WorldWideScience

Sample records for type 316ln austenitic

  1. Influence of Thermal Aging on Tensile and Low Cycle Fatigue Behavior of Type 316LN Austenitic Stainless Steel Weld Joint

    Science.gov (United States)

    Suresh Kumar, T.; Nagesha, A.; Ganesh Kumar, J.; Parameswaran, P.; Sandhya, R.

    2018-05-01

    Influence of short-term thermal aging on the low-cycle fatigue (LCF) behavior of 316LN austenitic stainless steel weld joint with 0.07 wt pct N has been investigated. Prior thermal exposure was found to improve the fatigue life compared with the as-welded condition. Besides, the treatment also imparted a softening effect on the weld metal, leading to an increase in the ductility of the weld joint which had a bearing on the cyclic stress response. The degree of cyclic hardening was seen to increase after aging. Automated ball-indentation (ABI) technique was employed toward understanding the mechanical properties of individual zones across the weld joint. It was observed that the base metal takes most of the applied cyclic strain during LCF deformation in the as-welded condition. In the aged condition, however, the weld also participates in the cyclic deformation. The beneficial effect of thermal aging on cyclic life is attributed to a reduction in the severity of the metallurgical notch leading to a restoration of ductility of the weld region. The transformation of δ-ferrite to σ-phase during the aging treatment was found to influence the location of crack initiation. Fatigue cracks were found to initiate in the base metal region of the joint in most of the testing conditions. However, embrittlement in the weld metal caused a shift in the point of crack initiation with increasing strain amplitude under LCF.

  2. Fatigue crack nucleation of type 316LN stainless steel

    International Nuclear Information System (INIS)

    Kim, Dae Whan; Kim, Woo Gon; Hong, Jun Hwa; Ryu, Woo Seog

    2000-01-01

    Low Cycle Fatigue (LCF) life decreases drastically with increasing temperature but increases with the addition of nitrogen at room and high temperatures. The effect of nitrogen on LCF life may be related to crack nucleation at high temperatures in austenitic stainless steel because the fraction of crack nucleation in LCF life is about 40%. The influence of nitrogen on the crack nucleation of LCF in type 316LN stainless steel is investigated by observations of crack population and crack depth after testing at 40% of fatigue life. Nitrogen increases the number of cycles to nucleate microcracks of 100 μm but decreases the crack population

  3. Microstructural features of dissimilar welds between 316LN austenitic stainless steel and alloy 800

    International Nuclear Information System (INIS)

    Sireesha, M.; Sundaresan, S.

    2000-01-01

    For joining type 316LN austenitic stainless steel to modified 9Cr-1Mo steel for power plant application, a trimetallic configuration using an insert piece (such as alloy 800) of intermediate thermal coefficient of expansion (CTE) has been sometimes suggested for bridging the wide gap in CTE between the two steels. Two joints are thus involved and this paper is concerned with the weld between 316LN and alloy 800. These welds were produced using three types of filler materials: austenitic stainless steels corresponding to 316,16Cr-8Ni-2Mo, and the nickel-base Inconel 182 1 . The weld fusion zones and the interfaces with the base materials were characterised in detail using light and transmission electron microscopy. The 316 and Inconel 182 weld metals solidified dendritically, while the 16-8-2(16%Cr-8%Ni-2%Mo) weld metal showed a predominantly cellular substructure. The Inconel weld metal contained a large number of inclusions when deposited from flux-coated electrodes, but was relatively inclusion-free under inert gas-shielded welding. Long-term elevated-temperature aging of the weld metals resulted in embrittling sigma phase precipitation in the austenitic stainless steel weld metals, but the nickel-base welds showed no visible precipitation, demonstrating their superior metallurgical stability for high-temperature service. (orig.)

  4. Creep modelling of type 316LN stainless steel

    International Nuclear Information System (INIS)

    Kim, W. G.; Kim, D. H.; Ryu, W. S.

    2000-01-01

    Creep curve for type 316LN stainless steel was modelled by using the K-R damage equations. Seven coefficients used in the model, i. e., A, B, κ, m, λ, r, and q were determined from theoretical and calculated data, and their meanings were also analyzed. To quantify damage formation parameter(ω), cavity amount was measured on the crept specimen taken from an interrupted creep test with time variation, and then the amount was reflected into K-R damage equations. Coefficient λ which is regarded as a creep tolerance feature of a material increased with increase of creep strain. Theoretical curve in λ= 3.0 well coincided with an experimental one to the full level of lifetime. Master curve between damage parameter and life fraction matched with the theoretical one in exponent γ= 24 value, which decreased with increase of parameter ω which increased rapidly after 80% life fraction. It is concluded that K-R equation was reliable as the modelling equation for 316LN stainless steel. Coefficient data obtained from 316LN stainless steel can be utilized for remaining life prediction of operating material

  5. Carburization behavior of AISI 316LN austenitic stainless steel - Experimental studies and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sudha, C. [Physical Metallurgy Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India); Sivai Bharasi, N. [Corrosion Science and Technology Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India); Anand, R. [Physical Metallurgy Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India); Shaikh, H., E-mail: hasan@igcar.gov.i [Corrosion Science and Technology Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India); Dayal, R.K. [Corrosion Science and Technology Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India); Vijayalakshmi, M. [Physical Metallurgy Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India)

    2010-07-31

    AISI type 316LN austenitic stainless steel was exposed to flowing sodium at 798 K for 16,000 h in the bi-metallic (BIM) sodium loop. A modified surface layer of 10 {mu}m width having a ferrite structure was detected from X-ray diffraction and electron micro probe based analysis. Beneath the modified surface layer a carburized zone of 60 {mu}m width was identified which was found to consist of M{sub 23}C{sub 6} carbides. A mathematical model based on finite difference technique was developed to predict the carburization profiles in sodium exposed austenitic stainless steel. In the computation, effect of only chromium on carbon diffusion was considered. Amount of carbon remaining in solution was determined from the solubility parameter. The predicted profile showed a reasonably good match with the experimental profile. Calculations were extended to simulate the thickness of the carburized layer after exposure to sodium for a period of 40 years. Attempt was also made to predict the carburization profiles based on equilibrium calculations using Dictra and Thermocalc which contain both thermodynamic and kinetic databases for the system under consideration.

  6. Study on the dynamic recrystallization model and mechanism of nuclear grade 316LN austenitic stainless steel

    International Nuclear Information System (INIS)

    Wang, Shenglong; Zhang, Mingxian; Wu, Huanchun; Yang, Bin

    2016-01-01

    In this study, the dynamic recrystallization behaviors of a nuclear grade 316LN austenitic stainless steel were researched through hot compression experiment performed on a Gleeble-1500 simulator at temperatures of 900–1250 °C and strain rates of 0.01–1 s −1 . By multiple linear regressions of the flow stress-strain data, the dynamic recrystallization mathematical models of this steel as functions of strain rate, strain and temperature were developed. Then these models were verified in a real experiment. Furthermore, the dynamic recrystallization mechanism of the steel was determined. The results indicated that the subgrains in this steel are formed through dislocations polygonization and then grow up through subgrain boundaries migration towards high density dislocation areas and subgrain coalescence mechanism. Dynamic recrystallization nucleation performs in grain boundary bulging mechanism and subgrain growth mechanism. The nuclei grow up through high angle grain boundaries migration. - Highlights: •Establish the DRX mathematical models of nuclear grade 316LN stainless steel •Determine the DRX mechanism of this steel •Subgrains are formed through dislocations polygonization. •Subgrains grow up through subgrain boundaries migration and coalescence mechanism. •DRX nucleation performs in grain boundary bulging mechanism and subgrain growth mechanism.

  7. Cutting characteristics and deformed layer of type 316LN stainless steel

    International Nuclear Information System (INIS)

    Oh, Sun Sae; Yi, Won

    2004-01-01

    The cutting characteristics and the deformed layer of Nitrogen(N)-added type 316LN stainless steel were comparatively investigated to type 316L stainless steel. The cutting force, the surface roughness(Ra) and the tool wear in face milling works were measured with cutting conditions, and the deformed layers were obtained from micro-hardness testing method. The cutting resistance of type 316LN was similar to type 316L in spite of its high strength. The surface roughness of type 316LN was superior to type 316L for all the cutting conditions. In particular, in the high cutting speed above 345m/min, the surface roughness of the two stainless steels was closely same. The deformed layer thickness of the two stainless steels was generated in the 150μm-300μm ranges, and its value of type 316LN was lower than that of type 316L. This is due to the high strength properties by nitrogen effect. It was found that type 316LN was higher in the tool wear than that type 316L, and flank wear was dominant to crater wear. In face milling works of type 316LN steel, tool wear is regarded as a important problem

  8. Tensile Deformation Temperature Impact on Microstructure and Mechanical Properties of AISI 316LN Austenitic Stainless Steel

    Science.gov (United States)

    Xiong, Yi; He, Tiantian; Lu, Yan; Ren, Fengzhang; Volinsky, Alex A.; Cao, Wei

    2018-03-01

    Uniaxial tensile tests were conducted on AISI 316LN austenitic stainless steel from - 40 to 300 °C at a rate of 0.5 mm/min. Microstructure and mechanical properties of the deformed steel were investigated by optical, scanning and transmission electron microscopies, x-ray diffraction, and microhardness testing. The yield strength, ultimate tensile strength, elongation, and microhardness increase with the decrease in the test temperature. The tensile fracture morphology has the dimple rupture feature after low-temperature deformations and turns to a mixture of transgranular fracture and dimple fracture after high-temperature ones. The dominating deformation microstructure evolves from dislocation tangle/slip bands to large deformation twins/slip bands with temperature decrease. The deformation-induced martensite transformation can only be realized at low temperature, and its quantity increases with the decrease in the temperature.

  9. Z phase stability in AISI 316LN + Nb austenitic steels during creep at 650 C

    Energy Technology Data Exchange (ETDEWEB)

    Vodarek, Vlastimil [Technical Univ. Ostrava (Czech Republic)

    2010-07-01

    The creep resistance of austenitic CrNi(Mo) steels strongly depends on microstructural stability during creep exposure. Nitrogen additions to CrNi(Mo) austenitic steels can significantly improve the creep strength. One of the most successful methods of improving the long-term creep resistance of austenitic steels is based on increasing the extent of precipitation strengthening during creep exposure. The role of precipitates in the achievements of good creep properties has been extensively studied for a long time. Although many minor phases are now well documented there are still contractions and missing thermodynamic data about some minor phases. This contribution deals with results of microstructural studies on the minor phase evolution in wrought AISI 316LN niobium stabilised steels during long-term creep exposure at 650 C. Microstructural investigations were carried out on specimens taken from both heads and gauge lengths of ruptured test-pieces by means of optical metallography, transmission and scanning electron microscopy. The attention has been paid to evaluation of thermodynamic and dimensional stability of Z phase and other nitrogen bearing minor phases. Only two nitrogen-bearing minor phases formed in the casts investigated: Z phase and M{sub 6}X. The dimensional stability of Z phase particles was very high. (orig.)

  10. Effects of pre-creep on the dislocations of 316LN Austenite stainless steel

    Science.gov (United States)

    Pei, Hai-xiang; Hui, Jun; Hua, Hou; Feng, Zai-xin; Xu, Xiao-long

    2017-09-01

    The 316LN Austenite stainless steels (316LNASS) were pre-creep treated, the evolution of microstructure were investigated. The samples were pre-creep at 593 K and from 500 to 2000 h at 873 K with a stress in the range of 20 to 150 MPa, Then the evolution of microstructure and precipitation were investigated by optical microscope (OM), and transmission electron microscope (TEM). The results show that the crystal surface slipping resulted in dislocations and original dislocations decomposition during the pre-creep process, and generate quadrilateral or hexagonal dislocation network was obviously. The sub-grain boundary gradually became narrow with the increasing of pre-creep treatment time and temperature. When the pre-creep temperature was 593 K and 873 K, dislocation network gradually disappear with the increasing of pre-creep time and load. When the pre-creep temperature was 873 K under 120 MPa, and the treatment time was 2000 h, the hexagonal dislocation network (HDN) would completely disappeared. When the pre-creep temperature was 593 K under 20 MPa, and the treatment time was 500 h, the quadrilateral dislocation network (QDN) would completely disappeared.

  11. Application of Leak Before Break concept in 316LN austenitic steel pipes welded using 316L

    International Nuclear Information System (INIS)

    Cunto, Gabriel Giannini de

    2017-01-01

    This work presents a study of application of the Leak Before Break (LBB) concept, usually applied in nuclear power plants, in a pipe made from steel AISI type 316LN welded a coated electrode AISI type 316L. LBB concept is a criterion based on fracture mechanics analysis to show that a crack leak, present in a pipe, can be detected by leak detection systems, before this crack reaches a critical size that results in pipe fail. In the studied pipe, tensile tests and Ramberg-Osgood analyses were performed, as well as fracture toughness tests for obtaining the material resistance curve J-R. The tests were performed considering the base metal, weld and heat affected zone (HAZ), at the same operating temperatures of a nuclear power plant. For the mechanical properties found in these tests, load limit analyses were performed in order to determine the size of a crack which could cause a detectable leakage and the critical crack size, considering failure by plastic collapse. For the critical crack size found in the weld, which is the region that presented the lowest toughness, Integral J and tearing modulus T analyses were performed, considering failure by tearing instability. Results show a well-defined behavior between the base metal, HAZ and weld zones, where the base metal has a high toughness behavior, the weld has a low toughness behavior and the HAZ showed intermediate mechanical properties between the base metal and the weld. Using the PICEP software, the leak rate curves versus crack size and also the critical crack size were determined by considering load limit analysis. It was observed that after a certain crack size, the leak rate in base metal is much higher than for the HAZ and the weld, considering the same crack length. This occurs because in the base metal crack, it is expected that the crack grows in a more rounded form due to its higher toughness. The lowest critical crack size was found for the base metal presenting circumferential cracks. For the

  12. Mechanical properties of electron beam welds of 316LN austenitic steels at low temperature for ITER gravity support system

    International Nuclear Information System (INIS)

    Lee, P.Y.; Huo, B.L.; Kuai, K.W.

    2007-01-01

    The gravity support system in ITER not only sustains magnet system, the vacuum vessel and in-vessel components, but also endures several large forces, such as electromagnetic force, thermal load and seismic loads. Based on the ITER design report, the maximum displacement of the gravity support system is estimated to be 32 mm in radial direction at the top flange of the flexible plates during the TF coil cool down from room temperature to 80 k. Welds are located in the peak stress region and subject to cyclic loads in the top flange is a potential problem. Therefore, the mechanical properties of the welds are extremely important for this system. 316LN austenitic stainless steel has been selected as the gravity support structure materials. However, there is still lack of the related mechanical data of the welding components of 316LN stainless steel at present. In this study, we are systematically investigated the mechanical properties of the welding components at low temperature. (authors)

  13. Effect of A-TIG Welding Process on the Weld Attributes of Type 304LN and 316LN Stainless Steels

    Science.gov (United States)

    Vasudevan, M.

    2017-03-01

    The specific activated flux has been developed for enhancing the penetration performance of TIG welding process for autogenous welding of type 304LN and 316LN stainless steels through systematic study. Initially single-component fluxes were used to study their effect on depth of penetration and tensile properties. Then multi-component activated flux was developed which was found to produce a significant increase in penetration of 10-12 mm in single-pass TIG welding of type 304LN and 316LN stainless steels. The significant improvement in penetration achieved using the activated flux developed in the present work has been attributed to the constriction of the arc and as well as reversal of Marangoni flow in the molten weld pool. The use of activated flux has been found to overcome the variable weld penetration observed in 316LN stainless steel with TIG welds compared to that of the welds produced by conventional TIG welding on the contrary the transverse strength properties of the 304LN and 316LN stainless steel welds produced by A-TIG welding exceeded the minimum specified strength values of the base metals. Improvement in toughness values were observed in 316LN stainless steel produced by A-TIG welding due to refinement in the weld microstructure in the region close to the weld center. Thus, activated flux developed in the present work has greater potential for use during the TIG welding of structural components made of type 304LN and 316LN stainless steels.

  14. High-energy-beam welding of type 316LN stainless steel for cryogenic applications

    International Nuclear Information System (INIS)

    Siewert, T.A.; Gorni, D.; Kohn, G.

    1988-01-01

    Laser and electron beam welds in 25-mm-thick AISI 316LN specimens containing 0.16 wt.$% N were evaluated for fusion reactor applications and their mechanical properties were compared with those of welds generated by lower productivity processes such as shielded-metal-arc and gas-metal-arc welding. Tensile tests were performed on transverse tensile specimens at 4 K. For both welding processes the fractures occurred in the base metal at a strength level near 950 MPa. This indicated that the weld and heat affected zone had a strength similar to that of the base metal. The 4 K weld fracture toughness was only slightly less than that for the base metal and comparable to the best values achieved with conventional welding processes in 316Ln weld metal. The Charpy V-notch absorbed energies averaged near 70 J at 76 K. Metallographic analysis revealed cellular and fully austenitic solidification with little porosity and no evidence of hot cracking

  15. Influence of prior deformation on the sensitization of AISI Type 316LN stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Parvathavarthini, N. (Metallurgy Div., Indira Gandhi Centre for Atomic Research, Tamilnadu (India)); Dayal, R.K. (Metallurgy Div., Indira Gandhi Centre for Atomic Research, Tamilnadu (India)); Gnanamoorthy, J.B. (Metallurgy Div., Indira Gandhi Centre for Atomic Research, Tamilnadu (India))

    1994-02-01

    The sensitization behaviour of a nuclear grade AISI 316LN stainless steel (SS) was studied for various cold-work levels ranging from 0% (mill-annealed) to 25% reduction in thickness. ASTM standard A262 Practices A and E were adopted to detect the susceptibility to intergranular corrosion. The results obtained in these tests were used to construct time-temperature-sensitization (TTS) diagrams. Using these data, the critical linear cooling rate was calculated, above which there is no risk of sensitization. In order to predict the sensitization behaviour during practical cooling conditions, Continuous-cooling-sensitization (CCS) diagrams were established utilising the TTS diagrams by a mathematical method. The influences of prior deformation and nitrogen in the alloy on the sensitization kinetics are discussed. It was found that nitrogen addition retards the sensitization kinetics and that t[sub min] (minimum time required for sensitization at nose temperature) increases by two orders of magnitude in Type 316LN SS compared to that of Type 316 SS at the different prior deformation levels. Cold-working up to 15% accelerates the onset of carbide precipitation and on further cold working there is not much difference in the kinetics. Desensitization is faster in highly cold-worked material, especially at high temperatures. (orig.)

  16. Long-term Creep Life Prediction for Type 316LN Stainless Steel

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Ryu, Woo Seog; Kim, Sung Ho; Lee, Chan Bok

    2007-01-01

    Since Sodium Fast Cooled Reactor (SFR) components are designed to be use for more than 30 years at a high temperature of 550 .deg. C, one of the most important properties of these components is the long term creep behavior. To accurately predict the long-term creep life of the components, it is essential to achieve reliable long-term test data beyond their design life. But, it is difficult to actually obtain long duration data because it is time-consuming work. So far, a variety of time-temperature parameters (TTPs) have been developed to predict a long-term creep life from shorter-time tests at higher temperatures. Among them, the Larson-Miller, the Orr-Sherby-Dorn, the Manson-Harferd and the Manson-Succop parameters have been typically used. None of these parameters has an overwhelming preference, and they have certain inherent restrictions imposed on their data in the application of the TTPs parameters. Meanwhile, it has been reported that the Minimum Commitment Method (MCM) proposed by Manson and Ensign has a greater flexibility for a creep rupture analysis. Thus, the MCM will be useful as another approach. Until now, the applicability of the MCM has not been investigated for type 316LN SS because of insufficient creep data. In this paper, the MCM was applied to predict a long-term creep life of type 316LN stainless steel (SS). Lots of creep rupture data was collected through literature surveys and the experimental data of KAERI. Using the short-term experimental data for under 2,000 hours, a longer-time rupture above 105 hours was predicted by the MCM at temperatures from 550 .deg. C to 800 .deg. C

  17. Effect of cold works on creep-rupture life of type 316LN stainless steel

    International Nuclear Information System (INIS)

    Kim, W. G.; Han, C. H.; Ryu, W. S.

    2003-01-01

    Effect of cold works on creep-rupture life of the cold-worked type 316LN stainless steels, which are fabricated with the various reductions ; 0%(solution annealing), 20%, 30%, 40%, and 50%, was investigated. The creep-rupture time increased gradually up to 30% reduction, but it decreased inversely over 30% reduction. The longest rupture time exhibited at cold-worked reduction of 30%. The reason for this is that fine carbide precipitates are uniformly generated in grain boundary and the dislocations are pinned in the precipitates and the dislocations are sustained for a long time at high temperature. However, it is assumed that the higher cold-work reductions over 30% lead to excessive generation of deformation faults. The SEM fractrographs of the cold-worked specimens showed dense fracture micrographs, and they did not show intergranular structures in creep fracture mode. From this result, it is believed that the cold-worked specimens were superior in creep-rupture time to solution annealed ones

  18. Creep characterization of type 316LN and HT-9 stainless steels by the K-R creep damage model

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Kim, Sung Ho; Ryu, Woo Seog

    2001-01-01

    The Kachanov and Rabotnov (K-R) creep damage model was interpreted and applied to type 316LN and HT-9 stainless steels. Seven creep constants of the model, A, B, k, m, λ, γ, and q were determined for type 316LN stainless steel. In order to quantify a damage parameter, the cavity was interruptedly traced during creep for measuring cavity area to be reflected into the damage equation. For type 316LN stainless steel, λ=ε R /ε * and λ f =ε/ε R were 3.1 and increased with creep strain. The creep curve with λ=3.1 depicted well the experimental data to the full lifetime and its damage curve showed a good agreement when γ=24. However for the HT-9 stainless steel, the values of λ and λ f were different as λ=6.2 and λ f =8.5, and their K-R creep curves did not agree with the experimental data. This mismatch in the HT-9 steel was due to the ductile fracture by softening of materials rather than the brittle fracture by cavity growth. The differences of the values in the above steels were attributed to creep ductilities at the secondary and the tertiary creep stages

  19. Effect of welding processes on the impression creep resistance of type 316 LN stainless steel weld joints

    International Nuclear Information System (INIS)

    Vasudevan, M.; Vasantharaja, P.; Sisira, P.; Divya, K.; Ganesh Sundara Raman, S.

    2016-01-01

    Type 316 LN stainless steel is the major structural material used in the construction of fast breeder reactors. Activated Tungsten Inert Gas (A-TIG) welding , a variant of the TIG welding process has been found to enhance the depth of penetration significantly during autogenous welding and also found to enhance the creep rupture life in stainless steels. The present study aims at comparing the effect of TIG and A-TIG welding processes on the impression creep resistance of type 316 LN stainless steel base metal, fusion zone and heat affected zone (HAZ) of weld joints. Optical and TEM have been used to correlate the microstructures with the observed creep rates of various zones of the weld joints. Finer microstructure and higher ferrite content was observed in the TIG weld joint fusion zone. Coarser grain structure was observed in the HAZ of the weld joints. Impression creep rate of A-TIG weld joint fusion zone was almost equal to that of the base metal and lower than that of the TIG weld joint fusion zone. A-TIG weld joint HAZ was found to have lower creep rate compared to that of conventional TIG weld joint HAZ due to higher grain size. HAZ of the both the weld joints exhibited lower creep rate than the base metal. (author)

  20. Fatigue properties of type 316LN stainless steel in air and mercury

    International Nuclear Information System (INIS)

    Strizak, J.P.; Tian, H.; Liaw, P.K.; Mansur, L.K.

    2005-01-01

    An extensive fatigue testing program on 316LN stainless steel was recently carried out to support the design of the mercury target container for the spallation neutron source (SNS) that is currently under construction at the Oak Ridge National Laboratory in the United States. The major objective was to determine the effects of mercury on fatigue behavior. The S-N fatigue behavior of 316LN stainless steel is characterized by a family of bilinear fatigue curves which are dependent on frequency, environment, mean stress and cold work. Generally, fatigue life increases with decreasing stress and levels off in the high cycle region to an endurance limit below which the material will not fail. For fully reversed loading as well as tensile mean stress loading conditions mercury had no effect on endurance limit. However, at higher stresses a synergistic relationship between mercury and cyclic loading frequency was observed at low frequencies. As expected, fatigue life decreased with decreasing frequency, but the response was more pronounced in mercury compared with air. As a result of liquid metal embrittlement (LME), fracture surfaces of specimens tested in mercury showed widespread brittle intergranular cracking as opposed to typical transgranular cracking for specimens tested in air. For fully reversed loading (zero mean stress) the effect of mercury disappeared as frequency increased to 10 Hz. For mean stress conditions with R-ratios of 0.1 and 0.3, LME was still evident at 10 Hz, but at 700 Hz the effect of mercury had disappeared (R 0.1). Further, for higher R-ratios (0.5 and 0.75) fatigue curves for 10 Hz showed no environmental effect. Finally, cold working (20%) increased tensile strength and hardness, and improved fatigue resistance. Fatigue behavior at 10 and 700 Hz was similar and no environmental effect was observed

  1. Fatigue properties of type 316LN stainless steel in air and mercury

    Science.gov (United States)

    Strizak, J. P.; Tian, H.; Liaw, P. K.; Mansur, L. K.

    2005-08-01

    An extensive fatigue testing program on 316LN stainless steel was recently carried out to support the design of the mercury target container for the spallation neutron source (SNS) that is currently under construction at the Oak Ridge National Laboratory in the United States. The major objective was to determine the effects of mercury on fatigue behavior. The S- N fatigue behavior of 316LN stainless steel is characterized by a family of bilinear fatigue curves which are dependent on frequency, environment, mean stress and cold work. Generally, fatigue life increases with decreasing stress and levels off in the high cycle region to an endurance limit below which the material will not fail. For fully reversed loading as well as tensile mean stress loading conditions mercury had no effect on endurance limit. However, at higher stresses a synergistic relationship between mercury and cyclic loading frequency was observed at low frequencies. As expected, fatigue life decreased with decreasing frequency, but the response was more pronounced in mercury compared with air. As a result of liquid metal embrittlement (LME), fracture surfaces of specimens tested in mercury showed widespread brittle intergranular cracking as opposed to typical transgranular cracking for specimens tested in air. For fully reversed loading (zero mean stress) the effect of mercury disappeared as frequency increased to 10 Hz. For mean stress conditions with R-ratios of 0.1 and 0.3, LME was still evident at 10 Hz, but at 700 Hz the effect of mercury had disappeared ( R = 0.1). Further, for higher R-ratios (0.5 and 0.75) fatigue curves for 10 Hz showed no environmental effect. Finally, cold working (20%) increased tensile strength and hardness, and improved fatigue resistance. Fatigue behavior at 10 and 700 Hz was similar and no environmental effect was observed.

  2. Effect of flowing sodium on corrosion and tensile properties of AISI type 316LN stainless steel at 823 K

    Science.gov (United States)

    Sivai Bharasi, N.; Thyagarajan, K.; Shaikh, H.; Balamurugan, A. K.; Bera, Santanu; Kalavathy, S.; Gurumurthy, K.; Tyagi, A. K.; Dayal, R. K.; Rajan, K. K.; Khatak, H. S.

    2008-07-01

    AISI type 316LN stainless steel was exposed to flowing sodium in mass transfer loop (MTL) at 823 K for 16 000 h and then examined for changes in the tensile properties due to the mass transfer and corrosion effects. Comparisons in microstructural and mechanical properties were made between annealed, thermally aged and sodium exposed materials. Microstructural examination of thermally aged and sodium exposed materials revealed precipitation of carbides at the grain boundaries. The sodium exposed samples contained a degraded layer at the surface up to a depth of around 10 μm and a surface carburized layer of about 30 μm. There was about 15% increase in yield strength and a decrease of about 20% in ductility for the sodium exposed material vis-a-vis thermally aged material and this was attributed to carburization effects and microstructural changes.

  3. Effect of flowing sodium on corrosion and tensile properties of AISI type 316LN stainless steel at 823 K

    International Nuclear Information System (INIS)

    Sivai Bharasi, N.; Thyagarajan, K.; Shaikh, H.; Balamurugan, A.K.; Bera, Santanu; Kalavathy, S.; Gurumurthy, K.; Tyagi, A.K.; Dayal, R.K.; Rajan, K.K.; Khatak, H.S.

    2008-01-01

    AISI type 316LN stainless steel was exposed to flowing sodium in mass transfer loop (MTL) at 823 K for 16 000 h and then examined for changes in the tensile properties due to the mass transfer and corrosion effects. Comparisons in microstructural and mechanical properties were made between annealed, thermally aged and sodium exposed materials. Microstructural examination of thermally aged and sodium exposed materials revealed precipitation of carbides at the grain boundaries. The sodium exposed samples contained a degraded layer at the surface up to a depth of around 10 μm and a surface carburized layer of about 30 μm. There was about 15% increase in yield strength and a decrease of about 20% in ductility for the sodium exposed material vis-a-vis thermally aged material and this was attributed to carburization effects and microstructural changes

  4. Microstructural aspects of thermal ageing of AISI type 316 LN stainless steels

    International Nuclear Information System (INIS)

    Shankar, P.; Sundararaman, D.; Raghunathan, V.S.; Ranganathan, S.

    1995-01-01

    The various stages of precipitation of Cr 2 N in austenite and the associated microstructural features are presented. The role of nitrogen on the interface structure is discussed. The fine sub-structure of the cellular bands are described based on high resolution transmission electron microscope studies. (author). 2 refs., 2 tabs., 6 figs

  5. Triple ion-beam studies of radiation damage effects in a 316LN austenitic alloy for a high power spallation neutron source

    International Nuclear Information System (INIS)

    Lee, E.H.; Rao, G.R.; Hunn, J.D.; Rice, P.M.; Lewis, M.B.; Cook, S.W.; Farrell, K.; Mansur, L.K.

    1997-09-01

    Austenitic 316LN alloy was ion-irradiated using the unique Triple Ion Beam Facility (TIF) at ORNL to investigate radiation damage effects relevant to spallation neutron sources. The TIF was used to simulate significant features of GeV proton irradiation effects in spallation neutron source target materials by producing displacement damage while simultaneously injecting helium and hydrogen at appropriately high gas/dpa ratios. Irradiations were carried out at 80, 200, and 350 C using 3.5 MeV Fe ++ , 360 keV He + , and 180 keV H + to accumulate 50 dpa by Fe, 10,000 appm of He, and 50,000 appm of H. Irradiations were also carried out at 200 C in single and dual ion beam modes. The specific ion energies were chosen to maximize the damage and the gas accumulation at a depth of ∼ 1 microm. Variations in microstructure and hardness of irradiated specimens were studied using transmission electron microscopy (TEM) and a nanoindentation technique, respectively. TEM investigation yielded varying damage defect microstructures, comprising black dots, faulted and unfaulted loops, and a high number density of fine bubbles (typically less than 1 nm in diameter). With increasing temperature, faulted loops had a tendency to unfault, and bubble microstructure changed from a bimodal size distribution to a unimodal distribution. Triple ion irradiations at the three temperatures resulted in similar increases in hardness of approximately a factor of two. Individually, Fe and He ions resulted in a similar magnitude of hardness increase, whereas H ions showed only a very small effect. The present study has yielded microstructural information relevant to spallation neutron source conditions and indicates that the most important concern may be radiation induced hardening and associated ductility loss

  6. Triple Ion-Beam Studies of Radiation Damage Effects in a 316LN Austenitic Alloy for a High Power Spallation Neutron Source

    International Nuclear Information System (INIS)

    Lee, E.H.

    2001-01-01

    Austenitic 316LN alloy was ion-irradiated using the unique Triple Ion Beam Facility (TIF) at ORNL to investigate radiation damage effects relevant to spallation neutron sources. The TIF was used to simulate significant features of GeV proton irradiation effects in spallation neutron source target materials by producing displacement damage while simultaneously injecting helium and hydrogen at appropriately high gas/dpa ratios. Irradiations were carried out at 80, 200, and 350 C using 3.5 MeV Fe 2 , 360 keV He + , and 180 keV H + to accumulate 50 dpa by Fe, 10,000 appm of He, and 50,000 appm of H. Irradiations were also carried out at 200 C in single and dual ion beam modes. The specific ion energies were chosen to maximize the damage and the gas accumulation at a depth of ∼ 1 microm. Variations in microstructure and hardness of irradiated specimens were studied using transmission electron microscopy (TEM) and a nanoindentation technique, respectively. TEM investigation yielded varying damage defect microstructures, comprising black dots, faulted and unfaulted loops, and a high number density of fine bubbles (typically less than 1 nm in diameter). With increasing temperature, faulted loops had a tendency to unfault, and bubble microstructure changed from a bimodal size distribution to a unimodal distribution. Triple ion irradiations at the three temperatures resulted in similar increases in hardness of approximately a factor of two. Individually, Fe and He ions resulted in a similar magnitude of hardness increase, whereas H ions showed only a very small effect. The present study has yielded microstructural information relevant to spallation neutron source conditions and indicates that the most important concern may be radiation induced hardening and associated ductility loss

  7. Understanding and modelling of the aniso-thermal cyclic mechanical behaviour of the AISI 316LN austenitic stainless steel

    International Nuclear Information System (INIS)

    Gentet, D.

    2009-11-01

    The main subject of this report consists in proposing a mechanical model of the viscoplastic behaviour of an austenitic stainless steel under isothermal and aniso-thermal low cycle fatigue loadings at high temperatures (550-900 K). In this domain, numerous phenomena linked to dynamic strain ageing (DSA) and to dipolar dislocation structure formation may appear. Isothermal and aniso-thermal low cycle fatigue tension-compression tests were performed in order to verify some aspects about the effect of temperature on the mechanical behaviour. The study of the hysteresis loops and the observation of dislocation structures carried on transmission electron microscopy establish two different DSA mechanisms during isothermal tests. The effect of temperature history is shown for for particular temperature sequences. It is demonstrated that the stress amplitude increase when the sample is submitted to cycles at 'high temperature' is linked to the second mechanism of DSA. It comes from the increase of short range interaction between dislocations (chromium segregation), but it is also the consequence of the lack of dipolar structure annihilation at low temperature. From the experimental analysis of DSA mechanisms and dipolar restoration, a macroscopic aniso-thermal model is developed using physical internal variables (densities of dislocations). The equations of a polycrystalline model are rewritten with the aim of getting a simple multi-scale approach which can be used on finite elements analysis software. Between 550 and 873 K, the simulation results are in good accordance with the macroscopic and microscopic observations of low cycle fatigue, relaxation, and 2D-ratchetting tests. (author)

  8. Damage on 316LN stainless steel transformed by powder metallurgy

    International Nuclear Information System (INIS)

    Couturier, R.; Burlet, H.

    1998-01-01

    This study deals with the 316 LN stainless steel elaboration by powder metallurgy. This method allows the realization of structures in austenitic steel less affected by the thermal aging than the cast austenitic-ferritic components. The components are performed by the method of HIP (Hot Isostatic Pressing). Mechanical tests are provided to control mechanical properties

  9. Detection of crevice corrosion in AISI type 316LN stainless steel in presence of pseudomonas bacteria using electrochemical noise technique

    International Nuclear Information System (INIS)

    Pujar, M.G.; George, R.P.; Ramya, S.; Kamachi Mudali, U.

    2011-01-01

    Gram-negative pseudomonas sp. was used as the test organism for the biofilm formation and growth on 316 LN stainless and electrochemical noise (EN) monitoring studies, since this genus has been identified as the major biofilm former on stainless steels. EN studies were conducted for 21 days on the galvanically coupled specimens exposed to the dilute nutrient culture with pseudomonas sp. The visual records of the current potential EN, analysis of statistical and power spectral density (PSD) parameters of current and potential along with shot-noise parameters showed increase in the localized corrosion during initial 2-11 days exposure; thereafter the specimens showed passive behaviour. Raman spectra taken inside the pit for the specimen exposed for 21 days showed the peak corresponding to Cr 3+ ions signifying repassivation process. Similarly, Raman spectra on the surface outside the pits on the specimens exposed for 7, 10 and 15 days showed steady growth of the peak corresponding to Cr 3+ ions. This implied steady enrichment of Cr on the surface of the specimen which accounted for the gradual passivation with increased exposure time. (author)

  10. Application of Leak Before Break concept in 316LN austenitic steel pipes welded using 316L; Aplicação do conceito 1vazamento antes da falha' (Leak Before Break) em tubulações de aço 316LN soldado com metal de adição 316L

    Energy Technology Data Exchange (ETDEWEB)

    Cunto, Gabriel Giannini de

    2017-07-01

    This work presents a study of application of the Leak Before Break (LBB) concept, usually applied in nuclear power plants, in a pipe made from steel AISI type 316LN welded a coated electrode AISI type 316L. LBB concept is a criterion based on fracture mechanics analysis to show that a crack leak, present in a pipe, can be detected by leak detection systems, before this crack reaches a critical size that results in pipe fail. In the studied pipe, tensile tests and Ramberg-Osgood analyses were performed, as well as fracture toughness tests for obtaining the material resistance curve J-R. The tests were performed considering the base metal, weld and heat affected zone (HAZ), at the same operating temperatures of a nuclear power plant. For the mechanical properties found in these tests, load limit analyses were performed in order to determine the size of a crack which could cause a detectable leakage and the critical crack size, considering failure by plastic collapse. For the critical crack size found in the weld, which is the region that presented the lowest toughness, Integral J and tearing modulus T analyses were performed, considering failure by tearing instability. Results show a well-defined behavior between the base metal, HAZ and weld zones, where the base metal has a high toughness behavior, the weld has a low toughness behavior and the HAZ showed intermediate mechanical properties between the base metal and the weld. Using the PICEP software, the leak rate curves versus crack size and also the critical crack size were determined by considering load limit analysis. It was observed that after a certain crack size, the leak rate in base metal is much higher than for the HAZ and the weld, considering the same crack length. This occurs because in the base metal crack, it is expected that the crack grows in a more rounded form due to its higher toughness. The lowest critical crack size was found for the base metal presenting circumferential cracks. For the

  11. Dynamic Recrystallization and Hot Workability of 316LN Stainless Steel

    Directory of Open Access Journals (Sweden)

    Chaoyang Sun

    2016-07-01

    Full Text Available To identify the optimal deformation parameters for 316LN austenitic stainless steel, it is necessary to study the macroscopic deformation and the microstructural evolution behavior simultaneously in order to ascertain the relationship between the two. Isothermal uniaxial compression tests of 316LN were conducted over the temperature range of 950–1150 °C and for the strain rate range of 0.001–10 s−1 using a Gleeble-1500 thermal-mechanical simulator. The microstructural evolution during deformation processes was investigated by studying the constitutive law and dynamic recrystallization behaviors. Dynamic recrystallization volume fraction was introduced to reveal the power dissipation during the microstructural evolution. Processing maps were developed based on the effects of various temperatures, strain rates, and strains, which suggests that power dissipation efficiency increases gradually with increasing temperature and decreasing stain rate. Optimum regimes for the hot deformation of 316LN stainless steel were revealed on conventional hot processing maps and verified effectively through the examination of the microstructure. In addition, the regimes for defects of the product were also interpreted on the conventional hot processing maps. The developed power dissipation efficiency maps allow optimized processing routes to be selected, thus enabling industry producers to effectively control forming variables to enhance practical production process efficiency.

  12. Study of the mechanical properties of stainless steel 316LN prepared by hot isostatic compression. Influence of preparation parameters

    International Nuclear Information System (INIS)

    Couturier, Raphael

    1999-01-01

    This research thesis has been performed within an R and D programme which aimed at optimising and certifying the HIP process (hot isostatic pressing) from a technological as well as metallurgical point of view. The objective has been to improve dimensional reproducibility of fabricated parts, and metallurgical properties of the dense material. Reference parts are those belonging to PWR primary circuit, and are made in cast austenitic-ferritic steel. Thus, the objective has been to show that these parts can be beneficially fabricated by powder metallurgy in austenitic grade. A mock part (a primary circuit pump wheel at the 1/2 scale) has first been fabricated by HIP, and a more complex shape generator has been designed. The author reports the determination of microstructure and mechanical characteristics of the austenitic 316LN steel produced by HIP and used to fabricate mock parts and demonstrator parts, the study of the relationship between dense material properties and fabrication parameters (temperature, pressure, consolidation time), and the analysis of the consequences of an elaboration by HIP on the 316LN steel with comparison with forged parts. After a presentation of the Powder Metallurgy elaboration technique, the author reports a bibliographical study on the precipitation at Prior Particle Boundaries (PPB), reports the study of microstructure and mechanical properties of the HIPed 316LN, and discusses the possibility of a decrease of precipitation at PPBs by adjusting powder degassing or a granulometric sorting. The last part reports the extension of the study of steel coherence to a temperature range which encompasses the primary circuit operation temperature (350 C). Resilience tests are performed as well as mechanical tests on notched axisymmetric samples. A finite element calculation of these samples allows the validation of the use of a Thomson-type model to describe the emergence of defects which are typical of a steel elaborated by powder

  13. Microstructure in 316LN stainless steel fatigued at low temperature

    International Nuclear Information System (INIS)

    Kruml, T.; Polak, J.

    2000-01-01

    The internal structure of AISI 316LN austenitic stainless steel cyclically strained at liquid nitrogen temperature has been studied using transmission electron microscopy and electron diffraction. High amplitude cyclic straining promotes the transformation of austenite with face centred cubic (f.c.c.) structure into ε-martensite with hexagonal close packed (h.c.p.) structure and α'-martensite with distorted base centred cubic (b.c.c.) structure. Thin plates containing ε-martensite were identified in all grains. α'-martensite nucleates at the intersection of the plates in grains with two or more systems of plates and can grow in the bands. The orientation of transformed phases follows the Shoji-Nichiyama and Kurdjumov-Sachs relations. Mechanisms of low temperature cyclic straining are discussed. (orig.)

  14. Effect of welding processes and joint configuration on the residual stresses and distortion in type 316 LN stainless steel weld joints

    International Nuclear Information System (INIS)

    Vasantharaja, P.; Vasudevan, M.; Palanichamy, P.

    2012-01-01

    Fabrication by welding introduces significant residual stresses in the welded structure/component due to non-uniform heat distribution during heating and cooling cycle. To control, reduce, or beneficially redistribute the residual stresses in weld joints, the stress distribution needs to be known. In the present study, weld joints of 16 mm thick 316LN stainless steel were made by multi-pass TIG, A-TIG welding and combination of TIG and A-TIG welding processes with various joint configurations. While V-groove edge preparation was required for making multi-pass TIG weld joint, square-edge preparation was sufficient for making A-TIG weld joint. Ultrasonic nondestructive technique based on the critically refracted longitudinal waves (LCR waves) has been used for the quantitative surface/sub-surface residual stress measurements in the weld joints. Distortion measurements were carried out before and after welding using height gauge. A-TIG weld joint was found to exhibit significant reduction in tensile residual stresses and distortion in comparison to that of other joints. (author)

  15. A Study of Submicron Grain Boundary Precipitates in Ultralow Carbon 316LN Steels

    Science.gov (United States)

    Downey, S.; Han, K.; Kalu, P. N.; Yang, K.; Du, Z. M.

    2010-04-01

    This article reports our efforts in characterization of an ultralow carbon 316LN-type stainless steel. The carbon content in the material is one-third that in a conventional 316LN, which further inhibits the formation of grain boundary carbides and therefore sensitizations. Our primary effort is focused on characterization of submicron size precipitates in the materials with the electron backscatter diffraction (EBSD) technique complemented by Auger electron spectroscopy (AES). Thermodynamic calculations suggested that several precipitates, such as M23C6, Chi, Sigma, and Cr2N, can form in a low carbon 316LN. In the steels heat treated at 973 K (700 °C) for 100 hours, a combination of EBSD and AES conclusively identified the grain boundary precipitates (≥100 nm) as Cr2N, which has a hexagonal closed-packed crystallographic structure. Increases of the nitrogen content promote formation of large size Cr2N precipitates. Therefore, prolonged heat treatment at relatively high temperatures of ultralow carbon 316LN steels may result in a sensitization.

  16. Study of creep crack growth behavior of 316LN welds

    International Nuclear Information System (INIS)

    Venugopal, S.; Kumar, Yatindra; Sasikala, G.

    2016-01-01

    Creep crack growth (CCG) behavior plays an important role in the assessment of structural integrity of components operating at elevated temperature under load/stress condition. Integrity of the welded components is decided primarily by that of the weld. Creep crack growth behavior of 316LN welds prepared using consumables developed indigenously for welding the 316L(N) SS components for the Prototype Fast Breeder Reactor has been studied. The composition of the consumable is tailored to ensure about 5 FN (ferrite number) of δ ferrite in the weld deposit. Constant load CCG tests were carried out as per ASTM E1457 at different applied loads at temperatures in the range 823-923 K on CT specimens fabricated from 'V-type' weld joints with notch in the weld centre. The creep crack growth rate (α) is commonly correlated to a time dependent fracture mechanics parameter known as C*. The α3-C* correlations (α=D(C*) φ ) were established in the temperature range 823-923 K. The crack growth rates at different temperature have been compared with that given in RCC-MR. Extensive microstructural and fractographic studies using optical and scanning electron microscopy were carried out on the CCG tested specimens to understand the effect of transformation of delta ferrite on the creep damage and fracture mechanisms associated with CCG in the weld metal at different test conditions. (author)

  17. Time dependent design curves for a high nitrogen grade of 316LN stainless steel for fast reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Ganesh Kumar, J.; Ganesan, V.; Laha, K.; Mathew, M.D., E-mail: mathew@igcar.gov.in

    2013-12-15

    Highlights: • 316LN SS is an important high temperature structural material for sodium cooled fast reactors. • Creep strength of 316LN SS has been increased substantially by increasing the nitrogen content. • Creep design curves based on RCC-MR code procedures have been generated for this new material. • 100,000 h allowable stress at 600 °C increased by more than 40% as a result of doubling the nitrogen content in the steel. - Abstract: Type 316L(N) stainless steel (SS) containing 0.06–0.08 wt.% nitrogen is the major material for reactor assembly components of sodium cooled fast reactors (SFRs). With a view to increase the design life of SFRs to 60 years from the current life of 40 years, studies are being carried out to improve the high temperature creep and low cycle fatigue properties of 316LN SS by increasing the nitrogen content above 0.08 wt.%. In this investigation, the creep properties of a high nitrogen grade of 316LN SS containing 0.14 wt.% nitrogen have been studied. Creep tests were carried out at 550 °C, 600 °C and 650 °C at various stress levels in the range of 140–350 MPa. Creep strength was found to be significantly improved by doubling the nitrogen content in this steel. The maximum rupture life in these tests was 33,000 h. The creep data has been analyzed according to RCC-MR nuclear code procedures in order to generate the creep design curves for the high nitrogen grade of 316LN SS. Allowable stress for 100,000 h at 600 °C increased by more than 38% as a result of doubling the nitrogen content in the steel.

  18. A Study on Thermal Desorption of Deuterium in D-loaded SS316LN for ITER Tritium Removal System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Myungchul; Kim, Heemoon; Ahn, Sangbok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Jaeyong; Lee, Sanghwa; LanAhn, Nguyen Thi [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    Because Type B radwaste includes tritium on its inside, especially at vicinity of surface, tritium removal from the radwaste is a matter of concern in terms of the radwaste processes. Tritium behavior in materials is related with temperature. Considering a diffusion process, it is expected that tritium removal efficiency is enhanced with increasing baking temperature. However, there is a limitation about temperature due to facility capacity and economic aspect. Therefore, it is necessary to investigate the effect of temperature on the desorption behavior of Tritium in ITER materials. TDS analysis was performed in SS316LN loaded at 120, 240 and 350 °C. D2 concentration and the desorption peak temperature increased with increasing loading temperature. Using peak shift method with three ramp rates of 0.166, 0.332, and 0.5 °C/sec, trap activation energy of D in SS316LN loaded at 350 °C was 56 kJ/mol.

  19. Effects of Thermocapillary Forces during Welding of 316L-Type Wrought, Cast and Powder Metallurgy Austenitic Stainless Steels

    CERN Document Server

    Sgobba, Stefano

    2003-01-01

    The Large Hadron Collider (LHC) is now under construction at the European Organization for Nuclear Research (CERN). This 27 km long accelerator requires 1248 superconducting dipole magnets operating at 1.9 K. The cold mass of the dipole magnets is closed by a shrinking cylinder with two longitudinal welds and two end covers at both extremities of the cylinder. The end covers, for which fabrication by welding, casting or Powder Metallurgy (PM) was considered, are dished-heads equipped with a number of protruding nozzles for the passage of the different cryogenic lines. Structural materials and welds must retain high strength and toughness at cryogenic temperature. AISI 316L-type austenitic stainless steel grades have been selected because of their mechanical properties, ductility, weldability and stability of the austenitic phase against low-temperature spontaneous martensitic transformation. 316LN is chosen for the fabrication of the end covers, while the interconnection components to be welded on the protrud...

  20. Microstructure, local mechanical properties and stress corrosion cracking susceptibility of an SA508-52M-316LN safe-end dissimilar metal weld joint by GTAW

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Hongliang; Zhu, Ruolin [Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning KeyLaboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049 (China); Zhang, Zhiming [Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning KeyLaboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, Jianqiu, E-mail: wangjianqiu@imr.ac.cn [Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning KeyLaboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Han, En.-Hou.; Ke, Wei [Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning KeyLaboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Su, Mingxing [Shanghai Research Center for Weld and Detection Engineering Technique of Nuclear Equipment, Shanghai 201306 (China)

    2016-07-04

    The microstructure, local mechanical properties and local stress corrosion cracking susceptibility of an SA508-52M-316LN domestic dissimilar metal welded safe-end joint used for AP1000 nuclear power plant prepared by automatic gas tungsten arc welding was studied in this work by optical microscopy, scanning electron microscopy (with electron back scattering diffraction and an energy dispersive X-ray spectroscopy system), micro-hardness testing, local mechanical tensile testing and local slow strain rate tests. The micro-hardness, local mechanical properties and stress corrosion cracking susceptibility across this dissimilar metal weld joint vary because of the complex microstructure across the fusion area and the dramatic chemical composition change across the fusion lines. Briefly, Type I boundaries and Type II boundaries exist in 52Mb near the SA508-52Mb interface, a microstructure transition was found in SA508 heat affected zone, the residual strain and grain boundary character distribution changes as a function of the distance from the fusion boundary in 316LN heat affected zone, micro-hardness distribution and local mechanical properties along the DMWJ are heterogeneous, and 52Mw-316LN interface has the highest SCC susceptibility in this DMWJ while 316LN base metal has the lowest one.

  1. Fatigue and fatigue crack growth properties of 316LN and Incoloy 908 below 10 K

    International Nuclear Information System (INIS)

    Nyilas, A.; Zhang, J.; Obst, B.; Ulbricht, A.

    1992-01-01

    The cyclic loading characteristics of Tokamak type thermonuclear machines demand study of the fatigue response of the materials used in critical components. The large superconducting magnets and their superconductors will operate under cyclic mechanical stress conditions. The present paper is biased towards the current superconductor design of the NET (Next European Torus) model coil concept. The superconductor of this coil will be a cable-in-conduit Nb 3 Sn type with an enveloped stiff external jacket structure. The wall thickness of the jacket structure is within the range of 4-5 mm. The manufacturing of the jacket lengths for several hundred meters require an appropriate joining process due to the prefabricated section pieces available only in short lengths of 5-7 meters. The recently anticipated solution favors the flash butt welding technique. The performance of the superconductors jacket will depend on the material selection and the proper structural design according to the existing low temperature structural materials data base. The wind and react Nb 3 Sn-manufacturing process must also account the materials properties after ageing. A program was set up to elucidate the fatigue-life behavior and fatigue crack growth rate (FCGR) of the selected two candidate materials. These materials were the AISI 316LN with a specified low carbon content to avoid the embrittlement after the ageing process and the Incoloy 908. The 316LN material in the as received condition was tested with respect to its fatigue-life for specimens bearing predefined flaws and cracks. The propagation of surface cracks at 12 K and at 295 K was characterized with non standard specimens. The tests were performed in a cryogenic dynamic test facility under helium gas environment between 7 K and 20 K. Using the reference growth laws obtained from these measurements the total crack propagation starting with the initial crack length of the specimen could be predicted by numerical computation

  2. Optimization of hybrid laser - TIG welding of 316LN steel using response surface methodology (RSM)

    Science.gov (United States)

    Ragavendran, M.; Chandrasekhar, N.; Ravikumar, R.; Saxena, Rajesh; Vasudevan, M.; Bhaduri, A. K.

    2017-07-01

    In the present study, the hybrid laser - TIG welding parameters for welding of 316LN austenitic stainless steel have been investigated by combining a pulsed laser beam with a TIG welding heat source at the weld pool. Laser power, pulse frequency, pulse duration, TIG current were presumed as the welding process parameters whereas weld bead width, weld cross-sectional area and depth of penetration (DOP) were considered as the process responses. Central composite design was used to complete the design matrix and welding experiments were conducted based on the design matrix. Weld bead measurements were then carried out to generate the dataset. Multiple regression models correlating the process parameters with the responses have been developed. The accuracy of the models were found to be good. Then, the desirability approach optimization technique was employed for determining the optimum process parameters to obtain the desired weld bead profile. Validation experiments were then carried out from the determined optimum process parameters. There was good agreement between the predicted and measured values.

  3. Influence of martensitic transformation on the low-cycle fatigue behaviour of 316LN stainless steel at 77 K

    International Nuclear Information System (INIS)

    Botshekan, M.; Degallaix, S.; Desplanques, Y.

    1997-01-01

    Tensile and low-cycle fatigue tests were performed on a 316LN austenitic stainless steel at 300 and 77 K. The tensile and low-cycle fatigue properties were obtained and analysed in terms of influence of temperature on the plastic deformation process, and particularly on the strain-induced martensite formation. The martensite content was measured by a magnetic-at-saturation method. No martensite was detected at 300 K. On the contrary, strain-induced martensite transformation is responsible for the higher tensile elongation at 77 K and for the secondary hardening observed on softening-hardening curves in low-cycle fatigue at 77 K. The induced martensite content in tensile tests is a function of the strain according to Angel's model, and in low-cycle fatigue it is a function of the strain level and of the accumulated plastic strain. (orig.)

  4. Study on feasibility of replacing 321 with 316LN stainless steel for main reactor coolant pipe material

    International Nuclear Information System (INIS)

    Luo Yijun

    2013-01-01

    The metallurgical, physical and mechanical performance, and the corrosion and welding properties of 00Cr17Ni12Mo2 (controlled Nitrogen, ANSI316LN) and 0Cr18Ni10Ti (ANSI321SS) for main pipe material were analyzed comparatively in this paper. The feasibility of 316LN pipe material manufacturing was studied too. The analysis results showed that under the operation condition of the nuclear reactor, the general properties of 316LN are better than that of 321SS. Therefore, 316LN could be used for main pipe material, replacing 321SS. (authors)

  5. Diffusion-bonded 16MND5-Inconel 690-316LN junction: elaboration and process residual stresses modeling

    International Nuclear Information System (INIS)

    Martinez, Michael

    1999-01-01

    The objective of this research thesis is, on the one hand, to elaborate and to characterise a bonded junction of 16MND5 and 316LN steels, and, on the other hand, to develop a simulation tool for the prediction of microstructures after bonding, as well as residual stresses related to this process. The author first reports the study of the use of diffusion bonding by hot isostatic pressing (HIP diffusion bonding) for the bonding of 16MND5 (steel used in French PWR vessel) and 316LN (austenitic stainless steel used in piping), in order to obtain junctions adapted to a use within PWRs. In this case, the use of an Inconel insert material appeared to be necessary to avoid stainless steel carburization. Thus, inserts in Inconel 600 and 690 have been tested. The objective has then been to develop a realistic calculation of residual stresses in this assembly. These stresses are stimulated by quenching. The author notably studied the simulation of temperature dependent phase transformations, and stress induced phase transformations. An existing model is validated and applied to HIP and quenching cycles. The last part reports the calculation of residual stresses by simulation of the mechanical response of the three-component material cooled from 900 C to room temperature and thus submitted to a loading of thermal origin (dilatation) and metallurgical origin (phase transformations in the 16MND5). The effect of carbon diffusion on mechanical properties has also been taken into account. The author discusses problems faced by existing models, and explains the choice of conventional macro-mechanical models. The three materials are supposed to have a plastic-viscoplastic behaviour with isotropic and kinematic strain hardening, and this behaviour is identified between 20 and 900 C [fr

  6. Strain-rate dependent fatigue behavior of 316LN stainless steel in high-temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jibo [CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wu, Xinqiang, E-mail: xqwu@imr.ac.cn [CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Han, En-Hou; Ke, Wei; Wang, Xiang [CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Sun, Haitao [Nuclear and Radiation Safety Center, SEPA, Beijing 100082 (China)

    2017-06-15

    Low cycle fatigue behavior of forged 316LN stainless steel was investigated in high-temperature water. It was found that the fatigue life of 316LN stainless steel decreased with decreasing strain rate from 0.4 to 0.004 %s{sup −1} in 300 °C water. The stress amplitude increased with decreasing strain rate during fatigue tests, which was a typical characteristic of dynamic strain aging. The fatigue cracks mainly initiated at pits and slip bands. The interactive effect between dynamic strain aging and electrochemical factors on fatigue crack initiation is discussed. - Highlights: •The fatigue lives of 316LN stainless steel decrease with decreasing strain rate. •Fatigue cracks mainly initiated at pits and persistent slip bands. •Dynamic strain aging promoted fatigue cracks initiation in high-temperature water.

  7. The Laser Welding with Hot Wire of 316LN Thick Plate Applied on ITER Correction Coil Case

    CERN Document Server

    Fang, Chao; Wu, Weiyue; Wei, Jing; Zhang, Shuquan; Li, Hongwei; Dolgetta, N; Libeyre, P; Cormany, C; Sgobba, S

    2014-01-01

    ITER correction coil (CC) cases have characteristics of small cross section, large dimensions, and complex structure. The cases are made of heavy thick (20 mm), high strength and high toughness austenitic stainless steel 316LN. The multi-pass laser welding with hot wire technology is used for the case closure welding, due to its low heat input and deformation. In order to evaluate the reliability of this welding technology, 20 mm welding samples with the same groove structure and welding depth as the cases were welded. High purity argon was used as the shielding gas to prevent oxidation because of the narrowness and depth of the weld. In this paper investigation of, microstructure characteristics and mechanical properties of welded joints using optimized welding parameters are presented. The results show that the base metal, fusion metal, and heat affected zone (HAZ) are all have fully austenitic microstructure, and that the grain size of fusion metal was finer than that of the base metal. The welding resulte...

  8. Analyses of Small Punch Creep Deformation Behavior of 316LN Stainless Steel Having Different Nitrogen Contents

    Science.gov (United States)

    Ganesh Kumar, J.; Laha, K.; Ganesan, V.; Prasad Reddy, G. V.

    2018-04-01

    The small punch creep (SPC) behavior of 316LN stainless steel (SS) containing 0.07, 0.11 and 0.14 wt.% nitrogen has been investigated at 923 K. The transient and tertiary SPC deformation of 316LN SS with various nitrogen contents have been analyzed according to the equation proposed for SPC deflection, δ = δ0 + δT (1 - e^{ - κ t} ) + \\dot{δ }s t + δ3 e^[ φ( t - tr ) ]. The relationships among the rate of exhaustion of transient creep (κ), steady-state deflection rate (\\dot{δ }s ) and the rate of acceleration of tertiary creep (φ) revealed the interrelationships among the three stages of SPC curve. The first-order reaction rate theory was found to be applicable to SPC deformation throughout the transient as well as tertiary region, in all the investigated steels. The initial and final creep deflection rates were decreased, whereas time to attain steady-state deflection rate increased with the increase in nitrogen content. By increasing the nitrogen content in 316LN SS from 0.07 to 0.14 wt.%, each stage of SPC was prolonged, and consequently, the values of κ, \\dot{δ }s and φ were lowered. Using the above parameters, the master curves for both transient and tertiary SPC deflections were constructed for 316LN SS containing different nitrogen contents.

  9. Non local approach in crystalline plasticity: study of mechanical behaviour of AISI 316LN stainless steel during low cycle fatigue

    International Nuclear Information System (INIS)

    Schwartz, J.

    2011-01-01

    If fatigue crack initiation is currently quite well understood for pure single crystals, its comprehension and prediction in cases of polycrystal alloys such as AISI 316LN stainless steel remain complicated. Experimentally our study focuses on the characterisation of the mechanical behaviour and on the study at different scales of the phenomenon leading to low cycle fatigue crack initiation in 316LN stainless steel. For straining amplitudes of?e/2 = 0,3 and 0,5%, the cyclic softening observed during testing has been related to the organisation of dislocations in band structures. These bands, formed due to the activation of slip systems having the greatest Schmid's factor, carry the most part of the deformation. Their emergence at free surfaces leads to the formation of intrusions and extrusions which help cracks initiate and spread. Numerically we worked on the mesoscopic scale, proposing a new model of crystalline plasticity. This model integrates geometrically necessary dislocations (GND) directly computed from the lattice curvature. Implemented in the finite element code Abaqus TM and Cast3m TM , it is based on single crystal finite deformations laws proposed by Peirce et al. (1983) and Teodosiu et al. (1993). Extended for polycrystals by Hoc (2001) and Erieau (2003), it has been improved by the introduction of GND (Acharya and Bassani, 2000). The simulations performed on different types of aggregates (2D/3D) have shown that taking GND into account enables:- the prediction of the grain size effect on a macroscopic and on a local scale,- a finer computation of local stress field.The influence of the elasticity and interaction matrices on the values and the evolution of the isotropic and kinematic mean stresses has been shown. The importance of boundary conditions on computed mechanical fields could also be pointed out. (author)

  10. Research on damage evolution and damage model of 316LN steel during forging

    Energy Technology Data Exchange (ETDEWEB)

    Duan, X.W., E-mail: dxwmike1998@sina.com; Liu, J.S.

