-07-01

    This work addresses the dissolution corrosion behaviour of 316L austenitic stainless steels. For this purpose, solution-annealed and cold-deformed 316L steels were simultaneously exposed to oxygen-poor (steels than the solution-annealed steel, indicating the importance of the steel thermomechanical state. The thickness of the dissolution-affected zone was non-uniform, and sites of locally-enhanced dissolution were occasionally observed. The progress of LBE dissolution attack was promoted by the interplay of certain steel microstructural features (grain boundaries, deformation twin laths, precipitates) with the dissolution corrosion process. The identified dissolution mechanisms were selective leaching leading to steel ferritization, and non-selective leaching; the latter was mainly observed in the solution-annealed steel. The maximum corrosion rate decreased with exposure time and was found to be inversely proportional to the depth of dissolution attack.

  2. Mitigating the Risk of Stress Corrosion of Austenitic Stainless Steels in Advanced Gas Cooled Reactor Boilers

    International Nuclear Information System (INIS)

    Bull, A.; Owen, J.; Quirk, G.; G, Lewis; Rudge, A.; Woolsey, I.S.

    2012-09-01

    Advanced Gas-Cooled Reactors (AGRs) operated in the UK by EDF Energy have once-through boilers, which deliver superheated steam at high temperature (∼500 deg. C) and pressure (∼150 bar) to the HP turbine. The boilers have either a serpentine or helical geometry for the tubing of the main heat transfer sections of the boiler and each individual tube is fabricated from mild steel, 9%Cr1%Mo and Type 316 austenitic stainless steel tubing. Type 316 austenitic stainless steel is used for the secondary (final) superheater and steam tailpipe sections of the boiler, which, during normal operation, should operate under dry, superheated steam conditions. This is achieved by maintaining a specified margin of superheat at the upper transition joint (UTJ) between the 9%Cr1%Mo primary superheater and the Type 316 secondary superheater sections of the boiler. Operating in this mode should eliminate the possibility of stress corrosion cracking of the Type 316 tube material on-load. In recent years, however, AGRs have suffered a variety of operational problems with their boilers that have made it difficult to maintain the specified superheat margin at the UTJ. In the case of helical boilers, the combined effects of carbon deposition on the gas side and oxide deposition on the waterside of the tubing have resulted in an increasing number of austenitic tubes operating with less than the specified superheat margin at the UTJ and hence the possibility of wetting the austenitic section of the boiler. Some units with serpentine boilers have suffered creep-fatigue damage of the high temperature sections of the boiler, which currently necessitates capping the steam outlet temperature to prevent further damage. The reduction in steam outlet temperature has meant that there is an increased risk of operation with less than the specified superheat margin at the UTJ and hence stress corrosion cracking of the austenitic sections of the boiler. In order to establish the risk of stress

  3. Effect of pre-strain on creep of three AISI 316 austenitic stainless steels in relation to reheat cracking of weld-affected zones

    Science.gov (United States)

    Auzoux, Q.; Allais, L.; Caës, C.; Monnet, I.; Gourgues, A. F.; Pineau, A.

    2010-05-01

    Microstructural modifications induced by welding of 316 stainless steels and their effect on creep properties and relaxation crack propagation were examined. Cumulative strain due to multi-pass welding hardens the materials by increasing the dislocation density. Creep tests were conducted on three plates from different grades of 316 steel at 600 °C, with various carbon and nitrogen contents. These plates were tested both in the annealed condition and after warm rolling, which introduced pre-strain. It was found that the creep strain rate and ductility after warm rolling was reduced compared with the annealed condition. Moreover, all steels exhibited intergranular crack propagation during relaxation tests on Compact Tension specimens in the pre-strained state, but not in the annealed state. These results confirmed that the reheat cracking risk increases with both residual stress triaxiality and pre-strain. On the contrary, high solute content and strain-induced carbide precipitation, which are thought to increase reheat cracking risk of stabilised austenitic stainless steels did not appear as key parameters in reheat cracking of 316 stainless steels.

  4. Effect of pre-strain on creep of three AISI 316 austenitic stainless steels in relation to reheat cracking of weld-affected zones

    International Nuclear Information System (INIS)

    Auzoux, Q.; Allais, L.; Caes, C.; Monnet, I.; Gourgues, A.F.; Pineau, A.

    2010-01-01

    Microstructural modifications induced by welding of 316 stainless steels and their effect on creep properties and relaxation crack propagation were examined. Cumulative strain due to multi-pass welding hardens the materials by increasing the dislocation density. Creep tests were conducted on three plates from different grades of 316 steel at 600 deg. C, with various carbon and nitrogen contents. These plates were tested both in the annealed condition and after warm rolling, which introduced pre-strain. It was found that the creep strain rate and ductility after warm rolling was reduced compared with the annealed condition. Moreover, all steels exhibited intergranular crack propagation during relaxation tests on Compact Tension specimens in the pre-strained state, but not in the annealed state. These results confirmed that the reheat cracking risk increases with both residual stress triaxiality and pre-strain. On the contrary, high solute content and strain-induced carbide precipitation, which are thought to increase reheat cracking risk of stabilised austenitic stainless steels did not appear as key parameters in reheat cracking of 316 stainless steels.

  5. Magnetic susceptibility and magnetization studies of some commercial austenitic stainless steels

    International Nuclear Information System (INIS)

    Collings, E.W.

    1979-01-01

    Results of magnetic susceptibility measurements using the Curie magnetic force technique are reported for six AISI 300-series alloys 310S, 304, 304L, 304N, 316, 316L as well as AWS 330 weld metal and Inconel 625. The temperature ranged from 5 to 416 0 K. Magnetization measurements over the temperature range 3 to 297 0 K, performed using a vibrating-sample magnetometer, are also reported. Alloy compositions and sample preparation procedures are discussed and numerical results of the study are presented. Magnetic characteristics of the four principal types of austenitic stainless steels studied are summarized

  6. Temperature effects on the mechanical properties of candidate SNS target container materials after proton and neutron irradiation

    International Nuclear Information System (INIS)

    Byun, T.S.; Farrell, K.; Lee, E.H.; Mansur, L.K.; Maloy, S.A.; James, M.R.; Johnson, W.R.

    2002-01-01

    This report presents the tensile properties of EC316LN austenitic stainless steel and 9Cr-2WVTa ferritic/martensitic steel after 800 MeV proton and spallation neutron irradiation to doses in the range 0.54-2.53 dpa at 30-100 deg. C. Tensile testing was performed at room temperature (20 deg. C) and 164 deg. C. The EC316LN stainless steel maintained notable strain-hardening capability after irradiation, while the 9Cr-2WVTa ferritic/martensitic steel posted negative hardening in the engineering stress-strain curves. In the EC316LN stainless steel, increasing the test temperature from 20 to 164 deg. C decreased the strength by 13-18% and the ductility by 8-36%. The effect of test temperature for the 9Cr-2WVTa ferritic/martensitic steel was less significant than for the EC316LN stainless steel. In addition, strain-hardening behaviors were analyzed for EC316LN and 316L stainless steels. The strain-hardening rate of the 316 stainless steels was largely dependent on test temperature. A calculation using reduction of area measurements and stress-strain data predicted positive strain hardening during plastic instability

  7. Microstructure of rapidly solidified Al2O3-dispersion-strengthened Type 316 stainless steel

    International Nuclear Information System (INIS)

    Megusar, J.; Arnberg, L.; Vander Sande, J.B.; Grant, N.J.

    1981-01-01

    An aluminum oxide dispersion strengthened 316 stainless steel was developed by surface oxidation. Surface oxidation was chosen as a preferred method in order to minimize formation of less stable chromium oxides. Ultra low C+N 316 stainless steel was alloyed with 1 wt % Al, rapidly solidified to produce fine powders and attrited to approximately 0.5 μm thick flakes to provide for surface oxidation. Oxide particles in the extruded material were identified mostly as Al oxides. In the preirradiated condition, oxide dispersion retarded crystallization and grain growth and had an effect on room temperature tensile properties. These structural modifications are expected to have an effect on the swelling resistance, structure stability and high temperature strength of austenitic stainless steels

  8. Dynamic strain ageing of deformed nitrogen-alloyed AISI 316 stainless steels

    International Nuclear Information System (INIS)

    Ehrnsten, U.; Toivonen, A.; Ivanchenko, M.; Nevdacha, V.; Yagozinskyy, Y.; Haenninen, H.

    2004-01-01

    Intergranular stress corrosion cracking has occurred in BWR environment in non-sensitized, deformed austenitic stainless steel materials. The affecting parameters are so far not fully known, but deformation mechanisms may be decisive. The effect of deformation and nitrogen content on the behaviour of austenitic stainless steels was investigated. The materials were austenitic stainless steels of AISI 316L type with different amounts of nitrogen (0.03 - 0.18%) and they were mechanically deformed 0, 5 and 20%. The investigations are focused on the dynamic strain ageing (DSA) behaviour. A few crack growth rate measurements are performed on nuclear grade AISI 316NG material with different degrees of deformation (0, 5 and 20%). The effects of DSA on mechanical properties of these materials are evaluated based on peaks in ultimate tensile strength and strain hardening coefficient and minimum in ductility in the DSA temperature range. Additionally, internal friction measurements have been performed in the temperature range of -100 to 600 deg. C for determining nitrogen interactions with other alloying elements and dislocations (cold-worked samples). The results show an effect of nitrogen on the stainless steel behaviour, e.g. clear indications of dynamic strain ageing and changes in the internal friction peaks as a function of nitrogen content and amount of deformation. (authors)

  9. Oxidization and stress corrosion cracking initiation of austenitic alloys in supercritical water

    International Nuclear Information System (INIS)

    Behnamian, Y.; Li, M.; Luo, J.L.; Chen, W.X.; Zheng, W.; Guzonas, D.A.

    2012-01-01

    This study determined the stress corrosion cracking behaviour of austenitic alloys in pure supercritical water. Austenitic stainless steels 310S, 316L, and Inconel 625 were tested as static capsule samples at 500 o C for up to 5000 h. After that period, crack initiations were readily observed in all samples, signifying susceptibility to stress corrosion cracking. The microcracks in 316L stainless steel and Inconel 625 were almost intergranular, whereas transgranular microcrack initiation was observed in 310S stainless steel. (author)

  10. Oxidization and stress corrosion cracking initiation of austenitic alloys in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Behnamian, Y.; Li, M.; Luo, J.L.; Chen, W.X. [Univ. of Alberta, Dept. of Chemical and Materials Engineering, Edmonton, Alberta (Canada); Zheng, W. [Materials Technology Laboratory, NRCan, Ottawa, Ontario (Canada); Guzonas, D.A. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2012-07-01

    This study determined the stress corrosion cracking behaviour of austenitic alloys in pure supercritical water. Austenitic stainless steels 310S, 316L, and Inconel 625 were tested as static capsule samples at 500{sup o}C for up to 5000 h. After that period, crack initiations were readily observed in all samples, signifying susceptibility to stress corrosion cracking. The microcracks in 316L stainless steel and Inconel 625 were almost intergranular, whereas transgranular microcrack initiation was observed in 310S stainless steel. (author)

  11. Welding stainless steels for structures operating at liquid helium temperature

    International Nuclear Information System (INIS)

    Witherell, C.E.

    1980-01-01

    Superconducting magnets for fusion energy reactors require massive monolithic stainless steel weldments which must operate at extremely low temperatures under stresses approaching 100 ksi (700 MPa). A three-year study was conducted to determine the feasibility of producing heavy-section welds having usable levels of strength and toughness at 4.2 0 K for fabrication of these structures in Type 304LN plate. Seven welding processes were evaluated. Test weldments in full-thickness plate were made under severe restraint to simulate that of actual structures. Type 316L filler metal was used for most welds. Welds deposited under some conditions and which solidify as primary austenite have exhibited intergranular embrittlement at 4.2 0 K. This is believed to be associated with grain boundary metal carbides or carbonitrides precipitated during reheating of already deposited beads by subsequent passes. Weld deposits which solidify as primary delta ferrite appear immune. Through use of fully austenitic filler metals of low nitrogen content under controlled shielded metal arc welding conditions, and through use of filler metals solidifying as primary delta ferrite where only minimum residuals remain to room temperature, welds of Type 316L composition have been made with 4.2K yield strength matching that of Type 304LN plate and acceptable levels of soundness, ductility and toughness

  12. Characterization of microstructures in austenitic stainless steels by ultrasonics

    International Nuclear Information System (INIS)

    Raj, Baldev; Palanichamy, P.; Jayakumar, T.; Kumar, Anish; Vasudevan, M.; Shankar, P.

    2000-01-01

    Recently, many nondestructive techniques have been considered for microstructural characterization of materials to enable in-situ component assessment for pre-service quality and in-service performance. Ultrasonic parameters have been used for estimation of average grain size, evaluation of recrystallization after cold working, and characterization of Cr2N precipitation during thermal aging in different grades of austenitic stainless steels. Ultrasonic first back wall echo signals were obtained from several specimens of AISI type 316 stainless steel with different grain sizes. Shift in the spectral peak frequency and the change in the full width at half maximum of the autopower spectrum of the first back wall echo are correlated with the grain size in the range 30-150 microns. The advantages of this method are: (i) independence of variation in couplant conditions (ii), applicable even to highly attenuating materials, (iii) direct correlation of the ultrasonic parameters with yield strength and (iv) suitability for shop-floor applications. Recrystallization behavior (temperature range 973-1173 K and time durations 0.5-1000 h) of cold worked titanium modified 316 stainless steel (D9) has been characterized using ultrasonic velocity measurements. A velocity parameter derived using a combination of shear and longitudinal wave velocities is correlated with the degree of recrystallization. These velocity measurement could also identify onset, progress and completion of recrystallization more accurately as compared to hardness and strength measurements. Ultrasonic velocity measurements were performed in thermally aged (at 1123 K for 10 to 2000 h) nuclear grade 316 LN stainless steel. Change in velocity due to thermal aging treatment could be used to reveal the formation of (i) Cr-N clusters associated with high lattice strains, (ii) coherent Cr2N precipitation, (iii) loss of coherency and (iv) growth of incoherent Cr2N precipitates. Microstructural characterization by

  13. Hardness analysis of welded joints of austenitic and duplex stainless steels

    Science.gov (United States)

    Topolska, S.

    2016-08-01

    Stainless steels are widely used in the modern world. The continuous increase in the use of stainless steels is caused by getting greater requirements relating the corrosion resistance of all types of devices. The main property of these steels is the ability to overlap a passive layer of an oxide on their surface. This layer causes that they become resistant to oxidation. One of types of corrosion-resistant steels is ferritic-austenitic steel of the duplex type, which has good strength properties. It is easily formable and weldable as well as resistant to erosion and abrasive wear. It has a low susceptibility to stress-corrosion cracking, to stress corrosion, to intercrystalline one, to pitting one and to crevice one. For these reasons they are used, among others, in the construction of devices and facilities designed for chemicals transportation and for petroleum and natural gas extraction. The paper presents the results which shows that the particular specimens of the ][joint representing both heat affected zones (from the side of the 2205 steel and the 316L one) and the weld are characterized by higher hardness values than in the case of the same specimens for the 2Y joint. Probably this is caused by machining of edges of the sections of metal sheets before the welding process, which came to better mixing of native materials and the filler metal. After submerged arc welding the 2205 steel still retains the diphase, austenitic-ferritic structure and the 316L steel retains the austenitic structure with sparse bands of ferrite σ.

  14. Predicted strains in austenitic stainless steels at stresses above yield

    International Nuclear Information System (INIS)

    Hammond, J.P.; Sikka, V.K.

    1977-01-01

    Tensile results on austenitic stainless steels were analyzed to develop means for predicting strains at stresses above yield for reactor regulatory applications. Eight heats each of types 316 and 304 were tested at 24, 93, 204, and 316 0 C as mill-annealed and at 24 0 C after reannealing. The effects of heat-to-heat variations on total strain (to 5%) at discrete stress levels were portrayed by a rational polynomial incorporating three constants that relate to the basic features of the true-stress-true-strain diagram. Because these constants usually are interrelated, a single parameter, yield strength (YS), proved adequate to predict results. For predictions analytical expressions of yield strength, an average value (YSa), and a lower bound value [YSa - 1.65SEE (standard error of estimate)] were used. Using the rational polynomial with these parameters we determined (1) limits of total maximum strain and (2) ratios of strain of material of lower bound YS to that of average YS. These are recorded at regular increments of stress [34 MPa (5 ksi)] and at ASME Code-related stresses (S/sub y), S/sub m/, 1.2S/sub m/ and 1.5S/sub m/). At intermediate stresses, strain penalties for using material of lower bound strength were large, generally larger for type 316 than type 304. For mill-annealed type 316 at 24, 93, 204, and 316 0 C, the maximum ratios of strain were 8.8, 13.0, 14.1, and 14.9, respectively, whereas for type 304 they were 3.5, 3.4, 5.6, and 4.6. At 1.5S/sub m/ and 316 0 C, a maximum strain of 2.08% was predicted for type 316 and 1.66% for type 304, as contrasted to values of 0.14 and 0.39% for average strain

  15. Cavitation erosion resistance of AISI 316L stainless steel laser surface-modified with NiTi

    International Nuclear Information System (INIS)

    Chiu, K.Y.; Cheng, F.T.; Man, H.C.

    2005-01-01

    The present study is part of a project on the surface modification of AISI 316 stainless steel using various forms of NiTi for enhancing cavitation erosion resistance. In this study, NiTi powder was preplaced on the AISI 316L substrate and melted with a high-power CW Nd:YAG laser. With appropriate laser processing parameters, an alloyed layer of a few hundred micrometers thick was formed and fusion bonded to the substrate without the formation of a brittle interface. EDS analysis showed that the layer contained Fe as the major constituent element while the XRD patterns of the surface showed an austenitic structure, similar to that of 316 stainless steel. The cavitation erosion resistance of the modified layer (316-NiTi-Laser) could reach about 29 times that of AISI 316L stainless steel. The improvement could be attributed to a much higher surface hardness and elasticity as revealed by instrumented nanoindentation tests. Among various types of samples, the cavitation erosion resistance was ranked in descending order as: NiTi plate > 316-NiTi-Laser > 316-NiTi-TIG > AISI 316L, where 316-NiTi-TIG stands for samples surfaced with the tungsten inert gas (TIG) process using NiTi wire. Though the laser-surfaced samples and the TIG-surfaced samples had similar indentation properties, the former exhibited a higher erosion resistance mainly because of a more homogeneous alloyed layer with much less defects. In both the laser-surfaced and TIG-surfaced samples, the superelastic behavior typical of austenitic NiTi was only partially retained and the superior cavitation erosion resistance was thus still not fully attained

  16. Thermodynamic modeling and kinetics simulation of precipitate phases in AISI 316 stainless steels

    International Nuclear Information System (INIS)

    Yang, Y.; Busby, J.T.

    2014-01-01

    This work aims at utilizing modern computational microstructural modeling tools to accelerate the understanding of phase stability in austenitic steels under extended thermal aging. Using the CALPHAD approach, a thermodynamic database OCTANT (ORNL Computational Thermodynamics for Applied Nuclear Technology), including elements of Fe, C, Cr, Ni, Mn, Mo, Si, and Ti, has been developed with a focus on reliable thermodynamic modeling of precipitate phases in AISI 316 austenitic stainless steels. The thermodynamic database was validated by comparing the calculated results with experimental data from commercial 316 austenitic steels. The developed computational thermodynamics was then coupled with precipitation kinetics simulation to understand the temporal evolution of precipitates in austenitic steels under long-term thermal aging (up to 600,000 h) at a temperature regime from 300 to 900 °C. This study discusses the effect of dislocation density and difusion coefficients on the precipitation kinetics at low temperatures, which shed a light on investigating the phase stability and transformation in austenitic steels used in light water reactors

  17. Deformation effects on the development of grain boundary chronium depletion (sensitization) in type 316 austenitic stainless steels

    International Nuclear Information System (INIS)

    Atteridge, D.G.; Wood, W.E.; Advani, A.H.; Bruemmer, S.M.

    1990-01-01

    Deformation induces an acceleration in the kinetics and reduction in the thermodynamic barrier to carbide precipitation and grain boundary chromium depletion (GBCD) development of a high carbon Type 316 stainless steel (SS). This was observed in a study on strain effects on GBCD (or sensitization) development in the range of 575 degree C to 775 degree C. Grain boundary chromium depletion behavior of SS was examined using the indirect electrochemical potentiokinetic reactivation (EPR) test and supported by studies on carbide precipitation using transmission electron microscopy (TEM). 99 refs., 84 figs., 9 tabs

  18. Passive behavior of a bulk nanostructured 316L austenitic stainless steel consisting of nanometer-sized grains with embedded nano-twin bundles

    International Nuclear Information System (INIS)

    Li, Tianshu; Liu, Li; Zhang, Bin; Li, Ying; Yan, Fengkai; Tao, Nairong; Wang, Fuhui

    2014-01-01

    Highlights: • Nanometer-grains (NG) and bundles of nano-twins (NT) is synthesized in 316L. • (NG + NT) and NT enhance the concentration of active Fe Fe in the passive film. • (NG + NT) and NT enhance the passive ability. • A Cr 0 -enriched layer forms at the passive film/metal interface. - Abstract: The passive behavior of a bulk nanostructured 316L austenitic stainless steel consisting of nanometer-sized grains (NG) and nano-twin bundles (NT) are investigated. The electrochemical results indicate that the spontaneous passivation ability and growth rate of passive film are improved. The X-ray photoelectron spectroscopy (XPS) shows that a Cr 0 -enriched layer forms at the passive film/metal interface. More nucleation sites afforded by the nanostructures and the enhanced diffusion rate of charged species across the passive film are believed to be responsible for the improved passive ability. The PDM model is introduced to elaborate the microscopic process of passivation

  19. General and Localized corrosion of Austenitic and Borated Stainless Steels in Simulated Concentrated Ground Waters

    International Nuclear Information System (INIS)

    Fix, D.; Estill, J.; Wong, L.; Rebak, R.

    2004-01-01

    Boron containing stainless steels are used in the nuclear industry for applications such as spent fuel storage, control rods and shielding. It was of interest to compare the corrosion resistance of three borated stainless steels with standard austenitic alloy materials such as type 304 and 316 stainless steels. Tests were conducted in three simulated concentrated ground waters at 90 C. Results show that the borated stainless were less resistant to corrosion than the witness austenitic materials. An acidic concentrated ground water was more aggressive than an alkaline concentrated ground water

  20. The wear and corrosion resistance of shot peened-nitrided 316L austenitic stainless steel

    International Nuclear Information System (INIS)

    Hashemi, B.; Rezaee Yazdi, M.; Azar, V.

    2011-01-01

    Research highlights: → Shot peening-nitriding increased the wear resistance and surface hardness of samples. → This treatment improved the surface mechanical properties. → Shot peening alleviates the adverse effects of nitriding on the corrosion behavior. -- Abstract: 316L austenitic stainless steel was gas nitrided at 570 o C with pre-shot peening. Shot peening and nitriding are surface treatments that enhance the mechanical properties of surface layers by inducing compressive residual stresses and formation of hard phases, respectively. The structural phases, micro-hardness, wear behavior and corrosion resistance of specimens were investigated by X-ray diffraction, Vickers micro-hardness, wear testing, scanning electron microscopy and cyclic polarization tests. The effects of shot peening on the nitride layer formation and corrosion resistance of specimens were studied. The results showed that shot peening enhanced the nitride layer formation. The shot peened-nitrided specimens had higher wear resistance and hardness than other specimens. On the other hand, although nitriding deteriorated the corrosion resistance of the specimens, cyclic polarization tests showed that shot peening before the nitriding treatment could alleviate this adverse effect.

  1. Welding of 316L Austenitic Stainless Steel with Activated Tungsten Inert Gas Process

    Science.gov (United States)

    Ahmadi, E.; Ebrahimi, A. R.

    2015-02-01

    The use of activating flux in TIG welding process is one of the most notable techniques which are developed recently. This technique, known as A-TIG welding, increases the penetration depth and improves the productivity of the TIG welding. In the present study, four oxide fluxes (SiO2, TiO2, Cr2O3, and CaO) were used to investigate the effect of activating flux on the depth/width ratio and mechanical property of 316L austenitic stainless steel. The effect of coating density of activating flux on the weld pool shape and oxygen content in the weld after the welding process was studied systematically. Experimental results indicated that the maximum depth/width ratio of stainless steel activated TIG weld was obtained when the coating density was 2.6, 1.3, 2, and 7.8 mg/cm2 for SiO2, TiO2, Cr2O3, and CaO, respectively. The certain range of oxygen content dissolved in the weld, led to a significant increase in the penetration capability of TIG welds. TIG welding with active fluxes can increase the delta-ferrite content and improves the mechanical strength of the welded joint.

  2. Ultrasonic nonlinearity of AISI316 austenitic steel subjected to long-term isothermal aging

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Won Sik; Kim, Chung Seok [Dept. of Materials Science and Engineering, Chosun University, Gwangju (Korea, Republic of)

    2014-06-15

    This study presents the ultrasonic nonlinearity of AISI316 austenitic stainless steels subjected to longterm isothermal aging. These steels are attractive materials for use in industrial mechanical structures because of their strength at high-temperatures and their chemical stability. The test materials were subjected to accelerated heat-treatment in an electrical furnace for a predetermined aging duration. The variations in the ultrasonic nonlinearity and microstructural damage were carefully evaluated through observation of the microstructure. The ultrasonic nonlinearity stiffly dropped after aging for up to 1000 h and, then, monotonously decreased. The polygonal shape of the initial grain structures changed to circular, especially as the annealing twins in the grains dissolved and disappeared. The delta ferrite on the grain boundaries could not be observed at 1000 h of aging, and these continuously transformed into their sigma phases. Consequently, in the intial aging period, the rapid decrease in the ultrasonic nonlinearity was caused by voids, dislocations, and twin annihilation. The continuous monotonic decrease in the ultrasonic nonlinearity after the first drop resulted from the generation of Cr{sub 23}C{sub 6} precipitates and σ phases.

  3. Development of nanostructured SUS316L-2%TiC with superior tensile properties

    Science.gov (United States)

    Sakamoto, T.; Kurishita, H.; Matsuo, S.; Arakawa, H.; Takahashi, S.; Tsuchida, M.; Kobayashi, S.; Nakai, K.; Terasawa, M.; Yamasaki, T.; Kawai, M.

    2015-11-01

    Structural materials used in radiation environments require radiation tolerance and sufficient mechanical properties in the controlled state. In order to offer SUS316L austenitic stainless steel with the assumed requirements, nanostructured SUS316L with TiC addition of 2% (SUS316L-2TiC) that is capable of exhibiting enhanced tensile ductility and flow strength sufficient for structural applications was fabricated by advanced powder metallurgical methods. The methods include MA (Mechanical Alloying), HIP (Hot Isostatic Pressing), GSMM (Grain boundary Sliding Microstructural Modification) for ductility enhancement, cold rolling at temperatures below Md (the temperature where the martensite phase occurs by plastic deformation) for phase transformation from austenite to martensite and heat treatment for reverse transformation from martensite to austenite. It is shown that the developed SUS316L-2TiC exhibits ultrafine grains with sizes of 90-270 nm, accompanied by TiC precipitates with 20-50 nm in grain interior and 70-110 nm at grain boundaries, yield strengths of 1850 to 900 MPa, tensile strengths of 1920 to 1100 MPa and uniform elongations of 0.6-21%, respectively, depending on the heat treatment temperature after rolling at -196 °C.

  4. Evaluation of deformation behavior of in grains and grain boundaries of L-grade austenitic stainless steel 316L

    International Nuclear Information System (INIS)

    Nagashima, Nobuo; Hayakawa, Masao; Tsukada, Takashi; Kaji, Yoshiyuki; Miwa, Yukio; Ando, Masami; Nakata, Kiyotomo

    2009-01-01

    In this study, micro-hardness tests and AFM observations were performed on SUS 316L low-carbon austenitic stainless steel pre-strained by cold rolling to investigate its deformation behavior. The following results were obtained. Despite the fact that the same plastic strain was applied, post-tensile test AFM showed narrower slip-band spacing in a reduction in area of 30% cold-rolled specimen than the unrolled specimen. Concentrated slip bands were observed near grain boundaries. These were presumably due to slip blocking at grain boundaries. SCC sensitivity increased at a hardness of 300 or higher, the frequency occurrence of a hardness of 300 or higher in the micro-hardness measurements was compared. The micro-hardness did not exceed 300 both within grains and at grain boundaries in the unrolled and up to a reduction in area of 20% cold-rolled specimens of before and after the tensile tests. Micro-hardness exceeding 300 was found to occur frequently in after tensile test specimens with a reduction in area of 30% or more, particularly at grain boundaries. It is suggested that the nonuniformity of deformation at grain boundaries plays an important role of IGSCC crack propagation mechanism of low-carbon austenitic stainless steel. (author)

  5. Microstructure and local texture evolution by plasma nitriding in a 316L austenitic stainless steel and consequences on its fatigue durability

    International Nuclear Information System (INIS)

    Stinville, Jean-Charles

    2010-01-01

    The present study concerns the surface and mechanical properties induced by specific low temperature (∼400 C) plasma nitriding of an AISI 316L austenitic stainless steel largely used for structural component in nuclear and chemical industries. It focuses especially on its influence on the fatigue durability. The great advantages of this plasma nitriding process are to produce thick nitrided layers with a high concentration of nitrogen atoms in solid solution into the material and to preserve the stainless character of the substrate. As a consequence a new phase named expanded austenite or γ N phase is formed and the lattice expansion associated with the high supersaturation of interstitial nitrogen atoms results in residual compressive stresses at the surface that exceed 2 GPa. The surface is then strongly modified as a result of complex effects including some crystallographic plane rotation, plasticity and damage in some grains depending on their orientation. The considerable increase of hardness and wear resistance produced by plasma nitriding of austenitic stainless steels is now well documented but there are practically no data on the influence on fatigue properties. Series of fatigue tests in air at room temperature carried out in the low cycle fatigue range show a significant improvement of the fatigue life. The results are discussed especially taking into account the compressive residual stresses induced by the nitrided layer. (authors)

  6. Copper precipitation behavior and mechanical properties of Cu-bearing 316L austenitic stainless steel: A comprehensive cross-correlation study

    International Nuclear Information System (INIS)

    Xi, Tong; Babar Shahzad, M.; Xu, Dake; Zhao, Jinlong; Yang, Chunguang; Qi, Min; Yang, Ke

    2016-01-01

    The effect of precipitation hardening on mechanical properties and coarsening behavior of Cu-rich precipitates in a Cu-bearing 316L austenite stainless steel after aging at 700 °C for different time were systematically investigated. The variations of morphology and composition of Cu-rich precipitates as a function of aging time were respectively characterized by electrical resistivity, atom probe tomography (APT) and transmission electron microscopy (TEM). It was found that both hardness and mechanical strength increased to peak value within short aging time, and remained nearly unchanged with prolonged aging time. The TEM observation confirmed a coherent interface between Cu-rich precipitates and austenite matrix, while high number densities of spheroidal Cu-rich precipitates were observed in all aged samples. APT analyses confirmed virtually 100% Cu core composition of Cu-rich precipitates, whereas the average radius was slightly increased from 1.38±0.46 nm to 2.39±0.81 nm with increasing the aging time. The relatively slow growth and coarsening behavior of Cu-rich precipitates was largely attributed to the slower diffusion kinetics of Cu, low interfacial energy and high strain energy of Cu-rich precipitates in the austenite matrix, and was well predicted by the Lifshitz-Slyozov-Wagner theory. The slow increase in average radius of Cu-rich precipitates was consistent with the modest change in hardness and yield strength with extended aging. In addition, the precipitation strengthening effects of Cu-rich precipitates were quantitatively evaluated and analyzed. These cumulative results and analyses could provide a solid foundation for much wider applications of Cu-bearing stainless steels.

  7. Copper precipitation behavior and mechanical properties of Cu-bearing 316L austenitic stainless steel: A comprehensive cross-correlation study

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Tong [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Babar Shahzad, M.; Xu, Dake; Zhao, Jinlong [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Yang, Chunguang, E-mail: cgyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Qi, Min [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2016-10-15

    The effect of precipitation hardening on mechanical properties and coarsening behavior of Cu-rich precipitates in a Cu-bearing 316L austenite stainless steel after aging at 700 °C for different time were systematically investigated. The variations of morphology and composition of Cu-rich precipitates as a function of aging time were respectively characterized by electrical resistivity, atom probe tomography (APT) and transmission electron microscopy (TEM). It was found that both hardness and mechanical strength increased to peak value within short aging time, and remained nearly unchanged with prolonged aging time. The TEM observation confirmed a coherent interface between Cu-rich precipitates and austenite matrix, while high number densities of spheroidal Cu-rich precipitates were observed in all aged samples. APT analyses confirmed virtually 100% Cu core composition of Cu-rich precipitates, whereas the average radius was slightly increased from 1.38±0.46 nm to 2.39±0.81 nm with increasing the aging time. The relatively slow growth and coarsening behavior of Cu-rich precipitates was largely attributed to the slower diffusion kinetics of Cu, low interfacial energy and high strain energy of Cu-rich precipitates in the austenite matrix, and was well predicted by the Lifshitz-Slyozov-Wagner theory. The slow increase in average radius of Cu-rich precipitates was consistent with the modest change in hardness and yield strength with extended aging. In addition, the precipitation strengthening effects of Cu-rich precipitates were quantitatively evaluated and analyzed. These cumulative results and analyses could provide a solid foundation for much wider applications of Cu-bearing stainless steels.

  8. Microstructural characterization of pulsed plasma nitrided 316L stainless steel

    International Nuclear Information System (INIS)

    Asgari, M.; Barnoush, A.; Johnsen, R.; Hoel, R.

    2011-01-01

    Highlights: → The low temperature pulsed plasma nitrided layer of 316 SS was studied. → The plastic deformation induced in the austenite due to nitriding is characterized by EBSD at different depths (i.e., nitrogen concentration). → Nanomechanical properties of the nitride layer was investigated by nanoindentation at different depths (i.e., nitrogen concentration). → High hardness, high nitrogen concentration and high dislocation density is detected in the nitride layer. → The hardness and nitrogen concentration decreased sharply beyond the nitride layer. - Abstract: Pulsed plasma nitriding (PPN) treatment is one of the new processes to improve the surface hardness and tribology behavior of austenitic stainless steels. Through low temperature treatment (<440 deg. C), it is possible to obtain unique combinations of wear and corrosion properties. Such a combination is achieved through the formation of a so-called 'extended austenite phase'. These surface layers are often also referred to as S-phase, m-phase or γ-phase. In this work, nitrided layers on austenitic stainless steels AISI 316L (SS316L) were examined by means of a nanoindentation method at different loads. Additionally, the mechanical properties of the S-phase at different depths were studied. Electron back-scatter diffraction (EBSD) examination of the layer showed a high amount of plasticity induced in the layer during its formation. XRD results confirmed the formation of the S-phase, and no deleterious CrN phase was detected.

  9. Influence of Heat Treatment on Mercury Cavitation Resistance of Surface Hardened 316LN Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, Steven J [ORNL; Hsu, Julia [Massachusetts Institute of Technology (MIT)

    2010-11-01

    The cavitation-erosion resistance of carburized 316LN stainless steel was significantly degraded but not destroyed by heat treatment in the temperature range 500-800 C. The heat treatments caused rejection of some carbon from the carburized layer into an amorphous film that formed on each specimen surface. Further, the heat treatments encouraged carbide precipitation and reduced hardness within the carburized layer, but the overall change did not reduce surface hardness fully to the level of untreated material. Heat treatments as short as 10 min at 650 C substantially reduced cavitation-erosion resistance in mercury, while heat treatments at 500 and 800 C were found to be somewhat less detrimental. Overall, the results suggest that modest thermal excursions perhaps the result of a weld made at some distance to the carburized material or a brief stress relief treatment will not render the hardened layer completely ineffective but should be avoided to the greatest extent possible.

  10. Deformation induced martensite in AISI 316 stainless steel

    International Nuclear Information System (INIS)

    Solomon, N.; Solomon, I.

    2010-01-01

    The forming process leads to a considerable differentiation of the strain field within the billet, and finally causes the non-uniform distribution of the total strain, microstructure and properties of the material over the product cross-section. This paper focus on the influence of stress states on the deformation-induced a martensitic transformation in AISI Type 316 austenitic stainless steel. The formation of deformation-induced martensite is related to the austenite (g) instability at temperatures close or below room temperature. The structural transformation susceptibility is correlated to the stacking fault energy (SFE), which is a function not only of the chemical composition, but also of the testing temperature. Austenitic stainless steels possess high plasticity and can be easily cold formed. However, during cold processing the hardening phenomena always occurs. Nevertheless, the deformation-induced martensite transformation may enhance the rate of work-hardening and it may or may not be in favour of further material processing. Due to their high corrosion resistance and versatile mechanical properties the austenitic stainless steels are used in pressing of heat exchanger plates. However, this corrosion resistance is influenced by the amount of martensite formed during processing. In order to establish the links between total plastic strain, and martensitic transformation, the experimental tests were followed by numerical simulation. (Author) 21 refs.

  11. Modeling of the mechanical behavior of austenitic stainless steels under pure fatigue and fatigue relaxation loadings

    International Nuclear Information System (INIS)

    Hajjaji-Rachdi, Fatima

    2015-01-01

    Austenitic stainless steels are potential candidates for structural components of sodium-cooled fast neutron reactors. Many of these components will be subjected to cyclic loadings including long hold times (1 month) under creep or relaxation at high temperature. These hold times are unattainable experimentally. The aim of the present study is to propose mechanical models which take into account the involved mechanisms and their interactions during such complex loadings. First, an experimental study of the pure fatigue and fatigue-relaxation behavior of 316L(N) at 500 C has been carried out with very long hold times (10 h and 50 h) compared with the ones studied in literature. Tensile tests at 600 C with different applied strain rates have been undertaken in order to study the dynamic strain ageing phenomenon. Before focusing on more complex loadings, the mean field homogenization approach has been used to predict the mechanical behavior of different FCC metals and alloys under low cycle fatigue at room temperature. Both Hill-Hutchinson and Kroener models have been used. Next, a physically-based model based on dislocation densities has been developed and its parameters measured. The model allows predictions in a qualitative agreement with experimental data for tensile loadings. Finally, this model has been enriched to take into account visco-plasticity, dislocation climb and interaction between dislocations and solute atoms, which are influent during creep-fatigue or fatigue relaxation at high temperature. The proposed model uses three adjustable parameters only and allows rather accurate prediction of the behavior of 316L(N) steel under tensile loading and relaxation. (author) [fr

  12. Dissolution corrosion of 316L austenitic stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500 °C

    Energy Technology Data Exchange (ETDEWEB)

    Lambrinou, Konstantina, E-mail: klambrin@sckcen.be [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Charalampopoulou, Evangelia [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); University of Antwerp, Electron Microscopy for Materials Science (EMAT), Groenenborgerlaan 171, 2020 Antwerpen (Belgium); Van der Donck, Tom [KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, 3001 Leuven (Belgium); Delville, Rémi [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Schryvers, Dominique [University of Antwerp, Electron Microscopy for Materials Science (EMAT), Groenenborgerlaan 171, 2020 Antwerpen (Belgium)

    2017-07-15

    This work addresses the dissolution corrosion behaviour of 316L austenitic stainless steels. For this purpose, solution-annealed and cold-deformed 316L steels were simultaneously exposed to oxygen-poor (<10{sup −8} mass%) static liquid lead-bismuth eutectic (LBE) for 253–3282 h at 500 °C. Corrosion was consistently more severe for the cold-drawn steels than the solution-annealed steel, indicating the importance of the steel thermomechanical state. The thickness of the dissolution-affected zone was non-uniform, and sites of locally-enhanced dissolution were occasionally observed. The progress of LBE dissolution attack was promoted by the interplay of certain steel microstructural features (grain boundaries, deformation twin laths, precipitates) with the dissolution corrosion process. The identified dissolution mechanisms were selective leaching leading to steel ferritization, and non-selective leaching; the latter was mainly observed in the solution-annealed steel. The maximum corrosion rate decreased with exposure time and was found to be inversely proportional to the depth of dissolution attack. - Highlights: •Dissolution corrosion was more severe in cold-deformed than solution-annealed 316L steels. •LBE penetration occurred along preferential paths in the steel microstructure. •The maximum dissolution rate was inversely proportionate to the depth of dissolution.

  13. Welding stainless steels for structures operating at liquid helium temperature

    Energy Technology Data Exchange (ETDEWEB)

    Witherell, C.E.

    1980-04-18

    Superconducting magnets for fusion energy reactors require massive monolithic stainless steel weldments which must operate at extremely low temperatures under stresses approaching 100 ksi (700 MPa). A three-year study was conducted to determine the feasibility of producing heavy-section welds having usable levels of strength and toughness at 4.2/sup 0/K for fabrication of these structures in Type 304LN plate. Seven welding processes were evaluated. Test weldments in full-thickness plate were made under severe restraint to simulate that of actual structures. Type 316L filler metal was used for most welds. Welds deposited under some conditions and which solidify as primary austenite have exhibited intergranular embrittlement at 4.2/sup 0/K. This is believed to be associated with grain boundary metal carbides or carbonitrides precipitated during reheating of already deposited beads by subsequent passes. Weld deposits which solidify as primary delta ferrite appear immune. Through use of fully austenitic filler metals of low nitrogen content under controlled shielded metal arc welding conditions, and through use of filler metals solidifying as primary delta ferrite where only minimum residuals remain to room temperature, welds of Type 316L composition have been made with 4.2K yield strength matching that of Type 304LN plate and acceptable levels of soundness, ductility and toughness.

  14. Development of nanostructured SUS316L-2%TiC with superior tensile properties

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, T., E-mail: sakamoto.tatsuaki.mm@ehime-u.ac.jp [Department of Materials Science and Biotechnology, Ehime University, Matsuyama 790-8577 (Japan); Kurishita, H.; Matsuo, S.; Arakawa, H. [International Research Center for Nuclear Materials Science, IMR, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Takahashi, S.; Tsuchida, M. [Ehime University, Matsuyama 790-8577 (Japan); Kobayashi, S.; Nakai, K. [Department of Materials Science and Biotechnology, Ehime University, Matsuyama 790-8577 (Japan); Terasawa, M. [Laboratory of Advanced Science & Technology for Industry, University of Hyogo, 3-1-2 Koto, Kamigori-cho, Hyogo 678-1205 (Japan); Yamasaki, T. [Department of Materials Science & Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2201 (Japan); Kawai, M. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki-ken 305-0801 (Japan)

    2015-11-15

    Structural materials used in radiation environments require radiation tolerance and sufficient mechanical properties in the controlled state. In order to offer SUS316L austenitic stainless steel with the assumed requirements, nanostructured SUS316L with TiC addition of 2% (SUS316L-2TiC) that is capable of exhibiting enhanced tensile ductility and flow strength sufficient for structural applications was fabricated by advanced powder metallurgical methods. The methods include MA (Mechanical Alloying), HIP (Hot Isostatic Pressing), GSMM (Grain boundary Sliding Microstructural Modification) for ductility enhancement, cold rolling at temperatures below M{sub d} (the temperature where the martensite phase occurs by plastic deformation) for phase transformation from austenite to martensite and heat treatment for reverse transformation from martensite to austenite. It is shown that the developed SUS316L-2TiC exhibits ultrafine grains with sizes of 90–270 nm, accompanied by TiC precipitates with 20–50 nm in grain interior and 70–110 nm at grain boundaries, yield strengths of 1850 to 900 MPa, tensile strengths of 1920 to 1100 MPa and uniform elongations of 0.6–21%, respectively, depending on the heat treatment temperature after rolling at −196 °C. - Highlights: • Nanostructured SUS316L-2%TiC exhibiting sufficient tensile ductility and strength is developed. • The development requires an advanced powder metallurgical route. • The route includes MA, HIP, GSMM and thermo-mechanical treatments for phase transformation. • The austenite grain sizes are 90–270 nm and TiC precipitates 20–50 nm in grain interior. • The tensile strength are 1100–1920 MPa and uniform elongation 0.6–21%.

  15. Development of nanostructured SUS316L-2%TiC with superior tensile properties

    International Nuclear Information System (INIS)

    Sakamoto, T.; Kurishita, H.; Matsuo, S.; Arakawa, H.; Takahashi, S.; Tsuchida, M.; Kobayashi, S.; Nakai, K.; Terasawa, M.; Yamasaki, T.; Kawai, M.

    2015-01-01

    Structural materials used in radiation environments require radiation tolerance and sufficient mechanical properties in the controlled state. In order to offer SUS316L austenitic stainless steel with the assumed requirements, nanostructured SUS316L with TiC addition of 2% (SUS316L-2TiC) that is capable of exhibiting enhanced tensile ductility and flow strength sufficient for structural applications was fabricated by advanced powder metallurgical methods. The methods include MA (Mechanical Alloying), HIP (Hot Isostatic Pressing), GSMM (Grain boundary Sliding Microstructural Modification) for ductility enhancement, cold rolling at temperatures below M_d (the temperature where the martensite phase occurs by plastic deformation) for phase transformation from austenite to martensite and heat treatment for reverse transformation from martensite to austenite. It is shown that the developed SUS316L-2TiC exhibits ultrafine grains with sizes of 90–270 nm, accompanied by TiC precipitates with 20–50 nm in grain interior and 70–110 nm at grain boundaries, yield strengths of 1850 to 900 MPa, tensile strengths of 1920 to 1100 MPa and uniform elongations of 0.6–21%, respectively, depending on the heat treatment temperature after rolling at −196 °C. - Highlights: • Nanostructured SUS316L-2%TiC exhibiting sufficient tensile ductility and strength is developed. • The development requires an advanced powder metallurgical route. • The route includes MA, HIP, GSMM and thermo-mechanical treatments for phase transformation. • The austenite grain sizes are 90–270 nm and TiC precipitates 20–50 nm in grain interior. • The tensile strength are 1100–1920 MPa and uniform elongation 0.6–21%.

  16. A comparative study on the compatibility of liquid lead–gold eutectic and liquid lead–bismuth eutectic with T91 and SS 316LN steels

    International Nuclear Information System (INIS)

    Dai, Y.; Gao, W.; Zhang, T.; Platacis, E.; Heinitz, S.; Thomsen, K.

    2012-01-01

    Liquid lead–gold eutectic (LGE) is considered as a potential target material for high power spallation sources. In the present work, the corrosion effects of LGE on T91 and SS 316LN steels have been investigated in comparison with that of liquid lead–bismuth eutectic (LBE) under the same testing conditions. Two tests were conducted at 400 °C for 1800 h and at 450 °C for 1300 h, in which specimens of the two steels were exposed to 1 m/s flowing LGE and LBE. Surface inspections showed that the specimens underwent a mixed corrosion mode of dissolution and oxidation. The results obtained from the SS 316LN specimens are very interesting. Firstly, EDX (electron energy dispersion X-ray spectrometry) analyses revealed that Ni, Cr and Mn have a higher dissolution rate in LGE than in LBE. Secondly, it was observed that LBE attacked strongly on grain-boundaries (GBs) and twin-boundaries (TBs), while LGE did not preferentially attack GBs and TBs. Further, the diffusion or penetration paths of LBE look straight, while those of LGE look like a complex network. In the attacked regions the chemical composition of the steel did not change much in the LBE case, but changed greatly in the LGE case. The T91 specimens exhibited considerably weaker corrosion effects under the present testing conditions.

  17. The characteristics creep fracture of austenitic stainless steels

    International Nuclear Information System (INIS)

    Monteiro, S.N.; Assis, A.M.C.A.

    1977-05-01

    The characteristics of fracture on creep of two AISI type 316 austenitic stainless steels tested at constant load from 600 to 800 0 C were studied by scanning electron microscopy. The morphological aspects of the fracture were analysed and correllated to the ductility level attained in creep. A marked change from intergranular to transgranular type of fracture was observed in going from 600 to 800 0 C. At 800 0 C on the other hand, the condition for crack nucleation at sigma phase as well as the special conditions of oxidation, are apparently responsible for that same change with the applied stress. (Author) [pt

  18. Implications of radiation-induced reductions in ductility to the design of austenitic stainless steel structures

    International Nuclear Information System (INIS)

    Lucas, G.E.; Billone, M.; Pawel, J.E.; Hamilton, M.L.