    2013-12-20

    The tensile tests and unloading tensile experiments of 316LN steel were conducted. The damage evolution processes were investigated by optical microscope. The fracture was studied using a Scanning Electron Microscope (SEM) and optical microscope, of which, the chemical compositions were analyzed by Energy Dispersive Spectrometer (EDS). The results show that voids nucleate by decohesion of Al{sub 2}O{sub 3} inclusions–matrix interface and mainly along the grain boundary, especially, at triangular grain boundary junctions. The tensile processes were simulated by Deform2D under different deformation conditions. The critical damage values were obtained. The model between the critical damage value, temperature and strain rate was established by regression analysis. A combination of numerical simulation and upsetting experiments was applied for verifying the accuracy and reliability of critical damage value. These damage values can be used to predict the initiation of voids during 316LN steel hot forging. So, they have important instructional effects on designing forging technology of 316LN steel.

  11. Study of magnetism in Ni-Cr hardface alloy deposit on 316LN stainless steel using magnetic force microscopy

    Science.gov (United States)

    Kishore, G. V. K.; Kumar, Anish; Chakraborty, Gopa; Albert, S. K.; Rao, B. Purna Chandra; Bhaduri, A. K.; Jayakumar, T.

    2015-07-01

    Nickel base Ni-Cr alloy variants are extensively used for hardfacing of austenitic stainless steel components in sodium cooled fast reactors (SFRs) to avoid self-welding and galling. Considerable difference in the compositions and melting points of the substrate and the Ni-Cr alloy results in significant dilution of the hardface deposit from the substrate. Even though, both the deposit and the substrate are non-magnetic, the diluted region exhibits ferromagnetic behavior. The present paper reports a systematic study carried out on the variations in microstructures and magnetic behavior of American Welding Society (AWS) Ni Cr-C deposited layers on 316 LN austenitic stainless steels, using atomic force microscopy (AFM) and magnetic force microscopy (MFM). The phase variations of the oscillations of a Co-Cr alloy coated magnetic field sensitive cantilever is used to quantitatively study the magnetic strength of the evolved microstructure in the diluted region as a function of the distance from the deposit/substrate interface, with the spatial resolution of about 100 nm. The acquired AFM/MFM images and the magnetic property profiles have been correlated with the variations in the chemical compositions in the diluted layers obtained by the energy dispersive spectroscopy (EDS). The study indicates that both the volume fraction of the ferromagnetic phase and its ferromagnetic strength decrease with increasing distance from the deposit/substrate interface. A distinct difference is observed in the ferromagnetic strength in the first few layers and the ferromagnetism is observed only near to the precipitates in the fifth layer. The study provides a better insight of the evolution of ferromagnetism in the diluted layers of Ni-Cr alloy deposits on stainless steel.

  12. Stress corrosion cracking of austenitic stainless steels in high temperature water and alternative stainless steel

    International Nuclear Information System (INIS)

    Yonezawa, T.

    2015-01-01

    In order to clarify the effect of SFE on SCC resistance of austenitic stainless steels and to develop the alternative material of Type 316LN stainless steel for BWR application, the effect of chemical composition and heat treatment on SFE value and SCCGR in oxygenated high temperature water were studied. The correlation factors between SFE values for 54 heats of materials and their chemical compositions for nickel, molybdenum, chromium, manganese, nitrogen, silicon and carbon were obtained. From these correlation factors, original formulae for SFE values calculation of austenitic stainless steels in the SHTWC, SHTFC and AGG conditions were established. The maximum crack length, average crack length and cracked area of the IGSCC for 33 heats were evaluated as IGSCC resistance in oxygenated high temperature water. The IGSCC resistance of strain hardened nonsensitized austenitic stainless steels in oxygenated high temperature water increases with increasing of nickel contents and SFE values. From this study, it is suggested that the SFE value is a key parameter for the IGSCC resistance of non-sensitized strain hardened austenitic stainless steels. As an alternative material of Type 316LN stainless steel, increased SFE value material, which is high nickel, high chromium, low silicon and low nitrogen material, is recommendable. (author)

  13. Thick-section weldments in 21-6-9 and 316LN stainless steel for fusion energy applications

    International Nuclear Information System (INIS)

    Alexander, D.J.; Goodwin, G.M.

    1991-01-01

    The Burning Plasma Experiment (BPX), formerly known as the Compact Ignition Tokomak, will be a major advance in the design of a fusion reactor. The successful construction of fusion reactors will require extensive welding of thick-section stainless steel plates. Severe service conditions will be experienced by the structure. Operating temperatures will range from room temperature (300 K) to liquid nitrogen temperature (77 K), and perhaps even lower. The structure will be highly stressed, and subject to sudden impact loads if plasma disruptions occur. This demands a combination of high strength and high toughness from the weldments. Significant portions of the welding will be done in the field, so preweld and postweld heat treatments will be difficult. The thick sections to be welded will require a high deposition rate process, and will result in significant residual stresses in the materials. Inspection of these thick sections in complex geometries will be very difficult. All of these constraints make it essential that the welding procedures and alloys be well understood, and the mechanical properties of the welds and their heat-affected zones must be adequately characterized. The candidate alloy for structural applications in the BPX such as the magnet cases was initially selected as 21-6-9 austenitic stainless steel, and later changed to 316LN stainless steel. This study examined several possible filler materials for thick-section (25 to 50 mm) weldments in these two materials. The tensile and Charpy V-notch properties were measured at room temperature and 77 K. The fracture toughness was measured for promising materials

  14. Study of magnetism in Ni–Cr hardface alloy deposit on 316LN stainless steel using magnetic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kishore, G.V.K.; Kumar, Anish, E-mail: anish@igcar.gov.in; Chakraborty, Gopa; Albert, S.K; Rao, B. Purna Chandra; Bhaduri, A.K.; Jayakumar, T.

    2015-07-01

    Nickel base Ni–Cr alloy variants are extensively used for hardfacing of austenitic stainless steel components in sodium cooled fast reactors (SFRs) to avoid self-welding and galling. Considerable difference in the compositions and melting points of the substrate and the Ni–Cr alloy results in significant dilution of the hardface deposit from the substrate. Even though, both the deposit and the substrate are non-magnetic, the diluted region exhibits ferromagnetic behavior. The present paper reports a systematic study carried out on the variations in microstructures and magnetic behavior of American Welding Society (AWS) Ni Cr–C deposited layers on 316 LN austenitic stainless steels, using atomic force microscopy (AFM) and magnetic force microscopy (MFM). The phase variations of the oscillations of a Co–Cr alloy coated magnetic field sensitive cantilever is used to quantitatively study the magnetic strength of the evolved microstructure in the diluted region as a function of the distance from the deposit/substrate interface, with the spatial resolution of about 100 nm. The acquired AFM/MFM images and the magnetic property profiles have been correlated with the variations in the chemical compositions in the diluted layers obtained by the energy dispersive spectroscopy (EDS). The study indicates that both the volume fraction of the ferromagnetic phase and its ferromagnetic strength decrease with increasing distance from the deposit/substrate interface. A distinct difference is observed in the ferromagnetic strength in the first few layers and the ferromagnetism is observed only near to the precipitates in the fifth layer. The study provides a better insight of the evolution of ferromagnetism in the diluted layers of Ni–Cr alloy deposits on stainless steel. - Highlights: • Study of evolution of ferromagnetism in Comonoy-6 deposit on austenitic steel. • Magnetic force microscopy (MFM) exhibited ferromagnetic matrix in first two layers. • The maximum MFM

  15. FATIGUE PROPERTIES OF MODIFIED 316LN STAINLESS STEEL AT 4 K FOR HIGH FIELD CABLE-IN-CONDUIT APPLICATIONS

    International Nuclear Information System (INIS)

    Toplosky, V. J.; Walsh, R. P.; Han, K.

    2010-01-01

    Cable-In-Conduit-Conductor (CICC) alloys, exposed to Nb 3 Sn reaction heat-treatments, such as modified 316LN require a design specific database. A lack of fatigue life data (S-n curves) that could be applied in the design of the ITER CS and the NHMFL Series Connected Hybrid magnets is the impetus for the research presented here. The modified 316LN is distinguished by a lower carbon content and higher nitrogen content when compared to conventional 316LN. Because the interstitial alloying elements affect the mechanical properties significantly, it is necessary to characterize this alloy in a systematic way. In conjunction, to ensure magnet reliability and performance, several criteria and expectations must be met, including: high fatigue life at the operating stresses, optimal stress management at cryogenic temperatures and thin walled conduit to reduce coil mass. Tension-tension load control axial fatigue tests have good applicability to CICC solenoid magnet design, thus a series of 4 K strength versus fatigue life curves have been generated. In-situ samples of 316LN base metal, seam welded, butt welded and seam plus butt welded are removed directly from the conduit in order to address base and weld material fatigue life variability. The more than 30 fatigue tests show good grouping on the fatigue life curve and allow discretionary 4 K fatigue life predictions for conduit made with modified 316LN.

  16. Influence of Heat Treatment on Mercury Cavitation Resistance of Surface Hardened 316LN Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, Steven J [ORNL; Hsu, Julia [Massachusetts Institute of Technology (MIT)

    2010-11-01

    The cavitation-erosion resistance of carburized 316LN stainless steel was significantly degraded but not destroyed by heat treatment in the temperature range 500-800 C. The heat treatments caused rejection of some carbon from the carburized layer into an amorphous film that formed on each specimen surface. Further, the heat treatments encouraged carbide precipitation and reduced hardness within the carburized layer, but the overall change did not reduce surface hardness fully to the level of untreated material. Heat treatments as short as 10 min at 650 C substantially reduced cavitation-erosion resistance in mercury, while heat treatments at 500 and 800 C were found to be somewhat less detrimental. Overall, the results suggest that modest thermal excursions perhaps the result of a weld made at some distance to the carburized material or a brief stress relief treatment will not render the hardened layer completely ineffective but should be avoided to the greatest extent possible.

  17. Effects of Thermal Aging on Microstructure and Impact Properties of 316LN Stainless Steel Weld

    Directory of Open Access Journals (Sweden)

    LUO Qiang

    2017-12-01

    Full Text Available To study the thermal aging of nuclear primary pipe material 316LN stainless steel weld, accelerated thermal aging experiment was performed at 400℃ for 15000h. Microstructure evolution of weld after aging was investigated by TEM and HREM. Impact properties of weld thermally aged at different time was measured by Charpy impact test. Meanwhile, taking Charpy impact energy as the standard of thermal aging embrittlement, the thermal kinetics formula was obtained by the fitting method. Finally, the Charpy impact properties of the weld during 60 years of service at the actual operation temperature were estimated by the thermal kinetics formula. The results indicate that the spinodal decomposition occurs in the ferrite of the weld after thermal aging at 400℃ for 1000h, results in α (Fe-rich and α'(Cr-rich phases, and meanwhile, the G-phase is precipitated in the ferrite; the spinodal decomposition and the G-phase precipitation lead to the decrease in the impact energy of weld as time prolongs; the prediction results show that the Charpy impact energy of weld decreases quickly in the early 25 years, and then undergoes a slow decrease during the subsequent operation process.

  18. Effect of Ferrite Morphology on Sensitization of 316L Austenitic Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hun; Lee, Jun Ho; Jang, Changheui [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    The sensitization behaviors of L-grade SSs having predominant austenitic structure with small amount of ferrite have not been well understood. In this regard, the effect of ferrite morphology on sensitization was investigated in this study. The sensitization behaviors of three heats of 316L and 316LN SSs were investigated, Stringer type of ferrite (316L - heat A and B) showed the early sensitization by chromium depletion at ferrite. austenite interface. And, later sensitization is due to GB sensitization. On the other hand, blocky type of ferrite (316L - heat C) showed lower DOS and higher resistance to GB sensitization. It could be due to sufficient supply of chromium from relatively large ferrite phase. As a consequence, the sensitization of 316L SSs could be affected by their ferrite morphology rather than ferrite content. The sensitized region was distinguishable from results of DL-EPR tests. It can be used as an effective method for evaluation of type of sensitization.

  19. An experience with in-service fabrication and inspection of austenitic stainless steel piping in high temperature sodium system

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, S., E-mail: sravi@igcar.gov.in; Laha, K.; Sakthy, S.; Mathew, M.D.; Bhaduri, A.K.

    2015-04-01

    Highlights: • Procedure for changing 304L SS pipe to 316L SS in sodium loop has been established. • Hot leg made of 304L SS was isolated from existing cold leg made of 316LN SS. • Innovative welding was used in joining the new 316L SS pipe with existing 316LN SS. • The old components of 304L SS piping have been integrated with the new piping. - Abstract: A creep testing facility along with dynamic sodium loop was installed at Indira Gandhi Centre for Atomic Research, Kalpakkam, India to assess the creep behavior of fast reactor structural materials in flowing sodium. Type 304L austenitic stainless steel was used in the low cross section piping of hot-leg whereas 316LN austenitic stainless steel in the high cross section cold-leg of the sodium loop. The intended service life of the sodium loop was 10 years. The loop has performed successfully in the stipulated time period. To enhance its life time, it has been decided to replace the 304L piping with 316L piping in the hot-leg. There were more than 300 welding joints involved in the integration of cold-leg with the new 316L hot-leg. Continuous argon gas flow was maintained in the loop during welding to avoid contamination of sodium residue with air. Several innovative welding procedures have been adopted for joining the new hot-leg with the existing cold-leg in the presence of sodium residue adopting TIG welding technique. The joints were inspected for 100% X-ray radiography and qualified by performing tensile tests. The components used in the discarded hot-leg were retrieved, cleaned and integrated in the renovated loop. A method of cleaning component of sodium residue has been established. This paper highlights the in-service fabrication and inspection of the renovation.

  20. Joint dissolution and oxidation behaviour of 316LN steel at 550 C. in liquid sodium containing low concentration of oxygen - 15417

    International Nuclear Information System (INIS)

    Courouau, J.L.; Rivollier, M.; Lorentz, V.; Tabarant, M.

    2015-01-01

    The sodium cooled fast reactor is selected in France as the 4. generation of nuclear power plant. 4. generation's reactor vessel, primary loop structures and heat exchangers will be made of austenitic stainless steels (316LN). To assess reactor service life time, corrosion of austenitic stainless steel by liquid sodium is studied in normal operating conditions as well as in transient conditions either expected or not. Oxygen, one of the main impurities, but present in trace amounts (1 to 10 μg/g or ppm weight), plays a major role on corrosion phenomena of the steel, although not totally understood yet. Literature reports an increased dissolution rate of steel or even of pure iron with increasing oxygen content although no thermodynamically stable iron oxide exists at low oxygen content. Oxygen is only known to form sodium chromite scale (NaCrO 2 ), those behaviour is, however, little documented. Based on corrosion tests performed in the static sodium test device (CorroNa) at 550 C. degrees for an oxygen content initially of about 1 ppm in weight or lower, and about 5-10 ppm after 4600 h of test, either a really small dissolution rate or small sodium chromite scale formation (NaCrO 2 ) are observed. Dissolution and carburation are observed for specimen immersed since the beginning of the test, while oxidation is the main feature observed for the specimen immersed during the last periods of the test. Some aspects of the morphologies of this oxide scale obtained by scanning electron microscopy (SEM) or transmission electron microscopy (TEM) as well as by Glow Discharge Optical Emission Spectroscopy (GD-OES) are presented. Discussions and explanations of these apparently opposing results are given based on thermodynamic analysis, as well as their possible consequences for reactor operation. (authors)

  1. Estimation of Low Cycle Fatigue Response of 316 LN Stainless Steel in the Presence of Notch

    Science.gov (United States)

    Agrawal, Richa; Veerababu, J.; Goyal, Sunil; Sandhya, R.; Uddanwadiker, Rashmi; Padole, Pramod

    2018-02-01

    Notches introduced in the plain specimen result in the multiaxial state of stress that exists in the actual components due to the presence of flaws and defects. In the present work, low cycle fatigue life estimation of plain and notched specimens of 316 LN stainless steel is carried out at room temperature and 823 K. The plain and notched specimens with different notch radii were subjected to varying strain amplitudes ranging from ± 0.25 to ± 1.0% at a strain rate of 3 × 10-3 s-1. The fatigue life decreased in the presence of notch for all strain amplitudes at both the temperatures. The decrease in fatigue life was found to be more at room temperature than at 823 K. The fatigue life of the notched specimen decreased by approximately 94.2% compared to plain specimen at room temperature. However, at 823 K the decrease in fatigue life for notched specimen was approximately 84.6%. Low cycle fatigue life of the plain and notched specimens was estimated by Neuber's rule and finite element analysis approach. Neuber's rule overestimated the fatigue life by maximum factor of 2.6 for specimens at room temperature and by maximum factor of 5 for specimens at 823 K. However, it gives closer approximation at higher strain amplitudes at 823 K. Life estimation by finite element analysis at room temperature was within a factor of 1.5 as compared to experimental life, whereas it underestimated the fatigue life within a factor of 6 at high temperature.

  2. A powder metallurgy austenitic stainless steel for application at very low temperatures

    CERN Document Server

    Sgobba, Stefano; Liimatainen, J; Kumpula, M

    2000-01-01

    The Large Hadron Collider to be built at CERN will require 1232 superconducting dipole magnets operating at 1.9 K. By virtue of their mechanical properties, weldability and improved austenite stability, nitrogen enriched austenitic stainless steels have been chosen as the material for several of the structural components of these magnets. Powder Metallurgy (PM) could represent an attractive production technique for components of complex shape for which dimension tolerances, dimensional stability, weldability are key issues during fabrication, and mechanical properties, ductility and leak tightness have to be guaranteed during operation. PM Hot Isostatic Pressed test plates and prototype components of 316LN-type grade have been produced by Santasalo Powdermet Oy. They have been fully characterized and mechanically tested down to 4.2 K at CERN. The fine grained structure, the absence of residual stresses, the full isotropy of mechanical properties associated to the low level of Prior Particle Boundaries oxides ...

  3. Oxidation Behavior of Surface-modified Stainless Steel 316LN in Supercritical-CO{sub 2} Environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Hwan; Heo, Jin Woo; Kim, Hyunm Yung; Jang, Chang Heui [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Compared to other working fluids such as helium or nitrogen, S-CO{sub 2} offers a higher efficiency at operating temperatures of advanced reactors above 550 .deg. C. Moreover, the S-CO{sub 2} cycle is expected to have a significantly smaller footprint compared to other power conversion cycles, resulting in a broader range of applications with lower capital costs. Currently, stainless steel 316 is considered as the candidate structural material for the SFR. In comparison, it is well known that alumina (Al{sub 2}O{sub 3}) have superior oxidation and carburization resistance specifically at higher temperatures where α-Al{sub 2}O{sub 3} may form. Thus, various surface modification techniques have been applied to mostly Ni-base alloys so that a protective and continuous Al-rich oxide layer forms on the surface, conferring superior oxidation and carburization resistance. In this study, SS 316LN was deposited with Al via physical vapor deposition (PVD) method followed by heat treatment processes to develop an Al-rich layer at the surface. The specimens are to be exposed to high temperature S-CO{sub 2} environment to evaluate the oxidation and carburization resistance. Stainless steel 316LN was surface-modified to develop an Al-rich layer for improvement of oxidation behavior in S-CO{sub 2} environment. As the test temperature of 600 .deg. C is not sufficiently high for the formation of protective α-Al{sub 2}O{sub 3} formation, pre-oxidation of surface modified SS 316LN was conducted.

  4. Plastic deformation and fracture behaviors of nitrogen-alloyed austenitic stainless steels

    International Nuclear Information System (INIS)

    Wang Songtao; Yang Ke; Shan Yiyin; Li Laifeng

    2008-01-01

    The plastic deformation and fracture behaviors of two nitrogen-alloyed austenitic stainless steels, 316LN and a high nitrogen steel (Fe-Cr-Mn-0.66% N), were investigated by tensile test and Charpy impact test in a temperature range from 77 to 293 K. The Fe-Cr-Mn-N steel showed ductile-to-brittle transition (DBT) behavior, but not for the 316LN steel. X-ray diffraction (XRD) confirmed that the strain-induced martensite occurred in the 316LN steel, but no such transformation in the Fe-Cr-Mn-N steel. Tensile tests showed that the temperature dependences of the yield strength for the two steels were almost the same. The ultimate tensile strength of the Fe-Cr-Mn-N steel displayed less significant temperature dependence than that of the 316LN steel. The strain-hardening exponent increased for the 316LN steel, but decreased for the Fe-Cr-Mn-N steel, with decreasing temperature. Based on the experimental results and the analyses, a modified scheme was proposed to explain the fracture behaviors of austenitic stainless steels

  5. Thick-section weldments in 21-6-9 and 316LN stainless steel for fusion energy applications

    International Nuclear Information System (INIS)

    Alexander, D.J.; Goodwin, G.M.

    1991-01-01

    The mechanical properties of several weldments in 21-6-9 and 316LN stainless steel metals have been measured at 77 K and room temperature. Filler metals for the 211-6-9 included Nitronic 35W and 40W, 21-6-9, Inconel 82, 182, 625, and 625 PLUS. For the 316LN base metal, 316L, 316L-T3, 316L-4K-O, and Inconel 82 filler metals were used. At room temperature all of the filler metals had yield strengths that exceeded those of the base metals. At 77K only the Nitronics and the 21-6-9 filler metals exceeded those of the base metals, and the Inconel filler metals were significantly weaker. The impact properties of the weld metals were very good at room temperature, with the exception of Inconel 625. At 77 K the impact toughness was greatly reduced for all of the filler metals, with the dramatic exception of Inconel 82. The 316L-4K-O filler metal showed higher impact energies than the other ferrite-containing filler metals, although the levels were still much lower than for the Inconel filler metals. The Inconel 82 filler had excellent fracture toughness at both temperatures

  6. Characterisation of Ceramic-Coated 316LN Stainless Steel Exposed to High-Temperature Thermite Melt and Molten Sodium

    Science.gov (United States)

    Ravi Shankar, A.; Vetrivendan, E.; Shukla, Prabhat Kumar; Das, Sanjay Kumar; Hemanth Rao, E.; Murthy, S. S.; Lydia, G.; Nashine, B. K.; Mallika, C.; Selvaraj, P.; Kamachi Mudali, U.

    2017-11-01

    Currently, stainless steel grade 316LN is the material of construction widely used for core catcher of sodium-cooled fast reactors. Design philosophy for core catcher demands its capability to withstand corium loading from whole core melt accidents. Towards this, two ceramic coatings were investigated for its application as a layer of sacrificial material on the top of core catcher to enhance its capability. Plasma-sprayed thermal barrier layer of alumina and partially stabilised zirconia (PSZ) with an intermediate bond coat of NiCrAlY are selected as candidate material and deposited over 316LN SS substrates and were tested for their suitability as thermal barrier layer for core catcher. Coated specimens were exposed to high-temperature thermite melt to simulate impingement of molten corium. Sodium compatibility of alumina and PSZ coatings were also investigated by exposing samples to molten sodium at 400 °C for 500 h. The surface morphology of high-temperature thermite melt-exposed samples and sodium-exposed samples was examined using scanning electron microscope. Phase identification of the exposed samples was carried out by x-ray diffraction technique. Observation from sodium exposure tests indicated that alumina coating offers better protection compared to PSZ coating. However, PSZ coating provided better protection against high-temperature melt exposure, as confirmed during thermite melt exposure test.

  7. Effect of nitrogen and boron on weldability of austenitic stainless steels

    International Nuclear Information System (INIS)

    Bhaduri, A.K.; Albert, S.K.; Srinivasan, G.; Divya, M.; Das, C.R.

    2012-01-01

    Hot cracking is a major problem in the welding of austenitic stainless steels, particularly the fully austenitic grades. A group of alloys of enhanced-nitrogen 316LN austenitic stainless steel is being developed for structural components of the Indian Fast Reactor programme. Studying the hot cracking behaviour of this nitrogen-enhanced austenitic stainless steel is an important consideration during welding, as this material solidifies without any residual delta ferrite in the primary austenitic mode. Nitrogen has potent effects on the solidification microstructure, and hence has a strong influence on the hot cracking behaviour. Different heats of this material were investigated, which included fully austenitic stainless steels containing 0.070.22 wt% nitrogen. Also, borated austenitic stainless steels, such as type 304B4, have been widely used in the nuclear applications primarily due to its higher neutron absorption efficiency. Weldability is a major concern for this alloy due to the formation of low melting eutectic phase that is enriched with iron, chromium, molybdenum and boron. Fully austenitic stainless steels are prone to hot cracking during welding in the absence of a small amount of delta ferrite, especially for compositions rich in elements like boron that increases the tendency to form low melting eutectics. Detailed weldability investigations were carried out on a grade 304B4 stainless steel containing 1.3 wt% boron. Among the many approaches that have been used to determine the hot cracking susceptibility of different alloys, Variable-Restraint (Varestraint) weld test and Hot Ductility (Gleeble) tests are commonly used to evaluate the weldability of austenitic alloys. Hence, investigations on these materials consisted of detailed metallurgical characterization and weldability studies that included studying both the fusion zone and liquation cracking susceptibility, using Varestraint tests at 0.254.0%, strain levels and Gleeble (thermo

  8. Friction and wear behaviour of Ni-Cr-B hardface coating on 316LN stainless steel in liquid sodium at elevated temperature

    Science.gov (United States)

    Kumar, Hemant; Ramakrishnan, V.; Albert, S. K.; Bhaduri, A. K.; Ray, K. K.

    2017-11-01

    The sliding friction and wear behaviour of Ni-Cr-B hardface coating made on 316LN stainless steel were evaluated in liquid sodium at 823 K by using a fabricated reciprocating-type tribometer. The test parameters have been selected based on operational conditions prevailing in the Indian sodium cooled fast breeder reactors (FBRs). Accordingly, the tests were carried out at sliding speeds of 2 and 16 mm/s under contact stresses of 10 and 40 MPa respectively using Ni-Cr-B coated pin and disc specimens. The static and dynamic friction coefficients are found to be in the ranges of 0.03-0.07 and 0.01-0.02 respectively under the imposed test conditions. The estimated wear rates (WR) are found to be in the range of 0.62 × 10-12 - 3.07 × 10-12 m3/m; the magnitude of WR increases with increase in the contact stress. The examination of the worn disc specimens by confocal laser scanning microscopy indicated higher damage in specimens tested at 40 MPa compared to that in specimens tested at 10 MPa; the quantitative estimation of damage was made by the number of scars and their depth. These observations corroborate well with the morphological features of the worn surfaces of the pin specimens examined by scanning electron microscopy. The results unambiguously indicate superior friction coefficients and wear resistance of Ni-Cr-B coatings in liquid sodium compared to that in air under identical test conditions.

  9. Effect of grain size on the high temperature mechanical properties of type 316LN stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. W.; Lee, Y. S.; Ryu, W. S.; Jang, J. S.; Kim, S. H.; Kim, W. G.; Cho, H. D.; Han, C. H

    2001-02-01

    Nitrogen increases the high temeprature mechanical properties and decreases grain size. The effect of nitrogen on the high temperature mechanical properties was investigated in the viewpoint of grain size. Tensile strength increases with the decrease of grain size and agrees with the Hall-Petch relationship. Effect of grain size on the low cycle fatigue life properties were investigated as measuring the fatigue life from the results which had been obtained by the constant strain rate and various strain range. There was no effect on the low cycle fatigue properties by the grain size. The time to rupture decreased with the increase of grain size. The steady state creep rate decreased to a minimum and then increased as the grain size increased. This result agrees with the result predicted from Garofalo equation. The rupture elongation at the intermediate grain size showed a minimum due to the cavity formed easily by carbide precipitates in the grain boundaries.

  10. Process parameter optimization during EDM of AISI 316 LN stainless steel by using fuzzy based multi-objective PSO

    Energy Technology Data Exchange (ETDEWEB)

    Majumder, Arindam [National Institute of Technology Agartala, Tripura (India)

    2013-07-15

    The present contribution describes an application of a hybrid approach using fuzzy logic and particle swarm optimization (PSO) for optimizing the process parameters in the electric discharge machining (EDM) of AISI 316LN Stainless Steel. In this study, each experimentation was performed under different machining conditions of pulse current, pulse on-time, and pulse off-time. Machining performances such as MRR and EWR were evaluated. A Taguchi L9 orthogonal array was produced to plan the experimentation and the regression method was applied to model the relationship between the input factors and responses. A fuzzy model was employed to provide a fitness function to PSO by unifying the multiple responses. Finally, PSO was used to predict the optimal process parametric settings for the multi-performance optimization of the EDM operation. The experimental results confirm the feasibility of the strategy and are in good agreement with the predicted results over a wide range of machining conditions employed in the process.

  11. Creep-fatigue damage evaluation for SS-316LN (ORNL PLATES): - RCC-MR vs. ASME SEC III - NH

    International Nuclear Information System (INIS)

    Sati, Bhuwan Chandra; Jalaldeen, S.; Velusamy, K.; Selvaraj, P.

    2016-01-01

    Investigations of high temperature tests done on ORNL plate with deformation control loading, under creep-fatigue damage have been presented. The test results with methodology of RCC-MR and ASME-NH life prediction under creep-fatigue loading have been assessed. The stress relaxation effect in calculating the life using RCC-MR under creep-fatigue damage is found to be significant in presence of secondary stress. RCC-MR: 2007 is more realistic number of cycles (predicts 51 number of cycles) as compared to ASME-NH (predicts 312 number of cycles) which is demonstrated by the experimental work (observed 86 numbers of cycles). Between RCC-MR and experimental work, design code seems to be more conservative for life prediction due to creep-fatigue damage. For fatigue damage, the approaches are same and the difference comes from material properties and the starting stress for applying Neuber's rule. ASME approach has the limitation of stress range magnitude. ASME approach predicts lower elastic plus plastic strain for the cases having S* above the linear stress limit. For creep strain and creep damage evaluation, ASME and RCC-MR have different approaches for calculating the stress at the beginning and during the hold period. The RCC-MR takes account of cyclic hardening or softening effects (hardening in the present case of 316 LN) by means of the cyclic stress-strain curve and the benefit of symmetrization effects which are significant for this material. The ASME code neglects these effects and instead relies on an approach based on the isochronous stress-strain curves. (author)

  12. Creep Deformation and Rupture Behavior of Single- and Dual-Pass 316LN Stainless-Steel-Activated TIG Weld Joints

    Science.gov (United States)

    Vijayanand, V. D.; Vasudevan, M.; Ganesan, V.; Parameswaran, P.; Laha, K.; Bhaduri, A. K.

    2016-06-01

    Creep deformation and rupture behavior of single-pass and dual-pass 316LN stainless steel (SS) weld joints fabricated by an autogenous activated tungsten inert gas welding process have been assessed by performing metallography, hardness, and conventional and impression creep tests. The fusion zone of the single-pass joint consisted of columnar zones adjacent to base metals with a central equiaxed zone, which have been modified extensively by the thermal cycle of the second pass in the dual-pass joint. The equiaxed zone in the single-pass joint, as well as in the second pass of the dual-pass joint, displayed the lowest hardness in the joints. In the dual-pass joint, the equiaxed zone of the first pass had hardness comparable to the columnar zone. The hardness variations in the joints influenced the creep deformation. The equiaxed and columnar zone in the first pass of the dual-pass joint was more creep resistant than that of the second pass. Both joints possessed lower creep rupture life than the base metal. However, the creep rupture life of the dual-pass joint was about twofolds more than that of the single-pass joint. Creep failure in the single-pass joint occurred in the central equiaxed fusion zone, whereas creep cavitation that originated in the second pass was blocked at the weld pass interface. The additional interface and strength variation between two passes in the dual-pass joint provides more restraint to creep deformation and crack propagation in the fusion zone, resulting in an increase in the creep rupture life of the dual-pass joint over the single-pass joint. Furthermore, the differences in content, morphology, and distribution of delta ferrite in the fusion zone of the joints favors more creep cavitation resistance in the dual-pass joint over the single-pass joint with the enhancement of creep rupture life.

  13. A comparative study on the compatibility of liquid lead–gold eutectic and liquid lead–bismuth eutectic with T91 and SS 316LN steels

    International Nuclear Information System (INIS)

    Dai, Y.; Gao, W.; Zhang, T.; Platacis, E.; Heinitz, S.; Thomsen, K.

    2012-01-01

    Liquid lead–gold eutectic (LGE) is considered as a potential target material for high power spallation sources. In the present work, the corrosion effects of LGE on T91 and SS 316LN steels have been investigated in comparison with that of liquid lead–bismuth eutectic (LBE) under the same testing conditions. Two tests were conducted at 400 °C for 1800 h and at 450 °C for 1300 h, in which specimens of the two steels were exposed to 1 m/s flowing LGE and LBE. Surface inspections showed that the specimens underwent a mixed corrosion mode of dissolution and oxidation. The results obtained from the SS 316LN specimens are very interesting. Firstly, EDX (electron energy dispersion X-ray spectrometry) analyses revealed that Ni, Cr and Mn have a higher dissolution rate in LGE than in LBE. Secondly, it was observed that LBE attacked strongly on grain-boundaries (GBs) and twin-boundaries (TBs), while LGE did not preferentially attack GBs and TBs. Further, the diffusion or penetration paths of LBE look straight, while those of LGE look like a complex network. In the attacked regions the chemical composition of the steel did not change much in the LBE case, but changed greatly in the LGE case. The T91 specimens exhibited considerably weaker corrosion effects under the present testing conditions.

  14. Austenitic stainless steels, status of the properties database and design rule development

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A.-A. [Commissariat a l`Energie Atomique, CEA-Saclay, Gif-sur Yvette (France). CEREM; Touboul, F. [DMT, Commissariat a l`Energie Atomique, CEA Saclay, Gif-sur-Yvette (France)

    1996-10-01

    In parallel with the new tasks initiated to substantiate the existing database for the reference structural material (type 316LN-IG) of ITER, interim design criteria are being developed to guide subsequent design stages. The French RCC-MR codes for fast breeder reactors, incorporating rules from other ITER partner codes and those needed to meet specific fusion requirements, are used for this purpose. This paper presents the current status of materials data and design rules for type 316LN-IG steel and describes how the irradiation effects are taken into account. (orig.).

  15. Static strain aging type AISI-304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Trindade, M.B.

    1981-03-01

    Static strain aging of type AISI-304 austenitic stainless steel was studied from room temperature up to 623K by conducting tests in which the load was held approximately constant, continuously relaxing and unloaded. The aging times varied between 10s and 100h, using a plastic pre deformation of 9% in most of the cases. The static strain aging of 304 steel furnished an activation energy of 23,800 cal/mol. This implies that vacancies play an important role on the aging process. The curve of the variation of the discontinuous yielding with aging time presented different stages, to which specific mathematical expressions were developed. These facts permited the conclusion that Snoek type mechanisms are responsible for the aging in such conditions. (Author) [pt

  16. Effect of Multipass TIG and Activated TIG Welding Process on the Thermo-Mechanical Behavior of 316LN Stainless Steel Weld Joints

    Science.gov (United States)

    Ganesh, K. C.; Balasubramanian, K. R.; Vasudevan, M.; Vasantharaja, P.; Chandrasekhar, N.

    2016-04-01

    The primary objective of this work was to develop a finite element model to predict the thermo-mechanical behavior of an activated tungsten inert gas (ATIG)-welded joint. The ATIG-welded joint was fabricated using 10 mm thickness of 316LN stainless steel plates in a single pass. To distinguish the merits of ATIG welding process, it was compared with manual multipass tungsten inert gas (MPTIG)-welded joint. The ATIG-welded joint was fabricated with square butt edge configuration using an activating flux developed in-house. The MPTIG-welded joint was fabricated in thirteen passes with V-groove edge configuration. The finite element model was developed to predict the transient temperature, residual stress, and distortion of the welded joints. Also, microhardness, impact toughness, tensile strength, ferrite measurement, and microstructure were characterized. Since most of the recent publications of ATIG-welded joint was focused on the molten weld pool dynamics, this research work gives an insight on the thermo-mechanical behavior of ATIG-welded joint over MPTIG-welded joint.

  17. Effect of cold work on low-temperature sensitization behaviour of austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Kain, V. E-mail: vivkain@apsara.barc.ernet.in; Chandra, K.; Adhe, K.N.; De, P.K

    2004-09-01

    The effects of cold work and low-temperature sensitization heat treatment of non-sensitized austenitic stainless steels have been investigated and related to the cracking in nuclear power reactors. Types 304, 304L and 304LN developed martensite after 15% cold working. Heat treatment of these cold worked steels at 500 deg. C led to sensitization of grain boundaries and the matrix and a desensitization effect was seen in 11 days due to fast diffusion rate of chromium in martensite. Types 316L and 316LN did not develop martensite upon cold rolling due to its chemical composition suppressing the martensite transformation (due to deformation) temperature, hence these were not sensitized at 500 deg. C. The sensitization of the martensite phase was always accompanied by a hump in the reactivation current peak in the double loop electrochemical potentiokinetic reactivation test, thus providing a test to detect such sensitization. It was shown that bending does not produce martensite and therefore, is a better method to simulate weld heat affected zone. Bending and heating at 500 deg. C for 11 days led to fresh precipitation due to increased retained strain and desensitization of 304LN due to faster diffusion rate of chromium along dislocations. The as received or solution annealed 304 and 304LN with 0.15% nitrogen showed increased sensitization after heat treatment at 500 deg. C, indicating the presence of carbides/nitrides.

  18. Rapid nickel diffusion in cold-worked type 316 austenitic steel at 360-500 C

    Energy Technology Data Exchange (ETDEWEB)

    Arioka, Koji [Institute of Nuclear Safety Systems, Inc., Mihama (Japan); Iijima, Yoshiaki [Tohoku Univ., Sendai (Japan). Dept. of Materials Science; Miyamoto, Tomoki [Kobe Material Testing Laboratory Co. Ltd., Harima (Japan)

    2017-10-15

    The diffusion coefficient of nickel in cold-worked Type 316 austenitic steel was determined by the diffusion couple method in the temperature range between 360 and 500 C. A diffusion couple was prepared by electroless nickel plating on the surface of a 20 % cold-worked Type 316 austenitic steel specimen. The growth in width of the interdiffusion zone was proportional to the square root of diffusion time until 14 055 h. The diffusion coefficient of nickel (D{sub Ni}) in cold-worked Type 316 austenitic steel was determined by extrapolating the concentration-dependent interdiffusion coefficient to 11 at.% of nickel. The value of D{sub Ni} at 360 C was about 5 000 times higher than the lattice diffusion coefficient of nickel in Type 316 austenitic steel. The determined activation energy 117 kJ mol{sup -1} was 46.6 % of the activation energy 251 kJ mol{sup -1} for the lattice diffusion of nickel in Type 316 austenitic steel.

  19. Damage mechanism of piping welded joints made from austenitic Steel for the type RBMK reactor

    International Nuclear Information System (INIS)

    Karzov, G.; Timofeev, B.; Gorbakony, A.; Petrov, V.; Chernaenko, T.

    1999-01-01

    In the process of operation of RBMK reactors the damages were taking place on welded piping, produced from austenitic stainless steel of the type 08X18H10T. The inspection of damaged sections in piping has shown that in most cases crack-like defects are of corrosion and mechanical character. The paper considers in details the reasons of damages appearance and their development for this type of welded joints of downcomers 325xl6 mm, which were fabricated from austenitic stainless steel using TlG and MAW welding methods. (author)

  20. Influence of local crystallographic configuration on microcrack initiation in fatigued 316LN stainless steel: Experiments and crystal plasticity finite elements simulations

    Energy Technology Data Exchange (ETDEWEB)

    Signor, L., E-mail: loic.signor@ensma.fr [Institut Pprime (UPR3346) CNRS/ISAE-ENSMA/Poitiers University (France); Villechaise, P.; Ghidossi, T.; Lacoste, E.; Gueguen, M. [Institut Pprime (UPR3346) CNRS/ISAE-ENSMA/Poitiers University (France); Courtin, S. [AREVA NP (France)

    2016-01-01

    Local crystallographic configurations (also referred to as local micro-texture) which promote transgranular micro-crack initiation in 316LN stainless steel in low cycle fatigue are studied. Specimens were subjected to tension-compression with constant plastic strain amplitude, in air, at room temperature, during 5000 cycles (i.e. about 20% of the fatigue life). The first part of this work is devoted to a statistical analysis of slip marks and cracks observed at surface of one fatigued specimen using scanning electron microscope (SEM), in a region composed of about 1000 grains. 95 micro-cracks initiated along persistent slip markings detected in this region are analyzed with respect to different characteristics of grains, especially crystallographic orientation, measured using electron backscatter diffraction (EBSD). From the detailed analysis of the numerous data derived from these observations and measurements performed only at surface, the two main significant factors which are found to favour crack formation are the grain size and the orientation of the activated slip system with respect to the surface. Indeed, the mean size of grains which contain cracks is almost twice the one of the remaining grains. Moreover, for most grains in which cracks are observed, the angle between the normal to the surface and the activated Burgers vector (resp. the normal to the activated slip plane) lies in the range [30°, 50°] (resp. [55°, 70°]). No other characteristic was found to provide significant and direct information in order to identify initiation sites. Thus, in the second part of this work, the analysis of initiation sites is performed using additional information relative to three-dimensional (3D) aspects of the microstructure. 3D characterisation of the polycrystalline microstructure and some cracks in one fatigued specimen was achieved using serial-sectioning technique combined with SEM and EBSD. As an example, the study of one specific crack and its surrounding

  1. Short Communication on “Self-welding susceptibility of NiCr-B hardfaced coating with and without NiCr-B coating on 316LN stainless steel in flowing sodium at elevated temperature”

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Hemant, E-mail: hemant@igcar.gov.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721 302 (India); Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Ramakrishnan, V.; Albert, S.K.; Bhaduri, A.K. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Ray, K.K. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721 302 (India)

    2017-02-15

    The self-welding susceptibility between NiCr-B coated 316LN stainless steel and the base metal, and that between NiCr-B hardfaced coatings has been evaluated in flowing sodium at 823 K for 90 and 135 days under contact stress of 8.0 and 11.0 MPa using a fabricated set-up. Neither any self-welding could be observed nor could any damage be detected on the specimen surfaces of the selected materials under the imposed experimental conditions, which indicate their satisfactory potential for applications in Fast Breeder Reactors.

  2. Strain hardening and plastic instability properties of austenitic stainless steels after proton and neutron irradiation

    International Nuclear Information System (INIS)

    Byun, T.S.; Farrell, K.; Lee, E.H.; Hunn, J.D.; Mansur, L.K.

    2001-01-01

    Strain hardening and plastic instability properties were analyzed for EC316LN, HTUPS316, and AL6XN austenitic stainless steels after combined 800 MeV proton and spallation neutron irradiation to doses up to 10.7 dpa. The steels retained good strain-hardening rates after irradiation, which resulted in significant uniform strains. It was found that the instability stress, the stress at the onset of necking, had little dependence on the irradiation dose. Tensile fracture stress and strain were calculated from the stress-strain curve data and were used to estimate fracture toughness using an existing model. The doses to plastic instability and fracture, the accumulated doses at which the yield stress reaches instability stress or fracture stress, were predicted by extrapolation of the yield stress, instability stress, and fracture stress to higher dose. The EC316LN alloy required the highest doses for plastic instability and fracture. Plastic deformation mechanisms are discussed in relation to the strain-hardening properties of the austenitic stainless steels

  3. Experimental study of fatigue crack propagation in type 316 austenitic stainless steel

    International Nuclear Information System (INIS)

    Mostafa, M.; Vessiere, G.; Hamel, A.; Boivin, M.

    1983-01-01

    In this work, are grouped and compared the crack propagation rates in type 316 austenitic stainless steel in two loading cases: plane strain and plane stress. Plane strain has been obtained on axisymmetric cracked specimens, plane stress on thin notched specimens, subjected to alternative bending. The results show that the crack propagation rate is greater for plane strain, i.e. in the case of the smallest plastic zone. The Elber concept was also used for explaining the different values of the crack propagation rate. It's noteworthy to find out that the Paris' law coefficients for different loading levels and those fo Elber's law are correlated [fr

  4. Metallographic screening of grain boundary engineered type 304 austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Hanning, F., E-mail: Fabian.Hanning@googlemail.com; Engelberg, D.L., E-mail: Dirk.engelberg@manchester.ac.uk

    2014-08-15

    An electrochemical etching method for the identification of grain boundary engineered type 304 austenitic stainless steel microstructures is described. The method can be applied for rapid microstructure screening to complement electron backscatter diffraction analysis. A threshold parameter to identify grain boundary engineered microstructure is proposed, and the application of metallographic etching for characterising the degree of grain boundary engineering discussed. - Highlights: • As-received (annealed) and grain boundary engineered microstructures were compared. • Electro-chemical polarisation in nitric acid solutions was carried out. • A metallographic screening method has been developed. • The screening method complements EBSD analysis for microstructure identification.

  5. Dissolution and oxidation behaviour of various austenitic steels and Ni rich alloys in lead-bismuth eutectic at 520 °C

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Marion, E-mail: marion.roy@cea.fr [CEA, DEN, DPC, SCCME, Laboratoire d’Etude de la Corrosion Non Aqueuse, F-91191 Gif-sur-Yvette (France); Martinelli, Laure, E-mail: laure.martinelli@cea.fr [CEA, DEN, DPC, SCCME, Laboratoire d’Etude de la Corrosion Non Aqueuse, F-91191 Gif-sur-Yvette (France); Ginestar, Kevin, E-mail: kevin.ginestar@cea.fr [CEA, DEN, DPC, SCCME, Laboratoire d’Etude de la Corrosion Non Aqueuse, F-91191 Gif-sur-Yvette (France); Favergeon, Jérôme, E-mail: jerome.favergeon@utc.fr [Laboratoire Roberval, UMR 7337, Université de Technologie de Compiègne, Centre de Recherche de Royallieu, CS 60319, 60203 Compiègne Cedex (France); Moulin, Gérard [Laboratoire Roberval, UMR 7337, Université de Technologie de Compiègne, Centre de Recherche de Royallieu, CS 60319, 60203 Compiègne Cedex (France)

    2016-01-15

    Ten austenitic steels and Ni rich alloys were tested in static lead-bismuth eutectic (LBE) at 520 °C in order to obtain a selection of austenitic steels having promising corrosion behaviour in LBE. A test of 1850 h was carried out with a dissolved oxygen concentration between 10{sup −9} and 5 10{sup −4} g kg{sup −1}. The combination of thermodynamic of the studied system and literature results leads to the determination of an expression of the dissolved oxygen content in LBE as a function of temperature: RT(K)ln[O](wt%) = −57584/T(K) −55.876T(K) + 254546 (R is the gas constant in J mol{sup −1} K{sup −1}). This relation can be considered as a threshold of oxygen content above which only oxidation is observed on the AISI 316L and AISI 304L austenitic alloys in static LBE between 400 °C and 600 °C. The oxygen content during the test leads to both dissolution and oxidation of the samples during the first 190 h and leads to pure oxidation for the rest of the test. Results of mixed oxidation and dissolution test showed that only four types of corrosion behaviour were observed: usual austenitic steels and Ni rich alloys behaviour including the reference alloy 17Cr-12Ni-2.5Mo (AISI 316LN), the 20Cr-31Ni alloy one, the Si containing alloy one and the Al containing alloy one. According to the proposed criteria of oxidation and dissolution kinetics, silicon rich alloys and aluminum rich alloy presented a promising corrosion behaviour. - Highlights: • 10 austenitic steels and Ni rich alloys were tested in LBE at 520 °C with dissolved oxygen content between 10{sup -9} and 5 10{sup -4} wt%. • It is shown that only thermodynamics cannot explain the Ni rich alloys corrosion behaviour in LBE. • The role of oxygen on corrosion behaviour in LBE was highlighted. • An equilibrium line was defined above which only oxidation has occurred on 316L: RTln[O](wt%) = -57584/T(K)-55.876T(K)+254546. • 18Cr-15Ni-3.7Si, 21Cr-11Ni-1.6Si and 14Cr-25Ni-3.5Al

  6. Modification of the Strength Anisotropy in an Austenitic ODS Steel

    International Nuclear Information System (INIS)

    Kim, T. K.; Jang, J.; Kim, S. H.; Lee, C. B.; Bae, C. S.; Kim, D. H.

    2007-01-01

    Among many candidate alloys for Gen IV reactors, the oxide dispersion strengthened (ODS) alloy is widely considered as a good candidate material for the in-reactor component, like cladding tube. The ODS alloy is well known due to its good high temperature strength, and excellent irradiation resistance. For the previous two decades in the nuclear community, the ODS alloy developments have been mostly focused on the ferritic martensitic (F-M) steel-based ones. On the other hand, the austenitic stainless steels (e.g. 316L or 316LN) have been used as a structural material due to its good high temperature strength and a good compatibility with a media. However, the austenitic stainless steel showed unfavorable characteristics in the dimensional stability under neutron irradiation and cracking behavior with the media. It is thus expected that the austenitic ODS steels restrain the dimension stability under neutron irradiation. However, the ODS alloys usually reveal the anisotropic characteristic in mechanical strength in the hoop and longitudinal directions, which is attributed to the grain morphology strongly developed parallel to the rolling direction with a high aspect ratio. This study focuses on a modification of the strength anisotropy of an austenitic ODS alloy by a recrystallization heat treatment

  7. Post irradiation fatigue tests of type 316 LN stainless steel. Final report for the ITER Task T511, Subtask 1. European Technology Programme Task GB5-T217

    Energy Technology Data Exchange (ETDEWEB)

    Norring, K.; Koenig, M

    2002-01-01

    The main objective of this Subtask was to estimate the corrosion fatigue behaviour of 316L Stainless Steel (SS) and SS/SS joints, and to check among others the influence of irradiation. Joints were produced by solid Hot Isostatic Pressure (HIP) and powder HIP. Conventional material was used for comparison. The specimens were supplied by EFDA and were irradiated to 4 dpa in Dimitrovgrad (Russia). All specimens were tested at 150 deg C in hydrogenated high purity water. Testing was performed with a stepwise decrease in {delta}K keeping K{sub max} constant. The crack growth rates of irradiated as well as unirradiated specimens tested earlier are of the same magnitude, around 2x10{sup -5} mm/cycle at {delta}K= 18 MPa{radical}m. Thus, irradiation does not seem to enhance the fatigue crack growth rate, at least not up to irradiation levels of 4 dpa. But it is worth noting that the exponents in the da/dN versus {delta}K equation, also known as Paris' law, seems to fall within two areas, either around 3.5 or just below 2. Both Powder HIPed and Solid HIPed specimens are found in both groups. The reason for this is not evident. The fracture surfaces of the specimens show typical fatigue appearance.

  8. Topological characterization of static strain aging of type AISI 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Monteiro, S.N.; Miranda, P.E.V. de

    1981-01-01

    Static strain aging of type AISI 304 austenitic stainless steel was studied from room temperature up to 623K by conducting tests in which the load was held approximately constant. The aging times varied between 10s and 100h, using a plastic pre-deformation of 9%. The static strain aging of 304 steel furnished an activation energy of 23.800 cal/mol. This implies that vacancies play an important role on the aging process. The curve of the variation of the discontinuous yielding with aging time presented different stages, to which specific mathematical expressions were developed. These facts permited the conclusion that Snock type mechanisms are responsible for the aging in such conditions. (Author) [pt

  9. Austenitic stainless steels and high strength copper alloys for fusion components

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.; Zinkle, S.J.; Alexander, D.J.; Stubbins, J.F.

    1998-01-01

    An austenitic stainless steel (316LN), an oxide-dispersion-strengthened copper alloy (GlidCop A125), and a precipitation-hardened copper alloy (Cu-Cr-Zr) are the primary structural materials for the ITER first wall/blanket and divertor systems. While there is a long experience of operating 316LN stainless steel in nuclear environments, there is no prior experience with the copper alloys in neutron environments. The ITER first wall (FW) consists of a stainless steel shield with a copper alloy heat sink bonded by hot isostatic pressing (HIP). The introduction of bi-layer structural material represents a new materials engineering challenge; the behavior of the bi-layer is determined by the properties of the individual components and by the nature of the bond interface. The development of the radiation damage microstructure in both classes of materials is summarized and the effects of radiation on deformation and fracture behavior are considered. The initial data on the mechanical testing of bi-layers indicate that the effectiveness of GlidCop A125 as a FW heat sink material is compromised by its strongly anisotropic fracture toughness and poor resistance to crack growth in a direction parallel to the bi-layer interface. (orig.)

  10. Precipitation of ferromagnetic phase induced by defect energies during creep deformation in Type 304 austenitic steel

    International Nuclear Information System (INIS)

    Tsukada, Yuhki; Shiraki, Atsuhiro; Murata, Yoshinori; Takaya, Shigeru; Koyama, Toshiyuki; Morinaga, Masahiko

    2010-01-01

    The correlation of defect energies with precipitation of the ferromagnetic phase near M 23 C 6 carbide during creep tests at high temperature in Type 304 austenitic steel was examined by estimating the defect energies near the carbide, based on micromechanics. As one of the defect energies, the precipitation energy was calculated by assuming M 23 C 6 carbide to be a spherical inclusion. The other defect energy, creep dislocation energy, was calculated based on dislocation density data obtained from transmission electron microscopy observations of the creep samples. The dislocation energy density was much higher than the precipitation energy density in the initial stage of the creep process, when the ferromagnetic phase started to increase. Creep dislocation energy could be the main driving force for precipitation of the ferromagnetic phase.

  11. Precipitation of ferromagnetic phase induced by defect energies during creep deformation in Type 304 austenitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, Yuhki, E-mail: tsukada@silky.numse.nagoya-u.ac.j [Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Shiraki, Atsuhiro; Murata, Yoshinori [Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Takaya, Shigeru [Japan Atomic Energy Agency, 4002 Narita-cho, O-arai-machi, Higashi-ibaraki-gun, Ibaraki 311-1393 (Japan); Koyama, Toshiyuki [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Morinaga, Masahiko [Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2010-06-15

    The correlation of defect energies with precipitation of the ferromagnetic phase near M{sub 23}C{sub 6} carbide during creep tests at high temperature in Type 304 austenitic steel was examined by estimating the defect energies near the carbide, based on micromechanics. As one of the defect energies, the precipitation energy was calculated by assuming M{sub 23}C{sub 6} carbide to be a spherical inclusion. The other defect energy, creep dislocation energy, was calculated based on dislocation density data obtained from transmission electron microscopy observations of the creep samples. The dislocation energy density was much higher than the precipitation energy density in the initial stage of the creep process, when the ferromagnetic phase started to increase. Creep dislocation energy could be the main driving force for precipitation of the ferromagnetic phase.

  12. Characterization of microstructures in austenitic stainless steels by ultrasonics

    International Nuclear Information System (INIS)

    Raj, Baldev; Palanichamy, P.; Jayakumar, T.; Kumar, Anish; Vasudevan, M.; Shankar, P.

    2000-01-01

    Recently, many nondestructive techniques have been considered for microstructural characterization of materials to enable in-situ component assessment for pre-service quality and in-service performance. Ultrasonic parameters have been used for estimation of average grain size, evaluation of recrystallization after cold working, and characterization of Cr2N precipitation during thermal aging in different grades of austenitic stainless steels. Ultrasonic first back wall echo signals were obtained from several specimens of AISI type 316 stainless steel with different grain sizes. Shift in the spectral peak frequency and the change in the full width at half maximum of the autopower spectrum of the first back wall echo are correlated with the grain size in the range 30-150 microns. The advantages of this method are: (i) independence of variation in couplant conditions (ii), applicable even to highly attenuating materials, (iii) direct correlation of the ultrasonic parameters with yield strength and (iv) suitability for shop-floor applications. Recrystallization behavior (temperature range 973-1173 K and time durations 0.5-1000 h) of cold worked titanium modified 316 stainless steel (D9) has been characterized using ultrasonic velocity measurements. A velocity parameter derived using a combination of shear and longitudinal wave velocities is correlated with the degree of recrystallization. These velocity measurement could also identify onset, progress and completion of recrystallization more accurately as compared to hardness and strength measurements. Ultrasonic velocity measurements were performed in thermally aged (at 1123 K for 10 to 2000 h) nuclear grade 316 LN stainless steel. Change in velocity due to thermal aging treatment could be used to reveal the formation of (i) Cr-N clusters associated with high lattice strains, (ii) coherent Cr2N precipitation, (iii) loss of coherency and (iv) growth of incoherent Cr2N precipitates. Microstructural characterization by

  13. Cold rolled texture and microstructure in types 304 and 316L austenitic stainless steels

    International Nuclear Information System (INIS)

    Wasnik, D.N.; Samajdar, I.; Gopalakrishnan, I.K.; Yakhmi, J.V.; Kain, V.

    2003-01-01

    Two grades of austenitic stainless steel (ASS), types 304 (UNS S 30400) and 316L (UNS S 31603), were cold rolled to different reductions by unidirectional and by cross-rolling. The steels had reasonable difference in stacking fault energy (estimated respectively as 15 and 61 mJ/m 2 in types 304 and 316L) and also in starting (or pre-deformation) crystallographic texture-being relatively weak and reasonably strong in types 304 and 316L respectively. The cold rolling increased texturing in type 304, but not in type 316L ASS. The more significant effect of cold rolled texture development was in the relative increase of Brass ({011} ) against Copper ({112} ) and S ({231} ) orientations. In type 304 the increase in Brass was significant, while in type 316L the increase in Copper and S was stronger. This effect could be captured by Taylor type deformation texture simulations considering stronger twinning contributions in type 304 - for example the respective 'best-fits' (in terms of matching the changes in the volume fractions of Brass against Copper and S) were obtained by full constraint Taylor model with 1:100 and 1:10 slip:twin activities in types 304 and 316L ASS respectively. Microstructural developments during cold rolling were generalized as strain induced martensite formation and developments of dislocation substructure. The former, as estimated by vibrating sample magnetometer (VSM), increased with cold reduction, being significantly more in type 304 and was also noticeably stronger in both grades under cross-rolling. The most significant aspect of substructural developments was the formation of strain localizations. These were observed as dense dislocation walls (DDWs), micro-bands (MBs) and twin lamellar structures (TLS). The TLS contribution gained significance at higher reductions and during cross-rolling, especially in type 304. Large misorientation development and the accompanying grain splittings were always associated with such strain localizations

  14. Implications of radiation-induced reductions in ductility to the design of austenitic stainless steel structures

    International Nuclear Information System (INIS)

    Lucas, G.E.; Billone, M.; Pawel, J.E.; Hamilton, M.L.

    1995-01-01

    In the dose and temperature range anticipated for ITER, austenitic stainless steels exhibit significant hardening with a concomitant loss in work hardening and uniform elongation. However, significant post-necking ductility may still be retained. When uniform elongation (e u ) is well defined in terms of a plastic instability criterion, e u is found to sustain reasonably high values out to about 7 dpa in the temperature range 250-350 C, beyond which it decreases to about 0.3% for 316LN. This loss of ductility has significant implications to fracture toughness and the onset of new failure modes associated with hear instability. However, the retention of a significant reduction in area at failure following irradiation indicates a less severe degradation of low-cycle fatigue life in agreement with a limited amount of data obtained to date. Suggestions are made for incorporating these results into design criteria and future testing programs

  15. Effects of fluoride and other halogen ions on the external stress corrosion cracking of Type 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Whorlow, K.M.; Hutto, F.B. Jr.

    1997-07-01

    The drip procedure from the Standard Test Method for Evaluating the Influence of Thermal Insulation on External Stress Corrosion Cracking Tendency of Austenitic Stainless Steel (ASTM C 692-95a) was used to research the effect of halogens and inhibitors on the External Stress Corrosion Cracking (ESCC) of Type 304 stainless steel as it applies to Nuclear Regulatory Commission Regulatory Guide 1.36, Nonmetallic Thermal Insulation for Austenitic Stainless Steel. The solutions used in this research were prepared using pure chemical reagents to simulate the halogens and inhibitors found in insulation extraction solutions. The results indicated that sodium silicate compounds that were higher in sodium were more effective for preventing chloride-induced ESCC in Type 304 austenitic stainless steel. Potassium silicate (all-silicate inhibitor) was not as effective as sodium silicate. Limited testing with sodium hydroxide (all-sodium inhibitor) indicated that it may be effective as an inhibitor. Fluoride, bromide, and iodide caused minimal ESCC which could be effectively inhibited by sodium silicate. The addition of fluoride to the chloride/sodium silicate systems at the threshold of ESCC appeared to have no synergistic effect on ESCC. The mass ratio of sodium + silicate (mg/kg) to chloride (mg/kg) at the lower end of the NRC RG 1.36 Acceptability Curve was not sufficient to prevent ESCC using the methods of this research

  16. Effect of metallurgical variables on the austenite stability in fatigued AISI 304 type steels

    Czech Academy of Sciences Publication Activity Database

    Man, Jiří; Smaga, M.; Kuběna, Ivo; Eifler, D.; Polák, Jaroslav

    2017-01-01

    Roč. 185, NOV (2017), s. 139-159 ISSN 0013-7944. [XVIII International Colloquium Mechanical Fatigue of Metals. Gijón, 05.11.2016-07.11.2016] R&D Projects: GA ČR GA13-32665S Institutional support: RVO:68081723 Keywords : Austenitic stainless steel * Deformation induced martensite * Color metallography * Chemical banding * Low cycle fatigue Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering , reliability analysis Impact factor: 2.151, year: 2016

  17. New type of M23C6 carbide precipitation in an austenitic stainless steel containing niobium

    International Nuclear Information System (INIS)

    Terao, Nobuzo; Sasmal, B.

    1981-01-01

    An electron microscopic study has been made of precipitation in an austenitic stainless steel, 16Cr-16Ni-0.8Nb-1.8Mo-0.06C. Attention has been focused on structural changes which take place during long ageing treatments, extended up to 14.4 Ms (4000 h). In addition to the wellknown chromium rich M 23 C 6 carbides, which appear, together with NbC, from the beginning of the precipitation treatment at 1073 K, a new plate-like morphology of M 23 C 6 carbide precipitation was observed after long ageing treatments. These M 23 C 6 carbide plates were formed on (110) planes in regions near pre-existing undissolved NbC particles and their edges were bounded by (111) planes of the fcc alloy matrix. It is suggested that this unexpected process might be favoured by the stresses produced around the undissolved NbC particles. (author)

  18. Shallow-Land Buriable PCA-type austenitic stainless steel for fusion application

    International Nuclear Information System (INIS)

    Zucchetti, M.

    1991-01-01

    Neutron-induced activity in the PCA (Primary Candidate Alloy) austenitic stainless steel is examined, when used for first-wall components in a DEMO fusion reactor. Some low-activity definitions, based on different waste management and disposal concepts, are introduced. Activity in the PCA is so high that any recycling of the irradiated material can be excluded. Disposal of PCA radioactive wastes in Shallow-Land Buriable (SLB) is prevented as well. Mo, Nb and some impurity elements have to be removed or limited, in order to reduce the radioactivity of the PCA. Possible low-activity versions of the PCA are introduced (PCA-la); they meet the requirements for SLB and may also be recycled under certain conditions. (author)

  19. Analysis of the non-isothermal austenite-martensite transformation in 13% Cr-type martensitic stainless steels

    International Nuclear Information System (INIS)

    Garcia-De-Andris, C.; Alvarez, L.F.

    1996-01-01

    In martensitic stainless steels, as in other alloyed containing carbide-forming elements, the carbide dissolution and precipitation processes that take place during heat treatment can cause modifications to the chemical composition of the austenite phase of these steels. The chemical composition of this phase is a fundamental factor for the evolution of the martensitic transformation. As a result of their influence on the dissolution and precipitation processes, the parameters of the quenching heat treatment exert a strong influence on the behavior of the martensitic transformation in these steels. In the present study, the effect of the heating temperature and the cooling rate on the martensitic transformation in two 13% Cr-type martensitic stainless steels with different carbon contents were properly evaluated. (author)

  20. Phenomenological study of the microdeformations produced at the beginning of primary creep under low stresses in an austenitic stainless steel of Z3CND 18-13 type

    International Nuclear Information System (INIS)

    Calvet, J.-N.; Le Bret, P.; Roulliay, R.

    1975-01-01

    A creep machine was modified enabling tests to be carried out at 550 deg C under 8hbar. The modulus of elasticity, yield strength, plastic deformation on loading, creep deformation and total plastic deformation were determined in an austenitic stainless steel of Z3CND 18-13 type. A relationship was established between the plastic deformation on loading and the creep deformation [fr

  1. A multiscale constitutive model for intergranular stress corrosion cracking in type 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Siddiq, A; Rahimi, S

    2013-01-01

    Intergranular stress corrosion cracking (IGSCC) is a fracture mechanism in sensitised austenitic stainless steels exposed to critical environments where the intergranular cracks extends along the network of connected susceptible grain boundaries. A constitutive model is presented to estimate the maximum intergranular crack growth by taking into consideration the materials mechanical properties and microstructure characters distribution. This constitutive model is constructed based on the assumption that each grain is a two phase material comprising of grain interior and grain boundary zone. The inherent micro-mechanisms active in the grain interior during IGSCC is based on crystal plasticity theory, while the grain boundary zone has been modelled by proposing a phenomenological constitutive model motivated from cohesive zone modelling approach. Overall, response of the representative volume is calculated by volume averaging of individual grain behaviour. Model is assessed by performing rigorous parametric studies, followed by validation and verification of the proposed constitutive model using representative volume element based FE simulations reported in the literature. In the last section, model application is demonstrated using intergranular stress corrosion cracking experiments which shows a good agreement

  2. Tensile properties of four types of austenitic stainless steel welded joints

    International Nuclear Information System (INIS)

    Balladon, P.

    1990-01-01

    In the field of an LMFBR research programme on austenitic stainless steel welds in a Shared Cost Action Safety, Research Area 8, coordinated by JRC-Ispra, four cooperating laboratories (ECN, IKE/MPA, the Welding Institute and UNIREC) have been involved in the fabrication and extensive characterization of welded joints made from one plate of ICL 167 stainless steel. The materials included parent metal, four vacuum electron beam welds, one non vacuum electron beam weld, one submerged arc weld, one gas metal arc weld and one manual metal arc weld. This report summarizes the 106 tensile tests performed at room temperature and 550 0 C, including the influence of strain rate, specimen orientation and welding procedure. Main results are that electron beam welds have tensile properties close to those of parent metal with higher values of yield strength in longitudinal orientation and lower values of total elongation in transverse orientation but with a similar reduction of area, that filler metal welds own the highest values of yield strength and lowest values of ductility. Most of the welds properties are higher than the minimum specified for parent metal, except for some values of total elongation, mainly in transverse orientation. In view of using electron beam welding for production of components used in LMFBR, results obtained show that tensile properties of electron beam welds compare well to those of classical welds. (author)

  3. A comparison of the iraddiated tensile properties of a high-manganese austenitic steel and type 316 stainless steel

    International Nuclear Information System (INIS)

    Klueh, R.L.; Grossbeck, M.L.

    1984-01-01

    The USSR steel EP-838 is a high-manganese, low-nickel steel that also has lower chromium and molybdenum than type 316 stainless steel. Tensile specimens of 20%-cold-worked EP-838 and type 316 stainless steel were irradiated in the High Flux Isotope Reactor (HFIR) at the coolant temperature (approx.=50 0 C). A displacement damage level of 5.2 dpa was reached for the EP-838 and up to 9.5 dpa for the type 316 stainless steel. Tensile tests at room temperature and 300 0 C on the two steels indicated that the irradiation led to increased strength and decreased ductility compared to the unirradiated steels. Although the 0.2% yield stress of the type 316 stainless steel in the unirradiated condition was greater than that for the EP-838, after irradiation there was essentially no difference between the strength or ductility of the two steels. The results indicate that the replacement of the majority of the nickel by manganese and a reduction of chromium and molybdenum in an austenitic stainless steel of composition near that for type 316 stainless steel has little effect on the irradiated and unirradiated tensile properties at low temperatures. (orig.)

  4. Comparison of material property specifications of austenitic steels in fast breeder reactor technology

    International Nuclear Information System (INIS)

    Vanderborck, Y.; Van Mulders, E.

    1985-01-01

    Austenitic stainless steels are very widely used in components for European Fast Breeder Reactors. The Activity Group Nr.3 ''Materials'', within Working Group ''Codes and Standards'' of the Fast Reactor Co-Ordination Committee of the European Communities, has decided to initiate a study to compare the material property specifications of the austenitic stainless steel used in the European Fast Breeder Technology. Hence, this study would allow one to view rapidly the designation of a particular steel grade in different European countries and to compare given property values for a same grade. There were dissimilarities, differences or voids appear, it could lead to an attempt to complete and/or to uniformize the nationally given values, so that on a practical level interchangeability, availability and use ease design and construction work. A selection of the materials and of their properties has been made by the Working Group. Materials examined are Stainless Steel AISI 304, 304 L, 304 LN, 316, 316 L, 316 LN, 316''Ti stab.'', 316''Nb stab''., 321, 347

  5. Modeling precipitation thermodynamics and kinetics in type 316 austenitic stainless steels with varying composition as an initial step toward predicting phase stability during irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Jae-Hyeok, E-mail: jhshim@kist.re.kr [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Povoden-Karadeniz, Erwin [Christian Doppler Laboratory for Early Stages of Precipitation, Vienna University of Technology, A-1040 Vienna (Austria); Kozeschnik, Ernst [Institute of Materials Science and Technology, Vienna University of Technology, A-1040 Vienna (Austria); Wirth, Brian D. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States)

    2015-07-15

    Highlights: • We model the precipitation kinetics in irradiated 316 austenitic stainless steels. • Radiation-induced phases are predicted to form at over 10 dpa segregation conditions. • The Si content is the most critical for the formation of radiation-induced phases. - Abstract: The long-term evolution of precipitates in type 316 austenitic stainless steels at 400 °C has been simulated using a numerical model based on classical nucleation theory and the thermodynamic extremum principle. Particular attention has been paid to the precipitation of radiation-induced phases such as γ′ and G phases. In addition to the original compositions, the compositions for radiation-induced segregation at a dose level of 5, 10 or 20 dpa have been used in the simulation. In a 316 austenitic stainless steel, γ′ appears as the main precipitate with a small amount of G phase forming at 10 and 20 dpa. On the other hand, G phase becomes relatively dominant over γ′ at the same dose levels in a Ti-stabilized 316 austenitic stainless steel, which tends to suppress the formation of γ′. Among the segregated alloying elements, the concentration of Si seems to be the most critical for the formation of radiation-induced phases. An increase in dislocation density as well as increased diffusivity of Mn and Si significantly enhances the precipitation kinetics of the radiation-induced phases within this model.

  6. Microtwins and their effect on accumulation of excess dislocation density in grains with different types of crystal lattice bending in deformed austenitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Gibert, Ivan, E-mail: gibert1993@mail.ru [National Research Tomsk Polytechnic University, 30, Lenin Ave., 634050, Tomsk (Russian Federation); Kiseleva, Svetlana, E-mail: kisielieva1946@mail.ru; Popova, Natalya, E-mail: natalya-popova-44@mail.ru; Koneva, Nina, E-mail: koneva@tsuab.ru; Kozlov, Eduard, E-mail: kozlov@tsuab.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation)

    2016-01-15

    The investigation of excess dislocation density accumulation in the deformed polycrystalline austenitic steel was carried out using transmission electron microscopy (TEM). The distributions of the excess dislocation density in the grains of the deformed austenitic steel with different bending types were obtained and plotted. It was established that in the austenitic polycrystalline steel at the deformation degrees ε = 14 and 25 % the distributions of the excess dislocation density are multimodal. In both cases the grain with compound bending is more stressed. The values of the average excess dislocation density in the grains with the compound and simple bending are less at ε = 25 % than that at ε = 14 %. This is explained by a significant relaxation of the internal stresses in steel with the increase of the deformation degree from 14 % to 25 %. The increase of the number of twinning systems and the material volume fraction covered by twinning leads to the internal stress relaxation and consequently to the increase of the excess dislocation density. The presence of microtwins in the deformed material has an influence on the distribution of the excess dislocation density. In the deformed polycrystalline austenitic steel the number of grains with compound bending is increased with the increase of the plastic deformation degree.

  7. Study of tensile test behavior of austenitic stainless steel type 347 seamless thin-walled tubes in cold worked condition

    Energy Technology Data Exchange (ETDEWEB)

    Terui, Clarice, E-mail: clarice.terui@marinha.mil.br [Centro Tecnológico da Marinha em São Paulo (CINA/CTMSP), Iperó, SP (Brazil). Centro Industrial Nuclear da Marinha; Lima, Nelson B. de, E-mail: nblima@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    These austenitic stainless steel type 347 seamless thin-walled tubes are potential candidates to be used in fuel elements of nuclear power plants (as PWR - Pressurized Water Reactor). So, their metallurgical condition and mechanical properties, as the tensile strength and yield strength, normally are very restrict in demanding project and design requirements. Several full size tensile tests at room temperature and high temperature (315 deg C) were performed in these seamless tubes in cold-worked condition. The results of specified tensile and yield strengths were achieved but the elongation of the tube, in the geometry of the component, could not be measured at high temperature due to unconventional mode of rupture (helical mode without separation of parts). The average value of elongation was obtained from stress-strain curves of hot tensile tests and was around 5%. The results obtained in this research show that this behavior of the full size tensile test samples of thin-walled tube (wall thickness less than 0.5 mm) in high temperature (315°C) is due to the combination of the manufacturing process, the material (crystallographic structure and chemical composition) and the final geometry of the component. In other words, the strong crystallographic texture of material induced by tube drawing process in addition with the geometry of the component are responsible for the behavior in hot uniaxial tensile tests. (author)

  8. The influence of plasma nitriding on the fatigue behavior of austenitic stainless steel types AISI 316 and AISI 304

    International Nuclear Information System (INIS)

    Varavallo, Rogerio; Manfrinato, Marcos Dorigao; Rossino, Luciana Sgarbi; Spinelli, Dirceu; Riofano, Rosamel Melita Munoz

    2010-01-01

    The plasma nitriding process has been used as an efficient method to optimize the surface properties of steel and alloy in order to increase their wear, fatigue and corrosion resistance. This paper reports on a study of the composition and influence of the nitrided layer on the high-cycle fatigue properties of the AISI 316 and 304 type austenitic stainless steels. Test specimens of AISI 316 and 304 steel were nitrided at 400 deg C for 6 hours under a pressure of 4.5 mbar, using a gas mixture of 80% volume of H 2 and 20% volume of N 2 . The rotary fatigue limit of both nitrided and non-nitrided steels was determined, and the effect of the treatment on the fatigue limit of the two steels was evaluated. The mechanical properties of the materials were evaluated based on tensile tests, and the nitrided layer was characterized by microhardness tests, scanning electron microscopy and X-ray diffraction. The resulting nitride layer showed high hardness and mechanical strength, increasing the fatigue limit of the nitrided material in comparison with the non-nitrided one. The fatigue limit of the 316 steel increased from 400 MPa to 510 MPa in response to nitriding, while that of the 304 steel increased from 380 MPa to 560 MPa. One of the contributing factors of this increase was the introduction of residual compressive stresses during the surface hardening process, which reduce the onset of crack formation underneath the nitride layer. (author)

  9. Creep-rupture properties of type 304 austenitic stainless steel at elevated temperatures

    International Nuclear Information System (INIS)

    Zulkifli Ahyak; Esah Hamzah; Abdul Aziz Mohamad.

    1987-08-01

    The creep behaviour of a type 304 stainless steel has been examined at temperatures of 450 to 750 0 C under uniaxial initial stress of 200 Mpa. It was found that carbide precipitation within grain boundary, recrystallization and grain growth occured during creep at above 550 0 C. It is apparent that the creep-resistant of the steel is influenced by grain boundaries. (author)

  10. Radiation-induced segregation in desensitized type 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Ahmedabadi, Parag; Kain, V.; Arora, K.; Samajdar, I.; Sharma, S.C.; Bhagwat, P.

    2011-01-01

    Graphical abstract: Schematic representation of overall experimental and results, indicating attack, after the DL-EPR test, on grain boundaries, twin boundaries and pit-like features within grains at the depth of maximum attack. The sensitized specimen also showed severe attack on grain boundaries, however, attack on twin-boundaries and pit-like features were not noticed. Display Omitted Highlights: → Characterization of radiation-induced segregation done by EPR and AFM examination. → Cr depletion adjacent to carbides due to RIS in irradiated desensitized 304 SS. → Effectiveness as defect sink: twins > pit-like features > grain boundary. - Abstract: Radiation-induced segregation (RIS) in desensitized type 304 stainless steel (SS) was investigated using a combination of electrochemical potentiokinetic reactivation (EPR) test and atomic force microscopy (AFM). Desensitized type 304 SS was irradiated to 0.43 dpa (displacement per atom) using 4.8 MeV protons at 300 deg. C. The maximum attack in the EPR test for the irradiated desensitized SS was measured at a depth of 70 μm from the surface. Grain boundaries and twin boundaries got attacked and pit-like features within the grains were observed after the EPR test at the depth of 70 μm. The depth of attack, as measured by AFM, was higher at grain boundaries and pit-like features as compared to twin boundaries. It has been shown that the chromium depletion due to RIS takes place at the carbide-matrix as well as at the carbide-carbide interfaces at grain boundaries. The width of attack at grain boundaries after the EPR test of the irradiated desensitized specimen appeared larger due to the dislodgement of carbides at grain boundaries.

  11. Radiation-induced segregation in desensitized type 304 austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Ahmedabadi, Parag, E-mail: adit@barc.gov.in [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kain, V. [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Arora, K. [PEC University of Technology, Chandigarh (India); Samajdar, I. [Department of Metallurgical Engineering and Materials Science, Indian Institute Technology Bombay, Powai, Mumbai 400 076 (India); Sharma, S.C.; Bhagwat, P. [Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2011-09-30

    Graphical abstract: Schematic representation of overall experimental and results, indicating attack, after the DL-EPR test, on grain boundaries, twin boundaries and pit-like features within grains at the depth of maximum attack. The sensitized specimen also showed severe attack on grain boundaries, however, attack on twin-boundaries and pit-like features were not noticed. Display Omitted Highlights: > Characterization of radiation-induced segregation done by EPR and AFM examination. > Cr depletion adjacent to carbides due to RIS in irradiated desensitized 304 SS. > Effectiveness as defect sink: twins > pit-like features > grain boundary. - Abstract: Radiation-induced segregation (RIS) in desensitized type 304 stainless steel (SS) was investigated using a combination of electrochemical potentiokinetic reactivation (EPR) test and atomic force microscopy (AFM). Desensitized type 304 SS was irradiated to 0.43 dpa (displacement per atom) using 4.8 MeV protons at 300 deg. C. The maximum attack in the EPR test for the irradiated desensitized SS was measured at a depth of 70 {mu}m from the surface. Grain boundaries and twin boundaries got attacked and pit-like features within the grains were observed after the EPR test at the depth of 70 {mu}m. The depth of attack, as measured by AFM, was higher at grain boundaries and pit-like features as compared to twin boundaries. It has been shown that the chromium depletion due to RIS takes place at the carbide-matrix as well as at the carbide-carbide interfaces at grain boundaries. The width of attack at grain boundaries after the EPR test of the irradiated desensitized specimen appeared larger due to the dislodgement of carbides at grain boundaries.

  12. Sequential creep-fatigue interaction in austenitic stainless steel type 316L-SPH

    International Nuclear Information System (INIS)

    Tavassoli, A.A.; Mottot, M.; Petrequin, P.

    1986-01-01

    Influence of a prior creep or fatigue exposure on subsequent fatigue or creep properties of stainless steel type 316 L SPH has been investigated. The results obtained are used to verify the validity of time and cycle fraction rule and to obtain information on the effect of very long intermittent hold times on low cycle fatigue properties, as well as on transitory loads occurring during normal service of some structural components of LMFBR reactors. Creep and fatigue tests have been carried out at 600 0 C and under conditions yielding equal or different fatigue saturation and creep stresses. Prior creep damage levels introduced range from primary to tertiary creep, whilst those of fatigue span from 20 to 70 percent of fatigue life. In both creep-fatigue and fatigue-creep sequences in the absence of a permanent prior damage (cavitation or cracking) the subsequent resistance of 316 L-SPH to fatigue or creep is unchanged, if not improved. Thin foils prepared from the specimens confirmed these observations and showed that the dislocation substructure developed during the first mode of testing is quickly replaced by that of the second mode. Grain boundary cavitation does not occur in 316 L-SPH during creep exposures to well beyond the apparent end of secondary stage and as a result prior creep exposures up to approximately 80% of rupture life do not affect fatigue properties. Conversely, significant surface cracks were found in the prior fatigue tested specimens after above about 50% life. In the presence of such cracks the subsequent creep damage was localized at the tip of the main crack and the remaining creep life was found to be usually proportional to the effective specimen cross section. Creep and fatigue sequential damage are not necessarily additive and this type of loadings are in general less severe than the repeated creep-fatigue cycling. 17 refs.

  13. The role of niobium carbide in radiation induced segregation behaviour of type 347 austenitic stainless steel

    Science.gov (United States)

    Ahmedabadi, Parag; Kain, Vivekanand; Gupta, Manu; Samajdar, I.; Sharma, S. C.; Bhagwat, P.; Chowdhury, R.

    2011-08-01

    The effect of niobium carbide precipitates on radiation induced segregation (RIS) behaviour in type 347 stainless steel was investigated. The material in the as-received condition was irradiated using double-loop 4.8 MeV protons at 300 °C for 0.43 dpa (displacement per atom). The RIS in the proton irradiated specimen was characterized using double-loop electrochemical potentiokinetic reactivation (DL-EPR) test followed by atomic force microscopic examination. The nature of variation of DL-EPR values with the depth matched with the variation of the calculated irradiation damage (dpa) with the depth. The attack on grain boundaries during EPR tests was negligible indicating absence of chromium depletion zones. The interface between niobium carbide and the matrix acts as a sink for point defects generated during irradiation and this had reduced point defect flux toward grain boundaries. The attack was noticed at a few large cluster of niobium carbide after the DL-EPR test at the depth of maximum attack for the irradiated specimen. Pit-like features were not observed within the matrix indicating the absence of chromium depletion regions within the matrix.

  14. Boron content effect on the high-temperature plasticity of corrosion resistant low-carbon austenite type steels

    International Nuclear Information System (INIS)

    Gol'dshtejn, Ya.E.; Shmatko, M.N.; Chuvatina, S.N.

    1976-01-01

    With the concept that the state of grain and subgrain boundaries influences the hot plasticity of corrosion resistant steel as a starting point, the study was undertaken of the effect of boron microalloying up on the intergranular strength and of the action boron exerts upon the distribution (redistribution) of other phases present in austenitic 03Kh16N14M3 steels. An electron microscope study of the composition of redundant phases and that of the fine structure of steel have shown the effect of small additions of boron upon the hot plasticity of steel to be linked directly to its influence upon austenite disintegration and the precipitation along the boundaries of crystals of redundant phases in the course of hot plastic deformation. The action of boron upon the process plasticity of steel depends on the temperature and the rate of deformation which govern the kinetics of the precipitation of the redundant phases

  15. Stress corrosion crack growth studies on nitrogen added AISI type 316 stainless steel and its weld metal in boiling acidified sodium chloride solution using the fracture mechanics approach

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, H.; George, G.; Khatak, H.S. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Div. of Metallurgy; Schneider, F.; Mummert, K. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany). Inst. fuer Metallische Werkstoffe

    2000-10-01

    Compact tension specimens of nitrogen-added AISI type 316 austenitic stainless steel and its weld metal were subject to stress corrosion cracking (SCC) testing in a boiling solution containing 5 M sodium chloride + 0.15 M sodium sulphate + 2.5 ml/l hydrochloric acid solution using the constant extension rate testing (CERT) technique. The extension rate of testing was 10 microns per hour. The threshold values of stress intensify factor (K{sub ISCC}) and J-integral (J{sub ISCC}) were taken as those values of K{sub I} and J{sub I} at which about 25 microns of SCC crack growth was observed. These threshold values were about four times higher and plateau crack growth rates (PCGR) were nearly one order of magnitude lower for the base metal vis-a-vis the weld metal. Fractographic observations indicated failure by transgranular SCC (TGSCC) of austenite in both the base and weld metal. No stress-assisted dissolution of delta-ferrite or its interface with austenite, was observed. (orig.) [German] CT-Proben von Grund- und Schweissnahtwerkstoff des stickstoffhaltigen Stahles AISI 316 LN wurden Spannungsrisskorrosionstests in siedender chloridhaltiger Loesung (5 M Natriumchlorid/0,15 M Natriumsulfat/0,03 M Salzsaeure) unterzogen. Die Tests erfolgten bei konstanter Dehnrate (CERT-Test) von 10 {mu}m/h. Als Schwellwerte der Initiierung von Spannungsrisskorrosion K{sub ISCC} und I{sub ISCC} wurden die Werte des Spannungsintensitaetsfaktors K{sub I} und des J-Integrals J{sub I} ermittelt, bei denen ein Risswachstum von 25 {mu}m auftrat. Dabei wies der Grundwerkstoff 4-fach hoehere Schwellwerte K{sub ISCC} und J{sub ISCC} auf als der Schweissnahtwerkstoff. Auch die Risswachstumsraten im Plateaubereich der Risswachstumsrate-Spannungsintensitaetskruven waren am Grundwerkstoff um eine Groessenordnung geringer als am Schweissnahtwerkstoff. Die fraktorgrahischen Untersuchungen zeigten an beiden Materialien Schaedigung durch transkristalline Spannungsrisskorrosion. Eine

  16. Corrosion of austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M C.M. [Instituto Nacional de Tecnologia, Rio de Janeiro (Brazil)

    1977-01-01

    Types of corrosion observed in a heat exchanger pipe and on a support of still of molasses fermented wort, both in austenitic stainless steel, are focused. Not only are the causes which might have had any kind of influence on them examined, but also the measures adopted in order to avoid and lessen its occurence.

  17. A Comparative Study of Fracture Toughness at Cryogenic Temperature of Austenitic Stainless Steel Welds

    Science.gov (United States)

    Aviles Santillana, I.; Boyer, C.; Fernandez Pison, P.; Foussat, A.; Langeslag, S. A. E.; Perez Fontenla, A. T.; Ruiz Navas, E. M.; Sgobba, S.

    2018-03-01

    The ITER magnet system is based on the "cable-in-conduit" conductor (CICC) concept, which consists of stainless steel jackets filled with superconducting strands. The jackets provide high strength, limited fatigue crack growth rate and fracture toughness properties to counteract the high stress imposed by, among others, electromagnetic loads at cryogenic temperature. Austenitic nitrogen-strengthened stainless steels have been chosen as base material for the jackets of the central solenoid and the toroidal field system, for which an extensive set of cryogenic mechanical property data are readily available. However, little is published for their welded joints, and their specific performance when considering different combinations of parent and filler metals. Moreover, the impact of post-weld heat treatments that are required for Nb3Sn formation is not extensively treated. Welds are frequently responsible for cracks initiated and propagated by fatigue during service, causing structural failure. It becomes thus essential to select the most suitable combination of parent and filler material and to assess their performance in terms of strength and crack propagation at operation conditions. An extensive test campaign has been conducted at 7 K comparing tungsten inert gas (TIG) welds using two fillers adapted to cryogenic service, EN 1.4453 and JK2LB, applied to two different base metals, AISI 316L and 316LN. A large set of fracture toughness data are presented, and the detrimental effect on fracture toughness of post-weld heat treatments (unavoidable for some of the components) is demonstrated. In this study, austenitic stainless steel TIG welds with various filler metals have undergone a comprehensive fracture mechanics characterization at 7 K. These results are directly exploitable and contribute to the cryogenic fracture mechanics properties database of the ITER magnet system. Additionally, a correlation between the impact in fracture toughness and microstructure

  18. Several aspects of the temperature history in relation to the cyclic behaviour of an austenitic stainless steel

    International Nuclear Information System (INIS)

    Gentet, D.; Feaugas, X.; Risbet, M.; Lejeail, Y.; Pilvin, P.

    2011-01-01

    Highlights: · Dynamic strain ageing consequences on the temperature history memorization effect. · Temperature is mainly focused at a temperature range equal to 293-923 K. · Two peaks are observed on the curve describing saturation stress amplitude. · Cyclic behaviour is a function of the temperature range explored. · Cyclic temperature history is mainly associated with chromium segregation. - Abstract: A consistent mechanical and transmission electron microscopy (TEM) database is proposed to discuss the consequences of dynamic strain ageing (DSA) on the temperature history memory effect observed under the cyclic loading of a 316LN austenitic stainless steel. Two DSA mechanisms have been identified in relation with two temperature regimes: the first of which may be related to the Suzuki effect (in the low temperature regime) and the second is linked to solute segregation at dislocation node (in the high temperature regime). The temperature history memory effect is a function of the temperature range and can be explained in terms of chromium segregation and the potentiality to obtain 'stability' in dipolar dislocation structures. Both aspects are discussed based on the measurement of internal stress changes.

  19. Effect of welding process, type of electrode and electrode core diameter on the tensile property of 304L austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Akinlabi OYETUNJI

    2014-11-01

    Full Text Available The effect of welding process, type of electrode and electrode core diameter on the tensile property of AISI 304L Austenitic Stainless Steel (ASS was studied. The tensile strength property of ASS welded samples was evaluated. Prepared samples of the ASS were welded under these three various variables. Tensile test was then carried out on the welded samples. It was found that the reduction in ultimate tensile strength (UTS of the butt joint samples increases with increase in core diameter of the electrode. Also, the best electrode for welding 304L ASS is 308L stainless steel-core electrode of 3.2 mm core diameter. It is recommended that the findings of this work can be applied in the chemical, food and oil industries where 304L ASS are predominantly used.

  20. Thermal fatigue cracking of austenitic stainless steels

    International Nuclear Information System (INIS)

    Fissolo, A.

    2001-01-01

    This report deals with the thermal fatigue cracking of austenitic stainless steels as AISI 316 LN and 304 L. Such damage has been clearly observed for some components used in Fast Breeder reactors (FBR) and Pressure Water Reactor (PWR). In order to investigate thermal fatigue, quasi-structural specimen have been used. In this frame, facilities enforcing temperature variations similar to those found under the operation conditions have been progressively developed. As for components, loading results from impeded dilatation. In the SPLASH facility, the purpose was to establish accurate crack initiation conditions in order to check the relevance of the usual component design methodology. The tested specimen is continuously heated by the passage of an electrical DC current, and submitted to cyclic thermal down shock (up to 1000 deg C/s) by means of periodical spraying of water on two opposite specimen faces. The number of cycles to crack initiation N i is deduced from periodic examinations of the quenched surfaces, by means of optical microscopy. It is considered that initiation occurs when at least one 50μm to 150□m long crack is observed. Additional SPLASH tests were performed for N >> N i , with a view to investigate the evolution of a surface multiple cracking network with the number of cycles N. The CYTHIA test was mainly developed for the purpose of assessing crack growth dynamics of one isolated crack in thermal fatigue conditions. Specimens consist of thick walled tubes with a 1 mm circular groove is spark-machined at the specimen centre. During the test, the external wall of the tube is periodically heated by using a HF induction coil (1 MHz), while its internal wall is permanently cooled by flowing water. Total crack growth is derived from post-mortem examinations, whereby the thermal fatigue final rupture surface is oxidized at the end of the test. The specimen is broken afterwards under mechanical fatigue at room temperature. All the tests confirm that

  1. Strain-Annealing Based Grain Boundary Engineering to Evaluate its Sole Implication on Intergranular Corrosion in Extra-Low Carbon Type 304L Austenitic Stainless Steel

    Science.gov (United States)

    Pradhan, S. K.; Bhuyan, P.; Kaithwas, C.; Mandal, Sumantra

    2018-07-01

    Strain-annealing based thermo-mechanical processing has been performed to promote grain boundary engineering (GBE) in an extra-low carbon type austenitic stainless steel without altering the grain size and residual strain to evaluate its sole influence on intergranular corrosion. Single-step processing comprising low pre-strain ( 5 and 10 pct) followed by annealing at 1273 K for 1 hour have resulted in a large fraction of Σ3 n boundaries and significant disruption in random high-angle grain boundaries (RHAGBs) connectivity. This is due to the occurrence of prolific multiple twinning in these specimens as confirmed by their large twin-related domain and twin-related grain size ratio. Among the iterative processing, the schedule comprising two cycles of 10 and 5 pct deformation followed by annealing at 1173 K for 1 hour has yielded the optimum GBE microstructure with the grain size and residual strain akin to the as-received condition. The specimens subjected to the higher number of iterations failed to realize GBE microstructures due to the occurrence of partial recrystallization. Owing to the optimum grain boundary character distribution, the GBE specimen has exhibited remarkable resistance against sensitization and intergranular corrosion as compared to the as-received condition. Furthermore, the lower depth of percolation in the GBE specimen is due to the significant disruption of RHAGBs connectivity as confirmed from its large twin-related domain and lower fractal dimension.

  2. Welding metallurgy of austenitic stainless steels

    International Nuclear Information System (INIS)

    Ibrahim, A.N.

    1983-01-01

    Austenitic stainless steels welds are commonly found in nuclear reactor systems. The macrostructure and the transformation of delta -phase into γ - phase which occur during rapid solidification of such welds are discussed. Finally, several types of defects which are derived from the welding operation, particularly defects of crack type, are also discussed in brief. (author)

  3. Protection of type 316 austenitic stainless steel from intergranular stress corrosion cracking by thermo-mechanical treatment

    International Nuclear Information System (INIS)

    Kiuchi, Kiyoshi; Tsuji, Hirokazu; Kondo, Tatsuo

    1980-03-01

    Thermomechanical treatment that causes carbide stabilizing aging of cold worked material followed by recrystallization heating made standard stainless steels highly resistant to intergranular corrosion and stress corrosion cracking in different test environments. After a typical thermal history of simulated welding, several IGSCC susceptibility tests were made. The results showed that the treatment was successful in type 316 steel in wide range of conditions, while type 304 was protected only to a small extent even by closely controlled treatment. Response of the materials to the sensitizing heating in terms of impurity segregation at grain boundaries was also examined by means of microchemical analysis. Advantage of method is that no special care is required in selecting heats of material, so that conventional type 316 is usable by improving the mechanical properties substantially through the treatment. In some optimized cases the mechanical property improvement was typically recognized by the yield strength by about 20% higher at room temperature, compared with the material mill annealed. (author)

  4. Formation of M23C6-type precipitates and chromium-depleted zones in austenite stainless steel

    International Nuclear Information System (INIS)

    Kaneko, Kenji; Fukunaga, Tatsuya; Yamada, Kazuhiro; Nakada, Nobuo; Kikuchi, Masao; Saghi, Zineb; Barnard, Jon S.; Midgley, Paul A.

    2011-01-01

    Graphical abstract: Precipitate formation during the in situ annealing experiment at 650 o C. -- Formation of M 23 C 6 carbides and chromium-depleted zones in commercially available type 304L stainless steel were investigated by in situ transmission electron microscopy and analytical transmission electron microscopy. It was found that each individual small M 23 C 6 carbide starts to grow with a clear orientation relationship with the matrix, and film-like carbide was subsequently observed at the interfaces with asymmetric Cr-depleted zones. From these experimental results, a model describing the precipitation of M 23 C 6 and the formation of the Cr-depleted zone was proposed.

  5. Deformation effects on the development of grain boundary chronium depletion (sensitization) in type 316 austenitic stainless steels

    International Nuclear Information System (INIS)

    Atteridge, D.G.; Wood, W.E.; Advani, A.H.; Bruemmer, S.M.

    1990-01-01

    Deformation induces an acceleration in the kinetics and reduction in the thermodynamic barrier to carbide precipitation and grain boundary chromium depletion (GBCD) development of a high carbon Type 316 stainless steel (SS). This was observed in a study on strain effects on GBCD (or sensitization) development in the range of 575 degree C to 775 degree C. Grain boundary chromium depletion behavior of SS was examined using the indirect electrochemical potentiokinetic reactivation (EPR) test and supported by studies on carbide precipitation using transmission electron microscopy (TEM). 99 refs., 84 figs., 9 tabs

  6. Influence of dynamic strain ageing on tensile strain energy of type 316L(N) austenitic stainless steel

    International Nuclear Information System (INIS)

    Isaac Samuel, B.; Choudhary, B.K.; Bhanu Sankara Rao, K.

    2010-01-01

    Tensile tests were conducted on type 316 L(N) stainless steel over a wide temperature range of 300-1123 K employing strain rates ranging from 3.16 X 10 -5 to 3.16 X 10 -3/s . The variation of strain energy in terms of modulus of resilience and modulus of toughness over the wide range of temperatures and strain rates were examined. The variation in modulus of resilience with temperature and strain rate did not show the signatures of dynamic strain ageing (DSA). However, the modulus of toughness exhibited a plateau at the intermediate temperatures of 523-1023 K. Further, the distribution of energy absorbed till necking and energy absorbed from necking till fracture were found to characterise the deformation and damage processes, respectively, and exhibited anomalous variations in the temperature range 523-823 K and 823-1023 K, respectively. In addition to the observed manifestations of DSA such as serrated load-elongation curve, peaks/plateaus in flow stress, ultimate tensile strength and work hardening rate, negative strain rate sensitivity and ductility minima, the observed anomalous variations in modulus of toughness at intermediate temperatures (523-1023 K) can be regarded as yet another key manifestation of DSA. At temperatures above 1023 K, a sharp decrease in the modulus of toughness and also in the strain energies up to necking and from necking to fracture observed, with increasing temperature and decreasing strain rate, reveal the onset of dynamic recovery leading to early cross slip and climb processes. (author)

  7. Reverted austenite in PH 13-8 Mo maraging steels

    International Nuclear Information System (INIS)

    Schnitzer, Ronald; Radis, Rene; Noehrer, Matthias; Schober, Michael; Hochfellner, Rainer; Zinner, Silvia; Povoden-Karadeniz, E.; Kozeschnik, Ernst; Leitner, Harald

    2010-01-01

    The mechanical properties of maraging steels are strongly influenced by the presence of reverted austenite. In this study, the morphology and chemical composition of reverted austenite in a corrosion resistant maraging steel was characterized using transmission electron microscopy (TEM) and atom probe tomography (APT). Two types of austenite, i.e. granular and elongated, are present after aging at 575 o C, whereby the content of the latter increases during aging. The investigations revealed that the austenite phase is enriched in Ni, which prevents the transformation to martensite during cooling. Inside and next to the austenitc areas, Mo and Cr-rich carbides, which form during the aging treatment, were found. Various aging treatments were performed to obtain the activation energy for the formation of reverted austenite. Additionally, the experimental data are compared with thermodynamic and kinetic simulations. Based on these results and the chemical composition changes of the phases, a model for the formation of reverted austenite is presented. It is concluded that precipitation of B2-ordered NiAl and formation of reverted austenite take place simultaneously during aging and that dissolution of precipitates is not essential for the initial formation of reverted austenite.

  8. Initiation and growth of thermal fatigue crack networks in an AISI 304 L type austenitic stainless steel (X2 CrNi18-09)

    International Nuclear Information System (INIS)

    Maillot, V.

    2004-01-01

    We studied the behaviour of a 304 L type austenitic stainless steel submitted to thermal fatigue. Using the SPLASH equipment of CEA/SRMA we tested parallelepipedal specimens on two sides: the specimens are continuously heated by Joule effect, while two opposites faces are cyclically. cooled by a mixed spray of distilled water and compressed air. This device allows the reproduction and the study of crack networks similar to those observed in nuclear power plants, on the inner side of circuits fatigued by mixed pressurized water flows at different temperatures. The crack initiation and the network constitution at the surface were observed under different thermal conditions (Tmax = 320 deg C, ΔT between 125 and 200 deg C). The experiment produced a stress gradient in the specimen, and due to this gradient, the in-depth growth of the cracks finally stopped. The obtained crack networks were studied quantitatively by image analysis, and different parameters were studied: at the surface during the cycling, and post mortem by step-by-step layer removal by grinding. The maximal depth obtained experimentally, 2.5 mm, is relatively coherent with the finite element modelling of the SPLASH test, in which compressive stresses appear at a depth of 2 mm. Some of the crack networks obtained by thermal fatigue were also tested in isothermal fatigue crack growth under 4-point bending, at imposed load. The mechanisms of the crack selection, and the appearance of the dominating crack are described. Compared to the propagation of a single crack, the crack networks delay the propagation, depending on the severity of the crack competition for domination. The dominating crack can be at the network periphery, in that case it is not as shielded by its neighbours as a crack located in the center of the network. It can also be a straight crack surrounded by more sinuous neighbours. Indeed, on sinuous cracks, the loading is not the same all along the crack path, leading to some morphological

  9. Ultrasonic inspection of austenitic welds

    International Nuclear Information System (INIS)

    Baikie, B.L.; Wagg, A.R.; Whittle, M.J.; Yapp, D.

    1976-01-01

    The ultrasonic examination of austenitic stainless steel weld metal has always been regarded as a difficult proposition because of the large and variable ultrasonic attenuations and back scattering obtained from apparently similar weld deposits. The work to be described shows how the existence of a fibre texture within each weld deposit (as a result of epitaxial growth through successive weld beads) produces a systematic variation in the ultrasonic attenuation coefficient and the velocity of sound, depending upon the angle between the ultrasonic beam and the fibre axis. Development work has shown that it is possible to adjust the welding parameters to ensure that the crystallographic texture within each weld is compatible with improved ultrasonic transmission. The application of the results to the inspection of a specific weld in type 316 weld metal is described

  10. Expanded austenite in nitrided layers deposited on austenitic and super austenitic stainless steel grades

    International Nuclear Information System (INIS)

    Casteletti, L.C.; Fernandes, F.A.P.; Heck, S.C.; Gallego, J.

    2010-01-01

    In this work nitrided layers deposited on austenitic and super austenitic stainless steels were analyzed through optical microscopy and X-rays diffraction analysis (XRD). It was observed that the formation of N supersaturated phase, called expanded austenite, has promoted significant increment of hardness (> 1000HV). XRD results have indicated the anomalous displacement of the diffracted peaks, in comparison with the normal austenite. This behavior, combined with peaks broadening, it was analyzed in different nitriding temperatures which results showed good agreement with the literature. (author)

  11. Pitting corrosion resistant austenite stainless steel

    Science.gov (United States)

    van Rooyen, D.; Bandy, R.

    A pitting corrosion resistant austenite stainless steel comprises 17 to 28 wt. % chromium, 15 to 26 wt. % nickel, 5 to 8 wt. % molybdenum, and 0.3 to 0.5 wt. % nitrogen, the balance being iron, unavoidable impurities, minor additions made in the normal course of melting and casting alloys of this type, and may optionally include up to 10 wt. % of manganese, up to 5 wt. % of silicon, and up to 0.08 wt. % of carbon.

  12. Response of cast austenitic stainless steel to low temperature plasma carburizing.

    OpenAIRE

    Sun, Yong

    2008-01-01

    The response of a cast 316 type austenitic stainless steel to the novel low temperature plasma carburizing process has been investigated in this work. The cast steel has a dendritic structure with a mix of austenite, ferrite and carbide phases. The results show that such a complex structure responds well to the carburizing process, and the inter-dendrite regions containing ferrite and carbides can be transformed to expanded austenite to form a continuous and uniform layer supersat...

  13. Study of the stress corrosion cracking susceptibility of type 304 austenitic stainless steel in aqueous solution of MgCl2 at 1250C using the slow - strain - rate technique

    International Nuclear Information System (INIS)

    Heck, N.C.

    1981-01-01

    A study has been made of the stress corrosion cracking susceptibility of type 304 austenitic stainless steel mainly in aqueous solution of MgCl 2 at 125 0 C using the slow strain-rate technique. A system is built up of a tensile test machine and the peripheric equipment. The efficacy of this system has been tested by running experiments for determination of critical potentials in MgCl 2 with or without aditions of NaNO 3 . Critical potentials are found to be between -145 and -160 mV sub(H) for pure MgCl 2 and between -90 and -100 mV sub(H) for MgCl 2 plus 2,5% NaNO 3 . Comparing these results with others of constant load tests, good agreement is found. (Author) [pt

  14. Solidification behavior of austenitic stainless steel filler metals

    International Nuclear Information System (INIS)

    David, S.A.; Goodwin, G.M.; Braski, D.N.

    1980-02-01

    Thermal analysis and interrupted solidification experiments on selected austenitic stainless steel filler metals provided an understanding of the solidification behavior of austenitic stainless steel welds. The sequences of phase separations found were for type 308 stainless steel filler metal, L + L + delta + L + delta + γ → γ + delta, and for type 310 stainless steel filler metal, L → L + γ → γ. In type 308 stainless steel filler metal, ferrite at room temperature was identified as either the untransformed primary delta-ferrite formed during the initial stages of solidification or the residual ferrite after Widmanstaetten austenite precipitation. Microprobe and scanning transmission electron microscope microanalyses revealed that solute extensively redistributes during the transformation of primary delta-ferrite to austenite, leading to enrichment and stabilization of ferrite by chromium. The type 310 stainless steel filler metal investigated solidifies by the primary crystallization of austenite, with the transformation going to completion at the solidus temperature. In our samples residual ferrite resulting from solute segregation was absent at the intercellular or interdendritic regions

  15. Austenitic stainless steel weld inspection

    International Nuclear Information System (INIS)

    Mech, S.J.; Emmons, J.S.; Michaels, T.E.

    1978-01-01

    Analytical techniques applied to ultrasonic waveforms obtained from inspection of austenitic stainless steel welds are described. Experimental results obtained from a variety of geometric and defect reflectors are presented. Specifically, frequency analyses parameters, such as simple moments of the power spectrum, cross-correlation techniques, and adaptive learning network analysis, all represent improvements over conventional time domain analysis of ultrasonic waveforms. Results for each of these methods are presented, and the overall inspection difficulties of austenitic stainless steel welds are discussed

  16. Tensile strength and creep behaviour of austenitic stainless steel type 18Cr - 12Ni with niobium additions at 700{sup 0}C

    Energy Technology Data Exchange (ETDEWEB)

    Sordi, V L; Bueno, L O, E-mail: sordi@ufscar.b [Federal University of Sao Carlos, Materials Engineering Department, Sao Carlos (SP), 13565-905 (Brazil)

    2010-07-01

    The effect of niobium additions up to 2.36 wt% on the creep behavior of a series of seven extra low carbon 18Cr-12Ni austenitic stainless steels at 700{sup 0}C has been investigated. Grain size and hardness measurements, hot tensile tests and constant stress creep tests from 90 to 180 MPa were carried out for each alloy, in the solution treated condition at 1050, 1200 and 1300{sup 0}C followed by quench in water. The mechanical behavior at high temperature was related to the amount of NbC precipitation occurring during the tests. Solid solution and intermetallic compound effects were also considered. Creep data analysis was done to determine the parameters of the creep power-law equation {epsilon}-dot = A.{sigma}{sup n} and the Monkman-Grant relation {epsilon}-dot .t{sup m}{sub R} = K. Niobium-carbide precipitation in these steels reduces the secondary stage dependence of strain rate with applied stress, resulting in n-values which indicate the possibility of operation of various creep mechanisms. The creep strength during the secondary stage is primarily controlled by the amount of NbC available for precipitation. However, the rupture times increase progressively with niobium content, as the amount of undissolved carbide particles in grain boundaries and the Laves phase precipitation increase.

  17. Tensile strength and creep behaviour of austenitic stainless steel type 18Cr - 12Ni with niobium additions at 700°C

    Science.gov (United States)

    Sordi, V. L.; Bueno, L. O.

    2010-07-01

    The effect of niobium additions up to 2.36 wt% on the creep behavior of a series of seven extra low carbon 18Cr-12Ni austenitic stainless steels at 700°C has been investigated. Grain size and hardness measurements, hot tensile tests and constant stress creep tests from 90 to 180 MPa were carried out for each alloy, in the solution treated condition at 1050, 1200 and 1300°C followed by quench in water. The mechanical behavior at high temperature was related to the amount of NbC precipitation occurring during the tests. Solid solution and intermetallic compound effects were also considered. Creep data analysis was done to determine the parameters of the creep power-law equation dot epsilon = A.σn and the Monkman-Grant relation dot epsilon.tmR = K. Niobium-carbide precipitation in these steels reduces the secondary stage dependence of strain rate with applied stress, resulting in n-values which indicate the possibility of operation of various creep mechanisms. The creep strength during the secondary stage is primarily controlled by the amount of NbC available for precipitation. However, the rupture times increase progressively with niobium content, as the amount of undissolved carbide particles in grain boundaries and the Laves phase precipitation increase.

  18. Simulation of the Growth of Austenite from As-Quenched Martensite in Medium Mn Steels

    Science.gov (United States)

    Huyan, Fei; Yan, Jia-Yi; Höglund, Lars; Ågren, John; Borgenstam, Annika

    2018-04-01

    As part of an ongoing development of third-generation advanced high-strength steels with acceptable cost, austenite reversion treatment of medium Mn steels becomes attractive because it can give rise to a microstructure of fine mixture of ferrite and austenite, leading to both high strength and large elongation. The growth of austenite during intercritical annealing is crucial for the final properties, primarily because it determines the fraction, composition, and phase stability of austenite. In the present work, the growth of austenite from as-quenched lath martensite in medium Mn steels has been simulated using the DICTRA software package. Cementite is added into the simulations based on experimental observations. Two types of systems (cells) are used, representing, respectively, (1) austenite and cementite forming apart from each other, and (2) austenite forming on the cementite/martensite interface. An interfacial dissipation energy has also been added to take into account a finite interface mobility. The simulations using the first type of setup with an addition of interfacial dissipation energy are able to reproduce the observed austenite growth in medium Mn steels reasonably well.

  19. Diffraction study of the retained austenite content in TRIP steels

    Energy Technology Data Exchange (ETDEWEB)

    Gnaeupel-Herold, T., E-mail: tg-h@nist.gov [NIST Center for Neuron Research, 100 Bureau Dr., Gaithersburg MD 20899-6102 (United States); University of Maryland, Department of Material Science and Engineering., College Park MD 20742-2142 (United States); Creuziger, A., E-mail: adam.creuziger@nist.gov [NIST Metallurgy Division, 100 Bureau Dr., Gaithersburg MD 20899-8553 (United States); Kent State University, Kent, OH 44242 (United States)

    2011-04-25

    Research highlights: {yields} Novel orientation averaging scheme for retained austenite content measurement. {yields} assumption of random grain orientation generally not justified. {yields} Averaging scheme allows to disregard texture. {yields} unlike Rietveld method, averaging method does not orientation density function. {yields} Two independent (hkl) are necessary for retained austenite content. - Abstract: The results of a study of using neutron diffraction for determining the retained austenite content of TRIP steels are presented. The study covers a wide area of materials, deformation modes (uniaxial, biaxial and plane strain), strains, and the retained austenite content as a result of these variables. It was determined using basic principles of statistics that a minimum of two reflections (hkl) for each phase is necessary to calculate a phase mass fraction and the associated standard deviation. Texture from processing the steel is the largest source of uncertainty. Through the method of complete orientation averaging described in this paper, the texture effect and with it the standard deviation of the austenite mass fraction can be substantially reduced, regardless of the type or severity of the texture.

  20. Some aspects of the utilization of zicaloy and austenitic steel as cladding material for PWR reactor fuel rods

    International Nuclear Information System (INIS)

    Teixeira e Silva, A.; Perrotta, J.A.

    1985-01-01

    The behaviour under irradiation of fuel rods for light water reactors was simulated by using fuel performance codes. Two types of cladding were analyzed: zircaloy and austenitic stainless steel. The fuel performance codes, originally made for zircaloy cladding, were adapted for austenitic stainless steel. The simulation results for the two types of cladding are presented, compared and discussed. (F.E.) [pt

  1. Authors's reply to 'Generation of surface degraded layer on austenitic stainless steel piping exposed to flowing sodium in a loop: inter comparison of long term exposure data', by S. Rajendran Pillai

    International Nuclear Information System (INIS)

    Ganesan, Vaidehi; Ganesan, V.; Borgstedt, H.U.

    2004-01-01

    This is an elaborate author's reply to a comment 'Generation of surface degraded layer on austenitic steel piping exposed to flowing sodium in a loop: inter comparison of long term exposure data' by S. Rajendran Pillai appearing in this proceedings. The basic misunderstanding as seen in the above comment about the mass loss due to sodium exposure, which is reflected throughout the above comment, has been explained in detail in this reply for better understanding of the phenomenon. It is precisely mentioned and understood that Thorley and Tyzack model deals with complete mass loss and not mere degradation. The total mass loss corresponds to mass loss due to wall thinning and that due to degraded layer formation. Though Thorley and Tyzack model is the most pioneering model in the field of sodium corrosion, the inadequacies of this model for materials without molybdenum such as SS 304 with very long exposure in sodium is clearly brought out in this paper. This model has been successfully applied to calculate life of clad tubes, which have relatively short stay in reactor core. Yoshida models are highlighted and compared with our experimental results. Yoshida models are not valid below certain durations owing to the empirical nature of such expressions. Thorley and Tyzack model can be used for SS 316 LN as this alloy contains molybdenum and nitrogen both of which imparts corrosion resistance in sodium. What is required is that one needs to establish the extent to which this model can be applied for materials exposed to high temperatures and very long durations. The details are discussed in this reply

  2. Production and several properties of single crystal austenitic stainless steels

    International Nuclear Information System (INIS)

    Okamoto, Kazutaka; Yoshinari, Akira; Kaneda, Junya; Aono, Yasuhisa; Kato, Takahiko

    1998-01-01

    The single crystal austenitic stainless steels Type 316L and 304L were grown in order to improve the resistance to stress corrosion cracking (SCC) using a unidirectional solidification method which can provide the large size single crystals. The mechanical properties and the chemical properties were examined. The orientation and temperature dependence of tensile properties of the single crystals were measured. The yield stress of the single crystal steels are lower than those of the conventional polycrystal steels because of the grain boundary strength cannot be expected in the single crystal steels. The tensile properties of the single crystal austenitic stainless steel Type 316L depend strongly on the orientation. The tensile strength in orientation are about 200 MPa higher than those in the and orientations. The microstructure of the single crystal consists of a mixture of the continuous γ-austenitic single crystal matrix and the δ-ferrite phase so that the effects of the γ/δ boundaries on the chemical properties were studied. The effects of the δ-ferrite phases and the γ/δ boundaries on the resistance to SCC were examined by the creviced bent beam test (CBB test). No crack is observed in all the CBB test specimens of the single crystals, even at the γ/δ boundaries. The behavior of the radiation induced segregation (RIS) at the γ/δ boundaries in the single crystal austenitic stainless steel Type 316L was evaluated by the electron irradiation test in the high voltage electron microscope (HVEM). The depletion of oversized solute chromium at the γ/δ boundary in the single crystal austenitic stainless steel Type 316L is remarkably lower than that at the grain boundary in the polycrystalline-type 316L. (author)

  3. Residual stress studies of austenitic and ferritic steels

    International Nuclear Information System (INIS)

    Chrenko, R.M.

    1978-01-01

    Residual studies have been made on austenitic and ferritic steels of the types used as structural materials. The residual stress results presented here will include residual stress measurements in the heat-affected zone on butt welded Type 304 stainless steel pipes, and the stresses induced in Type 304 austenitic stainless steel and Type A508 ferritic steel by several surface preparations. Such surface preparation procedures as machining and grinding can induce large directionality effects in the residual stresses determined by X-ray techniques and some typical data will be presented. A brief description is given of the mobile X-ray residual stress apparatus used to obtain most of the data in these studies. (author)

  4. Ultrasonic inspection of austenitic welds

    Energy Technology Data Exchange (ETDEWEB)

    Tomlinson, J R; Wagg, A R; Whittle, M J [N.D.T. Applications Centre, CEGB, Manchester (United Kingdom)

    1980-11-01

    The metallurgical structure of austenitic welds is described and contrasted with that found in ferritic welds. It is shown that this structure imparts a marked elastic anisotropy in the ultrasonic propagation parameters. Measurements of variations in the apparent attenuation of sound and deviations in the beam direction are described. The measurements are interpreted in terms of the measured velocity anisotropy. Two applications of the fundamental work are described. In the first it is shown how, by using short pulse compression wave probes, and with major modification of the welding procedure, a stainless steel fillet weld in an AGR boiler can be inspected. In the second application, alternative designs of a transition butt weld have been compared for ease of ultrasonic inspection. The effects of two different welding processes on such an inspection are described. Finally, the paper examines the prospects for future development of inspection and defect-sizing techniques for austenitic welds. (author)

  5. Comparison of hot ductility and stress corrosion cracking sensitivity of heat affected zone among type 304, type 316 and type 347 austenitic stainless steels for BWR core shroud and recirculation line piping

    International Nuclear Information System (INIS)

    Yamamura, Yoshihiko; Kayano, Rinzo; Azuma, Tukasa; Tanaka, Yasuhiko; Ishio, Kotaro; Sasaki, Tomo; Suzuki, Komei

    2005-01-01

    The present paper proposes the weld structure shroud made by the integrated type forging. The proposed structure can minimize the occurrence of SCC in the joint weld portion in the shroud. Furthermore, based on the measurement on EPR (Electrochemical Potentiokinetic Reactivation) ratio of simulated HAZ (Heat Affected Zone) which was made by giving double thermal cycles and plastic deformation to the material, the requirement of carbon content of less than 0.04 % is proposed for type 316 steel. The requirement proposed is the same restriction as that of KTA regel

  6. Thermal fatigue cracking of austenitic stainless steels; Fissuration en fatigue thermique des aciers inoxydables austenitiques

    Energy Technology Data Exchange (ETDEWEB)

    Fissolo, A

    2001-07-01

    This report deals with the thermal fatigue cracking of austenitic stainless steels as AISI 316 LN and 304 L. Such damage has been clearly observed for some components used in Fast Breeder reactors (FBR) and Pressure Water Reactor (PWR). In order to investigate thermal fatigue, quasi-structural specimen have been used. In this frame, facilities enforcing temperature variations similar to those found under the operation conditions have been progressively developed. As for components, loading results from impeded dilatation. In the SPLASH facility, the purpose was to establish accurate crack initiation conditions in order to check the relevance of the usual component design methodology. The tested specimen is continuously heated by the passage of an electrical DC current, and submitted to cyclic thermal down shock (up to 1000 deg C/s) by means of periodical spraying of water on two opposite specimen faces. The number of cycles to crack initiation N{sub i} is deduced from periodic examinations of the quenched surfaces, by means of optical microscopy. It is considered that initiation occurs when at least one 50{mu}m to 150{open_square}m long crack is observed. Additional SPLASH tests were performed for N >> N{sub i}, with a view to investigate the evolution of a surface multiple cracking network with the number of cycles N. The CYTHIA test was mainly developed for the purpose of assessing crack growth dynamics of one isolated crack in thermal fatigue conditions. Specimens consist of thick walled tubes with a 1 mm circular groove is spark-machined at the specimen centre. During the test, the external wall of the tube is periodically heated by using a HF induction coil (1 MHz), while its internal wall is permanently cooled by flowing water. Total crack growth is derived from post-mortem examinations, whereby the thermal fatigue final rupture surface is oxidized at the end of the test. The specimen is broken afterwards under mechanical fatigue at room temperature. All the

  7. Effect of Prior Austenite Grain Size on the Morphology of Nano-Bainitic Steels

    Science.gov (United States)

    Singh, Kritika; Kumar, Avanish; Singh, Aparna

    2018-04-01

    The strength in nanostructured bainitic steels primarily arises from the fine platelets of bainitic ferrite embedded in carbon-enriched austenite. However, the toughness is dictated by the shape and volume fraction of the retained austenite. Therefore, the exact determination of processing-morphology relationships is necessary to design stronger and tougher bainite. In the current study, the morphology of bainitic ferrite in Fe-0.89C-1.59Si-1.65Mn-0.37Mo-1Co-0.56Al-0.19Cr (wt pct) bainitic steel has been investigated as a function of the prior austenite grain size (AGS). Specimens were austenitized at different temperatures ranging from 900 °C to 1150 °C followed by isothermal transformation at 300 °C. Detailed microstructural characterization has been carried out using scanning electron microscopy and X-ray diffraction. The results showed that the bainitic laths transformed in coarse austenite grains are finer resulting in higher hardness, whereas smaller austenite grains lead to the formation of thicker bainitic laths with a large fraction of blocky type retained austenite resulting in lower hardness.

  8. A new effect of retained austenite on ductility enhancement in high strength bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Wang Ying; Zhang Ke; Guo Zhenghong; Chen Nailu [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Rong Yonghua, E-mail: yhrong@sjtu.edu.cn [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2012-08-30

    Highlights: Black-Right-Pointing-Pointer A new DARA effect in the bainitic steel is proposed. Black-Right-Pointing-Pointer The conditions of DARA effect are proposed. Black-Right-Pointing-Pointer The mechanism of retained austenite on ductility enhancement is clarified. - Abstract: A designed high strength bainitic steel with considerable amount of retained austenite is presented in order to study the effect of retained austenite on the ductility enhancement in bainitic steels. Transformation induced plasticity (TRIP) effect is verified by both X-ray diffraction (XRD) measurement of retained austenite fraction in various deformation stages and transmission electron microscopy observation of the deformed twin-type martensite. Results from XRD line profile analysis reveal that the average dislocation density in bainite during the deformation is lower than that before deformation, and such a phenomenon can be explained by a new effect, dislocations absorption by retained austenite (DARA) effect, based on our previous investigation of martensitic steels. DARA effect availably enhances the compatibility of deformation ability of bainite with retained austenite. In view of microstructure similarity of bainitic steels with martensitic steels, the conditions of DARA effect are proposed. The effects of retained austenite on the ductility enhancement in bainitic steels are clarified.

  9. Application of Moessbauer effect in the study of austenite retained in low carbon steel

    International Nuclear Information System (INIS)

    Azevedo, A.L.T. de; Silva, E.G. da

    1979-01-01

    Moessbauer effect measurements of two samples of low carbon alloy having micro-structure of granular bainite type and martensite type have been done. The concentration of the retained austenite in both samples was determined by Moessbauer effect and x-rays there, being agreement for the higher austenite content sample. Concentration of carbon in the MA (Martensite - Austenite) constituents of bainite is also ditermined, the results being in agreement with metallographic considerations. Carbon enrichments are shown as responsible by the stabilization of the austenite in the granular bainite. Spectra of both samples present three magnetic configurations for α-iron with medium magnetic fields iqual to 335, 307 and 280 KOe. (A.R.H.) [pt

  10. Impact Strength of Austenitic and Ferritic-Austenitic Cr-Ni Stainless Cast Steel in -40 and +20°C Temperature

    Directory of Open Access Journals (Sweden)

    Kalandyk B.

    2014-10-01

    Full Text Available Studies described in this paper relate to common grades of cast corrosion resistant Cr-Ni steel with different matrix. The test materials were subjected to heat treatment, which consisted in the solution annealing at 1060°C followed by cooling in water. The conducted investigations, besides the microstructural characteristics of selected cast steel grades, included the evaluation of hardness, toughness (at a temperature of -40 and +20oC and type of fracture obtained after breaking the specimens on a Charpy impact testing machine. Based on the results of the measured volume fraction of ferrite, it has been found that the content of this phase in cast austenitic steel is 1.9%, while in the two-phase ferritic-austenitic grades it ranges from 50 to 58%. It has been demonstrated that within the scope of conducted studies, the cast steel of an austenitic structure is characterised by higher impact strength than the two-phase ferritic-austenitic (F-A grade. The changing appearance of the fractures of the specimens reflected the impact strength values obtained in the tested materials. Fractures of the cast austenitic Cr-Ni steel obtained in these studies were of a ductile character, while fractures of the cast ferritic-austenitic grade were mostly of a mixed character with the predominance of brittle phase and well visible cleavage planes.

  11. The stress rupture properties of austenitic steel weld metals

    International Nuclear Information System (INIS)

    Wood, D.S.

    Elevated temperature stress rupture data on Mo containing and Mo free austenitic weld metals have been collected from French, Dutch, German and UK sources and the results analysed. The stress rupture strength of Mo containing weld metal is significantly higher than that of Mo free weld metal. At 10,000h the rupture strength of Mo containing weld metal is higher than that of Type 316 steel whereas the Mo free weld metal is about 20% lower than that of Type 304 steel. Austenitic weld metal can give low stress rupture ductility values. It is concluded that there are insufficient data to permit reliable extrapolations to long times and it is recommended that long term tests are performed to overcome this situation

  12. Expanded austenite, crystallography and residual stress

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Hummelshøj, Thomas Strabo; Somers, Marcel A. J.