    1995-01-01

    In the dose and temperature range anticipated for ITER, austenitic stainless steels exhibit significant hardening with a concomitant loss in work hardening and uniform elongation. However, significant post-necking ductility may still be retained. When uniform elongation (e u ) is well defined in terms of a plastic instability criterion, e u is found to sustain reasonably high values out to about 7 dpa in the temperature range 250-350 C, beyond which it decreases to about 0.3% for 316LN. This loss of ductility has significant implications to fracture toughness and the onset of new failure modes associated with hear instability. However, the retention of a significant reduction in area at failure following irradiation indicates a less severe degradation of low-cycle fatigue life in agreement with a limited amount of data obtained to date. Suggestions are made for incorporating these results into design criteria and future testing programs

  19. Evaluation of AISI 316L stainless steel welded plates in heavy petroleum environment

    International Nuclear Information System (INIS)

    Carvalho Silva, Cleiton; Pereira Farias, Jesualdo; Batista de Sant'Ana, Hosiberto

    2009-01-01

    This work presents the study done on the effect of welding heating cycle on AISI 316L austenitic stainless steel corrosion resistance in a medium containing Brazilian heavy petroleum. AISI 316L stainless steel plates were welded using three levels of welding heat input. Thermal treatments were carried out at two levels of temperatures (200 and 300 deg. C). The period of treatment in all the trials was 30 h. Scanning electronic microscopy (SEM) and analysis of X-rays dispersive energy (EDX) were used to characterize the samples. Weight loss was evaluated to determine the corrosion rate. The results show that welding heating cycle is sufficient to cause susceptibility to corrosion caused by heavy petroleum to the heat affected zone (HAZ) of the AISI 316L austenitic stainless steel

  20. Plasticity-induced martensitic transformation in austenitic stainless steels SUS 304 and SUS 316 L at room and liquid nitrogen temperatures. Quantitative measurement using X-ray diffraction method

    International Nuclear Information System (INIS)

    Iwasaki, Yoshifumi; Nakasone, Yuji; Shimizu, Tetsu; Kobayashi, Noboru

    2006-01-01

    The present study investigates plasticity-induced martensitic transformation in two types of austenitic stainless steels SUS 304 and 316 L subjected to uniform tensile stresses at room and liquid nitrogen temperatures. The X-ray diffraction method was used in order to measure volume fractions of transformed α' and ε' martensitic phases and to obtain the dependence of the volume fractions of these phases on the applied strain level ε. The difficulty in the measurement of the martensitic phases by the X-ray diffraction method caused by the preferred orientation which had been introduced during the rolling process and during the tensile tests was overcome by the help of Arnell's Method. Two types of target materials, i.e. Cu and Mo for the X-ray source were used to verify the accuracy and reproducibility of the present X-ray diffraction analyses. The results were also compared with those obtained by the saturation magnetization method using VSM, or vibrating-sample magnetometer reported elsewhere. It was revealed that α' was transformed in SUS 304 both at 297 and 77 K whereas in SUS 316L only at 77 K. Another type of martensitic phase, i.e., ε was transformed in the both steels only at 77 K. Almost the same values of the volume fractions of α' and ε' phases were obtained by the two types of target materials. The plots of α' volume fraction obtained by the X-ray diffraction methods vs. that by VSM showed a good linear correlation. (author)

  1. Design of Wear-Resistant Austenitic Steels for Selective Laser Melting

    Science.gov (United States)

    Lemke, J. N.; Casati, R.; Lecis, N.; Andrianopoli, C.; Varone, A.; Montanari, R.; Vedani, M.

    2018-03-01

    Type 316L stainless steel feedstock powder was modified by alloying with powders containing carbide/boride-forming elements to create improved wear-resistant austenitic alloys that can be readily processed by Selective Laser Melting. Fe-based alloys with high C, B, V, and Nb contents were thus produced, resulting in a microstructure that consisted of austenitic grains and a significant amount of hard carbides and borides. Heat treatments were performed to modify the carbide distribution and morphology. Optimal hard-phase spheroidization was achieved by annealing the proposed alloys at 1150 °C for 1 hour followed by water quenching. The total increase in hardness of samples containing 20 pct of C/B-rich alloy powder was of 82.7 pct while the wear resistance could be increased by a factor of 6.

  2. Delayed cracking in 301LN austenitic steel after deep drawing: Martensitic transformation and residual stress analysis

    International Nuclear Information System (INIS)

    Berrahmoune, M.R.; Berveiller, S.; Inal, K.; Patoor, E.

    2006-01-01

    The main objective of this work is to study the delayed cracking phenomenon of the 301LN unstable austenitic steel, by determining the distribution of residual stresses after deep drawing, taking into account the phase transformation. Deep drawing for different ratios is done for two different temperatures. Cracks appear for the highest drawing ratio (DR = 2.00) in the top of the cup. The breaking patterns observed using a scanning electron microscope show ductile fracture in the middle region, and both intergranular and transgranular rupture in the edges. Martensite contents throughout the cup wall and through the thickness are determined. Increasing the martensite content was found to have a great effect on the cracking sensitivity. X-ray diffraction allows us to determine the residual stresses in the martensitic phase. These last are positive, increase with increasing drawing ratios. The maximum value is located at the middle height of the cup, it exceeds 500 MPa for the 2.00 drawing ratio, and is less than 350 MPa for the 1.89 drawing ratio

  3. Characterization of 316L(N)-IG SS joint produced by hot isostatic pressing technique

    International Nuclear Information System (INIS)

    Nakano, J.; Miwa, Y.; Tsukada, T.; Kikuchi, M.; Kita, S.; Nemoto, Y.; Tsuji, H.; Jitsukawa, S.

    2002-01-01

    Type 316L(N) stainless steel of the international thermonuclear experimental reactor grade (316L(N)-IG SS) is being considered for the first wall/blanket module. Hot isostatic pressing (HIP) technique is expected for the fabrication of the module. To evaluate the integrity and susceptibility to stress corrosion cracking (SCC) of HIPed 316L(N)-IG SS, tensile tests in vacuum and slow strain rate tests in high temperature water were performed. Specimen with the HIPed joint had similar tensile properties to specimens of 316L(N)-IG SS, and did not show susceptibility to SCC in oxygenated water at 423 K. Thermally sensitized specimen was low susceptible to SCC even in the creviced condition. It is concluded that the tensile properties of HIPed SS are as high as those of the base alloy and the HIP process caused no deleterious effects

  4. A Comparative Study of Fracture Toughness at Cryogenic Temperature of Austenitic Stainless Steel Welds

    Science.gov (United States)

    Aviles Santillana, I.; Boyer, C.; Fernandez Pison, P.; Foussat, A.; Langeslag, S. A. E.; Perez Fontenla, A. T.; Ruiz Navas, E. M.; Sgobba, S.

    2018-03-01

    The ITER magnet system is based on the "cable-in-conduit" conductor (CICC) concept, which consists of stainless steel jackets filled with superconducting strands. The jackets provide high strength, limited fatigue crack growth rate and fracture toughness properties to counteract the high stress imposed by, among others, electromagnetic loads at cryogenic temperature. Austenitic nitrogen-strengthened stainless steels have been chosen as base material for the jackets of the central solenoid and the toroidal field system, for which an extensive set of cryogenic mechanical property data are readily available. However, little is published for their welded joints, and their specific performance when considering different combinations of parent and filler metals. Moreover, the impact of post-weld heat treatments that are required for Nb3Sn formation is not extensively treated. Welds are frequently responsible for cracks initiated and propagated by fatigue during service, causing structural failure. It becomes thus essential to select the most suitable combination of parent and filler material and to assess their performance in terms of strength and crack propagation at operation conditions. An extensive test campaign has been conducted at 7 K comparing tungsten inert gas (TIG) welds using two fillers adapted to cryogenic service, EN 1.4453 and JK2LB, applied to two different base metals, AISI 316L and 316LN. A large set of fracture toughness data are presented, and the detrimental effect on fracture toughness of post-weld heat treatments (unavoidable for some of the components) is demonstrated. In this study, austenitic stainless steel TIG welds with various filler metals have undergone a comprehensive fracture mechanics characterization at 7 K. These results are directly exploitable and contribute to the cryogenic fracture mechanics properties database of the ITER magnet system. Additionally, a correlation between the impact in fracture toughness and microstructure

  5. Reduced-activation austenitic stainless steels: The Fe--Mn--Cr--C system

    International Nuclear Information System (INIS)

    Klueh, R.L.; Maziasz, P.J.

    1988-01-01

    Nickel-free manganese-stabilized steels are being developed for fusion-reactor applications. As the first part of this effort, the austenite-stable region in the Fe--Mn--Cr--C system was determined. Results indicated that the Schaeffler diagram developed for Fe--Ni--Cr--C alloys cannot be used to predict the constituents expected for high-manganese steels. This is true because manganese is not as strong an austenite stabilizer relative to δ-ferrite formation as predicted by the diagram, but it is a stronger austenite stabilizer relative to martensite than predicted. Therefore, the austenite-stable region for Ne--Mn--Cr--C alloys occurs at lower chromium and hugher combinations of manganese and carbon than predicted by the Schaeffler diagram. Development of a manganese-stabilized stainless steel should be possible in the composition range of 20 to 25% Mn, 10 to 15% Cr, and 0.01 to 0.25%C. Tensile behavior of an Fe--20%Mn--12%Cr--0.25%C alloy was determined. The strength and ductility of this possible base composition was comparable to type 316 stainless steel in both the solution-annealed and cold-worked condition

  6. High-pressure investigations of lanthanoid oxoarsenates. I. Single crystals of scheelite-type Ln[AsO{sub 4}] phases with Ln = La-Nd from monazite-type precursors

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, Sebastian J.; Ledderboge, Florian; Schleid, Thomas [Stuttgart Univ. (Germany). Inst. fuer Anorganische Chemie; Heymann, Gunter; Huppertz, Hubert [Innsbruck Univ. (Austria). Inst. fuer Allgemeine, Anorganische und Theoretische Chemie

    2016-08-01

    Transparent single crystals of the scheelite-type Ln[AsO{sub 4}] phases with Ln = La-Nd are obtained by the pressure-induced monazite-to-scheelite type phase transition in a Walker-type module under high-pressure and high-temperature conditions of 11 GPa at 1100-1300 C. Coinciding with this transition, there is an increase in density and a reduction in molar volume of about 4.5 % for the scheelite-type phases (tetragonal, I4{sub 1}/a) for La[AsO{sub 4}] (a = 516.92(4), c = 1186.1(9) pm), Ce[AsO{sub 4}] (a = 514.60(1), c = 1175.44(2) pm), Pr[AsO{sub 4}] (a = 512.63(4), c = 1168.25(9) pm), and Nd[AsO{sub 4}] (a = 510.46(4), c = 1160.32(11) pm) as compared to the well-known monazite-type phases (monoclinic, P2{sub 1}/n). Surprisingly enough, the scheelite-type oxoarsenates(V) exhibit a lower coordination number for the Ln{sup 3+} cations (CN = 8 versus CN = 8 + 1), whereas the isolated tetrahedral [AsO{sub 4}]{sup 3-} anions (d(As-O) = 168.9-169.3 pm for the scheelites as compared to d(As-O) = 167.1-169.9 pm for the monazites) remain almost unchanged. So the densification must occur because of the loss of two edge-connections of the involved [LnO{sub 8+1}]{sup 15-} polyhedra with the [AsO{sub 4}]{sup 3-} tetrahedra in the monazite- resulting in exclusively vertex connected [LnO{sub 8}]{sup 13-} and [AsO{sub 4}]{sup 3-} units in the scheelite-type structure.

  7. Influence of TiC precipitation in austenitic stainless steel on strength, ductility and helium embrittlement

    International Nuclear Information System (INIS)

    Kesternich, W.; Matta, M.K.; Rothaut, J.

    1984-01-01

    Creep experiments were performed on 1.4970 (German DIN standard) and 316 (AISI standard) type austenitic steels after various thermomechanical pretreatments and after α-implantation. The microstructure introduced by the pretreatments was characterized by transmission electron microscopy and the behaviour of strength and ductility is correlated to the dislocation and precipitate distributions. He embrittlement can be suppressed in these simulation experiments when dispersive TiC precipitate distributions are produced by the proper pretreatments or are allowed to form during creep testing. It is shown that adequate pretreatment results in a significantly superior behaviour of the 1.4970 steel as compared to the 316 type steel in all three investigated properties, i.e. strength, ductility and resistance to He embrittlement. (orig.)

  8. Experimental and numerical investigation of formability for austenitic stainless steel 316 at elevated temperatures

    Directory of Open Access Journals (Sweden)

    Syed Mujahed Hussaini

    2014-01-01

    Full Text Available Sheet metal forming at elevated temperature is not much used in industries but it is going to be a very important process in the future. The present work is aimed to investigate the formability of austenitic stainless steel 316 at elevated temperatures. Limiting drawing ratio and thickness of the drawn cup are the indicators of formability in deep drawing. In the present investigation circular blanks are deep drawn at room temperature, 150 °C and 300 °C using a 20 ton hydraulic press coupled with a furnace. Finite element simulations are carried out using Dynaform with LS-Dyna solver. Simulations and experimental results show an increase in the limiting drawing ration as the temperature increases and a decrease in the thickness of the drawn cup without any fracture. An artificial neural network model is developed for the prediction of the cup thickness at different locations. Based on the input variables, such as distance from the center of the cup, temperature and LDR, a back propagation neural network model to predict the thickness as output was develop. The comparison between these sets of results indicates the reliability of the predictions. It was found that there is a good agreement between the experimental and predicted values.

  9. Damage evolution in TWIP and standard austenitic steel by means of 3D X ray tomography

    Energy Technology Data Exchange (ETDEWEB)

    Fabrègue, D., E-mail: damien.fabregue@insa-lyon.fr [Université de Lyon, CNRS, F-69621 Villeurbanne (France); INSA-Lyon, MATEIS UMR5510, F-69621 Villeurbanne (France); Landron, C. [Université de Lyon, CNRS, F-69621 Villeurbanne (France); INSA-Lyon, MATEIS UMR5510, F-69621 Villeurbanne (France); Bouaziz, O. [ArcelorMittal Research, Voie Romaine-BP30320, F-57283 Maizières les Metz (France); Maire, E. [Université de Lyon, CNRS, F-69621 Villeurbanne (France); INSA-Lyon, MATEIS UMR5510, F-69621 Villeurbanne (France)

    2013-09-01

    The evolution of ductile damage of Fe–22Mn–0.6C austenitic TWIP steel by means of 3D X ray tomography in-situ tensile tests is reported for the first time. The comparison with another fully austenitic steel (316 stainless steel) is also carried out. The damage process of TWIP steel involves intense nucleation of small voids combined with the significant growth of the biggest cavities whereas macroscopical triaxiality remains constant. Due to this high nucleation rate, the average cavity diameter remains constant unlike the 316 stainless steel.

  10. Evolution of stainless steels in nuclear industry

    International Nuclear Information System (INIS)

    Tavassoli, Farhad

    2010-01-01

    Starting with the stainless steels used in the conventional industry, their adoption and successive evolutions in the nuclear industry, from one generation of nuclear reactors to another, is presented. Specific examples for several steels are given, covering fabrication procedures, qualification methods, property databases and design allowable stresses, to show how the ever-increasing demands for better performance and reliability, in particular under neutron irradiation, have been met. Particular attention is paid to the austenitic stainless steels types 304L, 316L, 316L(N), 316L(N)-IG, titanium stabilized grade 321, precipitation strengthened alloy 800, conventional and low activation ferritic/martensitic steels and their oxygen dispersion strengthening (ODS) derivatives. For each material, the evolution of the associated filler metal and welding techniques are also presented. (author)

  11. An Electrochemical Processing Strategy for Improving Tribological Performance of Aisi 316 Stainless Steel Under Grease Lubrication

    Science.gov (United States)

    Zou, Jiaojuan; Li, Maolin; Lin, Naiming; Zhang, Xiangyu; Qin, Lin; Tang, Bin

    2014-12-01

    In order to improve the tribological performance of AISI 316 stainless steel (316 SS) under grease lubrication, electrochemical processing was conducted on it to obtain a rough (surface texturing-like) surface by making use of the high sensitivity of austenitic stainless steel to pitting corrosion in Cl--rich environment. Numerous corrosion pits or micro-ditches acted as micro-reservoirs on the obtained surface. While the grease could offer consistent lubrication, and then improve the tribological performance of 316 SS. Tribological behaviors of raw 316 SS and the treated sample were measured using a reciprocating type tribometer sliding against GCr15 steel counterpart under dry and grease lubrication conditions. The results showed that the mass losses of the two samples were in the same order of magnitude, and the raw sample exhibited lower friction coefficient in dry sliding. When the tests were conducted under grease lubrication condition, the friction coefficients and mass losses of the treated sample were far lower than those of the raw 316 SS. The tribological performance of 316 SS under grease lubrication was drastically improved after electrochemical processing.

  12. Impact of the nanostructuration on the corrosion resistance and hardness of irradiated 316 austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Hug, E., E-mail: eric.hug@ensicaen.fr [Laboratoire de Cristallographie et Sciences des Matériaux, Normandie Université, CNRS UMR 6508, 6 Bd Maréchal Juin, 14050 Caen (France); Prasath Babu, R. [School of Materials, University of Manchester, M13 9PL (United Kingdom); Groupe de Physique des Matériaux, UMR CNRS 6634, Université et INSA de Rouen, Normandie Université, Saint-Etienne du Rouvray Cedex (France); Monnet, I. [Centre de recherches sur les Ions, les Matériaux et la Photonique CEA-CNRS, Normandie Université, 6 Bd Maréchal Juin, 14050 Caen (France); Etienne, A. [Groupe de Physique des Matériaux, UMR CNRS 6634, Université et INSA de Rouen, Normandie Université, Saint-Etienne du Rouvray Cedex (France); Moisy, F. [Centre de recherches sur les Ions, les Matériaux et la Photonique CEA-CNRS, Normandie Université, 6 Bd Maréchal Juin, 14050 Caen (France); Pralong, V. [Laboratoire de Cristallographie et Sciences des Matériaux, Normandie Université, CNRS UMR 6508, 6 Bd Maréchal Juin, 14050 Caen (France); Enikeev, N. [Institute of Physics of Advanced Materials, Ufa (Russian Federation); Saint Petersburg State University, Laboratory of the Mechanics of Bulk Nanostructured Materials, 198504 St. Petersburg (Russian Federation); Abramova, M. [Institute of Physics of Advanced Materials, Ufa (Russian Federation); and others

    2017-01-15

    Highlights: • Impacts of nanostructuration and irradiation on the properties of 316 stainless steels are reported. • Irradiation of nanostructured samples implies chromium depletion as than depicted in coarse grain specimens. • Hardness of nanocrystalline steels is only weakly affected by irradiation. • Corrosion resistance of the nanostructured and irradiated samples is less affected by the chromium depletion. - Abstract: The influence of grain size and irradiation defects on the mechanical behavior and the corrosion resistance of a 316 stainless steel have been investigated. Nanostructured samples were obtained by severe plastic deformation using high pressure torsion. Both coarse grain and nanostructured samples were irradiated with 10 MeV {sup 56}Fe{sup 5+} ions. Microstructures were characterized using transmission electron microscopy and atom probe tomography. Surface mechanical properties were evaluated thanks to hardness measurements and the corrosion resistance was studied in chloride environment. Nanostructuration by high pressure torsion followed by annealing leads to enrichment in chromium at grain boundaries. However, irradiation of nanostructured samples implies a chromium depletion of the same order than depicted in coarse grain specimens but without metallurgical damage like segregated dislocation loops or clusters. Potentiodynamic polarization tests highlight a definitive deterioration of the corrosion resistance of coarse grain steel with irradiation. Downsizing the grain to a few hundred of nanometers enhances the corrosion resistance of irradiated samples, despite the fact that the hardness of nanocrystalline austenitic steel is only weakly affected by irradiation. These new experimental results are discussed in the basis of couplings between mechanical and electrical properties of the passivated layer thanks to impedance spectroscopy measurements, hardness properties of the surfaces and local microstructure evolutions.

  13. Extended x-ray absorption fine structure investigation of annealed carbon expanded austenite

    DEFF Research Database (Denmark)

    Oddershede, Jette; Christiansen, Thomas L.; Somers, Marcel A. J.

    2012-01-01

    -carburized in a temperature regime around 470°C. The surface zone is converted into carbon expanded austenite; the high interstitial content of carbon dissolved in the surface results in highly favorable materials properties. In the present article the local atomic environment of (annealed) carbon expanded austenite...... austenite and Hägg carbide, Ξ-M5C2. EXAFS showed that the Cr atoms were mainly present in environments similar to the carbides Hägg Ξ-M5C2 and M23C6. The environments of the Fe and Ni atoms were concluded to be largely metallic austenite. Light optical micrograph of stainless steel AISI 316 gas...

  14. Improving by postoxidation of corrosion resistance of plasma nitrocarburized AISI 316 stainless steels

    Science.gov (United States)

    Yenilmez, A.; Karakan, M.; Çelik, İ.

    2017-01-01

    Austenitic stainless steels are widely used in several industries such as chemistry, food, health and space due to their perfect corrosion resistance. However, in addition to corrosion resistance, the mechanic and tribological features such as wear resistance and friction are required to be good in the production and engineering of this type of machines, equipment and mechanic parts. In this study, ferritic (FNC) and austenitic (ANC) nitrocarburizing were applied on AISI 316 stainless steel specimens with perfect corrosion resistance in the plasma environment at the definite time (4 h) and constant gas mixture atmosphere. In order to recover corrosion resistance which was deteriorated after nitrocarburizing again, plasma postoxidation process (45 min) was applied. After the duplex treatment, the specimens' structural analyses with XRD and SEM methods, corrosion analysis with polarization method and surface hardness with microhardness method were examined. At the end of the studies, AISI 316 surface hardness of stainless steel increased with nitrocarburizing process, but the corrosion resistance was deteriorated with FNC (570 °C) and ANC (670 °C) nitrocarburizing. With the following of the postoxidation treatment, it was detected that the corrosion resistance became better and it approached its value before the process.

  15. The fracture toughness of Type 316 steel and weld metal

    International Nuclear Information System (INIS)

    Picker, C.

    This paper describes the results of fracture toughness tests on Type 316 steel and Manual Metal Arc (MMA) weld metal over a range of temperatures from 20 deg. C to 550 deg. C, and includes the effects on toughness of specimen size, post weld heat treatment and thermal ageing. The conclusions reached are that Type 316 steel possesses a superior toughness to the weld metal in the as-welded or stress relieved conditions but the toughness of the steel is degraded to a level similar to that of the weld metal following thermal ageing at temperatures over 600 deg. C. Relatively short term thermal ageing in the temperature range 370 deg. C to 450 deg. C does not appear to affect the toughness of either Type 316 steel or weld metal. (author)

  16. Microstructural characteristics of the laser welded joint of ITER correction coil sub case

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Chao, E-mail: fangchao@ipp.ac.cn [ASIPP, Shushan Hu Road 350, Hefei, Anhui 230031 (China); Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta (Finland); Song, Yuntao; Wei, Jing; Xin, Jijun [ASIPP, Shushan Hu Road 350, Hefei, Anhui 230031 (China); Wu, Huapeng; Handroos, Hekki; Salminen, Antti [Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta (Finland); Li, Hongwei [ITER China, 15B Fuxing Road, Beijing 100862 (China); Libeyre, Paul; Dolgetta, Nello [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul lez Durance (France)

    2015-10-15

    Highlights: • The multi-pass laser welding was developed for the ITER CC case manufacture. • The laser welding procedure was studied and optimized. • The microstructural characteristic of the welded joint was discussed. - Abstract: The ITER correction coil (CC) case reinforces the winding packs against the electromagnetic loads, minimizes stresses and deformations to the winding pack. The cases are made of high strength and high toughness austenitic stainless steel (316LN) hot rolled heavy plate and have a thickness of 20 mm. Considering the small cross-section and large dimensions of the case, deformation of the case when welding becomes a challenge in the case manufacturing. Therefore, laser welding was developed as the main welding technology for manufacturing. In this paper, multi-pass laser welding technology is used, the laser weldability of a 20 mm thick 316LN austenitic stainless steel plate is studied and the microstructure of the welded joint is analyzed. The welding experiment used an YLS-6000 fiber laser (IPG) and weld filler of 316LMn to match the base metal was used. The result shows that the welded joint has no obvious surface and internal defects based on the optimized welding parameters. The weld joint have a fine austenite microstructure and display columnar dendrites and cellular grains with strong directional characteristics. No apparent heat affected zone is observed and approximately 2 μm an austenite microstructure of the fusion line is clearly presented.

  17. Microstructural characteristics of the laser welded joint of ITER correction coil sub case

    International Nuclear Information System (INIS)

    Fang, Chao; Song, Yuntao; Wei, Jing; Xin, Jijun; Wu, Huapeng; Handroos, Hekki; Salminen, Antti; Li, Hongwei; Libeyre, Paul; Dolgetta, Nello

    2015-01-01

    Highlights: • The multi-pass laser welding was developed for the ITER CC case manufacture. • The laser welding procedure was studied and optimized. • The microstructural characteristic of the welded joint was discussed. - Abstract: The ITER correction coil (CC) case reinforces the winding packs against the electromagnetic loads, minimizes stresses and deformations to the winding pack. The cases are made of high strength and high toughness austenitic stainless steel (316LN) hot rolled heavy plate and have a thickness of 20 mm. Considering the small cross-section and large dimensions of the case, deformation of the case when welding becomes a challenge in the case manufacturing. Therefore, laser welding was developed as the main welding technology for manufacturing. In this paper, multi-pass laser welding technology is used, the laser weldability of a 20 mm thick 316LN austenitic stainless steel plate is studied and the microstructure of the welded joint is analyzed. The welding experiment used an YLS-6000 fiber laser (IPG) and weld filler of 316LMn to match the base metal was used. The result shows that the welded joint has no obvious surface and internal defects based on the optimized welding parameters. The weld joint have a fine austenite microstructure and display columnar dendrites and cellular grains with strong directional characteristics. No apparent heat affected zone is observed and approximately 2 μm an austenite microstructure of the fusion line is clearly presented.

  18. Temperature Effects on the Mechanical Properties of Candidate SNS Target Container Materials after Proton and Neutron Irradiation; TOPICAL

    International Nuclear Information System (INIS)

    Byun, T.S.

    2001-01-01

    This report presents the tensile properties of EC316LN austenitic stainless steel and 9Cr-2WVTa ferritic/martensitic steel after 800 MeV proton and spallation neutron irradiation to doses in the range 0.54 to 2.53 dpa. Irradiation temperatures were in the range 30 to 100 C. Tensile testing was performed at room temperature (20 C) and 164 C to study the effects of test temperature on the tensile properties. Test materials displayed significant radiation-induced hardening and loss of ductility due to irradiation. The EC316LN stainless steel maintained notable strain-hardening capability after irradiation, while the 9Cr-2WVTa ferritic/martensitic steel posted negative strain hardening. In the EC316LN stainless steel, increasing the test temperature from 20 C to 164 C decreased the strength by 13 to 18% and the ductility by 8 to 36%. The tensile data for the EC316LN stainless steel irradiated in spallation conditions were in line with the values in a database for 316 stainless steels for doses up to 1 dpa irradiated in fission reactors at temperatures below 200 C. However, extra strengthening induced by helium and hydrogen contents is evident in some specimens irradiated to above about 1 dpa. The effect of test temperature for the 9Cr-2WVTa ferritic/martensitic steel was less significant than for the EC316LN stainless steel. In addition, strain-hardening behaviors were analyzed for EC316LN and 316L stainless steels. The strain-hardening rate of the 316 stainless steels was largely dependent on test temperature. It was estimated that the 316 stainless steels would retain more than 1% true stains to necking at 164 C after irradiation to 5 dpa. A calculation using reduction of area (RA) measurements and stress-strain data predicted positive strain hardening during plastic instability

  19. Effects of Thermal Aging on Microstructure and Impact Properties of 316LN Stainless Steel Weld

    Directory of Open Access Journals (Sweden)

    LUO Qiang

    2017-12-01

    Full Text Available To study the thermal aging of nuclear primary pipe material 316LN stainless steel weld, accelerated thermal aging experiment was performed at 400℃ for 15000h. Microstructure evolution of weld after aging was investigated by TEM and HREM. Impact properties of weld thermally aged at different time was measured by Charpy impact test. Meanwhile, taking Charpy impact energy as the standard of thermal aging embrittlement, the thermal kinetics formula was obtained by the fitting method. Finally, the Charpy impact properties of the weld during 60 years of service at the actual operation temperature were estimated by the thermal kinetics formula. The results indicate that the spinodal decomposition occurs in the ferrite of the weld after thermal aging at 400℃ for 1000h, results in α (Fe-rich and α'(Cr-rich phases, and meanwhile, the G-phase is precipitated in the ferrite; the spinodal decomposition and the G-phase precipitation lead to the decrease in the impact energy of weld as time prolongs; the prediction results show that the Charpy impact energy of weld decreases quickly in the early 25 years, and then undergoes a slow decrease during the subsequent operation process.

  20. Influence of plastic strain localization on the stress corrosion cracking of austenitic stainless steels; Influence de la localisation de la deformation plastique sur la CSC d'aciers austenitiques inoxydables

    Energy Technology Data Exchange (ETDEWEB)

    Cisse, S.; Tanguy, B. [CEA Saclay, DEN, SEMI, 91 - Gif-sur-Yvette (France); Andrieu, E.; Laffont, L.; Lafont, M.Ch. [Universite de Toulouse. CIRIMAT, UPS/INPT/CNRS, 31 - Toulous (France)

    2010-03-15

    The authors present a research study of the role of strain localization on the irradiation-assisted stress corrosion cracking (IASCC) of vessel steel in PWR-type (pressurized water reactor) environment. They study the interaction between plasticity and intergranular corrosion and/or oxidation mechanisms in austenitic stainless steels with respect to sublayer microstructure transformations. The study is performed on three austenitic stainless grades which have not been sensitized by any specific thermal treatment: the A286 structurally hardened steel, and the 304L and 316L austenitic stainless steels

  1. Ultrasonic inspection of austenitic welds

    International Nuclear Information System (INIS)

    Baikie, B.L.; Wagg, A.R.; Whittle, M.J.; Yapp, D.

    1976-01-01

    The ultrasonic examination of austenitic stainless steel weld metal has always been regarded as a difficult proposition because of the large and variable ultrasonic attenuations and back scattering obtained from apparently similar weld deposits. The work to be described shows how the existence of a fibre texture within each weld deposit (as a result of epitaxial growth through successive weld beads) produces a systematic variation in the ultrasonic attenuation coefficient and the velocity of sound, depending upon the angle between the ultrasonic beam and the fibre axis. Development work has shown that it is possible to adjust the welding parameters to ensure that the crystallographic texture within each weld is compatible with improved ultrasonic transmission. The application of the results to the inspection of a specific weld in type 316 weld metal is described

  2. Improvement of corrosion resistance in austenitic stainless steel by grain boundary character distribution control

    International Nuclear Information System (INIS)

    Wang, Yun; Kaneda, Junya; Kasahara, Shigeki; Shigenaka, Naoto

    2012-01-01

    Strauss test, Coriou test and Huey test were conducted on a Type 316L austenitic stainless steel. Improvement in grain boundary corrosion resistance was verified after raising low Σ coincidence site lattice (CSL) grain boundary (GB) frequency by controlling grain boundary character distribution (GBCD). During crevice corrosion test under gamma-ray irradiation, initiation frequency of GB corrosion after GBCD controlled specimens decreased to 1/10 of GBCD uncontrolled counterpart along with lower depth of corrosion. Stress corrosion cracking (SCC) propagation rate of GBCD controlled specimen decreased to less than 1/2 of GBCD uncontrolled specimen in high temperature and high pressure water. Based on these results, we expect that GBCD control will improve corrosion resistance of austenitic material in a wide range of application and environment. (author)

  3. Pitting corrosion studies on nitrogen implanted 316L SS for biomedical applications

    International Nuclear Information System (INIS)

    Subbaiyan, M.; Veerabadran, K.M.; Thampi, N.S.; Kanwar Krishnan; Kamachi Mudali, U.; Dayal, R.K.

    1997-01-01

    Traditionally, human bone fracture and defects have been corrected using metal and alloy fixing devices. Austenitic stainless steels (such as 316L alloy studied here) are favoured because of low cost, compared to titanium alloys, ease of fabrication and fair corrosion resistance. Localized attack on 316l stainless steel, however, results in iron, chromium and nickel ions leaching into surrounding body fluids. This study reports on the successful use of nitrogen ion implantation into 316lSS to evaluate the optimum dose needed to minimise this localised attack, in a physiological saline solution. (UK)

  4. The effects of fast-neutron irradiation on the mechanical properties of austenitic stainless steel

    International Nuclear Information System (INIS)

    Dalton, J.H.

    1978-01-01

    The paper reviews the effects of fast-neutron irradiation on the tensile properties of austenitic stainless steels at irradiation temperatures of less than 400 degrees Celcius, using as an example, work carried out at Pelindaba on an AISI 316 type steel produced in South Africa. Damage produced in these steels at higher irradiation temperatures and fluences is also briefly discussed. The paper concludes with a discussion of some methods of overcoming or decreasing the effects of irradiation damage [af

  5. Process parameter optimization during EDM of AISI 316 LN stainless steel by using fuzzy based multi-objective PSO

    Energy Technology Data Exchange (ETDEWEB)

    Majumder, Arindam [National Institute of Technology Agartala, Tripura (India)

    2013-07-15

    The present contribution describes an application of a hybrid approach using fuzzy logic and particle swarm optimization (PSO) for optimizing the process parameters in the electric discharge machining (EDM) of AISI 316LN Stainless Steel. In this study, each experimentation was performed under different machining conditions of pulse current, pulse on-time, and pulse off-time. Machining performances such as MRR and EWR were evaluated. A Taguchi L9 orthogonal array was produced to plan the experimentation and the regression method was applied to model the relationship between the input factors and responses. A fuzzy model was employed to provide a fitness function to PSO by unifying the multiple responses. Finally, PSO was used to predict the optimal process parametric settings for the multi-performance optimization of the EDM operation. The experimental results confirm the feasibility of the strategy and are in good agreement with the predicted results over a wide range of machining conditions employed in the process.

  6. Vacuum brazing of OFE Copper-316L stainless steel transition joints without electroplating stainless steel part for application in particle accelerators

    International Nuclear Information System (INIS)

    Yadav, D.P.; Kumar, Abhay; Ganesh, P.

    2015-01-01

    Brazed transition Joints between OFE copper and type 316L austenitic stainless steel (SS) find extensive applications in particle accelerators all over the world. In contrast to excellent wettability of OFE copper, austenitic SS is well known for its poor wettability for BVAg-8 ( 72 Ag/ 28 Cu; melting point: 1052 K) braze filler metal (BFM). High surface wettability is believed to be necessary to drag molten BFM into the capillary gap between mating metallic surfaces. Therefore, the widely accepted practice for vacuum brazing of such transition joints involves electroplating of SS parts with nickel or copper to enhance its wettability. A recently concluded in-house study, involving Nb to Ni-plated 316L SS brazing, has demonstrated that satisfactory ingress of BFM into a capillary joint between two dissimilar metals is possible if the poor wettability of one of the mating surfaces is compensated by good wettability of its counterpart. In the light of these observations, the present study was undertaken to explicitly evaluate the requirement of electroplating the SS part for establishment of sound OFE copper-316L SS brazed joints suitable for service in ultra-high vacuum (UHV) of particle accelerators

  7. SCC of cold-worked austenitic stainless steels exposed to PWR primary water conditions: susceptibility to initiation

    International Nuclear Information System (INIS)

    Herms, E.; Raquet, O.; Sejourne, L.; Vaillant, F.

    2009-01-01

    Heavily cold-worked austenitic stainless steels (AISI 304L and 316L types) could be significantly susceptible to Stress Corrosion Cracking (SCC) when exposed to PWR nominal primary water conditions even in absence of any pollutants. Susceptibility to SCC was shown to be related with some conditions such as initial hardness, procedure of cold-work or dynamic straining. A dedicated program devoted to better understand the initiation stage on CW austenitic stainless steels in PWR water is presented. Initiation is studied thanks to SCC test conditions leading to an intergranular cracking propagation mode on a CW austenitic stainless steel which is the mode generally reported after field experience. SCC tests are carried out in typical primary water conditions (composition 1000 ppm B and 2 ppm Li) and for temperature in the range 290 - 340 C. Material selected is 316L cold-worked essentially by rolling (reduction in thickness of 40%). Initiation tests are carried out under various stress levels with the aim to investigate the evolution of the initiation period versus the value of applied stress. SCC tests are performed on cylindrical notched specimens in order to increase the applied stress and allow accelerated testing without modify the exposure conditions to strictly nominal hydrogenated PWR water. Respective influences of cyclic/dynamic conditions on SCC initiation are presented and discussed. Dedicated interrupted tests help to investigate the behaviour of the crack initiation process. These SCC tests have shown that crack initiation could be obtained after a very short time under dynamic loading conditions on heavily pre-strained austenitic stainless steels. Actual results show that the most limiting stage of the cracking process on CW 316L seems to be the transition from slow transgranular propagation of surface initiated cracks to intergranular fast propagation through the thickness of the sample. The duration of this stage during crack initiation tests is

  8. Stress distributions due to hydrogen concentrations in electrochemically charged and aged austenitic stainless steel

    International Nuclear Information System (INIS)

    Rozenak, P.; Loew, A.

    2008-01-01

    As a result of hydrogen concentration gradients in type austenitic stainless steels, formed during electrochemical charging and followed by hydrogen loss during aging, at room temperature, surface stresses were developed. These stresses were measured by X-ray technique and the crack formation thus induced could be studied using equilibrium stress equations. After various electrochemical charging and aging times, X-ray diffraction patterns obtained from samples indicated that the reflected and broadened diffraction peaks are the result of the formation of a non-uniform but continuous solid solution in the austenitic matrix. Since both hydrogen penetrations during charging and hydrogen release during aging are diffusion controlled processes and huge hydrogen concentration gradients in the thin surface layer, at depths comparable with the depth of X-ray penetration, are observed. The non-uniform hydrogen concentration in the austenitic matrix, results to the non-uniform expansion of the atomic microstructure and latter inevitably leads to the development of internal stresses. The internal stresses development formulae's are very similar to those relating to non-uniform heating of the materials, where thermal stresses appear due to non-uniform expansion or contraction. The relevant well developed theory is applicable in our case of non-uniform hydrogen concentrations in a solid solution of electrochemically charged and aged austenitic matrix. A few cracks were present on the surface after some minutes of electrochemical charging and the severity of cracking increased as hydrogen was lost during subsequent aging. This is consistent with the expectation of high compressive stresses in the bulk of the specimen during charging and high tensile surface stresses (at the level of 1 x 10 11 Pa) during the aging process. These stresses can induce the formation of surface cracks during the aging process after electrochemical charging in the AISI 316 stainless steel

  9. High-cycle fatigue behavior of ultrafine-grained austenitic stainless and TWIP steels

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, A.S. [Materials Engineering Laboratory (4KOMT), Box 4200, University of Oulu, 90014 Oulu (Finland); Metallurgical and Materials Engineering Department, Faculty of Petroleum and Mining Engineering, Suez Canal University, Box 43721, Suez (Egypt); Karjalainen, L.P., E-mail: pentti.karjalainen@oulu.fi [Materials Engineering Laboratory (4KOMT), Box 4200, University of Oulu, 90014 Oulu (Finland)

    2010-08-20

    High-cycle fatigue behavior of ultrafine-grained (UFG) 17Cr-7Ni Type 301LN austenitic stainless and high-Mn Fe-22Mn-0.6C TWIP steels were investigated in a reversed plane bending fatigue and compared to the behavior of steels with conventional coarse grain (CG) size. Optical, scanning and transmission electron microscopy were used to examine fatigue damage mechanisms. Testing showed that the fatigue limits leading to fatigue life beyond 4 x 10{sup 6} cycles were about 630 MPa for 301LN while being 560 MPa for TWIP steel, and being 0.59 and 0.5 of the tensile strength respectively. The CG counterparts were measured to have the fatigue limits of 350 and 400 MPa. The primary damage caused by fatigue took place by grain boundary cracking in UFG 301LN, while slip band cracking occurred in CG 301LN. However, in the case of TWIP steel, the fatigue damage mechanism is similar in spite of the grain size. In the course of cycling neither the formation of a martensite structure nor mechanical twinning occurs, but intense slip bands are created with extrusions and intrusions. Fatigue crack initiates preferentially on grain and twin boundaries, and especially in the intersection sites of slip bands and boundaries.

  10. Enhanced corrosion resistance of stainless steel type 316 in sulphuric acid solution using eco-friendly waste product

    Science.gov (United States)

    Sanni, O.; Popoola, A. P. I.; Fayomi, O. S. I.

    2018-06-01

    Literature has shown that different organic compounds are effective corrosion inhibitors for metal in acidic environments. Such compounds usually contain oxygen, nitrogen or sulphur and function through adsorption on the metal surface, thereby creating a barrier for corrosion attack. Unfortunately, these organic compounds are toxic, scarce and expensive. Therefore, plants, natural product and natural oils have been posed as cheap, environmentally acceptable, abundant, readily available and effective molecules having low environmental impact. The corrosion resistance of austenitic stainless steel Type 316 in the presence of eco-friendly waste product was studied using weight loss and potentiodynamic polarization techniques in 0.5 M H2SO4. The corrosion rate and corrosion potential of the steel was significantly altered by the studied inhibitor. Results show that increase in concentration of the inhibitor hinders the formation of the passive film. Experimental observation shows that its pitting potential depends on the concentration of the inhibitor in the acid solution due to adsorption of anions at the metal film interface. The presence of egg shell powder had a strong influence on the corrosion resistance of stainless steel Type 316 with highest inhibition efficiency of 94.74% from weight loss analysis, this is as a result of electrochemical action and inhibition of the steel by the ionized molecules of the inhibiting compound which influenced the mechanism of the redox reactions responsible for corrosion and surface deterioration. Inhibitor adsorption fits the Langmuir isotherm model. The two methods employed for the corrosion assessment were in good agreement.

  11. Low-temperature dependence of yielding in AISI 316 stainless steels

    International Nuclear Information System (INIS)

    Tobler, R.L.; Reed, R.P.

    1981-01-01

    Tensile tests at temperatures between 323 and 4 K were performed on one heat of AISI 316 austenitic stainless steel having the composition Fe-17.34Cr-12.17Ni-1.55Mn-2.16Mo-0.051C. The temperature dependences of the yield and flow strengths at plastic strain increments from 0.2 to 3.65% are analyzed. At the yield strain (0.2%), no body-centered cubic (bcc) martensite phase transformation is detected. At higher strains (approx.3.2 +- 0.6%), bcc martensite forms from the parent austenite phase at test temperatures below 190 K, but there are no discontinuities in the temperature dependence of flow strength. A review of data available for three heats of AISI 316 at temperatures between 973 and 4 K reveals that deviations from thermally activated plastic flow theory occur at temperatures below 175 K, apparently depending on heat-to-heat compositional variations. Grain size and magnetic transition effects on the yield strength are discussed

  12. Measurement of carbon activity in sodium by Fe-Mn 20% alloy, and by strainless austenitic steel 304L and 316L

    International Nuclear Information System (INIS)

    Oberlin, C.; Saint Paul, P.; Baque, P.; Champeix, L.

    1980-01-01

    Precise knowledge of carbon activity in sodium used as coolant in fast breeder reactors, is essential for continuous survey of carburization-decarburization processes. Carbon activity can be periodically surveyed by measuring the carbon concentration or by hot trap like metal alloy strip placed in sodium loop. In fact, in equilibrium, activity of carbon in sodium is equal to the activity in metal alloy. Thus if the relation between concentration of carbon and it activity in the alloy is known, it is possible to estimate the activity of carbon in sodium. Materials to be used should have high solubility in carbon at the needed temperature. They should quickly attain equilibrium with sodium and they should not contain impurities that can affect the results. Materials chosen according to these criteria were Fe-Mn 20%, stainless austenitic steel AISI 304L and 316L

  13. Dissolution mechanism of austenitic stainless steels in lead-bismuth eutectic at 500 deg. C

    International Nuclear Information System (INIS)

    Roy, M.

    2012-01-01

    In the framework of the future nuclear power plants studies, lead-bismuth eutectic (LBE) is foreseen as a coolant in the primary or the secondary circuit in three nuclear systems. The use of this liquid alloy induces corrosion issues for structural steels. In liquid lead alloys, steels can undergo two corrosion phenomena: dissolution or oxidation depending on the temperature and the dissolved oxygen content in LBE. The goal of this study is to identify the dissolution mechanisms of austenitic steels in LBE at 500 deg. C. Four Fe-Cr-Ni model austenitic steels, the 316L steel and five other industrial steels were corroded in LBE up to, respectively, 3000, 6000 and 200 h. The dissolution mechanism is identical for all steels: it starts by a preferential dissolution of chromium and nickel. This dissolution leads to the formation of a ferritic corrosion layer penetrated by LBE and containing between 5 and 10 at% of chromium and almost no nickel. This study demonstrates that dissolutions of nickel and chromium are linked. Otherwise, the corrosion kinetics is linear whatever the tested austenitic steel. The controlling steps of the austenitic steels' corrosion rates have been identified. Natural convection in the LBE bath leads to the formation of a diffusion boundary layer at the steel surface. Chromium diffusion in this diffusion boundary layer seems to control the corrosion rates of the model and industrial austenitic steels except the 316L steel. Indeed, the corrosion rate of the 316L steel is controlled by an interfacial reaction which is either the simultaneous dissolution of nickel and chromium in Ni, Cr compounds or the nickel and chromium dissolution catalyzed by the dissolved oxygen in LBE. This study has permitted to highlight the major role of chromium on the corrosion mechanisms and the corrosion rates of austenitic steels: the corrosion rate increases when chromium activity increases. Finally, the impact of the dissolved oxygen and the minor alloying

  14. Austenite stability in reversion-treated structures of a 301LN steel under tensile loading

    Czech Academy of Sciences Publication Activity Database

    Järvenpää, A.; Jaskari, M.; Man, Jiří; Karjalainen, L. P.

    2017-01-01

    Roč. 127, MAY (2017), s. 12-26 ISSN 1044-5803 R&D Projects: GA ČR GA13-32665S Institutional support: RVO:68081723 Keywords : austenitic stainless steel * austenite stability * grain size * reversion annealing * tensile straining * deformation induced martensite Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis Impact factor: 2.714, year: 2016

  15. The carbide M7C3 in low-temperature-carburized austenitic stainless steel

    International Nuclear Information System (INIS)

    Ernst, Frank; Li, Dingqiang; Kahn, Harold; Michal, Gary M.; Heuer, Arthur H.

    2011-01-01

    Prolonged low-temperature gas-phase carburization of AISI 316L-type austenitic stainless steel can cause intragranular precipitation of the carbide M 7 C 3 (M: randomly dispersed Fe, Cr, Ni). Transmission electron microscopy revealed that the carbide particles have the shape of needles. They grow by a ledge-migration mechanism and in a crystallographic orientation relationship to the austenite matrix that enables highly coherent interphase interfaces. A small solubility limit of Ni in the carbide and restricted Ni diffusivity at the processing temperature leads to Ni pileup around the particles and may explain the extreme aspect ratio of the particle shape. These characteristics closely resemble what has been observed earlier for precipitates of M 5 C 2 under slightly different processing conditions and can be rationalized by considering the particular constraints imposed by carburization at low temperature.

  16. Effect of shot peening on metastable austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Fargas, G., E-mail: gemma.fargas@upc.edu [CIEFMA - Departament de Ciència dels Materials i Enginyeria Metallúrgica, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain); CRnE, Centre de Recerca en Nanoenginyeria, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain); Roa, J.J.; Mateo, A. [CIEFMA - Departament de Ciència dels Materials i Enginyeria Metallúrgica, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain); CRnE, Centre de Recerca en Nanoenginyeria, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain)

    2015-08-12

    In this work, shot peening was performed in a metastable austenitic stainless steel EN 1.4318 (AISI 301LN) in order to evaluate its effect on austenite to martensite phase transformation and also the influence on the fatigue limit. Two different steel conditions were considered: annealed, i.e., with a fully austenitic microstructure, and cold rolled, consisting of a mixture of austenite and martensite. X-ray diffraction, electron back-scattered diffraction and focus ion beam, as well as nanoindentation techniques, were used to elucidate deformation mechanisms activated during shot peening and correlate with fatigue response. Results pointed out that extensive plastic deformation and phase transformation developed in annealed specimens as a consequence of shot peening. However, the increase of roughness and the generation of microcracks led to a limited fatigue limit improvement. In contrast, shot peened cold rolled specimens exhibited enhanced fatigue limit. In the latter case, the main factor that determined the influence on the fatigue response was the distance from the injector, followed successively by the exit speed of the shots and the coverage factor.

  17. Impact of the nanostructuration on the corrosion resistance and hardness of irradiated 316 austenitic stainless steels

    Science.gov (United States)

    Hug, E.; Prasath Babu, R.; Monnet, I.; Etienne, A.; Moisy, F.; Pralong, V.; Enikeev, N.; Abramova, M.; Sauvage, X.; Radiguet, B.

    2017-01-01

    The influence of grain size and irradiation defects on the mechanical behavior and the corrosion resistance of a 316 stainless steel have been investigated. Nanostructured samples were obtained by severe plastic deformation using high pressure torsion. Both coarse grain and nanostructured samples were irradiated with 10 MeV 56Fe5+ ions. Microstructures were characterized using transmission electron microscopy and atom probe tomography. Surface mechanical properties were evaluated thanks to hardness measurements and the corrosion resistance was studied in chloride environment. Nanostructuration by high pressure torsion followed by annealing leads to enrichment in chromium at grain boundaries. However, irradiation of nanostructured samples implies a chromium depletion of the same order than depicted in coarse grain specimens but without metallurgical damage like segregated dislocation loops or clusters. Potentiodynamic polarization tests highlight a definitive deterioration of the corrosion resistance of coarse grain steel with irradiation. Downsizing the grain to a few hundred of nanometers enhances the corrosion resistance of irradiated samples, despite the fact that the hardness of nanocrystalline austenitic steel is only weakly affected by irradiation. These new experimental results are discussed in the basis of couplings between mechanical and electrical properties of the passivated layer thanks to impedance spectroscopy measurements, hardness properties of the surfaces and local microstructure evolutions.