    2010-01-01

    The identity of expanded austenite as developing during low temperature nitriding and/or carburising of austenitic stainless steel has been under debate since the very first observation of this phase. In the present article, recent results obtained with (a) homogeneous samples of various uniform ...

  13. Expanded austenite; crystallography and residual stress

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Hummelshøj, Thomas Strabo; Somers, Marcel A. J.

    2009-01-01

    The identity of expanded austenite as developing during low temperature nitriding and/or carburizing of austenitic stainless steel has been under debate since the very first observation of this phase. In the present article recent results obtained with i) homogeneous samples of various uniform co...

  14. Effects of austenitization temperature on the microstructure of 15BCr30 and PL22 boron steels

    Directory of Open Access Journals (Sweden)

    C. A. Suski

    2013-01-01

    Full Text Available This paper studies boron precipitation and segregation at austenitic grain boundaries for low carbon boron steels types: PL22 and 15BCr30. The following parameters were evaluated: percentage of martensite/bainite, size and nucleation sites of austenitic grains and precipitates sizes. Three austenitization temperatures were studied (870, 1050 and 1200 °C. The highest martensite percentage occurred for 1050 °C. Iron-borocarbides were detected at grain boundaries for all tested temperatures. At 870 °C the coarse iron-borocarbides are due to non-solubility and coalescence. The highest martensite percentage at 1050 °C is caused by the discrete precipitation of iron-borocarbides at austenitic grains boundaries. The discrete precipitation was due to the low non-equilibrium segregation of boron at grain boundaries. The low non-equilibrium segregation and the small grain size at 1050 °C reduce the total boron concentration at grain boundaries.

  15. Study of Ferrite During Refinement of Prior Austenite Grains in Microalloyed Steel Continuous Casting

    Science.gov (United States)

    Liu, Jiang; Wen, Guanghua; Tang, Ping

    2017-12-01

    The formation of coarse prior austenite grain is a key factor to promote transverse crack, and the susceptibility to the transverse crack can be reduced by refining the austenite grain size. In the present study, the high-temperature confocal laser scanning microscope (CLSM) was used to simulate two types of double phase-transformation technologies. The distribution and morphology of ferrites under different cooling conditions were analyzed, and the effects of ferrite distribution and morphology on the double phase-transformation technologies were explored to obtain the suitable double phase-change technology for the continuous casting process. The results indicate that, under the thermal cycle TH0 [the specimens were cooled down to 913 K (640 °C) at a cooling rate of 5.0 K/s (5.0 °C/s)], the width of prior austenite grain boundaries was thick, and the dislocation density at grain boundaries was high. It had strong inhibition effect on crack propagation; under the thermal cycle TH1 [the specimens were cooled down to 1073 K (800 °C) at a cooling rate of 5.0 K/s (5.0 °C/s) and then to 913 K (640 °C) at a cooling rate of 1.0 K/s (1.0 °C/s)], the width of prior austenite grain boundary was thin, and the dislocation density at grain boundaries was low. It was beneficial to crack propagation. After the first phase change, the developed film-like ferrite along the austenite grain boundaries improved the nucleation conditions of new austenitic grains and removed the inhibition effect of the prior austenite grain boundaries on the austenite grain size.

  16. Morphology and crystallographic orientation relationship in isothermally transformed Fe–N austenite

    International Nuclear Information System (INIS)

    Jiao, Dongling; Luo, Chengping; Liu, Jiangwen; Zhang, Guoqing

    2014-01-01

    The 225 °C isothermal transformation of a high-nitrogen austenite with Fe–2.71 wt.% N was investigated by means of electron microscopy. It was found that the transformation products were composed of ultrafine α-Fe and γ′-Fe 4 N plus retained austenite γ, which were in two types of morphologies, namely, (i) with the retained austenite patches dispersed among the (α-Fe + γ′-Fe 4 N) packets and (ii) with the ultrafine α-Fe and γ/γ′-Fe 4 N laths interwoven with each other within a single bainitic packet. A cube–cube orientation relationship between the γ (austenite) and γ′-Fe 4 N, and a near Greninger–Troiano (G–T) one between the γ (austenite) and the bainitic α-ferrite were detected. The morphology, orientation relationship and high hardness (> 1000 HV) of the transformation products indicated that the isothermal transformation of the high nitrogen austenite was analogous to a bainitic one. - Highlights: • Isothermal transformation products consisted of nano-sized α-Fe + γ′ + γ (retained). • The hardness of transformation product exceeded 1000 HV. • The α-Fe and γ/γ′-Fe 4 N kept a near G-T OR in the grain interior

  17. Nondestructive characterization of austenitic stainless steels

    International Nuclear Information System (INIS)

    Jayakumar, T.; Kumar, Anish

    2010-01-01

    The paper presents an overview of the non-destructive methodologies developed at the authors' laboratory for characterization of various microstructural features, residual stresses and corrosion in austenitic stainless steels. Various non-destructive evaluation (NDE) parameters such as ultrasonic velocity, ultrasonic attenuation, spectral analysis of the ultrasonic signals, magnetic hysteresis parameters and eddy current amplitude have been used for characterization of grain size, precipitation behaviour, texture, recrystallization, thermomechanical processing, degree of sensitization, formation of martensite from metastable austenite, assessment of residual stresses, degree of sensitization and propensity for intergranular corrosion in different austenitic steels. (author)

  18. Radiation damage of austenitic stainless steels and zirconium alloys; Pregled radijacionog ostecenja austenitnih nerdjajucih celika i legura cirkonijuma

    Energy Technology Data Exchange (ETDEWEB)

    Stefanovic, V [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-11-15

    This review contains analyses of available data concerning texture deformations and radiation damage of zirconium and zircaloy-2; radiation damage, influence of neutron radiation on the mechanical properties of austenitic, ferritic and other types of stainless steels.

  19. Parametrical limits of SCC-susceptibility of austenitic and austenitic-ferritic Cr-Ni steels

    International Nuclear Information System (INIS)

    Starosvetskij, D.I.; Baru, R.L.; Bondarenko, A.I.; Bogoyavlenskij, V.L.; Timonin, V.A.

    1990-01-01

    Comparative investigations into corrosion cracking (CC) of austenitic (12Kh18N10T) and austenitic-ferritic (08Kh22N6T) chromium-nickel steels are performed for various chloride media in a wide range of chloride concentrations and temperatures. It is shown that the ratio between steels in terms of their CC-susceptibility is not definite and can undergo a reversal depending on parameters of medium, level and conditions of loading. Differences in mechanisms of corrosion cracking of austenitic and austenitic-ferritic steels are established

  20. Hydrogen Absorption Induced Slow Crack Growth in Austenitic Stainless Steels for Petrochemical Pressure Vessel Industries

    Directory of Open Access Journals (Sweden)

    Ronnie Rusli

    2011-05-01

    Full Text Available Type 304Land type 309 austenitic stainless steels were tested either by exposed to gaseous hydrogen or undergoing polarized cathodic charging. Slow crack growth by straining was observed in type 304L, and the formation of α‘ martensite was indicated to be precursor for such cracking. Gross plastic deformation was observed at the tip of the notch, and a single crack grew slowly from this region in a direction approximately perpendicular to the tensile axis. Martensite formation is not a necessary condition for hydrogen embrittlement in the austenitic phase.

  1. Microstructural characterization of a league austenitic type - ferritic used in production of tubes conformed; Caracterizacao microestrutural de uma liga do tipo austeno - ferritica utilizada na producao de tubos conformados

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, Amanda Thais; Batista, Andre Luis de Brito; Cardoso, Claudine Guimaraes Leite; Correa, Douglas; Santos, Claudinei dos; Cabral, Ricardo de Freitas

    2014-12-15

    The duplex stainless steels possess at room temperature ferritic austenitic two-phase structure giving the alloy higher corrosion resistance and oxidation with significant toughness. In this research, we used the metallurgical techniques that guarantee the characterization of the material as received and also the analysis of their behavior when subjected to heating at high temperature (1000 °C) at different times. Analyses were performed by scanning electron microscopy (SEM) and X-ray Diffraction (XRD). The results confirm the thickening the thickness of the oxide layer with increasing time of exposure to high temperature. (author)

  2. Constitutive modeling of metastable austenitic stainless steel

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.; Huetink, Han; Khan, A.

    2010-01-01

    A physically based, macroscale constitutive model has been developed that can describe the complex mechanical behavior of metastable austenitic stainless steels. In the developed model a generalized model for the mechanically induced martensitic transformation is introduced. Mechanical tests have

  3. Consitutive modeling of metastable austenitic stainless steel

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Perdahcioglu, Emin Semih

    2008-01-01

    Metastable austenitic stainless steels combine high formability and high strength, which are generally opposing properties in materials. This property is a consequence of the martensitic phase transformation that takes place during deformation. This transformation is purely mechanically induced

  4. Weldability of newly developed austenitic alloy for cryogenic service

    International Nuclear Information System (INIS)

    Ogawa, T.; Koseki, T.

    1986-01-01

    The testing reported in this paper involved typical steels of the new grades such as STEEL-A (0.025C-14Ni-25Cr-0.35N), STEEL-B (0.04C-23Mn-13Cr-0.22N) and STEEL-C (0.20C-25Mn-5Cr), and commercial steels of Type 300 series. Weldments were made mainly using the GTAW, SMAW and SAW processes with experimental and commercial filler metals. Strength and toughness of weldments were examined at 77 K (-321 0 F) and 4 K. The strengthening of material through the addition of nitrogen was far greater in the weld metal that in the base metal at cryogenic temperature. In fact, 0.2% proof stress of weld metals bearging 0.20% to 0.40% nitrogen at 77 K exhibited a higher value by 60 to 150 MPa (8,740 to 21,760 psi) than that of the base metal. Impact absorbed energy of weld metals at 77 K decreased rapidly with nitrogen content, 60-90 J at 0.20%N to 20-50J at 0.35% N. Rather high impact absorbed energy was obtained when the weld metal solidified as primary austenitic phase, resulting in fully austenitic microstructure or austenite-eutectic ferrite mixture at ambient temperature. In addition, oxide inclusions, the number of which strongly depends on welding processes, were detrimental to toughness of weld metals at cryogenic temperature

  5. Tailoring plasticity of austenitic stainless steels for nuclear applications: Review of mechanisms controlling plasticity of austenitic steels below 400 °C

    Energy Technology Data Exchange (ETDEWEB)

    Meric de Bellefon, G., E-mail: mericdebelle@wisc.edu [University of Wisconsin-Madison (United States); Duysen, J.C. van [EDF R& D (France); University of Tennessee-Knoxville (United States); Unité Matériaux et Transformation (UMET) CNRS, Université de Lille (France)

    2016-07-15

    AISI 304 and 316 austenitic stainless steels were invented in the early 1900s and are still trusted by materials and mechanical engineers in numerous sectors because of their good combination of strength, ductility, and corrosion resistance, and thanks to decades of experience and data. This article is part of an effort focusing on tailoring the plasticity of both types of steels to nuclear applications. It provides a synthetic and comprehensive review of the plasticity mechanisms in austenitic steels during tensile tests below 400 °C. In particular, formation of twins, extended stacking faults, and martensite, as well as irradiation effects and grain rotation are discussed in details. - Highlights: • This article is part of an effort to tailor the plasticity of 304L and 316L steels for nuclear applications. • It reviews mechanisms controlling plasticity of austenitic steels during tensile tests. • Formation of twins, extended stacking faults, and martensite, grain rotation, and irradiation effects are discussed.

  6. Tailoring plasticity of austenitic stainless steels for nuclear applications: Review of mechanisms controlling plasticity of austenitic steels below 400 °C

    Science.gov (United States)

    Meric de Bellefon, G.; van Duysen, J. C.

    2016-07-01

    AISI 304 and 316 austenitic stainless steels were invented in the early 1900s and are still trusted by materials and mechanical engineers in numerous sectors because of their good combination of strength, ductility, and corrosion resistance, and thanks to decades of experience and data. This article is part of an effort focusing on tailoring the plasticity of both types of steels to nuclear applications. It provides a synthetic and comprehensive review of the plasticity mechanisms in austenitic steels during tensile tests below 400 °C. In particular, formation of twins, extended stacking faults, and martensite, as well as irradiation effects and grain rotation are discussed in details.

  7. Effect of Austenitic and Austeno-Ferritic Electrodes on 2205 Duplex and 316L Austenitic Stainless Steel Dissimilar Welds

    Science.gov (United States)

    Verma, Jagesvar; Taiwade, Ravindra V.

    2016-11-01

    This study addresses the effect of different types of austenitic and austeno-ferritic electrodes (E309L, E309LMo and E2209) on the relationship between weldability, microstructure, mechanical properties and corrosion resistance of shielded metal arc welded duplex/austenitic (2205/316L) stainless steel dissimilar joints using the combined techniques of optical, scanning electron microscope, energy-dispersive spectrometer and electrochemical. The results indicated that the change in electrode composition led to microstructural variations in the welds with the development of different complex phases such as vermicular ferrite, lathy ferrite, widmanstatten and intragranular austenite. Mechanical properties of welded joints were diverged based on compositions and solidification modes; it was observed that ferritic mode solidified weld dominated property wise. However, the pitting corrosion resistance of all welds showed different behavior in chloride solution; moreover, weld with E2209 was superior, whereas E309L exhibited lower resistance. Higher degree of sensitization was observed in E2209 weld, while lesser in E309L weld. Optimum ferrite content was achieved in all welds.

  8. The compatibility of various austenitic steels with molten sodium (1963)

    International Nuclear Information System (INIS)

    Champeix, L.; Sannier, J.; Darras, R.; Graff, W.; Juste, P.

    1963-01-01

    Various techniques for studying corrosion by molten sodium have been developed and applied to the case of 18/10 austenitic steels. The results obtained are discussed as a function of various parameters: type of steel, temperature, oxygen content of the sodium, surface treatment, welds, mechanical strain. In general, these steels have an excellent resistance to sodium when the oxygen content is limited by a simple purification system of the 'cold trap' type, and when an attempt is made to avoid cavitation phenomena which are particularly dangerous, as is shown by the example given. (authors) [fr

  9. The characteristics creep fracture of austenitic stainless steels

    International Nuclear Information System (INIS)

    Monteiro, S.N.; Assis, A.M.C.A.

    1977-05-01

    The characteristics of fracture on creep of two AISI type 316 austenitic stainless steels tested at constant load from 600 to 800 0 C were studied by scanning electron microscopy. The morphological aspects of the fracture were analysed and correllated to the ductility level attained in creep. A marked change from intergranular to transgranular type of fracture was observed in going from 600 to 800 0 C. At 800 0 C on the other hand, the condition for crack nucleation at sigma phase as well as the special conditions of oxidation, are apparently responsible for that same change with the applied stress. (Author) [pt

  10. High cycle fatigue of austenitic stainless steels

    International Nuclear Information System (INIS)

    Gauthier, J.P.; Lehmann, D.; Picker

    1990-01-01

    This study concerns the evaluation of material data to be used in LMFBR design codes. High cycle fatigue properties of three austenitic stainless steels are evaluated: type AISI 316 (UKAEA tests), type AISI 316L (CEA tests) and type AISI 304 (Interatom tests). The data on these steels comprised some 550 data points from 14 casts. This data set covered a wide range of testing parameters: temperature from 20-625 0 C, frequency from 1-20 000 Hz, constant amplitude and random fatigue loading, with and without mean stress, etc. However, the testing conditions chosen by the three partners differed considerably because they had been fixed independently and not harmonized prior to the tests. This created considerable difficulties for the evaluations. Experimental procedures and statistical treatments used for the three subsets of data are described and discussed. Results are presented in tables and graphs. Although it is often difficult to single out the influence of each parameter due to the different testing conditions, several interesting conclusions can be drawn: The HCF properties of the three steels are consistent with the 0.2% proof stress, the fatigue limit being larger than the latter at temperatures above 550 0 C. The type 304 steel has lower tensile properties than the two other steels and hence also lower HCF properties. Parameters which clearly have a significant effect of HCF behaviour are mean stress or R-ratio (less in the non-endurance region than in the endurance region), temperature, cast or product. Other parameters have probably a weak or no effect but it is difficult to conclude due to insufficient data: environment, specimen orientation, frequency, specimen geometry

  11. Ultrasonic inspection of austenitic welds

    International Nuclear Information System (INIS)

    Baikie, B.L.; Wagg, A.R.; Whittle, M.J.; Yapp, D.

    1976-01-01

    Optical and X-ray metallography combined with ultrasonic testing by compression waves was used for inspection of stainless steel weld metal produced by three different welding techniques. X-ray diffraction showed that each weld possessed a characteristic fibre textured structure which was shown by optical microscopy to be parallel to columnar grain boundaries. Metallographic evidence suggested that the development of fibre texture is due to the mechanism of competitive growth. From observations made as a result of optical metallographic examination the orientation of the fibre axis could be predicted if the weld geometry and welding procedure were known. Ultrasonic velocity and attenuation measurements as a continuous function of grain orientation, made on cylinders machined from weld samples, showed that attenuation was strongly orientation dependent. It was concluded that the sensitivity of ultrasonic inspection to small defects is unlikely to be as high for austenitic welds as for ferritic even when transmission is improved by modifying the welding procedure to improve the ultrasonic transmission. (U.K.)

  12. Applying Ultrasonic Phased Array Technology to Examine Austenitic Coarse-Grained Structures for Light Water Reactor Piping

    International Nuclear Information System (INIS)

    Anderson, Michael T.; Cumblidge, Stephen E.; Doctor, Steven R.

    2003-01-01

    Pacific Northwest Laboratory is evaluating the capabilities and limitations of phased array (PA) technology to detect service-type flaws in coarse-grained austenitic piping structures. The work is being sponsored by the U.S. Nuclear Regulatory Commission, Office of Research. This paper presents initial work involving the use of PA technology to determine the effectiveness of detecting and accurately characterizing flaws on the far-side of austenitic piping welds

  13. Constitutive modeling of metastable austenitic stainless steel (CD-rom)

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.; Huetink, Han; Boisse, P.

    2008-01-01

    A stress-update algorithm is developed for austenitic metastable steels which undergo phase evolution during deformation. The material initially comprises only the soft and ductile austenite phase which due to the phenomenon of mechanically induced martensitic transformation, transforms completely

  14. Grain boundary precipitation in an austenitic stainless steel

    International Nuclear Information System (INIS)

    Jones, A.R.; Howell, P.R.; Ralph, B.

    The precipitation of second phase particles of niobium carbide in an austenitic stainless steel is shown to be considerably influenced by the degree of deformation introduced prior to the ageing treatment. Sites for the nucleation of second phase particles are identified and the importance of one type of nucleation site, extrinsic dislocations, to the evolution of the final boundary precipitate distributions is emphasized. Further, it is shown that the presence of a grain boundary can effect precipitation processes for some considerable distance into the matrix on either side of the boundary. (author)

  15. Failures of austenitic stainless steel components during storage: Case studies

    International Nuclear Information System (INIS)

    Shah, B.K.; Rastogi, P.K.; Sinha, A.K.; Kulkarni, P.G.

    1993-01-01

    Three studies of failures of austenitic stainless steel components during storage are described. In all cases, stress corrosion cracking was the failure mode by the action of residual stress alone. However, the source of residual stress was different for each case. Case 1 was the failure of a sample tube header for a pressurized heavy water reactor (PHWR). In Case 2, a heat exchanger shell failed during a hydrotest in a fertilizer plant. Cases concerned the cracking of type 304L plates used for spent fuel pool lining of a nuclear power station

  16. Kinetic of martensitic transformations induced by hydrogen in the austenite

    International Nuclear Information System (INIS)

    Oliveira, Sergio P. de; Saavedra, A.; Miranda, P.E.V. de

    1986-01-01

    The X-ray diffractometry technique was used, with an automatic data acquisition system to determine the kinetics of hydrogen induced martensitic phase transformations in an AISI 304 austenitic stainless steel type, used in nuclear power plants. Hydrogenation was performed cathodically in a 1N sulfuric acid solution, containing 100 mg/l of arsenic trioxide, at 50 0 C, during 2 hours and with a current density of 200 A/m 2 . It was found that the microstructure of the steel plays a role on the generation of hydrogen induced martensitic phases and surface micro cracks. Both kinetics were slower on a pre-cold rolled steel. (Author) [pt

  17. Optimization and verification of ultrasonic testability of acoustically anisotropic materials on austenitic and dissimilar welds

    International Nuclear Information System (INIS)

    Pudovikov, Sergey

    2013-01-01

    Austenitic and dissimilar welds with respect to the ultrasonic testing (UT) methods are considered normally as ''difficult-to-test'' objects. During the solidification process in such welds a distinct dendrite microstructure evolves, which is coarse-grained, anisotropic and inhomogeneous simultaneously. The reliability of available ultrasonic methods on austenitic welds depends significantly on the selected UT-parameters as well as on the inspection personnel experience. In the present dissertation, an ultrasonic testing method was developed, which allows the flaw detection and evaluation in acoustically anisotropic inhomogeneous materials, especially in austenitic and dissimilar welds with a quantitative statement to the defect size, type, and location. The principle of synthetic focusing with taking into account the material anisotropy and inhomogeneity along with two- and three-dimensional visualization provides a reliable and quantitative assessment of the inspection results in acoustically anisotropic inhomogeneous test objects. Among others, an iterative algorithm for the determination of unknown elastic properties of inhomogeneous anisotropic materials has been developed. It allows practical application of the developed UT method, since the anisotropy of most of austenitic and dissimilar welds (especially of hand-welded joints) in practice is usually unknown. The functionality of the developed inspection technique has been validated by many experiments on welded austenitic specimens having artificial and natural defects. For the practical application of the new ultrasonic technique different testing strategies are proposed, which can be used depending on the current inspection task.

  18. Transformation in austenitic stainless steel sheet under different loading directions

    NARCIS (Netherlands)

    van den Boogaard, Antonius H.; Krauer, J.; Hora, P.

    2011-01-01

    The stress-strain relation for austenitic stainless steels is based on 2 main contributions: work hardening and a phase transformation from austenite to martensite. The transformation is highly temperature dependent. In most models for phase transformation from austenite to martensite, the stress

  19. Transformation in Austenitic Stainless Steel Sheet under Different Loading Directions

    NARCIS (Netherlands)

    van den Boogaard, Antonius H.; Krauer, J.; Hora, P.

    2011-01-01

    The stress-strain relation for austenitic stainless steels is based on 2 main contributions: work hardening and a phase transformation from austenite to martensite. The transformation is highly temperature dependent. In most models for phase transformation from austenite to martensite, the stress

  20. Microstructural investigations of fast reactor irradiated austenitic and ferritic-martensitic stainless steel fuel cladding

    International Nuclear Information System (INIS)

    Agueev, V.S.; Medvedeva, E.A.; Mitrofanova, N.M.; Romanueev, V.V.; Tselishev, A.V.

    1992-01-01

    Electron microscopy has been used to characterize the microstructural changes induced in advanced fast reactor fuel claddings fabricated from Cr16Ni15Mo3NbB and Cr16Ni15Mo2Mn2TiVB austenitic stainless steels in the cold worked condition and Cr13Mo2NbVB ferritic -martensitic steel following irradiation in the BOR-60, BN-350 and BN-600 fast reactors. The data are compared with the results obtained from a typical austenitic commercial cladding material, Cr16Ni15Mo3Nb, in the cold worked condition. The results reveal a beneficial effect of boron and other alloying elements in reducing void swelling in 16Cr-15Ni type austenitic steels. The high resistance of ferritic-martensitic steels to void swelling has been confirmed in the Cr13Mo2NbVB steel. (author)

  1. Precipitation of Second Phases in High-Interstitial-Alloyed Austenitic Steel

    Science.gov (United States)

    Lee, Tae-Ho; Ha, Heon-Young; Kim, Sung-Joon

    2011-12-01

    The precipitation reaction of an austenitic stainless steel containing N + C was investigated using transmission electron microscopy. The main precipitate formed during isothermal aging at 1123 K (850 °C) was M23C6 carbide, and its morphology gradually changed in a sequence of intergranular (along grain boundary) → cellular (or discontinuous) → intragranular (within grain interior) form with aging time. Irrespective of different morphologies, the M23C6 was consistently related to austenite matrix in accordance with the cube-on-cube orientation relationship. Based on the analysis of electron diffraction, two variants of intragranular M23C6 were identified, and they were related to each other by twin relation. Prolonged aging produced other types of precipitates—the rod-shaped Cr2N and the coarse irregular intermetallic sigma phase. The similarities and differences in precipitation behavior between N only and N + C alloyed austenitic stainless steels are briefly discussed.

  2. General and Localized corrosion of Austenitic and Borated Stainless Steels in Simulated Concentrated Ground Waters

    International Nuclear Information System (INIS)

    Fix, D.; Estill, J.; Wong, L.; Rebak, R.

    2004-01-01

    Boron containing stainless steels are used in the nuclear industry for applications such as spent fuel storage, control rods and shielding. It was of interest to compare the corrosion resistance of three borated stainless steels with standard austenitic alloy materials such as type 304 and 316 stainless steels. Tests were conducted in three simulated concentrated ground waters at 90 C. Results show that the borated stainless were less resistant to corrosion than the witness austenitic materials. An acidic concentrated ground water was more aggressive than an alkaline concentrated ground water

  3. Longitudinal wave ultrasonic inspection of austenitic weldments

    International Nuclear Information System (INIS)

    Gray, B.S.; Hudgell, R.J.; Seed, H.

    1980-01-01

    Successful volumetric inspection of LMFBR primary circuits, and also much of the secondary circuit, is dependent on the availability of satisfactory examination procedures for austenitic welds. Application of conventional ultrasonic techniques is hampered by the anisotropic, textured structure of the weld metal and this paper describes development work on the use of longitudinal wave techniques. In addition to confirming the dominant effects of the weld structure on ultrasound propagation some results are given of studies utilising deliberately induced defects in Manual Metal Arc Welds in 50 mm plate together with preliminary work on the inspection of narrow austenitic welds fabricated by automatic processes. (author)

  4. Recrystallization induced plasticity in austenite and ferrite

    International Nuclear Information System (INIS)

    Huang Mingxin; Pineau, André; Bouaziz, Olivier; Vu, Trong-Dai

    2012-01-01

    Highlights: ► Plasticity can be induced by recrystallization in austenite and ferrite. ► Strain rate is proportional to recrystallization kinetics. ► Overall atomic flux selects a preferential direction may be the origin. - Abstract: New experimental evidences are provided to demonstrate that plastic strain can be induced by recrystallization in austenite and ferrite under an applied stress much smaller than their yield stresses. Such Recrystallization Induced Plasticity (RIP) phenomenon occurs because the overall atomic flux during recrystallization follows a preferential direction imposed by the applied stress.

  5. Influence of surface texture on the galling characteristics of lean duplex and austenitic stainless steels

    DEFF Research Database (Denmark)

    Wadman, Boel; Eriksen, J.; Olsson, M.

    2010-01-01

    Two simulative test methods were used to study galling in sheet forming of two types of stainless steel sheet: austenitic (EN 1.4301) and lean duplex LDX 2101 (EN 1.4162) in different surface conditions. The pin-on-disc test was used to analyse the galling resistance of different combinations of ...

  6. Corrosion of an austenite and ferrite stainless steel weld

    Directory of Open Access Journals (Sweden)

    BRANIMIR N. GRGUR

    2011-07-01

    Full Text Available Dissimilar metal connections are prone to frequent failures. These failures are attributed to the difference in the mechanical properties across the weld, the coefficients of thermal expansion of the two types of steels and the resulting creep at the interface. For the weld analyzed in this research, it was shown that corrosion measurements can be used for a proper evaluation of the quality of weld material and for the prediction of whether or not the material, after the applied welding process, can be in service without failures. It was found that the corrosion of the weld analyzed in this research resulted from the simultaneous activity of different types of corrosion. In this study, electrochemical techniques including polarization and metallographic analysis were used to analyze the corrosion of a weld material of ferrite and austenitic stainless steels. Based on surface, chemical and electrochemical analyses, it was concluded that corrosion occurrence was the result of the simultaneous activity of contact corrosion (ferrite and austenitic material conjuction, stress corrosion (originating from deformed ferrite structure and inter-granular corrosion (due to chromium carbide precipitation. The value of corrosion potential of –0.53 V shows that this weld, after the thermal treatment, is not able to repassivate a protective oxide film.

  7. Modeling of austenite to ferrite transformation

    Indian Academy of Sciences (India)

    395–398. c Indian Academy of Sciences. Modeling of austenite to ferrite transformation. MOHSEN KAZEMINEZHAD. ∗. Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, Tehran, Iran. MS received 17 January 2011; revised 9 July 2011. Abstract. In this research, an algorithm ...

  8. Austenitic stainless steels for cryogenic service

    Energy Technology Data Exchange (ETDEWEB)

    Dalder, E.N.C.; Juhas, M.C.

    1985-09-19

    Presently available information on austenitic Fe-Cr-Ni stainless steel plate, welds, and castings for service below 77 K are reviewed with the intent (1) of developing systematic relationships between mechanical properties, composition, microstructure, and processing, and (2) of assessing the adequacy of these data bases in the design, fabrication, and operation of engineering systems at 4 K.

  9. Austenitic stainless steels for cryogenic service

    International Nuclear Information System (INIS)

    Dalder, E.N.C.; Juhas, M.C.

    1985-01-01

    Presently available information on austenitic Fe-Cr-Ni stainless steel plate, welds, and castings for service below 77 K are reviewed with the intent (1) of developing systematic relationships between mechanical properties, composition, microstructure, and processing, and (2) of assessing the adequacy of these data bases in the design, fabrication, and operation of engineering systems at 4 K

  10. Mechanized ultrasonic inspection of austenitic pipe systems

    International Nuclear Information System (INIS)

    Dressler, K.; Luecking, J.; Medenbach, S.

    1999-01-01

    The contribution explains the system of standard testing methods elaborated by ABB ZAQ GmbH for inspection of austenitic plant components. The inspection tasks explained in greater detail are basic materials testing (straight pipes, bends, and pipe specials), and inspection of welds and dissimilar welds. The techniques discussed in detail are those for detection and sizing of defects. (orig./CB) [de

  11. Effect of single and double austenitization treatments on the microstructure and mechanical properties of 16Cr-2Ni steel

    Science.gov (United States)

    Balan, K. P.; Reddy, A. Venugopal; Sarma, D. S.

    1999-06-01

    Double austenitization (DA) treatment is found to yield the best combination of strength and toughness in both low-temperature as well as high-temperature tempered conditions as compared to single austenitization (SA) treatments. Obtaining the advantages of double austenitization (DA) to permit dissolution of alloy carbides without significant grain coarsening was attempted in AISI 431 type martensitic stainless steel. Structure-property correlation after low-temperature tempering (200 °C) as well as high-temperature double tempering (650+600 °C) was carried out for three austenitization treatments through SA at 1000 °C, SA at 1070 °C, and DA at 1070+1000 °C. While the increase in strength after DA treatment and low-temperature tempering at 200 °C is due to the increased amount of carbon in solution as a result of dissolution of alloy carbides during first austenitization, the increased toughness is attributable to the increased quantity of retained austenite. After double tempering (650+600 °C), strength and toughness are mainly found to depend on the precipitation and distribution of carbides in the microstructure and the grain size effect.

  12. Expanded austenite in nitrided layers deposited on austenitic and super austenitic stainless steel grades; Analise da austenita expandida em camadas nitretadas em acos inoxidaveis austeniticos e superaustenitico

    Energy Technology Data Exchange (ETDEWEB)

    Casteletti, L.C.; Fernandes, F.A.P.; Heck, S.C. [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). Escola de Engenharia. Dept. de Engenharia de Materais, Aeronautica e Automobilistica; Oliveira, A.M. [Instituto de Educacao, Ciencia e Tecnologia do Maranhao (IFMA), Sao Luis, MA (Brazil); Gallego, J., E-mail: gallego@dem.feis.unesp.b [UNESP, Ilha Solteira, SP (Brazil). Dept. Engenharia Mecanica

    2010-07-01

    In this work nitrided layers deposited on austenitic and super austenitic stainless steels were analyzed through optical microscopy and X-rays diffraction analysis (XRD). It was observed that the formation of N supersaturated phase, called expanded austenite, has promoted significant increment of hardness (> 1000HV). XRD results have indicated the anomalous displacement of the diffracted peaks, in comparison with the normal austenite. This behavior, combined with peaks broadening, it was analyzed in different nitriding temperatures which results showed good agreement with the literature. (author)

  13. Thermally Stable Ni-rich Austenite Formed Utilizing Multistep Intercritical Heat Treatment in a Low-Carbon 10 Wt Pct Ni Martensitic Steel

    Science.gov (United States)

    Jain, Divya; Isheim, Dieter; Zhang, Xian J.; Ghosh, Gautam; Seidman, David N.

    2017-08-01

    Austenite reversion and its thermal stability attained during the transformation is key to enhanced toughness and blast resistance in transformation-induced-plasticity martensitic steels. We demonstrate that the thermal stability of Ni-stabilized austenite and kinetics of the transformation can be controlled by forming Ni-rich regions in proximity of pre-existing (retained) austenite. Atom probe tomography (APT) in conjunction with thermodynamic and kinetic modeling elucidates the role of Ni-rich regions in enhancing growth kinetics of thermally stable austenite, formed utilizing a multistep intercritical ( Quench- Lamellarization- Tempering (QLT)-type) heat treatment for a low-carbon 10 wt pct Ni steel. Direct evidence of austenite formation is provided by dilatometry, and the volume fraction is quantified by synchrotron X-ray diffraction. The results indicate the growth of nm-thick austenite layers during the second intercritical tempering treatment (T-step) at 863 K (590 °C), with austenite retained from first intercritical treatment (L-step) at 923 K (650 °C) acting as a nucleation template. For the first time, the thermal stability of austenite is quantified with respect to its compositional evolution during the multistep intercritical treatment of these steels. Austenite compositions measured by APT are used in combination with the thermodynamic and kinetic approach formulated by Ghosh and Olson to assess thermal stability and predict the martensite-start temperature. This approach is particularly useful as empirical relations cannot be extrapolated for the highly Ni-enriched austenite investigated in the present study.

  14. Irradiation Assisted Stress Corrosion Cracking of austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, Takashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Irradiation Assisted Stress Corrosion Cracking (IASCC) of austenitic stainless steels in oxygenated high temperature water was studied. The IASCC failure has been considered as a degradation phenomenon potential not only in the present light water reactors but rather common in systems where the materials are exposed simultaneously to radiation and water environments. In this study, effects of the material and environmental factors on the IASCC of austenitic stainless steels were investigated in order to understand the underlying mechanism. The following three types of materials were examined: a series of model alloys irradiated at normal water-cooled research reactors (JRR-3M and JMTR), the material irradiated at a spectrally tailored mixed-spectrum research reactor (ORR), and the material sampled from a duct tube of a fuel assembly used in the experimental LMFBR (JOYO). Post-irradiation stress corrosion cracking tests in a high-temperature water, electrochemical corrosion tests, etc., were performed at hot laboratories. Based on the results obtained, analyses were made on the effects of alloying/impurity elements, irradiation/testing temperatures and material processing, (i.e., post-irradiation annealing and cold working) on the cracking behavior. On the basis of the analyses, possible remedies against IASCC in the core internals were discussed from viewpoints of complex combined effects among materials, environment and processing factors. (author). 156 refs.

  15. The difference in thermal and mechanical stabilities of austenite between carbon- and nitrogen-added metastable austenitic stainless steels

    International Nuclear Information System (INIS)

    Masumura, Takuro; Nakada, Nobuo; Tsuchiyama, Toshihiro; Takaki, Setsuo; Koyano, Tamotsu; Adachi, Kazuhiko

    2015-01-01

    In order to evaluate the effects of carbon and nitrogen addition on the stability of austenite, athermal and deformation-induced α′-martensitic transformation behaviors were investigated using type 304-metastable austenitic stainless steels containing 0.1 mass% carbon or nitrogen. The difference in the development of the deformation microstructure in particular is discussed in terms of the stacking-fault energy (SFE). Since carbon-added steel has a lower SFE than that of nitrogen-added steel, deformation twins and ε-martensite were preferentially formed in the carbon-added steel, whereas a dislocation cell structure developed in the nitrogen-added steel. Crystallographic analysis using the electron backscatter diffraction method revealed that the difference in the deformation microstructure has a significant influence on the growth behavior of deformation-induced α′-martensite, that is, the interface of the deformation twins and ε-martensite suppresses the growth of α′-martensite, whereas dislocation cell boundaries are not effective. As a result, the mechanical stability of carbon-added steel is slightly higher than that of nitrogen-added steel, although the thermal stabilization effect of carbon is much lower than that of nitrogen

  16. Austenitic stainless steels with cryogenic resistance

    International Nuclear Information System (INIS)

    Tarata, Daniela Florentina

    1999-01-01

    The most used austenitic stainless steels are alloyed with chromium and nickel and have a reduced carbon content, usually lower than 0.1 % what ensures corresponding properties for processing by plastic deformation at welding, corrosion resistance in aggressive environment and toughness at low temperatures. Steels of this kind alloyed with manganese are also used to reduce the nickel content. By alloying with manganese which is a gammageneous element one ensures the stability of austenites. Being cheaper these steels may be used extensively for components and equipment used in cryogenics field. The best results were obtained with steels of second group, AMnNi, in which the designed chemical composition was achieved, i.e. the partial replacement of nickel by manganese ensured the toughness at cryogenic temperatures. If these steels are supplementary alloyed, their strength properties may increase to the detriment of plasticity and toughness, although the cryogenic character is preserved

  17. Initiation and growth of thermal fatigue crack networks in an AISI 304 L type austenitic stainless steel (X2 CrNi18-09); Amorcage et propagation de reseaux de fissures de fatigue thermique dans un acier inoxydable austenitique de type X2 CrNi18-09 (AISI 304 L)

    Energy Technology Data Exchange (ETDEWEB)

    Maillot, V

    2004-07-01

    We studied the behaviour of a 304 L type austenitic stainless steel submitted to thermal fatigue. Using the SPLASH equipment of CEA/SRMA we tested parallelepipedal specimens on two sides: the specimens are continuously heated by Joule effect, while two opposites faces are cyclically. cooled by a mixed spray of distilled water and compressed air. This device allows the reproduction and the study of crack networks similar to those observed in nuclear power plants, on the inner side of circuits fatigued by mixed pressurized water flows at different temperatures. The crack initiation and the network constitution at the surface were observed under different thermal conditions (Tmax = 320 deg C, {delta}T between 125 and 200 deg C). The experiment produced a stress gradient in the specimen, and due to this gradient, the in-depth growth of the cracks finally stopped. The obtained crack networks were studied quantitatively by image analysis, and different parameters were studied: at the surface during the cycling, and post mortem by step-by-step layer removal by grinding. The maximal depth obtained experimentally, 2.5 mm, is relatively coherent with the finite element modelling of the SPLASH test, in which compressive stresses appear at a depth of 2 mm. Some of the crack networks obtained by thermal fatigue were also tested in isothermal fatigue crack growth under 4-point bending, at imposed load. The mechanisms of the crack selection, and the appearance of the dominating crack are described. Compared to the propagation of a single crack, the crack networks delay the propagation, depending on the severity of the crack competition for domination. The dominating crack can be at the network periphery, in that case it is not as shielded by its neighbours as a crack located in the center of the network. It can also be a straight crack surrounded by more sinuous neighbours. Indeed, on sinuous cracks, the loading is not the same all along the crack path, leading to some

  18. The nucleation of austenite in ferritic ductile cast iron

    International Nuclear Information System (INIS)

    Chou, J.M.; Hon, M.H.; Lee, J.L.

    1992-01-01

    Austempered ductile cast iron has recently been receiving increasing attention because of its excellent combination of strength and ductility. Since the austenitization process has a significant influence on the mechanical properties of austempered ductile cast iron, several investigations on the nucleation sites of austenite and diffusion paths of carbon from spheroidal graphite have been reported in ferritic ductile cast iron. However, agreement on this subject has not ben reached. The purpose of this paper is to study the preferential nucleation sites of austenite during austenitization at two austenitizing temperatures in ferritic ductile cast iron. An attempt was made to understand the reasons which give rise to preferential austenite nucleation sites. The carbon diffusion paths from spheroidal graphite were also investigated

  19. Diffractometry of expanded austenite using synchrotron radiation

    International Nuclear Information System (INIS)

    Fewell, M.P.; Priest, J.M.; Collins, G.A.; Short, K.T.

    2000-01-01

    Full text: The question of the structure of the nitrogen-rich surface layer produced in the nitriding of austenitic stainless steel has been controversial for some time. Diffractometry using conventional x-ray sources is routinely carried out on this material. The result universally seen shows an ostensibly f.c.c. lattice with a larger lattice parameter than that of the underlying austenite. The difficulty with this interpretation lies in the 200 reflection, which lies at slightly lower Bragg angle than expected on the basis of the 111, 220 and 311 reflections. This behaviour is seen in all work known to us, regardless of the grade of austenitic stainless steel or the details of the nitriding technique. It has been explained as due to a mixed f.c.c. phase with different grains having different lattice constants, or as due to a tetragonal distortion of the lattice or an f.c.c lattice with a high frequency of stacking faults, or as indicating a triclinic lattice with a unit cell having all sides equal and two angles equal

  20. Reduced-activation austenitic stainless steels: The Fe--Mn--Cr--C system

    International Nuclear Information System (INIS)

    Klueh, R.L.; Maziasz, P.J.

    1988-01-01

    Nickel-free manganese-stabilized steels are being developed for fusion-reactor applications. As the first part of this effort, the austenite-stable region in the Fe--Mn--Cr--C system was determined. Results indicated that the Schaeffler diagram developed for Fe--Ni--Cr--C alloys cannot be used to predict the constituents expected for high-manganese steels. This is true because manganese is not as strong an austenite stabilizer relative to δ-ferrite formation as predicted by the diagram, but it is a stronger austenite stabilizer relative to martensite than predicted. Therefore, the austenite-stable region for Ne--Mn--Cr--C alloys occurs at lower chromium and hugher combinations of manganese and carbon than predicted by the Schaeffler diagram. Development of a manganese-stabilized stainless steel should be possible in the composition range of 20 to 25% Mn, 10 to 15% Cr, and 0.01 to 0.25%C. Tensile behavior of an Fe--20%Mn--12%Cr--0.25%C alloy was determined. The strength and ductility of this possible base composition was comparable to type 316 stainless steel in both the solution-annealed and cold-worked condition

  1. Phase Transformations of an Fe-0.85 C-17.9 Mn-7.1 Al Austenitic Steel After Quenching and Annealing

    Science.gov (United States)

    Cheng, Wei-Chun

    2014-09-01

    Low-density Mn-Al steels could potentially be substitutes for commercial Ni-Cr stainless steels. However, the development of the Mn-Al stainless steels requires knowledge of the phase transformations that occur during the steel making processes. Phase transformations of an Fe-0.85 C-17.9 Mn-7.1 Al (wt.%) austenitic steel, which include spinodal decomposition, precipitation transformations, and cellular transformations, have been studied after quenching and annealing. The results show that spinodal decomposition occurs prior to the precipitation transformation in the steel after quenching and annealing at temperatures below 1023 K and that coherent fine particles of L12-type carbide precipitate homogeneously in the austenite. The cellular transformation occurs during the transformation of high-temperature austenite into lamellae of austenite, ferrite, and kappa carbide at temperatures below 1048 K. During annealing at temperatures below 923 K, the austenite decomposes into lamellar austenite, ferrite, κ-carbide, and M23C6 carbide grains for another cellular transformation. Last, when annealing at temperatures below 873 K, lamellae of ferrite and κ-carbide appear in the austenite.

  2. Crystallography of lath martensite and stabilization of retained austenite

    Energy Technology Data Exchange (ETDEWEB)

    Sarikaya. M.

    1982-10-01

    TEM was used to study the morphology and crystallography of lath martensite in low and medium carbon steels in the as-quenched and 200/sup 0/C tempered conditions. The steels have microduplex structures of dislocated lath martensite and continuous thin films of retained austenite at the lath interfaces. Stacks of laths form the packets which are derived from different (111) variants of the same austenite grain. The residual parent austenite enables microdiffraction experiments with small electron beam spot sizes for the orientation relationships (OR) between austenite and martensite. All three most commonly observed ORs, namely Kurdjumov-Sachs, Nishiyama-Wassermann, and Greninger-Troiano, operate within the same sample.

  3. Crystallography of lath martensite and stabilization of retained austenite

    International Nuclear Information System (INIS)

    Sarikaya, M.

    1982-10-01

    TEM was used to study the morphology and crystallography of lath martensite in low and medium carbon steels in the as-quenched and 200 0 C tempered conditions. The steels have microduplex structures of dislocated lath martensite and continuous thin films of retained austenite at the lath interfaces. Stacks of laths form the packets which are derived from different [111] variants of the same austenite grain. The residual parent austenite enables microdiffraction experiments with small electron beam spot sizes for the orientation relationships (OR) between austenite and martensite. All three most commonly observed ORs, namely Kurdjumov-Sachs, Nishiyama-Wassermann, and Greninger-Troiano, operate within the same sample

  4. Manufacture and characterization of austenitic steel welded joints

    International Nuclear Information System (INIS)

    Simoni, O.; Boerman, D.J.; Krischer, W.

    1990-01-01

    This paper describes the results of the first phase of the project, i.e. manufacturing and characterization of welded austenitic steel and the test matrix adopted to test the mechanical resistance of the welding. Five different welding methods have been tested and characterized in comparison to the parent material. The reference material was an AISI 316 L type steel close to the French Superphenix composition. The results of the mechanical testing and the relative comparison of the five welding methods are described in separate papers of the same session. As a general conclusion, the vacuum electron-beam welding proved to have better properties than the other weld methods and to attain in most cases the properties of the parent material. (author)

  5. Influence of phosphorus on point defects in an austenitic alloy

    International Nuclear Information System (INIS)

    Boulanger, L.

    1988-06-01

    The influence of phosphorus on points defects clusters has been studied in an austenitic alloy (Fe/19% at. Cr/13% at. Ni). Clusters are observed by transmission electron microscopy. After quenching and annealing, five types of clusters produced by vacancies or phosphorus-vacancies complexes are observed whose presence depends on cooling-speed. Vacancy concentration (with 3.6 10 -3 at. P) in clusters is about 10 -5 and apparent vacancy migration is 2 ± 0.1 eV. These observations suggest the formation of metastable small clusters during cooling which dissociate during annealing and migrate to create the observed clusters. With phosphorus, the unfrequent formation of vacancy loops has been observed during electron irradiation. Ions irradiations show that phosphorus does not favour nucleation of interstitial loops but slowers their growth. It reduces swelling by decreasing voids diameter. Phosphorus forms vacancy complexes whose role is to increase the recombination rate and to slow vacancy migration [fr

  6. Characteristic of Low Temperature Carburized Austenitic Stainless Steel

    Science.gov (United States)

    Istiroyah; Pamungkas, M. A.; Saroja, G.; Ghufron, M.; Juwono, A. M.

    2018-01-01

    Low temperature carburizing process has been carried out on austenitic stainless steel (ASS) type AISI 316L, that contain chromium in above 12 at%. Therefore, conventional heat treatment processes that are usually carried out at high temperatures are not applicable. The sensitization process due to chromium migration from the grain boundary will lead to stress corrosion crack and decrease the corrosion resistance of the steel. In this study, the carburizing process was carried out at low temperatures below 500 °C. Surface morphology and mechanical properties of carburized specimens were investigated using optical microscopy, non destructive profilometer, and Vicker microhardness. The surface roughness analysis show the carburising process improves the roughness of ASS surface. This improvement is due to the adsorption of carbon atoms on the surface of the specimen. Likewise, the hardness test results indicate the carburising process increases the hardness of ASS.

  7. Weld repair issues in thick section austenitic pipework

    International Nuclear Information System (INIS)

    Goodwin, S.J.; Price, A.T.

    1989-03-01

    Thick section austenitic Type 316 Stainless steel, in the solution treated condition, has been used in Central Electricity Generating Board plant in the United Kingdom for some three decades and has given good service. Repair and replacement of this material after long term service is becoming a requirement and is complicated by the precipitation hardening and sensitisation of the materials. This paper summarises the compositional, microstructural and ageing characteristics of the wrought material and weld metals and the consequences for materials properties. Post weld heat treatment options are outlined and sensitisation to stress corrosion cracking is discussed. Finally, some examples of cracking that has occurred in plant after long term operation are given and weld repair research requirements are noted. (author)

  8. Influence of titanium on the tempering structure of austenitic steels

    International Nuclear Information System (INIS)

    Ghuezaiel, M.J.

    1985-10-01

    The microstructure of titanium-stabilized and initially deformed (approximately 20%) austenitic stainless steels used in structures of fast neutrons reactors has been studied after one hour duration annealings (500 0 C) by X-ray diffraction, optical microscopy, microhardness and transmission electron microscopy. The studied alloys were either of industrial type CND 17-13 (0.23 to 0.45 wt% Ti) or pure steels (18% Cr, 14% Ni, 0 or 0.3 wt% Ti). During tempering, the pure steels presented some restauration before recristallization. In the industrial steels, only recristallization occurred, and this only in the most deformed steel. Precipitation does not occur in the titanium-free pure steel. In industrial steels, many intermetallic phases are formed when recristallization starts [fr

  9. Biofouling on austenitic stainless steels in spent nuclear fuel pools

    Energy Technology Data Exchange (ETDEWEB)

    Sarro, M I; Moreno, D A; Chicote, E; Lorenzo, P I; Garcia, A M [Universidad Politecnica de Madrid, Departamento de Ingenieria y Ciencia de los Materiales, Escuela Tecnica Superior de Ingenieros Industriales, Jose Gutierrez Abascal, 2, E-28006 Madrid (Spain); Montero, F [Iberdrola Generacion, S.A., y C.M.D.S., Centro de Tecnologia de Materiales, Paseo de la Virgen del Puerto, 53, E-28005 Madrid (Spain)

    2003-07-01

    The objective of this study was to investigate the biofilm formation on three different types of austenitic stainless steel (UNS S30400, S30466 and S31600) submerged in a spent nuclear fuel pool. The presence of microorganisms in coupons was characterised using standard culture microbiological methods, microscopic techniques (epifluorescence microscopy and scanning electron microscopy), and molecular biology techniques (denaturing gradient gel electrophoresis and sequencing fragments of 16S rDNA). The microscopy techniques showed signs of colonisation of stainless steels in spite of these extreme conditions. Based on sequencing of cultured microorganisms, different bacteria belonging to {alpha}, {beta}, {gamma}-Proteobacteria, Bacilli, and Actinobacteria classes have been identified. The biofilm radioactivity was measured using gamma-ray spectrometry and, according to the data gathered, the radionuclides present in the water pool were entrapped in the biofilm increasing the amount of radiation at the surface of the different materials. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  10. Biofouling on austenitic stainless steels in spent nuclear fuel pools

    International Nuclear Information System (INIS)

    Sarro, M.I.; Moreno, D.A.; Chicote, E.; Lorenzo, P.I.; Garcia, A.M.; Montero, F.

    2003-01-01

    The objective of this study was to investigate the biofilm formation on three different types of austenitic stainless steel (UNS S30400, S30466 and S31600) submerged in a spent nuclear fuel pool. The presence of microorganisms in coupons was characterised using standard culture microbiological methods, microscopic techniques (epifluorescence microscopy and scanning electron microscopy), and molecular biology techniques (denaturing gradient gel electrophoresis and sequencing fragments of 16S rDNA). The microscopy techniques showed signs of colonisation of stainless steels in spite of these extreme conditions. Based on sequencing of cultured microorganisms, different bacteria belonging to α, β, γ-Proteobacteria, Bacilli, and Actinobacteria classes have been identified. The biofilm radioactivity was measured using gamma-ray spectrometry and, according to the data gathered, the radionuclides present in the water pool were entrapped in the biofilm increasing the amount of radiation at the surface of the different materials. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  11. Microstructural evolution in deformed austenitic TWinning Induced Plasticity steels

    NARCIS (Netherlands)

    Van Tol, R.T.

    2014-01-01

    This thesis studies the effect of plastic deformation on the stability of the austenitic microstructure against martensitic transformation and diffusional decomposition and its role in the phenomenon of delayed fracture in austenitic manganese (Mn)-based TWinning Induced Plasticity (TWIP) steels.

  12. Lattice expansion of carbon-stabilized expanded austenite

    DEFF Research Database (Denmark)

    Hummelshøj, Thomas Strabo; Christiansen, Thomas; Somers, Marcel A. J.

    2010-01-01

    The lattice parameter of expanded austenite was determined as a function of the content of interstitially dissolved carbon in homogeneous, carburized thin stainless steel foils. For the first time this expansion of the face-centered cubic lattice is determined on unstrained austenite. It is found...

  13. Tribocorrosion wear of austenitic and martensitic steels

    Directory of Open Access Journals (Sweden)

    G. Rozing

    2016-07-01

    Full Text Available This paper explores the impact of tribocorrosion wear caused by an aggressive acidic media. Tests were conducted on samples made of stainless steel AISI 316L, 304L and 440C. Austenitic steels were tested in their nitrided state and martensitic in quenched and tempered and then induction hardened state. Electrochemical corrosion resistance testing and analysis of the microstructure and hardness in the cross section was carried out on samples of selected steels. To test the possibility of applying surface modification of selected materials in conditions of use, tests were conducted on samples/parts in a worm press for final pressing.

  14. Effect of both sulphur content and deoxidation degree on the hot ductility of resulphurized austenitic stainless steels in the solidified state

    International Nuclear Information System (INIS)

    Botella, J.; Sanchez, R.

    1998-01-01

    The manufacture of free machining austenitic stainless steels features a specific drawback derived from their high sulphur content, which is needed for generating, into the austenitic matrix inclusions to optimize the different machining operations. However, sulphur has ahamfull effect on hot workability. This paper deals with assessing the effect of sulphur content and deoxidation level on the hot ductility of resulphurized austenitic stainless steels in as cast condition. Hot tensile tests were conducted on a Gleeble machine, at temperatures between 1,150 and 1,250 degree celsius, studying a suctility factor as a function of sulphur content, deoxidation degree, as well as type, size and distribution of sulfides. Results point out the harmful effect of increasing sulphur and oxygen contents on the hot workability of resulphurized austenitic stainless steels, and the need to control carefully the level of oxides of these steels. (Author) 5 refs

  15. Phase transformation by fatigue in austenitic stainless steel

    International Nuclear Information System (INIS)

    Jo, Y.S.; Kwun, S.I.

    1988-01-01

    The effect of strain induced martensite on the fatigue behavior of AISI 304 austenitic stainless steel was investigated. During low cycle fatigue, the austenitic stainless steel showed a continuous cyclic hardening until fracture. The extent of cyclic hardening increased with decreasing austenite stability. The austenite stability was controlled by different aging time and temperature, which resulted in different carbide morphologies. The fatigue crack propagation rate near ΔK th varied also with the austenite stability inside the plastic zone at the crack up. Especially, the near-threshold fatigue crack propagation rate of the grain boundary carbide precipitated condition was the lowest. This was considered to be due to the roughness induced closure caused by intergranular facet. A new model for the intergranular facet formation and the fatigue crack propagation of grain boundary carbide precipitated condition was proposed. (Author)

  16. The effects of fast-neutron irradiation on the mechanical properties of austenitic stainless steel

    International Nuclear Information System (INIS)

    Dalton, J.H.

    1978-01-01

    The paper reviews the effects of fast-neutron irradiation on the tensile properties of austenitic stainless steels at irradiation temperatures of less than 400 degrees Celcius, using as an example, work carried out at Pelindaba on an AISI 316 type steel produced in South Africa. Damage produced in these steels at higher irradiation temperatures and fluences is also briefly discussed. The paper concludes with a discussion of some methods of overcoming or decreasing the effects of irradiation damage [af

  17. The irradiation performance of austenitic stainless steel clade PWR fuel rods

    International Nuclear Information System (INIS)

    Teixeira e Silva, A.; Esteves, A.M.

    1988-01-01

    The steady state irradiation performance of austenitic stainless steel clad pressurized water reactor fuel rods is modeled with fuel performance codes of the FRAP series. These codes, originally developed to model the thermal-mechanical behavior of zircaloy clad fuel rods, are modified to model stainless steel clad fuel rods. The irradiation thermal-mechanical behavior of type 348 stainless steel and zircaloy fuel rods is compared. (author) [pt

  18. Method for the calculation of volumetric fraction of retained austenite through the software for analysis of digital images

    International Nuclear Information System (INIS)

    Lombardo, S.; Costa, F.H.; Hashimoto, T.M.; Pereira, M.S.; Abdalla, A.J.

    2010-01-01

    In order to calculate the volume fraction of the retained austenite in aeronautic multiphase steels, it was used a digital analysis software for image processing. The materials studied were steels AISI 43XX with carbon content between 30, 40 and 50%, heat treated by conventional quenching and isothermal cooling in bainitic and intercritical region, characterized by optical microscopy, etching by reagent Sodium Metabisulfite (10%) for 30 seconds, with forced drying. The results were compared with the methods of X-Ray Diffraction and Magnetic Saturation through photomicrographs, showing that with this technic it is possible to quantify the percentage of retained austenite in the martensitic matrix, in the different types of steels. (author)

  19. Study of the microstructure and of microhardness variation of a Ni-Fe-Cr austenitic alloy by niobium

    International Nuclear Information System (INIS)

    Carvalho e Camargo, M.U. de; Lucki, G.

    1979-01-01

    The mechanisms of hardening and corrosion resistance increase in Ni-Fe-Cr austenitic stainless steels by Nb additions are of interest to nuclear technology Niobium additions to a 321 type stainless steel were made in order to study the microhardness, electrical resistivity and metallography. Experimental measurements results are shown. The effect of Nb additions as a micro-alloying element and the thermal and mechanical processes (cold working in particular) in the microstructure and microhardness properties of the 11% Ni - 70%Fe - 17% Cr austenitic alloys were studied. (Author) [pt

  20. A review of hot cracking in austenitic stainless steel weldments

    International Nuclear Information System (INIS)

    Shankar, V.; Gill, T.P.S.; Mannan, S.L.; Rodriguez, P.

    1991-01-01

    The occurrence of hot cracking in austenitic stainless steel weldments is discussed with respect to its origin and metallurgical contributory factors. Of the three types of hot cracking, namely solidification cracking, liquation and ductility dip cracking, solidification cracking occurs in the interdendritic regions in weld metal while liquation and ductility dip cracking occur intergranularly in the heat-affected zone (HAZ). Segregation of impurity and minor elements such as sulphur, phosphorous, silicon, niobium, boron etc to form low melting eutectic phases has been found to be the major cause of hot cracking. Control of HAZ cracking requires minimisation of impurity elements in the base metal. In stabilized stainless steels containing niobium, higher amounts of delta-ferrite have been found necessary to prevent cracking than in unstabilized compositions. Titanium compounds have been found to cause liquation cracking in maraging steels and titanium containing stainless steels and superalloys. In nitrogen added stainless steels, cracking resistance decreases when the solidification mode changes to primary austenitic due to nitrogen addition. A review of the test methods to evaluate hot cracking behaviour showed that several external restraint and semi-self-restraint tests are available. The finger Test, WRC Fissure Bend Test, the PVR test and the Varestraint Test are described along with typical test results. Hot ductility testing to reveal HAZ cracking tendency during welding is described, which is of particular importance to stabilized stainless steels. Based on the literature, recommendations are made for welding stabilized and nitrogen added steels, indicating areas of further work. (author). 81 refs., 30 figs., 1 tab

  1. Damping Capacity of High Manganese Austenitic Stainless Steel with a Two Phase Mixed Structure of Martensite and Austenite

    International Nuclear Information System (INIS)

    Hwang, Tae Hyun; Kang, Chang-Yong

    2013-01-01

    The damping capacity of high manganese austenitic stainless steel with a two phase mixed structure of deformation-induced martensite and reversed austenite was studied. Reversed austenite with an ultra-fine grain size of less than 0.2 μm was obtained by reversion treatment. The two phase structure of deformation-induced martensite and reversed austenite was obtained by annealing treatment at a range of 500-700 °C and various times in cold rolled high manganese austenitic stainless steel. The damping capacity increased with an increasing annealing temperature and time. In high manganese stainless steel with the two phase mixed structure of martensite and austenite, the damping capacity decreased with an increasing volume fraction of deformation-induced martensite. Thus, the damping capacity was strongly affected by deformation-induced martensite. The results confirmed that austenitic stainless steel with a good combination of strength and damping capacity was obtained from the two phase mixed structure of austenite and martensite.

  2. Austenite strengthening and softening during hot deformation

    International Nuclear Information System (INIS)

    Tushinskij, L.I.; Vlasov, V.S.; Kazimirova, I.E.; Tokarev, A.O.