  18. Microstructural evolution of 316L stainless steels with yttrium addition after mechanical milling and heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kotan, Hasan, E-mail: hasankotan@gmail.com

    2015-10-28

    Nanocrystalline 316L stainless steels with yttrium addition were prepared by mechanical milling at cryogenic temperature and subjected to annealing treatments at various temperatures up to 1200 °C. The dependence of hardness on the microstructure was utilized to study the mechanical changes in the steels occurring during annealing. The microstructural evolution of the as-milled and annealed steels was characterized by means of X-ray diffraction (XRD), focused ion beam microscopy (FIB) and transmission electron microscopy (TEM) techniques. The results have revealed that austenite in as-received powder partially transformed to martensite phase during mechanical milling whereas the annealing induced reverse transformation of martensite-to-austenite. Furthermore, while the austenite-to-martensite phase ratio increased with increasing annealing temperature, the equilibrium structure was not achieved after three hours heat treatments up to 1200 °C resulting in a dual-phased steels with around 10% martensite. The grain size of 316L steel was 19 nm after mechanical milling and remained around 116 nm at 1100 °C with yttrium addition as opposed to micron size grains of plain 316L steel at the same annealing temperature. Such microstructural features facilitate the use of these materials at elevated temperatures, as well as the development of scalable processing routes into a dense nanocrystalline compact.

  19. Decomposition kinetics of expanded austenite with high nitrogen contents

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2006-01-01

    This paper addresses the decomposition kinetics of synthesized homogeneous expanded austenite formed by gaseous nitriding of stainless steel AISI 304L and AISI 316L with nitrogen contents up to 38 at.% nitrogen. Isochronal annealing experiments were carried out in both inert (N2) and reducing (H2......) atmospheres. Differential thermal analysis (DTA) and thermogravimetry were applied for identification of the decomposition reactions and X-ray diffraction analysis was applied for phase analysis. CrN precipitated upon annealing; the activation energies are 187 kJ/mol and 128 kJ/mol for AISI 316L and AISI 304L...

  20. Magnetic properties of the austenitic stainless steels at cryogenic temperatures

    International Nuclear Information System (INIS)

    Kobayashi, T.; Tsuchiya, K.; Itoh, K.; Kobayashi, S.

    2002-01-01

    The magnetization was measured for the austenitic stainless steel of SUS304, SUS304L, SUS316, and SUS316L with the temperature from 5K to 300K and the magnetic field from 0T to 10T. The field dependences of the magnetizations changed at about 0.7T and 4T. The dependence was analyzed with ranges of 0-0.5T, 1-3T, and 5-10T. There was not so much difference between those stainless steels for the usage at small fields and 300 K. The SUS316 and SUS316L samples showed large non-linearity at high fields and 5K. Therefore, SUS304 was recommended for usage at high fields and low temperatures to design superconducting magnets with the linear approximation of the field dependence of magnetization

  1. Understanding and modelling of the aniso-thermal cyclic mechanical behaviour of the AISI 316LN austenitic stainless steel

    International Nuclear Information System (INIS)

    Gentet, D.

    2009-11-01

    The main subject of this report consists in proposing a mechanical model of the viscoplastic behaviour of an austenitic stainless steel under isothermal and aniso-thermal low cycle fatigue loadings at high temperatures (550-900 K). In this domain, numerous phenomena linked to dynamic strain ageing (DSA) and to dipolar dislocation structure formation may appear. Isothermal and aniso-thermal low cycle fatigue tension-compression tests were performed in order to verify some aspects about the effect of temperature on the mechanical behaviour. The study of the hysteresis loops and the observation of dislocation structures carried on transmission electron microscopy establish two different DSA mechanisms during isothermal tests. The effect of temperature history is shown for for particular temperature sequences. It is demonstrated that the stress amplitude increase when the sample is submitted to cycles at 'high temperature' is linked to the second mechanism of DSA. It comes from the increase of short range interaction between dislocations (chromium segregation), but it is also the consequence of the lack of dipolar structure annihilation at low temperature. From the experimental analysis of DSA mechanisms and dipolar restoration, a macroscopic aniso-thermal model is developed using physical internal variables (densities of dislocations). The equations of a polycrystalline model are rewritten with the aim of getting a simple multi-scale approach which can be used on finite elements analysis software. Between 550 and 873 K, the simulation results are in good accordance with the macroscopic and microscopic observations of low cycle fatigue, relaxation, and 2D-ratchetting tests. (author)

  2. Data collection on the effect of irradiation on the mechanical properties of austenitic stainless steels and weld metals

    International Nuclear Information System (INIS)

    Picker, C.; Wareing, J.; Tavassoli, A.A.

    1995-01-01

    Data on the influence of low dose irradiation on the mechanical properties of structural steels (Types 304, 316, 316L, 316H and 316L(N) and associated weld metals) at temperatures from 20 deg. C to 750 deg. C, have been compiled from published literature and the results of British, Dutch, French and German Laboratories. The preliminary results, which cover the dose range from 0 to 5 displacements per atom (and/or up to 2 appm helium) are presented as comparisons between irradiated and unirradiated control data, covering a range of strength and cyclic properties. The results show that low dose irradiation can have a significant influence on the properties ranging from increases in 0.2% proof stress to decreases in stress rupture strength and ductility. More detailed investigations of the significant factors on the individual properties will be completed in the future. (author). 13 figs, 1 tab

  3. A final report on the performance achieved by non-destructive testing of defective butt welds in 50mm thick Type 316 stainless steel

    International Nuclear Information System (INIS)

    Ford, J.; Hudgell, R.J.

    1987-03-01

    This report concludes a programme of work started approximately eight years ago to fabricate deliberately defective austenitic downhand welds in 50 mm thick Type 316 plate and then to examine them non-destructively under ideal laboratory conditions. After completing and reporting the Non-Destructive Testing (NDT), the specimens were subjected to detailed metallography to locate, identify and size all the planned and unplanned flaws in the welds. The report gives the final analysis of this exercise on the relative merits of X-radiography, pulse echo ultrasonics and the time-of-flight technique for the detection, location and sizing of weld flaws. It was found that X-radiography and pulse echo ultrasonics were the best techniques for flaw detection but neither technique was reliable for flaw sizing. The time-of-flight technique provided accurate sizing data but the location of the flaws had to be known to identify the diffracted signals from the extremities of the flaws due to the poor signal to noise ratio. Observations are also reported on the fabrication of deliberately defective austenitic welds for use as reference specimens in the FR programme. (author)

  4. Phase transformation of 316L stainless steel from wire to fiber

    International Nuclear Information System (INIS)

    Shyr, Tien-Wei; Shie, Jing-Wen; Huang, Shih-Ju; Yang, Shun-Tung; Hwang, Weng-Sing

    2010-01-01

    In this work, quantitative crystalline phase analysis of 316L stainless steel from wire to fiber using a multi-pass cold drawing process was studied using the Rietveld whole XRD profile fitting technique. The different diameters of the fibers: 179, 112, 75, 50, 34, 20, and 8 μm, were produced from an as-received wire with a diameter of 190 μm. The crystalline phases were identified using MDI Jade 5.0 software. The volume fractions of crystalline phases were estimated using a Materials Analysis Using Diffraction software. XRD analysis revealed that the crystal structure of as-received wire is essentially a γ-austenite crystalline phase. The phase transformation occurred during the 316L stainless steel from wire to fiber. Three crystalline phases such as γ-austenite, α'-martensite, and sigma phase of the fine fiber were observed. A cold drawing accelerates the sigma phase precipitates, particularly during the heat treatment of the fiber.

  5. Reversed Microstructures and Tensile Properties after Various Cold Rolling Reductions in AISI 301LN Steel

    Directory of Open Access Journals (Sweden)

    Antti Järvenpää

    2018-02-01

    Full Text Available Heavy cold rolling is generally required for efficient grain size refinement in the martensitic reversion process, which is, however, not desirable in practical processing. In the present work, the influence of cold rolling reductions of 32%, 45% and 63% on the microstructure evolution and mechanical properties of a metastable austenitic AISI 301LN type steel were investigated in detail adopting scanning electron microscopy with the electron backscatter diffraction method and mechanical testing. A completely austenitic microstructure and a partially reversed counterpart were created. It was found that the fraction of grains with a size of 3 µm or larger, called medium-sized grains, increased with decreasing the prior cold rolling reduction. These grains are formed mainly from the shear-reversed austenite, transformed from slightly-deformed martensite, by gradual evolution of subgrains to grains. However, in spite of significant amounts of medium-sized grains, the tensile properties after the 32% or 45% cold rolling reductions were practically equal to those after the 63% reduction. The austenite stability against the formation of deformation-induced martensite in subsequent straining was reduced by lowering the cold rolling reduction, due to the larger grain size of medium-sized grains and the shift of their orientation towards {211} .

  6. Comparison of hot ductility and stress corrosion cracking sensitivity of heat affected zone among type 304, type 316 and type 347 austenitic stainless steels for BWR core shroud and recirculation line piping

    International Nuclear Information System (INIS)

    Yamamura, Yoshihiko; Kayano, Rinzo; Azuma, Tukasa; Tanaka, Yasuhiko; Ishio, Kotaro; Sasaki, Tomo; Suzuki, Komei

    2005-01-01

    The present paper proposes the weld structure shroud made by the integrated type forging. The proposed structure can minimize the occurrence of SCC in the joint weld portion in the shroud. Furthermore, based on the measurement on EPR (Electrochemical Potentiokinetic Reactivation) ratio of simulated HAZ (Heat Affected Zone) which was made by giving double thermal cycles and plastic deformation to the material, the requirement of carbon content of less than 0.04 % is proposed for type 316 steel. The requirement proposed is the same restriction as that of KTA regel

  7. Ion nitriding in 316=L stainless steel

    International Nuclear Information System (INIS)

    Rojas-Calderon, E.L.

    1989-01-01

    Ion nitriding is a glow discharge process that is used to induce surface modification in metals. It has been applied to 316-L austenitic stainless steel looking for similar benefits already obtained in other steels. An austenitic stainless steel was selected because is not hardenable by heat treatment and is not easy to nitride by gas nitriding. The samples were plastically deformed to 10, 20, 40, 50 AND 70% of their original thickness in order to obtain bulk hardening and to observe nitrogen penetration dependence on it. The results were: an increase of one to two rockwell hardness number (except in 70% deformed sample because of its thickness); an increase of even several hundreds per cent in microhardness knoop number in nitrided surface. The later surely modifies waste resistance which would be worth to quantify in further studies. Microhardness measured in an internal transversal face to nitrided surface had a gradual diminish in its value with depth. Auger microanalysis showed a higher relative concentration rate C N /C F e near the surface giving evidence of nitrogen presence till 250 microns deep. The color metallography etchant used, produced faster corrosion in nitrited regions. Therefore, corrosion studies have to be done before using ion nitrited 316-L under these chemicals. (Author)

  8. Study of irradiation effects in austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Etienne, A. [GPM UMR CNRS 6634, Universite et INSA de Rouen (France); Material Department, University of California, Santa Barbara (United States); Pareige, P.; Radiguet, B. [GPM UMR CNRS 6634, Universite et INSA de Rouen (France); Cunningham, N.J.; Odette, G.O. [Material Department, University of California, Santa Barbara (United States); Pokor, C. [EDF RD, departement MMC, site des Renardieres, Moret-sur-Loing (France)

    2011-07-01

    Chemical analyses using Atom Probe Tomography were performed on a bolt made of cold worked 316 austenitic stainless steel, extracted from the internal structures of a pressurized water reactor after seventeen years of reactor service. The irradiation temperature of these samples was 633 K and the irradiation dose was estimated to 12 dpa. These analyses have shown that neutron irradiation has a strong effect on the intragranular distribution of solute atoms. A very high number density (6.10{sup 23} m{sup -3}) of Ni-Si enriched and Cr-Fe depleted clusters was detected after irradiation. In order to bring complementary experimental results and to determine the mechanism of formation of these Ni-Si nano-clusters, Fe{sup 5+} ion irradiations have been performed on a 316 austenitic stainless steel. As after neutron irradiation, the formation of solute enriched features is observed. Linear features and two kinds of clusters, rounded and torus shaped, are present. Considering that solute enriched features are probably formed by radiation induced segregation on point defect sinks, these different shapes are due to the nature of the sinks where segregation occurs. (authors)

  9. Optimization of HIP bonding conditions for ITER shielding blanket/first wall made from austenitic stainless steel and dispersion strengthened copper alloy

    International Nuclear Information System (INIS)

    Sato, S.; Hatano, T.; Kuroda, T.; Furuya, K.; Hara, S.; Enoeda, M.; Takatsu, H.

    1998-01-01

    Optimum bonding conditions were studied on the hot isostatic pressing (HIP) bonded joints of type 316L austenitic stainless steel and dispersion strengthened copper alloy (DSCu) for application to the ITER shielding blanket / first wall. HIP bonded joints were fabricated at temperatures in a 980-1050 C range, and a series of mechanical tests and metallurgical observations were conducted on the joints. Also, bondability of two grades of DSCu (Glidcop Al-25 trademark and Al-15 trademark ) with SS316L was examined in terms of mechanical properties of the HIP bonded joints. From those studies it was concluded that the HIP temperature of 1050 C was an optimal condition for obtaining higher ductility, impact values and fatigue strength. Also, SS316L/Al-15 joints showed better results in terms of ductility and impact values compared with SS316L/Al-25 joints. (orig.)

  10. Weld repair issues in thick section austenitic pipework

    International Nuclear Information System (INIS)

    Goodwin, S.J.; Price, A.T.

    1989-03-01

    Thick section austenitic Type 316 Stainless steel, in the solution treated condition, has been used in Central Electricity Generating Board plant in the United Kingdom for some three decades and has given good service. Repair and replacement of this material after long term service is becoming a requirement and is complicated by the precipitation hardening and sensitisation of the materials. This paper summarises the compositional, microstructural and ageing characteristics of the wrought material and weld metals and the consequences for materials properties. Post weld heat treatment options are outlined and sensitisation to stress corrosion cracking is discussed. Finally, some examples of cracking that has occurred in plant after long term operation are given and weld repair research requirements are noted. (author)

  11. Manufacture and characterization of austenitic steel welded joints

    International Nuclear Information System (INIS)

    Simoni, O.; Boerman, D.J.; Krischer, W.

    1990-01-01

    This paper describes the results of the first phase of the project, i.e. manufacturing and characterization of welded austenitic steel and the test matrix adopted to test the mechanical resistance of the welding. Five different welding methods have been tested and characterized in comparison to the parent material. The reference material was an AISI 316 L type steel close to the French Superphenix composition. The results of the mechanical testing and the relative comparison of the five welding methods are described in separate papers of the same session. As a general conclusion, the vacuum electron-beam welding proved to have better properties than the other weld methods and to attain in most cases the properties of the parent material. (author)

  12. The carbide M{sub 7}C{sub 3} in low-temperature-carburized austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Frank, E-mail: frank.ernst@cwru.edu [Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106-7204 (United States); Li, Dingqiang; Kahn, Harold; Michal, Gary M.; Heuer, Arthur H. [Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106-7204 (United States)

    2011-04-15

    Prolonged low-temperature gas-phase carburization of AISI 316L-type austenitic stainless steel can cause intragranular precipitation of the carbide M{sub 7}C{sub 3} (M: randomly dispersed Fe, Cr, Ni). Transmission electron microscopy revealed that the carbide particles have the shape of needles. They grow by a ledge-migration mechanism and in a crystallographic orientation relationship to the austenite matrix that enables highly coherent interphase interfaces. A small solubility limit of Ni in the carbide and restricted Ni diffusivity at the processing temperature leads to Ni pileup around the particles and may explain the extreme aspect ratio of the particle shape. These characteristics closely resemble what has been observed earlier for precipitates of M{sub 5}C{sub 2} under slightly different processing conditions and can be rationalized by considering the particular constraints imposed by carburization at low temperature.

  13. Low temperature fatigue crack propagation in neutron irradiated Type 316 steel and weld metal

    International Nuclear Information System (INIS)

    Lloyd, G.J.; Walls, J.D.; Gravenor, J.

    1981-02-01

    The fast cycling fatigue crack propagation characteristics of Type 316 steel and weld metal have been investigated at 380 0 C after irradiation to 1.72-1.92x10 20 n/cm 2 (E>1MeV) and 2.03x10 21 n/cm 2 (E>1MeV) at the same temperature. With mill-annealed Type 316 steel, modest decreases in the rates of crack propagation were observed for both dose levels considered, whereas for cold-worked Type 316 steel irradiation to 2.03x10 21 n/cm 2 (E>1MeV) caused increases in the rate of crack propagation. For Type 316 weld metal, increases in the rate of crack propagation were observed for both dose levels considered. The diverse influences of irradiation upon fatigue crack propagation in these materials are explained by considering a simple continuum mechanics model of crack propagation together with the results of control tensile experiments made on similarly irradiated materials. (author)

  14. Hot rolling and annealing effects on the microstructure and mechanical properties of ODS austenitic steel fabricated by electron beam selective melting

    Science.gov (United States)

    Gao, Rui; Ge, Wen-jun; Miao, Shu; Zhang, Tao; Wang, Xian-ping; Fang, Qian-feng

    2016-03-01

    The grain morphology, nano-oxide particles and mechanical properties of oxide dispersion strengthened (ODS)-316L austenitic steel synthesized by electron beam selective melting (EBSM) technique with different post-working processes, were explored in this study. The ODS-316L austenitic steel with superfine nano-sized oxide particles of 30-40 nm exhibits good tensile strength (412 MPa) and large total elongation (about 51%) due to the pinning effect of uniform distributed oxide particles on dislocations. After hot rolling, the specimen exhibits a higher tensile strength of 482 MPa, but the elongation decreases to 31.8% owing to the introduction of high-density dislocations. The subsequent heat treatment eliminates the grain defects induced by hot rolling and increases the randomly orientated grains, which further improves the strength and ductility of EBSM ODS-316L steel.

  15. Anelastic mechanical loss spectrometry of hydrogen in austenitic stainless steels

    International Nuclear Information System (INIS)

    Yagodzinskyy, Y.; Andronova, E.; Ivanchenko, M.; Haenninen, H.

    2009-01-01

    Atomic distribution of hydrogen, its elemental diffusion jumps and its interaction with dislocations in a number of austenitic stainless steels are studied with anelastic mechanical loss (AML) spectrometry in combination with the hydrogen thermal desorption method. Austenitic stainless steels of different chemical composition, namely, AISI 310, AISI 201, and AISI 301LN, as well as LDX 2101 duplex stainless steel are studied to clarify the role of different alloying elements on the hydrogen behavior. Activation analyses of the hydrogen Snoek-like peaks are performed with their decomposition to sets of Gaussian components. Fine structure of the composite hydrogen peaks is analyzed under the assumption that each component corresponds to diffusion transfer of hydrogen between octahedral positions with certain atomic compositions of the nearest neighbouring lattice sites. An additional component originating from hydrogen-dislocation interaction is considered. Binding energies for hydrogen-dislocation interaction are also estimated for the studied austenitic stainless steels.

  16. Assessment of precipitates of isothermal aged austenitic stainless steel using measurement techniques of ultrasonic attenuation

    International Nuclear Information System (INIS)

    Kim, Hun Hee; Kim, Hak Joon; Song, Sung Jin; Lim, Byeong Soo; Kim, Kyung Cho

    2014-01-01

    AISI 316L stainless steel is widely used as a structural material of high temperature thermoelectric power plants, since austenitic stainless steel has excellent mechanical properties. However, creep damage is generated in these components, which are operated under a high temperature and high pressure environment. Several researches have been done on how microstructural changes of precipitates affect to the macroscopic mechanical properties. And they investigate the relation between ultrasonic parameters and metallurgical results. But, these studies are limited by experiment results only. In this paper, attenuations of ultrasonic with isothermal damaged AISI 316L stainless steel were measured. Also, simulation of ultrasonic attenuation with variation of area fraction and size of precipitates were performed. And, from the measured attenuations, metallographic data and simulation results, we investigate the relations between the ultrasonic attenuations and the material properties which is area fraction of precipitates for the isothermal damaged austenitic stainless steel specimens. And, we studied parametric study for investigation of the relation between ultrasonic parameters and metallurgical results of the isothermal damaged AISI 316L stainless steel specimens using numerical methods.

  17. Creep and creep rupture properties of cladding tube (type 316) in high temperature sodium

    International Nuclear Information System (INIS)

    Atsumo, H.

    1977-01-01

    The thin walled small sized seamless AISI 316 steel tubes, which are designated to be domestically used as the fuel cladding tube for sodium cooled fast breeder reactors in Japan, are irradiated in the following sodium of high temperature in the range of 370 deg. C to 700 deg. C, and receive gradually increased internal pressure caused by the fission produced gas generating from the nuclear fuel burn-up inside the cladding tube. Consequently, the creep behavior of fuel cladding tubes under a high temperature sodium environment is an important problem which must be determined and clarified together with their characteristic features under irradiation and in air. In relation to the creep performance of fuel cladding tubes made of AISI 316 steel and other comparable austenitic stainless steels, hardly any studies are found that are made systematically to examine the effect of sodium with sodium purity as parameter or any comparative studies with in-air data at various different temperatures. The present research work was aimed to obtain certain basic design data relating to in-sodium creep performance of the domestic made fuel cladding tubes for fast breeder reactors, and also to gain further date as considered necessary under several sodium conditions. That is, together with establishment of the technology for tensile creep test and internal pressure creep rupture test in flowing sodium of high temperature, a series of tests and studies were performed on the trial made cladding tubes of AISI Type-316 steel. In the first place, two kinds of purity conditions of sodium, close to the actual reactor-operating condition, (oxygen concentration of 10 ppm and 5 ppm respectively) were established, and then uniaxial tensile creep test and rupture test under various temperatures were performed and the resulting data were compared and evaluated against the in-air data. Then, secondly, an internal pressure creep rupture test was conducted under a single purity sodium environment

  18. Resistance to pitting corrosion in ferritic and austenitic/ferritic steels

    International Nuclear Information System (INIS)

    De Bouvier, O.

    1995-01-01

    Stainless steel tubes carrying raw water are potentially vulnerable to pitting corrosion. With a view to minimizing the corrosion risk in the river-water-cooled condensers at PWR power plant, a study was conducted to determine initiation conditions and incubation durations for pitting corrosion in stagnant water. As a result, condenser tubes in Z2 CI 18 (439) or Z2 CT 18-10 (304L) steels were phased out in favour of Z2 CND 16-32 (316L) stainless steel. The same question can be yield for other applications and especially for all types of exchangers for use in electrical applications. This study sought to assess alternative methods for estimating pitting corrosion, and to check the results of these methods against the actual behaviour of studied steels. The study covered ferritic steels (439, 444, 290Mo), austenitic steel (316L) and austenitic/ferritic steels (Uranus 35N, 45N, 47N, 52N). Two approaches were adopted: laboratory tests to compare pitting corrosion risks on different materials, and tests for characterizing the behaviour of steels exposed to river water. The study begins with a laboratory tests that yield an arbitrary parameter for quantifying pitting corrosion resistance. One method involves measuring the pitting temperature in an aggressive ferric chloride solution. Other methods measure the pitting potential, either statistically (Multipit method) or deterministically (polarization curve). We then go on to discuss tests under simulated life-like conditions, involving repeated immersions in water from the Seine. (author). 9 refs., 13 figs, 9 tabs

  19. Cryogenic properties of V-bearing austenitic stainless steel

    International Nuclear Information System (INIS)

    Nohara, Kiyohiko

    1985-01-01

    A new type austenitic stainless steel which is expected as the cryogenic structural material for superconducting magnets has been developed. This steel is that vanadium was added to SUS 316 stainless steel of low carbon and high nitrogen, which has the sufficient strength and toughness at 4 K, and maintains the stable nonmagnetic state. This is applicable both to the solution state and the state of carrying out age hardening heat treatment for precipitating Nb 3 Sn subsequent to it. Accordingly, this material can be applied to the sheath material for nuclear fusion and the manufacture of superconducting magnets by Wind and React process besides the candidate material of superconducting magnets for nuclear fusion. This phenomenon is due to the fact that vanadium carbide precipitates in crystal grains before chrome carbide precipitates at grain boundaries, thus the precipitation of chrome carbide is suppressed. In this experiment, the effect of vanadium addition on the cryogenic properties of SUS 316 stainless steel was examined. The experimental method and the results of the effects of vanadium and nitrogen, solution treatment and precipitation aging, and the measurement of magnetism are reported. (Kako, I.)

  20. Multiaxial elastoplastic cyclic loading of austenitic 316L steel

    Czech Academy of Sciences Publication Activity Database

    Mazánová, Veronika; Polák, Jaroslav; Škorík, Viktor; Kruml, Tomáš

    2017-01-01

    Roč. 11, č. 40 (2017), s. 162-169 ISSN 1971-8993 R&D Projects: GA ČR(CZ) GA13-23652S; GA MŠk LM2015069; GA MŠk(CZ) LQ1601; GA ČR GA15-08826S Institutional support: RVO:68081723 Keywords : 316L steel * Crack initiation * Cyclic stress-strain curve * Multiaxial cyclic loading Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis

  1. Investigations on structure–property relationships of activated flux TIG weldments of super-duplex/austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Devendranath Ramkumar, K., E-mail: ramdevendranath@gmail.com; Bajpai, Ankur; Raghuvanshi, Shubham; Singh, Anshuman; Chandrasekhar, Aditya; Arivarasu, M.; Arivazhagan, N.

    2015-06-25

    This research work articulated the effect of SiO{sub 2} flux assisted tungsten inert gas (TIG) welding on the microstructure and mechanical properties of marine grade stainless steel weldments, such as super-duplex stainless steel (UNS S32750) and austenitic stainless steel (AISI 316L). The studies showed that the use of flux decreased the heat input required to obtain complete penetration. Microstructure studies revealed the presence of ferrite at the heat affected zone of AISI 316L and the fusion zone which obviated the hot cracking tendency. Tensile studies corroborated that the joint strength was sufficiently greater than that of the parent metals. Impact toughness slightly impoverished owing to the presence of large platelets of Widmanstätten austenite in the fusion zone. The study also explored the structure–property relationships of the flux assisted weldments using the combined techniques of optical and scanning electron microscopy analysis. Owing to the better metallurgical and mechanical properties, this study recommends the use of SiO{sub 2} flux for joining the dissimilar metals involving austenitic and super-duplex stainless steels.

  2. Investigations on structure–property relationships of activated flux TIG weldments of super-duplex/austenitic stainless steels

    International Nuclear Information System (INIS)

    Devendranath Ramkumar, K.; Bajpai, Ankur; Raghuvanshi, Shubham; Singh, Anshuman; Chandrasekhar, Aditya; Arivarasu, M.; Arivazhagan, N.

    2015-01-01

    This research work articulated the effect of SiO 2 flux assisted tungsten inert gas (TIG) welding on the microstructure and mechanical properties of marine grade stainless steel weldments, such as super-duplex stainless steel (UNS S32750) and austenitic stainless steel (AISI 316L). The studies showed that the use of flux decreased the heat input required to obtain complete penetration. Microstructure studies revealed the presence of ferrite at the heat affected zone of AISI 316L and the fusion zone which obviated the hot cracking tendency. Tensile studies corroborated that the joint strength was sufficiently greater than that of the parent metals. Impact toughness slightly impoverished owing to the presence of large platelets of Widmanstätten austenite in the fusion zone. The study also explored the structure–property relationships of the flux assisted weldments using the combined techniques of optical and scanning electron microscopy analysis. Owing to the better metallurgical and mechanical properties, this study recommends the use of SiO 2 flux for joining the dissimilar metals involving austenitic and super-duplex stainless steels

  3. Stress corrosion cracking behavior of annealed and cold worked 316L stainless steel in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Sáez-Maderuelo, A., E-mail: alberto.saez@ciemat.es; Gómez-Briceño, D.

    2016-10-15

    Highlights: • The alloy 316L is susceptible to stress corrosion cracking in supercritical water. • The susceptibility of alloy 316L increases with temperature and plastic deformation. • Dynamic strain ageing processes may be active in the material. - Abstract: The supercritical water reactor (SCWR) is one of the more promising designs considered by the Generation IV International Forum due to its high thermal efficiency and improving security. To build this reactor, standardized structural materials used in light water reactors (LWR), like austenitic stainless steels, have been proposed. These kind of materials have shown an optimum behavior to stress corrosion cracking (SCC) under LWR conditions except when they are cold worked. It is known that physicochemical properties of water change sharply with pressure and temperature inside of the supercritical region. Owing to this situation, there are several doubts about the behavior of candidate materials like austenitic stainless steel 316L to SCC in the SCWR conditions. In this work, alloy 316L was studied in deaerated SCW at two different temperatures (400 °C and 500 °C) and at 25 MPa in order to determine how changes in this variable influence the resistance of this material to SCC. The influence of plastic deformation in the behavior of alloy 316L to SCC in SCW was also studied at both temperatures. Results obtained from these tests have shown that alloy 316L is susceptible to SCC in supercritical water reactor conditions where the susceptibility of this alloy increases with temperature. Moreover, prior plastic deformation of 316L SS increased its susceptibility to environmental cracking in SCW.

  4. Attenuation capability of low activation-modified high manganese austenitic stainless steel for fusion reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Eissa, M.M. [Steel Technology Department, Central Metallurgical Research and Development Institute (CMRDI), Helwan (Egypt); El-kameesy, S.U.; El-Fiki, S.A. [Physics Department, Faculty of Science, Ain Shams University, Cairo (Egypt); Ghali, S.N. [Steel Technology Department, Central Metallurgical Research and Development Institute (CMRDI), Helwan (Egypt); El Shazly, R.M. [Physics Department, Faculty of Science, Al-Azhar University, Cairo (Egypt); Saeed, Aly, E-mail: aly_8h@yahoo.com [Nuclear Power station Department, Faculty of Engineering, Egyptian-Russian University, Cairo (Egypt)

    2016-11-15

    Highlights: • Improvement stainless steel alloys to be used in fusion reactors. • Structural, mechanical, attenuation properties of investigated alloys were studied. • Good agreement between experimental and calculated results has been achieved. • The developed alloys could be considered as candidate materials for fusion reactors. - Abstract: Low nickel-high manganese austenitic stainless steel alloys, SSMn9Ni and SSMn10Ni, were developed to use as a shielding material in fusion reactor system. A standard austenitic stainless steel SS316L was prepared and studied as a reference sample. The microstructure properties of the present stainless steel alloys were investigated using Schaeffler diagram, optical microscopy, and X-ray diffraction pattern. Mainly, an austenite phase was observed for the prepared stainless steel alloys. Additionally, a small ferrite phase was observed in SS316L and SSMn10Ni samples. The mechanical properties of the prepared alloys were studied using Vickers hardness and tensile tests at room temperature. The studied manganese stainless steel alloys showed higher hardness, yield strength, and ultimate tensile strength than SS316L. On the other hand, the manganese stainless steel elongation had relatively lower values than the standard SS316L. The removal cross section for both slow and total slow (primary and those slowed down in sample) neutrons were carried out using {sup 241}Am-Be neutron source. Gamma ray attenuation parameters were carried out for different gamma ray energy lines which emitted from {sup 60}Co and {sup 232}Th radioactive sources. The developed manganese stainless steel alloys had a higher total slow removal cross section than SS316L. While the slow neutron and gamma rays were nearly the same for all studied stainless steel alloys. From the obtained results, the developed manganese stainless steel alloys could be considered as candidate materials for fusion reactor system with low activation based on the short life

  5. Coordination polyhedra LnFn (Ln=La-Lu) in crystal structure

    International Nuclear Information System (INIS)

    Vologzhanina, A.V.; Pushkin, D.V.; Serezhkin, V.N.

    2006-01-01

    Peculiarities of stereochemistry of lanthanides (Ln) surrounded by fluorine atoms were studied by means of the Voronoi-Dirichlet polyhedra (PVD) and method of crossing spheres, 118 compounds are presented in the structure. It has been found that coordination numbers (CN) of Ln atoms change from 6 to 12, nine types of LnF n coordination polyhedra are formed in the process, Ln-F bond lengths have changes by 0.2-0.7 A in accordance to CN. It is found that in spite of significant variation of bond lengths volume of PVD Ln atoms is determined by their nature and oxidation state. It has been found that the change in radii of spherical domains, which volume is equal to the volume of PVD Ln atoms, is accompanied by tetrad-effect [ru

  6. Surface modification of investment cast-316L implants: microstructure effects.

    Science.gov (United States)

    El-Hadad, Shimaa; Khalifa, Waleed; Nofal, Adel

    2015-03-01

    Artificial femur stem of 316L stainless steel was fabricated by investment casting using vacuum induction melting. Different surface treatments: mechanical polishing, thermal oxidation and immersion in alkaline solution were applied. Thicker hydroxyapatite (HAP) layer was formed in the furnace-oxidized samples as compared to the mechanically polished ones. The alkaline treatment enhanced the precipitation of HAP on the samples. It was also observed that the HAP precipitation responded differently to the different phases of the microstructure. The austenite phase was observed to have more homogeneous and smoother layer of HAP. In addition, the growth of HAP was sometimes favored on the austenite phase rather than on ferrite phase. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Determination of the concentration dependent diffusion coefficient of nitrogen in expanded austenite

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2008-01-01

    The concentration dependent diffusion coefficient of nitrogen in expanded austenite was determined from of the rate of retracting nitrogen from thin initially N-saturated coupons. Nitrogen saturated homogeneous foils of expanded austenite were obtained by nitriding AISI 304 and AISI 316 in pure...... in the composition range where nitrogen can be extracted by hydrogen gas at the diffusion temperature. Numerical simulation of the denitriding experiments shows that the thus determined concentration dependent diffusion coefficients are an accurate approximation of the actual diffusivity of nitrogen in expanded...... ammonia at 693 K and 718 K. Denitriding experiments were performed by equilibrating the foils with a successively lower nitrogen activity, as imposed by a gas mixture of ammonia and hydrogen. The concentration dependent diffusion coefficient of nitrogen in expanded austenite was approximated...

  8. Effect of current and travel speed variation of TIG welding on microstructure and hardness of stainless steel SS 316L

    Science.gov (United States)

    Jatimurti, Wikan; Abdillah, Fakhri Aulia; Kurniawan, Budi Agung; Rochiem, Rochman

    2018-04-01

    One of the stainless steel types that widely used in industry is SS 316L, which is austenitic stainless steel. One of the welding methods to join stainless steel is Tungsten Inert Gas (TIG), which can affect its morphology, microstructure, strength, hardness, and even lead to cracks in the weld area due to the given heat input. This research has a purpose of analyzing the relationship between microstructure and hardness value of SS 316L stainless steel after TIG welding with the variation of current and travel speed. The macro observation shows a distinct difference in the weld metal and base metal area, and the weld form is not symmetrical. The metallographic test shows the phases that formed in the specimen are austenite and ferrite, which scattered in three welding areas. The hardness test showed that the highest hardness value found in the variation of travel speed 12 cm/min with current 100 A. Welding process and variation were given do not cause any defects in the microstructure, such as carbide precipitation and sigma phase, means that it does not affect the hardness and corrosion resistance of all welded specimen.

  9. Nature of gallium focused ion beam induced phase transformation in 316L austenitic stainless steel

    International Nuclear Information System (INIS)

    Babu, R. Prasath; Irukuvarghula, S.; Harte, A.; Preuss, M.

    2016-01-01

    The microstructural evolution and chemistry of the ferrite phase (α), which transforms from the parent austenite phase (γ) of 316L stainless steel during gallium (Ga) ion beam implantation in Focused Ion Beam (FIB) instrument was systematically studied as a function of Ga"+ ion dose and γ grain orientations. The propensity for initiation of γ → α phase transformation was observed to be strongly dependent on the orientation of the γ grain with respect to the ion beam direction and correlates well with the ion channelling differences in the γ orientations studied. Several α variants formed within a single γ orientation and the sputtering rate of the material, after the γ → α transformation, is governed by the orientation of α variants. With increased ion dose, there is an evolution of orientation of the α variants towards a variant of higher Ga"+ channelling. Unique topographical features were observed within each specific γ orientation that can be attributed to the orientation of defects formed during the ion implantation. In most cases, γ and α were related by either Kurdjumov-Sachs (KS) or Nishiyama-Wassermann (NW) orientation relationship (OR) while in few, no known OR's were identified. While our results are consistent with gallium enrichment being the cause for the γ → α phase transformation, some observations also suggest that the strain associated with the presence of gallium atoms in the lattice has a far field stress effect that promotes the phase transformation ahead of gallium penetration.

  10. Gigacycle fatigue behaviour of austenitic stainless steels used for mercury target vessels

    International Nuclear Information System (INIS)

    Naoe, Takashi; Xiong, Zhihong; Futakawa, Masatoshi

    2016-01-01

    A mercury enclosure vessel for the pulsed spallation neutron source manufactured from a type 316L austenitic stainless steel, a so-called target vessel, suffers the cyclic loading caused by the proton beam induced pressure waves. A design criteria of the JSNS target vessel which is defined based on the irradiation damage is 2500 h at 1 MW with a repetition rate of 25 Hz, that is, the target vessel suffers approximately 10 9 cyclic loading while in operation. Furthermore, strain rate of the beam window of the target vessel reaches 50 s −1 at the maximum, which is much higher than that of the conventional fatigue. Gigacycle fatigue strength up to 10 9 cycles for solution annealed 316L (SA) and cold-worked 316L (CW) were investigated through the ultrasonic fatigue tests. Fatigue tests were performed under room temperature and 250 °C which is the maximum temperature evaluated at the beam window in order to investigate the effect of temperature on fatigue strength of SA and CW 316L. The results showed that the fatigue strength at 250 °C is clearly reduced in comparison with room temperature, regardless of cold work level. In addition, residual strength and microhardness of the fatigue tested specimen were measured to investigate the change in mechanical properties by cyclic loading. Cyclic hardening was observed in both the SA and CW 316L, and cyclic softening was observed in the initial stage of cyclic loading in CW 316L. Furthermore, abrupt temperature rising just before fatigue failure was observed regardless of testing conditions.

  11. High cycle fatigue of austenitic stainless steels

    International Nuclear Information System (INIS)

    Gauthier, J.P.; Lehmann, D.; Picker

    1990-01-01

    This study concerns the evaluation of material data to be used in LMFBR design codes. High cycle fatigue properties of three austenitic stainless steels are evaluated: type AISI 316 (UKAEA tests), type AISI 316L (CEA tests) and type AISI 304 (Interatom tests). The data on these steels comprised some 550 data points from 14 casts. This data set covered a wide range of testing parameters: temperature from 20-625 0 C, frequency from 1-20 000 Hz, constant amplitude and random fatigue loading, with and without mean stress, etc. However, the testing conditions chosen by the three partners differed considerably because they had been fixed independently and not harmonized prior to the tests. This created considerable difficulties for the evaluations. Experimental procedures and statistical treatments used for the three subsets of data are described and discussed. Results are presented in tables and graphs. Although it is often difficult to single out the influence of each parameter due to the different testing conditions, several interesting conclusions can be drawn: The HCF properties of the three steels are consistent with the 0.2% proof stress, the fatigue limit being larger than the latter at temperatures above 550 0 C. The type 304 steel has lower tensile properties than the two other steels and hence also lower HCF properties. Parameters which clearly have a significant effect of HCF behaviour are mean stress or R-ratio (less in the non-endurance region than in the endurance region), temperature, cast or product. Other parameters have probably a weak or no effect but it is difficult to conclude due to insufficient data: environment, specimen orientation, frequency, specimen geometry

  12. Static recrystallisation and precipitation after hot deformation of austenitic stainless steels containing molybdenum and niobium

    International Nuclear Information System (INIS)

    Lombry, R.; Rossard, C.; Thomas, B.J.

    1981-01-01

    In general the hot workability of austenite depends on the work hardening during deformation and the kinetics of the dynamic and static restoration processes. Static recrystallisation is a very important factor in the case of hot rolling. The present work was undertaken to determine the effect of additions of molybdenum or niobium on the kinetics of static recrystallisation. The results show that the rate of static recrystallisation of type 304, 316 and 347 stainless steels decreases in this order for a given amount of prior deformation (epsilon=0,44). The differences in the rates of recrystallisation increases as the temperature is lowered towards 900 deg C. The effect of molybdenum appears to be attribuable to a solute drag effect on the mobility of dislocations, subgrain boundaries or grain boundaries whereas niobium additions lead to the formation of NbC precipitates on the dislocation cell walls and sub boundaries. It is also shown that in the case of type 316 and type 347 steels the dynamic recrystallisation process (observed in type 304 steels at all temperatures above 900 deg C) is replaced by dynamic recovery at temperatures egal to or below about 1000 deg C [fr

  13. Short Communication on “Self-welding susceptibility of NiCr-B hardfaced coating with and without NiCr-B coating on 316LN stainless steel in flowing sodium at elevated temperature”

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Hemant, E-mail: hemant@igcar.gov.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721 302 (India); Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Ramakrishnan, V.; Albert, S.K.; Bhaduri, A.K. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Ray, K.K. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721 302 (India)

    2017-02-15

    The self-welding susceptibility between NiCr-B coated 316LN stainless steel and the base metal, and that between NiCr-B hardfaced coatings has been evaluated in flowing sodium at 823 K for 90 and 135 days under contact stress of 8.0 and 11.0 MPa using a fabricated set-up. Neither any self-welding could be observed nor could any damage be detected on the specimen surfaces of the selected materials under the imposed experimental conditions, which indicate their satisfactory potential for applications in Fast Breeder Reactors.

  14. Study on creep-fatigue life improvement and life evaluation of 316FR stainless steels

    International Nuclear Information System (INIS)

    Kobayashi, Kazuo; Yamaguchi, Koji; Yamazaki, Masayoshi; Hongo, Hiromichi; Nakazawa, Takanori; Date, Shingo; Tendo, Masayuki

    2000-01-01

    Creep rupture and creep-fatigue interaction tests were conducted at 550deg C for modified 316FR austenitic stainless steels in order to improve the creep-fatigue lives. Reducing the carbon contents from 0.01% to 0.002 or 0.003% and finning the grain size were effective for increasing the creep-fatigue lives and the creep rupture ductilities. From these results, an estimation method of the creep-fatigue lives by using the creep rupture ductilities in the modified 316FR steels was proposed. (author)

  15. Investigation of corrosion of welded joints of austenitic and duplex stainless steels

    Science.gov (United States)

    Topolska, S.

    2016-08-01

    Investigation of corrosion resistance of materials is one of the most important tests that allow determining their functional properties. Among these tests the special group consist electrochemical investigations, which let to accelerate the course of the process. These investigations allow rapidly estimating corrosion processes occurring in metal elements under the influence of the analysed environment. In the paper are presented results of investigations of the resistance to pitting corrosion of the steel of next grades: austenitic 316L and duplex 2205. It was also analysed the corrosion resistance of welded joints of these grades of steel. The investigations were conducted in two different corrosion environments: in the neutral one (3.5 % sodium chloride) and in the aggressive one (0.1 M sulphuric acid VI). The obtained results indicate different resistance of analysed grades of steel and their welded joints in relation to the corrosion environment. The austenitic 316L steel characterizes by the higher resistance to the pitting corrosion in the aggressive environment then the duplex 2205 steel. In the paper are presented results of potentiodynamic tests. They showed that all the specimens are less resistant to pitting corrosion in the environment of sulphuric acid (VI) than in the sodium chloride one. The 2205 steel has higher corrosion resistance than the 316L stainless steel in 3.5% NaCl. On the other hand, in 0.1 M H2SO4, the 316L steel has a higher corrosion resistance than the 2205 one. The weld has a similar, very good resistance to pitting corrosion like both steels.

  16. Zinc Addition Effects on General Corrosion of Austenitic Stainless Steels in PWR Primary Conditions

    International Nuclear Information System (INIS)

    Qiao Peipeng; Zhang Lefu; Liu Ruiqin; Jiang Suqing; Zhu Fawen

    2010-01-01

    Zinc addition effects on general corrosion of austenitic stainless steel 316 and 304 were investigated in simulated PWR primary coolant without zinc or with 50 ppb zinc addition at 315 degree C for 500 h. The results show that with the addition of zinc, the corrosion rate of austenitic stainless steel is effectively reduced, the surface oxide film is thinner, the morphology and chemical composition of surface oxide scales are evidently different from those without zinc. There are needle-like corrosion products on the surface of stainless steel 304. (authors)

  17. Friction and wear behaviour of Ni-Cr-B hardface coating on 316LN stainless steel in liquid sodium at elevated temperature

    Science.gov (United States)

    Kumar, Hemant; Ramakrishnan, V.; Albert, S. K.; Bhaduri, A. K.; Ray, K. K.

    2017-11-01

    The sliding friction and wear behaviour of Ni-Cr-B hardface coating made on 316LN stainless steel were evaluated in liquid sodium at 823 K by using a fabricated reciprocating-type tribometer. The test parameters have been selected based on operational conditions prevailing in the Indian sodium cooled fast breeder reactors (FBRs). Accordingly, the tests were carried out at sliding speeds of 2 and 16 mm/s under contact stresses of 10 and 40 MPa respectively using Ni-Cr-B coated pin and disc specimens. The static and dynamic friction coefficients are found to be in the ranges of 0.03-0.07 and 0.01-0.02 respectively under the imposed test conditions. The estimated wear rates (WR) are found to be in the range of 0.62 × 10-12 - 3.07 × 10-12 m3/m; the magnitude of WR increases with increase in the contact stress. The examination of the worn disc specimens by confocal laser scanning microscopy indicated higher damage in specimens tested at 40 MPa compared to that in specimens tested at 10 MPa; the quantitative estimation of damage was made by the number of scars and their depth. These observations corroborate well with the morphological features of the worn surfaces of the pin specimens examined by scanning electron microscopy. The results unambiguously indicate superior friction coefficients and wear resistance of Ni-Cr-B coatings in liquid sodium compared to that in air under identical test conditions.

  18. Effect of laser beam position on mechanical properties of F82H/SUS316L butt-joint welded by fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Serizawa, Hisashi, E-mail: serizawa@jwri.osaka-u.ac.jp [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Mori, Daiki; Ogiwara, Hiroyuki; Mori, Hiroaki [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2014-10-15

    Highlights: • The micro hardness of weld metal in F82H/SUS316L joint partially decreases after PWHT by shifting beam position to SUS316L. • Charpy impact energy of F82H/SUS316L joint obviously increases after PWHT due to the release of residual stress. • The tensile strength of weld metal in F82H/SUS316L joint is higher than that of SUS316L. • The fiber laser welding seems to be one of the most candidate methods to join between F82H and SUS316L pipes practically. - Abstract: A dissimilar butt-joint between reduced activation ferritic/martensitic steel F82H and SUS316L austenitic stainless steel was made by 4 kW fiber laser and the influence of laser beam position on its mechanical properties before and after post-weld heat treatment (PWHT) was examined at room temperature. From the nano-indentation measurements and the microstructural observations, it is found that the micro hardness of weld metal partially decreases after PWHT by shifting beam position to SUS316L because its phase seems to move from only the martensitic phase to the mixture of austenitic and martensitic phases. In addition, Charpy impact test suggests that the impact energy slightly increases by shifting beam position before PWHT and obviously increases after PWHT due to the release of residual stress. Moreover, the tensile test indicates that the tensile strength of weld metal is higher than that of SUS316L and the fracture occurs at the base metal of SUS316L regardless of laser beam position.

  19. Progress report on the influence of higher interpass temperatures on the integrity of austenitic stainless steel welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Yarmuch, M.; Choi, L. [Alberta Research Council, Edmonton, AB (Canada); Armstrong, K.; Radu, I. [PCL Industrial Constructors Inc., Nisku, AB (Canada)

    2008-07-01

    This report discussed the progress of the Welding Productivity Group (TWPG) interpass temperature assessment project (ITAP). The project was initiated to evaluate the influence of interpass temperatures on the metallurgical, corrosive, and mechanical properties of austenitic stainless steel, carbon steel, and low-alloy pressure weldments. To date, the project has conducted experiments to determine if interpass temperatures in austenitic stainless steel weldments are higher than temperatures recommended by API requirements. Elevated interpass temperatures for various base materials have been evaluated. Preliminary metallurgical, mechanical, and laboratory corrosion data from 3 experiments with 304/304L and 316/316L stainless steel weldment test specimens has shown that no significant changes occur as a result of elevated interpass temperatures. Results from side bend specimens have demonstrated that elevated interpass temperatures produce acceptable weldment ductility. No intergranular cracking was observed during oxalic acid etch tests conducted for the 316/316L samples. Huey tests performed on the 304/304L specimens indicated that elevated interpass temperatures did not adversely affect the intergranular corrosion resistance of weldments with less than 3 weld passes. Huey tests performed on the 316 specimens showed a marked increase in corrosion rates and normalized weight losses. It was concluded that rates of attack correlate with the maximum interpass temperature and not the average weld metal ferrite number. 22 refs., 11 tabs., 12 figs.

  20. Post irradiation examination of type 316 stainless steels for in-pile Oarai water loop No.2 (OWL-2)

    International Nuclear Information System (INIS)

    Shibata, Akira; Kimura, Tadashi; Nagata, Hiroshi; Aoyama, Masashi; Kanno, Masaru; Ohmi, Masao

    2010-11-01

    The Oarai water loop No.2 (OWL-2) was installed in JMTR in 1972 for the purpose of irradiation experiments of fuel element and component material for light water reactors. Type 316 stainless steels (SSs) were used for tube material of OWL-2 in the reactor. But data of mechanical properties of highly irradiated Type 316 SSs has been insufficient since OWL-2 was installed. Therefore surveillance tests of type 316 SSs which were irradiated up to 3.4x10 25 n/m 2 in fast neutron fluence (>1 MeV) were performed. Meanwhile type 316 stainless steel (SS) is widely used in JMTR such as other irradiation apparatus and irradiation capsule, and additional data of type 316 SSs irradiated higher is required. Therefore post irradiation examinations of surveillance specimens made of type 316 SSs which were irradiated up to 1.0x10 26 n/m 2 in fast neutron fluence were performed and reported in this paper. In this result of surveillance tests of type 316 SSs irradiated up to 1.0x10 26 n/m 2 , tensile strength increase with increase of Neutron fluence and total elongation decreased with increase of Neutron fluence compared to unirradiated specimens and specimens irradiated up to 3.4x10 25 n/m 2 . This tendency has good agreement with results of 10 24 - 10 25 n/m 2 in fast neutron fluence. More than 37% in total elongation was confirmed in all test conditions. It was confirmed that type 316 SS irradiated up to 1.0x10 26 n/m 2 in fast neutron fluence has enough ductility as structure material. (author)

  1. Deformation mechanisms induced under high cycle fatigue tests in a metastable austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Roa, J.J., E-mail: joan.josep.roa@upc.edu [CIEFMA-Departament de Ciència dels Materials i Enginyeria Metallúrgica, ETSEIB, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); CRnE, Campus Diagonal Sud, Edificio C’, Universitat Politècnica de Catalunya, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Fargas, G. [CIEFMA-Departament de Ciència dels Materials i Enginyeria Metallúrgica, ETSEIB, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); Jiménez-Piqué, E. [CIEFMA-Departament de Ciència dels Materials i Enginyeria Metallúrgica, ETSEIB, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); CRnE, Campus Diagonal Sud, Edificio C’, Universitat Politècnica de Catalunya, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Mateo, A. [CIEFMA-Departament de Ciència dels Materials i Enginyeria Metallúrgica, ETSEIB, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain)

    2014-03-01

    Advanced techniques were used to study the deformation mechanisms induced by fatigue tests in a metastable austenitic stainless steel AISI 301LN. Observations by Atomic Force Microscopy were carried out to study the evolution of a pre-existing martensite platelet at increasing number of cycles. The sub-superficial deformation mechanisms of the austenitic grains were studied considering the cross-section microstructure obtained by Focused Ion Beam and analysed by Scanning Electron Microscopy and Transmission Electron Microscopy. The results revealed no deformation surrounding the pre-existing martensitic platelet during fatigue tests, only the growth on height was observed. Martensite formation was associated with shear bands on austenite, mainly in the {111} plane, and with the activation of the other intersecting austenite {111}〈110〉 slip system. Furthermore, transmission electron microscopy results showed that the nucleation of ε-martensite follows a two stages phase transformation (γ{sub fcc}→ε{sub hcp}→α'{sub bcc})

  2. Evaluation of the TIG welding mechanical behavior in AISI 316 tubes for fuel rods

    International Nuclear Information System (INIS)

    Bittencourt, M.S.Q.; Carvalho Perdigao, S. de

    1985-10-01

    The effect of service temperature, the mechanical resistance and the creep behaviour of a steel which is intendend to be used as fuel rods in Nuclear Reactors was investigated. The tests were performed in seamless tubes of austenitic stainless steel, AISI 316, 20% cold worked, TIG welded. (Author) [pt

  3. Microstructure of Au-ion irradiated 316L and FeNiCr austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Jublot-Leclerc, S., E-mail: stephanie.jublot-leclerc@csnsm.in2p3.fr [CSNSM, Univ Paris-Sud, CNRS, Université Paris Saclay, 91405 Orsay (France); Li, X. [CSNSM, Univ Paris-Sud, CNRS, Université Paris Saclay, 91405 Orsay (France); Legras, L.; Lescoat, M.-L. [EDF R& D, Groupe Métallurgie, Les Renardières, 77818 Moret sur Loing (France); Fortuna, F.; Gentils, A. [CSNSM, Univ Paris-Sud, CNRS, Université Paris Saclay, 91405 Orsay (France)

    2016-11-15

    Thin foils of 316L were irradiated in situ in a Transmission Electron Microscope with 4 MeV Au ions at 450 °C and 550 °C. Similar irradiations were performed at 450 °C in FeNiCr. The void and dislocation microstructure of 316L is found to depend strongly on temperature. At 450 °C, a dense network of dislocation lines is observed in situ to grow from black dot defects by absorption of other black dots and interstitial clusters whilst no Frank loops are detected. At 550 °C, no such network is observed but large Frank loops and perfect loops whose sudden appearance is concomitant with a strong increase in void density as a result of a strong coupling between voids and dislocations. Moreover, differences in both alloys microstructure show the major role played by the minor constituents of 316L, increasing the stacking fault formation energy, and possibly leading to significant differences in swelling behaviour. - Highlights: • 316L and FeNiCr were ion irradiated in situ in a TEM at elevated temperature. • The minor constituents of 316L play a major role in the resulting microstructure. • A dense network of dislocations develops in both alloys from black dot defects. • The nucleation and growth of voids and dislocations are strongly correlated. • The Frank loop mean size saturates at similar dpa values as in neutron irradiation.

  4. Phase transformation and hardness of SS 316 L steel cast alloy after heat treatment at high temperature

    International Nuclear Information System (INIS)

    Hidayat, S.; Prayitno, D. H.

    2000-01-01

    Heat treatment Study of SS 316 L cast alloy at high temperature was conducted. The alloy of SS 316 L was melted by arc melting furnace in argon atmosphere. Heat treatment of SS 316 L casting alloy was carried out in tube furnace at 1400 o C for period of 1/2, 1, and 2 hours. The optical microscopic characterization showed that SS 316 L cast has got dendritic micro structure with ferrite as the primary phase. After the heat treatment, the ferrite phase underwent gradual decrease followed by an increase of the austenite phase. The heat treatment process also resulted in the formation of the new grain boundary. The hardness examination revealed that for longer period of the heat treatment, the hardness of SS 316 L increased. (author)

  5. Damage mechanism of piping welded joints made from austenitic Steel for the type RBMK reactor

    International Nuclear Information System (INIS)

    Karzov, G.; Timofeev, B.; Gorbakony, A.; Petrov, V.; Chernaenko, T.

    1999-01-01

    In the process of operation of RBMK reactors the damages were taking place on welded piping, produced from austenitic stainless steel of the type 08X18H10T. The inspection of damaged sections in piping has shown that in most cases crack-like defects are of corrosion and mechanical character. The paper considers in details the reasons of damages appearance and their development for this type of welded joints of downcomers 325xl6 mm, which were fabricated from austenitic stainless steel using TlG and MAW welding methods. (author)

  6. Compatibility of austenitic and martensitic steels behaviour in semi-stagnant Pb17Li

    International Nuclear Information System (INIS)

    Sannier, J.; Dufrenoy, T.; Flament, T.; Terlain, A.

    1991-01-01

    Compatibility tests between Pb17Li and 316L austenitic or 1.4914 martensitic steels have been performed with experimental conditions simulating the special features of the water-cooled lithium-lead blanket (low Pb17Li velocity, significant radial thermal gradient and short distances between hot and cold zones). In the 420-475 deg C temperature range, the results show that corrosion kinetics for both 316L and 1.4914 steels are quasi-linear and about 3 times lower compared to turbulent condition. From amount of recovered deposits, the mass transfer of 316L steel at 450 deg C appears to be equivalent to that of 1.1914 steel at 475 deg C. The same relationship was observed in flowing Pb17Li condition

  7. Stress corrosion cracking of austenitic stainless steel in glycerol solution and chloride solution at elevated temperature

    International Nuclear Information System (INIS)

    Haftirman; Maruhum Tua Lubis

    2009-01-01

    Stress Corrosion Cracking (SCC) is an environmentally assisted failure caused by exposure to a corrodant while under a sustained tensile stress. SCC is most often rapid, unpredictable and catastrophic. Failure can occur in as little as a few hours or take years to happen. Most alloys are susceptible to SCC in one or more environments requiring careful consideration of alloy type in component design. In aqueous chloride environments austenitic stainless steels and many nickel based alloys are known to perform poorly. One of products Oleo chemical is glycerol solution. Glycerol solution contains chloride with concentration 50 ppm - 150 ppm. Austenitic stainless steel is usually used in distillation construction tank and pipe line of glycerol. Material AISI 304 will be failure in this glycerol solution with this concentration in 5 years. In production process, concentration of chloride in glycerol becomes more than 150 ppm at temperature 150 degree Celsius. The reason is that the experiment I conducted in high chloride with concentration such as 6000 ppm, 9000 ppm, and 12000 ppm. The stress corrosion cracking of the austenitic stainless steels of types AISI 304, 316 and 316L in glycerol solution at elevated temperature 150 degree Celsius is investigated as a function variation of chloride concentration, namely 50, 6000, 9000 and 12000 ppm using a constant load method with two kinds of initial tensile stress as 50 % and 70 % yield strength. The experiment uses a spring loaded fixture type and is based on ASTM G49 for experiment method, and E292 for geometry of specimen. Pitting corrosion occurs on the surface specimen until the stress level reaches the ultimate strength. Pitting corrosion attack and depletion occur on the surface as initiation of SCC failure as the stress reaches the ultimate strength. Failure has occurred in catastrophic brittle fracture type of transgranular. AISI 304 was more susceptible for all conditions. In chloride solution with concentration of

  8. Synergistic Computational and Microstructural Design of Next- Generation High-Temperature Austenitic Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Karaman, Ibrahim [Texas A& M Engineering Experiment Station, College Station, TX (United States); Arroyave, Raymundo [Texas A& M Engineering Experiment Station, College Station, TX (United States)

    2015-07-31

    The purpose of this project was to: 1) study deformation twinning, its evolution, thermal stability, and the contribution on mechanical response of the new advanced stainless steels, especially at elevated temperatures; 2) study alumina-scale formation on the surface, as an alternative for conventional chromium oxide, that shows better oxidation resistance, through alloy design; and 3) design new generation of high temperature stainless steels that form alumina scale and have thermally stable nano-twins. The work involved few baseline alloys for investigating the twin formation under tensile loading, thermal stability of these twins, and the role of deformation twins on the mechanical response of the alloys. These baseline alloys included Hadfield Steel (Fe-13Mn-1C), 316, 316L and 316N stainless steels. Another baseline alloy was studied for alumina-scale formation investigations. Hadfield steel showed twinning but undesired second phases formed at higher temperatures. 316N stainless steel did not show signs of deformation twinning. Conventional 316 stainless steel demonstrated extensive deformation twinning at room temperature. Investigations on this alloy, both in single crystalline and polycrystalline forms, showed that deformation twins evolve in a hierarchical manner, consisting of micron–sized bundles of nano-twins. The width of nano-twins stays almost constant as the extent of strain increases, but the width and number of the bundles increase with increasing strain. A systematic thermomechanical cycling study showed that the twins were stable at temperatures as high as 900°C, after the dislocations are annealed out. Using such cycles, volume fraction of the thermally stable deformation twins were increased up to 40% in 316 stainless steel. Using computational thermodynamics and kinetics calculations, we designed two generations of advanced austenitic stainless steels. In the first generation, Alloy 1, which had been proposed as an alumina

  9. Re-weldability tests of irradiated 316L(N) stainless steel using laser welding technique

    International Nuclear Information System (INIS)

    Yamada, Hirokazu; Kawamura, Hiroshi; Tsuchiya, Kunihiko; Kalinin, George; Kohno, Wataru; Morishima, Yasuo

    2002-01-01

    SS316L(N)-IG is the candidate material for the in-vessel and ex-vessel components of fusion reactors such as ITER (International Thermonuclear Experimental Reactor). This paper describes a study on re-weldability of un-irradiated and/or irradiated SS316L(N)-IG and the effect of helium generation on the mechanical properties of the weld joint. The laser welding process is used for re-welding of the water cooling branch pipeline repairs. It is clarified that re-welding of SS316L(N)-IG irradiated up to about 0.2 dpa (3.3 appm He) can be carried out without a serious deterioration of tensile properties due to helium accumulation. Therefore, repair of the ITER blanket cooling pipes can be performed by the laser welding process

  10. Re-weldability tests of irradiated 316L(N) stainless steel using laser welding technique

    Science.gov (United States)

    Yamada, Hirokazu; Kawamura, Hiroshi; Tsuchiya, Kunihiko; Kalinin, George; Kohno, Wataru; Morishima, Yasuo

    2002-12-01

    SS316L(N)-IG is the candidate material for the in-vessel and ex-vessel components of fusion reactors such as ITER (International Thermonuclear Experimental Reactor). This paper describes a study on re-weldability of un-irradiated and/or irradiated SS316L(N)-IG and the effect of helium generation on the mechanical properties of the weld joint. The laser welding process is used for re-welding of the water cooling branch pipeline repairs. It is clarified that re-welding of SS316L(N)-IG irradiated up to about 0.2 dpa (3.3 appm He) can be carried out without a serious deterioration of tensile properties due to helium accumulation. Therefore, repair of the ITER blanket cooling pipes can be performed by the laser welding process.

  11. Several aspects of the temperature history in relation to the cyclic behaviour of an austenitic stainless steel

    International Nuclear Information System (INIS)

    Gentet, D.; Feaugas, X.; Risbet, M.; Lejeail, Y.; Pilvin, P.

    2011-01-01

    Highlights: · Dynamic strain ageing consequences on the temperature history memorization effect. · Temperature is mainly focused at a temperature range equal to 293-923 K. · Two peaks are observed on the curve describing saturation stress amplitude. · Cyclic behaviour is a function of the temperature range explored. · Cyclic temperature history is mainly associated with chromium segregation. - Abstract: A consistent mechanical and transmission electron microscopy (TEM) database is proposed to discuss the consequences of dynamic strain ageing (DSA) on the temperature history memory effect observed under the cyclic loading of a 316LN austenitic stainless steel. Two DSA mechanisms have been identified in relation with two temperature regimes: the first of which may be related to the Suzuki effect (in the low temperature regime) and the second is linked to solute segregation at dislocation node (in the high temperature regime). The temperature history memory effect is a function of the temperature range and can be explained in terms of chromium segregation and the potentiality to obtain 'stability' in dipolar dislocation structures. Both aspects are discussed based on the measurement of internal stress changes.

  12. Study of irradiation damage structures in austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Shozo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-08-01

    The irradiation damage microstructures in austenitic stainless steels, which have been proposed to be a candidate of structural materials of a fusion reactor, under ions and neutrons irradiation have been studied. In ion irradiation experiments, cross-sectional observation of the depth distribution of damage formed due to ion irradiation became available. Comparison and discussion between experimental results with TEM and the calculated ones in the depth profiles of irradiation damage microstructures. Further, dual-phase stainless steels, consisted of ferritic/austenitic phases, showed irradiation-induced/enhanced precipitation during ion irradiation. High Flux Isotope Reactor with high neutron fluxes was employed in neutron-irradiation experiments. Swelling of 316 steel showed irradiation temperature dependence and this had strong correlation with phase instability under heavy damage level. Swelling resistance of Ti-modified austenitic stainless steel, which has good swelling resistance, decreased during high damage level. This might be caused by the instability of Ti-carbide particles. The preparation method to reduce higher radioactivity of neutron-irradiated TEM specimen was developed. (author). 176 refs.

  13. Study of irradiation damage structures in austenitic stainless steels

    International Nuclear Information System (INIS)

    Hamada, Shozo

    1997-08-01

    The irradiation damage microstructures in austenitic stainless steels, which have been proposed to be a candidate of structural materials of a fusion reactor, under ions and neutrons irradiation have been studied. In ion irradiation experiments, cross-sectional observation of the depth distribution of damage formed due to ion irradiation became available. Comparison and discussion between experimental results with TEM and the calculated ones in the depth profiles of irradiation damage microstructures. Further, dual-phase stainless steels, consisted of ferritic/austenitic phases, showed irradiation-induced/enhanced precipitation during ion irradiation. High Flux Isotope Reactor with high neutron fluxes was employed in neutron-irradiation experiments. Swelling of 316 steel showed irradiation temperature dependence and this had strong correlation with phase instability under heavy damage level. Swelling resistance of Ti-modified austenitic stainless steel, which has good swelling resistance, decreased during high damage level. This might be caused by the instability of Ti-carbide particles. The preparation method to reduce higher radioactivity of neutron-irradiated TEM specimen was developed. (author). 176 refs

  14. Radiation damage simulation studies of selected austenitic and ferritic/martensitic alloys for fusion reactor structural applications

    International Nuclear Information System (INIS)

    Mazey, D.J.; Walters, G.P.; Buckley, S.N.; Bullough, R.; Hanks, W.; Bolster, D.E.J.; Sowden, B.C.; Lurcook, D.; Murphy, S.M.

    1985-03-01

    Results are given of an investigation of the radiation damage stability of selected austenitic and ferritic alloys following ion bombardment in the Harwell VEC to simulate fusion-reactor exposures up to 110 dpa at temperatures from 425 deg to 625 deg C. Gas production rates appropriate to CTR conditions were simulated using a mixed beam of (4 MeV He + 2 MeV H 2 ) in the ratio 1:4 He:H. A beam of 46 MeV Ni or 20 MeV Cr ions was used in sequence with the mixed gas beam to provide a gas/damage ratio of 13 appm He/dpa at a damage rate of approx. 1 dpa/hr. The materials were investigated using TEM and comprised three austenitic alloys: European reference 316L, 316-Ti, 316-Nb; four high-nickel alloys: Fe/25 Ni/8Cr, Inconel 625, Inconel 706 and Nimonic PE16, and four ferritic/martensitic alloys: FV 448, FV 607, CRM 12 and FI. Some data were obtained for a non-magnetic structural alloy Nonmagne-30. The swelling behaviour is reported. The overall results of the study indicate that on a comparative basis the ferritic alloys are the most swelling-resistant, whilst the high-nickel alloys have an acceptable low swelling response up to 110 dpa. The 316 alloys tested have shown an unfavourable swelling response. (author)

  15. Corrosion of type 316 stainless steel in molten LiF-LiCl-LiBr

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.; Keiser, J.R.

    1981-01-01

    The properties of LiF-LiCl-LiBr salt make it attractive as a solvent for extracting tritium from a fusion reactor lithium blanket. Consequently, the corrosion of type 316 stainless steel by flowing (about 15 mm/s) LiF-LiCl-LiBr at a maximum temperature of 535 0 C was studied to determine whether compatibility with the structural material would be limiting in such a system. The corrosion rate was found to be low ( 0 C (approximately that of type 316 stainless steel exposed to lithium flowing at a similar velocity). At the proposed operating temperature (less than or equal to approx. 535 0 C), however, it appears that type 316 stainless steel has acceptable compatibility with the tritium-processing salt LiF-LiCl-LiBr for use with a lithium blanket

  16. Materials development for fast reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, T.; Mathew, M.D.; Laha, K.; Sandhya, R., E-mail: san@igcar.gov.in

    2013-12-15

    Highlights: • A modified version of alloy D9 designated as IFAC-1 has been developed. • Oxide dispersion strengthened Grade 91 steel with good creep strength developed. • 0.14 wt% nitrogen in 316LN stainless steel leads to improved mechanical properties. • Type IV cracking resistant Grade 91 steel with boron addition developed. • Mechanical properties of SFR materials evaluated in sodium environment. -- Abstract: Materials play a crucial role in the economic competitiveness of electricity produced from fast reactors. It is necessary to increase the fuel burn-up and design life in order to realize this objective. The burnup is largely limited by the void swelling and creep resistance of the fuel cladding and wrapping materials. India's 500 MWe Prototype Fast Breeder Reactor (PFBR) is in advanced stage of construction. The major structural materials chosen for PFBR with MOX fuel are D9 austenitic stainless steel as fuel clad and wrapper material, 316LN austenitic stainless steel for reactor components and piping and modified 9Cr-1Mo steel for steam generator. In order to improve the burnup, titanium, phosphorous and silicon contents in alloy D9 have been optimized for decreased void swelling and increased creep strength and this has led to the development of a modified version of alloy D9 as IFAC-1. Ferritic steels are inherently resistant to void swelling. The disadvantage is their poor creep strength. Creep resistance of 9Cr-ferritic steel has been improved with the dispersion of nano-size yttria to develop oxide dispersion strengthened (ODS) steel clad tube with long-term creep strength, comparable to alloy D9 so as to achieve higher fuel burnup. Improved versions of 316LN stainless steel with nitrogen content of about 0.14 wt% having higher creep strength to increase the life of fast reactors and modified 9Cr-1Mo steel with reduced nitrogen content and controlled addition of boron to improve type IV cracking resistance for steam generator

  17. The effect of grain size on the mechanical response of a metastable austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Sinclair C.W.

    2013-11-01

    Full Text Available The combination of high environmental resistance and excellent strength, elongation and energy absorption make austenitic stainless steels potentially attractive for transportation applications. In the case of metastable grades that undergo a strain induced martensitic transformation it is possible to significantly change the mechanical properties simply by changing the austenite grain size. Predicting such behaviour using physically based models is, however, extremely challenging. Here, some recent work on the coupling between grain size and mechanical response will be presented for a metastable AISI 301 LN stainless steel. Successes and continuing challenges will be highlighted.

  18. Solvothermal syntheses, crystal structures, and properties of lanthanide(III) thioarsenates [Ln(dien)2(μ-1κ,2κ2-AsS4)]n (Ln==Sm, Eu, Gd) and [Ln(dien)2(1κ2-AsS4)] (Ln==Tb, Dy, Ho)

    International Nuclear Information System (INIS)

    Wang, Fang; Tang, Chunying; Chen, Ruihong; Zhang, Yong; Jia, Dingxian

    2013-01-01

    Solvothermal reactions of Ln 2 O 3 , As and S in diethylenetriamine (dien) at 170 °C for 6 days afforded two structural types of lanthanide thioarsenates with the general formulae [Ln(dien) 2 (μ-1κ,2κ 2 -AsS 4 )] n [Ln=Sm(1), Eu(2), Gd(3)] and [Ln(dien) 2 (1κ 2 -AsS 4 )] [Ln=Tb(4), Dy(5), Ho(6)]. The Ln 2 O 3 oxides were converted to [Ln(dien) 2 ] 3+ complex units in the solvothermal reactions. The As atom binds four S atoms, forming a tetrahedral AsS 4 unit. In 1−3, the AsS 4 units interconnect the [Ln(dien) 2 ] 3+ cations via Ln−S bonds as tridentate μ-1κ,2κ 2 -AsS 4 bridging ligands, resulting in the neutral coordination polymers [Ln(dien) 2 (μ-1κ,2κ 2 -AsS 4 )] n (Ln1). In 4−6, the AsS 4 units coordinate with the Ln 3+ ion of [Ln(dien) 2 ] 3+ as 1κ 2 -AsS 4 chelating ligands to form neutral coordination compounds [Ln(dien) 2 (1κ 2 -AsS 4 )] (Ln2). The Ln 3+ ions are in nine- and eight-coordinated environments in Ln1 and Ln2, respectively. The formation of Ln1 and Ln2 is related with ionic size of the Ln 3+ ions. Optical absorption spectra showed that 1−6 have potential use as semiconductors with the band gaps in the range 2.18−3.21 eV. - Graphical abstract: Two types of Ln-thioarsenates [Ln(dien) 2 (μ-1κ,2κ 2 -AsS 4 )] n and [Ln(dien) 2 (1κ 2 -AsS 4 )] were prepared by solvothermal methods and the soft Lewis basic AsS 4 3– ligand to Ln(III) centers with polyamine co-ligand was obtained. Display Omitted - Highlights: • Lanthanide thioarsenates were prepared by solvothermal methods. • The soft Lewis basic AsS 4 ligand coordinate Ln 3+ ions with coexistence polyamine ligands. • Two structural types of Ln-thioarsenates with structural turnover at Tb were obtained along Ln series. • The Ln-thioarsenates are potential semiconductors with optical band gaps in the range 2.18−3.21 eV

  19. Laser surface modification of 316 L stainless steel with bioactive hydroxyapatite.

    Science.gov (United States)

    Balla, Vamsi Krishna; Das, Mitun; Bose, Sreyashree; Ram, G D Janaki; Manna, Indranil

    2013-12-01

    Laser-engineered net shaping (LENS™), a commercial additive manufacturing process, was used to modify the surfaces of 316 L stainless steel with bioactive hydroxyapatite (HAP). The modified surfaces were characterized in terms of their microstructure, hardness and apatite forming ability. The results showed that with increase in laser energy input from 32 J/mm(2) to 59 J/mm(2) the thickness of the modified surface increased from 222±12 μm to 355±6 μm, while the average surface hardness decreased marginally from 403±18 HV0.3 to 372±8 HV0.3. Microstructural studies showed that the modified surface consisted of austenite dendrites with HAP and some reaction products primarily occurring in the inter-dendritic regions. Finally, the surface-modified 316 L samples immersed in simulated body fluids showed significantly higher apatite precipitation compared to unmodified 316 L samples. © 2013.

  20. Effect of Multipass TIG and Activated TIG Welding Process on the Thermo-Mechanical Behavior of 316LN Stainless Steel Weld Joints

    Science.gov (United States)

    Ganesh, K. C.; Balasubramanian, K. R.; Vasudevan, M.; Vasantharaja, P.; Chandrasekhar, N.

    2016-04-01

    The primary objective of this work was to develop a finite element model to predict the thermo-mechanical behavior of an activated tungsten inert gas (ATIG)-welded joint. The ATIG-welded joint was fabricated using 10 mm thickness of 316LN stainless steel plates in a single pass. To distinguish the merits of ATIG welding process, it was compared with manual multipass tungsten inert gas (MPTIG)-welded joint. The ATIG-welded joint was fabricated with square butt edge configuration using an activating flux developed in-house. The MPTIG-welded joint was fabricated in thirteen passes with V-groove edge configuration. The finite element model was developed to predict the transient temperature, residual stress, and distortion of the welded joints. Also, microhardness, impact toughness, tensile strength, ferrite measurement, and microstructure were characterized. Since most of the recent publications of ATIG-welded joint was focused on the molten weld pool dynamics, this research work gives an insight on the thermo-mechanical behavior of ATIG-welded joint over MPTIG-welded joint.

  1. Cultures and co-cultures of human blood mononuclear cells and endothelial cells for the biocompatibility assessment of surface modified AISI 316L austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Stio, Maria; Martinesi, Maria; Treves, Cristina [Dipartimento di Scienze Biomediche, Sperimentali e Cliniche ‘Mario Serio’, Sezione di Scienze Biochimiche, Università di Firenze, viale Morgagni 50, 50134 Firenze (Italy); Borgioli, Francesca, E-mail: francesca.borgioli@unifi.it [Dipartimento di Ingegneria Industriale (DIEF), Università di Firenze, via S. Marta 3, 50139 Firenze (Italy)

    2016-12-01

    Samples of AISI 316L austenitic stainless steel were subjected either to grinding and polishing procedure, or to grinding and then low temperature glow-discharge nitriding treatment, or to grinding, nitriding and subsequently coating with collagen-I. Nitrided samples, even if only ground, show a higher corrosion resistance in PBS solution, in comparison with ground and polished AISI 316L. Biocompatibility was evaluated in vitro by incubating the samples with either peripheral blood mononuclear cells (PBMC) or human umbilical vein endothelial cells (HUVEC), tested separately or in co-culture. HUVEC-PBMC co-culture and co-incubation of HUVEC with PBMC culture medium, after the previous incubation of PBMC with metallic samples, allowed to determine whether the incubation of PBMC with the different samples might affect HUVEC behaviour. Many biological parameters were considered: cell proliferation, release of cytokines, matrix metalloproteinases (MMPs) and sICAM-1, gelatinolytic activity of MMPs, and ICAM-1 protein expression. Nitriding treatment, with or without collagen coating of the samples, is able to ameliorate some of the biological parameters taken into account. The obtained results point out that biocompatibility may be successfully tested in vitro, using cultures of normal human cells, as blood and endothelial cells, but more than one cell line should be used, separately or in co-culture, and different parameters should be determined, in particular those correlated with inflammatory phenomena. - Highlights: • Nitriding improves corrosion resistance and biocompatibility of ground AISI 316L. • The metallic samples differently affect different human cell cultures. • PBMC and HUVEC are a suitable model to test in vitro biocompatibility. • Co-cultures show that HUVEC are affected by pre-incubation of PBMC with the samples. • Inflammation parameters must be taken into account for assessing biocompatibility.

  2. Cultures and co-cultures of human blood mononuclear cells and endothelial cells for the biocompatibility assessment of surface modified AISI 316L austenitic stainless steel

    International Nuclear Information System (INIS)

    Stio, Maria; Martinesi, Maria; Treves, Cristina; Borgioli, Francesca

    2016-01-01

    Samples of AISI 316L austenitic stainless steel were subjected either to grinding and polishing procedure, or to grinding and then low temperature glow-discharge nitriding treatment, or to grinding, nitriding and subsequently coating with collagen-I. Nitrided samples, even if only ground, show a higher corrosion resistance in PBS solution, in comparison with ground and polished AISI 316L. Biocompatibility was evaluated in vitro by incubating the samples with either peripheral blood mononuclear cells (PBMC) or human umbilical vein endothelial cells (HUVEC), tested separately or in co-culture. HUVEC-PBMC co-culture and co-incubation of HUVEC with PBMC culture medium, after the previous incubation of PBMC with metallic samples, allowed to determine whether the incubation of PBMC with the different samples might affect HUVEC behaviour. Many biological parameters were considered: cell proliferation, release of cytokines, matrix metalloproteinases (MMPs) and sICAM-1, gelatinolytic activity of MMPs, and ICAM-1 protein expression. Nitriding treatment, with or without collagen coating of the samples, is able to ameliorate some of the biological parameters taken into account. The obtained results point out that biocompatibility may be successfully tested in vitro, using cultures of normal human cells, as blood and endothelial cells, but more than one cell line should be used, separately or in co-culture, and different parameters should be determined, in particular those correlated with inflammatory phenomena. - Highlights: • Nitriding improves corrosion resistance and biocompatibility of ground AISI 316L. • The metallic samples differently affect different human cell cultures. • PBMC and HUVEC are a suitable model to test in vitro biocompatibility. • Co-cultures show that HUVEC are affected by pre-incubation of PBMC with the samples. • Inflammation parameters must be taken into account for assessing biocompatibility.

  3. Radiation-induced evolution of austenite matrix in silicon-modified AISI 316 alloys

    International Nuclear Information System (INIS)

    Garner, F.A.; Brager, H.R.

    1980-01-01

    The microstructures of a series of silicon-modified AISI 316 alloys irradiated to fast neutron fluences of about 2-3 and 10 x 10 22 n/cm 2 (E > 0.1 MeV at temperatures ranging from 400 0 C to 600 0 C have been examined. The irradiation of AISI 316 leads to an extensive repartition of several elements, particularly nickel and silicon, between the matrix and various precipitate phases. The segregation of nickel at void and grain boundary surfaces at the expense of other faster-diffusing elements is a clear indication that one of the mechanisms driving the microchemical evolution is the Inverse Kirkendall effect. There is evidence that at one sink this mechanism is in competition with the solute drag process associated with interstitial gradients

  4. Adhesion of composite carbon/hydroxyapatite coatings on AISI 316L medical steel

    Directory of Open Access Journals (Sweden)

    J. Gawroński

    2009-07-01

    Full Text Available In this paper are contains the results of studies concerning the problems associated with increased of hydroxyapatite (HAp adhesion, manufactured by using Pulse Laser Deposition (PLD method, to the austenitic steel (AISI 316L through the coating of carbon interlayer on it. Carbon coating was deposited by Radio Frequency Plasma Assisted Chemical Vapour Deposition (RF PACVD method.Test results unequivocally showed that the intermediate carbon layer in a determined manner increase the adhesion of hydroxyapatite to the metallic substrate. Obtained results give rise to deal with issues of manufacturing composite bilayer – carbon film/HAp – on ready implants, casted from austenitic cast steel by lost-wax process method as well as in gypsum forms.

  5. Compatibility of 316L stainless steel with the liquid alloy Pb17Li

    International Nuclear Information System (INIS)

    Broc, M.; Fauvet, P.; Flament, T.; Terlain, A.; Sannier, J.

    1988-01-01

    The behavior of 316L austenitic stainless steel in liquid eutectic lead alloy is investigated. The 316L is a possible structural material for fusion reactors. The obtained results are summarized and compared with other experimental data. The mechanisms which control the corrosion process are discussed. The investigation shows that whatever, the hydraulic flow, the corrosion of 316L stainless steel exposed to Pb17Li is characterized by the formation of a porous ferritic layer. The corrosion kinetics is mainly dependent on temperature, hydraulic flow and metallurgical state of the steel. At 400 0 C in turbulent flow, the corrosion rate at steady state of 316L solution annealed is estimated to 27 microns/year to which a depth of 25 microns has to be added to take into account the initial transient period. From overall available results, dissolution and solid state transformation in case of turbulent flow and diffusion in liquid phase for laminar flow, may be suggested

  6. Study of 316 stainless steel swelling due to neutron irradiation

    International Nuclear Information System (INIS)

    Furutani, Gen; Konishi, Takao

    2000-01-01

    Large stresses will be generated in the austenitic stainless steel core internals of pressurized water reactors (PWRs) if excessive swelling occurs after long periods of operation. As a result, deformation or stress corrosion cracking (SCC) could occur in the core internals. However, data on the swelling of irradiated austenitic stainless steel in actual PWRs is limited. In this study, mechanical tests, measurement of produced helium amount and analysis using transmission electron microscopes were carried out on a cold-worked (CW) 316 stainless steel flux thimble tube irradiated up to approximately 35 dpa in a Japanese PWR. The swelling was evaluated to be approximately 0.02%. This level of swelling was much lower than the swelling of the more than several percent that has been observed in fast breeder reactors. (author)

  7. Temperature dependent measurement of internal damping of austenitic stainless steels

    Directory of Open Access Journals (Sweden)

    Oravcová Monika

    2018-01-01

    Full Text Available This article is aimed on the analysis of the internal damping changes of austenitic stainless steels AISI 304, AISI 316L and AISI 316Ti depending from temperature. In experimental measurements only resonance method was used which is based on continuous excitation of oscillations of the specimens and the whole apparatus vibrates at the frequency near to the resonance. Microplastic processes and dissipation of energy within the metals are evaluated and investigated by internal damping measurements. Damping capacity of materials is closely tied to the presence of defects including second phase particles and voids. By measuring the energy dissipation in the material, we can determine the elastic characteristics, Youngs modulus, the level of stress relaxation and many other.

  8. Characteristic of Low Temperature Carburized Austenitic Stainless Steel

    Science.gov (United States)

    Istiroyah; Pamungkas, M. A.; Saroja, G.; Ghufron, M.; Juwono, A. M.

    2018-01-01

    Low temperature carburizing process has been carried out on austenitic stainless steel (ASS) type AISI 316L, that contain chromium in above 12 at%. Therefore, conventional heat treatment processes that are usually carried out at high temperatures are not applicable. The sensitization process due to chromium migration from the grain boundary will lead to stress corrosion crack and decrease the corrosion resistance of the steel. In this study, the carburizing process was carried out at low temperatures below 500 °C. Surface morphology and mechanical properties of carburized specimens were investigated using optical microscopy, non destructive profilometer, and Vicker microhardness. The surface roughness analysis show the carburising process improves the roughness of ASS surface. This improvement is due to the adsorption of carbon atoms on the surface of the specimen. Likewise, the hardness test results indicate the carburising process increases the hardness of ASS.

  9. Manufacture and characterization of austenitic steel welded joints. Joint final report - Vol. 1

    International Nuclear Information System (INIS)

    Simoni, O.; Boerman, D.J.; Krischer, W.

    1990-07-01

    This report describes the results of the first phase of the project, i.e. manufacturing and characterization of welded austenitic steel and the test matrix adopted to test the mechanical resistance of the weldings. Five different welding methods have been produced and characterized in comparison to the parent material. The reference material was an AISI 316L type steel close to the French Superphenix composition. The results of the mechanical testing and the relative comparison of the five welding methods are described in a second volume. As a general conclusion, the vacuum electron-beam welding proved to have better properties than the other weld methods and to attain in most cases the properties of the parent material

  10. Investigations of a type 316L steam dryer plate material suffering from IGSCC after few years in BWRs

    International Nuclear Information System (INIS)

    Autio, J.M.; Ehrnsten, U.; Pakarinen, J.; Mouginot, R.; Cocco, M.

    2015-01-01

    A steam dryer plate material suffered from intergranular stress corrosion cracking after only one and two years of operation in two BWR plants. Numerous indications were observed on the inner roof plates of the steam dryers adjacent to the support beam welds. The material was Type 316L austenitic stainless steel with carbon content below 0.02%. The material was subjected to detailed investigations using optical microscopy, EBSD/SEM, TEM, hardness and nano-indentation. The material showed macro-segregation through the plate thickness. These bands coincided with the location of delta-ferrite islands indicating non-optimal solution heat treatment. α'-martensite was observed deep in the plate indicating cold deformation after solution annealing. A nonhomogeneous distribution of grain orientation was also observed through the plate thickness. Further, surface deformation, although not extending very deep, was observed using EBSD and surface hardness values above 300 HV when measured using small loads. Although the material fulfills the set requirements, the material characteristics have obviously increased the susceptibility of the material to IGSCC. The paper will discuss the possible role of changes in manufacturing over the years and the challenges in quality definitions in material specifications. (authors)

  11. Stress and Composition of Carbon Stabilized Expanded Austenite on Stainless Steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2009-01-01

    Low-temperature gaseous carburizing of stainless steel is associated with a colossal supersaturation of the fcc lattice with carbon, without the development of carbides. This article addresses the simultaneous determination of stress and composition profiles in layers of carbon xpanded austenite...... obtained by low-temperature gaseous carburizing of AISI 316. X-ray diffraction was applied for the determination of lattice spacing depth profiles by destructive depth profiling and reconstruction of the original lattice spacing profiles from the measured, diffracted intensity weighted, values....... The compressive stress depth distributions correlate with the depth distribution of the strain-free lattice parameter, the latter being a measure for the depth distribution of carbon in expanded austenite. Elastically accommodated compressive stress values as high as -2.7 GPa were obtained, which exceeds...

  12. High temperature strength and aging behavior of 12%Cr-15%Mn austenitic steels

    International Nuclear Information System (INIS)

    Miyahara, Kazuya; Bae, Dong-Su; Sakai, Hidenori; Hosoi, Yuzo

    1993-01-01

    High Mn-Cr austenitic steels are still considered to be an important high temperature structural material from the point of view of reduced radio-activation. The objective of the present study is to make a fundamental research of mechanical properties and microstructure of 12%Cr-15%Mn austenitic steels. Especially the effects of alloying elements of V and Ti on the mechanical properties and microstructure evolution of high Mn-Cr steels were studied. Precipitation behaviors of carbides, nitrides and σ phase are investigated and their remarkable effects on the high temperature strength are found. The addition of V was very effective for strengthening the materials with the precipitation of fine VN. Ti was also found to be beneficial for the improvement of high temperature strength properties. The results of high temperature strengths of the 12Cr-15Mn austenitic steels were compared with those of the other candidate and/or reference materials, for example, JFMS (modified 9Cr-2Mo ferritic stainless steel) and JPCAs (modified 316 austenitic stainless steels). (author)

  13. Estimation of Low Cycle Fatigue Response of 316 LN Stainless Steel in the Presence of Notch

    Science.gov (United States)

    Agrawal, Richa; Veerababu, J.; Goyal, Sunil; Sandhya, R.; Uddanwadiker, Rashmi; Padole, Pramod

    2018-02-01

    Notches introduced in the plain specimen result in the multiaxial state of stress that exists in the actual components due to the presence of flaws and defects. In the present work, low cycle fatigue life estimation of plain and notched specimens of 316 LN stainless steel is carried out at room temperature and 823 K. The plain and notched specimens with different notch radii were subjected to varying strain amplitudes ranging from ± 0.25 to ± 1.0% at a strain rate of 3 × 10-3 s-1. The fatigue life decreased in the presence of notch for all strain amplitudes at both the temperatures. The decrease in fatigue life was found to be more at room temperature than at 823 K. The fatigue life of the notched specimen decreased by approximately 94.2% compared to plain specimen at room temperature. However, at 823 K the decrease in fatigue life for notched specimen was approximately 84.6%. Low cycle fatigue life of the plain and notched specimens was estimated by Neuber's rule and finite element analysis approach. Neuber's rule overestimated the fatigue life by maximum factor of 2.6 for specimens at room temperature and by maximum factor of 5 for specimens at 823 K. However, it gives closer approximation at higher strain amplitudes at 823 K. Life estimation by finite element analysis at room temperature was within a factor of 1.5 as compared to experimental life, whereas it underestimated the fatigue life within a factor of 6 at high temperature.

  14. Effect of hardening on the crack growth rate of austenitic stainless steels in primary PWR conditions

    International Nuclear Information System (INIS)

    Castano, M.L.; Garcia, M.S.; Diego, G. de; Gomez-Briceno, D.; Francia, L.

    2002-01-01

    Intergranular cracking of non-sensitized materials, found in light water reactor (LWR) components exposed to neutron radiation, has been attributed to Irradiation Assisted Stress Corrosion Cracking (IASCC). Cracking of baffle former bolts, fabricated of AISI-316L and AISI-347, have been reported in some Europeans and US PWR plants. Examinations of removed bolts indicate the intergranular cracking characteristics can be associated with IASCC phenomena. Neutron radiation produce critical modifications of the microstructure and microchemical of stainless steels such hardening due to irradiation and Radiation Induce Segregation (RIS) at grain boundaries, among others. Chromium depletion at grain boundary due to RIS seems to justify the intergranular cracking of irradiated materials, both in plant and in lab tests, at high electrochemical corrosion potential (BWR-NWC environments), but it is not enough to explain cracking at low corrosion potential (BWR-HWC and PWR environments). In these latter conditions, hardening is considered a possible additional mechanism to explain the behavior of irradiated material. Radiation Hardening can be simulated in non irradiated material by mechanical deformation. Although some differences exists in the types of defects produced by radiation and mechanical deformation, it is accepted that the study of the stress corrosion behavior of unirradiated austenitic steels with different hardening levels would contribute to the understanding of IASCC mechanism. In order to evaluate the influence of hardening on the stress corrosion susceptibility of austenitic steels, crack growth rate tests with 316L and 347 stainless steels with nominal yield strengths from 500 to 900 MPa, produced by cold work are being carried out at 340 deg C in PWR conditions. Preliminary results indicate that crack propagation was obtained in the 316Lss and 347ss cold worked, even with a yield strength of 550 MPa. (authors)

  15. High-temperature strength of AISI 316 steel

    International Nuclear Information System (INIS)

    Antunes, A.E.B.; Monteiro, S.N.

    1975-01-01

    The mechanical properties, especially elastic limit and strain hardening of AISI-316 austenitic stainless steel were investigated within the temperature range 150-800 0 C for two strain rates. The results showed anomalous behaviour between 200 and 650 0 C, over which range there was an increase in maximum strenght and hardening, with a tendency to show peaks. These apparentley three in number, may be connected with the effects of interaction between point defects and dislocations leading to dinamic aging phenomena. The mechanisms responsible for this anomalous behaviour produce a negative dependence on strain rate [pt

  16. Residual stresses associated with welds in austenitic steel

    International Nuclear Information System (INIS)

    Fidler, R.

    1978-01-01

    Two exploratory welds have been made with AISI 316 austenitic steel and Armex GT electrodes by the manual metal-arc process, and residual stress measurements made in the as-welded condition and after various periods of stress relief. The results show that substantial stress relief occurs at temperatures of 850 0 and 750 0 C after 1 hr, but is not complete. The stress distributions are compared with those obtained from ferritic welds and the effect of differences in thermal expansion coefficients is examined using finite element analysis. (author)

  17. Superconducting A.C. generators. Some recent experimental investigations

    International Nuclear Information System (INIS)

    Ross, J.S.H.; Smith, D.A.

    1978-01-01

    Experimental work is reported which has been carried out in the past three years aimed at evaluating the materials and the design features applicable to large superconducting generators. Two main topics are considered: (1) A detailed and comprehensive investigation into the physical properties of a six tonne forging in austenitic stainless steel AISI 316LN. (2) The design of a system to transfer helium onto and from a rotating shaft. (UK)

  18. Changes in grain boundary composition induced by neutron irradiation of austenitic stainless steels

    International Nuclear Information System (INIS)

    Asano, K.; Nakata, K.; Fukuya, K.; Kodama, M.

    1992-01-01

    The radiation induced segregation of solutes to the grain boundary in austenitic stainless steels were studied. Type 304 and type 316 steel samples neutron irradiated at 561K up to 9.2x10 25 n/m 2 were obtained and minute compositional profiles across grain boundaries were examined using an analytical scanning transmission electron microscope equipped with a field emission electron gun. Chromium was slightly enriched at grain boundaries at the lowest irradiation dose but decreased with increasing fluence. Higher fluence irradiation resulted in depletion in chromium and molybdenum, and enrichment in nickel, silicon and phosphorus. These changes in grain boundary chemistry were limited within about 5nm of the boundary. Significant depletion of chromium and enrichment of impurities on the grain boundary occurred at fluences roughly coincidental with that of SCC susceptibility change obtained from another project

  19. Influence of sodium on the low-cycle fatigue behavior of types 304 and 316 stainless steel

    International Nuclear Information System (INIS)

    Smith, D.L.; Zeman, G.J.; Natesan, K.; Kassner, T.F.

    1976-01-01

    Fatigue tests in sodium were conducted to investigate the influence of a high-temperature sodium environment on the low-cycle fatigue behavior of Types 304 and 316 stainless steel. The effects of testing in a sodium environment as well as long-term sodium exposure were investigated. The fatigue tests were conducted at 600 and 700 0 C in sodium of controlled purity, viz., approximately 1 ppM oxygen and 0.4 ppM carbon, at a strain rate of 4 x 10 -3 s -1 . The fatigue life of annealed Type 316 stainless steel is substantially greater in sodium than when tested in air; however, the fatigue life of annealed Type 304 stainless steel is altered much less when tested in sodium. A 1512-h preexposure to sodium had no significant effect on the fatigue life of Type 316 stainless steel tested in sodium. However, a similar exposure substantially increased the fatigue life of Type 304 stainless steel in sodium. 10 fig

  20. Development of austenitic stainless steel plate (316MN) for fast breeder reactors

    International Nuclear Information System (INIS)

    Nakazawa, Takanori; Abo, Hideo; Tanino, Mitsuru; Komatsu, Hazime.

    1989-01-01

    High creep-fatigue resistance is required for the structural materials for fast breeder reactors. As creep-fatigue life is closely related to creep-rupture ductility, the effects of C, N and Mo on creep-rupture properties were investigated with a view to improving the creep-fatigue resistance of stainless steel. Strengthening by the addition of C has a great adverse effect on rupture ductility, but N can strengthen the steel without decreasing rupture ductility. Strengthening by Mo decreases rupture ductility but this effect is small. The low-C-medium-N (0.01%C - 0.07%N) stainless steel 316 MN developed based on the findings described above exhibits only a small decrease in creep-rupture strength in long-time periods compared with the conventional 316 steel. This steel offers excellent rupture ductility and the 10,000-hour rupture strength which is about 1.2 times that of conventional steel. Moreover, this steel exhibits excellent properties in creep fatigue test. (author)

  1. Magnetic anisotropy of ultrafine 316L stainless steel fibers

    Energy Technology Data Exchange (ETDEWEB)

    Shyr, Tien-Wei, E-mail: twshyr@fcu.edu.tw [Department of Fiber and Composite Materials, Feng Chia University, No. 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan, ROC (China); Huang, Shih-Ju [Department of Fiber and Composite Materials, Feng Chia University, No. 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan, ROC (China); Wur, Ching-Shuei [Department of Physics, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan, ROC (China)

    2016-12-01

    An as-received 316L stainless steel fiber with a diameter of 20 μm was drawn using a bundle drawing process at room temperature to form ultrafine stainless steel fibers with diameters of 12, 8, and 6 μm. The crystalline phases of the fibers were analyzed using the X-ray diffraction (XRD) profile fitting technique. The grain sizes of γ-austenite and α′-martensite were reduced to nanoscale sizes after the drawing process. XRD analysis and focused ion beam-scanning electron microscope observations showed that the newly formed α′-martensitic grains were closely arrayed in the drawing direction. The magnetic property was measured using a superconducting quantum interference device vibrating sample magnetometer. The magnetic anisotropy of the fibers was observed by applying a magnetic field parallel and perpendicular to the fiber axis. The results showed that the microstructure anisotropy including the shape anisotropy, magnetocrystalline anisotropy, and the orientation of the crystalline phases strongly contributed to the magnetic anisotropy. - Highlights: • The martensitic transformation of the 316L SS fiber occurred during the cold drawn. • The grain sizes of γ-austenite and α′-martensite were reduced to the nanoscale. • The newly formed martensitic grains were closely arrayed in the drawing direction. • The drawing process caused the magnetic easy axis to be aligned with the fiber axis. • The microstructure anisotropy strongly contributed to the magnetic anisotropy.