    1981-01-01

    Processes of formation of austenite structure of 20 and 12Kh18N10T steels during hot deformation and postdeformation isothermal holdings have been investigated by the methods of analysis of curves of hot deformation, high-temperature metallography and light microscopy. Deformation has been exercised by extention in vacuum with average 4x10 -2 s -1 rate. Deformation temperatures of steel 20 are 930 and 1000 deg C, of steel 12Kh18N10T - 1100 deg C. It is stated that dynamic recrystallization takes place in both investigated steels during hot deformation. In the carbonic steel it is developed by shifting sections of high-angular boundaries, flow stress in this case remains constant. Recrystallization is developed by subgrain coalescence in austenite steel, that brings about preservation of increased defect density in recrystallized volumes. As a result strengthening of steel is continued up to fracture during the increase of the deformation degree. Postdeformation weakening of 12Kh18N10T steel is slowed down as compared with weakening of carbonic steel [ru

  3. Magnetic properties of cyclically deformed austenite

    Energy Technology Data Exchange (ETDEWEB)

    Das, Arpan, E-mail: dasarpan1@yahoo.co.in

    2014-06-01

    In meta-stable austenitic stainless steels, low cycle fatigue deformation is accompanied by a partial stress/strain-induced solid state phase transformation of paramagnetic γ(fcc) austenite phase to ferromagnetic α{sup /}(bcc) martensite. The measured characteristic of magnetic properties, which are the saturation magnetization, susceptibility, coercivity, retentivity, and the area under the magnetic hysteresis loop are sensitive to the total strain amplitude imposed and the corresponding material behaviour. The morphologies and nucleation characteristics of deformation induced martensites (i.e., ϵ(hcp), α{sup /}(bcc)) have been investigated through analytical transmission electron microscope. It has been observed that deformation induced martensites can nucleate at a number of sites (i.e., shear band intersections, isolated shear bands, shear band–grain boundary intersection, grain boundary triple points, etc.) through multiple transformation sequences: γ(fcc)→ϵ(hcp), γ(fcc)→ϵ(hcp)→α{sup /}(bcc), γ(fcc)→ deformation twin →α{sup /}(bcc) and γ(fcc)→α{sup /}(bcc). - Highlights: • LCF tests were done at various strain amplitudes of 304LNSS. • Quantification of martensite was done through ferritecope. • Magnetic properties were characterised through VSM. • Correlation of magnetic properties with the cyclic plastic response was done. • TEM was done to investigate the transformation micro-mechanisms.

  4. Characterization of the austenitic stability of metastable austenitic stainless steel with regard to its formability

    Science.gov (United States)

    Schneider, Matthias; Liewald, Mathias

    2018-05-01

    During the last decade, the stainless steel market showed a growing volume of 3-5% p.a.. The austenitic grades are losing market shares to ferritic or 200-series grades due to the high nickel price, but still playing the most important role within the stainless steel market. Austenitic stainless steel is characterized by the strain-induced martensite formation, causing the TRIP-effect (Transformation Induced Plasticity) which is responsible for good formability and high strength. The TRIP-effect itself is highly dependent on the forming temperature, the strain as well as the chemical composition which has a direct influence on the stability of the austenite. Today the austenitic stability is usually characterized by the so called Md30-temperature, which was introduced by Angel and enhanced by several researches, particularly Nohara. It is an empirical formula based on the chemical composition and the grain size of a given material, calculating the temperature which is necessary to gain a 50 % martensite formation after 30 % of elongation in a tensile test. A higher Md30-temperature indicates a lower stability and therefore a higher tendency towards martensite formation. The main disadvantage of Md30 -temperature is the fact that it is not based on forming parameters and only describes a single point instead of the whole forming process. In this paper, an experimental set up for measuring martensite and temperature evolution in a non-isothermal tensile test is presented, which is based on works of Hänsel and Schmid. With this set up, the martensite formation rate for different steels of the steel grade EN 1.4301 and EN 1.4310 is measured. Based on these results a new austenitic stability criterion is defined. This criterion and the determined Md30-temperatures are related to the stretch formability of the materials. The results show that the new IFU criterion is with regard to the formability a much more useful characteristic number for metastable austenitic steels

  5. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by austenitic filler metal

    International Nuclear Information System (INIS)

    Eghlimi, Abbas; Shamanian, Morteza; Eskandarian, Masoomeh; Zabolian, Azam; Szpunar, Jerzy A.

    2015-01-01

    The evolution of microstructure and texture across an as-welded dissimilar UNS S32750 super duplex/UNS S30403 austenitic stainless steel joint welded by UNS S30986 (AWS A5.9 ER309LMo) austenitic stainless steel filler metal using gas tungsten arc welding process was evaluated by optical micrography and EBSD techniques. Due to their fabrication through rolling process, both parent metals had texture components resulted from deformation and recrystallization. The weld metal showed the highest amount of residual strain and had large austenite grain colonies of similar orientations with little amounts of skeletal ferrite, both oriented preferentially in the < 001 > direction with cub-on-cube orientation relationship. While the super duplex stainless steel's heat affected zone contained higher ferrite than its parent metal, an excessive grain growth was observed at the austenitic stainless steel's counterpart. At both heat affected zones, austenite underwent some recrystallization and formed twin boundaries which led to an increase in the fraction of high angle boundaries as compared with the respective base metals. These regions showed the least amount of residual strain and highest amount of recrystallized austenite grains. Due to the static recrystallization, the fraction of low degree of fit (Σ) coincident site lattice boundaries, especially Σ3 boundaries, was increased in the austenitic stainless steel heat affected zone, while the formation of subgrains in the ferrite phase increased the content of < 5° low angle boundaries at that of the super duplex stainless steel. - Graphical abstract: Display Omitted - Highlights: • Extensive grain growth in the HAZ of austenitic stainless steel was observed. • Intensification of < 100 > orientated grains was observed adjacent to both fusion lines. • Annealing twins with Σ3 CSL boundaries were formed in the austenite of both HAZ. • Cub-on-cube OR was observed between austenite and ferrite in the weld

  6. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by austenitic filler metal

    Energy Technology Data Exchange (ETDEWEB)

    Eghlimi, Abbas, E-mail: a.eghlimi@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Shamanian, Morteza [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Eskandarian, Masoomeh [Department of Materials Engineering, Shiraz University, Shiraz 71348-51154 (Iran, Islamic Republic of); Zabolian, Azam [Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Szpunar, Jerzy A. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9 (Canada)

    2015-08-15

    The evolution of microstructure and texture across an as-welded dissimilar UNS S32750 super duplex/UNS S30403 austenitic stainless steel joint welded by UNS S30986 (AWS A5.9 ER309LMo) austenitic stainless steel filler metal using gas tungsten arc welding process was evaluated by optical micrography and EBSD techniques. Due to their fabrication through rolling process, both parent metals had texture components resulted from deformation and recrystallization. The weld metal showed the highest amount of residual strain and had large austenite grain colonies of similar orientations with little amounts of skeletal ferrite, both oriented preferentially in the < 001 > direction with cub-on-cube orientation relationship. While the super duplex stainless steel's heat affected zone contained higher ferrite than its parent metal, an excessive grain growth was observed at the austenitic stainless steel's counterpart. At both heat affected zones, austenite underwent some recrystallization and formed twin boundaries which led to an increase in the fraction of high angle boundaries as compared with the respective base metals. These regions showed the least amount of residual strain and highest amount of recrystallized austenite grains. Due to the static recrystallization, the fraction of low degree of fit (Σ) coincident site lattice boundaries, especially Σ3 boundaries, was increased in the austenitic stainless steel heat affected zone, while the formation of subgrains in the ferrite phase increased the content of < 5° low angle boundaries at that of the super duplex stainless steel. - Graphical abstract: Display Omitted - Highlights: • Extensive grain growth in the HAZ of austenitic stainless steel was observed. • Intensification of < 100 > orientated grains was observed adjacent to both fusion lines. • Annealing twins with Σ3 CSL boundaries were formed in the austenite of both HAZ. • Cub-on-cube OR was observed between austenite and ferrite in the weld

  7. Austenite Formation from Martensite in a 13Cr6Ni2Mo Supermartensitic Stainless Steel

    NARCIS (Netherlands)

    Bojack, A.; Zhao, L.; Morris, P.F.; Sietsma, J.

    2016-01-01

    The influence of austenitization treatment of a 13Cr6Ni2Mo supermartensitic stainless steel (X2CrNiMoV13-5-2) on austenite formation during reheating and on the fraction of austenite retained after tempering treatment is measured and analyzed. The results show the formation of austenite in two

  8. A review of compatibility of IFR fuel and austenitic stainless steel

    International Nuclear Information System (INIS)

    Keiser, D.D. Jr.

    1996-01-01

    Interdiffusion experiments have been conducted to investigate the compatibility of various austenitic stainless steels with U-Pu-Zr alloys, which are alloys to be employed as fuel for the Integral Fast Reactor being developed by Argonne National Laboratory. These tests have also studied the compatibility of austenitic stainless steels with fission products, like the minor actinides (Np and Am) and lanthanides (Ce and Nd), that are generated during the fission process in an IFR. This paper compares the results of these investigations in the context of fuel-cladding compatibility in IFR fuel elements, specifically focusing on the relative Interdiffusion behavior of the components and the types of phases that develop based on binary phase diagrams. Results of Interdiffusion tests are assessed in the light of observations derived from post-test examinations of actual irradiated fuel elements

  9. Study of the Sensitization on the Grain Boundary in Austenitic Stainless Steel Aisi 316

    Directory of Open Access Journals (Sweden)

    Kocsisová Edina

    2014-12-01

    Full Text Available Intergranular corrosion (IGC is one of the major problems in austenitic stainless steels. This type of corrosion is caused by precipitation of secondary phases on grain boundaries (GB. Precipitation of the secondary phases can lead to formation of chromium depleted zones in the vicinity of grain boundaries. Mount of the sensitization of material is characterized by the degree of sensitization (DOS. Austenitic stainless steel AISI 316 as experimental material had been chosen. The samples for the study of sensitization were solution annealed on 1100 °C for 60 min followed by water quenching and then sensitization by isothermal annealing on 700 °C and 650 °C with holding time from 15 to 600 min. Transmission electron microscopy (TEM was used for identification of secondary phases. Electron backscattered diffraction (EBSD was applied for characterization of grain boundary structure as one of the factors which influences on DOS.

  10. The carbide M7C3 in low-temperature-carburized austenitic stainless steel

    International Nuclear Information System (INIS)

    Ernst, Frank; Li, Dingqiang; Kahn, Harold; Michal, Gary M.; Heuer, Arthur H.

    2011-01-01

    Prolonged low-temperature gas-phase carburization of AISI 316L-type austenitic stainless steel can cause intragranular precipitation of the carbide M 7 C 3 (M: randomly dispersed Fe, Cr, Ni). Transmission electron microscopy revealed that the carbide particles have the shape of needles. They grow by a ledge-migration mechanism and in a crystallographic orientation relationship to the austenite matrix that enables highly coherent interphase interfaces. A small solubility limit of Ni in the carbide and restricted Ni diffusivity at the processing temperature leads to Ni pileup around the particles and may explain the extreme aspect ratio of the particle shape. These characteristics closely resemble what has been observed earlier for precipitates of M 5 C 2 under slightly different processing conditions and can be rationalized by considering the particular constraints imposed by carburization at low temperature.

  11. Diffusion of nitrogen in austenitic phase: Application to nitriding of stainless steels

    Directory of Open Access Journals (Sweden)

    Torchane Lazhar

    2014-04-01

    Full Text Available The nitriding treatment of the martensitic stainless steels aims to harden and to introduce compressive stresses on the surface of steel. Hardening is resulting of the martensitic transformation of the austenitic matrix enriched into nitrogen during cooling and of the germination and the nitride growth. In order to preserve the stainless character of the nitrided layer, it is imperative to control precipitation within the zone affected by the treatment. Our task consists in showing that is possible to control the composition of the gas atmosphere containing ammonia and argon and to carry out on the surface of nitrided samples at 1050°C two types of configuration of layers : a single phase layer made up by martensite enriched in nitrogen α’N and or a two phase layer made up by austenite γN and martensite α’N enriched in nitrogen.

  12. Improvement of corrosion resistance in austenitic stainless steel by grain boundary character distribution control

    International Nuclear Information System (INIS)

    Wang, Yun; Kaneda, Junya; Kasahara, Shigeki; Shigenaka, Naoto

    2012-01-01

    Strauss test, Coriou test and Huey test were conducted on a Type 316L austenitic stainless steel. Improvement in grain boundary corrosion resistance was verified after raising low Σ coincidence site lattice (CSL) grain boundary (GB) frequency by controlling grain boundary character distribution (GBCD). During crevice corrosion test under gamma-ray irradiation, initiation frequency of GB corrosion after GBCD controlled specimens decreased to 1/10 of GBCD uncontrolled counterpart along with lower depth of corrosion. Stress corrosion cracking (SCC) propagation rate of GBCD controlled specimen decreased to less than 1/2 of GBCD uncontrolled specimen in high temperature and high pressure water. Based on these results, we expect that GBCD control will improve corrosion resistance of austenitic material in a wide range of application and environment. (author)

  13. Design of Wear-Resistant Austenitic Steels for Selective Laser Melting

    Science.gov (United States)

    Lemke, J. N.; Casati, R.; Lecis, N.; Andrianopoli, C.; Varone, A.; Montanari, R.; Vedani, M.

    2018-03-01

    Type 316L stainless steel feedstock powder was modified by alloying with powders containing carbide/boride-forming elements to create improved wear-resistant austenitic alloys that can be readily processed by Selective Laser Melting. Fe-based alloys with high C, B, V, and Nb contents were thus produced, resulting in a microstructure that consisted of austenitic grains and a significant amount of hard carbides and borides. Heat treatments were performed to modify the carbide distribution and morphology. Optimal hard-phase spheroidization was achieved by annealing the proposed alloys at 1150 °C for 1 hour followed by water quenching. The total increase in hardness of samples containing 20 pct of C/B-rich alloy powder was of 82.7 pct while the wear resistance could be increased by a factor of 6.

  14. On superplasticity of corrosion resistant ferritic-austenitic chromium-nickel steels

    Energy Technology Data Exchange (ETDEWEB)

    Surovtsev, A P; Sukhanov, V E

    1988-01-01

    The deformability of corrosion resistant chromium-nickel ferritic austenitic steel type O8Kh22N6T under tension, upsetting and torsion in the 600-1200 deg C temperature range is studied. For the deformation rate of the order of 10/sup -3/ s/sup -1/ the effect of superelasticity reveals itself at 850 deg C in the process of ferrite dynamic polymerization, in the 925-950 deg C range, at initial stages of dynamic recrystallization - the dynamic polygonization controlled by chromium carbide dissolving in steel and maximum at 1050 deg C in the process of development of austenite dynamic recrystallization with grain refinement with F/A ratio equalling 1. After upsetting in the elasticity mode at 1050 deg C the impact strength of the above steel is maximum.

  15. Basic analysis of weldability and machinability of structural materials for ITER Toroidal Field coils

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, Masanori [Mitsubishi Heavy Industries Ltd., Konan 2-16-5, Minato-ku, Tokyo 108-8215 (Japan)], E-mail: masanori_onozuka@mnes-us.com; Shimizu, Katsusuke; Urata, Kazuhiro; Kimura, Masahiro; Kadowaki, Hirokazu; Okamoto, Mamoru [Mitsubishi Heavy Industries Ltd., Konan 2-16-5, Minato-ku, Tokyo 108-8215 (Japan); Nakajima, Hideo; Hamada, Kazuya; Okuno, Kiyoshi [Japan Atomic Energy Agency, Mukouyama 801-1, Naka-shi, Ibaraki 311-0193 (Japan)

    2007-10-15

    A manufacturing study has been conducted to examine the welding and machining capabilities for strengthened austenitic stainless steels with a high nitrogen content, JJ1 and ST-SS316LN, to be employed for ITER Toroidal Field (TF) coil structural components. It was found that the applicable EB welding condition for JJ1 was limited to up to 40 mm thick plates. A wider range of welding conditions was found in the vertical upward direction. Based on those results, a verification test up to 900 mm in length was successfully conducted. With respect to TIG welding, an average deposition rate of 26 g/min (i.e. the filler wire supplying speed of 3000 mm/min) was achieved. In addition to the welding tests, a series of machining tests has been conducted to examine the machinability of JJ1 and ST-SS316LN. Various types of machining tools were examined. In practical application, the cutting speed should be low to extend the tool life. At a cutting speed of 40 m/min, a tool life of more than 2 h (at a traveling distance of up to 9 m) was attained. The degree of cutter wear after 30 min of operation, at a cutting speed of 40 m/min, was found to be around 0.1 mm, which is within an acceptable range.

  16. Assessment of the integrity of ferritic-austenitic dissimilar weld joints of different grades of Cr-Mo ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Laha, K.; Chandravathi, K.S.; Parameswaran, P.; Goyal, Sunil; Mathew, M.D. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Metallurgy and Materials Group

    2010-07-01

    Integrity of the 2.25 Cr-1Mo / Alloy 800, 9Cr-1Mo / Alloy 800 and 9Cr-1Mo-VNb / Alloy 800 ferritic-austenitic dissimilar joints, fusion welded employing Inconel 182 electrode, has been assessed under creep conditions at 823 K. The dissimilar weld joints displayed lower creep rupture strength than their respective ferritic steel base metals. The strength reduction was more for 2.25Cr-1Mo steel joint and least for 9Cr-1Mo steel joint. The failure location in the joints was found to shift from the ferritic steel base metal to the intercritical region of heat-affected zone (HAZ) in ferritic steel (type IV cracking) with decrease in stress. At still lower stresses the failure occurred at the ferritic / austenitic weld interface. Localized creep deformation and cavitation in the soft intercritical HAZ induced type IV failure whereas creep cavitation at the weld interface particles induced ferritic / austenitic interface cracking due to high creep strength mismatch across it. Micromechanisms of type IV failure and interface cracking in the ferritic / austenitic joints and different susceptibility to failure for different grades of ferritic steels are discussed based on microstructural investigation, mechanical testing and finite element analysis. (Note from indexer: paper contains many typographical errors.)

  17. Mitigating the Risk of Stress Corrosion of Austenitic Stainless Steels in Advanced Gas Cooled Reactor Boilers

    International Nuclear Information System (INIS)

    Bull, A.; Owen, J.; Quirk, G.; G, Lewis; Rudge, A.; Woolsey, I.S.

    2012-09-01

    Advanced Gas-Cooled Reactors (AGRs) operated in the UK by EDF Energy have once-through boilers, which deliver superheated steam at high temperature (∼500 deg. C) and pressure (∼150 bar) to the HP turbine. The boilers have either a serpentine or helical geometry for the tubing of the main heat transfer sections of the boiler and each individual tube is fabricated from mild steel, 9%Cr1%Mo and Type 316 austenitic stainless steel tubing. Type 316 austenitic stainless steel is used for the secondary (final) superheater and steam tailpipe sections of the boiler, which, during normal operation, should operate under dry, superheated steam conditions. This is achieved by maintaining a specified margin of superheat at the upper transition joint (UTJ) between the 9%Cr1%Mo primary superheater and the Type 316 secondary superheater sections of the boiler. Operating in this mode should eliminate the possibility of stress corrosion cracking of the Type 316 tube material on-load. In recent years, however, AGRs have suffered a variety of operational problems with their boilers that have made it difficult to maintain the specified superheat margin at the UTJ. In the case of helical boilers, the combined effects of carbon deposition on the gas side and oxide deposition on the waterside of the tubing have resulted in an increasing number of austenitic tubes operating with less than the specified superheat margin at the UTJ and hence the possibility of wetting the austenitic section of the boiler. Some units with serpentine boilers have suffered creep-fatigue damage of the high temperature sections of the boiler, which currently necessitates capping the steam outlet temperature to prevent further damage. The reduction in steam outlet temperature has meant that there is an increased risk of operation with less than the specified superheat margin at the UTJ and hence stress corrosion cracking of the austenitic sections of the boiler. In order to establish the risk of stress

  18. Stress distributions due to hydrogen concentrations in electrochemically charged and aged austenitic stainless steel

    International Nuclear Information System (INIS)

    Rozenak, P.; Loew, A.

    2008-01-01

    As a result of hydrogen concentration gradients in type austenitic stainless steels, formed during electrochemical charging and followed by hydrogen loss during aging, at room temperature, surface stresses were developed. These stresses were measured by X-ray technique and the crack formation thus induced could be studied using equilibrium stress equations. After various electrochemical charging and aging times, X-ray diffraction patterns obtained from samples indicated that the reflected and broadened diffraction peaks are the result of the formation of a non-uniform but continuous solid solution in the austenitic matrix. Since both hydrogen penetrations during charging and hydrogen release during aging are diffusion controlled processes and huge hydrogen concentration gradients in the thin surface layer, at depths comparable with the depth of X-ray penetration, are observed. The non-uniform hydrogen concentration in the austenitic matrix, results to the non-uniform expansion of the atomic microstructure and latter inevitably leads to the development of internal stresses. The internal stresses development formulae's are very similar to those relating to non-uniform heating of the materials, where thermal stresses appear due to non-uniform expansion or contraction. The relevant well developed theory is applicable in our case of non-uniform hydrogen concentrations in a solid solution of electrochemically charged and aged austenitic matrix. A few cracks were present on the surface after some minutes of electrochemical charging and the severity of cracking increased as hydrogen was lost during subsequent aging. This is consistent with the expectation of high compressive stresses in the bulk of the specimen during charging and high tensile surface stresses (at the level of 1 x 10 11 Pa) during the aging process. These stresses can induce the formation of surface cracks during the aging process after electrochemical charging in the AISI 316 stainless steel

  19. Deformation behavior of austenitic stainless steel at deep cryogenic temperatures

    Science.gov (United States)

    Han, Wentuo; Liu, Yuchen; Wan, Farong; Liu, Pingping; Yi, Xiaoou; Zhan, Qian; Morrall, Daniel; Ohnuki, Somei

    2018-06-01

    The nonmagnetic austenite steels are the jacket materials for low-temperature superconductors of fusion reactors. The present work provides evidences that austenites transform to magnetic martensite when deformation with a high-strain is imposed at 77 K and 4.2 K. The 4.2 K test is characterized by serrated yielding that is related to the specific motion of dislocations and phase transformations. The in-situ transmission electron microscope (TEM) observations in nanoscale reveal that austenites achieve deformation by twinning under low-strain conditions at deep cryogenic temperatures. The generations of twins, martensitic transformations, and serrated yielding are in order of increasing difficulty.

  20. Ultrasonic testing of austenitic stainless steel welds

    International Nuclear Information System (INIS)

    Nishino, Shunichi; Hida, Yoshio; Yamamoto, Michio; Ando, Tomozumi; Shirai, Tasuku.

    1982-05-01

    Ultrasonic testing of austenitic stainless steel welds has been considered difficult because of the high noise level and remarkable attenuation of ultrasonic waves. To improve flaw detectability in this kind of steel, various inspection techniques have been studied. A series of tests indicated: (1) The longitudinal angle beam transducers newly developed during this study can detect 4.8 mm dia. side drilled holes in dissimilar metal welds (refraction angle: 55 0 from SUS side, 45 0 from CS side) and in cast stainless steel welds (refraction angle: 45 0 , inspection frequency: 1 MHz). (2) Cracks more than 5% t in depth in the heat affected zones of fine-grain stainless steel pipe welds can be detected by the 45 0 shear wave angle beam method (inspection frequency: 2 MHz). (3) The pattern recognition method using frequency analysis technology was presumed useful for discriminating crack signals from spurious echoes. (author)

  1. Predicted strains in austenitic stainless steels at stresses above yield

    International Nuclear Information System (INIS)

    Hammond, J.P.; Sikka, V.K.

    1977-01-01

    Tensile results on austenitic stainless steels were analyzed to develop means for predicting strains at stresses above yield for reactor regulatory applications. Eight heats each of types 316 and 304 were tested at 24, 93, 204, and 316 0 C as mill-annealed and at 24 0 C after reannealing. The effects of heat-to-heat variations on total strain (to 5%) at discrete stress levels were portrayed by a rational polynomial incorporating three constants that relate to the basic features of the true-stress-true-strain diagram. Because these constants usually are interrelated, a single parameter, yield strength (YS), proved adequate to predict results. For predictions analytical expressions of yield strength, an average value (YSa), and a lower bound value [YSa - 1.65SEE (standard error of estimate)] were used. Using the rational polynomial with these parameters we determined (1) limits of total maximum strain and (2) ratios of strain of material of lower bound YS to that of average YS. These are recorded at regular increments of stress [34 MPa (5 ksi)] and at ASME Code-related stresses (S/sub y), S/sub m/, 1.2S/sub m/ and 1.5S/sub m/). At intermediate stresses, strain penalties for using material of lower bound strength were large, generally larger for type 316 than type 304. For mill-annealed type 316 at 24, 93, 204, and 316 0 C, the maximum ratios of strain were 8.8, 13.0, 14.1, and 14.9, respectively, whereas for type 304 they were 3.5, 3.4, 5.6, and 4.6. At 1.5S/sub m/ and 316 0 C, a maximum strain of 2.08% was predicted for type 316 and 1.66% for type 304, as contrasted to values of 0.14 and 0.39% for average strain

  2. Effects of cooling rate, austenitizing temperature and austenite deformation on the transformation behavior of high-strength boron steel

    International Nuclear Information System (INIS)

    Mun, Dong Jun; Shin, Eun Joo; Choi, Young Won; Lee, Jae Sang; Koo, Yang Mo

    2012-01-01

    Highlights: ► Non-equilibrium segregation of B in steel depends strongly on the cooling rate. ► A higher austenitization temperature reduced the B hardenability effect. ► An increase in B concentration at γ grain boundaries accelerates the B precipitation. ► The loss of B hardenability effect is due to intragranular borocarbide precipitation. ► The controlled cooling after hot deformation increased the B hardenability effect. - Abstract: The phase transformation behavior of high-strength boron steel was studied considering the segregation and precipitation behavior of boron (B). The effects of cooling rate, austenitizing temperature and austenite deformation on the transformation behavior of B-bearing steel as compared with B-free steel were investigated by using dilatometry, microstructural observations and analysis of B distribution. The effects of these variables on hardenability were discussed in terms of non-equilibrium segregation mechanism and precipitation behavior of B. The retardation of austenite-to-ferrite transformation by B addition depends strongly on cooling rate (CR); this is mainly due to the phenomenon of non-equilibrium grain boundary segregation of B. The hardenability effect of B-bearing steel decreased at higher austenitizing temperature due to the precipitation of borocarbide along austenite grain boundaries. Analysis of B distribution by second ion mass spectroscopy confirmed that the grain boundary segregation of B occurred at low austenitizing temperature of 900 °C, whereas B precipitates were observed along austenite grain boundaries at high austenitizing temperature of 1200 °C. The significant increase in B concentration at austenite grain boundaries due to grain coarsening and a non-equilibrium segregation mechanism may lead to the B precipitation. In contrast, solute B segregated to austenite grain boundaries during cooling after heavy deformation became more stable because the increase in boundary area by grain

  3. Cyclic deformation behaviour of austenitic steels at ambient and ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Fatigue; cyclic deformation behaviour; metastable austenitic steel; .... Figure 4 shows a sequence of the basic diagrams which can be used to assess the fatigue .... well as the change of temperature and the development of the magnetic ...

  4. Low-temperature creep of austenitic stainless steels

    Science.gov (United States)

    Reed, R. P.; Walsh, R. P.

    2017-09-01

    Plastic deformation under constant load (creep) in austenitic stainless steels has been measured at temperatures ranging from 4 K to room temperature. Low-temperature creep data taken from past and unreported austenitic stainless steel studies are analyzed and reviewed. Creep at cryogenic temperatures of common austenitic steels, such as AISI 304, 310 316, and nitrogen-strengthened steels, such as 304HN and 3116LN, are included. Analyses suggests that logarithmic creep (creep strain dependent on the log of test time) best describe austenitic stainless steel behavior in the secondary creep stage and that the slope of creep strain versus log time is dependent on the applied stress/yield strength ratio. The role of cold work, strain-induced martensitic transformations, and stacking fault energy on low-temperature creep behavior is discussed. The engineering significance of creep on cryogenic structures is discussed in terms of the total creep strain under constant load over their operational lifetime at allowable stress levels.

  5. Formation and stabilization of reversed austenite in supermartensitic stainless steel

    DEFF Research Database (Denmark)

    Nießen, Frank; Grumsen, Flemming Bjerg; Hald, John

    2017-01-01

    of the reversed austenite phase fraction. Annealing at higher temperatures led to a gradual increase in hardness which was caused by formation of fresh martensite from reversed austenite. It was demonstrated that stabilization of reversed austenite is primarily based on chemical stabilization by partitioning......The formation and stabilization of reversed austenite upon inter-critical annealing was investigated in a X4CrNiMo16-5-1 (EN 1.4418) supermartensitic stainless steel by means of scanning electron microscopy, electron backscatter-diffraction, transmission electron microscopy, energy-dispersive X......-ray spectroscopy and dilatometry. The results were supported by thermodynamics and kinetics models, and hardness measurements. Isothermal annealing for 2 h in the temperature range of 475 to 650 °C led to gradual softening of the material which was related to tempering of martensite and the steady increase...

  6. Nanostructured Bainite-Austenite Steel for Armours Construction

    Directory of Open Access Journals (Sweden)

    Burian W.

    2014-10-01

    Full Text Available Nanostructured bainite-austenite steels are applied in the armours construction due to their excellent combination of strength and ductility which enables to lower the armour weight and to improve the protection efficiency. Mechanical properties of the bainite-austenite steels can be controlled in the wide range by chemical composition and heat treatment. In the paper the results of investigation comprising measuring of quasi - static mechanical properties, dynamic yield stress and firing tests of bainite-austenite steel NANOS-BA® are presented. Reported results show that the investigated bainite-austenite steel can be used for constructing add-on armour and that the armour fulfils requirements of protection level 2 of STANAG 4569. Obtained reduction in weight of the tested NANOS-BA® plates in comparison with the present solutions is about 30%.

  7. Welding of austenitic stainless steel with a high molybdenum content

    International Nuclear Information System (INIS)

    Liljas, A.; Holmberg, B.

    1984-01-01

    Welding of austenitic steel is discussed. Welding tests of AVESTA 250 SMO (six percent Mo) are reported. Welding without special additives can make the joints susceptible for corrosion in aggressive environments, e.g. sea water. (L.E.)

  8. Effects of austenitizing temperature in quenched niobium steels

    International Nuclear Information System (INIS)

    Mello, F.B.C. de; Assuncao, F.C.R.

    1980-01-01

    Three steel compositions with varying Nb content were austenitized at different temperatures and quenched in cold water. Metallographic examination and hardness measurements provided a basis for explaining the hardening mechanism and the role of Nb on the process. (Author) [pt

  9. Chemically Induced Phase Transformation in Austenite by Focused Ion Beam

    Science.gov (United States)

    Basa, Adina; Thaulow, Christian; Barnoush, Afrooz

    2014-03-01

    A highly stable austenite phase in a super duplex stainless steel was subjected to a combination of different gallium ion doses at different acceleration voltages. It was shown that contrary to what is expected, an austenite to ferrite phase transformation occurred within the focused ion beam (FIB) milled regions. Chemical analysis of the FIB milled region proved that the gallium implantation preceded the FIB milling. High resolution electron backscatter diffraction analysis also showed that the phase transformation was not followed by the typical shear and plastic deformation expected from the martensitic transformation. On the basis of these observations, it was concluded that the change in the chemical composition of the austenite and the local increase in gallium, which is a ferrite stabilizer, results in the local selective transformation of austenite to ferrite.

  10. Fracture toughness of irradiated wrought and cast austenitic stainless steels in BWR environment

    International Nuclear Information System (INIS)

    Chopra, O.K.; Gruber, E.E.; Shack, W.J.

    2007-01-01

    Experimental data are presented on the fracture toughness of wrought and cast austenitic stainless steels (SSs) that were irradiated to a fluence of ∼ 1.5 x 10 21 n/cm 2 (E > 1 MeV) * (∼ 2.3 dpa) at 296-305 o C. To evaluate the possible effects of test environment and crack morphology on the fracture toughness of these steels, all tests were conducted in normal-water-chemistry boiling water reactor (BWR) environments at ∼ 289 o C. Companion tests were also conducted in air on the same material for comparison. The fracture toughness J-R curves for SS weld heat-affected-zone materials in BWR water were found to be comparable to those in air. However, the results of tests on sensitized Type 304 SS and thermally aged cast CF-8M steel suggested a possible effect of water environment. The available fracture toughness data on irradiated austenitic SSs were reviewed to assess the potential for radiation embrittlement of reactor-core internal components. The synergistic effects of thermal and radiation embrittlement of cast austenitic SS internal components are also discussed. (author)

  11. The Influence of Porosity on Corrosion Attack of Austenitic Stainless Steel

    Science.gov (United States)

    Abdullah, Z.; Ismail, A.; Ahmad, S.

    2017-10-01

    Porous metals also known as metal foams is a metallic body having spaces orpores through which liquid or air may pass. Porous metals get an attention from researchers nowadays due to their unique combination of properties includes excellent mechanical and electrical, high energy absorption, good thermal and sound insulation and water and gas permeability. Porous metals have been applied in numerous applications such as in automotive, aerospace and also in biomedical applications. This research reveals the influence of corrosion attack in porous austenitic stainless steel 316L. The cyclic polarization potential analysis was performed on the porous austenitic stainless steel 316L in 3.5% NaCl solution. The morphology and the element presence on the samples before and after corrosion attack was examined using scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) respectively to determine the corrosion mechanism structure. The cyclic polarization potential analysis showed the result of (E corr ) for porous austenitic stainless steel type 316L in the range of -0.40v to -0.60v and breakdown potential (E b ) is -0.3v to -0.4v in NaCl solution.

  12. Enhancement of mechanical properties of a TRIP-aided austenitic stainless steel by controlled reversion annealing

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, A.S., E-mail: atef.hamada@suezuniv.edu.eg [Centre for Advanced Steels Research, Box 4200, University of Oulu, 90014 Oulu (Finland); Metallurgical and Materials Engineering Department, Faculty of Petroleum & Mining Engineering, Suez University, Box 43721, Suez (Egypt); Kisko, A.P. [Centre for Advanced Steels Research, Box 4200, University of Oulu, 90014 Oulu (Finland); Sahu, P. [Department of Physics, Jadavpur University, Kolkata 700032 (India); Karjalainen, L.P. [Centre for Advanced Steels Research, Box 4200, University of Oulu, 90014 Oulu (Finland)

    2015-03-25

    Controlled martensitic reversion annealing was applied to a heavily cold-worked metastable austenitic low-Ni Cr–Mn austenitic stainless steel (Type 201) to obtain different ultrafine austenite grain sizes to enhance the mechanical properties, which were then compared with the conventional coarse-grained steel. Characterization of the deformed and reversion annealed microstructures was performed by electron back scattered diffraction (EBSD), X-ray diffraction (XRD) and light and transmission electron microscopy (TEM). The steel with a reverted grain size ~1.5 μm due to annealing at 800 °C for 10 s showed significant improvements in the mechanical properties with yield stress ~800 MPa and tensile strength ~1100 MPa, while the corresponding properties of its coarse grained counterpart were ~450 MPa and ~900 MPa, respectively. However, the fracture elongation of the reversion annealed steel was ~50% as compared to ~70% in the coarse grained steel. A further advantage is that the anisotropy of mechanical properties present in work-hardened steels also disappears during reversion annealing.

  13. Studies on Stress Corrosion Cracking of Super 304H Austenitic Stainless Steel

    Science.gov (United States)

    Prabha, B.; Sundaramoorthy, P.; Suresh, S.; Manimozhi, S.; Ravishankar, B.

    2009-12-01

    Stress corrosion cracking (SCC) is a common mode of failure encountered in boiler components especially in austenitic stainless steel tubes at high temperature and in chloride-rich water environment. Recently, a new type of austenitic stainless steels called Super304H stainless steel, containing 3% copper is being adopted for super critical boiler applications. The SCC behavior of this Super 304H stainless steel has not been widely reported in the literature. Many researchers have studied the SCC behavior of steels as per various standards. Among them, the ASTM standard G36 has been widely used for evaluation of SCC behavior of stainless steels. In this present work, the SCC behavior of austenitic Fe-Cr-Mn-Cu-N stainless steel, subjected to chloride environments at varying strain conditions as per ASTM standard G36 has been studied. The environments employed boiling solution of 45 wt.% of MgCl2 at 155 °C, for various strain conditions. The study reveals that the crack width increases with increase in strain level in Super 304H stainless steels.

  14. A study of the carbon distribution in retained austenite

    International Nuclear Information System (INIS)

    Scott, C.P.; Drillet, J.

    2007-01-01

    Cold-rolled and annealed transformation-induced plasticity (TRIP) steels were overaged to modify the carbon concentrations (C γ ) in retained austenite. Experimental C γ values were directly obtained by electron energy loss spectroscopy and compared with data derived from X-ray diffraction measurements of the austenite lattice parameter (a γ ). In this way, we evaluated the different expressions available in the literature relating C γ to a γ

  15. Influence of plastic strain localization on the stress corrosion cracking of austenitic stainless steels; Influence de la localisation de la deformation plastique sur la CSC d'aciers austenitiques inoxydables

    Energy Technology Data Exchange (ETDEWEB)

    Cisse, S.; Tanguy, B. [CEA Saclay, DEN, SEMI, 91 - Gif-sur-Yvette (France); Andrieu, E.; Laffont, L.; Lafont, M.Ch. [Universite de Toulouse. CIRIMAT, UPS/INPT/CNRS, 31 - Toulous (France)

    2010-03-15

    The authors present a research study of the role of strain localization on the irradiation-assisted stress corrosion cracking (IASCC) of vessel steel in PWR-type (pressurized water reactor) environment. They study the interaction between plasticity and intergranular corrosion and/or oxidation mechanisms in austenitic stainless steels with respect to sublayer microstructure transformations. The study is performed on three austenitic stainless grades which have not been sensitized by any specific thermal treatment: the A286 structurally hardened steel, and the 304L and 316L austenitic stainless steels

  16. Study of copper precipitation behavior in a Cu-bearing austenitic antibacterial stainless steel

    International Nuclear Information System (INIS)

    Ren, Ling; Nan, Li; Yang, Ke

    2011-01-01

    Copper (Cu) precipitation behavior in a type 304 Cu-bearing austenitic antibacterial stainless steel was studied by analyses of variations in micro-hardness, electrical resistivity, electrochemical impedance and lattice constant of the steel, complemented with transmission electron microscopy (TEM) observation, showing more or less changes on these properties of the steel with different aging time. It was found that both micro-hardness and electrical resistivity measurements were relatively sensitive and accurate to reflect the Cu precipitation behavior in the experimental steel, indicating the beginning and finishing points of the precipitation, which are more simple and effective to be used for development of the new type of antibacterial stainless steels.

  17. Hydrogen embrittlement of austenitic stainless steels revealed by deformation microstructures and strain-induced creation of vacancies

    International Nuclear Information System (INIS)

    Hatano, M.; Fujinami, M.; Arai, K.; Fujii, H.; Nagumo, M.

    2014-01-01

    Hydrogen embrittlement of austenitic stainless steels has been examined with respect to deformation microstructures and lattice defects created during plastic deformation. Two types of austenitic stainless steels, SUS 304 and SUS 316L, uniformly hydrogen-precharged to 30 mass ppm in a high-pressure hydrogen environment, are subjected to tensile straining at room temperature. A substantial reduction of tensile ductility appears in hydrogen-charged SUS 304 and the onset of fracture is likely due to plastic instability. Fractographic features show involvement of plasticity throughout the crack path, implying the degradation of the austenitic phase. Electron backscatter diffraction analyses revealed prominent strain localization enhanced by hydrogen in SUS 304. Deformation microstructures of hydrogen-charged SUS 304 were characterized by the formation of high densities of fine stacking faults and ε-martensite, while tangled dislocations prevailed in SUS 316L. Positron lifetime measurements have revealed for the first time hydrogen-enhanced creation of strain-induced vacancies rather than dislocations in the austenitic phase and more clustering of vacancies in SUS 304 than in SUS 316L. Embrittlement and its mechanism are ascribed to the decrease in stacking fault energies resulting in strain localization and hydrogen-enhanced creation of strain-induced vacancies, leading to premature fracture in a similar way to that proposed for ferritic steels

  18. Reaction of uranium and plutonium carbides with austenitic steels

    International Nuclear Information System (INIS)

    Mouchnino, M.

    1967-01-01

    The reaction of uranium and plutonium carbides with austenitic steels has been studied between 650 and 1050 deg. C using UC, steel and (UPu)C, steel diffusion couples. The steels are of the type CN 18.10 with or without addition of molybdenum. The carbides used are hyper-stoichiometric. Tests were also carried out with UCTi, UCMo, UPuCTi and UPuCMo. Up to 800 deg. C no marked diffusion of carbon into stainless steel is observed. Between 800 and 900 deg. C the carbon produced by the decomposition of the higher carbides diffuses into the steel. Above 900 deg. C, decomposition of the monocarbide occurs according to a reaction which can be written schematically as: (U,PuC) + (Fe,Ni,Cr) → (U,Pu) Fe 2 + Cr 23 C 6 . Above 950 deg. C the behaviour of UPuCMo and that of the titanium (CN 18.12) and nickel (NC 38. 18) steels is observed to be very satisfactory. (author) [fr

  19. Helium-induced weld cracking in austenitic and martensitic steels

    International Nuclear Information System (INIS)

    Lin, H.T.; Chin, B.A.

    1991-01-01

    Helium was uniformly implanted into type 316 stainless steel and Sandvik HT-9 (12Cr-1MoVW) to levels of 0.18 to 256 and 0.3 to 1 a.p.p.m., respectively, using the ''tritium trick'' technique. Autogenous bead-on-plate, full penetration, welds were then produced under fully constrained conditions using the gas tungsten arc welding (GTAW) process. The control and hydrogen-charged plates of both alloys were sound and free of any weld defects. For the 316 stainless steel, catastrophic intergranular fracture occurred in the heat-affected zone (HAZ) of welds with helium levels ≥ 2.5 a.p.p.m. In addition to the HAZ cracking, brittle fracture along the centreline of the fusion zone was also observed for the welds containing greater than 100 a.p.p.m. He. For HT-9, intergranular cracking occurred in the HAZ along prior-austenite grain boundaries of welds containing 1 a.p.p.m. He. Electron microscopy observations showed that the cracking in the HAZ originated from the growth and coalescence of grain-boundary helium bubbles and that the fusion-zone cracking resulted from the growth of helium bubbles at dendrite boundaries. The bubble growth kinetics in the HAZ is dominated by stress-induced diffusion of vacancies into bubbles. Results of this study indicate that the use of conventional GTAW techniques to repair irradiation-degraded materials containing even small amounts of helium may be difficult. (author)

  20. Irradiation-assisted stress corrosion cracking of austenitic alloys

    International Nuclear Information System (INIS)

    Was, G.S.; Atzmon, M.

    1991-01-01

    An experimental program has been conducted to determine the mechanism of irradiation-assisted stress-corrosion cracking (IASCC) in austenitic stainless steel. High-energy protons have been used to produce grain boundary segregation and microstructural damage in samples of controlled impurity content. The densities of network dislocations and dislocation loops were determined by transmission electron microscopy and found to resemble those for neutron irradiation under LWR conditions. Grain boundary compositions were determined by in situ fracture and Auger spectroscopy, as well as by scanning transmission electron microscopy. Cr depletion and Ni segregation were observed in all irradiated samples, with the degree of segregation depending on the type and amount of impurities present. P, and to a lesser extent P, impurities were observed to segregate to the grain boundaries. Irradiation was found to increase the susceptibility of ultra-high-purity (UHP), and to a much lesser extent of UHP+P and UHP+S, alloys to intergranular SCC in 288 degree C water at 2 ppm O 2 and 0.5 μS/cm. No intergranular fracture was observed in arcon atmosphere, indicating the important role of corrosion in the embrittlement of irradiated samples. The absence of intergranular fracture in 288 degree C argon and room temperature tests also suggest that the embrittlement is not caused by hydrogen introduced by irradiation. Contrary to common belief, the presence of P impurities led to a significant improvement in IASCC over the ultrahigh purity alloy

  1. Cryogenic properties of V-bearing austenitic stainless steel

    International Nuclear Information System (INIS)

    Nohara, Kiyohiko

    1985-01-01

    A new type austenitic stainless steel which is expected as the cryogenic structural material for superconducting magnets has been developed. This steel is that vanadium was added to SUS 316 stainless steel of low carbon and high nitrogen, which has the sufficient strength and toughness at 4 K, and maintains the stable nonmagnetic state. This is applicable both to the solution state and the state of carrying out age hardening heat treatment for precipitating Nb 3 Sn subsequent to it. Accordingly, this material can be applied to the sheath material for nuclear fusion and the manufacture of superconducting magnets by Wind and React process besides the candidate material of superconducting magnets for nuclear fusion. This phenomenon is due to the fact that vanadium carbide precipitates in crystal grains before chrome carbide precipitates at grain boundaries, thus the precipitation of chrome carbide is suppressed. In this experiment, the effect of vanadium addition on the cryogenic properties of SUS 316 stainless steel was examined. The experimental method and the results of the effects of vanadium and nitrogen, solution treatment and precipitation aging, and the measurement of magnetism are reported. (Kako, I.)

  2. The Cracking Mechanism of Ferritic-Austenitic Cast Steel

    Directory of Open Access Journals (Sweden)

    Stradomski G.

    2016-12-01

    Full Text Available In the high-alloy, ferritic - austenitic (duplex stainless steels high tendency to cracking, mainly hot-is induced by micro segregation processes and change of crystallization mechanism in its final stage. The article is a continuation of the problems presented in earlier papers [1 - 4]. In the range of high temperature cracking appear one mechanism a decohesion - intergranular however, depending on the chemical composition of the steel, various structural factors decide of the occurrence of hot cracking. The low-carbon and low-alloy cast steel casting hot cracking cause are type II sulphide, in high carbon tool cast steel secondary cementite mesh and / or ledeburite segregated at the grain solidified grains boundaries, in the case of Hadfield steel phosphorus - carbide eutectic, which carrier is iron-manganese and low solubility of phosphorus in high manganese matrix. In duplex cast steel the additional factor increasing the risk of cracking it is very “rich” chemical composition and related with it processes of precipitation of many secondary phases.

  3. Investigations on the ratchetting behaviour of austenitic pipes

    International Nuclear Information System (INIS)

    Kraemer, D.; Krolop, S.; Scheffold, A.; Stegmeyer, R.

    1994-01-01

    Reversed bending tests at room temperature with pipes with and without internal pressure were carried out. The pipes were manufactured from the austenitic steel X10 CrNiNb 18 9. Under internal pressure ratchetting was observed in circumferential direction. The component tests were accompanied by numerical computations using a nonlinear kinematic hardening rule and superposed isotropic hardening. In total the constitutive model needed 13 parameters to be fitted when isotropic hardening resulted in a cyclic saturation. Uniaxial monotonic and cyclic loading tests served for characterizing the material. A reasonable parameter fitting with respect to describe ratchetting required load controlled nonzero mean-stress tests. On condition, that the loading will lead to cyclic saturation, ratchetting could be well predicted in the pipe with the found set of parameters. An extension of the isotropic hardening rule in the constitutive model was proposed allowing to describe various types of isotropic hardening. In a first step it was shown that under uniaxial conditions the extension reproduces continuous isotropic hardening up to incipient cracking quite well. (orig.)

  4. Austenitic alloys Fe-Ni-Cr dominating

    International Nuclear Information System (INIS)

    Gibson, R.C.; Korenko, M.K.

    1980-01-01

    Austenitic alloy essentially comprising 42 to 48% nickel, 11 to 13% chromium, 2.6 to 3.4% niobium, 0.2 to 1.2% silicon, 0.5 to 1.5% vanadium, 2.6 to 3.4% molybdenum, 0.1 to 0.3% aluminium, 0.1 to 0.3% titanium, 0.02 to 0.05% carbon, 0.002 to 0.015% boron, up to 0.06% zirconium, the balance being iron. The characteristic of this alloy is a conventional elasticity limit to within 2% of at least 450 MPa, with a maximum tensile strength of at least 500 MPa at a test temperature of 650 0 C after immersion annealing at 1038 0 C and 30% hardening. To this effect the invention concerns Ni-Cr-Fe high temperature alloys possessing excellent mechanical strength characteristics, that can be obtained with lower levels of nickel and chromium than those used in alloys of this kind in the present state of the technique, a higher amount of niobium than in the previous alloys and with the addition of 0.5 to 1.5% vanadium [fr

  5. Ion-nitriding of austenitic stainless steels

    International Nuclear Information System (INIS)

    Pacheco, O.; Hertz, D.; Lebrun, J.P.; Michel, H.

    1995-01-01

    Although ion-nitriding is an extensively industrialized process enabling steel surfaces to be hardened by nitrogen diffusion, with a resulting increase in wear, seizure and fatigue resistance, its direct application to stainless steels, while enhancing their mechanical properties, also causes a marked degradation in their oxidation resistance. However, by adaption of the nitriding process, it is possible to maintain the improved wear resistant properties while retaining the oxidation resistance of the stainless steel. The controlled diffusion permits the growth of a nitrogen supersaturated austenite layer on parts made of stainless steel (AISI 304L and 316L) without chromium nitride precipitation. The diffusion layer remains stable during post heat treatments up to 650 F for 5,000 hrs and maintains a hardness of 900 HV. A very low and stable friction coefficient is achieved which provides good wear resistance against stainless steels under diverse conditions. Electrochemical and chemical tests in various media confirm the preservation of the stainless steel characteristics. An example of the application of this process is the treatment of Reactor Control Rod Cluster Assemblies (RCCAs) for Pressurized Water Nuclear Reactors

  6. The effect of cooling rate and austenite grain size on the austenite to ferrite transformation temperature and different ferrite morphologies in microalloyed steels

    International Nuclear Information System (INIS)

    Esmailian, M.

    2010-01-01

    The effect of different austenite grain size and different cooling rates on the austenite to ferrite transformation temperature and different ferrite morphologies in one Nb-microalloyed high strength low alloy steel has been investigated. Three different austenite grain sizes were selected and cooled at two different cooling rates for obtaining austenite to ferrite transformation temperature. Moreover, samples with specific austenite grain size have been quenched, partially, for investigation on the microstructural evolution. In order to assess the influence of austenite grain size on the ferrite transformation temperature, a temperature differences method is established and found to be a good way for detection of austenite to ferrite, pearlite and sometimes other ferrite morphologies transformation temperatures. The results obtained in this way show that increasing of austenite grain size and cooling rate has a significant influence on decreasing of the ferrite transformation temperature. Micrographs of different ferrite morphologies show that at high temperatures, where diffusion rates are higher, grain boundary ferrite nucleates. As the temperature is lowered and the driving force for ferrite formation increases, intragranular sites inside the austenite grains become operative as nucleation sites and suppress the grain boundary ferrite growth. The results indicate that increasing the austenite grain size increases the rate and volume fraction of intragranular ferrite in two different cooling rates. Moreover, by increasing of cooling rate, the austenite to ferrite transformation temperature decreases and volume fraction of intragranular ferrite increases.

  7. The influence of grain size on the strain-induced martensite formation in tensile straining of an austenitic 15Cr–9Mn–Ni–Cu stainless steel

    International Nuclear Information System (INIS)

    Kisko, A.; Misra, R.D.K.; Talonen, J.; Karjalainen, L.P.

    2013-01-01

    In order to improve understanding on the behavior of ultrafine-grained austenitic stainless steels during deformation, the influence of the austenite grain size and microstructure on the strain-induced martensite transformation was investigated in an austenitic 15Cr–9Mn–Ni–Cu (Type 204Cu) stainless steel. By different reversion treatments of the 60% cold-rolled sheet, varying grain sizes from ultrafine (0.5 μm), micron-scale (1.5 μm), fine (4 μm) to coarse (18 μm) were obtained. Some microstructures also contained a mixture of ultrafine or micron-scale and coarse initially cold-worked austenite grains. Samples were tested in tensile loading and deformation structures were analyzed after 2%, 10% and 20% engineering strains by means of martensite content measurements, scanning electron microscope together with a electron backscatter diffraction device and transmission electron microscope. The results showed that the martensite nucleation sites and the rate of transformation vary. In ultrafine grains strain-induced α′-martensite nucleates at grain boundaries and twins, whereas in coarser grains as well as in coarse-grained retained austenite, α′-martensite formation occurs at shear bands, sometimes via ε-martensite. The transformation rate of strain-induced α′-martensite decreases with decreasing grain size to 1.5 μm. However, the rate is fastest in the microstructure containing a mixture of ultrafine and retained cold-worked austenite grains. There the ultrafine grains transform quite readily to martensite similarly as the coarse retained austenite grains, where the previous cold-worked microstructure is still partly remaining

  8. Atom-Probe Tomographic Investigation of Austenite Stability and Carbide Precipitation in a TRIP-Assisted 10 Wt Pct Ni Steel and Its Weld Heat-Affected Zones

    Science.gov (United States)

    Jain, Divya; Seidman, David N.; Barrick, Erin J.; DuPont, John N.

    2018-04-01

    Newly developed low-carbon 10 wt pct Ni-Mo-Cr-V martensitic steels rely on the Ni-enriched, thermally stable austenite [formed via multistep intercritical Quench-Lamellarization-Tempering ( QLT)-treatment] for their superior mechanical properties, specifically ballistic resistance. Critical to the thermal stability of austenite is its composition, which can be severely affected in the weld heat-affected zones (HAZs) and thus needs investigations. This article represents the first study of the nanoscale redistributions of C, Ni, and Mn in single-pass HAZ microstructures of QLT-treated 10 wt pct Ni steels. Local compositions of Ni-rich regions (representative of austenite compositions) in the HAZs are determined using site-specific 3-D atom-probe tomography (APT). Martensite-start temperatures are then calculated for these compositions, employing the Ghosh-Olson thermodynamic and kinetics approach. These calculations predict that austenite (present at high temperatures) in the HAZs is susceptible to a martensitic transformation upon cooling to room temperature, unlike the austenite in the QLT-treated base-metal. While C in the QLT-treated base-metal is consumed primarily in MC and M2C-type carbide precipitates (M is Mo, Cr, V), its higher concentration in the Ni-rich regions in the HAZs indicates the dissolution of carbide precipitates, particularly M2C carbide precipitates. The role of M2C carbide precipitates and austenite stability is discussed in relation to the increase in microhardness values observed in the HAZs, relative to the QLT-treated base-metal. Insights gained from this research on austenite stability and carbide precipitation in the single-pass HAZ microstructures will assist in designing multiple weld cycles for these novel 10 wt pct Ni steels.

  9. Interface segregation behavior in thermal aged austenitic precipitation strengthened stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui [Key Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China); Technical Department, Jiuli Hi-Tech Metals Co., Ltd., Huzhou 313008 (China); Song, Hui [Key Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China); Liu, Wenqing, E-mail: wqliu@staff.shu.edu.cn [Key Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China); Institute of Materials, Shanghai University, Shanghai 200072 (China); Xia, Shuang; Zhou, Bangxin [Institute of Materials, Shanghai University, Shanghai 200072 (China); Su, Cheng; Ding, Wenyan [Technical Department, Jiuli Hi-Tech Metals Co., Ltd., Huzhou 313008 (China)

    2015-12-15

    The segregation of various elements at grain boundaries, precipitate/matrix interfaces were analyzed using atom probe tomography in an austenitic precipitation strengthened stainless steel aged at 750 °C for different time. Segregation of P, B and C at all types of interfaces in all the specimens were observed. However, Si segregated at all types of interfaces only in the specimen aged for 16 h. Enrichment of Ti at grain boundaries was evident in the specimen aged for 16 h, while Ti did not segregate at other interfaces. Mo varied considerably among interface types, e.g. from segregated at grain boundaries in the specimens after all the aging time to never segregate at γ′/γ phase interfaces. Cr co-segregated with C at grain boundaries, although carbides still did not nucleate at grain boundaries yet. Despite segregation tendency variations in different interface types, the segregation tendency evolution variation of different elements depending aging time were analyzed among all types of interfaces. Based on the experimental results, the enrichment factors, Gibbs interface excess and segregation free energies of segregated elements were calculated and discussed. - Highlights: • Solute atoms segregated at interfaces were analyzed in an austenitic stainless steel. • The comparison of segregation in different interfaces was studied by APT. • The evolution of interface segregation during aging treatment was discussed.

  10. Effect of composition on the electrochemical behavior of austenitic stainless steel in Ringer's solution

    International Nuclear Information System (INIS)

    Bandy, R.; Cahoon, J.R.

    1977-01-01

    Potentiodynamic cyclic polarization tests on Type 316L stainless steel, a common orthopedic implant alloy, in Ringer's solution show considerable hysteresis and a protection potential more active than the open circuit corrosion potential. This implies that chances of repassivation of actively growing pits in this alloy are limited. Tests in Ringer's solution containing hydrochloric acid show that the open circuit potential of Type 316L steel in this solution may exceed in the noble direction the critical pitting potential in the same solution. This signifies that spontaneous breakdown of passivity may occur in a bulk environment which grossly simulates the electrochemical environment within a crevice. Alloying elements such as Mo, Ni, Cr, all improve the corrosion resistance of Type 316L stainless steel in that the critical pitting potential shifts in the noble direction in the alloys having any of the three alloying elements in a higher proportion than in Type 316L steel. Polarization tests in Ringer's solution on a 20% Cr, 25% Ni, 4.5% Mo, 1.5% Cu austenitic stainless steel, having Mo, Cr, and Ni--all in higher proportions than in Type 316L steel, does not show any critical pitting potential or hysteresis at potentials below that for dissociation of water. However, test in 4% NaCl solution at 60 C, a more aggressive chloride environment than Ringer'ssolution, reveals considerable hysteresis and a very active protection potential, indicating that this behavior is a common feature of austenitic stainless steel in sufficiently aggressive, chloride media

  11. Temperature effects on the mechanical properties of candidate SNS target container materials after proton and neutron irradiation

    International Nuclear Information System (INIS)

    Byun, T.S.; Farrell, K.; Lee, E.H.; Mansur, L.K.; Maloy, S.A.; James, M.R.; Johnson, W.R.

    2002-01-01

    This report presents the tensile properties of EC316LN austenitic stainless steel and 9Cr-2WVTa ferritic/martensitic steel after 800 MeV proton and spallation neutron irradiation to doses in the range 0.54-2.53 dpa at 30-100 deg. C. Tensile testing was performed at room temperature (20 deg. C) and 164 deg. C. The EC316LN stainless steel maintained notable strain-hardening capability after irradiation, while the 9Cr-2WVTa ferritic/martensitic steel posted negative hardening in the engineering stress-strain curves. In the EC316LN stainless steel, increasing the test temperature from 20 to 164 deg. C decreased the strength by 13-18% and the ductility by 8-36%. The effect of test temperature for the 9Cr-2WVTa ferritic/martensitic steel was less significant than for the EC316LN stainless steel. In addition, strain-hardening behaviors were analyzed for EC316LN and 316L stainless steels. The strain-hardening rate of the 316 stainless steels was largely dependent on test temperature. A calculation using reduction of area measurements and stress-strain data predicted positive strain hardening during plastic instability

  12. Effect of austenitization conditions on kinetics of isothermal transformation of austenite of structural steels

    International Nuclear Information System (INIS)

    Konopleva, E.V.; Bayazitov, V.M.; Abramov, O.V.; Kozlova, A.G.

    1987-01-01

    Effect of austenization of kinetics of pearlite and bainite transformations for steels with different carbon content differing by alloying character and degree has been investigated. Austenization temperature increase is shown to leads to retardation of ferrite-pearlite transformation in low- and medium-carbon alloyed steels. Step-like holding in the region of austenite stable state (850, 950 deg) after high-temperature heating (1100 deg C) increases the rate of transformation partially recovering its kinetics and decomposition velocity after low-temperature heating in steels alloyed advantageously with carbide-forming elements (08Kh2G2F, 30Kh3) and does not affect kinetics in the 35Kh, 30KhGSN2A, 45N5 steels. Increase of heating temperature and growth of an austenite grain cause considerable acceleration of bainite transformation, increase of the temperaure of bainite transformation beginning and increase of the transformation amplitude in the 08Kh2G2F, 30Kh3 steels and affect weakly kinetics in steels with mixed alloying (30KhGSN2A) or low-alloy one (35Kh). The bainite transformation rate in the 45N5 steelite does not depend on austenization. The effect of additional acceleration of bainite transformation as a result holding after high-temperature heating in those steels, where activation of transformation occurs with increase of heating temperature

  13. Hardness analysis of welded joints of austenitic and duplex stainless steels

    Science.gov (United States)

    Topolska, S.

    2016-08-01

    Stainless steels are widely used in the modern world. The continuous increase in the use of stainless steels is caused by getting greater requirements relating the corrosion resistance of all types of devices. The main property of these steels is the ability to overlap a passive layer of an oxide on their surface. This layer causes that they become resistant to oxidation. One of types of corrosion-resistant steels is ferritic-austenitic steel of the duplex type, which has good strength properties. It is easily formable and weldable as well as resistant to erosion and abrasive wear. It has a low susceptibility to stress-corrosion cracking, to stress corrosion, to intercrystalline one, to pitting one and to crevice one. For these reasons they are used, among others, in the construction of devices and facilities designed for chemicals transportation and for petroleum and natural gas extraction. The paper presents the results which shows that the particular specimens of the ][joint representing both heat affected zones (from the side of the 2205 steel and the 316L one) and the weld are characterized by higher hardness values than in the case of the same specimens for the 2Y joint. Probably this is caused by machining of edges of the sections of metal sheets before the welding process, which came to better mixing of native materials and the filler metal. After submerged arc welding the 2205 steel still retains the diphase, austenitic-ferritic structure and the 316L steel retains the austenitic structure with sparse bands of ferrite σ.

  14. Mechanisms of ultrafine-grained austenite formation under different isochronal conditions in a cold-rolled metastable stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Celada-Casero, C., E-mail: c.celada@cenim.csic.es [MATERALIA group, Dpt. of Physical Metallurgy, Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Av. Gregorio del Amo 8, 28040 Madrid (Spain); Huang, B.M. [National Taiwan University, Dpt. of Materials Science and Engineering, 1 Roosvelt Road, Section 4, 10617 Taipei, Taiwan, ROC (China); Aranda, M.M. [MATERALIA group, Dpt. of Physical Metallurgy, Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Av. Gregorio del Amo 8, 28040 Madrid (Spain); Yang, J.-R. [National Taiwan University, Dpt. of Materials Science and Engineering, 1 Roosvelt Road, Section 4, 10617 Taipei, Taiwan, ROC (China); Martin, D. San [MATERALIA group, Dpt. of Physical Metallurgy, Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Av. Gregorio del Amo 8, 28040 Madrid (Spain)

    2016-08-15

    The primary objective of this work is to obtain fundamental insights on phase transformations, with focus on the reaustenitization process (α′→γ transformation), of a cold-rolled (CR) semi-austenitic metastable stainless steel upon different isochronal conditions (0.1, 1, 10 and 100 °C/s). For this purpose, an exhaustive microstructural characterization has been performed by using complementary experimental such as scanning and transmission electron microscopy (SEM and TEM), electron backscattered diffraction (EBSD), electron probe microanalysis (EPMA), micro-hardness Vickers and magnetization measurements. It has been detected that all microstructural changes shift to higher temperatures as the heating rate increases. The reaustenitization occurs in two-steps for all heating rates, which is attributed to the chemical banding present in the CR state. The α′→γ transformation is controlled by the migration of substitutional alloying elements across the austenite/martensite (γ/α′) interface, which finally leads to ultrafine-grained reaustenitized microstructures (440–280 nm). The morphology of the martensite phase in the CR state has been found to be the responsible for such a grain refinement, along with the presence of χ-phase and nanometric Ni{sub 3}(Ti,Al) precipitates that pin the austenite grain growth, especially upon slowly heating at 0.1 °C/s. - Highlights: •Ultrafine-grained austenite structures are obtained isochronally at 0.1–100 °C/s •The α′→γ transformation occurs in two steps due to the initial chemical banding •A diffusional mechanism governs the α′→γ transformation for all heating rates •The dislocation-cell-type of martensite promotes a diffusional mechanism •Precipitates located at α′/γ interfaces hinder the austenite growth.