  2. The permeation of tritium through 316L stainless steel with multiple coatings

    International Nuclear Information System (INIS)

    Yao Zhenyu; Hao Jiakun; Zhou Changshan; Shan Changqi; Yu Jinnan

    2000-01-01

    TiN + TiC + TiN and TiN + TiC + SiO 2 films were deposited on the surface of 316L austenitic stainless steel by means of physical vapor deposition (PVD). The thickness of the films was about 2-3 μm. The film is compact, oxidation-resistant, and has good adherence with the substrate below 500 deg. C. Tritium gas permeation of 316L with multiple films was examined, and it was found that the tritium permeability in 316L with a TiN + TiC + TiN film was 4-5 orders of magnitude lower, and in 316L with a TiN + TiC + SiO 2 film was 4-6 orders of magnitude lower than that in 316L with a Pd film at about 200-500 deg. C. At about 600 deg. C, the permeability of 316L with the multiple coating was 3-4 orders of magnitude lower than that in 316L with a Pd film. The result shows that the tritium permeation barrier is formed by multiple coating above 300 deg. C, and it is stable below 500 deg. C. However, the barrier is partly destroyed at about 600 deg. C because of oxidation; although this results in degradation of the barrier, it still plays a positive role. These films may be useful as coatings for the first wall, tritium blanket, and heat exchanger in fusion reactors for tritium permeation resistance

  3. Mass transfer behavior of a modified austenitic stainless steel in lithium

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.

    1983-01-01

    An austenitic stainless steel that was developed to resist neutron damage was exposed to lithium in the high-temperature part of a thermal convection loop for 6700 h. Specimens of this Prime Candidate Alloy (PCA) composed of 65.0 Fe-15.9 Ni-13.0 Cr-1.9 Mo-1.9 Mn-1.7 Si-0.5 Ti-0.05 C (wt %) were exposed at 600 and 570 0 C in both solution annealed and cold worked forms. The dissolution process was found to be similar to other austenitic alloys in flowing lithium: weight losses of PCA eventually became linearly proportional to exposure time with the specimen surfaces exhibiting porous layers depleted in nickel and chromium. However, the measured weight losses and dissolution rates of these PCA specimens were higher than those of type 316 stainless steel exposed under similar conditions and can be attributed to the higher nickel concentration of the former alloy. The effect of cold work on dissolution rates was less definitive, particularly at 570 0 C. At longer exposure times, the annealed PCA specimen exposed at 600 0 C suffered greater dissolution than the cold worked material, while no effect of prior deformation was observed by analysis of the respective surfaces

  4. Assessment of the high-temperature crack behavior for a 316L stainless steel structure with defects

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeong Yeon; Koo, Gyeong Hoi; Lee, Jae Han [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-02-15

    An assessment of creep-fatigue crack initiation and growth for a 316L stainless steel structure has been carried out according to the current (2007 edition) and previous (2002 edition) versions of the French RCC-MR A16 procedure. Some significant changes have been made in terms of the formulae and material properties, which may cause big differences in the assessment. In this study, the changes in the A16 guide have been quantified for a 316L austenitic stainless steel structure, and the assessment results were compared with those of the observed images from a structural test for a welded component

  5. Effect of the hydrogen charging of AISI 316 stainless steel from solutions containing As2 O3

    International Nuclear Information System (INIS)

    Brito, S.D. de.

    1973-01-01

    The hydrogen charging of AISI 316 stainless steel has turned unstable the austenitic structure which partially decomposes into two phases: ε (hexagonal close packed) and α ' (body centered cubic). A 1 N H 2 SO 4 solution was used as electrolyte, with varying concentrations of As 2 O 3 (0, 1, 5 and 100 mg/l) for a single constant applied current density (i o = 0,22 A/cm 2 ). It was observed that a smaller austenitic grain as well as a larger hydrogen charging time, improve the phase transformation. It was established that the order in which the transformation products of the austenite appear through hydrogen charging follows the sequence: Y → Y-bar + ε → Y + ε + α ', although there is still some doubt about the equivalent transformation order by plastic deformation. (author)

  6. Influence of mechanical and thermal treatments on microstructure and mechanical properties of titanium stabilized austenitic stainless steels

    International Nuclear Information System (INIS)

    Sidhom, H.

    1983-12-01

    Thermal and mechanical treatments for microstructure optimization in titanium stabilized austenitic stainless steels used in nuclear industry are examined. The steels studied Z10CNDT15-15B and Z6CNDT17-13 are of the type 15-15 Ti and 316 Ti. These treatments allow the elimination of casting heterogeneity produced by dendritic solidification, improve mechanical properties particularly creep and the best compromise between grain size solid solution of metal additions is obtained. Secondary precipitation of (TiMo)C on dislocations is improved by a previous strain hardening. The precipitation reinforce the good effect of strain hardening by stabilization of the microstructure producing a better resistance to recrystallization [fr

  7. Static strain aging type AISI-304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Trindade, M.B.

    1981-03-01

    Static strain aging of type AISI-304 austenitic stainless steel was studied from room temperature up to 623K by conducting tests in which the load was held approximately constant, continuously relaxing and unloaded. The aging times varied between 10s and 100h, using a plastic pre deformation of 9% in most of the cases. The static strain aging of 304 steel furnished an activation energy of 23,800 cal/mol. This implies that vacancies play an important role on the aging process. The curve of the variation of the discontinuous yielding with aging time presented different stages, to which specific mathematical expressions were developed. These facts permited the conclusion that Snoek type mechanisms are responsible for the aging in such conditions. (Author) [pt

  8. Solidification behavior of austenitic stainless steel filler metals

    International Nuclear Information System (INIS)

    David, S.A.; Goodwin, G.M.; Braski, D.N.

    1980-02-01

    Thermal analysis and interrupted solidification experiments on selected austenitic stainless steel filler metals provided an understanding of the solidification behavior of austenitic stainless steel welds. The sequences of phase separations found were for type 308 stainless steel filler metal, L + L + delta + L + delta + γ → γ + delta, and for type 310 stainless steel filler metal, L → L + γ → γ. In type 308 stainless steel filler metal, ferrite at room temperature was identified as either the untransformed primary delta-ferrite formed during the initial stages of solidification or the residual ferrite after Widmanstaetten austenite precipitation. Microprobe and scanning transmission electron microscope microanalyses revealed that solute extensively redistributes during the transformation of primary delta-ferrite to austenite, leading to enrichment and stabilization of ferrite by chromium. The type 310 stainless steel filler metal investigated solidifies by the primary crystallization of austenite, with the transformation going to completion at the solidus temperature. In our samples residual ferrite resulting from solute segregation was absent at the intercellular or interdendritic regions

  9. Creep-fatigue damage evaluation for SS-316LN (ORNL PLATES): - RCC-MR vs. ASME SEC III - NH

    International Nuclear Information System (INIS)

    Sati, Bhuwan Chandra; Jalaldeen, S.; Velusamy, K.; Selvaraj, P.

    2016-01-01

    Investigations of high temperature tests done on ORNL plate with deformation control loading, under creep-fatigue damage have been presented. The test results with methodology of RCC-MR and ASME-NH life prediction under creep-fatigue loading have been assessed. The stress relaxation effect in calculating the life using RCC-MR under creep-fatigue damage is found to be significant in presence of secondary stress. RCC-MR: 2007 is more realistic number of cycles (predicts 51 number of cycles) as compared to ASME-NH (predicts 312 number of cycles) which is demonstrated by the experimental work (observed 86 numbers of cycles). Between RCC-MR and experimental work, design code seems to be more conservative for life prediction due to creep-fatigue damage. For fatigue damage, the approaches are same and the difference comes from material properties and the starting stress for applying Neuber's rule. ASME approach has the limitation of stress range magnitude. ASME approach predicts lower elastic plus plastic strain for the cases having S* above the linear stress limit. For creep strain and creep damage evaluation, ASME and RCC-MR have different approaches for calculating the stress at the beginning and during the hold period. The RCC-MR takes account of cyclic hardening or softening effects (hardening in the present case of 316 LN) by means of the cyclic stress-strain curve and the benefit of symmetrization effects which are significant for this material. The ASME code neglects these effects and instead relies on an approach based on the isochronous stress-strain curves. (author)

  10. Acoustic emission measurements on type 316 stainless steel

    International Nuclear Information System (INIS)

    Palmer, I.G.; Holt, J.; Goddard, D.J.

    1976-01-01

    Acoustic emission measurements have been made on Type 316 stainless steel in the solution treated condition, as part of a feasibility study for the monitoring of fast reactor components. The work involved testing both plain tensile specimens and precracked compact tension specimens in the temperature range 20-200 deg C. At 20 deg C plastic deformation was a quiet process but ductile crack growth was accompanied by high amplitude emissions capable of detection on plant. At 200 deg C both plastic deformation and ductile crack growth were quiet

  11. Studies on analytical method and nondestructive measuring method on the sensitization of austenitic stainless steels

    International Nuclear Information System (INIS)

    Onimura, Kichiro; Arioka, Koji; Horai, Manabu; Noguchi, Shigeru.

    1982-03-01

    Austenitic stainless steels are widely used as structural materials for the machine and equipment of various kinds of plants, such as thermal power, nuclear power, and chemical plants. The machines and equipment using this kind of material, however, have the possibility of suffering corrosion damage while in service, and these damages are considered to be largely due to the sensitization of the material in sometimes. So, it is necessary to develop an analytical method for grasping the sensitization of the material more in detail and a quantitative nondestructive measuring method which is applicable to various kinds of structures in order to prevent the corrosion damage. From the above viewpoint, studies have been made on the analytical method based on the theory of diffusion of chromium in austenitic stainless steels and on Electro-Potentiokinetics Reactivation Method (EPR Method) as a nondestructive measuring method, using 304 and 316 austenitic stainless steels having different carbon contents in base metals. This paper introduces the results of EPR test on the sensitization of austenitic stainless steels and the correlation between analytical and experimental results. (author)

  12. Synthesis and electronic properties of LnRhAsO and LnIrAsO compositions

    International Nuclear Information System (INIS)

    Muir, Sean; Sleight, A.W.; Subramanian, M.A.

    2011-01-01

    The synthesis and characterization of the new compositions LnRhAsO (Ln=Ce, Nd) and LnIrAsO (Ln=La, Ce, Nd) are reported. These compounds crystallize in the ZrCuSiAs type structure, isostructural to iron pnictide LnFeAsO materials. Upon substitution of Rh for Fe, both a and c lattice parameters increase relative to 3d transition metal compounds; however, when Ir is substituted for Rh the a-parameter decreases slightly while the c-parameter expands. The decrease in a lattice parameter corresponds to a short metal-metal distance in Ir compounds. CeRhAsO and CeIrAsO compositions show abrupt decreases in resistivity at 7 and 10 K, respectively, coinciding with a small shift in magnetization at the transition temperature. - Graphical abstract: LnIrAsO (Ln=La, Ce, Nd) and LnRhAsO (Ln=Ce, Rh) have been synthesized. These new transition metal oxypnictide compositions are isostructural to LaFeAsO. The 5d Ir compositions demonstrate a shorter metal-metal interaction than the 4d Rh compositions. Highlights: → LnIrAsO (Ln=La, Ce, Nd) and LnRhAsO (Ln=Ce, Nd) have been synthesized. → Ir compositions show a decreased a-parameter and increased c-parameter relative to Rh compositions. → All LnIrAsO and LnRhAsO compositions are metallic while CeIrAsO and CeRhAsO show a sudden drop in resistivity at 10 and 7 K, respectively.

  13. The failure behavior of duplex 316 L steel-TA6V titanium alloy spherical pressure vessels

    International Nuclear Information System (INIS)

    Miannay, D.

    1980-05-01

    The purpose of this paper is to compare the experimental residual stresses of spherical vessels made of TA6V alloy which exhibits plasticity before failure in toughness testing and cracked with several configurations, with stresses estimated according to the afore mentioned theories. An internal austenitic 316 L steel is used to prevent 'leak before break' [fr

  14. Physical and Tribological Properties of Nitrided AISI 316 Stainless Steel Balls

    Directory of Open Access Journals (Sweden)

    Yang Shicai

    2016-01-01

    Full Text Available AISI 316 austenitic stainless steel balls (diameters 5.0 and 12.0 mm, typical hardness 250 HV0.3 and flat samples (20×20×2.0 mm were nitrided by a pulsed glow discharge Ar/N2 plasma. Hardness of the ball surfaces was analysed using Vickers indentation. Thermal stability of the nitrided balls (diameter 12.0 mm was studied using a furnace to heat them in air for 8 hours at temperatures up to 700.0°C and then, after cooling to room temperature, the surface hardness of the heated balls was re-measured. Scanning electron microscopy and X-ray diffraction were used to study the microstructures, composition and phase formation of the nitrided sublayers. Unlubricated pin-on-disc wear testing was used to evaluate the wear resistance of nitrided stainless steel balls (5.0 mm diameter and the results were compared with similar testing on hardened Cr-Steel balls (5 mm diameter with hardness of about 650 HV0.3. All the test results indicated that the nitrided AISI 316 austenitic stainless steel balls have advantages over the hardened Cr-Steel balls in terms of retaining high hardness after heat treatment and high resistance to sliding wear at room temperature under higher counterpart stress. These properties are expected to be beneficial for wide range of bearing applications.

  15. Tribocorrosion wear of austenitic and martensitic steels

    Directory of Open Access Journals (Sweden)

    G. Rozing

    2016-07-01

    Full Text Available This paper explores the impact of tribocorrosion wear caused by an aggressive acidic media. Tests were conducted on samples made of stainless steel AISI 316L, 304L and 440C. Austenitic steels were tested in their nitrided state and martensitic in quenched and tempered and then induction hardened state. Electrochemical corrosion resistance testing and analysis of the microstructure and hardness in the cross section was carried out on samples of selected steels. To test the possibility of applying surface modification of selected materials in conditions of use, tests were conducted on samples/parts in a worm press for final pressing.

  16. An assessment of creep strength reduction factors for 316L(N) SS welds

    International Nuclear Information System (INIS)

    Mathew, M.D.; Latha, S.; Rao, K. Bhanu Sankara

    2007-01-01

    Nitrogen-alloyed type 316L stainless steel is the major structural material for the high temperature structural components of prototype fast breeder reactor. For the welding electrode, carbon in the normal range of 0.045-0.055 wt% and nitrogen in the range of 0.06-0.1 wt% are used to provide weld joints with adequate long term creep strength. Characterization of the creep properties of the base metal, weld metal and weld joint has been carried out at 873 and 923 K at stress levels of 100-325 MPa with rupture lives in the range of 100-33,000 h. Weld strength reduction factors (WSRFs) based on the weld metal, and weld joint have been evaluated, and compared with the codes. WSRFs for the weld joint were higher than the RCC-MR values. Base metal showed the highest rupture life at all the test conditions whereas the weld metal generally showed the lowest rupture life. All the weld joint specimens failed in the weld metal

  17. Defining the Post-Machined Sub-surface in Austenitic Stainless Steels

    Science.gov (United States)

    Srinivasan, N.; Sunil Kumar, B.; Kain, V.; Birbilis, N.; Joshi, S. S.; Sivaprasad, P. V.; Chai, G.; Durgaprasad, A.; Bhattacharya, S.; Samajdar, I.

    2018-06-01

    Austenitic stainless steels grades, with differences in chemistry, stacking fault energy, and thermal conductivity, were subjected to vertical milling. Anodic potentiodynamic polarization was able to differentiate (with machining speed/strain rate) between different post-machined sub-surfaces in SS 316L and Alloy A (a Cu containing austenitic stainless steel: Sanicroe 28™), but not in SS 304L. However, such differences (in the post-machined sub-surfaces) were revealed in surface roughness, sub-surface residual stresses and misorientations, and in the relative presence of sub-surface Cr2O3 films. It was shown, quantitatively, that higher machining speed reduced surface roughness and also reduced the effective depths of the affected sub-surface layers. A qualitative explanation on the sub-surface microstructural developments was provided based on the temperature-dependent thermal conductivity values. The results herein represent a mechanistic understanding to rationalize the corrosion performance of widely adopted engineering alloys.

  18. Defining the Post-Machined Sub-surface in Austenitic Stainless Steels

    Science.gov (United States)

    Srinivasan, N.; Sunil Kumar, B.; Kain, V.; Birbilis, N.; Joshi, S. S.; Sivaprasad, P. V.; Chai, G.; Durgaprasad, A.; Bhattacharya, S.; Samajdar, I.

    2018-04-01

    Austenitic stainless steels grades, with differences in chemistry, stacking fault energy, and thermal conductivity, were subjected to vertical milling. Anodic potentiodynamic polarization was able to differentiate (with machining speed/strain rate) between different post-machined sub-surfaces in SS 316L and Alloy A (a Cu containing austenitic stainless steel: Sanicroe 28™), but not in SS 304L. However, such differences (in the post-machined sub-surfaces) were revealed in surface roughness, sub-surface residual stresses and misorientations, and in the relative presence of sub-surface Cr2O3 films. It was shown, quantitatively, that higher machining speed reduced surface roughness and also reduced the effective depths of the affected sub-surface layers. A qualitative explanation on the sub-surface microstructural developments was provided based on the temperature-dependent thermal conductivity values. The results herein represent a mechanistic understanding to rationalize the corrosion performance of widely adopted engineering alloys.

  19. Influence of silver additions to type 316 stainless steels on bacterial inhibition, mechanical properties, and corrosion resistance

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Tseng, I-Sheng; Møller, Per

    2010-01-01

    Bacterial contamination is a major concern in many areas. In this study, silver was added to type 316 stainless steels in order to obtain an expected bacteria inhibiting property to reduce the occurrence of bacterial contamination. Silver-bearing 316 stainless steels were prepared by vacuum melting...... in areas where hygiene is a major requirement. The possible mechanisms of silver dissolution from the surfaces of silver-bearing 316 stainless steels were also discussed in this report....

  20. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications.

    Science.gov (United States)

    Talha, Mohd; Behera, C K; Sinha, O P

    2013-10-01

    The field of biomaterials has become a vital area, as these materials can enhance the quality and longevity of human life. Metallic materials are often used as biomaterials to replace structural components of the human body. Stainless steels, cobalt-chromium alloys, commercially pure titanium and its alloys are typical metallic biomaterials that are being used for implant devices. Stainless steels have been widely used as biomaterials because of their very low cost as compared to other metallic materials, good mechanical and corrosion resistant properties and adequate biocompatibility. However, the adverse effects of nickel ions being released into the human body have promoted the development of "nickel-free nitrogen containing austenitic stainless steels" for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also much improves steel properties. Here we review the harmful effects associated with nickel and emphatically the advantages of nitrogen in stainless steel, as well as the development of nickel-free nitrogen containing stainless steels for medical applications. By combining the benefits of stable austenitic structure, high strength, better corrosion and wear resistance and superior biocompatibility in comparison to the currently used austenitic stainless steel (e.g. 316L), the newly developed nickel-free high nitrogen austenitic stainless steel is a reliable substitute for the conventionally used medical stainless steels. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Fundamental flow and fracture analysis of prime candidate alloy (PCA) for path a (austenitics)

    International Nuclear Information System (INIS)

    Lucas, G.E.; Jayakumar, M.; Maziasz, P.J.

    1982-01-01

    Room temperature microhardness tests have been performed on samples of Prime Candidate Alloy (PCA) for the austenitics (Path A) subjected to various thermomechanical treatments (TMT). The TMTs have effected various microstructures, which have been well characterized by optical metallography and TEM. For comparison, microhardness tests have been performed on samples of N-lot, DO heat and MFE 316 stainless steel with similar TMTs. The results indicate that the TMTs investigated can significantly alter the microhardness of the PCA in a manner which is consistent with microstructural changes. Moreover, while PCA had the lowest microhardness of the four alloys types after cold working, its microhardness increased while the others decreased to comparable values after aging for 2 h at 750 0 C

  2. Fatigue and creep–fatigue deformation of an ultra-fine precipitate strengthened advanced austenitic alloy

    International Nuclear Information System (INIS)

    Carroll, M.C.; Carroll, L.J.

    2012-01-01

    An advanced austenitic alloy, HT-UPS (high-temperature ultrafine-precipitation-strengthened), has been identified as an ideal candidate material for the structural components of fast reactors and energy-conversion systems. HT-UPS alloys demonstrate improved creep resistance relative to 316 stainless steel (SS) through additions of Ti and Nb, which precipitate to form a widespread dispersion of stable nanoscale metallic carbide (MC) particles in the austenitic matrix. To investigate the behavior in more representative conditions than are offered by uniaxial creep tests, the low-cycle continuous fatigue and combined creep–fatigue response of an HT-UPS alloy have been investigated at 650 °C and 1.0% total strain, with an R-ratio of −1 and hold times at peak tensile strain of up to 150 min. The cyclic deformation response of HT-UPS is directly compared to that of standard 316 SS. The measured values for total cycles to failure between the two alloys are similar, despite differences in peak stress profiles and in qualitative observations of the deformed microstructures. Crack propagation is primarily transgranular in both fatigue and creep–fatigue of each alloy at the investigated conditions. Internal grain boundary damage in the form of fine cracks resulting from the tensile hold is present following the application of hold times of 60 min and longer, and considerably more internal cracks are quantifiable in 316 SS than in HT-UPS. The dislocation substructures observed in the deformed material differ substantially; an equiaxed cellular structure is observed in the microstructure of 316 SS, whereas HT-UPS exhibits widespread and relatively homogenous tangles of dislocations pinned by the nanoscale MC precipitates. The significant effect of the fine distribution of precipitates on observed fatigue and creep–fatigue response is described in three distinct behavioral regions as the microstructure evolves with continued cycling.

  3. Fatigue and creep-fatigue deformation of an ultra-fine precipitate strengthened advanced austenitic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, M.C., E-mail: Mark.Carroll@INL.gov [Idaho National Laboratory, 1955 Fremont, PO Box 1625, Idaho Falls, ID 83415-2218 (United States); Carroll, L.J. [Idaho National Laboratory, 1955 Fremont, PO Box 1625, Idaho Falls, ID 83415-2218 (United States)

    2012-10-30

    An advanced austenitic alloy, HT-UPS (high-temperature ultrafine-precipitation-strengthened), has been identified as an ideal candidate material for the structural components of fast reactors and energy-conversion systems. HT-UPS alloys demonstrate improved creep resistance relative to 316 stainless steel (SS) through additions of Ti and Nb, which precipitate to form a widespread dispersion of stable nanoscale metallic carbide (MC) particles in the austenitic matrix. To investigate the behavior in more representative conditions than are offered by uniaxial creep tests, the low-cycle continuous fatigue and combined creep-fatigue response of an HT-UPS alloy have been investigated at 650 Degree-Sign C and 1.0% total strain, with an R-ratio of -1 and hold times at peak tensile strain of up to 150 min. The cyclic deformation response of HT-UPS is directly compared to that of standard 316 SS. The measured values for total cycles to failure between the two alloys are similar, despite differences in peak stress profiles and in qualitative observations of the deformed microstructures. Crack propagation is primarily transgranular in both fatigue and creep-fatigue of each alloy at the investigated conditions. Internal grain boundary damage in the form of fine cracks resulting from the tensile hold is present following the application of hold times of 60 min and longer, and considerably more internal cracks are quantifiable in 316 SS than in HT-UPS. The dislocation substructures observed in the deformed material differ substantially; an equiaxed cellular structure is observed in the microstructure of 316 SS, whereas HT-UPS exhibits widespread and relatively homogenous tangles of dislocations pinned by the nanoscale MC precipitates. The significant effect of the fine distribution of precipitates on observed fatigue and creep-fatigue response is described in three distinct behavioral regions as the microstructure evolves with continued cycling.

  4. Inelastic Cyclic Deformation Behaviors of Type 316H Stainless Steel for Reactor Pressure Vessel of Sodium-Cooled Fast Reactor at Elevated Temperatures

    International Nuclear Information System (INIS)

    Yoon, Ji-Hyun; Hong, Seokmin; Koo, Gyeong-Hoi; Lee, Bong-Sang; Kim, Young-Chun

    2015-01-01

    Type 316H stainless steel is a primary candidate material for a reactor pressure vessel of a sodium-cooled fast (SFR) reactor which is under development in Korea. The reactor pressure vessel for a SFR is subjected to inelastic deformation induced by cyclic thermal stress. Fully reversed cyclic testing and ratcheting testing at elevated temperatures were performed to characterize the inelastic cyclic deformation behaviors of Type 316H stainless steel at the SFR operating temperature. It was found that cyclic hardening of Type 316H stainless steel was enhanced, and the accumulation of ratcheting deformation of Type 316H stainless steel was retarded at around the SFR operating temperature. The results of the tensile testing and the microstructural investigation for dislocated structures after the inelastic deformation testing showed that dynamic strain aging affected the inelastic cyclic deformation behavior of Type 316 stainless steel at around the SFR operating temperature.

  5. TEM study of the nucleation of bubbles induced by He implantation in 316L industrial austenitic stainless steel

    International Nuclear Information System (INIS)

    Jublot-Leclerc, S.; Lescoat, M.-L.; Fortuna, F.; Legras, L.; Li, X.; Gentils, A.

    2015-01-01

    10 keV He ions were implanted in-situ in a TEM into thin foils of 316L industrial austenitic stainless steel at temperatures ranging from 200 to 550 °C. As a result, overpressurized nanometric bubbles are created with density and size depending strongly on both the temperature and fluence of implantation. An investigation on their nucleation and growth is reported through a rigorous statistical analysis whose procedure, including the consideration of free surface effects, is detailed. In the parameter range considered, the results show that an increase of fluence promotes both the nucleation and growth of the bubbles whilst an increase of temperature enhances the growth of the bubbles at the expense of their nucleation. The confrontation of resulting activation energies with existing models for bubble nucleation enables the identification of the underlying mechanisms. In spite of slight differences resulting from different conditions of implantation among which the He concentration, He production rate and He/dpa ratio, it appears that the dominating mechanisms are the same as those obtained in metals in previous studies, which, in addition to corroborating literature results, shows the suitability of in-situ TEM experiments to simulate the production of helium in nuclear materials. - Highlights: • A rigorous TEM statistical analysis, including free surface effects, is reported. • Increasing He fluence promotes both the nucleation and growth of bubbles. • Increasing implantation temperature enhances the growth of bubbles. • Activation energies describing the evolution of the bubble population are obtained. • A He diffusion controlled nucleation through a replacement mechanism is suggested.

  6. The single crystal structure determination of Ln{sub 6}MnSb{sub 15} (Ln=La, Ce), Ln{sub 6}Mn{sub 1-x}Zn{sub x}Sb{sub 15} (x∝0.5), and Ln{sub 6}ZnSb{sub 15} (Ln=La-Pr)

    Energy Technology Data Exchange (ETDEWEB)

    Benavides, Katherine A.; McCandless, Gregory T.; Chan, Julia Y. [Texas Univ., Dallas, Richardson, TX (United States). Dept. of Chemistry and Biochemistry

    2017-09-01

    Single crystals of Ln{sub 6}MnSb{sub 15} (Ln=La, Ce), Ln{sub 6}Mn{sub 1-x}Zn{sub x}Sb{sub 15} (x∝0.5), and Ln{sub 6}ZnSb{sub 15} (Ln=La-Pr) have been successfully grown and the compounds adopt the orthorhombic Ln{sub 6}MnSb{sub 15} structure type (space group Immm), with a∝4.3 Aa, b∝15 Aa, and c∝19 Aa. This structure is comprised of antimony nets and antimony ribbons which exhibit positional disorder at connecting points between antimony substructures, in addition to two partially occupied transition metal sites. The unit cell volumes of the La analogs displayed a systematic decrease upon Zn substitution. However, for the Ce{sub 6}Mn{sub 1-x}Zn{sub x}Sb{sub 15} and Pr{sub 6}Mn{sub 1-x}Zn{sub x}Sb{sub 15} (x∝0.5), the volumes deviate from linearity as observed in the parent compounds.

  7. Effects of nitrogen and nitrogen getters in lithium on the corrosion of type 316 stainless steel

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.; Selle, J.E.

    1979-01-01

    This paper presents preliminary results on the corrosion of type 316 stainless steel in nitrogen-contaminated lithium. Nitrogen is a principal interstitial impurity in lithium and has a significant detrimental effect on compatibility, while O, H, and C in lithium do not enhance corrosion of type 316 stainless steel. Because of this, there is a need to understand the corrosion mechanisms and kinetics associated with nitrogen-induced attack in lithium. Results from experiments with getters in nitrogen-contaminated lithium are also reported

  8. Solvothermal syntheses, crystal structures, and properties of lanthanide(III) thioarsenates [Ln(dien){sub 2}(μ-1κ,2κ{sup 2}-AsS{sub 4})]{sub n} (Ln==Sm, Eu, Gd) and [Ln(dien){sub 2}(1κ{sup 2}-AsS{sub 4})] (Ln==Tb, Dy, Ho)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fang; Tang, Chunying; Chen, Ruihong; Zhang, Yong; Jia, Dingxian, E-mail: jiadingxian@suda.edu.cn

    2013-10-15

    Solvothermal reactions of Ln{sub 2}O{sub 3}, As and S in diethylenetriamine (dien) at 170 °C for 6 days afforded two structural types of lanthanide thioarsenates with the general formulae [Ln(dien){sub 2}(μ-1κ,2κ{sup 2}-AsS{sub 4})]{sub n} [Ln=Sm(1), Eu(2), Gd(3)] and [Ln(dien){sub 2}(1κ{sup 2}-AsS{sub 4})] [Ln=Tb(4), Dy(5), Ho(6)]. The Ln{sub 2}O{sub 3} oxides were converted to [Ln(dien){sub 2}]{sup 3+} complex units in the solvothermal reactions. The As atom binds four S atoms, forming a tetrahedral AsS{sub 4} unit. In 1−3, the AsS{sub 4} units interconnect the [Ln(dien){sub 2}]{sup 3+} cations via Ln−S bonds as tridentate μ-1κ,2κ{sup 2}-AsS{sub 4} bridging ligands, resulting in the neutral coordination polymers [Ln(dien){sub 2}(μ-1κ,2κ{sup 2}-AsS{sub 4})]{sub n} (Ln1). In 4−6, the AsS{sub 4} units coordinate with the Ln{sup 3+} ion of [Ln(dien){sub 2}]{sup 3+} as 1κ{sup 2}-AsS{sub 4} chelating ligands to form neutral coordination compounds [Ln(dien){sub 2}(1κ{sup 2}-AsS{sub 4})] (Ln2). The Ln{sup 3+} ions are in nine- and eight-coordinated environments in Ln1 and Ln2, respectively. The formation of Ln1 and Ln2 is related with ionic size of the Ln{sup 3+} ions. Optical absorption spectra showed that 1−6 have potential use as semiconductors with the band gaps in the range 2.18−3.21 eV. - Graphical abstract: Two types of Ln-thioarsenates [Ln(dien){sub 2}(μ-1κ,2κ{sup 2}-AsS{sub 4})]{sub n} and [Ln(dien){sub 2}(1κ{sup 2}-AsS{sub 4})] were prepared by solvothermal methods and the soft Lewis basic AsS{sub 4}{sup 3–} ligand to Ln(III) centers with polyamine co-ligand was obtained. Display Omitted - Highlights: • Lanthanide thioarsenates were prepared by solvothermal methods. • The soft Lewis basic AsS{sub 4} ligand coordinate Ln{sup 3+} ions with coexistence polyamine ligands. • Two structural types of Ln-thioarsenates with structural turnover at Tb were obtained along Ln series. • The Ln-thioarsenates are potential semiconductors

  9. Corrosion resistance of the welded AISI 316L after various surface treatments

    Directory of Open Access Journals (Sweden)

    Tatiana Liptáková

    2014-01-01

    Full Text Available The main aim of this work is to monitor the surface treatment impact on the corrosion resistance of the welded stainless steel AISI 316L to local corrosion forms. The excellent corrosion resistance of austenitic stainless steel is caused by the existence of stable, thin and well adhering passive layer which quality is strongly influenced by welding. Therefore surface treatment of stainless steel is very important with regard to its local corrosion susceptibility Surfaces of welded stainless steel were treated by various mechanical methods (grinding, garnet blasting. Surface properties were studied by SEM, corrosion resistance was evaluated after exposition tests in chlorides environment using weight and metalographic analysis. The experimental outcomes confirmed that the mechanical finishing has a significant effect on the corrosion behavior of welded stainless steel AISI 316L.

  10. Dimensional changes in FFTF [Fast Flux Test Facility] austenitic cladding and ducts

    International Nuclear Information System (INIS)

    Makenas, B.J.; Chastain, S.A.; Gneiting, B.C.

    1990-11-01

    As the standard cladding and duct material for the Fast Flux Test Facility driver fuel, 20% cold-worked 316 stainless steel has provided good service up to a fast fluence of 16 x 10 22 n/cm 2 in extreme cases. The titanium-stabilized variant of 316 SS, called D9, has extended the useful life of the austenitic alloys by increasing the incubation fluence necessary for the onset of volumetric swelling. Duct flat-to-flat, length and bow, pin bundle distortion, fuel pin diameter and length, as well as cladding volumetric swelling have been examined for high fluence components representing both alloys. These data emphasize the importance of the swelling process, the superiority of D9, and the interrelation between deformations in the duct, bundle, and individual pins. 8 refs., 10 figs

  11. Deformation induced martensite in AISI 316 stainless steel

    Directory of Open Access Journals (Sweden)

    Solomon, N.

    2010-04-01

    Full Text Available The forming process leads to a considerable differentiation of the strain field within the billet, and finally causes the non-uniform distribution of the total strain, microstrusture and properties of the material over the product cross-section. This paper focus on the influence of stress states on the deformation-induced a’ martensitic transformation in AISI Type 316 austenitic stainless steel. The formation of deformation-induced martensite is related to the austenite (g instability at temperatures close or below room temperature. The structural transformation susceptibility is correlated to the stacking fault energy (SFE, which is a function not only of the chemical composition, but also of the testing temperature. Austenitic stainless steels possess high plasticity and can be easily cold formed. However, during cold processing the hardening phenomena always occurs. Nevertheless, the deformation-induced martensite transformation may enhance the rate of work-hardening and it may or may not be in favour of further material processing. Due to their high corrosion resistance and versatile mechanical properties the austenitic stainless steels are used in pressing of heat exchanger plates. However, this corrosion resistance is influenced by the amount of martensite formed during processing. In order to establish the links between total plastic strain, and martensitic transformation, the experimental tests were followed by numerical simulation.

    El proceso de conformación da a lugar a una considerable diferenciación del campo de tensiones dentro de una barra de extrusión y, finalmente, causa una distribución no uniforme de la tensión total, la microestructura y propiedades del material sobre el corte transversal. En este trabajo se estudia la influencia de los estados de tensión sobre la transformación martensítica inducida por deformación en un acero inoxidable austenítico tipo AISI 316. La formación de martensita inducida por

  12. Low-activation Mn-Cr austenitic stainless steel with further reduced content of long-lived radioactive elements

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M.; Saida, T.; Hirai, S. [Mitsubishi Heavy Ind. Ltd., Yokohama (Japan); Kusuhashi, M.; Sato, I.; Hatakeyama, T. [The Japan Steel Works Ltd., Chatsu-machi 4, Muroran 051-8505 (Japan)

    1998-06-01

    Low-activation austenitic stainless steel based on Mn-Cr non-magnetic steels has been developed. The alloying elements of long-life activation, such as Ni, Mo and Co, were eliminated and substituted with Mn along with an addition of N. A Mn-Cr austenitic stainless steel, 24.5Mn-13.5Cr-0.02C-0.2N, has been developed successfully. Examined material properties, including mechanical, thermal and magnetic properties, as well as weldability and characteristics of corrosion resistance, are presented. It was found that the alloy has excellent material properties virtually equivalent to those of 316SS. In this study, the applicability of the Schaeffler, DeLong and Hull constitution diagrams for the stainless steels with low Ni and high Mn contents was also examined. The boundary conditions distinguishing the single austenite phase from the others have been identified for the Mn-Cr steels. (orig.) 22 refs.

  13. Low-activation Mn Cr austenitic stainless steel with further reduced content of long-lived radioactive elements

    Science.gov (United States)

    Onozuka, Masanori; Saida, Tomikane; Hirai, Shouzou; Kusuhashi, Mikio; Sato, Ikuo; Hatakeyama, Tsuyoshi

    1998-06-01

    Low-activation austenitic stainless steel based on Mn-Cr non-magnetic steels has been developed. The alloying elements of long-life activation, such as Ni, Mo and Co, were eliminated and substituted with Mn along with an addition of N. A Mn-Cr austenitic stainless steel, 24.5Mn-13.5Cr-0.02C-0.2N, has been developed successfully. Examined material properties, including mechanical, thermal and magnetic properties, as well as weldability and characteristics of corrosion resistance, are presented. It was found that the alloy has excellent material properties virtually equivalent to those of 316SS. In this study, the applicability of the Schaeffler, DeLong and Hull constitution diagrams for the stainless steels with low Ni and high Mn contents was also examined. The boundary conditions distinguishing the single austenite phase from the others have been identified for the Mn-Cr steels.

  14. Characterization of mechanical properties and microstructure of highly irradiated SS 316

    Energy Technology Data Exchange (ETDEWEB)

    Karthik, V., E-mail: karthik@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Kumar, RanVijay; Vijayaragavan, A.; Venkiteswaran, C.N.; Anandaraj, V.; Parameswaran, P.; Saroja, S.; Muralidharan, N.G.; Joseph, Jojo; Kasiviswanathan, K.V.; Jayakumar, T.; Raj, Baldev [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2013-08-15

    Cold worked austenitic stainless steel type AISI 316 is used as the material for fuel cladding and wrapper of the Fast Breeder Test Reactor (FBTR), India. The evaluation of mechanical properties of these core structurals is very essential to assess its integrity and ensure safe and productive operation of FBTR to very high burn-ups. The changes in the mechanical properties of these core structurals are associated with microstructural changes caused by high fluence neutron irradiation and temperatures of 673–823 K. Remote tensile testing has been used for evaluating the tensile properties of irradiated clad tubes and shear punch test using small disk specimens for evaluating the properties of irradiated hexagonal wrapper. This paper will highlight the methods employed for evaluating the mechanical properties of the irradiated cladding and wrapper and discuss the trends in properties as a function of dpa (displacement per atom) and irradiation temperature.

  15. Mechanical testing of austenitic steel welded joints. Joint final report - Vol. 2

    International Nuclear Information System (INIS)

    Boerman, D.J.; Krischer, W.

    1990-01-01

    In the field of material properties and structural behaviour of LMFBR reactor components under normal operation and accident conditions, the Commission of the European Communities has promoted an experimental study on the mechanical properties of welded austenitic steel type AISI 316L. The study was launched in the frame of the Shared Cost Action (SCA) programme 1985-1987 on reactor safety. The research was performed in four European laboratories and coordinated by JRC-Ispra. Five different welding methods have been examined. The manufacture and characterization of the welds has been described in a separate report. The present report gives the results of four different mechanical tests carried out on the weld material. The comparison of results proved that, at the present state of development, the vacuum electron beam method seems to have clear advantages as compared with the other methods investigated

  16. Low-Temperature Nitriding of Deformed Austenitic Stainless Steels with Various Nitrogen Contents Obtained by Prior High-Temperature Solution Nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin

    2016-01-01

    In the past decades, high nitrogen steels (HNS) have been regarded as substitutes for conventional austenitic stainless steels because of their superior mechanical and corrosion properties. However, the main limitation to their wider application is their expensive production process....... As an alternative, high-temperature solution nitriding has been applied to produce HNS from three commercially available stainless steel grades (AISI 304L, AISI 316, and EN 1.4369). The nitrogen content in each steel alloy is varied and its influence on the mechanical properties and the stability of the austenite...... investigated. Both hardness and yield stress increase and the alloys remain ductile. In addition, strain-induced transformation of austenite to martensite is suppressed, which is beneficial for subsequent low-temperature nitriding of the surface of deformed alloys. The combination of high- and low...

  17. Swelling and irradiation creep of neutron irradiated 316Ti and 15-15Ti steels

    International Nuclear Information System (INIS)

    Maillard, A.; Touron, H.; Seran, J.L.; Chalony, A.

    1992-01-01

    The global behavior, the swelling and irradiation creep resistances of cold worked 316Ti and 15-15Ti, two variants of austenitic steels in use as core component materials of the French fast reactors, are compared. The 15-15Ti leads to a significant improvement due to an increase in the incubation dose swelling. The same phenomena observed on 316Ti are found on 15-15Ti. All species without fuel like samples, wrappers or empty clad swell and creep less than fuel pin cladding irradiated in the same conditions. To explain the swelling difference, as for 316Ti, thermal gradient is also invoked but the irradiation creep difference is not yet clearly understood. To predict the behavior of clads it is indispensable to study the species themselves and to use specific rules. All results confirm the good behavior of 15-15Ti, the best behavior being obtained with the 1% Si doped version irradiated up to 115 dpa

  18. Synthesis and characterization of charge-substituted garnets YCaLnGa5O12 (Ln = Ce,Pr,Tb)

    International Nuclear Information System (INIS)

    Gramsch, S.A.

    1993-01-01

    A low temperature method is described for the preparation of the new garnet compounds YCaLnGa 5 O l2 (Ln=Ce, Pr, Th). In this set of compounds (Ca 2+ + Ln 4+ ) replaces 2 Y 3+ in the parent gallium based garnet Y 3 Ga 5 O l2 in order to stabilize as effectively as possible the Ln 4+ species in the eight-coordinate ''A'' site of the garnet structure. Characterization of the oxides by x-ray powder diffraction and thermogravimetric analysis is discussed with regard to the structural relationship of the substituted compound to the parent material. The tetravalent ions Pr 4+ and Tb 4+ exhibit increased thermal stability in reducing conditions as compared to the Ln 4+ states in the fluorite (LnO 2 ) and perovskite (BaLnO 3 ) type structures. This result is discussed with reference to the complex crystal chemistry of these systems

  19. Effect of noble metals on the corrosion of AISI 316L stainless steel in nitric acid

    International Nuclear Information System (INIS)

    Robin, R.; Andreoletti, G.; Fauvet, P.; Terlain, A.

    2004-01-01

    In the spent fuel treatment, the solutions of fission products contain dissolution fines, in particular platinoids. These solutions are stored into AISI 316L stainless steel tanks, and the contact of noble metallic particles such as platinoids with austenitic stainless steels may induce a shift of the steel corrosion potential towards the trans-passive domain by galvanic coupling. In that case, the steel may be polarized up to a potential value above the range of passive domain, that induces an increase of the corrosion current. The galvanic corrosion of AISI 316L stainless steel in contact with different platinoids has been investigated by electrochemical and gravimetric techniques. Two types of tests were conducted in 1 mol/L nitric acid media at 80 deg C: (1) polarization curves and (2) immersion tests with either platinoid powders (Ru, Rh, Pd) or true insoluble dissolution fines (radioactive laboratory test). The results of the study have shown that even if galvanic coupling enhances the corrosion rate by about a factor 10 in these conditions, the corrosion behavior of AISI 316L remains low (a corrosion rate below 6 μm/year, few small intergranular indentations). No specific effect of irradiation and of elements contained in radioactive fines (other than Ru, Rh and Pd) was observed on corrosion behavior. A platinoids-ranking has also been established according to their coupling potential: Ru > Pd > Rh. (authors)

  20. Helium-induced weld cracking in austenitic and martensitic steels

    International Nuclear Information System (INIS)

    Lin, H.T.; Chin, B.A.

    1991-01-01

    Helium was uniformly implanted into type 316 stainless steel and Sandvik HT-9 (12Cr-1MoVW) to levels of 0.18 to 256 and 0.3 to 1 a.p.p.m., respectively, using the ''tritium trick'' technique. Autogenous bead-on-plate, full penetration, welds were then produced under fully constrained conditions using the gas tungsten arc welding (GTAW) process. The control and hydrogen-charged plates of both alloys were sound and free of any weld defects. For the 316 stainless steel, catastrophic intergranular fracture occurred in the heat-affected zone (HAZ) of welds with helium levels ≥ 2.5 a.p.p.m. In addition to the HAZ cracking, brittle fracture along the centreline of the fusion zone was also observed for the welds containing greater than 100 a.p.p.m. He. For HT-9, intergranular cracking occurred in the HAZ along prior-austenite grain boundaries of welds containing 1 a.p.p.m. He. Electron microscopy observations showed that the cracking in the HAZ originated from the growth and coalescence of grain-boundary helium bubbles and that the fusion-zone cracking resulted from the growth of helium bubbles at dendrite boundaries. The bubble growth kinetics in the HAZ is dominated by stress-induced diffusion of vacancies into bubbles. Results of this study indicate that the use of conventional GTAW techniques to repair irradiation-degraded materials containing even small amounts of helium may be difficult. (author)

  1. Effect of dissolved hydrogen concentration on IASCC initiation susceptibility of type 316 stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Min-Jae; Kim, Sung Woo; Hwang, Seong Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The effect of DH concentration on PWSCC of nickel based alloys has been studied, higher dissolved hydrogen strategy is being considered to obtain partial mitigation of PWSCC. In the case of stainless steels, it is necessary to research the effect of DH concentration on irradiation assisted stress corrosion cracking(IASCC). In this research, we tried to evaluate the effect of DH concentration on IASCC initiation susceptibility using the proton irradiated type 316 stainless steels under the condition of simulated primary water. The slow strain rate tests were performed using the proton irradiated type 316 stainless steels at the simulated primary water conditions, crack length per unit area for all tested specimens were calculated. IASCC initiation susceptibility was increased by increasing irradiation doses and by increasing DH concentration.

  2. Weldability of dissimilar joint between F82H and SUS316L under fiber laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Serizawa, Hisashi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Mori, Daiki; Shirai, Yuma; Ogiwara, Hiroyuki; Mori, Hiroaki [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2013-10-15

    Highlights: • The microstructure of F82H/SUS316L dissimilar joint can be divided into four regions. • In the case without beam position shift, hardness of WM cannot be reduced by PWHT. • The fiber laser welding would be applicable for constructing the dissimilar joint. -- Abstract: As one of the high beam quality heat sources, 4 kW fiber laser was applied for joining between reduced activation ferritic/martensitic steel, F82H and SUS316L austenitic stainless steel, and the microstructural analyses and Vickers hardness measurements were carried out before and after post-weld heat treatment (PWHT). The microstructure of joint can be divided into four regions which are base metal of F82H, heat affected zone (HAZ) in F82H, weld metal (WM) and base metal of SUS316L. Also, it is revealed that the high-power fiber laser can be employed for constructing butt joint between F82H and SUS316L by applying PWHT and shifting the laser beam position to SUS316L, where the distance between the contact face and beam should be set as a range from radius to diameter of laser beam.

  3. Weldability of dissimilar joint between F82H and SUS316L under fiber laser welding

    International Nuclear Information System (INIS)

    Serizawa, Hisashi; Mori, Daiki; Shirai, Yuma; Ogiwara, Hiroyuki; Mori, Hiroaki

    2013-01-01

    Highlights: • The microstructure of F82H/SUS316L dissimilar joint can be divided into four regions. • In the case without beam position shift, hardness of WM cannot be reduced by PWHT. • The fiber laser welding would be applicable for constructing the dissimilar joint. -- Abstract: As one of the high beam quality heat sources, 4 kW fiber laser was applied for joining between reduced activation ferritic/martensitic steel, F82H and SUS316L austenitic stainless steel, and the microstructural analyses and Vickers hardness measurements were carried out before and after post-weld heat treatment (PWHT). The microstructure of joint can be divided into four regions which are base metal of F82H, heat affected zone (HAZ) in F82H, weld metal (WM) and base metal of SUS316L. Also, it is revealed that the high-power fiber laser can be employed for constructing butt joint between F82H and SUS316L by applying PWHT and shifting the laser beam position to SUS316L, where the distance between the contact face and beam should be set as a range from radius to diameter of laser beam

  4. Martensite shear phase reversion-induced nanograined/ultrafine-grained Fe-16Cr-10Ni alloy: The effect of interstitial alloying elements and degree of austenite stability on phase reversion

    Energy Technology Data Exchange (ETDEWEB)

    Misra, R.D.K., E-mail: dmisra@louisiana.edu [Center for Structural and Functional Materials, University of Louisiana at Lafayette, Madison Hall Room 217, P.O. Box 44130, Lafayette, LA 70504-1430 (United States); Zhang, Z.; Venkatasurya, P.K.C. [Center for Structural and Functional Materials, University of Louisiana at Lafayette, Madison Hall Room 217, P.O. Box 44130, Lafayette, LA 70504-1430 (United States); Somani, M.C.; Karjalainen, L.P. [Department of Mechanical Engineering, University of Oulu, P.O. Box 4200, Oulu 90014 (Finland)

    2010-11-15

    Research highlights: {yields} Development of a novel process involving phase-reversion annealing process. {yields} Austensite stability strongly influences development of nanograined structure. {yields} Interstitial elements influence microstructural evolution during annealing. - Abstract: We describe here an electron microscopy study of microstructural evolution associated with martensitic shear phase reversion-induced nanograined/ultrafine-grained (NG/UFG) structure in an experimental Fe-16Cr-10Ni alloy with very low interstitial content. The primary objective is to understand and obtain fundamental insights on the influence of degree of austenite stability (Fe-16Cr-10Ni, 301LN, and 301 have different austenite stability index) and interstitial elements (carbon and nitrogen) in terms of phase reversion process, microstructural evolution during reversion annealing, and temperature-time annealing sequence. A relative comparison of Fe-16Cr-10Ni alloy with 301LN and 301 austenitic stainless steels indicated that phase reversion in Fe-16Cr-10Ni occurred by shear mechanism, which is similar to that observed for 301, but is different from the diffusional mechanism in 301LN steel. While the phase reversion in the experimental Fe-16Cr-10Ni alloy and 301 austenitic stainless steel occurred by shear mechanism, there were fundamental differences between these two alloys. The reversed strain-free austenite grains in Fe-16Cr-10Ni alloy were characterized by nearly same crystallographic orientation, where as in 301 steel there was evidence of break-up of martensite laths during reversion annealing resulting in several regions of misoriented austenite grains in 301 steel. Furthermore, a higher phase reversion annealing temperature range (800-900 deg. C) was required to obtain a fully NG/UFG structure of grain size 200-600 nm. The difference in the phase reversion and the temperature-time sequence in the three stages is explained in terms of Gibbs free energy change that

  5. Effect of additional minor elements on accumulation behavior of point defects under electron irradiation in austenitic stainless steels

    International Nuclear Information System (INIS)

    Sekio, Yoshihiro; Yamashita, Shinichiro; Takahashi, Heishichiro; Sakaguchi, Norihito

    2014-01-01

    Addition of minor elements to a base alloy is often applied with the aim of mitigating void swelling by decreasing the vacancy diffusivity and flux which influence vacancy accumulation behavior. However, the comparative evaluations of parameters, such as the diffusivity and flux, between a base alloy and modified alloys with specific additives have not been studied in detail. In this study, type 316 austenitic stainless steel as a base alloy and type 316 austenitic stainless steels modified with vanadium (V) or zirconium (Zr) additions were used to perform evaluations from the changes of widths of the void denuded zone (VDZ) formed near a random grain boundary during electron irradiation because these widths depend on vacancy diffusivity and flux. The formations of VDZs were observed in in-situ observations during electron irradiation at 723 K and the formed VDZ widths were measured from the transmission electron microscopic images after electron irradiation. As a result, the VDZs were formed in both steels without and with V, and respective widths were ∼119 and ∼100 nm. On the other hand, the VDZ formation was not observed clearly in the steel with Zr. From the measured VDZ widths in the steels without and with V addition, the estimated ratio of the vacancy diffusivity in the steel with V to that in the steel without V was about 0.50 and the estimated ratio of the vacancy flux in the steel with V to that in the steel without V was about 0.71. This result suggests that the effect of additional minor elements on vacancy accumulation behaviors under electron irradiation could be estimated from evaluations of the VDZ width changes among steels with and without minor elements. Especially, because void swelling is closely related with the vacancy diffusion process, the VDZ width changes would also be reflected on void swelling behavior. (author)

  6. High nitrogen stainless steels for nuclear industry

    International Nuclear Information System (INIS)

    Kamachi Mudali, U.

    2016-01-01

    Nitrogen alloying in stainless steels (SS) has myriad beneficial effects, including solid solution strengthening, precipitation effects, phase control and corrosion resistance. Recent years have seen a rapid development of these alloys with improved properties owing to advances in processing technologies. Furthermore, unlimited demands for high-performance advanced steels for special use in advanced applications renewed the interest in high nitrogen steels (HNS). The combination of numbers of attractive properties such as strength, fracture toughness, wear resistance, workability, magnetic properties and corrosion resistance of HNS has given a unique advantage and offers a number of prospective applications in different industries. Based on extensive studies carried out at IGCAR, nitrogen alloyed type 304LN SS and 316LN SS have been chosen as materials of construction for many engineering components of fast breeder reactor (FBR) and associated reprocessing plants. HNS austenitic SS alloys are used as structural/reactor components, i.e., main vessel, inner vessel, control plug, intermediate heat exchanger and main sodium piping for fast breeder reactor. HNS type 304LN SS is a candidate material for continuous dissolver, nuclear waste storage tanks, pipings, etc. for nitric acid service under highly corrosive conditions. Recent developments towards the manufacturing and properties of HNS alloys for application in nuclear industry are highlighted in the presentation. (author)

  7. Expanded austenite in nitrided layers deposited on austenitic and super austenitic stainless steel grades

    International Nuclear Information System (INIS)

    Casteletti, L.C.; Fernandes, F.A.P.; Heck, S.C.; Gallego, J.

    2010-01-01

    In this work nitrided layers deposited on austenitic and super austenitic stainless steels were analyzed through optical microscopy and X-rays diffraction analysis (XRD). It was observed that the formation of N supersaturated phase, called expanded austenite, has promoted significant increment of hardness (> 1000HV). XRD results have indicated the anomalous displacement of the diffracted peaks, in comparison with the normal austenite. This behavior, combined with peaks broadening, it was analyzed in different nitriding temperatures which results showed good agreement with the literature. (author)

  8. Swelling and microstructural development in path A PCA and type 316 stainless steel irradiated in HFIR to about 22 dpa

    International Nuclear Information System (INIS)

    Maziasz, P.J.; Braski, D.N.

    1983-01-01

    Irradiation of several microstructural variants of PCA and 20%-cold-worked N-lot type 316 stainess steel (CW 316) in HFIR to about 10 dpa produced no visible cavities at 300 0 C, bubbles at 400 0 C, and varying distributions of bubbles and voids at 500 and 600 0 C. The PCA-B1 swells the most and CW 316 (N-lot) the least at 600 0 C. Irradiations have been extended to about 22 dpa. The PCA-Al swells 0.06%/dpa at 600 0 C but at a much lower rate at 500 0 C. The PCA-A3 shows the lowest swelling at 600 0 C, about the half the swelling rate of type 316 stainless steel

  9. SCC crack growth rate of cold worked 316L stainless steel in PWR environment

    Science.gov (United States)

    Du, Donghai; Chen, Kai; Yu, Lun; lu, Hui; Zhang, Lefu; Shi, Xiuqiang; Xu, Xuelian

    2015-01-01

    Many component failures in nuclear power plants were found to be caused by stress corrosion cracking (SCC) of cold worked austenitic steels. Some of the pressure boundary component materials are even cold worked up to 35% plastic deformation, leaving high residual stress and inducing high growth rate of corrosion crack. Controlling water chemistry is one of the best counter measure to mitigate this problem. In this work, the effects of temperature (200 up to 325 °C) and dissolved oxygen (0 up to 2000 μg/L) on SCC crack growth rates of cold worked austenitic stainless steel type 316L have been tested by using direct current potential drop (DCPD) method. The results showed that temperature affected SCC crack growth rates more significantly in oxygenated water than in deaerated water. In argon deaerated water, the crack growth rate exhibited a peak at about 250 °C, which needs further verification. At 325 °C, the SCC crack growth rate increased rapidly with the increase of dissolved oxygen concentration within the range from 0 up to 200 μg/L, while when dissolved oxygen was above 200 μg/L, the crack growth rate followed a shallower dependence on dissolved oxygen concentration.

  10. Preliminary microstructural examination of high and low ductility type 316 creep rupture specimens

    International Nuclear Information System (INIS)

    Bolton, C.J.; Cordwell, J.E.; Hooper, A.J.; Marshall, P.; Steeds, J.; Wickens, A.

    1977-09-01

    A preliminary report is presented dealing with the examination of creep specimens from five casts of AISI Type 316 stainless steel which ruptured with variable ductility. Specimen microstructures and attempts to identify factors responsible for high or low creep ductility are discussed. (author)

  11. Phase relations and crystal structures in the systems (Bi,Ln)2WO6 and (Bi,Ln)2MoO6 (Ln=lanthanide)

    International Nuclear Information System (INIS)

    Berdonosov, Peter S.; Charkin, Dmitri O.; Knight, Kevin S.; Johnston, Karen E.; Goff, Richard J.; Dolgikh, Valeriy A.; Lightfoot, Philip

    2006-01-01

    Several outstanding aspects of phase behaviour in the systems (Bi,Ln) 2 WO 6 and (Bi,Ln) 2 MoO 6 (Ln=lanthanide) have been clarified. Detailed crystal structures, from Rietveld refinement of powder neutron diffraction data, are provided for Bi 1.8 La 0.2 WO 6 (L-Bi 2 WO 6 type) and BiLaWO 6 , BiNdWO 6 , Bi 0.7 Yb 1.3 WO 6 and Bi 0.7 Yb 1.3 WO 6 (all H-Bi 2 WO 6 type). Phase evolution within the solid solution Bi 2- x La x MoO 6 has been re-examined, and a crossover from γ(H)-Bi 2 MoO 6 type to γ-R 2 MoO 6 type is observed at x∼1.2. A preliminary X-ray Rietveld refinement of the line phase BiNdMoO 6 has confirmed the α-R 2 MoO 6 type structure, with a possible partial ordering of Bi/Nd over the three crystallographically distinct R sites. - Graphical abstract: A summary of phase relations in the lanthanide-doped bismuth tungstate and bismuth molybdate systems is presented, together with some additional structural data on several of these phases

  12. 48 CFR 316.770-2 - Memoranda of understanding.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Memoranda of understanding. 316.770-2 Section 316.770-2 Federal Acquisition Regulations System HEALTH AND HUMAN SERVICES CONTRACTING METHODS AND CONTRACT TYPES TYPES OF CONTRACTS Agreements 316.770-2 Memoranda of understanding. Use of a “memorandum of understanding,” which...

  13. Environmental effects on properties of structural alloys

    International Nuclear Information System (INIS)

    Chopra, O.K.; Smith, D.L.

    1983-01-01

    Compatibility tests were conducted with several ferritic and austenitic steels at 700 and 755 K to study the corrosion behavior in flowing lithium, and fatigue tests were performed with Type 316 stainless steel in lithium at 755 K. The results indicate that an increase in the nitrogen content in lithium increases the dissolution rate, whereas the depth of internal penetration is not affected significantly. The dissolution rate of ferritic steels is an order of magnitude lower than for the austenitic stainless steel. The austenitic steels develop a very porous ferrite layer, whereas the ferritic steels exhibit little or no penetration. For the austenitic stainless steels, depth of internal penetration increases with time and the penetration rates at 755 K range from 50 to 180 μm/year. Preliminary data on Type 316 stainless steel yield similar penetration rates at 700 and 755 K. The fatigue life of annealed Type 316 stainless steel in lithium at 755 K is a factor of 3 to 8 greater than in air

  14. Tokamak fusion reactor

    International Nuclear Information System (INIS)

    Nohara, Kiyohiko

    2009-01-01

    The structural material is one of key issues for the development of reliable superconducting magnets and peripheral equipments of fusion reactors. Standard stainless steels like SUS 304 and 316 steels available at present do not meet requirements. We are developing a new austenitic steel that has proposed target properties named 'JAERI BOX'. Additions of N and V at different amounts were tested to improve strength and fracture toughness of a base alloy SUS316LN at 4.2 K. Mechanical properties of the developed steel were examined. It is found that the charpy absorbed energy and the fracture toughness of the developed steel at 4.2 K are within JAERI BOX. (T.I.)

  15. Structural, magnetic and electronic properties of rare earth ternary oxides Li Ln(II) 2 Ln(III)O4

    International Nuclear Information System (INIS)

    Malki, M.

    1987-06-01

    Properties of a new class of rare earth ternary oxides Li Ln(II) 2 Ln(III)O 4 where Ln(II) is a divalent metal (Sr, Eu) and Ln(III) a trivalent rare earth (Eu, Gd, Dy, Er and Y). These orthorhombic compounds (type Li Eu 3 O 4 ) allow the study of many magnetic phenomena and their evolution in function of the nature of Ln(II) and Ln(III): diamagnetic ions Sr 2+ , Y 3+ ; isotrope magnetic ions: Eu 2+ , Gd 3+ and anisotrope magnetic ions Dy 3+ , Er 3+ . Magnetic and electric properties are obtained by classical techniques and from hyperfine interaction by Moessbauer spectroscopy. The possibility to use several Moessbauer resonance (nuclei Eu 151, Gd 155, Dy 161 and Er 166) completes informations obtained by the macroscopic study [fr

  16. Intergranular Corrosion of 316L Stainless Steel by Aging and UNSM (Ultrasonic Nano-crystal Surface Modification) treatment

    International Nuclear Information System (INIS)

    Lee, J. H.; Kim, Y. S.

    2015-01-01

    Austenitic stainless steels have been widely used in many engineering fields because of their high corrosion resistance and good mechanical properties. However, welding or aging treatment may induce intergranular corrosion, stress corrosion cracking, pitting, etc. Since these types of corrosion are closely related to the formation of chromium carbide in grain boundaries, the alloys are controlled using methods such as lowering the carbon content, solution heat treatment, alloying of stabilization elements, and grain boundary engineering. This work focused on the effects of aging and UNSM (Ultrasonic Nano-crystal Surface Modification) on the intergranular corrosion of commercial 316L stainless steel and the results are discussed on the basis of the sensitization by chromium carbide formation and carbon segregation, residual stress, grain refinement, and grain boundary engineering

  17. Perspective on present and future alloy development efforts on austenitic stainless steels for fusion application

    International Nuclear Information System (INIS)

    Maziasz, P.J.

    1984-01-01

    The purpose of this paper is to address important questions concerning how to effect further alloy development of austenitic stainless steels for resistance, and to what extent the behavior of other properties under irradiation, such as strength/embrittlement, fatigue/irradiation creep, corrosion (under irradiation), and radiation-induced activation must be influenced. To summarize current understanding, helium has been found to have major effects on swelling and embrittlement, but several metallurgical avenues are available for significant improvement relative to type 316 stainless steel. Studies on fatigue and irradiation creep, particularly including helium effects, are preliminary but have yet to reveal engineering problems requiring additional alloy development remedies. The effects of irradiation on corrosion behavior are unknown, but higher alloy nickel contents make thermal corrosion in lithium worse. 67 refs

  18. Formation of ultra-fine grained TiC-dispersed SUS316L by ball-milling and their consolidation by hot isostatic pressing

    International Nuclear Information System (INIS)

    Zheng, Yongjia; Yamasaki, Tohru; Fukami, Takeshi; Mitamura, Tohru; Terasawa, Mititaka

    2003-01-01

    In order to overcome the irradiation embrittlement in austenitic stainless steels, ultra-fine grained SUS316L steels with very fine TiC particles have been developed. The SUS316-TiC nanocomposite powders having 1.0 to 2.0 mass%TiC were prepared by ball-milling SUS316-TiC powder mixtures for 125h in an argon gas atmosphere. The milled powders were consolidated by hot isostatic pressing (HIP) under a pressure of 200 MPa at temperature between 700-1000degC, and the bulk materials with crystallite size ranging between 100-400 nm have been produced. The possibility of using fine-grained TiC particles for pinning grain boundaries and thereby to maintain the ultra-fine grained structures has been discussed. (author)

  19. Radiation damage simulation studies in the Harwell VEC of selected austenitic and ferritic alloys for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Mazey, D J; Walters, G P; Buckley, S N; Hanks, W; Bolster, D E.J.; Murphy, S M

    1988-07-01

    Three austenitic (316 L, 316-Ti, 316-Nb); four high-nickel (IN 625, IN 706, PE 16, Fe-25Ni-8Cr) and four ferritic (CRM 12, FV 448, FV 607, FI) alloys have been irradiated with 46 MeV Ni or 20 MeV Cr ions in the Harwell VEC to simulated fusion-reactor doses up to 110 dpa (proportional to 10 MW-yr m/sup -2/) at temperatures from 425 to 625/sup 0/C. Gas production rates appropriate to fusion were obtained from a mixed beam of He+H/sub 2/ in the ratio 1:4 He:H with gas/dpa ratios of 13 appm He/dpa and 52 appm H/dpa. The 316 alloys showed irradiation-induced precipitation and swelling as high as 40% in ST 316-Ti after 110 dpa at 625/sup 0/C. Low swelling (e.g. <2% at 110 dpa) was observed in the high-nickel alloys. The ferritic/martensitic alloys showed negligible swelling (e.g. <0.2% in FV 607 after 100 dpa at 475/sup 0/C). The results demonstrate the high swelling behaviour of 316 alloys and the better swelling resistance of high-nickel and ferritic alloys under simulated fusion conditions.

  20. Effect of liquid sodium on long-term properties of austenitic steels

    International Nuclear Information System (INIS)

    Svoboda, V.; Merta, J.; Slach, J.

    The effect is discussed of liquid sodium on the long-term properties of austenitic steels corresponding to the ASI 304 and ASI 316 types, mainly of steel CSN 17348. The choice is described of test specimens and of the experimental sodium test equipment. Testing was carried out using the so-called indirect method, i.e., the liquid sodium effect was assessed using the results of creep tests of two groups of specimens, one exposed to sodium and the other to the inert argon atmosphere. Otherwise the tests proceeded under identical conditions. The sodium stand had been manufactured for exposure of test specimens to liquid sodium. The morphology of specimen surfaces was studied by the JSN-50A electron microscope. The results of testing steel CSN 17348-AKV EXTRA S exposed to liquid sodium containing 10 ppm of oxygen at a temperature of 550 degC showed a significant sodium effect on the basic mechanical properties, on long-term creep strength and on the metallurgical properties. (Oy)

  1. Resistance Element Welding of Magnesium Alloy/austenitic Stainless Steel

    Science.gov (United States)

    Manladan, S. M.; Yusof, F.; Ramesh, S.; Zhang, Y.; Luo, Z.; Ling, Z.

    2017-09-01

    Multi-material design is increasingly applied in the automotive and aerospace industries to reduce weight, improve crash-worthiness, and reduce environmental pollution. In the present study, a novel variant of resistance spot welding technique, known as resistance element welding was used to join AZ31 Mg alloy to 316 L austenitic stainless steel. The microstructure and mechanical properties of the joints were evaluated. It was found that the nugget consisted of two zones, including a peripheral fusion zone on the stainless steel side and the main fusion zone. The tensile shear properties of the joints are superior to those obtained by traditional resistance spot welding.

  2. Compatibility of molten salts with Type 316 stainless steel and lithium

    International Nuclear Information System (INIS)

    Keiser, J.R.; deVan, J.H.; Lawrence, E.J.

    1979-01-01

    Molten salts with possible application in fusion reactors have been studied. The corrosion rate of Type 316 stainless steel in LiF--BeF 2 , KNO 3 --NaNO 2 --NaNO 3 , and LiF--LiCl--LiBr was strongly affected by the temperature and oxidation potential of the salt. A rapid exothermic reaction occurred when KNO 3 --NaNO 2 --NaNO 3 was melted with lithium

  3. Characterization and understanding of ion irradiation effect on the microstructure of austenitic stainless steels

    International Nuclear Information System (INIS)

    Volgin, Alexandre

    2012-01-01

    Austenitic stainless steels are widely used in nuclear industry for internal structures. These structures are located close to the fuel assemblies, inside the pressure vessel. The exposure of these elements to high irradiation doses (the accumulated dose, after 40 years of operation, can reach 80 dpa), at temperature close to 350 C, modifies the macroscopic behavior of the steel: hardening, swelling, creep and corrosion are observed. Moreover, in-service inspections of some of the reactor internal structures have revealed the cracking of some baffle bolts. This cracking has been attributed to Irradiation Assisted Stress Corrosion Cracking (IASCC). In order to understand this complex phenomenon, a first step is to identify the microstructural changes occurring during irradiation, and to understand the mechanisms at the origin of this evolution. In this framework, a large part of the European project 'PERFORM 60' is dedicated to the study of the irradiation damage in austenitic stainless steels. The objective of this PhD work is to bring comprehensive data on the irradiation effects on microstructure. To reach this goal, two model alloys (FeNiCr and FeNiCrSi) and an industrial austenitic stainless steel (316 steel) are studied using Atom Probe Tomography (APT), Transmission Electron Microscope (TEM) and Positron Annihilation Spectroscopy (PAS). They are irradiated by Ni ions in CSNSM (Orsay) at two temperatures (200 and 450 C) and three doses (0.5, 1 and 5 dpa). TEM observations have shown the appearance of dislocation loops, cavities and staking fault tetrahedra. The dislocation loops in 316 steel were preferentially situated in the vicinity of dislocations, while they were randomly distributed in the FeNiCr alloy. APT study has shown the redistribution of Ni and Si under irradiation in FeNiCrSi model alloy and 316 steel, leading to the appearance of (a) Cottrell clouds along dislocation lines, dislocation loops and other non-identified crystalline defects and (b

  4. Effects of cold working ratio and stress intensity factor on intergranular stress corrosion cracking susceptibility of non-sensitized austenitic stainless steels in simulated BWR and PWR primary water

    International Nuclear Information System (INIS)

    Yaguchi, Seiji; Yonezawa, Toshio

    2012-01-01

    To evaluate the effects of cold working ratio, stress intensity factor and water chemistry on an IGSCC susceptibility of non-sensitized austenitic stainless steel, constant displacement DCB specimens were applied to SCC tests in simulated BWR and PWR primary water for the three types of austenitic stainless steels, Types 316L, 347 and 321. IGSCC was observed on the test specimens in simulated BWR and PWR primary water. The observed IGSCC was categorized into the following two types. The one is that the IGSCC observed on the same plane of the pre-fatigue crack plane, and the other is that the IGSCC observed on a plane perpendicular to the pre-fatigue crack plane. The later IGSCC fractured plane is parallel to the rolling plane of a cold rolled material. Two types of IGSCC fractured planes were changed according to the combination of the testing conditions (cold working ratio, stress intensity factor and simulated water). It seems to suggest that the most susceptible plane due to fabrication process of materials might play a significant role of IGSCC for non-sensitized cold worked austenitic stainless steels, especially, in simulated PWR primary water. Based upon evaluating on the reference crack growth rate (R-CGR) of the test specimens, the R-CGR seems to be mainly affected by cold working ratio. In case of simulated PWR primary water, it seems that the effect of metallurgical aspects dominates IGSCC susceptibility. (author)

  5. Effects of helium content of microstructural development in Type 316 stainless steel under neutron irradiation

    International Nuclear Information System (INIS)

    Maziasz, P.J.

    1985-11-01

    This work investigated the sensitivity of microstructural evolution, particularly precipitate development, to increased helium content during thermal aging and during neutron irradiation. Helium (110 at. ppM) was cold preinjected into solution annealed (SA) DO-heat type 316 stainess steel (316) via cyclotron irradiation. These specimens were then exposed side by side with uninjected samples. Continuous helium generation was increased considerably relative to EBR-II irradiation by irradiation in HFIR. Data were obtained from quantitative analytical electron microscopy (AEM) in thin foils and on extraction replicas. 480 refs., 86 figs., 19 tabs

  6. Effects of helium content of microstructural development in Type 316 stainless steel under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, P.J.

    1985-11-01

    This work investigated the sensitivity of microstructural evolution, particularly precipitate development, to increased helium content during thermal aging and during neutron irradiation. Helium (110 at. ppM) was cold preinjected into solution annealed (SA) DO-heat type 316 stainess steel (316) via cyclotron irradiation. These specimens were then exposed side by side with uninjected samples. Continuous helium generation was increased considerably relative to EBR-II irradiation by irradiation in HFIR. Data were obtained from quantitative analytical electron microscopy (AEM) in thin foils and on extraction replicas. 480 refs., 86 figs., 19 tabs.

  7. Effect of inclusion content on the creep rupture properties of type 17Cr-8Ni-2Mo weld metals

    International Nuclear Information System (INIS)

    Senior, B.A.

    1988-01-01

    It has been known for some time that austenitic weldments exhibit low and variable creep rupture properties, but many of the factors controlling these properties are not well understood. In this investigation, two welds (Type 316) with similar compositions and fabricated using the same welding parameters, but with different electrode coatings, have been examined after creep testing. The results indicate that the inclusion and silicon content of type 316 welds can strongly influence their creep rupture properties, a high inclusion density being associated with poor creep rupture properties, and a low silicon content with a higher creep rate. This has been explained with reference to the micromechanism of creep failure operating in these welds. (author)

  8. Effect of post-weld heat treatment on the mechanical properties of CLAM/316L dissimilar joint

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Junyu [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); University of Science and Technology of China, Hefei, Anhui 230027 (China); Huang, Bo [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Wu, Qingsheng, E-mail: qingsheng.wu@fds.org.cn [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Li, Chunjing; Huang, Qunying [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2015-11-15

    Highlights: • Dissimilar joints between CLAM and 316L steels welded by TIG were investigated. • After PWHTs, the hardening in HAZ on the CLAM steel side decreased remarkably. • Tempering at 740 °C for 2 h was considered as the preferable treatment rule. - Abstract: Dissimilar welding between China low activation martensitic (CLAM) steel and 316L austenitic stainless steel was investigated to achieve the reliable connection between test blanket modules (TBMs) and piping system in the international thermonuclear experimental reactor (ITER). The dissimilar joints were welded by tungsten inert gas (TIG) welding process with a filler material type-309. In order to stabilize the microstructure and improve the strength and toughness, post-weld heat treatments (PWHTs) of tempering at 740 °C, 780 °C and 820 °C, respectively, for 2 h were performed. The microstructure observation showed that tempering at 740 °C for 2 h was the preferable PWHT rule in this work. After the treatment, the hardening in heat affected zone (HAZ) on the CLAM steel side decreased remarkably. The tensile strength of the joint was roughly the same as that of the base metal. The impact toughness of HAZ on the CLAM steel side was 77% of that of the base metal. The absorbed energy of HAZ of 316L steel decreased by 93 J, and that of weld metal (WM) was 110 J after the treatment.

  9. Determination of chemical activities of Fe, Cr, Ni and Mn in stainless steel 316 by Knudsen effusion cell mass spectrometry

    International Nuclear Information System (INIS)

    Venugopal, V.; Kulkarni, S.G.; Subbanna, C.S.; Sood, D.D.

    1995-01-01

    Cold-worked austenitic stainless steel of the type AISI 316 is being used as the cladding and wrapper materials in fast reactor fuel pins. Knowledge of the thermodynamic activities of the steel constituents is necessary to predict the possibility of fuel-cladding, coolant-cladding or fission product-cladding chemical reactions. The thermodynamic activities of Fe, Cr, Ni and Mn for stainless steel 316 were determined by measuring their partial pressures in the temperature range 1293-2120 K, using Knudsen effusion cell mass spectrometry. High purity Ag was used as an internal calibrant. The chemical activities of Fe (a Fe ), Cr (a Cr ), Ni (a Ni ) and Mn (a Mn ) were evaluated using literature data for the vapour pressures of pure metals. log a Fe ±0.18=-1.586+2074/T (T=1293-1872 K)log a Cr ±0.30=-2.350+2612/T (T=1293-2120 K)log a Ni ±0.20=-2.140+1794/T (T=1468-1974 K)log a Mn ±0.23=-2.041-5478/T (T=1302-1894 K) ((orig.))

  10. Studies on the Ln/sub 2/O/sub 3/ (Ln: rare-earth elements)-SrO-V/sub 2/O/sub 3/ system, 2. Some physical properties for Ln sub(1-x)Sr sub(x)VO sub(3-0. 1x) and SrO. Ln sub(1-x)Sr sub(x)VO sub(3-0. 1x) (Ln: Nd or Eu)

    Energy Technology Data Exchange (ETDEWEB)

    Shin-ike, T [Osaka Dental Coll., Hirakata (Japan); Adachi, G; Shiokawa, J

    1981-01-01

    Electrical and magnetic properties of the perovskite type solid solutions, Ln sub(1-x)Sr sub(x)VO sub(3-0.1x) (Ln: Nd or Eu), and the K/sub 2/NiF/sub 4/ type solid solutions, SrO.Ln sub(1-x)Sr sub(x)VO sub(3-0.1x) (Ln: Nd or Eu), were studied in the temperature range 77 - 300 K. The electrical conductivity increased with x for the perovskite type solid solutions and the reverse behavior was observed for the K/sub 2/NiF/sub 4/ type compounds. All the solid solutions examined exhibited a metal-insulator transition at some values of x. Both Nd sub(1-x)Sr sub(x)VO sub(3-0.1x) and Eu sub(1-x)Sr sub(x)VO sub(3-0.1x) were antiferromagnets having a weak ferromagnetism at a low value of x at a low temperature. The K/sub 2/NiF/sub 4/ type solid solutions revealed a weak ferromagnetism at a high value of x at a low temperature.

  11. Non-equilibrium grain boundary segregation of boron in austenitic stainless steel - IV. Precipitation behaviour and distribution of elements at grain boundaries

    International Nuclear Information System (INIS)

    Karlsson, L.; Norden, H.

    1988-01-01

    The distribution of elements and the precipitation behaviour at grain boundaries have been studied in boron containing AISI 316L and ''Mo-free AISI 316L'' type austenitic stainless steels. A combination of microanalytical techniques was used to study the boundary regions after cooling at 0.29-530 0 C/s from 800, 1075 or 1250 0 C. Tetragonal M/sub 2/B, M/sub 5/B/sub 3/ and M/sub 3/B/sub 2/, all rich in Fe, Cr and Mo, precipitated in the ''high B'' (40 ppm) AISI 316L steel whereas orthorhombic M/sub 2/B, rich in Cr and Fe was found in the ''Mo-free steel'' with 23 ppm B. In the ''high B steel'' a thin (<2nm), continuous layer, containing B, Cr, Mo and Fe and having a stoichiometry of typically M/sub 9/B, formed at boundaries after cooling at intermediate cooling rates. For both types of steels a boundary zone was found, after all heat treatments, with a composition differing significantly from the bulk composition. The differences were most marked after cooling at intermediate cooling rates. In both types of steel boundary depletion of Cr and enrichment of B and C occurred. It was found that non-equilibrium grain boundary segregation of boron can affect the precipitation behaviour by making the boundary composition enter a new phase field ''Non-equilibrium phases'' might also form. The synergistic effect of B and Mo on the boundary composition and precipitation behaviour, and the observed indications of C non-equilibrium segregation are discussed

  12. The phase transition of the incommensurate phases β-Ln(PO3)3(Ln=Y,Tb…Yb), crystal structures of α-Ln(PO3)3(Ln=Y,Tb…Yb) and Sc(PO3)3

    Science.gov (United States)

    Höppe, Hennig A.

    2009-07-01

    The incommensurately modulated room-temperature phases β-Ln(PO3)3(Ln=Y,Tb…Yb) undergo a topotactic phase transition monitored by vibrational spectroscopy below 180 K leading to α-Ln(PO3)3(Ln=Y,Dy…Yb), above 200 K the incommensurate phases are reobtained. The low-temperature phases exhibit a new structure type (α-Dy(PO3)3, P21/c, Z=12,a=14.1422(6), b=20.0793(9),c=10.1018(4) A˚, β=127.532(3)∘). α-Tb(PO3)3 is isotypic with Gd(PO3)3(α-Tb(PO3)3, I2/a,Z=16,a=25.875(6), b=13.460(3), c=10.044(2) A˚, β=119.13(3)∘). The symmetry relations between the involved phases of the phase transition are discussed. The crystal structure of Sc(PO3)3 is isotypic with that of Lu(PO3)3 and C-type phosphates. The polyphosphates consist of infinite zig-zag chains of corner-sharing PO4 tetrahedra, the cations are coordinated sixfold in an almost octahedral arrangement. To confirm the quality of the determined crystal structures the deviation of the phosphate tetrahedra from ideal symmetry was determined and discussed.

  13. Deformation behaviour of type 316 steel at 400 deg. C

    International Nuclear Information System (INIS)

    Wood, D.S.; Williamson, K.

    A variety of type 316 steel deformation tests at 400 deg. C involving a study of strain rate, stress increment, stress cycling and strain cycling effects are reported. It is concluded that very small ratchet strains may occur, but these are unlikely to be of engineering significance. It is also shown that in the absence of reversed plasticity the upper stress bound is represented by the monotonic stress-strain curve. Under reversed plasticity, significant cyclic hardening can occur and in this case the upper bound may be represented by the cyclic stress-strain curve

  14. Basic analysis of weldability and machinability of structural materials for ITER Toroidal Field coils

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, Masanori [Mitsubishi Heavy Industries Ltd., Konan 2-16-5, Minato-ku, Tokyo 108-8215 (Japan)], E-mail: masanori_onozuka@mnes-us.com; Shimizu, Katsusuke; Urata, Kazuhiro; Kimura, Masahiro; Kadowaki, Hirokazu; Okamoto, Mamoru [Mitsubishi Heavy Industries Ltd., Konan 2-16-5, Minato-ku, Tokyo 108-8215 (Japan); Nakajima, Hideo; Hamada, Kazuya; Okuno, Kiyoshi [Japan Atomic Energy Agency, Mukouyama 801-1, Naka-shi, Ibaraki 311-0193 (Japan)

    2007-10-15

    A manufacturing study has been conducted to examine the welding and machining capabilities for strengthened austenitic stainless steels with a high nitrogen content, JJ1 and ST-SS316LN, to be employed for ITER Toroidal Field (TF) coil structural components. It was found that the applicable EB welding condition for JJ1 was limited to up to 40 mm thick plates. A wider range of welding conditions was found in the vertical upward direction. Based on those results, a verification test up to 900 mm in length was successfully conducted. With respect to TIG welding, an average deposition rate of 26 g/min (i.e. the filler wire supplying speed of 3000 mm/min) was achieved. In addition to the welding tests, a series of machining tests has been conducted to examine the machinability of JJ1 and ST-SS316LN. Various types of machining tools were examined. In practical application, the cutting speed should be low to extend the tool life. At a cutting speed of 40 m/min, a tool life of more than 2 h (at a traveling distance of up to 9 m) was attained. The degree of cutter wear after 30 min of operation, at a cutting speed of 40 m/min, was found to be around 0.1 mm, which is within an acceptable range.

  15. Comparison of the corrosion behavior of austenitic and ferritic/martensitic steels exposed to static liquid Pb Bi at 450 and 550 °C

    Science.gov (United States)

    Kurata, Y.; Futakawa, M.; Saito, S.

    2005-08-01

    Static corrosion tests of various steels were conducted in oxygen-saturated liquid Pb-Bi eutectic at 450 °C and 550 °C for 3000 h to study the effects of temperature and alloying elements on corrosion behavior in liquid Pb-Bi. Corrosion depth decreases at 450 °C with increasing Cr content in steels regardless of ferritic/martensitic steels or austenitic steels. Appreciable dissolution of Ni and Cr does not occur in the three austenitic steels at 450 °C. Corrosion depth of ferritic/martensitic steels also decreases at 550 °C with increasing Cr content in steels whereas corrosion depth of austenitic steels, JPCA and 316SS becomes larger due to ferritization caused by dissolution of Ni at 550 °C than that of ferritic/martensitic steels. An austenitic stainless steel containing about 5%Si exhibits fine corrosion resistance at 550 °C because the protective Si oxide film is formed and prevents dissolution of Ni and Cr.

  16. Comparison of the corrosion behavior of austenitic and ferritic/martensitic steels exposed to static liquid Pb-Bi at 450 and 550 deg. C

    International Nuclear Information System (INIS)

    Kurata, Y.; Futakawa, M.; Saito, S.

    2005-01-01

    Static corrosion tests of various steels were conducted in oxygen-saturated liquid Pb-Bi eutectic at 450 deg. C and 550 deg. C for 3000 h to study the effects of temperature and alloying elements on corrosion behavior in liquid Pb-Bi. Corrosion depth decreases at 450 deg. C with increasing Cr content in steels regardless of ferritic/martensitic steels or austenitic steels. Appreciable dissolution of Ni and Cr does not occur in the three austenitic steels at 450 deg. C. Corrosion depth of ferritic/martensitic steels also decreases at 550 deg. C with increasing Cr content in steels whereas corrosion depth of austenitic steels, JPCA and 316SS becomes larger due to ferritization caused by dissolution of Ni at 550 deg. C than that of ferritic/martensitic steels. An austenitic stainless steel containing about 5%Si exhibits fine corrosion resistance at 550 deg. C because the protective Si oxide film is formed and prevents dissolution of Ni and Cr

  17. Simulation of tensile stress-strain properties of irradiated type 316 SS by heavily cold-worked material

    International Nuclear Information System (INIS)

    Muto, Yasushi; Jitsukawa, Shiro; Hishinuma, Akimichi

    1995-07-01

    Type 316 stainless steel is one of the most promising candidate materials to be used for the structural parts of plasma facing components in the nuclear fusion reactor. The neutron irradiation make the material brittle and reduces its uniform elongation to almost zero at heavy doses. In order to apply such a material of reduced ductility to structural components, the structural integrity should be examined and assured by the fracture mechanics. The procedure requires a formulated stress-strain relationship. However, the available irradiated tensile test data are very limited at present, so that the cold-worked material was used as a simulated material in this study. Property changes of 316 SS, that is, a reduction of uniform elongation and an enhancement of yield stress are seemingly very similar for both the irradiated 316 SS and the cold-worked one. The specimens made of annealed 316 SS, 20% (or 15%) cold worked one and 40% cold worked one were prepared. After the formulation of stress strain behavior, the equation for the cold-worked 316 SS was fitted to the data on irradiated material under the assumption that the yield stress is the same for both materials. In addition, the upper limit for the plastic strain was introduced using the data on the irradiated material. (author)

  18. Metallographic screening of grain boundary engineered type 304 austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Hanning, F., E-mail: Fabian.Hanning@googlemail.com; Engelberg, D.L., E-mail: Dirk.engelberg@manchester.ac.uk

    2014-08-15

    An electrochemical etching method for the identification of grain boundary engineered type 304 austenitic stainless steel microstructures is described. The method can be applied for rapid microstructure screening to complement electron backscatter diffraction analysis. A threshold parameter to identify grain boundary engineered microstructure is proposed, and the application of metallographic etching for characterising the degree of grain boundary engineering discussed. - Highlights: • As-received (annealed) and grain boundary engineered microstructures were compared. • Electro-chemical polarisation in nitric acid solutions was carried out. • A metallographic screening method has been developed. • The screening method complements EBSD analysis for microstructure identification.

  19. Creep Deformation and Rupture Behavior of Single- and Dual-Pass 316LN Stainless-Steel-Activated TIG Weld Joints

    Science.gov (United States)

    Vijayanand, V. D.; Vasudevan, M.; Ganesan, V.; Parameswaran, P.; Laha, K.; Bhaduri, A. K.

    2016-06-01

    Creep deformation and rupture behavior of single-pass and dual-pass 316LN stainless steel (SS) weld joints fabricated by an autogenous activated tungsten inert gas welding process have been assessed by performing metallography, hardness, and conventional and impression creep tests. The fusion zone of the single-pass joint consisted of columnar zones adjacent to base metals with a central equiaxed zone, which have been modified extensively by the thermal cycle of the second pass in the dual-pass joint. The equiaxed zone in the single-pass joint, as well as in the second pass of the dual-pass joint, displayed the lowest hardness in the joints. In the dual-pass joint, the equiaxed zone of the first pass had hardness comparable to the columnar zone. The hardness variations in the joints influenced the creep deformation. The equiaxed and columnar zone in the first pass of the dual-pass joint was more creep resistant than that of the second pass. Both joints possessed lower creep rupture life than the base metal. However, the creep rupture life of the dual-pass joint was about twofolds more than that of the single-pass joint. Creep failure in the single-pass joint occurred in the central equiaxed fusion zone, whereas creep cavitation that originated in the second pass was blocked at the weld pass interface. The additional interface and strength variation between two passes in the dual-pass joint provides more restraint to creep deformation and crack propagation in the fusion zone, resulting in an increase in the creep rupture life of the dual-pass joint over the single-pass joint. Furthermore, the differences in content, morphology, and distribution of delta ferrite in the fusion zone of the joints favors more creep cavitation resistance in the dual-pass joint over the single-pass joint with the enhancement of creep rupture life.

  20. Corrosion studies on type AISI 316L stainless steel and other materials in lithium-salt solutions

    International Nuclear Information System (INIS)

    Zheng, J.H.; Bogaerts, W.F.; Agema, K.; Phlippo, K.; Bruggeman, A.; Lorenzetto, P.; Embrechts, M.J.

    1991-01-01

    A possible concept for the blanket for next generation fusion devices is the lithium salt blanket, where lithium salt is dissolved in an aqueous coolant in order to provide for tritium. Type AISI 316L stainless steel has been considered as a structural material for such a blanket for NET (Next European Torus), and a systematic study of the corrosion behaviour of 316L stainless steel has been carried out in a number of lithium salt solutions. The experiments include cyclic potentiodynamic polarization measurement, crevice corrosion fatigue and stress corrosion cracking (SCC) tests. This paper presents a part of novel corrosion results concerning the compatibility of 316L steel and a series of other materials relevant to a fusion blanket environment. No major uniform corrosion problem has been observed, but localized corrosion, particularly corrosion fatigue and SCC, of 316L stainless steel have been found so far in a lithium hydroxide solution under some specific potential conditions. The critical electrochemical potential zones for SCC have been identified in the present study. (orig.)

  1. Helium and its effects on the creep-fatigue behaviour of electron beam welds in the steel AISI-316-L

    International Nuclear Information System (INIS)

    Paulus, M.

    1992-12-01

    Within the scope of R and D work for materials development for the NET fusion experiment (Next European Torus) and the International Thermonuclear Experimental Reactor (ITER), the task reported was to examine electron beam welds in the austenitic stainless steel AISI 316 L (NET reference material) for their fatigue behaviour under creep load, and the effects of helium implantation on there mechanical properties. (orig.) [de

  2. Stability of grain-refined reversed structures in a 301LN austenitic stainless steel under cyclic loading

    Czech Academy of Sciences Publication Activity Database

    Järvenpää, A.; Jaskari, M.; Man, Jiří; Karjalalinen, L.P.

    2017-01-01

    Roč. 703, č. 4 (2017), s. 280-292 ISSN 0921-5093 R&D Projects: GA ČR GA13-32665S Institutional support: RVO:68081723 Keywords : austenitic stainless steel * reversion treatment * grain size * deformation induced martensite * strain-controlled fatigue Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis Impact factor: 3.094, year: 2016

  3. The Formation of Multipoles during the High-Temperature Creep of Austenitic Stainless Steels

    DEFF Research Database (Denmark)

    Howell, J.; Nielsson, O.; Horsewell, Andy

    1981-01-01

    It is shown that multipole dislocation configurations can arise during power-law creep of certain austenitic stainless steels. These multipoles have been analysed in some detail for two particular steels (Alloy 800 and a modified AISI 316L) and it is suggested that they arise either during...... instantaneous loading or during the primary creep stage. Trace analysis has shown that the multipoles are confined to {1 1 1} planes during primary creep but are not necessarily confined to these planes during steady-state creep unless they are pinned by interstitials....

  4. Mechanical properties and microstructure of austenitic steels loaded with helium using tritium

    International Nuclear Information System (INIS)

    Sacovy, Paulette; Brun, Gilbert; Delaplace, Jean; Devaux, Joel; Fidelle, J.P.

    1982-06-01

    Following a review of the principle of the method using the radioactive decay of tritium to helium 3 to introduce helium into thick metallic test specimens, the results of preliminary tests performed on austenitic steels are presented. 304L and 316 steel specimens were loaded with helium, treated at 760 0 C to precipitate the helium in bubbles, and then strained by tensile stress at 800 0 C. In the material most loaded with helium (304 steel containing 230 ppm at. helium), a significant increase in distributed and total elongation at 800 0 C was observed. In the least loaded material (steel 316 containing 13 ppm at. helium), only total elongation decreased. Neither the yield stress nor the breaking load was altered by the presence of helium. Observations made by electron microscopy in the most loaded material revealed the presence, after heat treatment at 760 0 C, of very small bubbles of helium and also imperfect dislocation loops. The cause of these fault loops is discussed [fr

  5. Study of microstructure and mechanical property relationships of A-TIG welded P91–316L dissimilar steel joint

    Energy Technology Data Exchange (ETDEWEB)

    Vidyarthy, R.S., E-mail: vidyashanker01@gmail.com; Kulkarni, A.; Dwivedi, D.K.

    2017-05-17

    The current work enunciated the effect of activating flux tungsten inert gas (A-TIG) welding on the microstructural, mechanical and corrosion behaviour of the 316L stainless steel (SS) and P91 steel weldment. The current study also demonstrated the comprehensive structure–property relationships of dissimilar joint weldment using the collective techniques of optical macro and microscopy, electron microscopy, and Energy-dispersive X-ray spectroscopy (EDS) techniques. Microstructure study reveals the presence of delta ferrite, austenite and martensite in different zones of the weldment. The dissimilar steel weldment failed from the 316L side fusion boundary during the tensile testing. Maximum impact energy was absorbed by the 316L SS side heat affected zone (HAZ) while minimum by P91 steel side HAZ during the Charpy toughness test. The potentiodynamic test result suggested that the P91 side fusion boundary had minimum corrosion and pitting potential in all the weldment.

  6. Massive particle formation in a type 316 stainless steel during creep

    International Nuclear Information System (INIS)

    Morris, D.G.; Harries, D.R.

    1976-10-01

    Extremely large grain boundary particles have previously been observed in type 316 steel after creeping for short times at 625 0 C. These features have been identified as consisting of numerous plates of M 23 C 6 carbides precipitated on partial dislocations and stacking faults emitted from high angle grain boundaries. No wholesale phase transformation to produce large intermetallic particles occurs in longer term tests, and the large particles do not, of themselves, appear to weaken the boundaries and cause cracking. (author)

  7. Reverted austenite in PH 13-8 Mo maraging steels

    International Nuclear Information System (INIS)

    Schnitzer, Ronald; Radis, Rene; Noehrer, Matthias; Schober, Michael; Hochfellner, Rainer; Zinner, Silvia; Povoden-Karadeniz, E.; Kozeschnik, Ernst; Leitner, Harald

    2010-01-01

    The mechanical properties of maraging steels are strongly influenced by the presence of reverted austenite. In this study, the morphology and chemical composition of reverted austenite in a corrosion resistant maraging steel was characterized using transmission electron microscopy (TEM) and atom probe tomography (APT). Two types of austenite, i.e. granular and elongated, are present after aging at 575 o C, whereby the content of the latter increases during aging. The investigations revealed that the austenite phase is enriched in Ni, which prevents the transformation to martensite during cooling. Inside and next to the austenitc areas, Mo and Cr-rich carbides, which form during the aging treatment, were found. Various aging treatments were performed to obtain the activation energy for the formation of reverted austenite. Additionally, the experimental data are compared with thermodynamic and kinetic simulations. Based on these results and the chemical composition changes of the phases, a model for the formation of reverted austenite is presented. It is concluded that precipitation of B2-ordered NiAl and formation of reverted austenite take place simultaneously during aging and that dissolution of precipitates is not essential for the initial formation of reverted austenite.

  8. The phase transition of the incommensurate phases β-Ln(PO3)3(Ln=Y,Tb...Yb), crystal structures of α-Ln(PO3)3(Ln=Y,Tb...Yb) and Sc(PO3)3

    International Nuclear Information System (INIS)

    Hoeppe, Hennig A.

    2009-01-01

    The incommensurately modulated room-temperature phases β-Ln(PO 3 ) 3 (Ln=Y,Tb...Yb) undergo a topotactic phase transition monitored by vibrational spectroscopy below 180 K leading to α-Ln(PO 3 ) 3 (Ln=Y,Dy...Yb), above 200 K the incommensurate phases are reobtained. The low-temperature phases exhibit a new structure type (α-Dy(PO 3 ) 3 ,P2 1 /c,Z=12,a=14.1422(6),b=20.0793(9),c=10.1018(4)A, β=127.532(3) 0 ). α-Tb(PO 3 ) 3 is isotypic with Gd(PO 3 ) 3 (α-Tb(PO 3 ) 3 ,I2/a,Z=16,a=25.875(6),b=13.460(3),c=10.044(2)A, β=119.13(3) 0 ). The symmetry relations between the involved phases of the phase transition are discussed. The crystal structure of Sc(PO 3 ) 3 is isotypic with that of Lu(PO 3 ) 3 and C-type phosphates. The polyphosphates consist of infinite zig-zag chains of corner-sharing PO 4 tetrahedra, the cations are coordinated sixfold in an almost octahedral arrangement. To confirm the quality of the determined crystal structures the deviation of the phosphate tetrahedra from ideal symmetry was determined and discussed. - Abstract: Basic structure from which all crystal structures of the late lanthanoids' polyphosphates at room temperature and below can be derived.