  15. Reversed austenite for enhancing ductility of martensitic stainless steel

    Science.gov (United States)

    Dieck, S.; Rosemann, P.; Kromm, A.; Halle, T.

    2017-03-01

    The novel heat treatment concept, “quenching and partitioning” (Q&P) has been developed for high strength steels with enhanced formability. This heat treatment involves quenching of austenite to a temperature between martensite start and finish, to receive a several amount of retained austenite. During the subsequent annealing treatment, the so called partitioning, the retained austenite is stabilized due to carbon diffusion, which results in enhanced formability and strength regarding strain induced austenite to martensite transformation. In this study a Q&P heat treatment was applied to a Fe-0.45C-0.65Mn-0.34Si-13.95Cr stainless martensite. Thereby the initial quench end temperature and the partitioning time were varied to characterize their influence on microstructural evolution. The microstructural changes were analysed by dilatometer measurements, X-ray diffraction and scanning electron microscopy, including electron back-scatter diffraction. Compression testing was made to examine the mechanical behaviour. It was found that an increasing partitioning time up to 30 min leads to an enhanced formability without loss in strength due to a higher amount of stabilized retained and reversed austenite as well as precipitation hardening.

  16. Modeling of Non-isothermal Austenite Formation in Spring Steel

    Science.gov (United States)

    Huang, He; Wang, Baoyu; Tang, Xuefeng; Li, Junling

    2017-12-01

    The austenitization kinetics description of spring steel 60Si2CrA plays an important role in providing guidelines for industrial production. The dilatometric curves of 60Si2CrA steel were measured using a dilatometer DIL805A at heating rates of 0.3 K to 50 K/s (0.3 °C/s to 50 °C/s). Based on the dilatometric curves, a unified kinetics model using the internal state variable (ISV) method was derived to describe the non-isothermal austenitization kinetics of 60Si2CrA, and the abovementioned model models the incubation and transition periods. The material constants in the model were determined using a genetic algorithm-based optimization technique. Additionally, good agreement between predicted and experimental volume fractions of transformed austenite was obtained, indicating that the model is effective for describing the austenitization kinetics of 60Si2CrA steel. Compared with other modeling methods of austenitization kinetics, this model, which uses the ISV method, has some advantages, such as a simple formula and explicit physics meaning, and can be probably used in engineering practice.

  17. Effect of Ti additions on the swelling of electron irradiated austenitic steels and Ni alloys

    International Nuclear Information System (INIS)

    Gilbon, D.; Didout, G.; Le Naour, L.; Levy, V.

    1979-01-01

    It has been shown that titanium is a beneficial additive for the swelling of austenitic steels. The amplitude of the effects observed depends much on the nature and concentration of the other additives in the austenitic matrix [fr

  18. Evaluation of Microstructure and Mechanical Properties in Dissimilar Austenitic/Super Duplex Stainless Steel Joint

    Science.gov (United States)

    Rahmani, Mehdi; Eghlimi, Abbas; Shamanian, Morteza

    2014-10-01

    To study the effect of chemical composition on microstructural features and mechanical properties of dissimilar joints between super duplex and austenitic stainless steels, welding was attempted by gas tungsten arc welding process with a super duplex (ER2594) and an austenitic (ER309LMo) stainless steel filler metal. While the austenitic weld metal had vermicular delta ferrite within austenitic matrix, super duplex stainless steel was mainly comprised of allotriomorphic grain boundary and Widmanstätten side plate austenite morphologies in the ferrite matrix. Also the heat-affected zone of austenitic base metal comprised of large austenite grains with little amounts of ferrite, whereas a coarse-grained ferritic region was observed in the heat-affected zone of super duplex base metal. Although both welded joints showed acceptable mechanical properties, the hardness and impact strength of the weld metal produced using super duplex filler metal were found to be better than that obtained by austenitic filler metal.

  19. Corrosion Behavior of the Stressed Sensitized Austenitic Stainless Steels of High Nitrogen Content in Seawater

    Directory of Open Access Journals (Sweden)

    A. Almubarak

    2013-01-01

    Full Text Available The purpose of this paper is to study the effect of high nitrogen content on corrosion behavior of austenitic stainless steels in seawater under severe conditions such as tensile stresses and existence of sensitization in the structure. A constant tensile stress has been applied to sensitized specimens types 304, 316L, 304LN, 304NH, and 316NH stainless steels. Microstructure investigation revealed various degrees of stress corrosion cracking. SCC was severe in type 304, moderate in types 316L and 304LN, and very slight in types 304NH and 316NH. The electrochemical polarization curves showed an obvious second current peak for the sensitized alloys which indicated the existence of second phase in the structure and the presence of intergranular stress corrosion cracking. EPR test provided a rapid and efficient nondestructive testing method for showing passivity, degree of sensitization and determining IGSCC for stainless steels in seawater. A significant conclusion was obtained that austenitic stainless steels of high nitrogen content corrode at a much slower rate increase pitting resistance and offer an excellent resistance to stress corrosion cracking in seawater.

  20. Magnetic susceptibility and magnetization studies of some commercial austenitic stainless steels

    International Nuclear Information System (INIS)

    Collings, E.W.

    1979-01-01

    Results of magnetic susceptibility measurements using the Curie magnetic force technique are reported for six AISI 300-series alloys 310S, 304, 304L, 304N, 316, 316L as well as AWS 330 weld metal and Inconel 625. The temperature ranged from 5 to 416 0 K. Magnetization measurements over the temperature range 3 to 297 0 K, performed using a vibrating-sample magnetometer, are also reported. Alloy compositions and sample preparation procedures are discussed and numerical results of the study are presented. Magnetic characteristics of the four principal types of austenitic stainless steels studied are summarized

  1. Elastic interaction between twins during tensile deformation of austenitic stainless steel

    DEFF Research Database (Denmark)

    Juul, Nicolai Ytterdal; Winther, Grethe; Dale, Darren

    2016-01-01

    . However, the components of the Type II stress normal to the twin boundary plane exhibit the same large variations as for the grain boundaries. Elastic grain interactions are therefore complex and must involve the entire set of neighbouring grains. The elastic-regime stress along the tensile direction......In austenite, the twin boundary normal is a common elastically stiff direction shared by the two twins, which may induce special interactions. By means of three-dimensional X-ray diffraction this elastic interaction has been analysed and compared to grains separated by conventional grain boundaries...

  2. Effect of cyclic electron irradiation on mechanical properties of austenite steel

    International Nuclear Information System (INIS)

    Tsepelev, A.B.; Sadykhov, S.I.O.; Chernov, A.I.; Sevost'yanov, M.A.

    2006-01-01

    To check the supposition on the possibility of radiation-stimulated process enhancement under cyclic irradiation conditions an experimental investigation is carried out to elucidate the effect of the mode of irradiation (continuous or cyclic) on mechanical properties of chromium-manganese austenitic stainless steel type 10Kh12G20V. The effect of some radiation hardening is observed under cyclic irradiation, however, the data obtained cannot be considered as good evidence for the validity of proposed model of dynamic preference if the scatter in experimental data is taken into account [ru

  3. Austenitic Reversion of Cryo-rolled Ti-Stabilized Austenitic Stainless Steel: High-Resolution EBSD Investigation

    Science.gov (United States)

    Tiamiyu, A. A.; Odeshi, A. G.; Szpunar, J. A.

    2018-02-01

    In this study, AISI 321 austenitic stainless steel (ASS) was cryo-rolled and subsequently annealed at 650 and 800 °C to reverse BCC α'-martensite to FCC γ-austenite. The texture evolution associated with the reversion at the selected temperatures was investigated using high-resolution EBSD. After the reversion, TiC precipitates were observed to be more stable in 650 °C-annealed specimens than those reversed at 800 °C. {110} texture was mainly developed in specimens subjected to both annealing temperatures. However, specimens reversed at 650 °C have stronger texture than those annealed at 800 °C, even at the higher annealing time. The strong intensity of {110} texture component is attributed to the ability of AISI 321 ASS to memorize the crystallographic orientation of the deformed austenite, a phenomenon termed texture memory. The development of weaker texture in 800 °C-annealed specimens is attributed to the residual strain relief in grains, dissolution of grain boundary precipitates, and an increase in atomic migration along the grain boundaries. Based on the observed features of the reversed austenite grains and estimation from an existing model, it is suspected that the austenite reversion at 650 and 800 °C undergone diffusional and martensitic shear reversion, respectively.

  4. Anelastic mechanical loss spectrometry of hydrogen in austenitic stainless steels

    International Nuclear Information System (INIS)

    Yagodzinskyy, Y.; Andronova, E.; Ivanchenko, M.; Haenninen, H.

    2009-01-01

    Atomic distribution of hydrogen, its elemental diffusion jumps and its interaction with dislocations in a number of austenitic stainless steels are studied with anelastic mechanical loss (AML) spectrometry in combination with the hydrogen thermal desorption method. Austenitic stainless steels of different chemical composition, namely, AISI 310, AISI 201, and AISI 301LN, as well as LDX 2101 duplex stainless steel are studied to clarify the role of different alloying elements on the hydrogen behavior. Activation analyses of the hydrogen Snoek-like peaks are performed with their decomposition to sets of Gaussian components. Fine structure of the composite hydrogen peaks is analyzed under the assumption that each component corresponds to diffusion transfer of hydrogen between octahedral positions with certain atomic compositions of the nearest neighbouring lattice sites. An additional component originating from hydrogen-dislocation interaction is considered. Binding energies for hydrogen-dislocation interaction are also estimated for the studied austenitic stainless steels.

  5. Effect of multiple austenitizing treatments on HT-9 steels

    International Nuclear Information System (INIS)

    Emigh, R.A.

    1985-12-01

    The effect of multiple austenitizing treatments on the toughness of an Fe-12Cr-1.0Mo-0.5W-0.3V (HT-9) steel was studied. The resulting microstructures were characterized by their mechanical properties, precipitated carbide distribution, and fracture surface appearance. It was proposed that multiple transformations would refine the martensite structure and improve toughness. Optical and scanning electron microscopic observations revealed that the martensite packet structure was somewhat refined by a second austenite transformation. Transmission electron microscopy studies of carbon extraction replicas showed that this multiple step treatment had eliminated grain boundary carbide films seen in single treated specimens on prior austenite grain boundaries. The 0.2% yield strength, tensile strength, and elongation were relatively unchanged, but the toughness measured by fatigue pre-cracked Charpy impact tests increased for the multiple step specimens

  6. Neutron depolarisation study of the austenite grain size in TRIP steels

    International Nuclear Information System (INIS)

    Dijk, N.H. van; Zhao, L.; Rekveldt, M.Th.; Fredrikze, H.; Tegus, O.; Brueck, E.; Sietsma, J.; Zwaag, S. van der

    2004-01-01

    We have performed combined neutron depolarisation and magnetisation measurements in order to obtain an in situ determination of the average grain size and volume fraction of the retained austenite phase in TRIP steels. The average grain size of the retained austenite was found to decrease for an increase in austenite volume fraction at two different annealing temperatures

  7. Self-stabilization of untransformed austenite by hydrostatic pressure via martensitic transformation

    International Nuclear Information System (INIS)

    Nakada, Nobuo; Ishibashi, Yuji; Tsuchiyama, Toshihiro; Takaki, Setsuo

    2016-01-01

    For improving the understanding of austenite stability in steel, hydrostatic pressure in untransformed austenite that is generated via martensitic transformation was evaluated from macro- and micro-viewpoints, and its effect on austenite stability was investigated in a Fe-27%Ni austenitic alloy. X-ray diffractometry revealed that the lattice parameter of untransformed austenite is continuously decreased via martensitic transformation only when martensite becomes the dominant phase in the microstructure. This suggests that the untransformed austenite is isotropically compressed by the surrounding martensite grains, i.e., hydrostatic pressure is generated in untransformed austenite dynamically at a later stage of martensitic transformation. On the other hand, microscopic strain mapping using the electron backscatter diffraction technique indicated that a finer untransformed austenite grain has a higher hydrostatic pressure, while a high density of dislocations is also introduced in untransformed austenite near the austenite/martensite interface because of lattice-invariant shear characterized by non-thermoelastic martensitic transformation. Furthermore, it was experimentally demonstrated that the hydrostatic pressure stabilizes the untransformed austenite; however, the austenite stabilization effect alone is not large enough to fully explain a large gap between martensite start and finish temperatures in steel.

  8. Materials development for fast reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, T.; Mathew, M.D.; Laha, K.; Sandhya, R., E-mail: san@igcar.gov.in

    2013-12-15

    Highlights: • A modified version of alloy D9 designated as IFAC-1 has been developed. • Oxide dispersion strengthened Grade 91 steel with good creep strength developed. • 0.14 wt% nitrogen in 316LN stainless steel leads to improved mechanical properties. • Type IV cracking resistant Grade 91 steel with boron addition developed. • Mechanical properties of SFR materials evaluated in sodium environment. -- Abstract: Materials play a crucial role in the economic competitiveness of electricity produced from fast reactors. It is necessary to increase the fuel burn-up and design life in order to realize this objective. The burnup is largely limited by the void swelling and creep resistance of the fuel cladding and wrapping materials. India's 500 MWe Prototype Fast Breeder Reactor (PFBR) is in advanced stage of construction. The major structural materials chosen for PFBR with MOX fuel are D9 austenitic stainless steel as fuel clad and wrapper material, 316LN austenitic stainless steel for reactor components and piping and modified 9Cr-1Mo steel for steam generator. In order to improve the burnup, titanium, phosphorous and silicon contents in alloy D9 have been optimized for decreased void swelling and increased creep strength and this has led to the development of a modified version of alloy D9 as IFAC-1. Ferritic steels are inherently resistant to void swelling. The disadvantage is their poor creep strength. Creep resistance of 9Cr-ferritic steel has been improved with the dispersion of nano-size yttria to develop oxide dispersion strengthened (ODS) steel clad tube with long-term creep strength, comparable to alloy D9 so as to achieve higher fuel burnup. Improved versions of 316LN stainless steel with nitrogen content of about 0.14 wt% having higher creep strength to increase the life of fast reactors and modified 9Cr-1Mo steel with reduced nitrogen content and controlled addition of boron to improve type IV cracking resistance for steam generator

  9. A contribution to the question of stress-corrosion cracking of austenitic stainless steel cladding in nuclear power plants

    International Nuclear Information System (INIS)

    Kupka, I.; Mrkous, P.

    1977-01-01

    A brief review is presented of the basic types of corrosion damage (uniform corrosion, intergranular corrosion, stress corrosion) and their influence on operational safety are estimated. Corrosion cracking is analyzed of austenitic stainless steel cladding taking into account the adverse impact of coolant and stress (both operational and residual) in a light water reactor primary circuit. Experimental data are given of residual stresses in the stainless steel clad material, as well as their magnitude and distribution after cladding and heat treatment. (author)

  10. Evaluation of welds on a ferritic-austenitic stainless steel

    International Nuclear Information System (INIS)

    Pleva, J.; Johansson, B.

    1984-01-01

    Five different welding methods for the ferritic-austenitic steel 22Cr6Ni3MoN have been evaluated on mill welded heavy wall pipes. The corrosion resistance of the weld joints has been tested both in standard tests and in special environments, related to certain oil and gas wells. The tests were conclusive in that a welding procedure with the addition of sufficient amounts of filler metal should be employed. TIG welds without or with marginal filler addition showed poor resistance to pitting, and to boiling nitric acid. Contents of main alloying elements in ferrite and austenite phases have been measured and causes of corrosion attack in welds are discussed

  11. Oxidation resistant high creep strength austenitic stainless steel

    Science.gov (United States)

    Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.

    2010-06-29

    An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.

  12. Evolution behavior of nanohardness after thermal-aging and hydrogen-charging on austenite and strain-induced martensite in pre-strained austenitic stainless steel

    Science.gov (United States)

    Zheng, Yuanyuan; Zhou, Chengshuang; Hong, Yuanjian; Zheng, Jinyang; Zhang, Lin

    2018-05-01

    Nanoindentation has been used to study the effects of thermal-aging and hydrogen on the mechanical property of the metastable austenitic stainless steel. Thermal-aging at 473 K decreases the nanohardness of austenite, while it increases the nanohardness of strain-induced ɑ‧ martensite. Hydrogen-charging at 473 K increases the nanohardness of austenite, while it decreases the nanohardness of strain-induced ɑ‧ martensite. The opposite effect on austenite and ɑ‧ martensite is first found in the same pre-strained sample. This abnormal evolution behavior of hardness can be attributed to the interaction between dislocation and solute atoms (carbon and hydrogen). Carbon atoms are difficult to move and redistribute in austenite compared with ɑ‧ martensite. Therefore, the difference in the diffusivity of solute atoms between austenite and ɑ‧ martensite may result in the change of hardness.

  13. Symmetry Groups of the Austenite Lattice and Construction of Self-Accommodation Complexes of Martensite Crystals in Alloys with the Shape-Memory Effect

    Science.gov (United States)

    Khundjua, A. G.; Ptitsin, A. G.; Brovkina, E. A.

    2018-01-01

    The internal structure of experimentally observed self-accommodation complexes of martensite crystals, which is determined by the system of twinning planes, is studied in this work. The direct correlation of the construction type of the complexes with the subgroups of the austenite lattice symmetry group is shown.

  14. Crack growth in an austenitic stainless steel at high temperature

    International Nuclear Information System (INIS)

    Polvora, J.P.

    1998-01-01

    This study deals with crack propagation at 650 deg C on an austenitic stainless steel referenced by Z2 CND 17-12 (316L(NN)). It is based on an experimental work concerning two different cracked specimens: CT specimens tested at 650 deg C in fatigue, creep and creep-fatigue with load controlled conditions (27 tests), tube specimens containing an internal circumferential crack tested in four points bending with displacement controlled conditions (10 tests). Using the fracture mechanics tools (K, J and C* parameters), the purpose here is to construct a methodology of calculation in order to predict the evolution of a crack with time for each loading condition using a fracture mechanics global approach. For both specimen types, crack growth is monitored by using a specific potential drop technique. In continuous fatigue, a material Paris law at 650 deg C is used to correlate crack growth rate with the stress intensity factor range corrected with a factor U(R) in order to take into account the effects of crack closure and loading ratio R. In pure creep on CT specimens, crack growth rate is correlated to the evolution of the C* parameter (evaluated experimentally) which can be estimated numerically with FEM calculations and analytically by using a simplified method based on a reference stress approach. A modeling of creep fatigue growth rate is obtained from a simple summation of the fatigue contribution and the creep contribution to the total crack growth. Good results are obtained when C* parameter is evaluated from the simplified expression C* s . Concerning the tube specimens tested in 4 point bending conditions, a simulation based on the actual A 16 French guide procedure proposed at CEA. (authors)

  15. Study of precipitation phenomena during the creep of austenitic stainless steels

    International Nuclear Information System (INIS)

    Le May, I.; Bassett, B.J.; White, W.E.

    1975-01-01

    Creep-rupture data for two austenitic stainless steels, AISI Types 310 and 316, are presented, together with observations of precipitation taking place during creep. While the effects of creep deformation on precipitation in the Type 310 were negligible, ferrite precipitation was considerably greater in the Type 316 undergoing creep than in unstressed material. Ferrite precipitation appears to promote grain boundary cavitation and internal cracking, thus reducing creep resistance and a correlation has been noted between increased ferrite precipitation and apparent further weakening of the Type 316 over the temperature range 730 to 800 0 C approximately, as evidenced by breaks in the isostress lines on a plot of log (time to rupture) versus temperature

  16. A study of precipitation phenomena during the creep of austenitic stainless steels

    International Nuclear Information System (INIS)

    Le May, I.; White, W.E.; Bassett, B.J.

    1975-01-01

    Creep-rupture data for two austenitic stainless steels, AISI Types 310 and 316, are presented, together with observations of precipitation taking place during creep. While the effects of creep deformation on precipitation in the Type 310 were negligible, ferrite precipitation was considerably greater in the Type 316 undergoing creep than in unstressed material. Ferrite precipitation appears to promote grain boundary cavitation and internal cracking, thus reducing creep resistance, and a correlation has been noted between increased ferrite precipitation and apparent further weakening of the Type 316 over the temperature range 730 0 C to 800 0 C approximately, as evidenced by breaks in the isostress lines on a plot of log (time to rupture) versus temperature. (author)

  17. High Temperature Fatigue Crack Growth Rate Studies in Stainless Steel 316L(N Welds Processed by A-TIG and MP-TIG Welding.

    Directory of Open Access Journals (Sweden)

    Thomas Manuel

    2018-01-01

    Full Text Available Welded stainless steel components used in power plants and chemical industries are subjected to mechanical load cycles at elevated temperatures which result in early fatigue failures. The presence of weld makes the component to be liable to failure in view of residual stresses at the weld region or in the neighboring heat affected zone apart from weld defects. Austenitic stainless steels are often welded using Tungsten Inert Gas (TIG process. In case of single pass welding, there is a reduced weld penetration which results in a low depth-to-width ratio of weld bead. If the number of passes is increased (Multi-Pass TIG welding, it results in weld distortion and subsequent residual stress generation. The activated flux TIG welding, a variant of TIG welding developed by E.O. Paton Institute, is found to reduce the limitation of conventional TIG welding, resulting in a higher depth of penetration using a single pass, reduced weld distortion and higher welding speeds. This paper presents the fatigue crack growth rate characteristics at 823 K temperature in type 316LN stainless steel plates joined by conventional multi-pass TIG (MP-TIG and Activated TIG (A-TIG welding process. Fatigue tests were conducted to characterize the crack growth rates of base metal, HAZ and Weld Metal for A-TIG and MP-TIG configurations. Micro structural evaluation of 316LN base metal suggests a primary austenite phase, whereas, A-TIG weld joints show an equiaxed grain distribution along the weld center and complete penetration during welding (Fig. 1. MP-TIG microstructure shows a highly inhomogeneous microstructure, with grain orientation changing along the interface of each pass. This results in tortuous crack growth in case of MP-TIG welded specimens. Scanning electron microscopy studies have helped to better understand the fatigue crack propagation modes during high temperature testing.

  18. Methodic recommendations on ultrasonic testing of pipeline austenitic butt joints

    International Nuclear Information System (INIS)

    Grebennik, V.S.; Lantukh, V.M.; Tajts, M.Z.; Ermolov, I.N.; Volkov, A.S.; Vyatskov, I.A.; Kesler, N.A.; Shchedrin, I.F.

    1989-01-01

    Recommendations for the application of ultrasonic testing of austenitic welded joints of the Du 500 pipelines with the walls 32-34 mm thick made of steel Kh18N10T are developed. The optimal values of the main parameters of ultrasonic testing are determined experimentally. Principles of calculation of the optimal parameters are considered. 1 ref.; 4 figs

  19. Nondestructive testing of austenitic casting and dissimilar metal welds

    International Nuclear Information System (INIS)

    Lahdenperae, K.

    1995-01-01

    The publication is a literature study of nondestructive testing of dissimilar metal welds and cast austenitic components in PWR and BWR plants. A major key to the successful testing is a realistic mockup made of the materials to be tested. The inspectors must also be trained and validated using suitable mockups. (42 refs., 27 figs., 10 tabs.)

  20. On the elusive crystal structure of expanded austenite

    DEFF Research Database (Denmark)

    Brink, Bastian; Ståhl, Kenny; Christiansen, Thomas Lundin

    2017-01-01

    No consistent structural description exists for expanded austenite that accurately accounts for the hkl-dependent peak shifts and broadening observed in diffraction experiments. The best available description for homogeneous samples is a face-centered cubic lattice with stacking faults. Here Deby...

  1. To the corrosion of austenitic steels in sodium loops

    International Nuclear Information System (INIS)

    Schad, M.

    1978-03-01

    This report describes the comparison between experimental corrosion and calculated corrosion effects on austenitic steels exposed to liquid sodium. As basis for the calculations served a diffusion model. The comparison showed that the model is able to predict the corrosion effects. In addition the model was used to calculate the corrosion effect along an actual fuel rod. (orig.) [de

  2. Phase Transformation of Metastable Austenite in Steel during Nano indentation

    International Nuclear Information System (INIS)

    Ahn, Taehong; Lee, Sung Bo; Han, Heung Nam; Park, Kyungtae

    2013-01-01

    These can produce geometrical softening accompanied by a sudden displacement excursion during load-controlled nanoindentation, which referred to in the literature as a pop-in. In this study, phase transformation of metastable austenite to stress-induced ε martensite which causes pop-ins during nanoindentation of steel will be reported and discussed. This study investigated the relationship between pop-in behavior of austenite in the early stage of nanoindentation and formation of ε martensite based on microstructural analyses. The load-displacement curve obtained from nanoindentation revealed stepwise pop-ins in the early stage of plastic deformation. From analyses of high resolution TEM images, a cluster of banded structure under the indent turned out a juxtaposition of (111) planes of γ austenite and (0001) planes of ε martensite. The calculation of displacement along indentation axis for (111) slip system by formation of ε martensite showed that geometrical softening can also occur by ε martensite formation when considering that the stress-induced ε martensite transformation is the predominant deformation mode in the early stage of plastic deformation and its monopartial nature as well. These microstructural investigations strongly suggest that the pop-in behavior in the early stage of plastic deformation of austenite is closely related to the formation of ε martensite

  3. Phase Transformation of Metastable Austenite in Steel during Nano indentation

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Taehong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Sung Bo; Han, Heung Nam [Seoul National Univ., Seoul (Korea, Republic of); Park, Kyungtae [Hanbat National Univ., Daejeon (Korea, Republic of)

    2013-05-15

    These can produce geometrical softening accompanied by a sudden displacement excursion during load-controlled nanoindentation, which referred to in the literature as a pop-in. In this study, phase transformation of metastable austenite to stress-induced ε martensite which causes pop-ins during nanoindentation of steel will be reported and discussed. This study investigated the relationship between pop-in behavior of austenite in the early stage of nanoindentation and formation of ε martensite based on microstructural analyses. The load-displacement curve obtained from nanoindentation revealed stepwise pop-ins in the early stage of plastic deformation. From analyses of high resolution TEM images, a cluster of banded structure under the indent turned out a juxtaposition of (111) planes of γ austenite and (0001) planes of ε martensite. The calculation of displacement along indentation axis for (111) slip system by formation of ε martensite showed that geometrical softening can also occur by ε martensite formation when considering that the stress-induced ε martensite transformation is the predominant deformation mode in the early stage of plastic deformation and its monopartial nature as well. These microstructural investigations strongly suggest that the pop-in behavior in the early stage of plastic deformation of austenite is closely related to the formation of ε martensite.

  4. Effect of shot peening on metastable austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Fargas, G., E-mail: gemma.fargas@upc.edu [CIEFMA - Departament de Ciència dels Materials i Enginyeria Metallúrgica, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain); CRnE, Centre de Recerca en Nanoenginyeria, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain); Roa, J.J.; Mateo, A. [CIEFMA - Departament de Ciència dels Materials i Enginyeria Metallúrgica, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain); CRnE, Centre de Recerca en Nanoenginyeria, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain)

    2015-08-12

    In this work, shot peening was performed in a metastable austenitic stainless steel EN 1.4318 (AISI 301LN) in order to evaluate its effect on austenite to martensite phase transformation and also the influence on the fatigue limit. Two different steel conditions were considered: annealed, i.e., with a fully austenitic microstructure, and cold rolled, consisting of a mixture of austenite and martensite. X-ray diffraction, electron back-scattered diffraction and focus ion beam, as well as nanoindentation techniques, were used to elucidate deformation mechanisms activated during shot peening and correlate with fatigue response. Results pointed out that extensive plastic deformation and phase transformation developed in annealed specimens as a consequence of shot peening. However, the increase of roughness and the generation of microcracks led to a limited fatigue limit improvement. In contrast, shot peened cold rolled specimens exhibited enhanced fatigue limit. In the latter case, the main factor that determined the influence on the fatigue response was the distance from the injector, followed successively by the exit speed of the shots and the coverage factor.

  5. Laser cladding crack repair of austenitic stainless steel

    CSIR Research Space (South Africa)

    Van Rooyen, C

    2009-06-01

    Full Text Available Laser cladding crack repair of austenitic stainless steel vessels subjected to internal water pressure was evaluated. The purpose of this investigation was to develop process parameters for in-situ repair of through-wall cracks in components...

  6. Carbon diffusion in carbon-supersaturated ferrite and austenite

    Czech Academy of Sciences Publication Activity Database

    Čermák, Jiří; Král, Lubomír

    2014-01-01

    Roč. 586, FEB (2014), s. 129-135 ISSN 0925-8388 R&D Projects: GA ČR(CZ) GAP108/11/0148; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : carbon diffusion * Carbon supersaturation * Carbon supersaturation * Ferrite * Austenite Subject RIV: BJ - Thermodynamics Impact factor: 2.999, year: 2014

  7. Factors which determine the swelling rate of austenitic stainless steels

    International Nuclear Information System (INIS)

    Garner, F.A.; Wolfer, W.G.

    1983-01-01

    Once void nucleation subsides, the swelling rate of many austenitic alloys becomes rather insensitive to variables that control the transient regime of swelling. Models are presented which describe the roles of nickel, chromium and silicon in void nucleation. The relative insensitivity of steady-state swelling to temperature, displacement rate and composition is also discussed

  8. The carbide M{sub 7}C{sub 3} in low-temperature-carburized austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Frank, E-mail: frank.ernst@cwru.edu [Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106-7204 (United States); Li, Dingqiang; Kahn, Harold; Michal, Gary M.; Heuer, Arthur H. [Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106-7204 (United States)

    2011-04-15

    Prolonged low-temperature gas-phase carburization of AISI 316L-type austenitic stainless steel can cause intragranular precipitation of the carbide M{sub 7}C{sub 3} (M: randomly dispersed Fe, Cr, Ni). Transmission electron microscopy revealed that the carbide particles have the shape of needles. They grow by a ledge-migration mechanism and in a crystallographic orientation relationship to the austenite matrix that enables highly coherent interphase interfaces. A small solubility limit of Ni in the carbide and restricted Ni diffusivity at the processing temperature leads to Ni pileup around the particles and may explain the extreme aspect ratio of the particle shape. These characteristics closely resemble what has been observed earlier for precipitates of M{sub 5}C{sub 2} under slightly different processing conditions and can be rationalized by considering the particular constraints imposed by carburization at low temperature.

  9. Influence of deformation on SCC susceptibility of austenitic stainless steel in PWR primary water

    Energy Technology Data Exchange (ETDEWEB)

    Kaneshima, Yoshiari; Totsuka, Nobuo; Nakajima, Nobuo [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    Slow strain rate tests (SSRT) were carried out to evaluate the SCC susceptibility of four types of austenitic stainless steels (SUS304, SUS316, SUS304L and SUS316L) in PWR primary water. The influence of deformation on SCC susceptibility of SUS316 was studied. All types of stainless steel were susceptible to SCC, and the SCC susceptibility varied depending on the steel type. The comparison of the SSRT results and tensile test in air based on the reduction of area measurement showed that the SCC susceptibility increased with increasing the degree of deformation. For explaining the influence of deformation on SCC susceptibility, it is necessary to evaluate both intergranular and transgranular fractures. (author)

  10. Intergranular Corrosion Behavior of Low-Nickel and 304 Austenitic Stainless Steels

    Science.gov (United States)

    Bansod, Ankur V.; Patil, Awanikumar P.; Moon, Abhijeet P.; Khobragade, Nilay N.

    2016-09-01

    Intergranular corrosion (IGC) susceptibility for Cr-Mn austenitic stainless steel and 304 austenitic stainless steel (ASS) was estimated using electrochemical techniques. Optical and SEM microscopy studies were carried out to investigate the nature of IGC at 700 °C with increasing time (15, 30, 60, 180, 360, 720, 1440 min) according to ASTM standard 262 A. Quantitative analysis was performed to estimate the degree of sensitization (DOS) using double loop electrochemical potentiokinetic reactivation (DLEPR) and EIS technique. DLEPR results indicated that with the increase in thermal aging duration, DOS becomes more severe for both types of stainless steel. The DOS for Cr-Mn ASS was found to be higher (65.12% for 1440 min) than that of the AISI 304 ASS (23% for 1440 min). The higher degree of sensitization resulted in lowering of electrical charge capacitance resistance. Chronoamperometry studies were carried out at a passive potential of 0.4 V versus SCE and was observed to have a higher anodic dissolution of the passive film of Cr-Mn ASS. EDS studies show the formation of chromium carbide precipitates in the vicinity of the grain boundary. The higher Mn content was also observed for Cr-Mn ASS at the grain boundary.

  11. Mass transfer behavior of a modified austenitic stainless steel in lithium

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.

    1983-01-01

    An austenitic stainless steel that was developed to resist neutron damage was exposed to lithium in the high-temperature part of a thermal convection loop for 6700 h. Specimens of this Prime Candidate Alloy (PCA) composed of 65.0 Fe-15.9 Ni-13.0 Cr-1.9 Mo-1.9 Mn-1.7 Si-0.5 Ti-0.05 C (wt %) were exposed at 600 and 570 0 C in both solution annealed and cold worked forms. The dissolution process was found to be similar to other austenitic alloys in flowing lithium: weight losses of PCA eventually became linearly proportional to exposure time with the specimen surfaces exhibiting porous layers depleted in nickel and chromium. However, the measured weight losses and dissolution rates of these PCA specimens were higher than those of type 316 stainless steel exposed under similar conditions and can be attributed to the higher nickel concentration of the former alloy. The effect of cold work on dissolution rates was less definitive, particularly at 570 0 C. At longer exposure times, the annealed PCA specimen exposed at 600 0 C suffered greater dissolution than the cold worked material, while no effect of prior deformation was observed by analysis of the respective surfaces

  12. Moessbauer spectroscopy of He irradiated austenitic stainless steel SUS304 at low temperature

    International Nuclear Information System (INIS)

    Horii, Kiyomasa; Ishibashi, Tetsu; Toriyama, Tamotsu; Wakabayashi, Hidehiko; Iijima, Hiroshi; Kawasaki, Katsunori; Hayashi, Nobuyuki; Sakamoto, Isao.

    1996-01-01

    SUS 304 austenitic stainless steel causes the magnetic transition at 60 K, and the Young's modulus lowers. In addition, its composition elements have the large (n,α) reaction cross section to high energy neutrons, and helium is apt to be generated, and this is a factor that lowers the material strength. In the He-irradiated parts in austenitic stainless steel, the precursory state of martensite transformation should exist, and its effect is considered to be observable by carrying out low temperature Moessbauer spectroscopy. As to the preparation of He-irradiation samples, the SUS 304 foils used and the irradiation conditions are described. The measurement of low temperature Moessbauer spectra for the samples without irradiation and with irradiation is reported. In order to determine the magnetic transition point, the thermal scanning measurement was carried out for the samples without or with irradiation. The martensite transformation was measured by X-ray diffraction and transmission type Moessbauer spectroscopy. In order to observe the state of the sample surfaces, the measurement by internal conversion electron Moessbauer spectroscopy was performed. These results and the temperature dependence of the Moessbauer spectra for the irradiated parts are reported. (K.I.)

  13. Effect of Chemical Composition on Susceptibility to Weld Solidification Cracking in Austenitic Weld Metal

    Science.gov (United States)

    Kadoi, Kota; Shinozaki, Kenji

    2017-12-01

    The influence of the chemical composition, especially the niobium content, chromium equivalent Creq, and nickel equivalent Nieq, on the weld solidification cracking susceptibility in the austenite single-phase region in the Schaeffler diagram was investigated. Specimens were fabricated using the hot-wire laser welding process with widely different compositions of Creq, Nieq, and niobium in the region. The distributions of the susceptibility, such as the crack length and brittle temperature range (BTR), in the Schaeffler diagram revealed a region with high susceptibility to solidification cracking. Addition of niobium enhanced the susceptibility and changed the distribution of the susceptibility in the diagram. The BTR distribution was in good agreement with the distribution of the temperature range of solidification (Δ T) calculated by solidification simulation based on Scheil model. Δ T increased with increasing content of alloying elements such as niobium. The distribution of Δ T was dependent on the type of alloying element owing to the change of the partitioning behavior. Thus, the solidification cracking susceptibility in the austenite single-phase region depends on whether the alloy contains elements. The distribution of the susceptibility in the region is controlled by the change in Δ T and the segregation behavior of niobium with the chemical composition.

  14. Moessbauer spectroscopy of He irradiated austenitic stainless steel SUS304 at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Horii, Kiyomasa; Ishibashi, Tetsu; Toriyama, Tamotsu; Wakabayashi, Hidehiko; Iijima, Hiroshi [Musashi Inst. of Tech., Tokyo (Japan); Kawasaki, Katsunori; Hayashi, Nobuyuki; Sakamoto, Isao

    1996-04-01

    SUS 304 austenitic stainless steel causes the magnetic transition at 60 K, and the Young`s modulus lowers. In addition, its composition elements have the large (n,{alpha}) reaction cross section to high energy neutrons, and helium is apt to be generated, and this is a factor that lowers the material strength. In the He-irradiated parts in austenitic stainless steel, the precursory state of martensite transformation should exist, and its effect is considered to be observable by carrying out low temperature Moessbauer spectroscopy. As to the preparation of He-irradiation samples, the SUS 304 foils used and the irradiation conditions are described. The measurement of low temperature Moessbauer spectra for the samples without irradiation and with irradiation is reported. In order to determine the magnetic transition point, the thermal scanning measurement was carried out for the samples without or with irradiation. The martensite transformation was measured by X-ray diffraction and transmission type Moessbauer spectroscopy. In order to observe the state of the sample surfaces, the measurement by internal conversion electron Moessbauer spectroscopy was performed. These results and the temperature dependence of the Moessbauer spectra for the irradiated parts are reported. (K.I.)

  15. Reversed austenite in 0Cr13Ni4Mo martensitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Song, Y.Y., E-mail: songyuanyuan@imr.ac.cn [Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China); Li, X.Y.; Rong, L.J.; Li, Y.Y. [Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China); Nagai, T. [National Institute for Materials Science, Sengen 1-2-1, Tsukuba 305-0047 (Japan)

    2014-01-15

    The austenite reversion process and the distribution of carbon and other alloying elements during tempering in 0Cr13Ni4Mo martensitic stainless steel have been investigated by in-situ high temperature X-ray diffraction (XRD) and scanning transmission electron microscopy (STEM). The microstructure of the reversed austenite was characterized using transmission electron microscopy (TEM). The results revealed that the amount of the reversed austenite formed at high temperature increased with the holding time. Direct experimental evidence supported carbon partitioning to carbides and Ni to the reversed austenite. The reversed austenite almost always nucleated in contact with lath boundary M{sub 23}C{sub 6} carbides during tempering and the diffusion of Ni promoted its growth. The Ni enrichment and the ultrafine size of the reversed austenite were considered to be the main factors that accounted for the stability of the reversed austenite. - Highlights: • The amount of the reversed austenite formed at high temperature increases with the holding time. • STEM results directly show that carbon is mainly partitioned into the carbides and Ni into the reversed austenite. • The Ni enrichment and the ultrafine size are the main factors leading to the stabilization of the reversed austenite.

  16. Temperature Effects on the Mechanical Properties of Candidate SNS Target Container Materials after Proton and Neutron Irradiation; TOPICAL

    International Nuclear Information System (INIS)

    Byun, T.S.

    2001-01-01

    This report presents the tensile properties of EC316LN austenitic stainless steel and 9Cr-2WVTa ferritic/martensitic steel after 800 MeV proton and spallation neutron irradiation to doses in the range 0.54 to 2.53 dpa. Irradiation temperatures were in the range 30 to 100 C. Tensile testing was performed at room temperature (20 C) and 164 C to study the effects of test temperature on the tensile properties. Test materials displayed significant radiation-induced hardening and loss of ductility due to irradiation. The EC316LN stainless steel maintained notable strain-hardening capability after irradiation, while the 9Cr-2WVTa ferritic/martensitic steel posted negative strain hardening. In the EC316LN stainless steel, increasing the test temperature from 20 C to 164 C decreased the strength by 13 to 18% and the ductility by 8 to 36%. The tensile data for the EC316LN stainless steel irradiated in spallation conditions were in line with the values in a database for 316 stainless steels for doses up to 1 dpa irradiated in fission reactors at temperatures below 200 C. However, extra strengthening induced by helium and hydrogen contents is evident in some specimens irradiated to above about 1 dpa. The effect of test temperature for the 9Cr-2WVTa ferritic/martensitic steel was less significant than for the EC316LN stainless steel. In addition, strain-hardening behaviors were analyzed for EC316LN and 316L stainless steels. The strain-hardening rate of the 316 stainless steels was largely dependent on test temperature. It was estimated that the 316 stainless steels would retain more than 1% true stains to necking at 164 C after irradiation to 5 dpa. A calculation using reduction of area (RA) measurements and stress-strain data predicted positive strain hardening during plastic instability

  17. Overview of Strategies for High-Temperature Creep and Oxidation Resistance of Alumina-Forming Austenitic Stainless Steels

    Science.gov (United States)

    Yamamoto, Y.; Brady, M. P.; Santella, M. L.; Bei, H.; Maziasz, P. J.; Pint, B. A.

    2011-04-01

    A family of creep-resistant, alumina-forming austenitic (AFA) stainless steel alloys is under development for structural use in fossil energy conversion and combustion system applications. The AFA alloys developed to date exhibit comparable creep-rupture lives to state-of-the-art advanced austenitic alloys, and superior oxidation resistance in the ~923 K to 1173 K (650 °C to 900 °C) temperature range due to the formation of a protective Al2O3 scale rather than the Cr2O3 scales that form on conventional stainless steel alloys. This article overviews the alloy design approaches used to obtain high-temperature creep strength in AFA alloys via considerations of phase equilibrium from thermodynamic calculations as well as microstructure characterization. Strengthening precipitates under evaluation include MC-type carbides or intermetallic phases such as NiAl-B2, Fe2(Mo,Nb)-Laves, Ni3Al-L12, etc. in the austenitic single-phase matrix. Creep, tensile, and oxidation properties of the AFA alloys are discussed relative to compositional and microstructural factors.

  18. Stress corrosion cracking of austenitic stainless steel in glycerol solution and chloride solution at elevated temperature

    International Nuclear Information System (INIS)

    Haftirman; Maruhum Tua Lubis

    2009-01-01

    Stress Corrosion Cracking (SCC) is an environmentally assisted failure caused by exposure to a corrodant while under a sustained tensile stress. SCC is most often rapid, unpredictable and catastrophic. Failure can occur in as little as a few hours or take years to happen. Most alloys are susceptible to SCC in one or more environments requiring careful consideration of alloy type in component design. In aqueous chloride environments austenitic stainless steels and many nickel based alloys are known to perform poorly. One of products Oleo chemical is glycerol solution. Glycerol solution contains chloride with concentration 50 ppm - 150 ppm. Austenitic stainless steel is usually used in distillation construction tank and pipe line of glycerol. Material AISI 304 will be failure in this glycerol solution with this concentration in 5 years. In production process, concentration of chloride in glycerol becomes more than 150 ppm at temperature 150 degree Celsius. The reason is that the experiment I conducted in high chloride with concentration such as 6000 ppm, 9000 ppm, and 12000 ppm. The stress corrosion cracking of the austenitic stainless steels of types AISI 304, 316 and 316L in glycerol solution at elevated temperature 150 degree Celsius is investigated as a function variation of chloride concentration, namely 50, 6000, 9000 and 12000 ppm using a constant load method with two kinds of initial tensile stress as 50 % and 70 % yield strength. The experiment uses a spring loaded fixture type and is based on ASTM G49 for experiment method, and E292 for geometry of specimen. Pitting corrosion occurs on the surface specimen until the stress level reaches the ultimate strength. Pitting corrosion attack and depletion occur on the surface as initiation of SCC failure as the stress reaches the ultimate strength. Failure has occurred in catastrophic brittle fracture type of transgranular. AISI 304 was more susceptible for all conditions. In chloride solution with concentration of

  19. Precipitation kinetics in austenitic 18Cr-30Ni-Nb cast steel

    Directory of Open Access Journals (Sweden)

    M. Garbiak

    2008-08-01

    Full Text Available The study presents the results of investigations on the precipitation kinetics in austenitic 18%Cr-30%Ni cast steel stabilised with an addition of 1.84 wt% niobium. Phase analysis of isolates extracted from the alloy subjected to annealing within the temperature range of 600–1000oC during 10–1000 h was made. The phase constitution of the isolates mainly comprised niobium carbides of the NbC type and complex chromium carbides of the Cr23C6 type. In specimens annealed within the temperature range of 700–900oC, a high-silicon G phase was additionally identified. The highest kinetics of the precipitation process was recorded after annealing at the temperatures of 800 and 900oC.

  20. Changes in grain boundary composition induced by neutron irradiation of austenitic stainless steels

    International Nuclear Information System (INIS)

    Asano, K.; Nakata, K.; Fukuya, K.; Kodama, M.

    1992-01-01

    The radiation induced segregation of solutes to the grain boundary in austenitic stainless steels were studied. Type 304 and type 316 steel samples neutron irradiated at 561K up to 9.2x10 25 n/m 2 were obtained and minute compositional profiles across grain boundaries were examined using an analytical scanning transmission electron microscope equipped with a field emission electron gun. Chromium was slightly enriched at grain boundaries at the lowest irradiation dose but decreased with increasing fluence. Higher fluence irradiation resulted in depletion in chromium and molybdenum, and enrichment in nickel, silicon and phosphorus. These changes in grain boundary chemistry were limited within about 5nm of the boundary. Significant depletion of chromium and enrichment of impurities on the grain boundary occurred at fluences roughly coincidental with that of SCC susceptibility change obtained from another project

  1. Influence of TiC precipitation in austenitic stainless steel on strength, ductility and helium embrittlement

    International Nuclear Information System (INIS)

    Kesternich, W.; Matta, M.K.; Rothaut, J.

    1984-01-01

    Creep experiments were performed on 1.4970 (German DIN standard) and 316 (AISI standard) type austenitic steels after various thermomechanical pretreatments and after α-implantation. The microstructure introduced by the pretreatments was characterized by transmission electron microscopy and the behaviour of strength and ductility is correlated to the dislocation and precipitate distributions. He embrittlement can be suppressed in these simulation experiments when dispersive TiC precipitate distributions are produced by the proper pretreatments or are allowed to form during creep testing. It is shown that adequate pretreatment results in a significantly superior behaviour of the 1.4970 steel as compared to the 316 type steel in all three investigated properties, i.e. strength, ductility and resistance to He embrittlement. (orig.)

  2. Thermodynamic stability of austenitic Ni-Mn-Cu cast iron

    Directory of Open Access Journals (Sweden)

    A. Janus

    2014-07-01

    Full Text Available The performed research was aimed at determining thermodynamic stability of structures of Ni-Mn-Cu cast iron castings. Examined were 35 alloys. The castings were tempered at 900 °C for 2 hours. Two cooling speeds were used: furnace-cooling and water-cooling. In the alloys with the nickel equivalent value less than 20,0 %, partial transition of austenite to martensite took place. The austenite decomposition ratio and the related growth of hardness was higher for smaller nickel equivalent value and was clearly larger in annealed castings than in hardened ones. Obtaining thermodynamically stable structure of castings requires larger than 20,0 % value of the nickel equivalent.

  3. STRUCTURAL STABILITY OF HIGH NITROGEN AUSTENITIC STAINLESS STEELS

    Directory of Open Access Journals (Sweden)

    Jana Bakajová

    2011-05-01

    Full Text Available This paper deals with the structural stability of an austenitic stainless steel with high nitrogen content. The investigated steel was heat treated at 800°C using different annealing times. Investigation was carried out using light microscopy, transmission electron microscopy and thermodynamic calculations. Three phases were identified by electron diffraction: Cr2N, sigma – phase and M23C6. The thermodynamic prediction is in good agreement with the experimental result. The only is the M23C6 carbide phase which is not thermodynamically predicted. Cr2N is the majority secondary phase and occurs in the form of discrete particles or cells (lamellas of Cr2N and austenite.

  4. An alternative to the crystallographic reconstruction of austenite in steels

    International Nuclear Information System (INIS)

    Bernier, Nicolas; Bracke, Lieven; Malet, Loïc; Godet, Stéphane

    2014-01-01

    An alternative crystallographic austenite reconstruction programme written in Matlab is developed by combining the best features of the existing models: the orientation relationship refinement, the local pixel-by-pixel analysis and the nuclei identification and spreading strategy. This programme can be directly applied to experimental electron backscatter diffraction mappings. Its applicability is demonstrated on both quenching and partitioning and as-quenched lath-martensite steels. - Highlights: • An alternative crystallographic austenite reconstruction program is developed. • The method combines a local analysis and a nuclei identification/spreading strategy. • The validity of the calculated orientation relationship is verified on a Q and P steel. • The accuracy of the reconstructed microtexture is investigated on a martensite steel

  5. Laser borided composite layer produced on austenitic 316L steel

    Directory of Open Access Journals (Sweden)

    Mikołajczak Daria

    2016-12-01

    Full Text Available Abstract Austenitic 316L steel is well-known for its good resistance to corrosion and oxidation. Therefore, this material is often used wherever corrosive media or high temperatures are to be expected. The main drawback of this material is very low hardness and low resistance to mechanical wear. In this study, the laser boriding was used in order to improve the wear behavior of this material. As a consequence, a composite surface layer was produced. The microstructure of laser-borided steel was characterized by only two zones: re-melted zone and base material. In the re-melted zone, a composite microstructure, consisting of hard ceramic phases (borides and a soft austenitic matrix, was observed. A significant increase in hardness and wear resistance of such a layer was obtained.

  6. Austin: austenitic steel irradiation E 145-02 Irradiation Report

    International Nuclear Information System (INIS)

    Genet, F.; Konrad, J.

    1987-01-01

    Safety measures for nuclear reactors require that the energy which might be liberated in a reactor core during an accident should be contained within the reactor pressure vessel, even after very long irradiation periods. Hence the need to know the mechanical properties at high deformation velocity of structure materials that have received irradiation damage due to their utilization. The stainless steels used in the structures of reactors undergo damage by both thermal and fast neutrons, causing important changes in the mechanical properties of these materials. Various austenitic steels available as structural materials were irradiated or are under irradiation in various reactors in order to study the evolution of the mechanical properties at high deformation velocity as a function of the irradiation damage rate. The experiment called AUSTIN (AUstenitic STeel IrradiatioN) 02 was performed by the JRC Petten Establishment on behalf of Ispra in support of the reactor safety programme

  7. Electron microscopy and plastic deformation of industrial austenitic stainless steels

    International Nuclear Information System (INIS)

    Thomas, Barry

    1976-01-01

    The different mechanisms of plastic deformation observed in austenitic stainless steels are described and the role of transmission electron microscopy in the elucidation of the mechanisms is presented. At temperatures below 0,5Tm, different variants of dislocation glide are competitive: slip of perfect and partial dislocations, mechanical twinning and strain-induced phase transformations. The predominance of one or other of these mechanisms can be rationalized in terms of the temperature and composition dependence of the stacking fault energy and the thermodynamic stability of the austenite. At temperatures above 0,5Tm dislocation climb and diffusion of point defects become increasingly important and at these temperatures recovery, recrystallization and precipitation can also occur during deformation [fr

  8. Small punch creep test in a 316 austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Saucedo-Muñoz, Maribel L.

    2015-03-01

    Full Text Available The small punch creep test was applied to evaluate the creep behavior of a 316 type austenitic stainless steel at temperatures of 650, 675 and 700 °C. The small punch test was carried out using a creep tester with a specimen size of 10×10×0.3 mm at 650, 675 and 700 °C using loads from 199 to 512 N. The small punch creep curves show the three stages found in the creep curves of the conventional uniaxial test. The conventional creep relationships which involve parameters such as creep rate, stress, time to rupture and temperature were followed with the corresponding parameters of small punch creep test and they permitted to explain the creep behavior in this steel. The mechanism and activation energy of the deformation process were the grain boundary sliding and diffusion, respectively, during creep which caused the intergranular fracture in the tested specimens.El ensayo de termofluencia por indentación se utilizó para evaluar el comportamiento a la termofluencia en un acero inoxidable austenítico 316. Este ensayo se realizó en una máquina de indentación con muestras de 10×10×0,3 mm a temperaturas de 650, 675 y 700 °C con cargas de 199 a 512 N. Las curvas de termofluencia del ensayo mostraron las tres etapas características observadas en el ensayo convencional de tensión. Asimismo, las principales relaciones de termofluencia entre parámetros como velocidad de termofluencia, esfuerzo, tiempo de ruptura y temperatura se observaron en los parámetros correspondientes al ensayo de indentación, lo que permitió caracterizar el comportamiento de termofluencia en este acero. El mecanismo y la energía de activación del proceso de deformación en la termofluencia corresponden al deslizamiento de los límites de grano y la difusión a través de los mismos, respectivamente, lo cual causó la fractura intergranular en las muestras ensayadas.

  9. High temperature crack initiation in an austenitic stainless steel

    International Nuclear Information System (INIS)

    Laiarinandrasana, Lucien

    1994-01-01

    The study deals with crack initiation at 600 deg. C and 650 deg. C, on an austenitic stainless steel referenced by Z2 CND 17 12. The behaviour laws of the studied plate were updated in comparison with existing data. Forty tests were carried out on CT specimens, with continuous fatigue with load or displacement controlled, pure creep, pure relaxation, creep-fatigue and creep-relaxation loadings. The practical initiation definition corresponds to a small crack growth of about the grain size, monitored by electrical potential drop technique. The time necessary for the crack to initiate is predicted with fracture mechanics global and local approaches, with the help of microstructural observations and finite element results. An identification of a 'Paris' law' for continuous cyclic loading and of a unique correlation between the initiation time and C h * for creep tests was established. For the local approach, crack initiation by creep can be interpreted as the reaching of a critical damage level, by using a damage incremental rule. For creep-fatigue tests, crack growth rates at initiation are greater than those of Paris' law for continuous fatigue. A calculation of a transition time between elastic-plastic and creep domains shows that crack initiation can be interpreted whether by providing Paris' law with an acceleration term when the dwell period is less than the transition time, or by calculating a creep contribution which relies on C h * parameter when the dwell period and/or the initiation times are greater than the transition time. Creep relaxation tests present crack growth rates at initiation which are less than those for 'equivalent' creep-fatigue tests. These crack growth rates decrease when increasing hold time, but also when temperature decreases. Though, for hold times which are important enough and at lower temperature, there is no effect of the dwell period insofar as crack growth rate is equal to continuous fatigue

  10. Hot deformation behavior of austenite in HSLA-100 microalloyed steel

    International Nuclear Information System (INIS)

    Momeni, A.; Arabi, H.; Rezaei, A.; Badri, H.; Abbasi, S.M.

    2011-01-01

    Research highlights: → The flow stress is well fitted by the exponential constitutive equation. → The average value of apparent activation energy for hot deformation is 377 kJ mol -1 . → A yield point phenomenon is observed on flow curves at high temperatures. → The Avrami exponent is determined around unity for dynamic recrystallization. - Abstract: Dynamic recrystallization of austenite in the Cu-bearing HSLA-100 steel was investigated by hot compression testing at a temperature range of 850-1150 deg. C and a strain rate of 0.001-1 s -1 . The obtained flow curves at temperatures higher than 950 deg. C were typical of DRX while at lower temperatures the flow curves were associated with work hardening without any indication of DRX. At high temperatures, flow stress exhibited a linear relation with temperature while at temperatures below 950 deg. C the behavior changed to non-linear. Hence, the temperature of 950 deg. C was introduced as the T nr of the alloy. All the flow curves showed a yield point elongation like phenomenon which was attributed to the interaction of solute atoms, notably carbon, and moving dislocations. The maximum elongation associated with the yield point phenomenon was observed at about 950 deg. C. Since the maximum yield point elongation was observed about the calculated T nr , it was concluded that carbon atoms were responsible for it. It was also concluded that the temperature at which the yield point elongation reaches the maximum value increases as strain rate rises. The stress and strain of the characteristic points of DRX flow curves were successfully correlated to the Zener-Hollomon parameter, Z, by power-law equations. The constitutive exponential equation was found more precise than the hyperbolic sine equation for modeling the dependence of flow stress on Z. The apparent activation energy for DRX was determined as 377 kJ mol -1 . The kinetics of DRX was modeled by an Avrami-type equation and the Avrami's exponent was

  11. Crack initiation at high temperature on an austenitic stainless steel

    International Nuclear Information System (INIS)

    Laiarinandrasana, L.

    1994-01-01

    The study deals with crack initiation at 600 degrees Celsius and 650 degrees Celsius, on an austenitic stainless steel referenced by Z2 CND 17 12. The behaviour laws of the studied plate were update in comparison with existing data. Forty tests were carried out on CT specimens, with continuous fatigue with load or displacement controlled, pure creep, pure relaxation, creep-fatigue and creep-relaxation loadings. The practical initiation definition corresponds to a small crack growth of about the grain size, monitored by electrical potential drop technique. The time necessary for the crack to initiate is predicted with fracture mechanics global and local approaches, with the helps of microstructural observations and finite elements results. An identification of a 'Paris'law' for continuous cyclic loading and of a unique correlation between the initiation time and C * k for creep tests was established. For the local approach, crack initiation by creep can be interpreted as the reaching of a critical damage level, by using a damage incremental rule. For creep-fatigue tests, crack growth rates at initiation are greater than those of Paris'law for continuous fatigue. A calculation of a transition time between elastic-plastic and creep domains shows that crack initiation can be interpreted whether by providing Paris'law with an acceleration term when the dwell period is less than the transition time, or by calculating a creep contribution which relies on C * k parameter when the dwell period and/or the initiation times are greater than the transition time. Creep relaxation tests present crack growth rates at initiation which are less than those for 'equivalent' creep-fatigue tests. These crack growth rates when increasing hold time, but also when temperature decreases. Though, for hold times which are important enough and at lower temperature, there is no effect of the dwell period insofar as crack growth rate is equal to continuous fatigue Paris law predicted ones

  12. High Nitrogen Austenitic Stainless Steel Precipitation During Isothermal Annealing

    OpenAIRE

    Maria Domankova; Katarína Bártová; Ivan Slatkovský; Peter Pinke

    2016-01-01

    The time-temperature-precipitation in high-nitrogen austenitic stainless steel was investigated using light optical microscopy, transmission electron microscopy, selected area diffraction and energy-dispersive X-ray spectroscopy. The isothermal precipitation kinetics curves and the corresponding precipitation activation energy were obtained. The diffusion activation energy of M2N precipitation is 129 kJ/mol. The results show that critical temperature for M2N precipitation is about 825°C with ...

  13. A discrete dislocation–transformation model for austenitic single crystals

    International Nuclear Information System (INIS)

    Shi, J; Turteltaub, S; Remmers, J J C; Van der Giessen, E

    2008-01-01

    A discrete model for analyzing the interaction between plastic flow and martensitic phase transformations is developed. The model is intended for simulating the microstructure evolution in a single crystal of austenite that transforms non-homogeneously into martensite. The plastic flow in the untransformed austenite is simulated using a plane-strain discrete dislocation model. The phase transformation is modeled via the nucleation and growth of discrete martensitic regions embedded in the austenitic single crystal. At each instant during loading, the coupled elasto-plasto-transformation problem is solved using the superposition of analytical solutions for the discrete dislocations and discrete transformation regions embedded in an infinite homogeneous medium and the numerical solution of a complementary problem used to enforce the actual boundary conditions and the heterogeneities in the medium. In order to describe the nucleation and growth of martensitic regions, a nucleation criterion and a kinetic law suitable for discrete regions are specified. The constitutive rules used in discrete dislocation simulations are supplemented with additional evolution rules to account for the phase transformation. To illustrate the basic features of the model, simulations of specimens under plane-strain uniaxial extension and contraction are analyzed. The simulations indicate that plastic flow reduces the average stress at which transformation begins, but it also reduces the transformation rate when compared with benchmark simulations without plasticity. Furthermore, due to local stress fluctuations caused by dislocations, martensitic systems can be activated even though transformation would not appear to be favorable based on the average stress. Conversely, the simulations indicate that the plastic hardening behavior is influenced by the reduction in the effective austenitic grain size due to the evolution of transformation. During cyclic simulations, the coupled plasticity

  14. Integrity of austenitic stainless steel piping welds for nuclear service

    International Nuclear Information System (INIS)

    Canalini, A.; Lopes, L.R.

    1983-01-01

    A criterion applying K 1d concept was developed to determine the fracture mechanics properties of austenitic stainless steel nuclear piping welds. The critical dimensions, lenght and depth, for crack initiation were established and plotted in a chart. This study enables the dimensions of a discontinuity detected in an in-service inspection to be compared to the critical dimensions for crack initiation, and the indication can be judged critical or non-critical for the component. (author) [pt

  15. High Cycle Fatigue of Metastable Austenitic Stainless Steels

    OpenAIRE

    Fargas Ribas, Gemma; Zapata Dederle, Ana Cristina; Anglada Gomila, Marcos Juan; Mateo García, Antonio Manuel

    2009-01-01

    Metastable austenitic stainless steels are currently used in applications where severe forming operations are required, such as automotive bodies, due to its excellent ductility. They are also gaining interest for its combination of high strength and formability after forming. The biggest disadvantage is the difficulty to predict the mechanical response, which depends heavily on the amount of martensite formed. The martensitic transformation in metastable stainless steels can b...