  9. The effect of internal hydrogen on surface slip localisation on polycrystalline AISI 316L stainless steel

    International Nuclear Information System (INIS)

    Aubert, Isabelle; Olive, Jean-Marc; Saintier, Nicolas

    2010-01-01

    A statistical analysis of the effect of internal hydrogen on the surface slip morphology of relatively high nickel content AISI 316L type austenitic stainless steel was carried out on high resolution data obtained by atomic force microscopy. Surface plastic strain localisation was studied for different hydrogen contents, two grain sizes, and two plastic strain levels. The height and spacing of approximately 8000 slip bands, observed on 12 specimens, are shown to follow log-normal distributions. Hydrogen increased the mean slip-band height and the mean slip-band spacing for the two macroscopic plastic strain levels considered, and for the two hydrogen concentrations in coarse-grained specimens. The hydrogen effect was also observed for fine-grained specimens, but only for the highest hydrogen concentration. In addition, the emerging dislocation velocity increased by a factor 3 for high hydrogen content.

  10. Grain size measurements by ultrasonic Rayleigh surface waves

    International Nuclear Information System (INIS)

    Palanichamy, P.; Jayakumar, T.

    1996-01-01

    The use of Rayleigh surface waves to determine average grain size nondestructively in an austenitic stainless steel AISI type 316 stainless is discussed. Two commercial type 4MHz frequency surface wave transducers, one as transmitter and the other as receiver were employed for the measurement of surface wave amplitudes. Relative amplitudes of the Rayleigh surface waves were correlated with the metallographically obtained grain sizes. Results indicate that surface/sub-surface average grain sizes of AISI type 316 austenitic stainless steel can be estimated with a confidence level of more than 80% in the grain size range 30-170 μm. (author)

  11. Properties of high temperature low cycle fatigue in austenitic stainless steel

    International Nuclear Information System (INIS)

    Kim, D. H.; Han, C. H.; Ryu, W. S.

    2002-01-01

    Tensile and fatigue tests were conducted at R. T. and 300 .deg. C for type 304 and 316 stainless steel. Tensile strength and elongation decreased and fatigue life increased with temperature for both type 304 and 316 stainless steel. Dislocation structures were mixed with cell and planar at R. T. and 300 .deg. C for both type 304 and 316 stainless steel. Strain induced martensite of type 316 stainless steel was less than that of type 304 stainless steel and decreased with temperature. It is considered that strain induced martensite is an important factor to increase fatigue life at 300 .deg. C

  12. Preplastic strain effect on chromium carbides precipitation of type 316 stainless steel during high-temperature ageing

    International Nuclear Information System (INIS)

    Mao, X.; Zhao, W.

    1992-01-01

    Long exposure of Type 316 stainless steel to elevated temperature (400-900 o C) is known to cause high-temperature embrittlement due to chromium carbides and σ-phase precipitating in grain boundaries. Numerous investigations have been published on the mechanical properties and microstructure changes occurring during such exposure. However, no investigations exist on the preplastic deformation effect on chromium carbide precipitation in the grain matrix and grain boundary during high-temperature ageing of Type 316 stainless steel and then its effects on the room-temperature tensile properties. Since the stainless steel sometimes is deformed before use at high temperatures, it is necessary to study the preplastic strain effect of the stainless steel on the microstructure change and mechanical property change during high-temperature exposure. The purpose of the present investigation was to carry out such a study. The conclusions reached are as follows. First, chromium carbides are precipitated in deformation lines (slip lines) and then the amount of chromium carbides precipitation in the grain boundary is relatively reduced in predeformed stainless steel after ageing. Secondly, plastic strain pretreatments of and subsequent ageing treatments of Type 316 stainless steel can improve its tensile ductility. Finally, secondary cracking of aged stainless steel occurs in a normal tensile test. The secondary cracking can be reduced by adding preplastic strain into the material. (Author)

  13. Microscopic characterisation of TIG-deposition and -welding

    International Nuclear Information System (INIS)

    Groot, P.

    1992-11-01

    In the framework of the European Fusion Technology Programme austenitic RVS AISI 316LN is considered as candidate material for the First Wall. In this report, among others, tungsten-arc (TIG) welding connections are investigated as a part of the ECN project 1.653. It concerns respectively; the deposition of TIG-electrode-material and the welding connection. The connections are fabricated by the Danish Welding Institute Svejsecentrals in Broendby. This study is supposed to give a welding qualification by microscopic characterisation of a TIG-deposition and a TIG-weld. 3 refs., 33 figs., 5 tabs

  14. Magnetic permeability of stainless steel for use in accelerator beam transport systems

    International Nuclear Information System (INIS)

    Wilson, N.G.; Bunch, P.

    1991-01-01

    High-vacuum beam transport tubes are being designed for use in an accelerator under development at Los Alamos. In areas such as weld-heat-affected zones, the tubes will require localized magnetic permeability of less than 1.02. Seven austenitic stainless steel candidates, 304L, 310, 316L, 317LN, 20Cb-3, Nitronic 33, and Nitronic 40, have been evaluated to determine their permeability in cold-worked, annealed, and weld-affected zones. 310 and 20Cb-3 showed permeability after welding of less than 1.01. 1 ref., 1 fig., 1 tab

  15. Grain boundary segregation and intergranular stress corrosion cracking susceptibility of austenitic stainless steels in high temperature water

    International Nuclear Information System (INIS)

    Shoji, T.; Yamaki, K.; Ballinger, R.G.; Hwang, I.S.

    1992-01-01

    The effects of grain boundary segregation on intergranular stress corrosion cracking of austenitic stainless steels in high temperature water have been examined as a function of heat treatment. The materials investigated were: (1) two commercial purity Type 304; (2) low sulfur Type 304; (3) nuclear grade Type 304; (4) ultra high purity Type 304L; and (5) Type 316L and Type 347L. Specimens were solution treated at 1050 degrees C for 0.5 hour and given a sensitization heat treatment at 650 degrees C for 50 hours. Some of the specimens were then subjected to an aging heat treatment at 850 degrees C for from one to ten hours to cause Cr recovery at the grain boundaries. The effects of heat treatments on degree of sensitization and grain boundary segregation were evaluated by Electrochemical Potentiokinetic Reactivation (EPR) and Coriou tests, respectively. The susceptibility to stress corrosion (SCC) was evaluated using slow strain rate tests technique (SSRT) in high temperature water. SSRT tests were performed in an aerated pure water (8 ppm dissolved oxygen) at 288 degrees C at a strain rate of 1.33 x 10 -6 /sec. Susceptibility to intergranular stress corrosion cracking was compared with degree of sensitization and grain boundary segregation. The results of the investigation indicate that EPR is not always an accurate indicator of SCC susceptibility. The Coriou test provides a more reliable measure of SCC susceptibility especially for 304L, 304NG, 316L, and 347L stainless steels. The results also indicate that grain boundary segregation as well as degree of sensitization must be considered in the determination of SCC susceptibility

  16. Structures and magnetic properties of rare earth double perovskites containing antimony or bismuth Ba{sub 2}LnMO{sub 6} (Ln=rare earths; M=Sb, Bi)

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Shumpei, E-mail: m-nis-s-o@ec.hokudai.ac.jp; Hinatsu, Yukio

    2015-07-15

    A series of double perovskite-type oxides Ba{sub 2}LnMO{sub 6} (Ln=lanthanides; M=Sb, Bi) were synthesized and their structures were studied. The Ln and M are structurally ordered in the rock-salt type at the B-site of the perovskite ABO{sub 3}. For Ba{sub 2}PrBiO{sub 6} and Ba{sub 2}TbBiO{sub 6}, it has been found that the disordering between Ln ion and Bi ion occurs at the B-site of the double perovskite and both the Pr (Tb) and Bi exist in two oxidation state in the same compound from the analysis of the X-ray diffraction and magnetic susceptibility data. Magnetic susceptibility measurements show that all these compounds are paramagnetic and have no magnetic ordering down to 1.8 K. - Graphical abstract: Tolerance factor for Ba{sub 2}LnMO{sub 6} (M=Sb, Bi) plotted against the ionic radius of Ln{sup 3+}. We have found that there is a clear relation between crystal structures and tolerance factors. - Highlights: • The Ln and M ions are structurally ordered in the rock-salt type at the B-site. • The disordering between Pr (Tb) ion and Bi ion occurs at the B-site. • Ba{sub 2}LnMO{sub 6} (M=Sb, Bi) have no magnetic ordering down to 1.8 K.

  17. Optical and crystal chemistry studies of Na3Ln(PO4)2-K3Ln(PO4)2 (Ln=Eu, Gd)

    International Nuclear Information System (INIS)

    Mesnaoui, M.; Maazaz, M.

    1987-01-01

    In these systems, large single phase domains are separated by two phase regions. The structural evolution as a function of composition is analysed both by X-ray diffraction and by using Eu 3+ and Gd 3+ as luminescent local structural probes. Due to layer type structure of the K 3 Ln(PO 4 ) 2 phases an exchange reaction resulting in total substitution of sodium for potassium can be carried out with formation of metastable Na 3 Ln(PO 4 ) 2 phases, the structure of which is close to those of the potassium compounds. 10 refs.; 18 figs [fr

  18. Fatigue behavior of Type 316 stainless steel following neutron irradiation inducing helium

    International Nuclear Information System (INIS)

    Grossbeck, M.L.; Liu, K.C.

    1980-01-01

    Since a tokamak reactor operates in a cyclic mode, thermal stresses will result in fatigue in structural components, especially in the first wall and blanket. There has been limited work on fatigue in irradiated alloys but none on irradiated materials containing significant amounts of irradiation-induced helium. To provide scoping data and to study the effects of irradiation on fatigue behavior, 20%-cold-worked type 316 stainless steel from the MFE reference heat was studied

  19. Effective Duration of Gas Nitriding Process on AISI 316L for the Formation of a Desired Thickness of Surface Nitrided Layer

    Directory of Open Access Journals (Sweden)

    Mahmoud Hassan R. S.

    2014-07-01

    Full Text Available High temperature gas nitriding performed on AISI 316L at the temperature of 1200°C. The microstructure of treated AISI 316L samples were observed to identify the formation of the microstructure of nitrided surface layer. The grain size of austenite tends to be enlarged when the nitriding time increases, but the austenite single phase structure is maintained even after the long-time solution nitriding. Using microhardness testing, the hardness values drop to the center of the samples. The increase in surface hardness is due to the high nitrogen concentration at or near the surface. At 245HV, the graph of the effective duration of nitriding process was plotted to achieve the maximum depth of nitrogen diffuse under the surface. Using Sigma Plot software best fit lines of the experimental result found and plotted to find out effective duration of nitriding equation as Y=1.9491(1-0.7947x, where Y is the thickness of nitrided layer below the surface and X is duration of nitriding process. Based on this equation, the duration of gas nitriding process can be estimated to produce desired thickness of nitrided layer.

  20. Martensitic transformation in 304L and 316L types stainless steels cathodically hydrogen charged

    International Nuclear Information System (INIS)

    Minkovitz, E.; Eliezer, D.

    1984-01-01

    This paper reports a TEM study on the role of phase transitions at the crack tip in 304L and 316L types stainless steels cathodically hydrogen charged in the absence of any eternally applied forces. The possible role of α prime and epsilon martensite phases in the fracture mechanism is discussed

  1. Void swelling behaviour of austenitic stainless steel during electron irradiation

    International Nuclear Information System (INIS)

    Sheng Zhongqi; Xiao Hong; Peng Feng; Ti Zhongxin

    1994-04-01

    The irradiation swelling behaviour of 00Cr17Ni14Mo2 austenitic stainless steel (AISI 316L) was investigated by means of high voltage electron microscope. Results showed that in solution annealed condition almost no swelling incubation period existed, and the swelling shifted from the transition period to the steady-state one when the displacement damage was around 40 dpa. In cold rolled condition there was evidently incubation period, and when the displacement damage was up to 84 dpa the swelling still remained in the transition period. The average size and density of voids in both conditions were measured, and the factors, which influenced the void swelling, were discussed. (3 figs.)

  2. Precipitation sensitivity to alloy composition in Fe-Cr-Mn austenitic steels developed for reduced activation for fusion application

    International Nuclear Information System (INIS)

    Maziasz, P.J.; Klueh, R.L.

    1988-01-01

    Special austenitic steels are being designed in which alloying elements like Mo, Nb, and Ni are replaced with Mn, W, V, Ti, and/or Ta to reduce the long-term radioactivity induced by fusion reactor irradiation. However, the new steels still need to have properties otherwise similar to commercial steels like type 316. Precipitation strongly affects strength and radiation-resistance in austenitic steels during irradiation at 400--600/degree/C, and precipitation is also usually quite sensitive to alloy composition. The initial stage of development was to define a base Fe-Cr-Mn-C composition that formed stable austenite after annealing and cold-working, and resisted recovery or excessive formation of coarse carbide and intermetallic phases during elevated temperature annealing. These studies produced a Fe-12Cr-20Mn-0.25C base alloy. The next stage was to add the minor alloying elements W, Ti, V, P, and B for more strength and radiation-resistance. One of the goals was to produce fine MC precipitation behavior similar to the Ti-modified Fe-Cr-Ni prime candidate alloy (PCA). Additions of Ti+V+P+B produced fine MC precipitation along network dislocations and recovery/recrystallization resistance in 20% cold worked material aged at 800/degree/C for 166h, whereas W, Ti, W+Ti, or Ti+P+B additions did not. Addition of W+Ti+V+P+B also produced fine MC, but caused some σ phase formation and more recrystallization as well. 29 refs., 14 figs., 9 tabs

  3. Polymorphism of Bi1-xLnxO1.5 phases (04Ln2O9 (x=0.33; Ln=La, Pr, Nd)

    International Nuclear Information System (INIS)

    Drache, Michel; Huve, Marielle; Roussel, Pascal; Conflant, Pierre

    2003-01-01

    The Bi 1-x Ln x O 1.5 solid solutions (Ln=La, Pr, Nd), of the β 2 /β 1 /ε (Bi-Sr-O) structural type, have been investigated in their Ln-rich domains. For Ln=La, Pr, and Nd, the upper limits are 0.35, 0.35 and 0.33, respectively. The Bi 4 Ln 2 O 9 ε phase (x=0.33) appears to be the single definite compound. For Bi 4 La 2 O 9 , Bi 4 Pr 2 O 9 and Bi 4 Nd 2 O 9 , the ε-type cells are respectively: a=9.484(4) A, b=3.982(2) A, c=7.030(3) A, β=104.75(3) deg.; a=9.470(5) A, b=3.945(2) A, c=6.968(4) A, β=104.73(3) deg. and a=9.439(3) A, b=3.944(2) A, c=6.923(2) A, β=105.03(3) deg. . Upon heating, each monoclinic (ε) compound transforms successively into rhombohedral phases (β 2 /β 1 ) and finally into a cubic fluorite-type phase. For La- and Pr-based compounds, all transitions are reversible; for Nd, depending on the thermal treatment, the reversibility of ε→β 2 can be incomplete. These transformations are characterized using X-ray thermodiffractometry, differential thermal analysis, dilatometry and impedance spectroscopy versus temperature. Examination of Bi 4 (Ln, Ln') 2 O 9 samples allows to correlate the evolution of the thermal behavior and of the unit cell parameters, to the lanthanide size. A partial plot of the (Bi 2 O 3 ) 1-x -(La 2 O 3 ) x phase diagram (0≤x≤0.40) is proposed

  4. Inertia and friction welding of aluminum alloy 1100 to type 316 stainless steel

    International Nuclear Information System (INIS)

    Perkins, M.A.

    1979-01-01

    The inertia and friction-welding processes were evaluated for joining aluminum alloy 1100-H14 and Type 316 vacuum-induction melted, vacuum-arc remelted (VIM VAR) stainless steel. While both processes consistently produced joints in which the strength exceeded the strength of the aluminum base metal, 100 percent bonding was not reliably achieved with inertia welding. The deficiency points out the need for development of nondestructive testing techniques for this type of joint. Additionally, solid-state volume diffusion did not appear to be a satisfactory explanation for the inertia and friction-welding bonding mechanism

  5. Effect of copper addition on mechanical properties, corrosion resistance and antibacterial property of 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Tong [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Shahzad, M. Babar [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Xu, Dake [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Sun, Ziqing; Zhao, Jinlong [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Yang, Chunguang, E-mail: cgyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Qi, Min [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2017-02-01

    The effects of addition of different Cu content (0, 2.5 and 3.5 wt%) on mechanical properties, corrosion resistance and antibacterial performance of 316L austenitic stainless steel (SS) after solution and aging treatment were investigated by mechanical test, transmission electron microscope (TEM), X-ray diffraction (XRD), electrochemical corrosion, X-ray photoelectron spectroscopy (XPS) and antibacterial test. The results showed that the Cu addition and heat treatment had no obvious influence on the microstructure with complete austenite features. The yield strength (YS) after solution treatment was almost similar, whereas the aging treatment obviously increased the YS due to formation of tiny Cu-rich precipitates. The pitting and protective potential of the solution treated Cu-bearing 316L SS in 0.9 wt% NaCl solution increased with increasing Cu content, while gradually declined after aging, owing to the high density Cu-rich precipitation. The antibacterial test proved that higher Cu content and aging were two compulsory processes to exert good antibacterial performance. The XPS results further indicated that aging enhanced the Cu enrichment in passive film, which could effectively stimulate the Cu ions release from the surface of passive film. - Highlights: • Higher Cu addition and aging guaranteed an excellent antibacterial property. • The Cu addition and heat treatment had no obvious influence on the microstructure. • The lower corrosion resistance for aging was attributed to Cu-rich precipitates.

  6. Simulation of the Growth of Austenite from As-Quenched Martensite in Medium Mn Steels

    Science.gov (United States)

    Huyan, Fei; Yan, Jia-Yi; Höglund, Lars; Ågren, John; Borgenstam, Annika

    2018-04-01

    As part of an ongoing development of third-generation advanced high-strength steels with acceptable cost, austenite reversion treatment of medium Mn steels becomes attractive because it can give rise to a microstructure of fine mixture of ferrite and austenite, leading to both high strength and large elongation. The growth of austenite during intercritical annealing is crucial for the final properties, primarily because it determines the fraction, composition, and phase stability of austenite. In the present work, the growth of austenite from as-quenched lath martensite in medium Mn steels has been simulated using the DICTRA software package. Cementite is added into the simulations based on experimental observations. Two types of systems (cells) are used, representing, respectively, (1) austenite and cementite forming apart from each other, and (2) austenite forming on the cementite/martensite interface. An interfacial dissipation energy has also been added to take into account a finite interface mobility. The simulations using the first type of setup with an addition of interfacial dissipation energy are able to reproduce the observed austenite growth in medium Mn steels reasonably well.

  7. Residual stress studies of austenitic and ferritic steels

    International Nuclear Information System (INIS)

    Chrenko, R.M.

    1978-01-01

    Residual studies have been made on austenitic and ferritic steels of the types used as structural materials. The residual stress results presented here will include residual stress measurements in the heat-affected zone on butt welded Type 304 stainless steel pipes, and the stresses induced in Type 304 austenitic stainless steel and Type A508 ferritic steel by several surface preparations. Such surface preparation procedures as machining and grinding can induce large directionality effects in the residual stresses determined by X-ray techniques and some typical data will be presented. A brief description is given of the mobile X-ray residual stress apparatus used to obtain most of the data in these studies. (author)

  8. Topological characterization of static strain aging of type AISI 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Monteiro, S.N.; Miranda, P.E.V. de

    1981-01-01

    Static strain aging of type AISI 304 austenitic stainless steel was studied from room temperature up to 623K by conducting tests in which the load was held approximately constant. The aging times varied between 10s and 100h, using a plastic pre-deformation of 9%. The static strain aging of 304 steel furnished an activation energy of 23.800 cal/mol. This implies that vacancies play an important role on the aging process. The curve of the variation of the discontinuous yielding with aging time presented different stages, to which specific mathematical expressions were developed. These facts permited the conclusion that Snock type mechanisms are responsible for the aging in such conditions. (Author) [pt

  9. Comparison of the corrosion resistance of DIN W. Nr. 1.4970 (15%Cr-15%Ni-1.2%Mo-Ti and ASTM F-138 (17%Cr-13%Ni-2.5%Mo austenitic stainless steels for biomedical applications

    Directory of Open Access Journals (Sweden)

    Maysa Terada

    2006-09-01

    Full Text Available The resistance to localised corrosion of the full austenitic 15%Cr-15%Ni-1.2%Mo titanium stabilized stainless steel (DIN W. Nr. 1.4970 was investigated by electrochemical methods including electrochemical impedance spectroscopy (EIS, potentiodynamic polarization and potentiostatic polarization measurements in a phosphate-buffered solution (PBS. The low carbon and non-stabilized austenitic stainless steel, AISI 316L (ASTM F-138, widely used for surgical implants, was also tested for comparison. The tests were conducted at room temperature after a stable potential had been reached. After the electrochemical measurements, the surfaces of the specimens were observed using SEM to evaluate the presence of pits. Potentiodynamic polarization results showed that both steels are prone to localized corrosion. Larger pits were found on the surface of AISI 316L specimens after the electrochemical tests. EIS response has indicated the duplex structure of the passive oxides. The results showed that the electrochemical behaviour of the DIN W. Nr. 1.4970 is better than of AISI 316L steel. Therefore, their application as an implant material may be considered.

  10. An Investigation of the Microstructure and Fatigue Behavior of Additively Manufactured AISI 316L Stainless Steel with Regard to the Influence of Heat Treatment

    Directory of Open Access Journals (Sweden)

    Bastian Blinn

    2018-03-01

    Full Text Available To exploit the whole potential of Additive Manufacturing, it is essential to investigate the complex relationships between Additive Manufacturing processes, the resulting microstructure, and mechanical properties of the materials and components. In the present work, Selective Laser Melted (SLM (process category: powder bed fusion, Laser Deposition Welded (LDW (process category: direct energy deposition and, for comparison, Continuous Casted and then hot and cold drawn (CC austenitic stainless steel AISI 316L blanks were investigated with regard to their microstructure and mechanical properties. To exclude the influence of surface topography and focus the investigation on the volume microstructure, the blanks were turned into final geometry of specimens. The additively manufactured (AM- blanks were manufactured in both the horizontal and vertical building directions. In the horizontally built specimens, the layer planes are perpendicular and in vertical building direction, they are parallel to the load axis of the specimens. The materials from different manufacturing processes exhibit different chemical composition and hence, austenite stability. Additionally, all types of blanks were heat treated (2 h, 1070 °C, H2O and the influence of the heat treatment on the properties of differently manufactured materials were investigated. From the cyclic deformation curves obtained in the load increase tests, the anisotropic fatigue behavior of the AM-specimens could be detected with only one specimen in each building direction for the different Additive Manufacturing processes, which could be confirmed by constant amplitude tests. The results showed higher fatigue strength for horizontally built specimens compared to the vertical building direction. Furthermore, the constant amplitude tests show that the austenite stability influences the fatigue behavior of differently manufactured 316L. Using load increase tests as an efficient rating method of the

  11. Impact Strength of Austenitic and Ferritic-Austenitic Cr-Ni Stainless Cast Steel in -40 and +20°C Temperature

    Directory of Open Access Journals (Sweden)

    Kalandyk B.

    2014-10-01

    Full Text Available Studies described in this paper relate to common grades of cast corrosion resistant Cr-Ni steel with different matrix. The test materials were subjected to heat treatment, which consisted in the solution annealing at 1060°C followed by cooling in water. The conducted investigations, besides the microstructural characteristics of selected cast steel grades, included the evaluation of hardness, toughness (at a temperature of -40 and +20oC and type of fracture obtained after breaking the specimens on a Charpy impact testing machine. Based on the results of the measured volume fraction of ferrite, it has been found that the content of this phase in cast austenitic steel is 1.9%, while in the two-phase ferritic-austenitic grades it ranges from 50 to 58%. It has been demonstrated that within the scope of conducted studies, the cast steel of an austenitic structure is characterised by higher impact strength than the two-phase ferritic-austenitic (F-A grade. The changing appearance of the fractures of the specimens reflected the impact strength values obtained in the tested materials. Fractures of the cast austenitic Cr-Ni steel obtained in these studies were of a ductile character, while fractures of the cast ferritic-austenitic grade were mostly of a mixed character with the predominance of brittle phase and well visible cleavage planes.

  12. The effect of CO2 laser beam welded AISI 316L austenitic stainless steel on the viability of fibroblast cells, in vitro.

    Science.gov (United States)

    Köse, Ceyhun; Kaçar, Ramazan; Zorba, Aslı Pınar; Bağırova, Melahat; Allahverdiyev, Adil M

    2016-03-01

    It has been determined by the literature research that there is no clinical study on the in vivo and in vitro interaction of the cells with the laser beam welded joints of AISI 316L biomaterial. It is used as a prosthesis and implant material and that has adequate mechanical properties and corrosion resistance characteristics. Therefore, the interaction of the CO2 laser beam welded samples and samples of the base metal of AISI 316L austenitic stainless steel with L929 fibroblast cells as an element of connective tissue under in vitro conditions has been studied. To study the effect of the base metal and the laser welded test specimens on the viability of the fibroblast cells that act as an element of connective tissues in the body, they were kept in DMEMF-12 medium for 7, 14, 28 days and 18 months. The viability study was experimentally studied using the MTT method for 7, 14, 28 days. In addition, the direct interaction of the fibroblast cells seeded on 6 different plates with the samples was examined with an inverted microscope. The MTT cell viability experiment was repeated on the cells that were in contact with the samples. The statistical relationship was analyzed using a Tukey test for the variance with the GraphPad statistics software. The data regarding metallic ion release were identified with the ICP-MS method after the laser welded and main material samples were kept in cell culture medium for 18 months. The cell viability of the laser welded sample has been detected to be higher than that of the base metal and the control based on 7th day data. However, the laser welded sample's viability of the fibroblast cells has diminished by time during the test period of 14 and 28 days and base metal shows better viability when compared to the laser welded samples. On the other hand, the base metal and the laser welded sample show better cell viability effect when compared to the control group. According to the ICP-MS results of the main material and laser welded

  13. Effect of microstructure on radiation induced segregation and depletion in ion irradiated SS316 steel

    International Nuclear Information System (INIS)

    Jin, Hyung Ha; Kwon, Sang Chul; Kwon, Jun Hyun

    2011-01-01

    Irradiation assisted stress corrosion cracking (IASCC), void swelling and irradiation induced hardening are caused by change of characteristics of material by neutron irradiation, stress state of material and environmental situation. It has been known that chemical compositions varies at grain boundary (GB) significantly with fluence level and the depletion of Cr element at GB has been considered as one of important factors causing material degradation, especially, IASCC in austenitic stainless steel. However, experimental results of IASCC under PWR condition were directly not connected with Cr depletion phenomenon by neutron irradiation. Because the mechanism of IASCC under PWR has not yet been clearly understood in spite of many energetic researches, fundamental researches about radiation induced segregation and depletion in irradiated austenitic stainless steels have been attracted again. In this work, an effect of residual microstructure on radiation induced segregation and depletion of alloy elements at GB was investigated in ion irradiated SS316 steel using transmission electron microscope (TEM) with energy dispersive spectrometer (EDS)

  14. Joining silicon carbide to austenitic stainless steel through diffusion welding; Stellingen behorende bij het proefschrift

    Energy Technology Data Exchange (ETDEWEB)

    Krugers, Jan-Paul

    1993-01-19

    In this thesis, the results are presented of a study dealing with joining silicon carbide to austenitic stainless steel AIS316 by means of diffusion welding. Welding experiments were carried out without and with the use of a metallic intermediate, like copper, nickel and copper-nickel alloys at various conditions of process temperature, process time, mechanical pressure and interlayer thickness. Most experiments were carried out in high vacuum. For reasons of comparison, however, some experiments were also carried out in a gas shielded environment of 95 vol.% Ar and 5 vol.% H2.

  15. Study of interactions between liquid lead-lithium alloy and austenitic and martensitic steels

    International Nuclear Information System (INIS)

    Simon, N.

    1992-06-01

    In the framework of Fusion Technology, the behaviour of structural materials in presence of liquid alloy Pb17Li is investigated. First, the diffusion coefficients of Fe and Cr have been determined at 500 deg C. Then mass transfer experiments in Pb17Li have been conducted in an anisothermal container with pure metals (Fe, Cr, Ni), Fe-Cr steels and austenitic steels. These experiments showed a very high loss of Nickel, which is an accordance with its high solubility, and Cr showed mass-losses one order of magnitude higher than for pure iron, as the diffusion coefficient of Cr is three orders of magnitude higher than for pure Fe. The corrosion rate of binary Fe-Cr and pure Fe are identical. In austenitic steels, the gamma lattice allows a higher mass-transfer of Cr than the alpha lattice, the presence of Cr slows downs the dissolution of Ni, and the porosity of corrosion layers results of losses of Cr and Ni. Finally, a review of our results and those of other laboratories allowed an identification of the corrosion limiting step. In the case of 1.4914 martensitic steel it is the diffusion of Fe in Pb17Li, while in the case of 316L austenitic steel it is the diffusion of Cr in Pb17Li

  16. The precipitation response of 20%-cold-worked type 316 stainless steel to simulated fusion irradiation

    International Nuclear Information System (INIS)

    Maziasz, P.J.

    1979-01-01

    The precipitation response of 20%-cold-worked type 316 stainless steel has been examined after irradiation in HFIR at 380-600 0 C, after irradiation in EBR-II at 500 0 C, and after thermal aging at 600 to 750 0 C. Eta phase forms during exposure to all environments. It constitutes a major portion of the precipitation response, and is rich in Ni, Si and Mo relative to M 23 C 6 after thermal aging. It is not normally reported in 20%-cold-worked type 316 stainless steel. The eta, M 23 C 6 , Laves, sigma, and chi precipitate phases appear at similar temperatures after HFIR, EBR-II, or thermal exposure. There are, however, some differences in relative amounts, size, and distribution of phases among the various environments. Eta phase is the only carbide-type phase observed after irradiation in HFIR from 380-550 0 C. The large cavities associated with it at 380 0 C contribute significantly to swelling. Re-solution of fine M 23 C 6 , eta, and Laves particles and re-precipitation of massive particles of sigma, M 23 C 6 and chi are observed after recrystallization in HFIR. (orig.)

  17. Rapid heating tensile tests of high-energy-rate-forged 316L stainless steel containing internal helium from radioactive decay of absorbed tritium

    International Nuclear Information System (INIS)

    Mosley, W.C.

    1990-01-01

    316L stainless steel is a candidate material for construction of equipment that will be exposed to tritium. This austenitic stainless steel is frequently used in the high-energy-rate-forged (HERF) metallurgical condition to take advantage of increased strength produced by cold work introduced by this process. Proper design of tritium-handling equipment will require an understanding of how helium-3, the product of radioactive decay of tritium, affects mechanical properties. This report describes results of elevated-temperature tensile testing of HERF 316L stainless steel specimens containing helium concentrations of 171 (calculated) atomic parts per million (appm). Results are compared with those reported previously for specimens containing 0 and 94 (measured) appm helium

  18. Effect of lanthanide contraction on the mixed polyamine systems Ln/Sb/Se/(en+dien) and Ln/Sb/Se/(en+trien): Syntheses and characterizations of lanthanide complexes with a tetraelenidoantimonate ligand

    International Nuclear Information System (INIS)

    Zhao Jing; Liang Jingjing; Pan Yingli; Zhang Yong; Jia Dingxian

    2011-01-01

    Mixed polyamine systems Ln/Sb/Se/(en+dien) and Ln/Sb/Se/(en+trien) (Ln=lanthanide, en=ethylenediamine, dien=diethylenetriamine, trien=triethylenetetramine) were investigated under solvothermal conditions, and novel mixed-coordinated lanthanide(III) complexes [Ln(en) 2 (dien)(η 2 -SbSe 4 )] (Ln=Ce(1a), Nd(1b)), [Ln(en) 2 (dien)(SbSe 4 )] (Ln=Sm(2a), Gd(2b), Dy(2c)), [Ln(en)(trien)(μ-η 1 ,η 2 -SbSe 4 )] ∞ (Ln=Ce(3a), Nd(3b)) and [Sm(en)(trien)(η 2 -SbSe 4 )] (4a) were prepared. Two structural types of lanthanide selenidoantimonates were obtained across the lanthanide series in both en+dien and en+trien systems. The tetrahedral anion [SbSe 4 ] 3- acts as a monodentate ligand mono-SbSe 4 , a bidentate chelating ligand η 2 -SbSe 4 or a tridentate bridging ligand μ-η 1 ,η 2 -SbSe 4 to the lanthanide(III) center depending on the Ln 3+ ions and the mixed ethylene polyamines, indicating the effect of lanthanide contraction on the structures of the lanthanide(III) selenidoantimonates. The lanthanide selenidoantimonates exhibit semiconducting properties with E g between 2.08 and 2.51 eV. - Graphical Abstract: Two structural types of lanthanide(III) selenidoantimonates are formed in both en-dien and en-trien mixed polyamines across lanthanide series, indicating the lanthanide contraction effect on the structures of the lanthanide(III) selenidoantimonates. Highlights: → Two structural types of lanthanide selenidoantimonates are prepared across the lanthanide series in both Ln/Sb/Se/(en+dien) and Ln/Sb/Se/(en+trien) systems. → The [SbSe 4 ] 3- anion acts as a mono-SbSe 4 , a η 2 -SbSe 4 or a μ-η 1 ,η 2 -SbSe 4 ligand to the Ln 3+ ions. → The soft base ligand [SbSe 4 ] 3- can be controlled to coordinate to the Ln 3+ ions with en+dien and en+trien as co-ligands.

  19. The effect of CO{sub 2} laser beam welded AISI 316L austenitic stainless steel on the viability of fibroblast cells, in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Köse, Ceyhun, E-mail: ceyhun.kose@gop.edu.tr [Faculty of Natural Sciences and Engineering, Department of Mechanical Engineering, Gaziosmanpaşa University, Tokat (Turkey); Kaçar, Ramazan, E-mail: rkacar@karabuk.edu.tr [Faculty of Technology Department of Manufacturing Engineering, Karabuk University, Karabuk 78050 (Turkey); Zorba, Aslı Pınar, E-mail: aslipinarzorba@gmail.com [Graduate School of Natural and Applied Sciences, Department of Bioengineering Cell Culture and Tissue Engineering, Yıldız Technical University, Istanbul (Turkey); Bağırova, Melahat, E-mail: mbagir@yildiz.edu.tr [Department of Bioengineering Cell Culture and Tissue Engineering, Yıldız Technical University, Istanbul (Turkey); Allahverdiyev, Adil M., E-mail: adil@yildiz.edu.tr [Department of Bioengineering Cell Culture and Tissue Engineering, Yıldız Technical University, Istanbul (Turkey)

    2016-03-01

    It has been determined by the literature research that there is no clinical study on the in vivo and in vitro interaction of the cells with the laser beam welded joints of AISI 316L biomaterial. It is used as a prosthesis and implant material and that has adequate mechanical properties and corrosion resistance characteristics. Therefore, the interaction of the CO{sub 2} laser beam welded samples and samples of the base metal of AISI 316L austenitic stainless steel with L929 fibroblast cells as an element of connective tissue under in vitro conditions has been studied. To study the effect of the base metal and the laser welded test specimens on the viability of the fibroblast cells that act as an element of connective tissues in the body, they were kept in DMEMF-12 medium for 7, 14, 28 days and 18 months. The viability study was experimentally studied using the MTT method for 7, 14, 28 days. In addition, the direct interaction of the fibroblast cells seeded on 6 different plates with the samples was examined with an inverted microscope. The MTT cell viability experiment was repeated on the cells that were in contact with the samples. The statistical relationship was analyzed using a Tukey test for the variance with the GraphPad statistics software. The data regarding metallic ion release were identified with the ICP-MS method after the laser welded and main material samples were kept in cell culture medium for 18 months. The cell viability of the laser welded sample has been detected to be higher than that of the base metal and the control based on 7th day data. However, the laser welded sample's viability of the fibroblast cells has diminished by time during the test period of 14 and 28 days and base metal shows better viability when compared to the laser welded samples. On the other hand, the base metal and the laser welded sample show better cell viability effect when compared to the control group. According to the ICP-MS results of the main material and

  20. Effects of fluoride and other halogen ions on the external stress corrosion cracking of Type 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Whorlow, K.M.; Hutto, F.B. Jr.

    1997-07-01

    The drip procedure from the Standard Test Method for Evaluating the Influence of Thermal Insulation on External Stress Corrosion Cracking Tendency of Austenitic Stainless Steel (ASTM C 692-95a) was used to research the effect of halogens and inhibitors on the External Stress Corrosion Cracking (ESCC) of Type 304 stainless steel as it applies to Nuclear Regulatory Commission Regulatory Guide 1.36, Nonmetallic Thermal Insulation for Austenitic Stainless Steel. The solutions used in this research were prepared using pure chemical reagents to simulate the halogens and inhibitors found in insulation extraction solutions. The results indicated that sodium silicate compounds that were higher in sodium were more effective for preventing chloride-induced ESCC in Type 304 austenitic stainless steel. Potassium silicate (all-silicate inhibitor) was not as effective as sodium silicate. Limited testing with sodium hydroxide (all-sodium inhibitor) indicated that it may be effective as an inhibitor. Fluoride, bromide, and iodide caused minimal ESCC which could be effectively inhibited by sodium silicate. The addition of fluoride to the chloride/sodium silicate systems at the threshold of ESCC appeared to have no synergistic effect on ESCC. The mass ratio of sodium + silicate (mg/kg) to chloride (mg/kg) at the lower end of the NRC RG 1.36 Acceptability Curve was not sufficient to prevent ESCC using the methods of this research

  1. Formation of ultra-fine grained SUS316L steels by ball-milling and their mechanical properties after neutron irradiation

    International Nuclear Information System (INIS)

    Zheng, Y.J.; Yamasaki, T.; Fukami, T.; Terasawa, M.; Mitamura, T.

    2003-01-01

    In order to overcome the irradiation embrittlement in austenitic stainless steels, ultra-fine grained SUS316L steels with very fine TiC particles have been developed. The SUS316L-TiC nanocomposite powders having 1.0 to 2.0 mass% TiC were prepared by ball-milling SUS316L-TiC powder mixtures for 125 h in an argon gas atmosphere. The milled powders were consolidated by hot isostatic pressing (HIP) under a pressure of 200 MPa at temperatures between 700 and 1000 C, and the bulk materials with grain sizes between 100 and 400 nm have been produced. The possibility of using fine-grained TiC particles to pin grain boundaries and thereby maintain the ultra-fine grained structures has been discussed. In order to clarify the effects of the neutron irradiation on mechanical properties of the ultra-fine grained SUS316L steels, Vickers microhardness measurements were performed before and after the irradiation of 1.14 x 10 23 n/m 2 and 1.14 x 10 24 n/m 2 . The hardness increased with increasing the dose of the irradiation. However, these increasing rates of the ultra-fine grained steels were much smaller than those of the coarse-grained SUS316L steels having grain sizes between 13 and 50 μm. (orig.)

  2. Study of stress-reduction effects on creep behaviour of AISI-316 stainless steel

    International Nuclear Information System (INIS)

    Alegria, R.V.

    1984-01-01

    Creep tests were performed in 316 austenitic stainless steel at 1006 0 K in both solution treated and in 15% pre-deformed samples. The dislocation substructure in the steady state stage was analysed for the applied stresses 109,30 MPa and 208,23 MPa. The influence of the prestraining conditions was verified. The strutural modifications occurring after a stress reduction were analysed in stress reduction tests. The results are discussed in terms of current ideas and its shown that the increase in creep resistance, introduced by a 15% pre-strain, is due to the presence of a subgrain structure and carbides which act as obstacles to dislocation motion. (E.G.) [pt

  3. Elaboration of austenitic stainless steel samples with bimodal grain size distributions and investigation of their mechanical behavior

    Science.gov (United States)

    Flipon, B.; de la Cruz, L. Garcia; Hug, E.; Keller, C.; Barbe, F.

    2017-10-01

    Samples of 316L austenitic stainless steel with bimodal grain size distributions are elaborated using two distinct routes. The first one is based on powder metallurgy using spark plasma sintering of two powders with different particle sizes. The second route applies the reverse-annealing method: it consists in inducing martensitic phase transformation by plastic strain and further annealing in order to obtain two austenitic grain populations with different sizes. Microstructural analy ses reveal that both methods are suitable to generate significative grain size contrast and to control this contrast according to the elaboration conditions. Mechanical properties under tension are then characterized for different grain size distributions. Crystal plasticity finite element modelling is further applied in a configuration of bimodal distribution to analyse the role played by coarse grains within a matrix of fine grains, considering not only their volume fraction but also their spatial arrangement.

  4. Influence of a magnetic field on the corrosion of austenitic and martensitic steels by semi-stagnant Pb17Li

    International Nuclear Information System (INIS)

    Terlain, A.; Dufrenoy, T.

    1994-01-01

    The influence of a magnetic field on the compatibility of 316L austenitic and 1.4914 martensitic steels with Pb17Li has been studied in conditions simulating the special features of the water-cooled Pb17Li blanket (low Pb17Li velocity, significant radial thermal gradient and short distances between hot and cold zones). In the 420-475 C temperature range, the results show an increase of the corrosion rate in the presence of a magnetic field. This increase is about 50% for 316L steel and 30% for 1.4914 martensitic steel. Moreover the magnetic field induces a loss of symmetry in the deposition process: the amount of recovered deposit is greater in the direction parallel to the magnetic field than in the perpendicular one. ((orig.))

  5. Effect of Ge, Sn, Sb on the resistance to swelling of austenitic alloys irradiated by 1 MeV electrons

    International Nuclear Information System (INIS)

    Dubuisson, P.; Levy, V.; Seran, J.L.

    1987-01-01

    The effect of new solute elements namely Ge, Sn and Sb on the void swelling resistance of austenitic alloys irradiated with 1 MeV electrons has been studied. Except for tin in Ti-modified 316, all solute improve the swelling resistance of base alloys. Tin addition shifts the swelling peak of 316 S.S. to high temperature. In fact, these solute additions have the same qualitative effect on the swelling components: they enhance the void density and decrease strongly void growth rate. This effect is opposite to the one of usual swelling inhibitors such as Si or Ti which decrease the void density. We have explained this influence on the void nucleation and void growth by introducing a strong interaction between vacancies and solute atoms in a void growth model

  6. Lattice dynamics of cubic Cs2NaLnX6 and CsNaLn1-xLn'xX6 elpasolites

    International Nuclear Information System (INIS)

    Acevedo, R.; Poblete, V.; Alzamora, R.; Venegas, R.; Navarro, G.; Henriquez, C.

    1999-01-01

    Crystal lattice dynamics of stoichiometric Cs 2 NaLnX 6 and nonstoichiometric CsNaLn 1-x Ln' x X 6 , 0.01 ≤ x ≤ 0.10, Ln and Ln' are trivalent positive lanthanide ions and X is chlorine or bromine, were studied.. Phonon dispersion relations were computed for similar compound, Cs 2 UBr 6 , and vibronic absorption spectra with reduced number of required input parameters are considered on the basis of proposed model. (author)

  7. Parametrical limits of SCC-susceptibility of austenitic and austenitic-ferritic Cr-Ni steels

    International Nuclear Information System (INIS)

    Starosvetskij, D.I.; Baru, R.L.; Bondarenko, A.I.; Bogoyavlenskij, V.L.; Timonin, V.A.

    1990-01-01

    Comparative investigations into corrosion cracking (CC) of austenitic (12Kh18N10T) and austenitic-ferritic (08Kh22N6T) chromium-nickel steels are performed for various chloride media in a wide range of chloride concentrations and temperatures. It is shown that the ratio between steels in terms of their CC-susceptibility is not definite and can undergo a reversal depending on parameters of medium, level and conditions of loading. Differences in mechanisms of corrosion cracking of austenitic and austenitic-ferritic steels are established

  8. Fracture under mixed-mode I+II of the austenitic stainless steel 316L

    International Nuclear Information System (INIS)

    Jeon, K.L.

    1993-08-01

    The stability of cracks under mixed-mode l+ll in an aged stainless steel type 316L is investigated using four-points bent specimens. The formulas of the bending moment, the shearing force, the mode mixity, the limit load and the J estimations are established and compared with the numerical results from elastoplastic finite element calculations. From the experimental and numerical tests results, the application and the validation of the R6 method and various local criteria (Beremin, McClintock, Guennouni-Francois and Lemaitre models) are carried out. For the R6 method, it is noted that the FAD (Failure Assessment Diagram) is nearly independent of the loading mode and the specimen geometry. The FAD of the option 1 is conservative for all the test results, but the option 3 seems to be non-conservative, especially in the cases near to the mode I. This apparent non-conservatism is probably due to the different definition of the crack initiation of the CT specimens and the 4-point bend specimens. According to the applied local criteria, the values of the damage variables at crack initiation are sufficiently stable, particularly for the Beremin model and the Guennouni-Francois model but not in the cases nearer to the mode I. The use of these local criteria is questionable in the case of axisymmetric notched specimens because of the influence of the fracture of transformed ferrite. A fractographic investigation is also discussed for different fracture modes. (author). 85 refs., 99 figs., 14 tabs

  9. Repair welding of cracked steam turbine blades using austenitic and martensitic stainless-steel consumables

    International Nuclear Information System (INIS)

    Bhaduri, A.K.; Gill, T.P.S.; Albert, S.K.; Shanmugam, K.; Iyer, D.R.

    2001-01-01

    The procedure for repair welding of cracked steam turbine blades made of martensitic stainless steels has been developed using the gas tungsten arc welding process. Weld repair procedures were developed using both ER 316L austenitic and ER 410 martensitic stainless-steel filler wire. The overall development of the repair welding procedure included selection of welding consumables (for austenitic filler metal), optimisation of post-weld heat treatment parameters, selection of suitable method for local pre-heating and post-weld heat treatment (PWHT) of the blades, determination of mechanical properties of weldments in as-welded and PWHT conditions, and microsturctural examination. After various trials using different procedures, the procedure of local PWHT (and preheating when using martensitic stainless-steel filler wire) using electrical resistance heating on the top surface of the weldment and monitoring the temperature by placing a thermocouple at the bottom of the weld was found to give the most satisfactory results. These procedures have been developed and/or applied for repair welding of cracked blades in steam turbines

  10. Welding metallurgy of austenitic stainless steels

    International Nuclear Information System (INIS)

    Ibrahim, A.N.

    1983-01-01

    Austenitic stainless steels welds are commonly found in nuclear reactor systems. The macrostructure and the transformation of delta -phase into γ - phase which occur during rapid solidification of such welds are discussed. Finally, several types of defects which are derived from the welding operation, particularly defects of crack type, are also discussed in brief. (author)

  11. Cyclic response and early damage evolution in multiaxial cyclic loading of 316L austenitic steel

    Czech Academy of Sciences Publication Activity Database

    Mazánová, Veronika; Škorík, Viktor; Kruml, Tomáš; Polák, Jaroslav

    2017-01-01

    Roč. 100, JUL (2017), s. 466-476 ISSN 0142-1123 R&D Projects: GA MŠk LM2015069; GA MŠk(CZ) LQ1601; GA ČR(CZ) GA13-23652S; GA ČR GA15-08826S Institutional support: RVO:68081723 Keywords : 316L steel * Crack initiation * Cyclic plasticity * Damage mechanism * Multiaxial straining Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis Impact factor: 2.899, year: 2016

  12. TIG AISI-316 welds using an inert gas welding chamber and different filler metals: Changes in mechanical properties and microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Pascual, M.; Salas, F.; Carcel, F.J.; Perales, M.; Sanchez, A.

    2010-07-01

    This report analyses the influence of the use of an inert gas welding chamber with a totally inert atmosphere on the microstructure and mechanical properties of austenitic AISI 316L stainless steel TIG welds, using AISI ER316L, AISI 308L and Inconel 625 as filler metals. When compared with the typical TIG process, the use of the inert gas chamber induced changes in the microstructure, mainly an increase in the presence of vermicular ferrite and ferrite stringers, what resulted in higher yield strengths and lower values of hardness. Its effect on other characteristics of the joins, such as tensile strength, depended on the filler metal. The best combination of mechanical characteristics was obtained when welding in the inert gas chamber using Inconel 625 as filler metal. (Author). 12 refs.