  16. Diagnostic experimental results on the hydrogen embrittlement of austenitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Gavriljuk, V.G.; Shivanyuk, V.N.; Foct, J

    2003-03-14

    Three main available hypotheses of hydrogen embrittlement are analysed in relation to austenitic steels based on the studies of the hydrogen effect on the interatomic bonds, phase transformations and microplastic behaviour. It is shown that hydrogen increases the concentration of free electrons, i.e. enhances the metallic character of atomic interactions, although such a decrease in the interatomic bonding cannot be a reason for brittleness and rather assists an increased plasticity. The hypothesis of the critical role of the hydrogen-induced {epsilon} martensite was tested in the experiment with the hydrogen-charged Si-containing austenitic steel. Both the fraction of the {epsilon} martensite and resistance to hydrogen embrittlement were increased due to Si alloying, which is at variance with the pseudo-hydride hypothesis. The hydrogen-caused early start of the microplastic deformation and an increased mobility of dislocations, which are usually not observed in the common mechanical tests, are revealed by the measurements of the strain-dependent internal friction, which is consistent with the hypothesis of the hydrogen-enhanced localised plasticity. An influence of alloying elements on the enthalpy E{sub H} of hydrogen migration in austenitic steels is studied using the temperature-dependent internal friction and a correlation is found between the values of E{sub H} and hydrogen-caused decrease in plasticity. A mechanism for the transition from the hydrogen-caused microplasticity to the apparent macrobrittle fracture is proposed based on the similarity of the fracture of hydrogenated austenitic steels to that of high nitrogen steels.

  17. Morphology change of retained austenite during austempering of carbide-free bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hofer, Christina, E-mail: christina.hofer@unileoben.ac.at [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria); Winkelhofer, Florian [Research and Development - Business Unit Coil, voestalpine Stahl GmbH, voestalpine‐Straße 3, A-4020 Linz (Austria); Clemens, Helmut; Primig, Sophie [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria)

    2016-05-10

    A change in the mechanical properties of a carbide-free bainitic steel was observed during prolonged holding at austempering temperature after termination of the bainitic transformation. To determine the origin of the property change, the microstructure was investigated by correlative electron microscopy. Although the retained austenite content remains the same during prolonged holding, its morphology changes from thin films separating the individual bainitic sub-units to a more globular structure. Since films of austenite contain a higher C concentration, the blocky austenite becomes gradually enriched in C during this morphology change. The more homogeneous distribution of the C after prolonged austempering leads to higher deformability as a result of a more pronounced TRIP effect. - Highlights: • Higher deformability after prolonged austempering of carbide-free bainite. • Microstructure-property relationship revealed by correlative electron microscopy. • Change in austenite morphology. • Spherodization of film austenite; C enrichment & homogenization of blocky austenite.

  18. Retained austenite thermal stability in a nanostructured bainitic steel

    International Nuclear Information System (INIS)

    Avishan, Behzad; Garcia-Mateo, Carlos; Yazdani, Sasan; Caballero, Francisca G.

    2013-01-01

    The unique microstructure of nanostructured bainite consists of very slender bainitic ferrite plates and high carbon retained austenite films. As a consequence, the reported properties are opening a wide range of different commercial uses. However, bainitic transformation follows the T 0 criteria, i.e. the incomplete reaction phenomena, which means that the microstructure is not thermodynamically stable because the bainitic transformation stops well before austenite reaches an equilibrium carbon level. This article aims to study the different microstructural changes taking place when nanostructured bainite is destabilized by austempering for times well in excess of that strictly necessary to end the transformation. Results indicate that while bainitic ferrite seems unaware of the extended heat treatment, retained austenite exhibits a more receptive behavior to it. - Highlights: • Nanostructured bainitic steel is not thermodynamically stable. • Extensive austempering in these microstructures has not been reported before. • Precipitation of cementite particles is unavoidable at longer austempering times. • TEM, FEG-SEM and XRD analysis were used for microstructural characterization

  19. Retained austenite thermal stability in a nanostructured bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Avishan, Behzad, E-mail: b_avishan@sut.ac.ir [Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Garcia-Mateo, Carlos, E-mail: cgm@cenim.csic.es [Department of Physical Metallurgy, National Centre for Metallurgical Research (CENIM-CSIC), MATERALIA Research Group, Avda. Gregorio del Amo, 8, 28040, Madrid (Spain); Yazdani, Sasan, E-mail: yazdani@sut.ac.ir [Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Caballero, Francisca G., E-mail: fgc@cenim.csic.es [Department of Physical Metallurgy, National Centre for Metallurgical Research (CENIM-CSIC), MATERALIA Research Group, Avda. Gregorio del Amo, 8, 28040, Madrid (Spain)

    2013-07-15

    The unique microstructure of nanostructured bainite consists of very slender bainitic ferrite plates and high carbon retained austenite films. As a consequence, the reported properties are opening a wide range of different commercial uses. However, bainitic transformation follows the T{sub 0} criteria, i.e. the incomplete reaction phenomena, which means that the microstructure is not thermodynamically stable because the bainitic transformation stops well before austenite reaches an equilibrium carbon level. This article aims to study the different microstructural changes taking place when nanostructured bainite is destabilized by austempering for times well in excess of that strictly necessary to end the transformation. Results indicate that while bainitic ferrite seems unaware of the extended heat treatment, retained austenite exhibits a more receptive behavior to it. - Highlights: • Nanostructured bainitic steel is not thermodynamically stable. • Extensive austempering in these microstructures has not been reported before. • Precipitation of cementite particles is unavoidable at longer austempering times. • TEM, FEG-SEM and XRD analysis were used for microstructural characterization.

  20. Determination of delta ferrite volumetric fraction in austenitic stainless steel

    International Nuclear Information System (INIS)

    Almeida Macedo, W.A. de.

    1983-01-01

    Measurements of delta ferrite volumetric fraction in AISI 304 austenitic stainless steels were done by X-ray diffraction, quantitative metallography (point count) and by means of one specific commercial apparatus whose operational principle is magnetic-inductive: The Ferrite Content Meter 1053 / Institut Dr. Foerster. The results obtained were comparated with point count, the reference method. It was also investigated in these measurements the influence of the martensite induced by mechanical deformation. Determinations by X-ray diffraction, by the ratio between integrated intensities of the ferrite (211) and austenite (311) lines, are in excelent agreement with those taken by point count. One correction curve for the lectures of the commercial equipment in focus was obtained, for the range between zero and 20% of delta ferrite in 18/8 stainless steels. It is demonstrated that, depending on the employed measurement method and surface finishing of the material to be analysed, the presence of martensite produced by mechanical deformation of the austenitic matrix is one problem to be considered. (Author) [pt

  1. Low ductility creep failure in austenitic weld metals

    International Nuclear Information System (INIS)

    Thomas, R.G.

    Creep tests have been carried out for times of up to approx. 22,000 hrs on three austenitic weld metals of nominal composition 17Cr-8Ni-2Mo, 19Cr-12Ni-3Mo+Nb and 17Cr-10Ni-2Mo. The two former deposits were designed to produce delta-ferrite contents in the range 3-9% while the latter was designed to be fully austenitic. The common feature of all three weld metals was that they all gave very low strains at failure, typically approx. 1%. The microstructures of the failed creep specimens have been studied using optical and electron microscopy and the precipitate structures related to the occurrence of low creep strains. Creep deformation and fracture mechanisms in austenitic materials in general have been reviewed and this has been used as a basis for discussion of the observations of the present work. Finally, some of the factors that can be controlled to improve long-term creep ductility have been appraised

  2. Study of irradiation damage structures in austenitic stainless steels

    International Nuclear Information System (INIS)

    Hamada, Shozo

    1997-08-01

    The irradiation damage microstructures in austenitic stainless steels, which have been proposed to be a candidate of structural materials of a fusion reactor, under ions and neutrons irradiation have been studied. In ion irradiation experiments, cross-sectional observation of the depth distribution of damage formed due to ion irradiation became available. Comparison and discussion between experimental results with TEM and the calculated ones in the depth profiles of irradiation damage microstructures. Further, dual-phase stainless steels, consisted of ferritic/austenitic phases, showed irradiation-induced/enhanced precipitation during ion irradiation. High Flux Isotope Reactor with high neutron fluxes was employed in neutron-irradiation experiments. Swelling of 316 steel showed irradiation temperature dependence and this had strong correlation with phase instability under heavy damage level. Swelling resistance of Ti-modified austenitic stainless steel, which has good swelling resistance, decreased during high damage level. This might be caused by the instability of Ti-carbide particles. The preparation method to reduce higher radioactivity of neutron-irradiated TEM specimen was developed. (author). 176 refs

  3. Study of irradiation damage structures in austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Shozo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-08-01

    The irradiation damage microstructures in austenitic stainless steels, which have been proposed to be a candidate of structural materials of a fusion reactor, under ions and neutrons irradiation have been studied. In ion irradiation experiments, cross-sectional observation of the depth distribution of damage formed due to ion irradiation became available. Comparison and discussion between experimental results with TEM and the calculated ones in the depth profiles of irradiation damage microstructures. Further, dual-phase stainless steels, consisted of ferritic/austenitic phases, showed irradiation-induced/enhanced precipitation during ion irradiation. High Flux Isotope Reactor with high neutron fluxes was employed in neutron-irradiation experiments. Swelling of 316 steel showed irradiation temperature dependence and this had strong correlation with phase instability under heavy damage level. Swelling resistance of Ti-modified austenitic stainless steel, which has good swelling resistance, decreased during high damage level. This might be caused by the instability of Ti-carbide particles. The preparation method to reduce higher radioactivity of neutron-irradiated TEM specimen was developed. (author). 176 refs.

  4. Determination of delta ferrite volumetric fraction in austenitic stainless steels

    International Nuclear Information System (INIS)

    Almeida Macedo, W.A. de.

    1983-01-01

    Measurements of delta ferrite volumetric fraction in AISI 304 austenitic stainless steels were done by X-ray difraction, quantitative metallography (point count) and by means of one specific commercial apparatus whose operational principle is magnetic-inductive: The Ferrite Content Meter 1053 / Institut Dr. Forster. The results obtained were comparated with point count, the reference method. It was also investigated in these measurements the influence of the martensite induced by mechanical deformation. Determinations by X-ray diffraction, by the ratio between integrated intensities of the ferrite (211) and austenite (311) lines, are in excelent agreement with those taken by point count. One correction curve for the lectures of the commercial equipment in focus was obtained, for the range between zero and 20% of delta ferrite in 18/8 stainless steels. It is demonstrated that, depending on the employed measurement method and surface finishing of the material to be analysed, the presence of martensite produced by mechanical deformation of the austenitic matrix is one problem to be considered. (Author) [pt

  5. Cryogenic properties of austenitic stainless steels for superconducting magnet

    International Nuclear Information System (INIS)

    Nohara, K.; Kato, T.; Ono, Y.; Sasaki, T.; Suzuki, S.

    1983-01-01

    The present study examines the magnetic and mechanical properties of a variety of austenitic stainless steels and high maganese steel which are candidate materials for the superconducting magnet attached to high energy particle accelerators. The effect of a specified heat treatment for the precipitation of intermetallic compound Nb3Sn to be used as superconductor on ductility and toughness are especially examined. It is found that nitrogen-strengthened austenitic stainless steels have high strength and good ductility and toughness, but that these are destroyed by precipitation treatment. The poor ductility and toughness after precipitation are caused by a weakening of the grain boundaries due to the agglomerated chromium carbide percipitates. The addition of vanadium suppresses this effect by refining the grain. Austenitic steels are found to have low magnetic permeabilities and Neel temperatures, and show serrated flow in traction test due to strained martensitic transformation. High manganese steel has extremely low permeability, a Neel temperature about room temperature, and has a serrated flow in traction test due to adiabatic deformation at liquid helium temperature

  6. Phase stability of high manganese austenitic steels for cryogenic applications

    CERN Document Server

    Couturier, K

    2000-01-01

    The aim of this work is to study the austenitic stability against a' martensitic transformation of three non-magnetic austenitic steels : a new stainless steel X2CrMnNiMoN 19-12-11-1 grade, a traditional X8CrMnNiN 19-11-6 grade and a high manganese X8MnCrNi 28-7-1 grade. Measurements of relative magnetic susceptibility at room temperature are performed on strained tensile specimens at 4.2 K. A special extensometer for high precision strain measurements at low temperature has been developed at CERN to test specimens up to various levels of plastic strain. Moreover, the high precision strain recording of the extensometer enables a detailed study of the serrated yield phenomena associated with 4.2 K tensile testing and their influence on the evolution of magnetic susceptibility. The results show that high Mn contents increase the stability of the austenitic structure against a' martensitic transformation, while keeping high strength at cryogenic temperature. Moreover, proper elaboration through primary and possi...

  7. Austenite Grain Growth Behavior of AISI 4140 Alloy Steel

    Directory of Open Access Journals (Sweden)

    Lin Wang

    2013-01-01

    Full Text Available AISI 4140 alloy steel is widely applied in the manufacture of various parts such as gears, rams, and spindles due to its good performance of strength, toughness, and wear resistance. The former researches most focused on its deformation and recrystallization behaviors under high temperature. However, the evolution laws of austenite grain growth were rarely studied. This behavior also plays an important role in the mechanical properties of parts made of this steel. In this study, samples are heated to a certain temperature of 1073 K, 1173 K, 1273 K, and 1373 K at a heating rate of 5 K per second and hold for different times of 0 s, 120 s, 240 s, 360 s, and 480 s before being quenched with water. The experimental results suggest that the austenite grains enlarge with increasing temperature and holding time. A mathematical model and an application developed in Matlab environment are established on the basis of previous works and experimental results to predict austenite grains size in hot deformation processes. The predicted results are in good agreement with experimental results which indicates that the model and the application are reliable.

  8. Change of austenite state before martensite transformation and Msub(el) temperature

    International Nuclear Information System (INIS)

    Sarrak, V.I.; Suvorova, S.O.

    1978-01-01

    The N31 alloy austenite behaviour in the premartensite temperature range is investigated. To study the austenite state the method of resistance to microplastic deformation sensitive to the structural state of metals is used. The resistance to microplastic deformation was determined by amplitude dependence of internal friction. The Msub(el) temperature is found at which the change of austenite state is observed due to the appearence of elastic nuclei of martensite below the Msub(el) temperature

  9. Demonstrating the Effect of Precipitation on the Mechanical Stability of Fine-Grained Austenite in Reversion-Treated 301LN Stainless Steel

    Directory of Open Access Journals (Sweden)

    Antti Järvenpää

    2017-09-01

    Full Text Available According to recent investigations, a huge difference exists in the mechanical stability of austenite between the grain-refined structure states obtained in reversion annealing at 800–700 °C or at 900 °C, in a 301LN type austenitic stainless steel. Precipitation of chromium nitride occurring at these lower temperatures has been argued to be the factor reducing the stability. To prove this argument, a fine-grained, very stable austenitic structure was created at 900 °C in 1 s, and subsequently annealed at lower temperatures between 850 and 750 °C, up to 1000 s. It was found that the subsequent annealing at 750 and 800 °C resulted in prominent gradual decrease of the mechanical stability under tensile straining, detectable after 10 s annealing duration and continued until 1000 s. Only minimal grain growth occurred, which decreased the stability very marginally. The degree of the stability drop followed the predicted kinetics of the Cr2N precipitation with regards as its dependence on annealing duration and temperature. Further, the tensile yield strength of the fine-grained structure increased slightly due to the annealing. The presence of nano-sized Cr2N particles was verified after 1000 s holding at 750 °C. These observations and predictions yield firm evidence for the imperative contribution of precipitation to the highly reduced mechanical stability of grain-refined austenite in this steel.

  10. Transformation of austenite to duplex austenite-ferrite assembly in annealed stainless steel 316L consolidated by laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Saeidi, K.; Gao, X. [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm (Sweden); Lofaj, F. [Institute of Materials Research of the Slovak Academy of Sciences, Watsonova 47, Košice (Slovakia); Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, 916 24 Trnava (Slovakia); Kvetková, L. [Institute of Materials Research of the Slovak Academy of Sciences, Watsonova 47, Košice (Slovakia); Shen, Z.J. [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm (Sweden)

    2015-06-05

    Highlights: • Mechanical properties, phase and microstructure stability of laser melted steel was studied. • Duplex austenite-ferrite assembly with improved mechanical properties was formed. • Dissolution of Mo in the steel matrix resulted in ferrite stabilization and stress relief. • Enhanced mechanical properties were achieved compared to conventionally casted and annealed steel. - Abstract: Laser melting (LM), with a focused Nd:YAG laser beam, was used to form solid bodies from 316L austenite stainless steel powder and the laser melted samples were heat treated at various temperatures. The phase changes in heat treated samples were characterized using X-ray diffraction (XRD). Samples heat treated at 800 °C and 900 °C remained single austenite while in samples heat treated at 1100 °C and 1400 °C a dual austenite-ferrite phase assembly was formed. The ferrite formation was further verified by electron back scattering diffraction (EBSD) and selective area diffraction (SAD). Microstructural changes were studied by scanning and transmission electron microscopy (SEM, TEM). In samples heat treated up to 900 °C, coalescence of the cellular-sub grains was noticed, whereas in sample heat treated at and above 1100 °C the formation of ferrite phase was observed. The correlation between the microstructure/phase assembly and the measured strength/microhardness were investigated, which indicated that the tensile strength of the laser melted material was significantly higher than that of the conventional 316L steel even after heat treatment whereas caution has to be taken when laser melted material will be exposed to an application temperature above 900 °C.

  11. Reformed austenite transformation during fatigue crack propagation of 13%Cr-4%Ni stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Thibault, Denis, E-mail: thibault.denis@ireq.ca [Institut de recherche d' Hydro-Quebec (IREQ), 1800, boul. Lionel-Boulet, Varennes, Quebec, J3X 1S1 (Canada); Bocher, Philippe, E-mail: philippe.bocher@etsmtl.ca [Ecole de technologie superieure, 1100, rue Notre-Dame Ouest, Montreal, Quebec, H3C 1K3 (Canada); Thomas, Marc, E-mail: marc.thomas@etsmtl.ca [Ecole de technologie superieure, 1100, rue Notre-Dame Ouest, Montreal, Quebec, H3C 1K3 (Canada); Lanteigne, Jacques, E-mail: lanteigne.jacques@ireq.ca [Institut de recherche d' Hydro-Quebec (IREQ), 1800, boul. Lionel-Boulet, Varennes, Quebec, J3X 1S1 (Canada); Hovington, Pierre, E-mail: hovington.pierre@ireq.ca [Institut de recherche d' Hydro-Quebec (IREQ), 1800, boul. Lionel-Boulet, Varennes, Quebec, J3X 1S1 (Canada); Robichaud, Patrice, E-mail: patrice.robichaud@riotinto.com [Centre de recherche et de developpement Arvida (CRDA), 1955, boul. Mellon, Jonquiere, Quebec, G7S 4K8 (Canada)

    2011-08-15

    Highlights: {yields} Reformed austenite in 13%Cr-4%Ni stainless steel transforms during fatigue crack growth. {yields} Low cycle fatigue tests showed that this transformation to martensite is gradual. {yields} XRD spectrums obtained on the fracture surface and have been correlated to LCF results. - Abstract: In the as-quenched state, 13%Cr-4%Ni martensitic stainless steels are essentially 100% martensitic. However, a certain amount of austenite is formed during the tempering of this alloy. This reformed austenite is thermally stable at room temperature but can transform to martensite under stress. This transformation is known to happen during impact testing but it has never been established if it occurs during fatigue crack propagation. This study presents the results of X-ray diffraction measurements of reformed austenite before and after crack growth testing. It has been found that reformed austenite does transform to martensite at the crack tip and that this transformation occurs even at a low stress intensity factor. Low-cycle fatigue tests were conducted to verify austenite transformation under cyclic straining. It was found that reformed austenite transforms only partially during the first strain reversal but that essentially all austenite has disappeared after 100 cycles. The relation between austenite transformation under low-cycle fatigue and its transformation during crack growth is also discussed.

  12. Use of overlapped reflection for determining the retained austenite by X-ray diffraction

    International Nuclear Information System (INIS)

    Garin, J.L.; Gonzalez, C.F.

    1988-01-01

    Retainec austenite in high-carbon steels has been determined by means of new computation techniques applied to the processing of X-ray diffraction data. Instead of using the traditional procedure based on the weak (200) reflections of martensite and austenite, intensity measurements of the overlapped (110) peak of martensite and (111) peak of austenite were performed. The separation of the peaks was based on a Pearson VII function, which is capable of describing all diffraction profiles. The accuracy of integrated intensities was then improved with the beneficial effects of higher precision in the calculation of the amount of retained austenite. (author) [pt

  13. Reformed austenite transformation during fatigue crack propagation of 13%Cr-4%Ni stainless steel

    International Nuclear Information System (INIS)

    Thibault, Denis; Bocher, Philippe; Thomas, Marc; Lanteigne, Jacques; Hovington, Pierre; Robichaud, Patrice

    2011-01-01

    Highlights: → Reformed austenite in 13%Cr-4%Ni stainless steel transforms during fatigue crack growth. → Low cycle fatigue tests showed that this transformation to martensite is gradual. → XRD spectrums obtained on the fracture surface and have been correlated to LCF results. - Abstract: In the as-quenched state, 13%Cr-4%Ni martensitic stainless steels are essentially 100% martensitic. However, a certain amount of austenite is formed during the tempering of this alloy. This reformed austenite is thermally stable at room temperature but can transform to martensite under stress. This transformation is known to happen during impact testing but it has never been established if it occurs during fatigue crack propagation. This study presents the results of X-ray diffraction measurements of reformed austenite before and after crack growth testing. It has been found that reformed austenite does transform to martensite at the crack tip and that this transformation occurs even at a low stress intensity factor. Low-cycle fatigue tests were conducted to verify austenite transformation under cyclic straining. It was found that reformed austenite transforms only partially during the first strain reversal but that essentially all austenite has disappeared after 100 cycles. The relation between austenite transformation under low-cycle fatigue and its transformation during crack growth is also discussed.

  14. The sub-zero Celsius treatment of precipitation hardenable semi-austenitic stainless steel

    DEFF Research Database (Denmark)

    Villa, Matteo; Hansen, Mikkel Fougt; Somers, Marcel A. J.

    2015-01-01

    A precipitation hardenable semi-austenitic stainless steel AISI 632 grade was austenitized according to industrial specifications and thereafter subjected to isothermal treatment at sub-zero Celsius temperatures. During treatment, austenite transformed to martensite. The isothermal austenite-to-martensite...... treatment. Magnetometry showed that the additional thermal step in boiling nitrogen yields a minor increment of the fraction of martensite, but has a noteworthy accelerating effect on the transformation kinetics, which more pronounced when the isothermal holding is performed at a higher temperature. Data...... is interpreted in terms of instantaneous nucleation of martensite during cooling followed by time dependent growth during isothermal holding....

  15. Kinetics analysis of two-stage austenitization in supermartensitic stainless steel

    DEFF Research Database (Denmark)

    Nießen, Frank; Villa, Matteo; Hald, John

    2017-01-01

    The martensite-to-austenite transformation in X4CrNiMo16-5-1 supermartensitic stainless steel was followed in-situ during isochronal heating at 2, 6 and 18 K min−1 applying energy-dispersive synchrotron X-ray diffraction at the BESSY II facility. Austenitization occurred in two stages, separated...... that the austenitization kinetics is governed by Ni-diffusion and that slow transformation kinetics separating the two stages is caused by soft impingement in the martensite phase. Increasing the lath width in the kinetics model had a similar effect on the austenitization kinetics as increasing the heating-rate....

  16. Three-dimensional studies of intergranular carbides in austenitic stainless steel.

    Science.gov (United States)

    Ochi, Minoru; Kawano, Rika; Maeda, Takuya; Sato, Yukio; Teranishi, Ryo; Hara, Toru; Kikuchi, Masao; Kaneko, Kenji

    2017-04-01

    A large number of morphological studies of intergranular carbides in steels have always been carried out in two dimensions without considering their dispersion manners. In this article, focused ion beam serial-sectioning tomography was carried out to study the correlation among the grain boundary characteristics, the morphologies and the dispersions of intergranular carbides in 347 austenitic stainless steel. More than hundred intergranular carbides were characterized in three dimensions and finally classified into three different types, two types of carbides probably semi-coherent to one of the neighboring grains with plate-type morphology, and one type of carbides incoherent to both grains with rod-type morphology. In addition, the rod-type carbide was found as the largest number of carbides among three types. Since large numbers of defects, such as misfit dislocations, may be present at the grain boundaries, which can be ideal nucleation sites for intergranular rod-type carbide precipitation. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved.For permissions, please e-mail: journals.permissions@oup.com.

  17. Microstructural evolution of a 2.25Cr - 1 Mo steel during austenitization and temper: austenite grain growth, carbide precipitation sequence and effects on mechanical properties

    International Nuclear Information System (INIS)

    Depinoy, Sylvain

    2015-01-01

    This work aims at optimizing tensile and toughness properties of a 2.25Cr - 1Mo steel by controlling its microstructure through heat treatments. To this aim, phase transformations during austenitization, quenching and tempering have to be understood. Quantitative microstructural analyses were performed by means of SEM, TEM and XRD to characterize and model metallurgical evolution of the steel at each step of the heat treatment. The evolution of austenite during the austenitization stage, and its influence on the resulting as-quenched microstructure were thoroughly investigated. Austenite grain growth was modelled in order to understand its mechanisms, including the limited growth phenomenon observed at lower temperatures. The effect of austenitization conditions on further decomposition of austenite and on mechanical properties after quenching + tempering was experimentally determined. An optimal austenitization condition was selected and applied to study the tempering stage. Carbide precipitation was studied for various tempering temperatures and amounts of time. M3C carbides precipitate first, followed by M2C and M7C3; M23C6 are the equilibrium carbides. The influence of carbide precipitation on mechanical properties was studied. Tensile properties are closely linked to the tempering conditions in the range investigated, while impact toughness remains stable. (author) [fr

  18. Five-parameter crystallographic characteristics of the interfaces formed during ferrite to austenite transformation in a duplex stainless steel

    Science.gov (United States)

    Haghdadi, N.; Cizek, P.; Hodgson, P. D.; Tari, V.; Rohrer, G. S.; Beladi, H.

    2018-05-01

    The crystallography of interfaces in a duplex stainless steel having an equiaxed microstructure produced through the ferrite to austenite diffusive phase transformation has been studied. The five-parameter interface character distribution revealed a high anisotropy in habit planes for the austenite-ferrite and austenite-austenite interfaces for different lattice misorientations. The austenite and ferrite habit planes largely terminated on (1 1 1) and (1 1 0) planes, respectively, for the austenite-ferrite interfaces associated with Kurdjumov-Sachs (K-S) and Nishiyama-Wasserman (N-W) orientation relationships. This was mostly attributed to the crystallographic preference associated with the phase transformation. For the austenite-ferrite interfaces with orientation relationships which are neither K-S nor N-W, both austenite and ferrite habit planes had (1 1 1) orientations. Σ3 twin boundaries comprised the majority of austenite-austenite interfaces, mostly showing a pure twist character and terminating on (1 1 1) planes due to the minimum energy configuration. The second highest populated austenite-austenite boundary was Σ9, which tended to have grain boundary planes in the tilt zone due to the geometrical constraints. Furthermore, the intervariant crystallographic plane distribution associated with the K-S orientation relationship displayed a general tendency for the austenite habit planes to terminate with the (1 1 1) orientation, mainly due to the crystallographic preference associated with the phase transformation.

  19. Ductility, strength and hardness relation after prior incremental deformation (ratcheting) of austenitic steel

    International Nuclear Information System (INIS)

    Kussmaul, K.; Diem, H.K.; Wachter, O.

    1993-01-01

    Experimental investigations into the stress/strain behavior of the niobium stabilized austenitic material with the German notation X6 CrNiNb 18 10 proved that a limited incrementally applied prior deformation will reduce the total deformation capability only by the amount of the prior deformation. It could especially be determined on the little changes in the reduction of area that the basically ductile deformation behavior will not be changed by the type of the prior loading. There is a correlation between the amount of deformation and the increase in hardness. It is possible to correlate both the changes in hardness and the material properties. In the case of low cycle fatigue tests with alternating temperature an incremental increase in total strain (ratcheting) was noted to depend on the strain range applied

  20. Phase transformations of under-cooled austenite of new bainitic materials for scissors crossovers

    Directory of Open Access Journals (Sweden)

    J. Pacyna

    2008-07-01

    Full Text Available The paper contains CCT diagrams presenting a transformation kinetics of under-cooled austenite from two new bainitic cast steels which the scissors crossovers for heavy-duty railway tracks (min. 230kN/axle at the speed up to 200 km/h are made of. The cooling ranges of UIC60 type railway tracks plot on the CCT diagrams indicate that there is a 100% bainitic structure in the scissors crossovers made of these cast steels as well, but mainly it would be a favourable for cracking resistance lower bainite. The achievable hardness of scissors crossovers made of new materials make it possible to use high–temperature tempering resulting in obtaining of good crack resistance. However one should provide a good quality of castings made.

  1. Computer simulations of austenite decomposition of microalloyed 700 MPa steel during cooling

    Science.gov (United States)

    Pohjonen, Aarne; Paananen, Joni; Mourujärvi, Juho; Manninen, Timo; Larkiola, Jari; Porter, David

    2018-05-01

    We present computer simulations of austenite decomposition to ferrite and bainite during cooling. The phase transformation model is based on Johnson-Mehl-Avrami-Kolmogorov type equations. The model is parameterized by numerical fitting to continuous cooling data obtained with Gleeble thermo-mechanical simulator and it can be used for calculation of the transformation behavior occurring during cooling along any cooling path. The phase transformation model has been coupled with heat conduction simulations. The model includes separate parameters to account for the incubation stage and for the kinetics after the transformation has started. The incubation time is calculated with inversion of the CCT transformation start time. For heat conduction simulations we employed our own parallelized 2-dimensional finite difference code. In addition, the transformation model was also implemented as a subroutine in commercial finite-element software Abaqus which allows for the use of the model in various engineering applications.

  2. Perspective on present and future alloy development efforts on austenitic stainless steels for fusion application

    International Nuclear Information System (INIS)

    Maziasz, P.J.

    1984-01-01

    The purpose of this paper is to address important questions concerning how to effect further alloy development of austenitic stainless steels for resistance, and to what extent the behavior of other properties under irradiation, such as strength/embrittlement, fatigue/irradiation creep, corrosion (under irradiation), and radiation-induced activation must be influenced. To summarize current understanding, helium has been found to have major effects on swelling and embrittlement, but several metallurgical avenues are available for significant improvement relative to type 316 stainless steel. Studies on fatigue and irradiation creep, particularly including helium effects, are preliminary but have yet to reveal engineering problems requiring additional alloy development remedies. The effects of irradiation on corrosion behavior are unknown, but higher alloy nickel contents make thermal corrosion in lithium worse. 67 refs

  3. Investigation on Mechanical Properties of Austenitic Stainless-Steel Pipes Welded by TIG Method

    Directory of Open Access Journals (Sweden)

    Mushtaq Albdiry

    2017-11-01

    Full Text Available This paper investigates the mechanical properties of austenitic stainless steel (type 204 pipes welded by Tungsten Inert Gas (TIG welding process. Testing of hardness (HRC, tensile strength and bending strength was performed for the steel pipes welded at two different welding temperatures (700 °C and 900 °C with and without using the weld filler wire. The microstructure of the welding regions was examined by using an optical microscopy. The properties showed that the steel pipes welded by 900 °C with using the weld filler obtained the highest tensile strength and bending strength versus these welded by 700 °C without the use of the weld filler. This is attributed to the weld filler heated and melt at sufficient temperature (900 °C and compensate losing in the Ni metal occurred in the base steel metal during the welding process.

  4. Methods allowing in-situ aging evaluation of austenitic-ferritic molded steels

    International Nuclear Information System (INIS)

    Paris, D.; Massoud, J.P.; Chicois, J.; Borelly, R.; Shoji, T.; Yi, Y.

    1997-01-01

    The molded elbows of the primary coolant circuit of the PWR type reactors are made with austenitic-ferritic stainless molded steel which is embrittled at the service temperature. To complement with the control programs lead from bench-scale experiments, it is wished to dispose to methods allowing to verify directly on the component that the estimated aging level is effectively reached. The development of non-destructive methods comes up against difficulties: the obtained signals are generally of weak amplitude; they have to be relevant of aging; the measures having not be carrying out on the component at the initial state, we do not dispose of a reference for each component. These difficulties are illustrated by the development of three methods: the electromagnetic sorting, the ferromagnetic noise and an electrochemical method. Two methods seem to be promising: the thermoelectric power and the small angle neutron scattering. (O.M.)

  5. Relative merits of duplex and austenitic stainless steels for applications in the oil and gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Elisabeth; Wegrelius, Lena; Pettersson, Rachel [Outokumpu Stainless AB, Avesta (Sweden)

    2012-07-01

    The broad range of available stainless steel grades means that these materials can fulfil a wide variety of requirements within the oil and gas industry. The duplex grades have the advantage of higher strength than standard austenitic grades, while the superaustenitic grades provide a cost-effective alternative to nickel-base alloys in a number of cases. The paper presents the results of various types of laboratory testing to rank the grades in terms of resistance to pitting, crevice corrosion and stress corrosion cracking. Results from field testing in actual or simulated service conditions are discussed and a number of application examples, including process piping flexible, heat exchangers and topside equipment are presented. (author)

  6. Mechanical testing of austenitic steel welded joints. Joint final report - Vol. 2

    International Nuclear Information System (INIS)

    Boerman, D.J.; Krischer, W.

    1990-01-01

    In the field of material properties and structural behaviour of LMFBR reactor components under normal operation and accident conditions, the Commission of the European Communities has promoted an experimental study on the mechanical properties of welded austenitic steel type AISI 316L. The study was launched in the frame of the Shared Cost Action (SCA) programme 1985-1987 on reactor safety. The research was performed in four European laboratories and coordinated by JRC-Ispra. Five different welding methods have been examined. The manufacture and characterization of the welds has been described in a separate report. The present report gives the results of four different mechanical tests carried out on the weld material. The comparison of results proved that, at the present state of development, the vacuum electron beam method seems to have clear advantages as compared with the other methods investigated

  7. Manufacture and characterization of austenitic steel welded joints. Joint final report - Vol. 1

    International Nuclear Information System (INIS)

    Simoni, O.; Boerman, D.J.; Krischer, W.

    1990-07-01

    This report describes the results of the first phase of the project, i.e. manufacturing and characterization of welded austenitic steel and the test matrix adopted to test the mechanical resistance of the weldings. Five different welding methods have been produced and characterized in comparison to the parent material. The reference material was an AISI 316L type steel close to the French Superphenix composition. The results of the mechanical testing and the relative comparison of the five welding methods are described in a second volume. As a general conclusion, the vacuum electron-beam welding proved to have better properties than the other weld methods and to attain in most cases the properties of the parent material

  8. Fundamental flow and fracture analysis of prime candidate alloy (PCA) for path a (austenitics)

    International Nuclear Information System (INIS)

    Lucas, G.E.; Jayakumar, M.; Maziasz, P.J.

    1982-01-01

    Room temperature microhardness tests have been performed on samples of Prime Candidate Alloy (PCA) for the austenitics (Path A) subjected to various thermomechanical treatments (TMT). The TMTs have effected various microstructures, which have been well characterized by optical metallography and TEM. For comparison, microhardness tests have been performed on samples of N-lot, DO heat and MFE 316 stainless steel with similar TMTs. The results indicate that the TMTs investigated can significantly alter the microhardness of the PCA in a manner which is consistent with microstructural changes. Moreover, while PCA had the lowest microhardness of the four alloys types after cold working, its microhardness increased while the others decreased to comparable values after aging for 2 h at 750 0 C

  9. Tool Wear Analysis due to Machining In Super Austenitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    Polishetty Ashwin

    2017-01-01

    Full Text Available This paper presents tool wear study when a machinability test was applied using milling on Super Austenitic Stainless Steel AL6XN alloy. Eight milling trials were performed under two cutting speeds, 100 m/min and 150 m/min, combined with two feed rates at 0.1mm/tooth and 0.15 mm/tooth and two depth of cuts at 2 mm and 3 mm. An Alicona 3D optical surface profilometer was used to scan cutting inserts flank and rake face areas for wear. Readings such as maximum and minimum deviations were extracted and used to analyse the outcomes. Results showed various types of wear were generated on the tool rake and flank faces. The common formed wear was the crater wear. The formation of the build-up edge was observed on the rake face of the cutting tool.

  10. Swelling behaviors in a fuel assembly for the wrapping wire and duct made of modified 316 austenitic stainless steel

    International Nuclear Information System (INIS)

    Yamagata, Ichiro; Akasaka, Naoaki

    2010-01-01

    Swelling behaviors in the wrapping wire and duct made of modified type 316 austenitic stainless steel were investigated in a fuel assembly irradiated in a fast breeder reactor. The temperature dependence of volumetric swelling was measured in the wrapping wire and the duct, and the peak temperatures of swelling were evaluated. The void distribution in the material was measured by microstructure observation with electron microscopy, and it was found that the voids prefentially grew near the surface. This phenomenon seemed to be caused by a surface effect on the neutron-irradiated materials. (author)

  11. Surface modification of austenitic steel by various glow-discharge nitriding methods

    Directory of Open Access Journals (Sweden)

    Tomasz Borowski

    2015-09-01

    Full Text Available Recent years have seen intensive research on modifying glow-discharge nitriding processes. One of the most commonly used glow-discharge methods includes cathodic potential nitriding (conventional method, and active screen plasma nitriding. Each of these methods has a number of advantages. One very important, common feature of these techniques is full control of the microstructure, chemical and phase composition, thickness and the surface topography of the layers formed. Another advantage includes the possibility of nitriding such materials as: austenitic steels or nickel alloys, i.e. metallic materials which do not diffuse nitrogen as effectively as ferritic or martensitic steels. However, these methods have some disadvantages as well. In the case of conventional plasma nitriding, engineers have to deal with the edge effect, which makes it difficult to use this method for complexly shaped components. In turn, in the case of active screen plasma nitriding, the problem disappears. A uniform, smooth layer forms, but is thinner, softer and is not as resistant to friction compared to layers formed using the conventional method. Research is also underway to combine these methods, i.e. use an active screen in conventional plasma nitriding at cathodic potential. However, there is a lack of comprehensive data presenting a comparison between these three nitriding processes and the impact of pulsating current on the formation of the microstructure and functional properties of austenitic steel surfaces. The article presents a characterisation of nitrided layers produced on austenitic X2CrNiMo17-12-2 (AISI 316L stainless steel in the course of glow-discharge nitriding at cathodic potential, at plasma potential and at cathodic potential incorporating an active screen. All processes were carried out at 440 °C under DC glow-discharge conditions and in 100 kHz frequency pulsating current. The layers were examined in terms of their microstructure, phase and

  12. Optimization and verification of ultrasonic testability of acoustically anisotropic materials on austenitic and dissimilar welds; Optimierung und Nachweis der Ultraschallpruefbarkeit von akustisch anisotropen Werkstoffen an austenitischen Schweiss- und Mischverbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Pudovikov, Sergey

    2013-11-21

    Austenitic and dissimilar welds with respect to the ultrasonic testing (UT) methods are considered normally as ''difficult-to-test'' objects. During the solidification process in such welds a distinct dendrite microstructure evolves, which is coarse-grained, anisotropic and inhomogeneous simultaneously. The reliability of available ultrasonic methods on austenitic welds depends significantly on the selected UT-parameters as well as on the inspection personnel experience. In the present dissertation, an ultrasonic testing method was developed, which allows the flaw detection and evaluation in acoustically anisotropic inhomogeneous materials, especially in austenitic and dissimilar welds with a quantitative statement to the defect size, type, and location. The principle of synthetic focusing with taking into account the material anisotropy and inhomogeneity along with two- and three-dimensional visualization provides a reliable and quantitative assessment of the inspection results in acoustically anisotropic inhomogeneous test objects. Among others, an iterative algorithm for the determination of unknown elastic properties of inhomogeneous anisotropic materials has been developed. It allows practical application of the developed UT method, since the anisotropy of most of austenitic and dissimilar welds (especially of hand-welded joints) in practice is usually unknown. The functionality of the developed inspection technique has been validated by many experiments on welded austenitic specimens having artificial and natural defects. For the practical application of the new ultrasonic technique different testing strategies are proposed, which can be used depending on the current inspection task.

  13. Determination of local carbon content in austenite during intercritical annealing of dual phase steels by PEELS analysis

    International Nuclear Information System (INIS)

    Garcia-Junceda, A.; Caballero, F.G.; Capdevila, C.; Garcia de Andres, C.

    2007-01-01

    Parallel electron energy loss spectroscopy has allowed to analyse and quantify local variations in the carbon concentration of austenite islands transformed during the intercritical annealing treatment of commercial dual-phase steels. These changes in the carbon content of different austenite regions are responsible for the different volume fractions of tempered martensite, martensite and retained austenite obtained after intercritical annealing and overaging treatment. This technique reveals how carbon distribution in austenite evolves as the transformation process advances

  14. Model for the interaction between interface migration and carbon diffusion during annealing of martensite-austenite microstructures in steels

    International Nuclear Information System (INIS)

    Santofimia, M.J.; Zhao, L.; Sietsma, J.

    2008-01-01

    The interaction between carbon partitioning from martensite to austenite and interface migration during annealing of martensite-austenite microstructures is modeled, assuming the same chemical potential of carbon in martensite and austenite at the interface and allowing the motion of the phase interface when a free-energy difference occurs. The simulations show that the motion of the martensite-austenite interface can be significant and can takes place in either direction

  15. The mechanical stability of retained austenite in low-alloyed TRIP steel under shear loading

    Energy Technology Data Exchange (ETDEWEB)

    Blondé, R., E-mail: r.j.p.blonde@tudelft.nl [Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Materials Innovation Institute, Mekelweg 2, 2628 CD Delft (Netherlands); Jimenez-Melero, E., E-mail: enrique.jimenez-melero@manchester.ac.uk [Dalton Cumbrian Facility, The University of Manchester, Westlakes Science and Technology Park, Moor Row, Cumbria CA24 3HA (United Kingdom); Zhao, L., E-mail: lie.zhao@tudelft.nl [Materials Innovation Institute, Mekelweg 2, 2628 CD Delft (Netherlands); Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands); Schell, N., E-mail: norbert.schell@hzg.de [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max Planck Strasse 1, 21502 Geesthacht (Germany); Brück, E., E-mail: e.h.bruck@tudelft.nl [Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Zwaag, S. van der, E-mail: s.vanderzwaag@tudelft.nl [Novel Aerospace Materials Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft (Netherlands); Dijk, N.H. van, E-mail: n.h.vandijk@tudelft.nl [Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)

    2014-01-31

    The microstructure evolution during shear loading of a low-alloyed TRIP steel with different amounts of the metastable austenite phase and its equivalent DP grade has been studied by in-situ high-energy X-ray diffraction. A detailed powder diffraction analysis has been performed to probe the austenite-to-martensite transformation by characterizing simultaneously the evolution of the austenite phase fraction and its carbon concentration, the load partitioning between the austenite and the ferritic matrix and the texture evolution of the constituent phases. Our results show that for shear deformation the TRIP effect extends over a significantly wider deformation range than for simple uniaxial loading. A clear increase in average carbon content during the mechanically-induced transformation indicates that austenite grains with a low carbon concentration are least stable during shear loading. The observed texture evolution indicates that under shear loading the orientation dependence of the austenite stability is relatively weak, while it has previously been found that under tensile load the {110}〈001〉 component transforms preferentially. The mechanical stability of retained austenite in TRIP steel is found to be a complex interplay between the interstitial carbon concentration in the austenite, the grain orientation and the load partitioning.

  16. Discontinuous precipitation in a nickel-free high nitrogen austenitic stainless steel on solution nitriding

    Science.gov (United States)

    Mohammadzadeh, Roghayeh; Akbari, Alireza; Grumsen, Flemming B.; Somers, Marcel A. J.

    2017-10-01

    Chromium-rich nitride precipitates in production of nickel-free austenitic stainless steel plates via pressurised solution nitriding of Fe-22.7Cr-2.4Mo ferritic stainless steel at 1473 K (1200 °C) under a nitrogen gas atmosphere was investigated. The microstructure, chemical and phase composition, morphology and crystallographic orientation between the resulted austenite and precipitates were investigated using optical microscopy, X-ray Diffraction (XRD), Scanning and Transmission Electron Microscopy (TEM) and Electron Back Scatter Diffraction (EBSD). On prolonged nitriding, Chromium-rich nitride precipitates were formed firstly close to the surface and later throughout the sample with austenitic structure. Chromium-rich nitride precipitates with a rod or strip-like morphology was developed by a discontinuous cellular precipitation mechanism. STEM-EDS analysis demonstrated partitioning of metallic elements between austenite and nitrides, with chromium contents of about 80 wt.% in the precipitates. XRD analysis indicated that the Chromium-rich nitride precipitates are hexagonal (Cr, Mo)2N. Based on the TEM studies, (Cr, Mo)2N precipitates presented a (1 1 1)γ//(0 0 2)(Cr, Mo)2N, ?γ//?(Cr, Mo)2N orientation relationship with respect to the austenite matrix. EBSD studies revealed that the austenite in the regions that have transformed into austenite and (Cr, Mo)2N have no orientation relation to the untransformed austenite.

  17. Extended X-ray absorption fine structure investigation of nitrogen stabilized expanded austenite

    DEFF Research Database (Denmark)

    Oddershede, Jette; Christiansen, Thomas; Ståhl, Kenny

    2010-01-01

    As-delivered austenitic stainless steel and nitrogen stabilized expanded austenite, both fully nitrided and denitrided (in H2), were investigated with Cr, Fe and Ni extended X-ray absorption fine structure. The data shows pronounced short-range ordering of Cr and N. For the denitrided specimen...

  18. Strain hardening of cold-rolled lean-alloyed metastable ferritic-austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Papula, Suvi [Aalto University School of Engineering, Department of Mechanical Engineering, P.O. Box 14200, FI-00076 Aalto (Finland); Anttila, Severi [Centre for Advanced Steels Research, University of Oulu, P.O. Box 4200, 90014 Oulu (Finland); Talonen, Juho [Outokumpu Oyj, P.O. Box 245, FI-00181 Helsinki (Finland); Sarikka, Teemu; Virkkunen, Iikka; Hänninen, Hannu [Aalto University School of Engineering, Department of Mechanical Engineering, P.O. Box 14200, FI-00076 Aalto (Finland)

    2016-11-20

    Mechanical properties and strain hardening of two pilot-scale lean-alloyed ferritic-austenitic stainless steels having metastable austenite phase, present at 0.50 and 0.30 volume fractions, have been studied by means of tensile testing and nanoindentation. These ferritic-austenitic stainless steels have high strain-hardening capacity, due to the metastable austenite phase, which leads to an improved uniform elongation and higher tensile strength in comparison with most commercial lean duplex stainless steels. According to the results, even as low as 0.30 volume fraction of austenite seems efficient for achieving nearly 40% elongation. The austenite phase is initially the harder phase, and exhibits more strain hardening than the ferrite phase. The rate of strain hardening and the evolution of the martensite phase were found to depend on the loading direction: both are higher when strained in the rolling direction as compared to the transverse direction. Based on the mechanical testing, characterization of the microstructure by optical/electron microscopy, magnetic balance measurements and EBSD texture analysis, this anisotropy in mechanical properties of the cold-rolled metastable ferritic-austenitic stainless steels can be explained by the elongated dual-phase microstructure, fiber reinforcement effect of the harder austenite phase and the presence and interplay of rolling textures in the two phases.

  19. Strain direction dependency of martensitic transformation in austenitic stainless steels: The effect of gamma-texture

    NARCIS (Netherlands)

    Hilkhuijsen, P.; Geijselaers, Hubertus J.M.; Bor, Teunis Cornelis; Perdahcioglu, Emin Semih; van den Boogaard, Antonius H.; Akkerman, Remko

    2013-01-01

    Uniaxial tensile tests on both a non-textured and a highly textured, fully austenitic stainless steel were performed in both the rolling and the transverse directions. Both materials show mechanically induced phase transformation from the austenitic FCC to the martensitic BCC phase. Differences in

  20. Effect of austenite deformation temperature on Nb clustering and precipitation in microalloyed steel

    International Nuclear Information System (INIS)

    Pereloma, E.V.; Kostryzhev, A.G.; AlShahrani, A.; Zhu, C.; Cairney, J.M.; Killmore, C.R.; Ringer, S.P.

    2014-01-01

    The effect of thermomechanical processing conditions on Nb clustering and precipitation in both austenite and ferrite in a Nb–Ti microalloyed steel was studied using electron microscopy and atom probe tomography. A decrease in the deformation temperature increased the Nb-rich precipitation in austenite and decreased the extent of precipitation in ferrite. Microstructural mechanisms that explain this variation are discussed

  1. Empirical Formulae for The Calculation of Austenite Supercooled Transformation Temperatures

    Directory of Open Access Journals (Sweden)

    Trzaska J.

    2015-04-01

    Full Text Available The paper presents empirical formulae for the calculation of austenite supercooled transformation temperatures, basing on the chemical composition, austenitising temperature and cooling rate. The multiple regression method was used. Four equations were established allowing to calculate temperature of the start area of ferrite, perlite, bainite and martensite at the given cooling rate. The calculation results obtained do not allow to determine the cooling rate range of ferritic, pearlitic, bainitic and martensite transformations. Classifiers based on logistic regression or neural network were established to solve this problem.

  2. Pulsed magnetic welding application of fast breeder austenitic pins plugging

    International Nuclear Information System (INIS)

    Gallizzi, H.; Colombe, G.

    1986-11-01

    For specific nuclear needs, we had to develop pulsed magnetic welding on high resistivity coefficient alloys as austenitic steels. The magnetic force produced by an explosive inductor is transmitted on weld pieces by the use of an aluminium driver. A theoretical work carried out permitted to compare pulsed magnetic welding with explosive welding. With specific recordings, it was possible to study electrical and magnetical behavior during the active welding phase. By means of these informations, we are able to specify and to realize, with the financial help of ANVAR organization, a low impedance high velocity generator permitting to weld with a non destructible inductor. 6 refs [fr

  3. High Nitrogen Austenitic Stainless Steel Precipitation During Isothermal Annealing

    Directory of Open Access Journals (Sweden)

    Maria Domankova

    2016-07-01

    Full Text Available The time-temperature-precipitation in high-nitrogen austenitic stainless steel was investigated using light optical microscopy, transmission electron microscopy, selected area diffraction and energy-dispersive X-ray spectroscopy. The isothermal precipitation kinetics curves and the corresponding precipitation activation energy were obtained. The diffusion activation energy of M2N precipitation is 129 kJ/mol. The results show that critical temperature for M2N precipitation is about 825°C with the corresponding incubation period 2.5 min.

  4. Decomposition kinetics of expanded austenite with high nitrogen contents

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2006-01-01

    This paper addresses the decomposition kinetics of synthesized homogeneous expanded austenite formed by gaseous nitriding of stainless steel AISI 304L and AISI 316L with nitrogen contents up to 38 at.% nitrogen. Isochronal annealing experiments were carried out in both inert (N2) and reducing (H2......) atmospheres. Differential thermal analysis (DTA) and thermogravimetry were applied for identification of the decomposition reactions and X-ray diffraction analysis was applied for phase analysis. CrN precipitated upon annealing; the activation energies are 187 kJ/mol and 128 kJ/mol for AISI 316L and AISI 304L...

  5. Alkaline stress corrosion of iron-nickel-chromium austenitic alloys

    International Nuclear Information System (INIS)

    Hocquellet, Dominique

    1984-01-01

    This research thesis reports the study of the behaviour in stress corrosion of austenitic iron-nickel-chromium alloys by means of tensile tests at imposed strain rate, in a soda solution at 50 pc in water and 350 degrees C. The author shows that the mechanical-chemical model allows the experimental curves to be found again, provided the adjustment of characteristic parameters, on the one hand, of corrosion kinetics, and on the other hand, of deformation kinetics. A classification of the studied alloys is proposed [fr

  6. Creep properties and microstructure of the new wrought austenitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Vlasak, T.; Hakl, J.; Novak, P. [SVUM a.s., Prague (Czech Republic); Vyrostkova, A. [Slovak Academy of Sciences, Kosice (Slovakia). Inst. of Materials Research

    2010-07-01

    The contribution is oriented on the new wrought austenitic steel BGA4 (Cr23Ni15Mn6Cu3W1.5NbVMo) developed by the British Corus Company. Our main aim is to present creep properties studied in SVUM a.s. Prague during COST 536 programme. The dependencies of the creep strength, strength for specific creep strain and minimum creep strain rate were evaluated on the basis of long term creep tests carried out at temperature interval (625; 725) C. Important part of a paper is metallographic analysis. (orig.)

  7. Resistance Element Welding of Magnesium Alloy/austenitic Stainless Steel

    Science.gov (United States)

    Manladan, S. M.; Yusof, F.; Ramesh, S.; Zhang, Y.; Luo, Z.; Ling, Z.

    2017-09-01

    Multi-material design is increasingly applied in the automotive and aerospace industries to reduce weight, improve crash-worthiness, and reduce environmental pollution. In the present study, a novel variant of resistance spot welding technique, known as resistance element welding was used to join AZ31 Mg alloy to 316 L austenitic stainless steel. The microstructure and mechanical properties of the joints were evaluated. It was found that the nugget consisted of two zones, including a peripheral fusion zone on the stainless steel side and the main fusion zone. The tensile shear properties of the joints are superior to those obtained by traditional resistance spot welding.

  8. The tensile properties of austenitic steel weld metals

    International Nuclear Information System (INIS)

    Wood, D.S.

    1985-01-01

    Elevated temperature tensile data on Mo containing and Mo free austenitic weld metals have been collected from French, German and UK sources and the results analysed. In the as welded condition the proof strength is significantly higher than that of wrought material and Mo containing weld metal is stronger than Mo free weld metal. The differences in UTS values are not so marked, and on average at temperatures above 400 0 the weld metal UTS is slightly lower than that of wrought material. The ductility of weld metal is significantly lower than that for wrought material. 7 refs, 2 tables, 20 figs

  9. Residual stresses associated with welds in austenitic steel

    International Nuclear Information System (INIS)

    Fidler, R.

    1978-01-01

    Two exploratory welds have been made with AISI 316 austenitic steel and Armex GT electrodes by the manual metal-arc process, and residual stress measurements made in the as-welded condition and after various periods of stress relief. The results show that substantial stress relief occurs at temperatures of 850 0 and 750 0 C after 1 hr, but is not complete. The stress distributions are compared with those obtained from ferritic welds and the effect of differences in thermal expansion coefficients is examined using finite element analysis. (author)

  10. Void swelling behaviour of austenitic stainless steel during electron irradiation

    International Nuclear Information System (INIS)

    Sheng Zhongqi; Xiao Hong; Peng Feng; Ti Zhongxin

    1994-04-01

    The irradiation swelling behaviour of 00Cr17Ni14Mo2 austenitic stainless steel (AISI 316L) was investigated by means of high voltage electron microscope. Results showed that in solution annealed condition almost no swelling incubation period existed, and the swelling shifted from the transition period to the steady-state one when the displacement damage was around 40 dpa. In cold rolled condition there was evidently incubation period, and when the displacement damage was up to 84 dpa the swelling still remained in the transition period. The average size and density of voids in both conditions were measured, and the factors, which influenced the void swelling, were discussed. (3 figs.)

  11. Mechanical properties of austenitic stainless steels in sodium

    International Nuclear Information System (INIS)

    Lloyd, G.J.

    1978-03-01

    A detailed review of the mechanical properties of austenitic stainless steels in liquid sodium is presented. Consideration has been given to the influence of the of the impurities in reactor sodium and metallurgical variables upon the stress rupture life, the low cycle fatigue and combined creep/fatigue resistance, elastic-plastic crack propagation rates, the high cycle fatigue life, tensile properties and fracture toughness. The effects of exposure to contaminated sodium prior to testing are also discussed. Examples of the success of mechanistic interpretations of materials behaviour in sodium are given and additionally, the extent to which mechanical properties in sodium may be predicted with the use of appropriate data. (author)

  12. Thermodynamic modeling of the stacking fault energy of austenitic steels

    International Nuclear Information System (INIS)

    Curtze, S.; Kuokkala, V.-T.; Oikari, A.; Talonen, J.; Haenninen, H.

    2011-01-01

    The stacking fault energies (SFE) of 10 austenitic steels were determined in the temperature range 50 ≤ T ≤ 600 K by thermodynamic modeling of the Fe-Cr-Ni-Mn-Al-Si-Cu-C-N system using a modified Olson and Cohen modeling approach (Olson GB, Cohen M. Metall Trans 1976;7A:1897 ). The applied model accounts for each element's contribution to the Gibbs energy, the first-order excess free energies, magnetic contributions and the effect of interstitial nitrogen. Experimental SFE values from X-ray diffraction measurements were used for comparison. The effect of SFE on deformation mechanisms was also studied by electron backscatter diffraction.

  13. Austenite reversion in low-carbon martensitic stainless steels – a CALPHAD-assisted review

    DEFF Research Database (Denmark)

    Niessen, Frank

    2018-01-01

    Low-carbon martensitic stainless steels with 11.5–16 wt-% Cr and martensite upon inter-critical annealing. The review treats...... the mechanisms governing the formation and stabilisation of reverted austenite and is assisted by the computation of phase equilibria. Literature data on Cr and Ni concentrations of the reverted austenite/martensite dual-phase microstructure are assessed with respect to predicted concentrations. Reasonable...... agreement was found for concentrations in martensite. Systematic excess of Cr in austenite of approx. 2 wt-% relative to calculations was suspected to originate from the growth of M23C6 with a coherent interface to austenite. Within large scatter, measured values of Ni in austenite were on average 2 wt...

  14. Interface segregation behavior in thermal aged austenitic precipitation strengthened stainless steel.

    Science.gov (United States)

    Li, Hui; Song, Hui; Liu, Wenqing; Xia, Shuang; Zhou, Bangxin; Su, Cheng; Ding, Wenyan

    2015-12-01

    The segregation of various elements at grain boundaries, precipitate/matrix interfaces were analyzed using atom probe tomography in an austenitic precipitation strengthened stainless steel aged at 750 °C for different time. Segregation of P, B and C at all types of interfaces in all the specimens were observed. However, Si segregated at all types of interfaces only in the specimen aged for 16 h. Enrichment of Ti at grain boundaries was evident in the specimen aged for 16 h, while Ti did not segregate at other interfaces. Mo varied considerably among interface types, e.g. from segregated at grain boundaries in the specimens after all the aging time to never segregate at γ'/γ phase interfaces. Cr co-segregated with C at grain boundaries, although carbides still did not nucleate at grain boundaries yet. Despite segregation tendency variations in different interface types, the segregation tendency evolution variation of different elements depending aging time were analyzed among all types of interfaces. Based on the experimental results, the enrichment factors, Gibbs interface excess and segregation free energies of segregated elements were calculated and discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Alumina-Forming Austenitic Stainless Steels Strengthened by Laves Phase and MC Carbide Precipitates

    Science.gov (United States)

    Yamamoto, Y.; Brady, M. P.; Lu, Z. P.; Liu, C. T.; Takeyama, M.; Maziasz, P. J.; Pint, B. A.

    2007-11-01

    Creep strengthening of Al-modified austenitic stainless steels by MC carbides or Fe2Nb Laves phase was explored. Fe-20Cr-15Ni-(0-8)Al and Fe-15Cr-20Ni-5Al base alloys (at. pct) with small additions of Nb, Mo, W, Ti, V, C, and B were cast, thermally-processed, and aged. On exposure from 650 °C to 800 °C in air and in air with 10 pct water vapor, the alloys exhibited continuous protective Al2O3 scale formation at an Al level of only 5 at. pct (2.4 wt pct). Matrices of the Fe-20Cr-15Ni-5Al base alloys consisted of γ (fcc) + α (bcc) dual phase due to the strong α-Fe stabilizing effect of the Al addition and exhibited poor creep resistance. However, adjustment of composition to the Fe-15Cr-20Ni-5Al base resulted in alloys that were single-phase γ-Fe and still capable of alumina scale formation. Alloys that relied solely on Fe2Nb Laves phase precipitates for strengthening exhibited relatively low creep resistance, while alloys that also contained MC carbide precipitates exhibited creep resistance comparable to that of commercially available heat-resistant austenitic stainless steels. Phase equilibria studies indicated that NbC precipitates in combination with Fe2Nb were of limited benefit to creep resistance due to the solution limit of NbC within the γ-Fe matrix of the alloys studied. However, when combined with other MC-type strengtheners, such as V4C3 or TiC, higher levels of creep resistance were obtained.

  16. Resistance to pitting corrosion in ferritic and austenitic/ferritic steels

    International Nuclear Information System (INIS)

    De Bouvier, O.

    1995-01-01

    Stainless steel tubes carrying raw water are potentially vulnerable to pitting corrosion. With a view to minimizing the corrosion risk in the river-water-cooled condensers at PWR power plant, a study was conducted to determine initiation conditions and incubation durations for pitting corrosion in stagnant water. As a result, condenser tubes in Z2 CI 18 (439) or Z2 CT 18-10 (304L) steels were phased out in favour of Z2 CND 16-32 (316L) stainless steel. The same question can be yield for other applications and especially for all types of exchangers for use in electrical applications. This study sought to assess alternative methods for estimating pitting corrosion, and to check the results of these methods against the actual behaviour of studied steels. The study covered ferritic steels (439, 444, 290Mo), austenitic steel (316L) and austenitic/ferritic steels (Uranus 35N, 45N, 47N, 52N). Two approaches were adopted: laboratory tests to compare pitting corrosion risks on different materials, and tests for characterizing the behaviour of steels exposed to river water. The study begins with a laboratory tests that yield an arbitrary parameter for quantifying pitting corrosion resistance. One method involves measuring the pitting temperature in an aggressive ferric chloride solution. Other methods measure the pitting potential, either statistically (Multipit method) or deterministically (polarization curve). We then go on to discuss tests under simulated life-like conditions, involving repeated immersions in water from the Seine. (author). 9 refs., 13 figs, 9 tabs

  17. Effect of hardening on the crack growth rate of austenitic stainless steels in primary PWR conditions

    International Nuclear Information System (INIS)

    Castano, M.L.; Garcia, M.S.; Diego, G. de; Gomez-Briceno, D.; Francia, L.