  13. Application of Moessbauer effect in the study of austenite retained in low carbon steel

    International Nuclear Information System (INIS)

    Azevedo, A.L.T. de; Silva, E.G. da

    1979-01-01

    Moessbauer effect measurements of two samples of low carbon alloy having micro-structure of granular bainite type and martensite type have been done. The concentration of the retained austenite in both samples was determined by Moessbauer effect and x-rays there, being agreement for the higher austenite content sample. Concentration of carbon in the MA (Martensite - Austenite) constituents of bainite is also ditermined, the results being in agreement with metallographic considerations. Carbon enrichments are shown as responsible by the stabilization of the austenite in the granular bainite. Spectra of both samples present three magnetic configurations for α-iron with medium magnetic fields iqual to 335, 307 and 280 KOe. (A.R.H.) [pt

  14. Surface modification of austenitic steel by various glow-discharge nitriding methods

    Directory of Open Access Journals (Sweden)

    Tomasz Borowski

    2015-09-01

    Full Text Available Recent years have seen intensive research on modifying glow-discharge nitriding processes. One of the most commonly used glow-discharge methods includes cathodic potential nitriding (conventional method, and active screen plasma nitriding. Each of these methods has a number of advantages. One very important, common feature of these techniques is full control of the microstructure, chemical and phase composition, thickness and the surface topography of the layers formed. Another advantage includes the possibility of nitriding such materials as: austenitic steels or nickel alloys, i.e. metallic materials which do not diffuse nitrogen as effectively as ferritic or martensitic steels. However, these methods have some disadvantages as well. In the case of conventional plasma nitriding, engineers have to deal with the edge effect, which makes it difficult to use this method for complexly shaped components. In turn, in the case of active screen plasma nitriding, the problem disappears. A uniform, smooth layer forms, but is thinner, softer and is not as resistant to friction compared to layers formed using the conventional method. Research is also underway to combine these methods, i.e. use an active screen in conventional plasma nitriding at cathodic potential. However, there is a lack of comprehensive data presenting a comparison between these three nitriding processes and the impact of pulsating current on the formation of the microstructure and functional properties of austenitic steel surfaces. The article presents a characterisation of nitrided layers produced on austenitic X2CrNiMo17-12-2 (AISI 316L stainless steel in the course of glow-discharge nitriding at cathodic potential, at plasma potential and at cathodic potential incorporating an active screen. All processes were carried out at 440 °C under DC glow-discharge conditions and in 100 kHz frequency pulsating current. The layers were examined in terms of their microstructure, phase and

  15. Study on mechanism of intergranular stress corrosion cracking and analysis of residual stress and work hardening in welds of low-carbon austenitic stainless steel with hard surface machining

    International Nuclear Information System (INIS)

    Mori, Hiroaki; Mochizuki, Masahito; Nishimoto, Kazutoshi; Toyoda, Masao; Katsuyama, Jinya

    2007-01-01

    In order to make clear the effects of residual stress and hardening on intergranular stress corrosion cracking (IGSCC) behavior in the welds of Type 316L low-carbon austenitic stainless steel with surface hardening, the residual stress and hardness in the butt-joint of pipes as a typical example of the actual structure were estimated and the grain boundary sliding was analyzed from the viewpoint of micro-deformation. On the basis of these results, the mechanism of IGSCC was discussed by the integrated knowledge between metallurgy and mechanics. The relationship between plastic strain and hardness in hard-machined surface near welds was clarified from the experimented relationship and the analysis method by the thermal elastic-plastic analysis. The distributions of hardness and residual stress with the actual surface machining could be simulated. It was made clear that grain boundary sliding occurred in the steel at 561K by a constant strain rate tensile test. From the comparison of grain boundary sliding behavior between solution treated specimen and cold-rolled one, it was found that the grain boundary sliding in cold-rolled one occurs in smaller strain conditions than that in as received one, and the amount of grain boundary sliding in cold-rolled one increases remarkably with increases in rolling reduction. In addition, it was clarified that the grain boundary energy is raised by the grain boundary sliding. On the basis of these results, it was concluded that the cause of IGSCC in the welds of Type 316L low-carbon austenitic stainless steel with surface hardening is the increase in grain boundary energy due to grain boundary sliding induced by residual stress of multi pass welding and surface hardening. (author)

  16. The stress corrosion cracking of type 316 stainless steel in oxygenated and chlorinated high temperature water

    International Nuclear Information System (INIS)

    Congleton, J.; Shih, H.C.; Shoji, T.; Parkins, R.N.

    1985-01-01

    Slow strain rate stress corrosion tests have been performed on Type 316 stainless steel in 265 C water containing from 0 to 45 ppm oxygen and from < 0.1 to 1000 ppm chloride. The main difference between the present data and previously published results, the latter mainly for Type 304 stainless steel, is that as well as cracking occurring in water containing high oxygen and chloride, it is shown that a cracking regime exists at very low oxygen contents for a wide range of chloride contents. The type of cracking varies with the oxygen and chloride content of the water and the most severe cracking was of comparable extent in both the gauge length and the necked region of the specimen. The least severe cracking only caused cracks to occur in the necked region of the specimen and there was a range of oxygen and chloride contents in which no cracking occurred. The rest potential for annealed Type 316 stainless steel has been mapped for a wide range of oxygen and chloride content waters and it is shown that at 265 C the 'no-cracking' regime of the oxygen-chloride diagram corresponds to potentials in the range -200 to +150 mV(SHE). (author)

  17. Behavior of annealed type 316 stainless steel under monotonic and cyclic biaxial loading at room temperature

    International Nuclear Information System (INIS)

    Ellis, J.R.; Robinson, D.N.; Pugh, C.E.

    1978-01-01

    This paper addresses the elastic-plastic behavior of type 316 stainless steel, one of the major structural alloys used in liquid-metal fast breeder reactor components. The study was part of a continuing program to develop a structural design technology applicable to advanced reactor systems. Here, behaviour of solution annealed material was examined through biaxial stress experiments conducted at room temperature under radial loadings (√3tau=sigma) in tension-torsion stress space. The effects of both stress limited monotonic loading and strain limited cyclic loading were determined on the size, shape and position of yield loci corresponding to small offset strain (10 microstrain) definition of yield. In the present work, the aim was to determine the extent to which the constitutive laws previously recommended for type 304 stainless steel are applicable to type 316 stainless steel. It was concluded that for the conditions investigated, the inelastic behavior of the two materials are qualitatively similar. Specifically, the von Mises yield criterion provides a reasonable approximation of initial yield behavior and the subsequent hardening behavior, at least under small offset definitions of yield, is to the first order kinematic in nature. (Auth.)

  18. A preliminary investigation of the initiation of pitting corrosion in austenitic stainless steels and nickel-based alloys

    International Nuclear Information System (INIS)

    Higginson, A.

    1984-01-01

    Pitting corrosion in a number of austenitic stainless steels and nickel-based alloys that differ widely in their resistance to corrosion was studed by electrochemical and electron-optical techniques. The effect of contamination of the sulphuric acid electrolyte by chloride ions was also investigated. Preliminary results for the surface analysis of samples of 316 stainless steel by Auger electron spectroscopy are presented, and suggestions are included for further application of this technique to the examination of pitting corrosion. A comprehensive review of the literature concerning the initiation of pitting corrosion is included

  19. Thermal expansion and phase transformations of nitrogen-expanded austenite studied with in situ synchrotron X-ray diffraction

    DEFF Research Database (Denmark)

    Brink, Bastian; Ståhl, Kenny; Christiansen, Thomas Lundin

    2014-01-01

    Nitrogen-expanded austenite, _N, with high and low nitrogen contents was produced from AISI 316 grade stainless steel powder by gaseous nitriding in ammonia/hydrogen gas mixtures. In situ synchrotron X-ray diffraction was applied to investigate the thermal expansion and thermal stability...... as a fitting parameter. The stacking fault density is constant for temperatures up to 680 K, whereafter it decreases to nil. Surprisingly, a transition phase with composition M4N (M = Fe, Cr, Ni, Mo) appears for temperatures above 770 K. The linear coefficient of thermal expansion depends on the nitrogen...

  20. Thermal fatigue behaviour for a 316 L type steel

    Science.gov (United States)

    Fissolo, A.; Marini, B.; Nais, G.; Wident, P.

    1996-10-01

    This paper deals with initiation and growth of cracks produced by thermal fatigue loadings on 316 L steel, which is a reference material for the first wall of the next fusion reactor ITER. Two types of facilities have been built. As for true components, thermal cycles have been repeatedly applied on the surface of the specimen. The first is mainly concerned with initiation, which is detected with a light microscope. The second allows one to determine the propagation of a single crack. Crack initiation is analyzed using the French RCC-MR code procedure, and the strain-controlled isothermal fatigue curves. To predict crack growth, a model previously proposed by Haigh and Skelton is applied. This is based on determination of effective stress intensity factors, which takes into account both plastic strain and crack closure phenomena. It is shown that estimations obtained with such methodologies are in good agreement with experimental data.

  1. Carbon transfer between 2 1/4 Cr 1 Mo alloy and austenitic steels (experiments in anisothermal loops)

    International Nuclear Information System (INIS)

    Baque, P.; Besson, M.; Champeix, L.; Donati, J.R.; Oberlin, C.; Saint-Paul, P.

    1976-01-01

    Studies on carbon transfer between the ferritic steel 2 1/4 Cr 1 Mo and the austenitic steels 316L and 321H have shown that there is not any measurable carbon transfer in the operating conditions of the secondary circuit of PHENIX (475 deg C was the maximal temperature of the 2 1/4 Cr 1 Mo steel). A significant carbon transfer has been observed between the ferritic steel and the 316L steel when the 321H was replaced by the 2 1/4 Cr 1 Mo steel in the same thermohydraulic conditions (the ferritic steel was then used up to 545 deg C). This experiment has demonstrated the importance of the temperature and the initial carbon content of the ferritic steel as parameters in the decarburization process. It appears that decarburization may not be sensitive to the thermohydraulic conditions at least in the range investigated in those experiments. In the other hand the 316L steel is observed to have been carburized, the degree of carburization remaining appreciably constant and independent on the temperature between 400 deg C and 550 deg C [fr

  2. Microstructural and thermal stability of selective laser melted 316L stainless steel single tracks

    Directory of Open Access Journals (Sweden)

    Krakhmalev, P.

    2017-05-01

    Full Text Available To remove residual stresses, an as-built SLM object is usually post- treated. This treatment can affect the microstructure, changing the final mechanical characteristics. This investigation is focused on the microstructural characterisation of 316L austenitic stainless steel in as-built and annealed conditions. The SLM microstructure was relatively stable up to 900°C, when cell boundaries start to disappear. At higher temperatures, an insignificant grain coarsening was detected. These microstructural changes caused a gradual drop in the hardness. The obtained result is background for the future development of post-treatment regimens to achieve a high level in the final mechanical properties of SLM objects.

  3. Ion-nitriding of austenitic stainless steels

    International Nuclear Information System (INIS)

    Pacheco, O.; Hertz, D.; Lebrun, J.P.; Michel, H.

    1995-01-01

    Although ion-nitriding is an extensively industrialized process enabling steel surfaces to be hardened by nitrogen diffusion, with a resulting increase in wear, seizure and fatigue resistance, its direct application to stainless steels, while enhancing their mechanical properties, also causes a marked degradation in their oxidation resistance. However, by adaption of the nitriding process, it is possible to maintain the improved wear resistant properties while retaining the oxidation resistance of the stainless steel. The controlled diffusion permits the growth of a nitrogen supersaturated austenite layer on parts made of stainless steel (AISI 304L and 316L) without chromium nitride precipitation. The diffusion layer remains stable during post heat treatments up to 650 F for 5,000 hrs and maintains a hardness of 900 HV. A very low and stable friction coefficient is achieved which provides good wear resistance against stainless steels under diverse conditions. Electrochemical and chemical tests in various media confirm the preservation of the stainless steel characteristics. An example of the application of this process is the treatment of Reactor Control Rod Cluster Assemblies (RCCAs) for Pressurized Water Nuclear Reactors

  4. Survey of the effect of heat-to-heat variations upon the fatigue-crack propagation behavior of types 304 and 316 stainless steels

    International Nuclear Information System (INIS)

    James, L.A.

    1975-05-01

    The fatigue-crack growth behavior of four heats of annealed Type 304 stainless steel and three heats of annealed Type 316 stainless steel were studied at elevated temperature using the techniques of linear-elastic fracture mechanics. It is estimated that a factor of 1.5 applied above and below the mean line would provide upper and lower bounds that would account for heat-to-heat variations. In addition, the three heats of Type 316 represented three different melt practices: air-melt, vacuum-arc-remelt, and double-vacuum-melt processes. No effect on fatigue-crack growth behavior was noted due to melt practice. (U.S.)

  5. Short fatigue cracks growth and closure behavior in an austenitic stainless steel at 600 C and 650 C

    International Nuclear Information System (INIS)

    Polvora, J.P.; Laiarinandrasana, L.; Drubay, B.; Piques, R.; Martelet, B.

    1995-01-01

    In this work, following fatigue crack growth tests carried out at the CEN-SACLAY (AMORFIS program) by Laiarinandrasana (1994) on 316 L(N) CT specimens at 650 0 C and 600 0 C, short crack behavior of cracks emanating from machined notches is investigated. Experimental results are presented and discussions are directed to notch plasticity effect in relation with variations in crack opening stress intensity factor, K op , with crack lenght (author). 12 refs., 5 figs., 2 tab

  6. Sensitivity of the magnetization curves of different austenitic stainless tube and pipe steels to mechanical fatigue

    International Nuclear Information System (INIS)

    Niffenegger, M.; Leber, H.J.

    2008-01-01

    In meta-stable austenitic stainless steels, fatigue is accompanied by a partial strain-induced transformation of paramagnetic austenite to ferromagnetic martensite [G.B. Olsen, M. Cohen, Kinetics of strain induced martensite nucleation, Metall. Trans. 6 (1975) 791-795]. The associated changes of magnetic properties as the eddy current impedance, magnetic permeability or the remanence field may serve as an indication for the degree of fatigue and therefore the remaining lifetime of a component, even though the exact causal relationship between martensite formation and fatigue is not fully understood. However, measuring these properties by magnetic methods may be limited by the low affinity for strain-induced martensite formation. Thus other methods have to be found which are able to detect very small changes of ferromagnetic contents. With this aim the influence of cyclic strain loading on the magnetization curves of the austenitic stainless tube and pipe steels TP 321, 347, 304L and 316L is analysed in the present paper. The measured characteristic magnetic properties, which are the saturation magnetization, residual magnetization, coercive field and the field dependent permeability (AC-magnetization), are sensitive to fatigue and the corresponding material changes (martensitic transformation). In particular, the AC-magnetization was found to be very sensitive to small changes of the amount of strain induced martensite and therefore also to the degree of fatigue. Hence we conclude that applying magnetic minor loops are promising for the non-destructive evaluation of fatigue in austenitic stainless steel, even if a very small amount of strain induced martensite is formed

  7. Dislocation concepts applied to fatigue properties of austenitic stainless steels including time-dependent modes

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A.A.

    1986-10-01

    Dislocation substructures formed in austenitic stainless steel 304L and 316L, fatigued at 673 K, 823 K and 873 K under total imposed strain ranges of 0.7 to 2.25%, and their correlation with mechanical properties have been investigated. In addition substructures formed at lower strain ranges have been examined using foils prepared from parts of the specimens with larger cross-sections. Investigation has also been extended to include the effect of intermittent hold-times up to 1.8 x 10/sup 4/s and sequential creep-fatigue and fatigue-creep. The experimental results obtained are analysed and their implications for current dislocation concepts and mechanical properties are discussed.

  8. Prediction of residual life of low-cycle fatigue in austenitic stainless steel based on indentation test

    International Nuclear Information System (INIS)

    Yonezu, Akio; Touda, Yuya; Kim, HakGui; Yoneda, Keishi; Sakihara, Masayuki; Minoshima; Kohji

    2011-01-01

    In this study, a method to predict residual life of low-cycle fatigue in austenitic stainless steel (SUS316NG) was proposed based on indentation test. Low-cycle fatigue tests for SUS316NG were first conducted based on uniaxial tensile-compressive loading under the control of true strain range. Applied strain ranges were varied from about 3 to 12%. Their hysteresis loops of stress and strain were monitored during the fatigue tests. Plastic deformation range in hysteresis loop at each cycle could be roughly expressed by bi-linear hardening rule, whose plastic properties involve yield stress and work-hardening coefficient. The cyclic plastic properties were found to be dependent on the number of cycles and applied strain range, due to work-hardening. We experimentally investigated the empirical relationship between the plastic properties and number of cycles for each applied strain range. It is found that the relationship quantitatively predicts the applied strain range and number of cycles, when the plastic properties, or yield stress and work-hardening coefficient were known. Indentation tests were applied to the samples subjected to low cycle fatigue test, in order to quantitatively determine the plastic properties. The estimated properties were assigned to the proposed relationship, yielding the applied strain range and the cycle numbers. The proposed method was applied to the several stainless steel samples subjected to low cycle fatigue tests, suggesting that their residual lives could be reasonably predicted. Our method is thus useful for predicting the residual life of low-cycle fatigue in austenitic stainless steel. (author)

  9. Reheat cracking of austenitic stainless steels - pre-strain effect on intergranular damage; Fissuration en relaxation des aciers inoxydables austenitiques - influence de l'ecrouissage sur l'endommagement intergranulaire

    Energy Technology Data Exchange (ETDEWEB)

    Auzoux, Q

    2004-01-01

    Welding process induces strain in 316 stainless steel affected zones. Their microstructure was reproduce by rolling of three different steels (316L, 316L(N) et 316H). Traction, creep and relaxation tests were performed at 550 deg C and 600 deg C on smooth, notched and pre-cracked specimens. Pre-strain by rolling increases the hardness and the creep resistance because of the high dislocation density but decreases ductility because of the fast development of intergranular damage. This embrittlement leads to crack propagation during relaxation tests on pre-strained steels without distinction in respect to their carbon or nitrogen content. A new intergranular damage model was built using local micro-cracks measurements and finite elements analysis. Pre-strain effect and stress triaxiality ratio effect are reproduced by the modelling so that the reheat cracking risk near welds can now be estimated. (author)

  10. Prediction of Irradiation Damage by Artificial Neural Network for Austenitic Stainless Steels

    International Nuclear Information System (INIS)

    Kim, Won Sam; Kim, Dae Whan; Hwang, Seong Sik

    2007-01-01

    The internal structures of pressurized water reactors (PWR) located close to the reactor core are used to support the fuel assemblies, to maintain the alignment between assemblies and the control bars and to canalize the primary water. In general these internal structures consist of baffle plates in solution annealed (SA) 304 stainless steel and baffle bolts in cold worked (CW) 316 stainless steel. These components undergo a large neutron flux at temperatures between 280 and 380 .deg. C. Well-controlled irradiation-assisted stress corrosion cracking (IASCC) data from properly irradiated, and properly characterized, materials are sorely lacking due to the experimental difficulties and financial limitations related to working with highly activated materials. In this work, we tried to apply the artificial neural network (ANN) approach, predicted the susceptibility to an IASCC for an austenitic stainless steel SA 304 and CW 316. G.S. Was and J.-P. Massoud experimental data are used. Because there is fewer experimental data, we need to prediction for radiation damage under the internal structure of PWR. Besides, we compared experimental data with prediction data by the artificial neural network

  11. Stress corrosion cracking susceptibility of austenitic stainless steels in supercritical water conditions

    International Nuclear Information System (INIS)

    Novotny, R.; Haehner, P.; Ripplinger, S.; Siegl, J.; Penttilae, Sami; Toivonen, Aki

    2009-01-01

    Within the 6th Framework Program HPLWR-2 project (High Performance Light Water Reactor - Phase 2), stress corrosion cracking (SCC) susceptibilities of selected austenitic stainless steels, 316L and 316NG, were studied in supercritical water (SCW) with the aim to identify and describe the specific failure mechanisms prevailing during slow strain-rate tensile (SSRT) tests in ultra-pure demineralised SCW water solution. The SSRT tests were performed using a step-motor controlled loading device in an autoclave at 350 deg. C, 500 deg. C and 550 deg. C. Besides water temperature, the pressure, the oxygen content and the strain rate (resp. crosshead speed) were varied in the series of tests. The specimens SSRT tested to failure were subjected to fractographic analysis, in order to characterise the failure mechanisms. The fractography confirmed that failure was due to a combination of transgranular SCC and transgranular ductile fracture. The share of SCC and ductile fracture in the failure process of individual specimens was affected by the parameters of the SSRT tests, so that the environmental influence on SCC susceptibility could be assessed, in particular, the SCC sensitising effects of increasing oxygen content, decreasing strain rate and increasing test temperature. (author)

  12. Calculations of void swelling in Type 316 stainless steel after a temperature change using the VS8 code

    International Nuclear Information System (INIS)

    Windsor, M.E.; Matthews, J.R.

    1985-06-01

    The report compares measurements made by Norris and Buswell of void swelling in irradiated Type 316 steel after a temperature change from 475 to 575 C, and vice versa, with calculated swelling using the VS8 FACSIMILE code. (author)

  13. Irradiation effects evaluation of reference 20% CW type 316

    International Nuclear Information System (INIS)

    Holmes, J.J.; Bennett, J.W.

    1975-01-01

    Radiation effects of fast neutrons at less than or equal to 760 0 C on 316 stainless steel specimens are reported. Data and information are included on mechanical properties of engineering materials, in-reactor deformation behavior of materials, and radioinduced swelling

  14. Effect of light impurities on the early stage of swelling in austenitic stainless steel

    International Nuclear Information System (INIS)

    Igata, N.

    1998-01-01

    The objective of this study is to analyse the early stage of swelling and clarify the role of light impurities (nitrogen) in swelling of austenitic stainless steel. Recent results show that light impurities affect the swelling of 316 stainless steel under HVEM irradiation up to 10 dpa. At low concentration of light impurities the radiation swelling increases then decreases through the maximum as the concentration of light impurities increases. In the present paper the theoretical model is presented for the explanation of this effect. The model is based on the two factors: the influence of absorbed impurities on the voids caused by the production of an additional gas pressure in voids for their stabilization and the effect of impurities segregated around the surface of voids by the lowering of surface tension. These two affects are taken into account in the calculations of the critical size and the growth rate of cavities. The theoretical predictions on the radiation swelling rate dependent on the impurity concentration and temperature coincided with the experimental results on 316 stainless steel irradiated by HVEM. (orig.)

  15. Electrochemical noise transient analysis for 316 and Duplex 2205 stainless steels in NaCl and FeCl; Analisis de los transitorios de ruido electroquimico para aceros inoxidables 316 Y - DUPLEX 2205 en NaCl Y FeCl

    Energy Technology Data Exchange (ETDEWEB)

    Almeraya-Calderaon, F.; Estupinan, F.; Zambrano, P.; Martinez-Villafane, A.; Borunda, A.; Colas, R.; Gaona-Tiburcio, C.

    2012-11-01

    This work shows the results obtained from electrochemical noise measurements for different materials exhibiting pitting corrosion. The transients presented in the potential and current time, correlates with the scanning electron microscopy (SEM) surface analysis. Electrochemical measurements were made at different exposure times to obtain the correlation. The materials used were stainless steel austenitic 316 and duplex 2205, immersed in ferric chloride (FeCl3) and sodium chloride (NaCl) electrolytes. SEM analysis shows that the transients observed in the time series, really correspond to the activity of pit nucleation developed over the surface of the electrodes. (Author) 31 refs.

  16. Second phase in steel AISI 316 tested at 8000C

    International Nuclear Information System (INIS)

    Silveira, V.L.A.; Monteiro, S.N.

    The nature of second phases in type 316 stainless steel samples tested in creep to rupture at 800 0 C has been discussed. These phases were identified by experimental techniques completed with the available information in the literature. The role of these phases in the creep properties of the type 316 steel at 800 0 C is analysed [pt

  17. Stress corrosion cracking of austenitic stainless steels in PWR primary water: an update of metallurgical investigations performed on French withdrawn components

    International Nuclear Information System (INIS)

    Boursier, J.M.; Gallet, S.; Rouillon, Y.; Bordes, P.

    2002-01-01

    Austenitic stainless steels (AISI 304, 304L, 316 and 316L) are largely used in Nuclear Power Plants because of their good resistance to corrosion and their satisfactory mechanical properties. Nevertheless, on various French PWR Nuclear Power Plants, several cases of corrosion have been encountered in auxiliary circuit portions where deleterious species and oxygen can be present. This paper focuses on the metallurgical investigations performed on pulled out components such as Canopy welds or 'dead legs' (auxiliary circuit portions connected to the main primary loops) in terms of cracking locations and degradation parameters. In addition, some comparisons between Nuclear Power Plant feedback and fundamental research and development studies are discussed, particularly in the scope of temperature, microstructure, stresses (applied and residual) and medium responsible for the degradation. (authors)

  18. Measurements of lattice and grain boundary diffusivities of 60Co and 54Mn in type 316 stainless steel

    International Nuclear Information System (INIS)

    Polley, M.V.

    1981-02-01

    Diffusion in type 316 stainless steel was studied by depositing 60 Co and 54 Mn on flat polished surfaces and heating. Diffusion profiles, obtained after gamma-counting slices removed by hand grinding, were analysed using Suzuoka's ''instantaneous source'' model. (author)

  19. Degradation of austenitic stainless steel (SS) light water ractor (LWR) core internals due to neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Appajosula S., E-mail: Appajosula.Rao@nrc.gov

    2014-04-01

    Austenitic stainless steels (SSs) are extensively being used in the fabrication of light water reactor (LWR) core internal components. It is because these steels have relatively high ductility, fracture toughness and moderate strength. However, the LWR internal components exposure to neutron irradiation over an extended period of plant operation degrades the materials mechanical properties such as the fracture toughness. This paper summarizes some of the results of the existing open literature data on irradiation assisted stress corrosion cracking (IASCC) of 316 CW steels that have been published by the United States Nuclear Regulatory Commission (USNRC), industry, academia, and other research agencies.

  20. The Use of Austenitic Stainless Steel versus Monel (Ni-Cu) Alloy in Pressurized Gaseous Oxygen (GOX) Life Support Systems.

    Science.gov (United States)

    1985-03-01

    Carbon Steel AISI 1025 2. AISI 4140 3. Ductile Iron 4. 304 Stainless Steel 5. 17-4 PH Stainless Steel 6. 410 Stainless Steel 7. Lead Babbit 8. Tin Babbit...9. Inconel 718 i0. Aluminum 1100 30 6- AISI 4140 steel, all the results were negative (no ignitions). The single exception was with a sample of 4140 ...rates for austenitic stainless steel ( AISI 316), Monel (63% Ni - 34% Cu) and carbon steel (AMS 5050) tubing in this environment. 12 - 14-660 A 7

  1. The resistance of austenitic stainless steels to pitting corrosion in simulated BFS/OPC pore waters containing thiosulphate ions

    International Nuclear Information System (INIS)

    Betts, A.J.; Newman, R.C.

    1989-06-01

    Current plans for the disposal of intermediate-level nuclear waste involve the use of austenitic stainless steel drums. The immediate environment seen by both the inner and outer surfaces of these drums will be alkaline, as a consequence of the encasement of both the drum and its contents in concrete. Normally there would be no risk of localized corrosion of the steel in this situation, but a possible complication is introduced by the use of blast-furnace slag (BFS) to decrease the permeability of the concrete. Metal sulphides in the BFS react with air and water to yield thiosulphate ions, which are known to be corrosive towards stainless steels in environments of near-neutral pH. This research was carried out to study the effects of thiosulphate at alkaline pH, simulating the concrete environment. Types 304L and 316L stainless steel have been tested for pitting corrosion resistance in simulated BFS/Ordinary Portland Cement pore waters of pH 10-13, at 20 o C and 50 o C. The results show that the 316L steel is essentially immune to pitting. The 304L steel shows some pitting at the higher temperature, especially at the higher chloride concentrations, but only at pH values of less than 12, which would require serious deterioration of the cement matrix. (author)

  2. Thermal fatigue behaviour for a 316 L type steel

    International Nuclear Information System (INIS)

    Fissolo, A.; Marini, B.; Nais, G.; Wident, P.

    1996-01-01

    This paper deals with initiation and growth of cracks produced by thermal fatigue loadings on 316 L steel, which is a reference material for the first wall of the next fusion reactor ITER. Two types of facilities have been built. As for true components, thermal cycles have been repeatedly applied on the surface of the specimen. The first is mainly concerned with initiation, which is detected with a light microscope. The second allows one to determine the propagation of a single crack. Crack initiation is analyzed using the French RCC-MR code procedure, and the strain-controlled isothermal fatigue curves. To predict crack growth, a model previously proposed by Haigh and Skelton is applied. This is based on determination of effective stress intensity factors, which takes into account both plastic strain and crack closure phenomena. It is shown that estimations obtained with such methodologies are in good agreement with experimental data. (orig.)

  3. Diffraction study of the retained austenite content in TRIP steels

    Energy Technology Data Exchange (ETDEWEB)

    Gnaeupel-Herold, T., E-mail: tg-h@nist.gov [NIST Center for Neuron Research, 100 Bureau Dr., Gaithersburg MD 20899-6102 (United States); University of Maryland, Department of Material Science and Engineering., College Park MD 20742-2142 (United States); Creuziger, A., E-mail: adam.creuziger@nist.gov [NIST Metallurgy Division, 100 Bureau Dr., Gaithersburg MD 20899-8553 (United States); Kent State University, Kent, OH 44242 (United States)

    2011-04-25

    Research highlights: {yields} Novel orientation averaging scheme for retained austenite content measurement. {yields} assumption of random grain orientation generally not justified. {yields} Averaging scheme allows to disregard texture. {yields} unlike Rietveld method, averaging method does not orientation density function. {yields} Two independent (hkl) are necessary for retained austenite content. - Abstract: The results of a study of using neutron diffraction for determining the retained austenite content of TRIP steels are presented. The study covers a wide area of materials, deformation modes (uniaxial, biaxial and plane strain), strains, and the retained austenite content as a result of these variables. It was determined using basic principles of statistics that a minimum of two reflections (hkl) for each phase is necessary to calculate a phase mass fraction and the associated standard deviation. Texture from processing the steel is the largest source of uncertainty. Through the method of complete orientation averaging described in this paper, the texture effect and with it the standard deviation of the austenite mass fraction can be substantially reduced, regardless of the type or severity of the texture.

  4. Low-Temperature Aging of Delta-Ferrite in 316L SS Welds; Changes in Mechanical Properties and Etching Properties

    Science.gov (United States)

    Abe, Hiroshi; Shimizu, Keita; Watanabe, Yutaka

    Thermal aging embrittlement of LWR components made of stainless cast (e.g. CF-8 and CF-8M) is a potential degradation issue, and careful attention has been paid on it. Although welds of austenitic stainless steels (SSs) have γ-δ duplex microstructure, which is similar to that of the stainless cast, examination on thermal aging characteristics of the SS welds is very limited. In order to evaluate thermal aging behavior of weld metal of austenitic stainless steel, the 316L SS weld metal has been prepared and changes in mechanical properties and in etching properties at isothermal aging at 335°C have been investigated. The hardness of the ferrite phase has increased with aging, while the hardness of austenite phase has stayed same. It has been suggested that spinodal decomposition has occurred in δ-ferrite by the 335°C aging. The etching rates of δ-ferrite at immersion test in 5wt% hydrochloric acid solution have been also investigated using an AFM technique. The etching rate of ferrite phase has decreased consistently with the increase in hardness of ferrite phase. It has been thought that this characteristic is also caused by spinodal decomposition of ferrite into chromium-rich (α') and iron-rich (α).

  5. Corrosion of austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M C.M. [Instituto Nacional de Tecnologia, Rio de Janeiro (Brazil)

    1977-01-01

    Types of corrosion observed in a heat exchanger pipe and on a support of still of molasses fermented wort, both in austenitic stainless steel, are focused. Not only are the causes which might have had any kind of influence on them examined, but also the measures adopted in order to avoid and lessen its occurence.

  6. A comparison of tensile, fracture and fatigue mechanical behaviour of structural reinforcing bars made with different steels

    Directory of Open Access Journals (Sweden)

    Rodríguez, C.

    2013-09-01

    Full Text Available The use of austenitic stainless steels as rebar is an option increasingly used in reinforced concrete structures exposed to aggressive environments and especially those that have to work in marine environments. The same is true for duplex stainless steel rebars, although nowadays they have a lower use, mainly due to the fact that their inclusion in the reinforced concrete standards was delayed 10 years compared to austenitic stainless steel ones, and consequently their in-service behavior is not as well known. A study of the mechanical properties, including fracture toughness, fatigue behaviour and corrosion resistance in saline alkaline environments of austenitic (AISI 304LN and 316LN and duplex (D2205 stainless steel reinforcing bars was performed in this work. Bars made on a high ductility carbon steel (B500SD that are normally used to reinforce concrete were also characterized and used as a comparison. Stainless steel reinforcing bars show mechanical properties at least similar but usually higher than one of the best carbon steel re-bars (B500SD, along with a significantly higher ductility and, of course, much better corrosion behaviour in saline alkaline environments.El uso de aceros inoxidables austeníticos como armaduras de refuerzo es una opción cada vez más utilizada en estructuras de hormigón armado expuestas a ambientes agresivos y especialmente en las que han de trabajar en ambientes marinos. Lo mismo cabe decir de las armaduras de acero inoxidable dúplex, si bien su uso es menor, debido sobre todo a que su inclusión en la normativa aplicable al armado de hormigón se retrasó 10 años con respecto a los inoxidables austeníticos y, consecuentemente, su comportamiento en servicio es menos conocido. En este trabajo se analiza el comportamiento mecánico, incluyendo fractura y fatiga, así como la resistencia a la corrosión en medios que simulan un hormigón contaminado de cloruros, de armaduras fabricadas tanto con

  7. Effect of cold working on biocompatibility of Ni-free high nitrogen austenitic stainless steels using Dalton's Lymphoma cell line

    International Nuclear Information System (INIS)

    Talha, Mohd; Kumar, Sanjay; Behera, C.K.; Sinha, O.P.

    2014-01-01

    The aims of the present work are to explore the effect of cold working on in-vitro biocompatibility of indigenized low cost Ni-free nitrogen containing austenitic stainless steels (HNSs) and to compare it with conventionally used biomedical grade, i.e. AISI 316L and 316LVM, using Dalton's Lymphoma (DL) cell line. The MTT assay [3-(4,5-dimethythiazol 2-yl)-2,5-diphenyltetrazolium bromide] was performed on DL cell line for cytotoxicity evaluation and cell adhesion test. As a result, it was observed that the HNS had higher cell proliferation and cell growth and it increases by increasing nitrogen content and degree of cold working. The surface wettability of the alloys was also investigated by water contact angle measurements. The value of contact angles was found to decrease with increase in nitrogen content and degree of cold working. This indicates that the hydrophilic character increases with increasing nitrogen content and degree of cold working which further attributed to enhance the surface free energy (SFE) which would be conducive to cell adhesion which in turn increases the cell proliferation. - Graphical abstract: Effect of cold working on in-vitro biocompatibility of indigenized Ni-free nitrogen bearing austenitic stainless steels was explored using Dalton's Lymphoma cell line. Cell proliferation and cell adhesion increase by increasing the degree of cold working and nitrogen content in steel indicating that indigenized material is more biocompatible and no negative effect of cold working on these steels. - Highlights: • Effect of cold working on biocompatibility of Ni-free austenitic stainless steels • Cell proliferation and adhesion increase with nitrogen and degree of cold working. • Contact angle values decrease with nitrogen and degree of cold working

  8. Correlation of fracture toughness with tensile properties for irradiated 20% cold-worked 316 stainless steel

    International Nuclear Information System (INIS)

    Hamilton, M.L.; Garner, F.A.; Wolfer, W.G.

    1983-08-01

    A correlation has been developed which allows an estimate to be made of the toughness of austenitic alloys using more easily obtained tensile data. Tensile properties measured on 20% cold-worked AISI 316 specimens made from ducts and cladding irradiated in EBR-II were used to predict values for the plane strain fracture toughness according to a model originally developed by Krafft. Some microstructural examination is required to determine a parameter designated as the process zone size. In contrast to the frequently employed Hahn-Rosenfeld model, this model gives results which agree with recent experimental determinations of toughness performed in the transgranular failure regime

  9. Short fatigue cracks growth and closure behavior in an austenitic stainless steel at 600 C and 650 C

    Energy Technology Data Exchange (ETDEWEB)

    Polvora, J.P.; Laiarinandrasana, L.; Drubay, B.; Piques, R.; Martelet, B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    1995-12-31

    In this work, following fatigue crack growth tests carried out at the CEN-SACLAY (AMORFIS program) by Laiarinandrasana (1994) on 316 L(N) CT specimens at 650{sup 0}C and 600{sup 0}C, short crack behavior of cracks emanating from machined notches is investigated. Experimental results are presented and discussions are directed to notch plasticity effect in relation with variations in crack opening stress intensity factor, K{sub op}, with crack lenght (author). 12 refs., 5 figs., 2 tab.

  10. Irradiation creep of 316 and 316 Ti steels

    International Nuclear Information System (INIS)

    Lehmann, J.; Dupouy, J.M.; Boutard, J.L.; Maillard, A.; Broudeur, R.

    1979-07-01

    Irradiation creep results for several 316 and 316 Ti steels show the effects of stress, dose and temperature in the range 400 to 550 0 C. The observed differences are related to the compositioning and metallurgical conditions of the materials. (author)

  11. Performance evaluation of vegetable-based oils in drilling austenitic stainless steel

    DEFF Research Database (Denmark)

    Belluco, Walter; De Chiffre, Leonardo

    2004-01-01

    breaking were recorded for each bore, and tool wear was measured at constant intervals. A commercial mineral-based oil was taken as reference product, and five vegetable-based cutting fluids at different levels of additivation were tested. All measured parameters were in agreement, confirming......The efficiency of six cutting oils was evaluated in drilling AISI 316L austenitic stainless steel using conventional HSS-Co tools by measurements of tool life, tool wear, cutting forces and chip formation. Seven tools were tested with each fluid to catastrophic failure. Cutting forces and chip...... to tool life testing. All vegetable-based fluids performed better than the reference product. The best performance was obtained with a cutting fluid yielding 177% increases in tool life and 7% reduction in thrust force. (C) 2003 Elsevier B.V. All rights reserved....

  12. Effect of Prior Austenite Grain Size on the Morphology of Nano-Bainitic Steels

    Science.gov (United States)

    Singh, Kritika; Kumar, Avanish; Singh, Aparna

    2018-04-01

    The strength in nanostructured bainitic steels primarily arises from the fine platelets of bainitic ferrite embedded in carbon-enriched austenite. However, the toughness is dictated by the shape and volume fraction of the retained austenite. Therefore, the exact determination of processing-morphology relationships is necessary to design stronger and tougher bainite. In the current study, the morphology of bainitic ferrite in Fe-0.89C-1.59Si-1.65Mn-0.37Mo-1Co-0.56Al-0.19Cr (wt pct) bainitic steel has been investigated as a function of the prior austenite grain size (AGS). Specimens were austenitized at different temperatures ranging from 900 °C to 1150 °C followed by isothermal transformation at 300 °C. Detailed microstructural characterization has been carried out using scanning electron microscopy and X-ray diffraction. The results showed that the bainitic laths transformed in coarse austenite grains are finer resulting in higher hardness, whereas smaller austenite grains lead to the formation of thicker bainitic laths with a large fraction of blocky type retained austenite resulting in lower hardness.

  13. Effects of LWR coolant environments on fatigue lives of austenitic stainless steels

    International Nuclear Information System (INIS)

    Chopra, O.K.; Gavenda, D.J.

    1997-01-01

    The ASME Boiler and Pressure Vessel Code fatigue design curves for structural materials do not explicitly address the effects of reactor coolant environments on fatigue life. Recent test data indicate a significant decrease in fatigue life of pressure vessel and piping materials in light water reactor (LWR) environments. Fatigue tests have been conducted on Types 304 and 316NG stainless steel in air and LWR environments to evaluate the effects of various material and loading variables, e.g., steel type, strain rate, dissolved oxygen (DO) in water, and strain range, on fatigue lives of these steels. The results confirm the significant decrease in fatigue life in water. The environmentally assisted decrease in fatigue life depends both on strain rate and DO content in water. A decrease in strain rate from 0.4 to 0.004%/s decreases fatigue life by a factor of ∼ 8. However, unlike carbon and low-alloy steels, environmental effects are more pronounced in low-DO than in high-DO water. At ∼ 0.004%/s strain rate, reduction in fatigue life in water containing <10 ppb D is greater by a factor of ∼ 2 than in water containing ≥ 200 ppb DO. Experimental results have been compared with estimates of fatigue life based on the statistical model. The formation and growth of fatigue cracks in austenitic stainless steels in air and LWR environments are discussed

  14. Behavior of Type 316 stainless steel under simulated fusion reactor irradiation

    International Nuclear Information System (INIS)

    Wiffen, F.W.; Maziasz, P.J.; Bloom, E.E.; Stiegler, J.O.; Grossbeck, M.L.

    1978-05-01

    Fusion reactor irradiation response in alloys containing nickel can be simulated in thermal-spectrum fission reactors, where displacement damage is produced by the high-energy neutrons and helium is produced by the capture of two thermal neutrons in the reactions: 58 Ni + n → 59 Ni + γ; 59 Ni + n → 56 Fe + α. Examination of type 316 stainless steel specimens irradiated in HFIR has shown that swelling due to cavity formation and degradation of mechanical properties are more severe than can be predicted from fast reactor irradiations, where the helium contents produced are far too low to simulate fusion reactor service. Swelling values are greater and the temperature dependence of swelling is different than in the fast reactor case

  15. Facile in-situ reduction: Crystal growth and magnetic studies of reduced vanadium (III/IV) silicates CaxLn1-xVSiO5 (Ln = Ce-Nd, Sm-Lu, Y)

    Science.gov (United States)

    Abeysinghe, Dileka; Smith, Mark D.; Morrison, Gregory; Yeon, Jeongho; zur Loye, Hans-Conrad

    2018-04-01

    A series of lanthanide containing mixed-valent vanadium (III/IV) silicates of the type CaxLn1-xVSiO5 (Ln = Ce-Nd, Sm-Lu, Y) was synthesized as high quality single crystals from a molten chloride eutectic flux, BaCl2/NaCl. Utilizing Ca metal as the reducing agent, an in-situ reduction of V5+ to V3+/4+ as well as of Ce4+ to Ce3+ was achieved. The structures of 14 reported isostructural compounds were determined by single crystal X-ray diffraction. They crystallize in the tilasite (CaMgAsO4F) structure type in the monoclinic space group C2/c. The extended structure contains 1D chains of VO6 octahedra that are connected to each other via SiO4 groups and (Ca/Ln)O7 polyhedra. The magnetic susceptibility and the field dependent magnetization data were measured for CaxLn1-xVSiO5 (Ln = Ce-Nd, Sm, Gd-Lu, Y), and support the existence of antiferromagnetic behavior at low temperatures.

  16. The swelling behavior of Ti-stabilized austenitic steels used as structural materials of fissile subassemblies in Phenix

    International Nuclear Information System (INIS)

    Seran, J.L.; Touron, H.; Maillard, A.; Dubuisson, P.; Hugot, J.P.; Blanchard, P.; Pelletier, M.

    1988-06-01

    In this paper we analyse the main results obained on pressurized tubes, fissile pins and hexagonal cans, allowing us to characterize the swelling and irradiation creep resistance of Ti-Mod. austenitic steels, used as reference materials for the fast breeder subassembly. After having compared the global behavior of 316Ti and 15-15Ti steels irradiated as fissile pins we examine in more detail the leading variables acting on swelling and irradiation creep resistance of CW 316Ti clads and wrappers. The irradiation creep associated to the principal mechanical stresses (sodium pressure for the wrapper, fission gas pressure for the clad) explain the plastic deformation observed on the wrappers not on the clads. Fissile pins swell more and the scatter of the results is larger than for wrappers or samples. It does not seem possible to invoque flux or primary stress differences to explain this fact. On the opposite the thermal gradient in the thickness of the components appears to be a significant parameter. In fissile pins it gives rise to a swelling gradient observed by electron microscopy that must be taken into account when comparing to the wrapper. As compared to CW 316Ti, CW 15-15Ti is an important improvement since its incubation dose for swelling is far beyond 100 dpa. Further more since it swelling temperature dependence does not seem to be as important as for 316Ti, it should be less sensitive to the effect of thermal gradients

  17. The hold-time effects on the low cycle fatigue behaviors of 316 SS in PWR primary environment

    International Nuclear Information System (INIS)

    Lee, Junho; Hong, Jong-Dae; Seo, Myung-Gyu; Jang, Changheui

    2015-01-01

    The effects of the environments on fatigue life of the structural materials used in nuclear power plants (NPPs) were known to be significant according to the extensive test results. Accordingly, the fatigue analysis procedures and the design fatigue curves were proposed in the ASME Code. However, the implication that the existing ASME design fatigue curves did not sufficiently reflect the effect of the operation conditions of nuclear power plants emerged as an issue to be resolved. One of possible reasons to explain the discrepancy is that the laboratory test conditions do not represent the actual plant transients. Therefore, it is necessary to clarify the effects of light water environments on fatigue life while considering more plant-relevant transient conditions such as hold-time. For this reason, this study will focus on the fatigue life of type 316 stainless steel (SS) in the pressurized water reactor (PWR) environments while incorporating the hold-time during the low cycle fatigue (LCF) test in simulated PWR environments. The objective of this study is to characterize the effects of hold-time on the fatigue life of austenitic stainless steels in PWR environments in comparison with the existing fixed strain rate results. Low cycle fatigue life tests were conducted for the type 316 SS in 310 .deg. C air and simulated PWR environments. To simulate the heat-up and cool-down transient, sub-peak strain holding during the down-hill of strain amplitude was chosen. Currently, LCF tests with 60 seconds holding are in progress. The 0.4, 0.04%/s strain rate condition test results are presented in this study, which shows somewhat longer fatigue life

  18. The hold-time effects on the low cycle fatigue behaviors of 316 SS in PWR primary environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Junho; Hong, Jong-Dae; Seo, Myung-Gyu; Jang, Changheui [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    The effects of the environments on fatigue life of the structural materials used in nuclear power plants (NPPs) were known to be significant according to the extensive test results. Accordingly, the fatigue analysis procedures and the design fatigue curves were proposed in the ASME Code. However, the implication that the existing ASME design fatigue curves did not sufficiently reflect the effect of the operation conditions of nuclear power plants emerged as an issue to be resolved. One of possible reasons to explain the discrepancy is that the laboratory test conditions do not represent the actual plant transients. Therefore, it is necessary to clarify the effects of light water environments on fatigue life while considering more plant-relevant transient conditions such as hold-time. For this reason, this study will focus on the fatigue life of type 316 stainless steel (SS) in the pressurized water reactor (PWR) environments while incorporating the hold-time during the low cycle fatigue (LCF) test in simulated PWR environments. The objective of this study is to characterize the effects of hold-time on the fatigue life of austenitic stainless steels in PWR environments in comparison with the existing fixed strain rate results. Low cycle fatigue life tests were conducted for the type 316 SS in 310 .deg. C air and simulated PWR environments. To simulate the heat-up and cool-down transient, sub-peak strain holding during the down-hill of strain amplitude was chosen. Currently, LCF tests with 60 seconds holding are in progress. The 0.4, 0.04%/s strain rate condition test results are presented in this study, which shows somewhat longer fatigue life.

  19. Damping Capacity of High Manganese Austenitic Stainless Steel with a Two Phase Mixed Structure of Martensite and Austenite

    International Nuclear Information System (INIS)

    Hwang, Tae Hyun; Kang, Chang-Yong

    2013-01-01

    The damping capacity of high manganese austenitic stainless steel with a two phase mixed structure of deformation-induced martensite and reversed austenite was studied. Reversed austenite with an ultra-fine grain size of less than 0.2 μm was obtained by reversion treatment. The two phase structure of deformation-induced martensite and reversed austenite was obtained by annealing treatment at a range of 500-700 °C and various times in cold rolled high manganese austenitic stainless steel. The damping capacity increased with an increasing annealing temperature and time. In high manganese stainless steel with the two phase mixed structure of martensite and austenite, the damping capacity decreased with an increasing volume fraction of deformation-induced martensite. Thus, the damping capacity was strongly affected by deformation-induced martensite. The results confirmed that austenitic stainless steel with a good combination of strength and damping capacity was obtained from the two phase mixed structure of austenite and martensite.

  20. Creep-fatigue damage in austenitic stainless steels

    International Nuclear Information System (INIS)

    Rezgui, Brahim.

    1980-06-01

    This is a study of hold time effects on the low cycle fatigue (L.C.F.) properties of 316L austenitic stainless steel at 600 0 C in air. Results obtained for different plastic strain levels indicate that a tension hold time at peak strain lead to a reduction in fatigue life. The importance of this effect depend on the length of hold period, and also on the strain amplitude. No saturation had been observed. Metallographic and microstructural analysis of failed specimens indicates mechanisms by which failure is produced. For continuous cycling the fractures occurs by the initiation and the propagation of a trans-granular crack. Creep damage in the bulk of material is formed during periods of tensile stress relaxation; it causes a change in the failure mode which became intergranular. It is the interaction between this creep-damage and fatigue cracks which is partly responsable for the reduction in the fatigue life. Predictions based upon linear cumulative damage method indicate that virgin material properties may be irrelevant in creep-fatigue interactions [fr