    2002-01-01

    Intergranular cracking of non-sensitized materials, found in light water reactor (LWR) components exposed to neutron radiation, has been attributed to Irradiation Assisted Stress Corrosion Cracking (IASCC). Cracking of baffle former bolts, fabricated of AISI-316L and AISI-347, have been reported in some Europeans and US PWR plants. Examinations of removed bolts indicate the intergranular cracking characteristics can be associated with IASCC phenomena. Neutron radiation produce critical modifications of the microstructure and microchemical of stainless steels such hardening due to irradiation and Radiation Induce Segregation (RIS) at grain boundaries, among others. Chromium depletion at grain boundary due to RIS seems to justify the intergranular cracking of irradiated materials, both in plant and in lab tests, at high electrochemical corrosion potential (BWR-NWC environments), but it is not enough to explain cracking at low corrosion potential (BWR-HWC and PWR environments). In these latter conditions, hardening is considered a possible additional mechanism to explain the behavior of irradiated material. Radiation Hardening can be simulated in non irradiated material by mechanical deformation. Although some differences exists in the types of defects produced by radiation and mechanical deformation, it is accepted that the study of the stress corrosion behavior of unirradiated austenitic steels with different hardening levels would contribute to the understanding of IASCC mechanism. In order to evaluate the influence of hardening on the stress corrosion susceptibility of austenitic steels, crack growth rate tests with 316L and 347 stainless steels with nominal yield strengths from 500 to 900 MPa, produced by cold work are being carried out at 340 deg C in PWR conditions. Preliminary results indicate that crack propagation was obtained in the 316Lss and 347ss cold worked, even with a yield strength of 550 MPa. (authors)

  18. Effect of small addition of Cr on stability of retained austenite in high carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Rumana; Pahlevani, Farshid, E-mail: f.pahlevani@unsw.edu.au; Sahajwalla, Veena

    2017-03-15

    High carbon steels with dual phase structures of martensite and austenite have considerable potential for industrial application in high abrasion environments due to their hardness, strength and relatively low cost. To design cost effective high carbon steels with superior properties, it is crucial to identify the effect of Chromium (Cr) on the stability of retained austenite (RA) and to fully understand its effect on solid-state phase transition. This study addresses this important knowledge gap. Using standard compression tests on bulk material, quantitative X-ray diffraction analysis, nano-indentation on individual austenitic grains, transmission electron microscopy and electron backscatter diffraction–based orientation microscopy techniques, the authors investigated the effect of Cr on the microstructure, transformation behaviour and mechanical stability of retained austenite in high carbon steel, with varying Cr contents. The results revealed that increasing the Cr %, altered the morphology of the RA and increased its stability, consequently, increasing the critical pressure for martensitic transformation. This study has critically addressed the elastoplastic behaviour of retained austenite – and provides a deep understanding of the effect of small additions of Cr on the metastable austenite of high carbon steel from the macro- to nano-level. Consequently, it paves the way for new applications for high carbon low alloy steels. - Highlights: • Effect of small addition of Cr on metastable austenite of high carbon steel from the macro- to nano-level • A multi-scale study of elastoplastic behaviour of retained austenite in high carbon steel • The mechanical stability of retained austenite during plastic deformation increased with increasing Cr content • Effect of grain boundary misorientation angle on hardness of individual retained austenite grains in high carbon steel.

  19. Analysis of creep effective stress in austenitic heat resistant steel

    International Nuclear Information System (INIS)

    Park, In Duck; Nam, Ki Woo

    2002-01-01

    This paper describes the comparison of calculated effective stress with experimental one in austenitic heat resistant steels, STS310J1TB and STS310S with and without a small amount of Nb and N. Based on a solute atoms diffusion model, contribution from soluble nitrogen to the high-temperature strength was numerically examined for austenitic heat-resisting Fe-Cr-Ni-N(STS310J1TB) and Fe-Cr-Ni(STS310S) alloys. The solute atmosphere dragging stress of dislocation was calculated in optional dislocation velocity of STS310J1TB and STS310S at 650 degree C, 675 degree C and 700 degree C. As a result of the numerical calculation, the solute atmosphere dragging stress of STS310J1TB was about 50 times larger than that of STS310S. When the temperature became high, the maximum value of solute atmosphere dragging stress was small and the velocity of moving dislocation was fast. From the relationship between the dislocation rate and the solute atmosphere dragging stress, the relation of both was proportional and the inclination is about 1 in the level with low velocity of moving dislocation. From above results, the mechanism of dislocation movement in STS310J1TB was the solute atmosphere dragging stress. The solute atmosphere dragging stress, which was calculated from the numerical calculation was close to the effect stress in stress relaxation tests

  20. Peculiarities of austenitic state in premartensitic temperature range

    International Nuclear Information System (INIS)

    Sarrak, V.I.; Suvorova, S.O.

    1982-01-01

    A review of works on the study of austenite behaviour in premartensitic temperature range carried out using the investigation methods of resistance to microplastic deformation, mechanical properties and internal friction, is presented. The investigation is carried out using carbon-free iron-nickel alloy N31, alloy 40N24 and alloy 50Kh20N10. It is established that in premartensitic temperature range at a certain temperature Msub(elast.) exceeding by approximately 35 deg C the starting temperature of martensitic transformation, austenite state changes sharply: mechanical instability as to microplastic deformation appears. It manifests itself in an anomalous decrease of resistance to microplastic deformation at the temperature approaching the beginning of martensitic transformation. Martensitic transformation develops under tension in an elastic region. At the temperature above Msub(elast.) martensitic transformation develops only under the effect of plastic deformation. Decrease of temperature of martensitic transformation start as a result of microplastic deformation and subsequent ageing is connected with blocking of possible places of martensite initiation

  1. Fatigue behavior of welded austenitic stainless steel in different environments

    Directory of Open Access Journals (Sweden)

    D.S. Yawas

    2014-01-01

    Full Text Available The fatigue behavior of welded austenitic stainless steel in 0.5 M hydrochloric acid and wet steam corrosive media has been investigated. The immersion time in the corrosive media was 30 days to simulate the effect on stainless steel structures/equipment in offshore and food processing applications and thereafter annealing heat treatment was carried out on the samples. The findings from the fatigue tests show that seawater specimens have a lower fatigue stress of 0.5 × 10−5 N/mm2 for the heat treated sample and 0.1 × 10−5 N/mm2 for the unheat-treated sample compared to the corresponding hydrochloric acid and steam samples. The post-welding heat treatment was found to increase the mechanical properties of the austenitic stainless steel especially tensile strength but it reduces the transformation and thermal stresses of the samples. These findings were further corroborated by the microstructural examination of the stainless steel specimen.

  2. Monitoring of Fatigue Degradation in Austenitic Stainless Steels

    International Nuclear Information System (INIS)

    Kalkhof, D.; Niffenegger, M.; Leber, H.J.

    2004-01-01

    During cyclic loading of austenitic stainless steel, it was observed that microstructural changes occurred; these affect both the mechanical and physical properties of the material. For certain steels, a strain-induced martensite phase transformation was seen. The investigations showed that, for the given material and loading conditions, the volume fraction of martensite depends on the cycle number, temperature and initial material state. It was also found that the martensite content continuously increased with the cycle number. Therefore, the volume fraction of martensite was used as an indication of fatigue usage. It was noted that the temperature dependence of the martensite formation could be described by a Boltzmann function, and that the martensite content decreased with increasing temperature. Two different heats of the austenitic stainless steel X6CrNiTi18-10 (AISI 321, DIN 1.4541) were investigated. It was found that the martensite formation rate was much higher for the cold-worked than for the solution-annealed material. All applied techniques - neutron diffraction and advanced magnetic methods - were successful in detecting the presence of martensite in the differently fatigued specimens. (author)

  3. Study of irradiation effects in austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Etienne, A. [GPM UMR CNRS 6634, Universite et INSA de Rouen (France); Material Department, University of California, Santa Barbara (United States); Pareige, P.; Radiguet, B. [GPM UMR CNRS 6634, Universite et INSA de Rouen (France); Cunningham, N.J.; Odette, G.O. [Material Department, University of California, Santa Barbara (United States); Pokor, C. [EDF RD, departement MMC, site des Renardieres, Moret-sur-Loing (France)

    2011-07-01

    Chemical analyses using Atom Probe Tomography were performed on a bolt made of cold worked 316 austenitic stainless steel, extracted from the internal structures of a pressurized water reactor after seventeen years of reactor service. The irradiation temperature of these samples was 633 K and the irradiation dose was estimated to 12 dpa. These analyses have shown that neutron irradiation has a strong effect on the intragranular distribution of solute atoms. A very high number density (6.10{sup 23} m{sup -3}) of Ni-Si enriched and Cr-Fe depleted clusters was detected after irradiation. In order to bring complementary experimental results and to determine the mechanism of formation of these Ni-Si nano-clusters, Fe{sup 5+} ion irradiations have been performed on a 316 austenitic stainless steel. As after neutron irradiation, the formation of solute enriched features is observed. Linear features and two kinds of clusters, rounded and torus shaped, are present. Considering that solute enriched features are probably formed by radiation induced segregation on point defect sinks, these different shapes are due to the nature of the sinks where segregation occurs. (authors)

  4. Peculiarities of austenitic state in premartensitic temperature range

    Energy Technology Data Exchange (ETDEWEB)

    Sarrak, V.I.; Suvorova, S.O.

    A review of works on the study of austenite behaviour in premartensitic temperature range carried out using the investigation methods of resistance to microplastic deformation, mechanical properties and internal friction, is presented. The investigation is carried out using carbon-free iron-nickel alloy N31, alloy 40N24 and alloy 50Kh20N10. It is established that in premartensitic temperature range at a certain temperature Msub(elast.) exceeding by approximately 35 deg C the starting temperature of martensitic transformation austenite state changes sharply: mechanical instability as to microplastic deformation appears. It manifests itself in an anomalous decrease of resistance to microplastic deformation at the temperature approaching the beginning of martensitic transformation. Martensitic transformation develops under tension in an elastic region. At the temperature above Msub(elast.) martensitic transformation develops only under the effect of plastic deformation. Decrease of temperature of martensitic transformation start as a result of microplastic deformation and subsequent ageing is connected with blocking of possible places of martensite initiation.

  5. Effect of triple ion beam irradiation on mechanical properties of high chromium austenitic stainless steel

    International Nuclear Information System (INIS)

    Ioka, Ikuo; Futakawa, Masatoshi; Nanjyo, Yoshiyasu; Kiuchi, Kiyoshi; Anegawa, Takefumi

    2003-01-01

    A high-chromium austenitic stainless steel has been developed for an advanced fuel cladding tube considering waterside corrosion and irradiation embrittlement. The candidate material was irradiated in triple ion (Ni, He, H) beam modes at 573 K up to 50 dpa to simulate irradiation damage by neutron and transmutation product. The change in hardness of the very shallow surface layer of the irradiated specimen was estimated from the slope of load/depth-depth curve which is in direct proportion to the apparent hardness of the specimen. Besides, the Swift's power low constitutive equation (σ=A(ε 0 + ε) n , A: strength coefficient, ε 0 : equivalent strain by cold rolling, n: strain hardening exponent) of the damaged parts was derived from the indentation test combined with an inverse analysis using a finite element method (FEM). For comparison, Type304 stainless steel was investigated as well. Though both Type304SS and candidate material were also hardened by ion irradiation, the increase in apparent hardness of the candidate material was smaller than that of Type304SS. The yield stress and uniform elongation were estimated from the calculated constitutive equation by FEM inverse analysis. The irradiation hardening of the candidate material by irradiation can be expected to be lower than that of Type304SS. (author)

  6. Static recrystallisation and precipitation after hot deformation of austenitic stainless steels containing molybdenum and niobium

    International Nuclear Information System (INIS)

    Lombry, R.; Rossard, C.; Thomas, B.J.

    1981-01-01

    In general the hot workability of austenite depends on the work hardening during deformation and the kinetics of the dynamic and static restoration processes. Static recrystallisation is a very important factor in the case of hot rolling. The present work was undertaken to determine the effect of additions of molybdenum or niobium on the kinetics of static recrystallisation. The results show that the rate of static recrystallisation of type 304, 316 and 347 stainless steels decreases in this order for a given amount of prior deformation (epsilon=0,44). The differences in the rates of recrystallisation increases as the temperature is lowered towards 900 deg C. The effect of molybdenum appears to be attribuable to a solute drag effect on the mobility of dislocations, subgrain boundaries or grain boundaries whereas niobium additions lead to the formation of NbC precipitates on the dislocation cell walls and sub boundaries. It is also shown that in the case of type 316 and type 347 steels the dynamic recrystallisation process (observed in type 304 steels at all temperatures above 900 deg C) is replaced by dynamic recovery at temperatures egal to or below about 1000 deg C [fr

  7. Precipitation sensitivity to alloy composition in Fe-Cr-Mn austenitic steels developed for reduced activation for fusion application

    International Nuclear Information System (INIS)

    Maziasz, P.J.; Klueh, R.L.

    1988-01-01

    Special austenitic steels are being designed in which alloying elements like Mo, Nb, and Ni are replaced with Mn, W, V, Ti, and/or Ta to reduce the long-term radioactivity induced by fusion reactor irradiation. However, the new steels still need to have properties otherwise similar to commercial steels like type 316. Precipitation strongly affects strength and radiation-resistance in austenitic steels during irradiation at 400--600/degree/C, and precipitation is also usually quite sensitive to alloy composition. The initial stage of development was to define a base Fe-Cr-Mn-C composition that formed stable austenite after annealing and cold-working, and resisted recovery or excessive formation of coarse carbide and intermetallic phases during elevated temperature annealing. These studies produced a Fe-12Cr-20Mn-0.25C base alloy. The next stage was to add the minor alloying elements W, Ti, V, P, and B for more strength and radiation-resistance. One of the goals was to produce fine MC precipitation behavior similar to the Ti-modified Fe-Cr-Ni prime candidate alloy (PCA). Additions of Ti+V+P+B produced fine MC precipitation along network dislocations and recovery/recrystallization resistance in 20% cold worked material aged at 800/degree/C for 166h, whereas W, Ti, W+Ti, or Ti+P+B additions did not. Addition of W+Ti+V+P+B also produced fine MC, but caused some σ phase formation and more recrystallization as well. 29 refs., 14 figs., 9 tabs

  8. Study on the crystallographic orientation relationship and formation mechanism of reversed austenite in economical Cr12 super martensitic stainless steel

    International Nuclear Information System (INIS)

    Ye, Dong; Li, Shaohong; Li, Jun; Jiang, Wen; Su, Jie; Zhao, Kunyu

    2015-01-01

    Effect of carbides and crystallographic orientation relationship on the formation mechanism of reversed austenite of economical Cr12 super martensitic stainless steel (SMSS) has been investigated mainly by transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD). The results indicate that the M_2_3C_6 precipitation and the formation of the reversed austenite have the interaction effect during tempering process in SMSS. The reversed austenite forms intensively at the sub-block boundary and the lath boundary within a misorientation range of 0–60°. M_2_3C_6 has the same crystallographic orientation relationship with reversed austenite. There are two different kinds of formation modes for reversed austenite. One is a nondiffusional shear reversion; the other is a diffusion transformation. Both are strictly limited by crystallographic orientation relationship. The austenite variants are limited to two kinds within one packet and five kinds within one prior austenite grain. - Highlights: • Reversed austenite forms at martensite boundaries with misorientation of 0–60° • M_2_3C_6 precipitation and reversed austenite formation have the interaction effect. • Two austenite variants with different orientations can be formed inside a packet. • Two reversed austenite formation modes: shear reversion; diffusion transformation

  9. Study on the crystallographic orientation relationship and formation mechanism of reversed austenite in economical Cr12 super martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Dong; Li, Shaohong; Li, Jun; Jiang, Wen [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Su, Jie [Institute for Structural Materials, Central Iron and Steel Research Institute, Beijing 100081 (China); Zhao, Kunyu, E-mail: kyzhaoy@sina.com [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2015-11-15

    Effect of carbides and crystallographic orientation relationship on the formation mechanism of reversed austenite of economical Cr12 super martensitic stainless steel (SMSS) has been investigated mainly by transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD). The results indicate that the M{sub 23}C{sub 6} precipitation and the formation of the reversed austenite have the interaction effect during tempering process in SMSS. The reversed austenite forms intensively at the sub-block boundary and the lath boundary within a misorientation range of 0–60°. M{sub 23}C{sub 6} has the same crystallographic orientation relationship with reversed austenite. There are two different kinds of formation modes for reversed austenite. One is a nondiffusional shear reversion; the other is a diffusion transformation. Both are strictly limited by crystallographic orientation relationship. The austenite variants are limited to two kinds within one packet and five kinds within one prior austenite grain. - Highlights: • Reversed austenite forms at martensite boundaries with misorientation of 0–60° • M{sub 23}C{sub 6} precipitation and reversed austenite formation have the interaction effect. • Two austenite variants with different orientations can be formed inside a packet. • Two reversed austenite formation modes: shear reversion; diffusion transformation.

  10. Superconducting A.C. generators. Some recent experimental investigations

    International Nuclear Information System (INIS)

    Ross, J.S.H.; Smith, D.A.

    1978-01-01

    Experimental work is reported which has been carried out in the past three years aimed at evaluating the materials and the design features applicable to large superconducting generators. Two main topics are considered: (1) A detailed and comprehensive investigation into the physical properties of a six tonne forging in austenitic stainless steel AISI 316LN. (2) The design of a system to transfer helium onto and from a rotating shaft. (UK)

  11. SCC of cold-worked austenitic stainless steels exposed to PWR primary water conditions: susceptibility to initiation

    International Nuclear Information System (INIS)

    Herms, E.; Raquet, O.; Sejourne, L.; Vaillant, F.

    2009-01-01

    Heavily cold-worked austenitic stainless steels (AISI 304L and 316L types) could be significantly susceptible to Stress Corrosion Cracking (SCC) when exposed to PWR nominal primary water conditions even in absence of any pollutants. Susceptibility to SCC was shown to be related with some conditions such as initial hardness, procedure of cold-work or dynamic straining. A dedicated program devoted to better understand the initiation stage on CW austenitic stainless steels in PWR water is presented. Initiation is studied thanks to SCC test conditions leading to an intergranular cracking propagation mode on a CW austenitic stainless steel which is the mode generally reported after field experience. SCC tests are carried out in typical primary water conditions (composition 1000 ppm B and 2 ppm Li) and for temperature in the range 290 - 340 C. Material selected is 316L cold-worked essentially by rolling (reduction in thickness of 40%). Initiation tests are carried out under various stress levels with the aim to investigate the evolution of the initiation period versus the value of applied stress. SCC tests are performed on cylindrical notched specimens in order to increase the applied stress and allow accelerated testing without modify the exposure conditions to strictly nominal hydrogenated PWR water. Respective influences of cyclic/dynamic conditions on SCC initiation are presented and discussed. Dedicated interrupted tests help to investigate the behaviour of the crack initiation process. These SCC tests have shown that crack initiation could be obtained after a very short time under dynamic loading conditions on heavily pre-strained austenitic stainless steels. Actual results show that the most limiting stage of the cracking process on CW 316L seems to be the transition from slow transgranular propagation of surface initiated cracks to intergranular fast propagation through the thickness of the sample. The duration of this stage during crack initiation tests is

  12. Niobium effects on the austenitic grain growth and hardenability of steels for mechanical construction

    International Nuclear Information System (INIS)

    Vieira, R.R.; Arruda Camargo, L.M. de; Oliveira Junior, G.G. de; Dias Filho, A.G.C.

    1983-01-01

    The austenitic grain growth and hardenability of SAE 86XX and 5120 steels modified with 0,001 to 0,20 per-cent niobium content were studied when submitted to case hardening and quenching heat treatments. The results show that niobium controlS the austenite grain size better than molybdenum up to 950 0 C austenitization temperature. The hardenability, evaluated by the Jominy test which the modified SAE 8640 steels, is more strongly inflencied by the grain refining resulting from niobium addition than by any other supposed effect. (Author) [pt

  13. The effect of austenitizing conditions in the ductile iron hardening process on longitudinal ultrasonic wave velocity

    Directory of Open Access Journals (Sweden)

    A. W. Orłowicz

    2014-04-01

    Full Text Available The paper presents results of a research on the effect of austenitizing temperature and time adopted in the hardening operation on the ultrasonic wave velocity in ductile iron. It has been found that with increasing austenitizing temperature and with the passage of the austenitizing time, a monotonic decrease of the ultrasonic longitudinal wave velocity value occurred. Implementation of ultrasonic testing of results obtained in the course of the cast iron hardening process both in production and as-cast conditions, requires development of a test methodology that must take into account the influence of base material structure (degree of nodularization, graphite precipitation count on the ultrasound wave velocity.

  14. Environmental fatigue behaviors of wrought and cast stainless steels in 310degC deoxygenated water

    International Nuclear Information System (INIS)

    Cho, Pyung-Yeon; Jang, Hun; Jang, Changheui; Jeong, Ill-Seok; Lee, Jae-Gon

    2009-01-01

    Environmental fatigue behaviors of wrought type 316LN stainless steel and cast CF8M stainless steel were investigated. Low cycle fatigue tests were performed in a 310degC deoxygenated water environment at a strain rate of 0.04%/s with various strain amplitudes. It was shown that the low cycle fatigue life of CF8M was slightly longer than that of 316LN. To understand the causes of the difference, fracture surface was observed and material factors like microstructure, mechanical properties, and chemical compositions of both materials were analyzed. In a duplex microstructure of CF8M, the fatigue crack growth was affected by barrier role of ferrite phase and acceleration role of microvoids in ferrite phase. Test results indicate that the former is greater than the latter, resulting in slower fatigue crack growth rate, or longer LCF lives in CF8M than in 316LN. (author)

  15. Surface protection of austenitic steels by carbon nanotube coatings

    Science.gov (United States)

    MacLucas, T.; Schütz, S.; Suarez, S.; Mücklich, F.

    2018-03-01

    In the present study, surface protection properties of multiwall carbon nanotubes (CNTs) deposited on polished austenitic stainless steel are evaluated. Electrophoretic deposition is used as a coating technique. Contact angle measurements reveal hydrophilic as well as hydrophobic wetting characteristics of the carbon nanotube coating depending on the additive used for the deposition. Tribological properties of carbon nanotube coatings on steel substrate are determined with a ball-on-disc tribometer. Effective lubrication can be achieved by adding magnesium nitrate as an additive due to the formation of a holding layer detaining CNTs in the contact area. Furthermore, wear track analysis reveals minimal wear on the coated substrate as well as carbon residues providing lubrication. Energy dispersive x-ray spectroscopy is used to qualitatively analyse the elemental composition of the coating and the underlying substrate. The results explain the observed wetting characteristics of each coating. Finally, merely minimal oxidation is detected on the CNT-coated substrate as opposed to the uncoated sample.

  16. Fracture of Fe--Cr--Mn austenitic steel

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1979-01-01

    Tensile tests of Tenelon (U.S. Steel), a nitrogen-strengthened iron-base alloy containing 18% chromium and 15% manganese, demonsterated that cleavage fracture can occur in some austenitic steels and is promoted by the presence of hydrogen. Tensile failure of Tenelon at 78 0 K occurred with no detectable necking at low strain levels. The fracture surface contained cleavage facets that lay along coherent twin boundaries oriented transversely to the tensile axis. Charging gaseous hydrogen at 679 MPa pressure and 650 0 K had no significant effect on the mechanical behavior or fracture mode at 78 0 K, but raised the ductile-to-brittle transition temperature from less than 200 0 K to about 250 0 K

  17. Precipitation and cavity formation in austenitic stainless steels during irradiation

    International Nuclear Information System (INIS)

    Lee, E.H.; Rowcliffe, A.F.; Mansur, L.K.

    1982-01-01

    Microstructural evolution in austenitic stainless steels subjected to displacement damage at high temperature is strongly influenced by the interaction between helium atoms and second phase particles. Cavity nucleation occurs by the trapping of helium at partially coherent particle-matrix interfaces. The recent precipitate point defect collector theory describes the more rapid growth of precipitate-attached cavities compared to matrix cavities where the precipitate-matrix interface collects point defects to augment the normal point deflect flux to the cavity. Data are presented which support these ideas. It is shown that during nickel ion irradiation of a titanium-modified stainless steel at 675 0 C the rate of injection of helium has a strong effect on the total swelling and also on the nature and distribution of precipitate phases. (orig.)

  18. Production of Austenitic Steel for the LHC Superconducting Dipole Magnets

    CERN Document Server

    Bertinelli, F; Komori, T; Peiro, G; Rossi, L

    2006-01-01

    The austenitic-steel collars are an important component of the LHC dipole magnets, operating at cryogenic temperature under high mechanical stress. The required steel, known as YUS 130S, has been specifically developed for this application by Nippon Steel Corporation (NSC), who was awarded a CERN contract in 1999 for the supply of 11 500 tonnes. In 2005 - after six years of work - the contract is being successfully completed, with final production being ensured since October 2003 by Nippon Steel & Sumikin Stainless Steel Corporation (NSSC). The paper describes the steel properties, its manufacturing and quality control process, organization of production, logistics and contract follow-up. Extensive statistics have been collected relating to mechanical, physical and technological parameters. Specific attention is dedicated to measurements of magnetic permeability performed at cryogenic temperatures by CERN, the equipment used and statistical results. Reference is also made to the resulting precision of the...

  19. Laser Welding Of Finned Tubes Made Of Austenitic Steels

    Directory of Open Access Journals (Sweden)

    Stolecki M.

    2015-09-01

    Full Text Available This paper describes the technology of welding of finned tubes made of the X5CrNi1810 (1.4301 austenitic steel, developed at Energoinstal SA, allowing one to get high quality joints that meet the requirements of the classification societies (PN-EN 15614, and at the same time to significantly reduce the manufacturing costs. The authors described an automatic technological line equipped with a Trumph disc laser and a tube production technological process. To assess the quality of the joints, one performed metallographic examinations, hardness measurements and a technological attempt to rupture the fin. Analysis of the results proved that the laser-welded finned tubes were performed correctly and that the welded joints had shown no imperfections.

  20. The high temperature oxidation behaviour of austenitic stainless steels

    International Nuclear Information System (INIS)

    Hales, R.

    1977-04-01

    High temperature annealing in a dynamic vacuum has been utilised to induce the growth of duplex oxide over the whole surface of stainless steel specimens. It is found that duplex oxide grows at a rate which does not obey a simple power law. The oxidation kinetics and oxide morphology have also been studied for a series of ternary austenitic alloys which cover a range of composition between 5 and 20% chromium. A model has been developed to describe the formation of duplex oxide and the subsequent formation of a 'healing layer' which virtually causes the oxidation process to stop. This phase tends to form at grain boundaries and a relationship has been derived for the reaction kinetics which relates the reaction rate with grain size of the substrate. (author)

  1. Thermal aging evaluation of cast austenitic stainless steel pipe

    International Nuclear Information System (INIS)

    Song, T. H.; Jung, I. S.

    2002-01-01

    24 years have been passed since Kori Unit 1 began its commercial operation, and 19 years have been passed since Kori Unit 2 began its commercial operation. As the end point of design life become closer, plant life extension and periodic safety assessment is paid more and more attention to by utility company. In this paper, the methodologies and results of cast austenitic stainless steel pipe thermal aging evaluations of both units have been presented in association with aging time of 10, 20, and 30 years and operating temperature, respectively. Life extension cases respectively. As a result of this, at the operating temperature of 280 .deg. C, thermal aging was not a problem as long as Charpy V-notch room temperature minimum impact energy is concerned. However, more than 300 .deg. C and 30 years of operating condition, we should perform detailed fracture mechanics analysis with CMTR of NPP pipe

  2. Temperature dependent measurement of internal damping of austenitic stainless steels

    Directory of Open Access Journals (Sweden)

    Oravcová Monika

    2018-01-01

    Full Text Available This article is aimed on the analysis of the internal damping changes of austenitic stainless steels AISI 304, AISI 316L and AISI 316Ti depending from temperature. In experimental measurements only resonance method was used which is based on continuous excitation of oscillations of the specimens and the whole apparatus vibrates at the frequency near to the resonance. Microplastic processes and dissipation of energy within the metals are evaluated and investigated by internal damping measurements. Damping capacity of materials is closely tied to the presence of defects including second phase particles and voids. By measuring the energy dissipation in the material, we can determine the elastic characteristics, Youngs modulus, the level of stress relaxation and many other.

  3. Magnetic properties of the austenitic stainless steels at cryogenic temperatures

    International Nuclear Information System (INIS)

    Kobayashi, T.; Tsuchiya, K.; Itoh, K.; Kobayashi, S.

    2002-01-01

    The magnetization was measured for the austenitic stainless steel of SUS304, SUS304L, SUS316, and SUS316L with the temperature from 5K to 300K and the magnetic field from 0T to 10T. The field dependences of the magnetizations changed at about 0.7T and 4T. The dependence was analyzed with ranges of 0-0.5T, 1-3T, and 5-10T. There was not so much difference between those stainless steels for the usage at small fields and 300 K. The SUS316 and SUS316L samples showed large non-linearity at high fields and 5K. Therefore, SUS304 was recommended for usage at high fields and low temperatures to design superconducting magnets with the linear approximation of the field dependence of magnetization

  4. austenitic steel corrosion by oxygen-containing liquid sodium

    International Nuclear Information System (INIS)

    Rivollier, Matthieu

    2017-01-01

    France is planning to construct the 4. generation of nuclear reactors. They will use liquid sodium as heat transfer fluid and will be made of 316L(N) austenitic steel as structural materials. To guarantee optimal operation on the long term, the behavior of this steel must be verified. This is why corrosion phenomena of 316L(N) steel by liquid sodium have to be well-understood. Literature points out that several corrosion phenomena are possible. Dissolved oxygen in sodium definitely influences each of the corrosion phenomenon. Therefore, the austenitic steel corrosion in oxygen-containing sodium is proposed in this study. Thermodynamics data point out that sodium chromite formation on 316L(N) steel is possible in sodium containing roughly 10 μg.g -1 of oxygen for temperature lower than 650 C (reactor operating conditions).The experimental study shows that sodium chromite is formed at 650 C in the sodium containing 200 μg.g -1 of oxygen. At the same concentration and at 550 C, sodium chromite is clearly observed only for long immersion time (≥ 5000 h). Results at 450 C are more difficult to interpret. Furthermore, the steel is depleted in chromium in all cases.The results suggest the sodium chromite is dissolved in the sodium at the same time it is formed. Modelling of sodium chromite formation - approached by chromium diffusion in steel (in grain and grain boundaries -, and dissolution - assessed by transport in liquid metal - show that simultaneous formation and dissolution of sodium chromite is a possible mechanism able to explain our results. (author) [fr

  5. Microstructural evolution in fast-neutron-irradiated austenitic stainless steels

    International Nuclear Information System (INIS)

    Stoller, R.E.

    1987-12-01

    The present work has focused on the specific problem of fast-neutron-induced radiation damage to austenitic stainless steels. These steels are used as structural materials in current fast fission reactors and are proposed for use in future fusion reactors. Two primary components of the radiation damage are atomic displacements (in units of displacements per atom, or dpa) and the generation of helium by nuclear transmutation reactions. The radiation environment can be characterized by the ratio of helium to displacement production, the so-called He/dpa ratio. Radiation damage is evidenced microscopically by a complex microstructural evolution and macroscopically by density changes and altered mechanical properties. The purpose of this work was to provide additional understanding about mechanisms that determine microstructural evolution in current fast reactor environments and to identify the sensitivity of this evolution to changes in the He/dpa ratio. This latter sensitivity is of interest because the He/dpa ratio in a fusion reactor first wall will be about 30 times that in fast reactor fuel cladding. The approach followed in the present work was to use a combination of theoretical and experimental analysis. The experimental component of the work primarily involved the examination by transmission electron microscopy of specimens of a model austenitic alloy that had been irradiated in the Oak Ridge Research Reactor. A major aspect of the theoretical work was the development of a comprehensive model of microstructural evolution. This included explicit models for the evolution of the major extended defects observed in neutron irradiated steels: cavities, Frank faulted loops and the dislocation network. 340 refs., 95 figs., 18 tabs

  6. Microstructure and tribologic behaviour of metastable austenitic FeMn alloys as a function of chromium content; Gefuegeausbildung und Triboverhalten metastabiler austenitischer FeMn-Legierungen in Abhaengigkeit vom Chromgehalt

    Energy Technology Data Exchange (ETDEWEB)

    Roethig, J. [Magdeburg Univ. (Germany). Inst. fuer Stroemungstechnik und Thermodynamik; Veit, P.; Strassburger, G.; Blaesing, J. [Magdeburg Univ. (Germany). Inst. fuer Experimentelle Physik; Heyse, H. [Magdeburg Univ. (Germany). Inst. fuer Werkstofftechnik und Werkstoffpruefung

    1997-12-31

    In FeMn20Cr alloys with chromium contents of up to 20%, the solidification process is primarily an eutectic process. The {delta}-ferrite becomes increasingly instable below a temperature of 900 C and gradually disintegrates during slow cooling into austenite and a sigma phase. Tempering of these microstructures at T=450 C (6hours) leads to formation of {epsilon}-martensite in the austenite. Fast quenching starting above 900 C freezes the {delta}-ferrite, so that in the case of chromium contents between 13 and 18%, austenitic-hexagonal-ferritic microstructures form and above 18%, austenitic-ferritic microstructures. Tempering does not remove the {delta}-ferrite, but induces formation of {epsilon}-martensite in the austenite. Trobologic examinations with solutionized and water-quenched alloys showed, as compared to an FeMn20Cr18 alloy, for various types of wear, a very good tribologic performance (except for the alloy FeMn20Cr18 and cavitation). As to abrasion or hot wear, the formation of a sigma-phase or intercalation of metalloid hard phases should be considered. (orig./CB) [Deutsch] FeMn20Cr-Legierungen mit Chromgehalten bis zu 20% erstarren primaer ferritisch. Der {delta}-Ferrit ist unterhalb 900 C nicht mehr stabil und zerfaellt bei langsamer Abkuehlung in Austenit und Sigmaphase. Ein Anlassen dieser Gefuege T=450 C (6 Stunden) fuehrt zur {epsilon}-Martensitbildung im Austenit. Schnelles Abschrecken von oberhalb 900 C friert den {delta}-Ferrit ein, so dass bei Chromgehalten zwischen 13 und 18% austenitisch-hexagonal-ferritische und >18% austenitisch-ferritische Gefuege entstehen. Durch Anlassen kann der {delta}-Ferrit nicht beseitigt werden. Im Austenit kommt es aber zur {epsilon}-Martensitbildung. Tribologische Untersuchungen mit loesungsgegluehten und in Wasser abgeschreckten Legierungen zeigten im Vergleich zu einer FeCrNi-Legierung bei verschiedenen Verschleissarten (mit Ausnahme FeMn20Cr18 bei Kavitation) ein sehr gutes Triboverhalten. Gegenueber Abrasion

  7. The Influence of Austenite Grain Size on the Mechanical Properties of Low-Alloy Steel with Boron

    Directory of Open Access Journals (Sweden)

    Beata Białobrzeska

    2017-01-01

    Full Text Available This study forms part of the current research on modern steel groups with higher resistance to abrasive wear. In order to reduce the intensity of wear processes, and also to minimize their impact, the immediate priority seems to be a search for a correlation between the chemical composition and structure of these materials and their properties. In this paper, the correlation between prior austenite grain size, martensite packets and the mechanical properties were researched. The growth of austenite grains is an important factor in the analysis of the microstructure, as the grain size has an effect on the kinetics of phase transformation. The microstructure, however, is closely related to the mechanical properties of the material such as yield strength, tensile strength, elongation and impact strength, as well as morphology of occurred fracture. During the study, the mechanical properties were tested and a tendency to brittle fracture was analysed. The studies show big differences of the analysed parameters depending on the applied heat treatment, which should provide guidance to users to specific applications of this type of steel.

  8. Contribution of deformation mechanisms to strength and ductility in two Cr-Mn grade austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, A.S., E-mail: atef_saleh@s-petrol.suez.edu.eg [Materials Engineering Laboratory, Box 4200, University of Oulu, 90014 Oulu (Finland); Metallurgical and Materials Engineering Department, Faculty of Petroleum and Mining Engineering, Suez Canal University, Box 43721, Suez (Egypt); Karjalainen, L.P. [Materials Engineering Laboratory, Box 4200, University of Oulu, 90014 Oulu (Finland); Misra, R.D.K. [Center for Structural and Functional Materials and Chemical Engineering Department, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70504-4130, USA. (United States); Talonen, J. [Outokumpu Oyj, Box 140, FI-02201 Espoo (Finland)

    2013-01-01

    The role of different deformation mechanisms in controlling mechanical properties were studied in two low-Ni, Cr-Mn austenitic stainless steel grades (Types 201 and 201L) by tensile testing and microstructure examinations. Tensile tests were carried out at two different strain rates, 5 Multiplication-Sign 10{sup -4} and 10{sup -2} s{sup -1}, in the temperature range from -80 Degree-Sign C to 200 Degree-Sign C. It was observed that the flow properties and work hardening rate are affected significantly by temperature and strain rate for the concerned steels through variation of deformation mechanism. Deformation-induced austenite-to-martensite transformation (TRIP effect) is the dominant mechanism at temperatures below room temperature. From 50 Degree-Sign C up to 200 Degree-Sign C, plastic deformation is controlled by mechanical twinning (TWIP effect) and dislocation glide. The electron backscattered diffraction (EBSD) technique and transmission electron microscopy (TEM) were employed to study the plastic deformation accommodation and identify the primary deformation mechanisms operating in the deformed steels.

  9. On abnormal decomposition of supercooled austenite in carbon and alloy steels

    International Nuclear Information System (INIS)

    Parusov, V.V.; Dolzhenkov, I.I.; Podobedov, L.V.; Vakulenko, I.A.

    1980-01-01

    Residual stresses which appear as a result of thermal cycling in the temperature range of 300-700 deg C are investigated in an austenitic class steel (03Kh18N11) to ground the assumption on the effect of plastic deformation, appearing due to thermal stresses, on the mechanism of supercooled austenite decomposition. The determination of residual stresses is carried out with the help of X-ray diffraction analysis. It is established that the deformation brings about an increase in density of dislocation the interaction of which leads to the formation of a typical austenite substructure which conditions the proceeding of the eutectoid transformation according to an abnormal mechanism. It is noted, that the grain pearlite formation due to plastic and microplastic deformation of supercooled austenite induced by thermal stresses should be taken into account when developing steel heat treatment shedules [ru

  10. A Review on the Potential Use of Austenitic Stainless Steels in Nuclear Fusion Reactors

    Science.gov (United States)

    Şahin, Sümer; Übeyli, Mustafa

    2008-12-01

    Various engineering materials; austenitic stainless steels, ferritic/martensitic steels, vanadium alloys, refractory metals and composites have been suggested as candidate structural materials for nuclear fusion reactors. Among these structural materials, austenitic steels have an advantage of extensive technological database and lower cost compared to other non-ferrous candidates. Furthermore, they have also advantages of very good mechanical properties and fission operation experience. Moreover, modified austenitic stainless (Ni and Mo free) have relatively low residual radioactivity. Nevertheless, they can't withstand high neutron wall load which is required to get high power density in fusion reactors. On the other hand, a protective flowing liquid wall between plasma and solid first wall in these reactors can eliminate this restriction. This study presents an overview of austenitic stainless steels considered to be used in fusion reactors.

  11. Effects of irradiation on the fracture behavior of austenitic stainless steels

    International Nuclear Information System (INIS)

    Grossbeck, M.L.; Stiegler, J.O.; Holmes, J.J.

    1977-01-01

    Fracture in irradiated materials occurs by mechanisms which occur in unirradiated materials in addition to mechanisms related to irradiation phenomena. The paper examines radiation effects in austenitic stainless steels for use as core structural materials in fast breeder reactors

  12. Experimental determination of the constitutive behaviour of a metastable austenitic stainless steel

    NARCIS (Netherlands)

    Post, J.; Nolles, H.; Datta, K.; Datta, K.; Geijselaers, Hubertus J.M.

    2008-01-01

    This article presents measurements to describe the constitutive behaviour of a semi-austenitic precipitation hardenable stainless steel called Sandvik Nanoflex™, during metal forming and hardening. The material is metastable, which causes strain-induced transformation during forming. Depending on

  13. Role of Austenitization and Pre-Deformation on the Kinetics of the Isothermal Bainitic Transformation

    Science.gov (United States)

    Lambers, H.-G.; Tschumak, S.; Maier, H. J.; Canadinc, D.

    2009-06-01

    The role of time-temperature path on the isothermal austenite-to-bainite phase transformation of low alloy 51 CrV 4 steel was investigated and the corresponding microstructures were analyzed. The important finding is that an incomplete initial austenitization treatment leaves undissolved carbides in the matrix, such that lower carbon and chromium content in the matrix result, eventually accelerating the phase transformation. Furthermore, the residual carbides constitute additional nucleation sites for the bainite plates, speeding up the process even further. Also, both plastic pre-deformation of the supercooled austenite and application of external elastic stresses during the phase transformation lead to transformation plasticity by enhancing the stress fields, providing a driving force for the growth of bainite plates along a preferred orientation. Overall, the current results constitute the first step toward establishing a database for constructing a realistic microstructure-based model for simulating metal forming operations involving austenite-to-bainite phase transformation.

  14. An application of the eddy-current method for inspections of austenitic cladding

    International Nuclear Information System (INIS)

    Kubis, S.; Herka, M.; Krajcovic, R.

    1999-01-01

    The application of the eddy-current method for inspections of austenitic cladding by means of pancake probes. Phase and amplitude characteristics of artificial defects and anticipated interference signals. Optimization of inspection parameters

  15. Derivation of tensile flow characteristics for austenitic materials from instrumented indentation technique

    International Nuclear Information System (INIS)

    Lee, K-W; Kim, K-H; Kim, J-Y; Kwon, D

    2008-01-01

    In this study, a method for deriving the tensile flow characteristics of austenitic materials from an instrumented indentation technique is presented along with its experimental verification. We proposed a modified algorithm for austenitic materials that takes their hardening behaviour into account. First, the true strain based on sine function instead of tangent function was adapted. It was proved that the sine function shows constant degrees of hardening which is a main characteristic of the hardening of austenitic materials. Second, a simple and linear constitutive equation was newly suggested to optimize indentation flow curves. The modified approach was experimentally verified by comparing tensile properties of five austenitic materials from uniaxial tensile test and instrumented indentation tests

  16. Studies of microstructure-property relationships in austenitic stainless steels. Final report

    International Nuclear Information System (INIS)

    Spruiell, J.E.

    1977-01-01

    A final review is presented of the research carried out to provide better understanding of elevated temperature service of austenitic stainless steels, and especially the microstructural stability of both wrought-annealed steels and welded joints

  17. Sandblasting induced stress release and enhanced adhesion strength of diamond films deposited on austenite stainless steel

    Science.gov (United States)

    Li, Xiao; Ye, Jiansong; Zhang, Hangcheng; Feng, Tao; Chen, Jianqing; Hu, Xiaojun

    2017-08-01

    We firstly used sandblasting to treat austenite stainless steel and then deposited a Cr/CrN interlayer by close field unbalanced magnetron sputtering on it. After that, diamond films were prepared on the interlayer. It is found that the sandblasting process induces phase transition from austenite to martensite in the surface region of the stainless steel, which decreases thermal stress in diamond films due to lower thermal expansion coefficient of martensite phase compared with that of austenite phase. The sandblasting also makes stainless steel's surface rough and the Cr/CrN interlayer film inherits the rough surface. This decreases the carburization extent of the interlayer, increases nucleation density and modifies the stress distribution. Due to lower residual stress and small extent of the interlayer's carburization, the diamond film on sandblast treated austenite stainless steel shows enhanced adhesion strength.

  18. A macroscopic model to simulate the mechanically induced martensitic transformation in metastable austenitic stainless steels

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.

    2012-01-01

    Mechanically induced martensitic transformation and the associated transformation plasticity phenomena in austenitic stainless steels are studied. The mechanisms responsible for the transformation are investigated and put into perspective based on experimental evidence. The stress and strain

  19. The effects of retained austenite on dry sliding wear behavior of carburized steels

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung-Jun [Research Inst. of Industrial Science and Technology, Steel Products Dept., Pohang (Korea, Republic of); Kweon, Young-Gak [Research Inst. of Industrial Science and Technology, Steel Products Dept., Pohang (Korea, Republic of)

    1996-04-01

    Ring-on-square tests on two kinds of low-alloy carburized steel which were AISI 8620 and 4140 were carried out to study the dry sliding wear behavior. The influence of different retained austenite level of 6% to 40% was evaluated while trying to eliminate other factors. Test results show that the effects of grain size and carburized steel species are negligible in dry sliding wear behavior. While the influence of retained austenite is negligible at 20 kg load condition, wear resistance is decreased at 40 kg load condition as the retained austenite level is increased from 6% to 30%. However, wear resistance is again increased above about 30% of retained austenite level at 40 kg load condition. (orig.)

  20. Effect of Cr Contents and Heat Treating on Reverted Austenite in Maraging Steel Weldments

    Science.gov (United States)

    Kim, S. W.; Lee, H. W.

    2018-05-01

    By conducting flux cored arc welding (FCAW) on maraging steels with Cr contents of 1.4 and 5.2 wt%, this study observed the effects of Cr content and heat treating on reverted austenite formation in welded maraging steel. Aging treatment was carried out at the temperatures of 450, 480 and 530 °C for 3 h in each condition. As the aging temperature increased, reverted austenite was formed along the interdendritic and intercellular grain boundaries, and the proportion of reverted austenite increased with increasing Cr addition. The aging process led to the segregation of Ti and Mo along the interdendritic and intercellular grain boundaries. Some of the welded specimens were subjected to solution heat treatment at 820 and 1250 °C for 1 h after welding, resulting in a decrease in reverted austenite fraction.

  1. Influence of austenite grain size on recrystallisation-precipitation interaction in a V-microalloyed steel

    International Nuclear Information System (INIS)

    Quispe, A.; Medina, S.F.; Gomez, M.; Chaves, J.I.

    2007-01-01

    By means of torsion tests using small specimens, the influence of austenite grain size on strain induced precipitation kinetics has been determined in a vanadium microalloyed steel. Determination of recrystallisation-precipitation-time-temperature (RPTT) diagrams for two austenite grain sizes allows values of the aforementioned magnitudes to be determined. An ample discussion is made of the quantitative influence found and its relation with nucleation and growth mechanisms of precipitates. The results are compared with the quantitative influence exerted by the other variables, reaching the conclusion that the austenite grain size has a notable influence on strain induced precipitation kinetics which should not be underestimated. Finally, the influence of austenite grain size is included in a strain induced precipitation model constructed by the authors of this work and which also takes into account the other aforementioned variables

  2. Extended x-ray absorption fine structure investigation of annealed carbon expanded austenite

    DEFF Research Database (Denmark)

    Oddershede, Jette; Christiansen, Thomas L.; Somers, Marcel A. J.

    2012-01-01

    -carburized in a temperature regime around 470°C. The surface zone is converted into carbon expanded austenite; the high interstitial content of carbon dissolved in the surface results in highly favorable materials properties. In the present article the local atomic environment of (annealed) carbon expanded austenite...... austenite and Hägg carbide, Ξ-M5C2. EXAFS showed that the Cr atoms were mainly present in environments similar to the carbides Hägg Ξ-M5C2 and M23C6. The environments of the Fe and Ni atoms were concluded to be largely metallic austenite. Light optical micrograph of stainless steel AISI 316 gas...

  3. Adaptation of fuel code for light water reactor with austenitic steel rod cladding

    International Nuclear Information System (INIS)

    Gomes, Daniel de Souza; Silva, Antonio Teixeira; Giovedi, Claudia

    2015-01-01

    Light water reactors were used with steel as nuclear fuel cladding from 1960 to 1980. The high performance proved that the use of low-carbon alloys could substitute the current zirconium alloys. Stainless steel is an alternative that can be used as cladding. The zirconium alloys replaced the steel. However, significant experiences in-pile occurred, in commercial units such as Haddam Neck, Indian Point, and Yankee experiences. Stainless Steel Types 347 and 348 can be used as cladding. An advantage of using Stainless Steel was evident in Fukushima when a large number of hydrogens was produced at high temperatures. The steel cladding does not eliminate the problem of accumulating free hydrogen, which can lead to a risk of explosion. In a boiling water reactor, environments easily exist for the attack of intergranular corrosion. The Stainless Steel alloys, Types 321, 347, and 348, are stabilized against attack by the addition of titanium, niobium, or tantalum. The steel Type 348 is composed of niobium, tantalum, and cobalt. Titanium preserves type 321, and niobium additions stabilize type 347. In recent years, research has increased on studying the effects of irradiation by fast neutrons. The impact of radiation includes changes in flow rate limits, deformation, and ductility. The irradiation can convert crystalline lattices into an amorphous structure. New proposals are emerging that suggest using a silicon carbide-based fuel rod cladding or iron-chromium-aluminum alloys. These materials can substitute the classic zirconium alloys. Once the steel Type 348 was chosen, the thermal and mechanical properties were coded in a library of functions. The fuel performance codes contain all features. A comparative analysis of the steel and zirconium alloys was made. The results demonstrate that the austenitic steel alloys are the viable candidates for substituting the zirconium alloys. (author)

  4. Adaptation of fuel code for light water reactor with austenitic steel rod cladding

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Daniel de Souza; Silva, Antonio Teixeira, E-mail: dsgomes@ipen.br, E-mail: teixeira@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Giovedi, Claudia, E-mail: claudia.giovedi@labrisco.usp.br [Universidade de Sao Paulo (POLI/USP), Sao Paulo, SP (Brazil). Lab. de Analise, Avaliacao e Gerenciamento de Risco

    2015-07-01

    Light water reactors were used with steel as nuclear fuel cladding from 1960 to 1980. The high performance proved that the use of low-carbon alloys could substitute the current zirconium alloys. Stainless steel is an alternative that can be used as cladding. The zirconium alloys replaced the steel. However, significant experiences in-pile occurred, in commercial units such as Haddam Neck, Indian Point, and Yankee experiences. Stainless Steel Types 347 and 348 can be used as cladding. An advantage of using Stainless Steel was evident in Fukushima when a large number of hydrogens was produced at high temperatures. The steel cladding does not eliminate the problem of accumulating free hydrogen, which can lead to a risk of explosion. In a boiling water reactor, environments easily exist for the attack of intergranular corrosion. The Stainless Steel alloys, Types 321, 347, and 348, are stabilized against attack by the addition of titanium, niobium, or tantalum. The steel Type 348 is composed of niobium, tantalum, and cobalt. Titanium preserves type 321, and niobium additions stabilize type 347. In recent years, research has increased on studying the effects of irradiation by fast neutrons. The impact of radiation includes changes in flow rate limits, deformation, and ductility. The irradiation can convert crystalline lattices into an amorphous structure. New proposals are emerging that suggest using a silicon carbide-based fuel rod cladding or iron-chromium-aluminum alloys. These materials can substitute the classic zirconium alloys. Once the steel Type 348 was chosen, the thermal and mechanical properties were coded in a library of functions. The fuel performance codes contain all features. A comparative analysis of the steel and zirconium alloys was made. The results demonstrate that the austenitic steel alloys are the viable candidates for substituting the zirconium alloys. (author)

  5. The significance of ultrafine film-like retained austenite in governing very high cycle fatigue behavior in an ultrahigh-strength MN–SI–Cr–C steel

    International Nuclear Information System (INIS)

    Zhao, P.; Zhang, B.; Cheng, C.; Misra, R.D K.; Gao, G.; Bai, B.; Weng, Y.

    2015-01-01

    We elucidate here the very high cycle fatigue (VHCF) behavior of an ultrahigh-strength medium carbon Mn–Si–Cr–C steel processed using the approach of bainite-based quenching and partitioning (BQ&P). The microstructure of BQ&P process comprised of bainite, carbon-depleted martensite, retained austenite (RA) and small amount of martensite/austenite island (M/A). The tensile strength (R m ) and fatigue limit strength after 10 9 cycles (σ w9 ) and in the non-failed condition were 1688 MPa and 875 MPa, respectively such that σ w9 /R m exceeded conventional steels and was 0.52. Two types of failure modes were observed depending on the surface and microstructure, notably surface-induced failure and non-inclusion-induced failure, where the non-inclusion-induced failure was influenced by the microstructure. Inclusion-induced failure was absent. The study underscores that film-like retained austenite was the underlying reason for superior fatigue properties, hitherto not previously obtained

  6. Corrosion behaviour of dissimilar welds between ferritic-martensitic stainless steel and austenitic stainless steel from secondary circuit of CANDU NPP

    International Nuclear Information System (INIS)

    Popa, L.; Fulger, M.; Tunaru, M.; Velciu, L.; Lazar, M.

    2016-01-01

    Corrosion damages of welds occur in spite of the fact that the proper base metal and filler metal have been correctly selected, industry codes and standards have been followed and welds have been realized with full weld penetration and have proper shape and contour. In secondary circuit of a Nuclear Power Station there are some components which have dissimilar welds. The principal criteria for selecting a stainless steel usually is resistance to corrosion, and white most consideration is given to the corrosion resistance of the base metal, additional consideration should be given to the weld metal and to the base metal immediately adjacent to the weld zone. Our experiments were performed in chloride environmental on two types of samples: non-welded (410 or W 1.4006 ferritic-martensitic steel and 304L or W 1.4307 austenitic stainless steel) and dissimilar welds (dissimilar metal welds: joints between 410 ferritic-martensitic and 304L austenitic stainless steel). To evaluate corrosion susceptibility of dissimilar welds was used electrochemical method (potentiodynamic method) and optic microscopy (microstructural analysis). The present paper follows the localized corrosion behaviour of dissimilar welds between austenitic stainless steel and ferritic-martensitic steel in solutions containing chloride ions. It was evaluated the corrosion rates of samples (welded and non-welded) by electrochemical methods. (authors)

  7. Proposal for the award of two contracts for the supply of fine-blanked austenitic steel collars for the cold masses of the LHC superconducting dipole magnets

    CERN Document Server

    1999-01-01

    This document concerns the award of two contracts for the supply of 12 500 000 fine-blanked austenitic steel collars in three different shapes and of two different types for the cold masses of the LHC superconducting dipole magnets. Following a market survey carried out among 70 firms in fourteen Member States and one firm in Japan, a call for tenders (IT-2469/LHC/LHC) was sent on 3 June 1999 to eleven firms in five Member States and one firm in Japan. By the closing date, CERN had received five tenders. The Finance Committee is invited to agree to the negotiation of two contracts with: - MALVESTITI (IT) for the supply of up to 7 812 500 fine-blanked austenitic steel collars, which represents 5/8 of the total quantity required for the cold masses of the LHC superconducting dipole magnets, for a total amount of up to 6 908 509 Swiss francs, subject to revision for contractual deliveries after 31 December 2001, with an option for the supply of up to 4 687 500 additional fine-blanked austenitic steel collars, wh...

  8. Effects of LWR coolant environments on fatigue lives of austenitic stainless steels

    International Nuclear Information System (INIS)

    Chopra, O.K.; Gavenda, D.J.

    1997-01-01

    The ASME Boiler and Pressure Vessel Code fatigue design curves for structural materials do not explicitly address the effects of reactor coolant environments on fatigue life. Recent test data indicate a significant decrease in fatigue life of pressure vessel and piping materials in light water reactor (LWR) environments. Fatigue tests have been conducted on Types 304 and 316NG stainless steel in air and LWR environments to evaluate the effects of various material and loading variables, e.g., steel type, strain rate, dissolved oxygen (DO) in water, and strain range, on fatigue lives of these steels. The results confirm the significant decrease in fatigue life in water. The environmentally assisted decrease in fatigue life depends both on strain rate and DO content in water. A decrease in strain rate from 0.4 to 0.004%/s decreases fatigue life by a factor of ∼ 8. However, unlike carbon and low-alloy steels, environmental effects are more pronounced in low-DO than in high-DO water. At ∼ 0.004%/s strain rate, reduction in fatigue life in water containing <10 ppb D is greater by a factor of ∼ 2 than in water containing ≥ 200 ppb DO. Experimental results have been compared with estimates of fatigue life based on the statistical model. The formation and growth of fatigue cracks in austenitic stainless steels in air and LWR environments are discussed

  9. Retained Austenite in SAE 52100 Steel Post Magnetic Processing and Heat Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, Nathaniel R [ORNL; Watkins, Thomas R [ORNL; Cavin, Odis Burl [ORNL; Jaramillo, Roger A [ORNL; Ludtka, Gerard Michael [ORNL

    2007-01-01

    Steel is an iron-carbon alloy that contains up to 2% carbon by weight. Understanding which phases of iron and carbon form as a function of temperature and percent carbon is important in order to process/manufacture steel with desired properties. Austenite is the face center cubic (fcc) phase of iron that exists between 912 and 1394 C. When hot steel is rapidly quenched in a medium (typically oil or water), austenite transforms into martensite. The goal of the study is to determine the effect of applying a magnetic field on the amount of retained austenite present at room temperature after quenching. Samples of SAE 52100 steel were heat treated then subjected to a magnetic field of varying strength and time, while samples of SAE 1045 steel were heat treated then subjected to a magnetic field of varying strength for a fixed time while being tempered. X-ray diffraction was used to collect quantitative data corresponding to the amount of each phase present post processing. The percentage of retained austenite was then calculated using the American Society of Testing and Materials standard for determining the amount of retained austenite for randomly oriented samples and was plotted as a function of magnetic field intensity, magnetic field apply time, and magnetic field wait time after quenching to determine what relationships exist with the amount of retained austenite present. In the SAE 52100 steel samples, stronger field strengths resulted in lower percentages of retained austenite for fixed apply times. The results were inconclusive when applying a fixed magnetic field strength for varying amounts of time. When applying a magnetic field after waiting a specific amount of time after quenching, the analyses indicate that shorter wait times result in less retained austenite. The SAE 1045 results were inconclusive. The samples showed no retained austenite regardless of magnetic field strength, indicating that tempering removed the retained austenite. It is apparent

  10. Oxidization and stress corrosion cracking initiation of austenitic alloys in supercritical water

    International Nuclear Information System (INIS)

    Behnamian, Y.; Li, M.; Luo, J.L.; Chen, W.X.; Zheng, W.; Guzonas, D.A.

    2012-01-01

    This study determined the stress corrosion cracking behaviour of austenitic alloys in pure supercritical water. Austenitic stainless steels 310S, 316L, and Inconel 625 were tested as static capsule samples at 500 o C for up to 5000 h. After that period, crack initiations were readily observed in all samples, signifying susceptibility to stress corrosion cracking. The microcracks in 316L stainless steel and Inconel 625 were almost intergranular, whereas transgranular microcrack initiation was observed in 310S stainless steel. (author)

  11. V and Nb Influence on the Austenitic Stainless Steel Corrosion in 0.1 M HCl

    Directory of Open Access Journals (Sweden)

    Amel GHARBI

    2014-05-01

    Full Text Available Vanadium and niobium were added in AISI309 austenitic stainless steel composition to modify their structure and pitting corrosion resistance in 0.1 M HCl. The structural characterization was carried out by X-rays diffraction and optical microscopy. Corrosion behavior was investigated using potentiodynamic tests and electrochemical impedance measurements (EIS .Results showed that vanadium and niobium addition precipitated stable carbides (VC, NbC to chromium carbides’ detriment and improved austenitic stainless steel corrosion resistance.

  12. Ion irradiation-induced precipitation of Cr23C6 at dislocation loops in austenitic steel

    International Nuclear Information System (INIS)

    Jin, Shuoxue; Guo, Liping; Luo, Fengfeng; Yao, Zhongwen; Ma, Shuli; Tang, Rui

    2013-01-01

    The irradiation-induced precipitates in argon ion-irradiated austenitic stainless steel at 550 °C were examined via transmission electron microscopy. The selected-area electron diffraction patterns of precipitates indicated unambiguously that the precipitates were Cr 23 C 6 carbides. It was observed directly for the first time that irradiation-induced Cr 23 C 6 precipitates formed at dislocation loops in austenitic stainless steel, and coarsened with increasing irradiation dose.

  13. Austenite stability in reversion-treated structures of a 301LN steel under tensile loading

    Czech Academy of Sciences Publication Activity Database

    Järvenpää, A.; Jaskari, M.; Man, Jiří; Karjalainen, L. P.

    2017-01-01

    Roč. 127, MAY (2017), s. 12-26 ISSN 1044-5803 R&D Projects: GA ČR GA13-32665S Institutional support: RVO:68081723 Keywords : austenitic stainless steel * austenite stability * grain size * reversion annealing * tensile straining * deformation induced martensite Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis Impact factor: 2.714, year: 2016

  14. Influence of Plastic Deformation on Low Temperature Surface Hardening of Austenitic Stainless Steel by Gaseous Nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin

    2015-01-01

    This article addresses an investigation of the influence of plastic deformation on low temperature surface hardening by gaseous nitriding of two commercial austenitic stainless steels: AISI 304 and EN 1.4369. The materials were plastically deformed to different equivalent strains by uniaxial...... demonstrate that a case of expanded austenite develops and that, in particular, strain-induced martensite has a large influence on the nitrided zone....

  15. Heat treatment giving a stable high temperature micro-structure in cast austenitic stainless steel

    Science.gov (United States)

    Anton, Donald L.; Lemkey, Franklin D.

    1988-01-01

    A novel micro-structure developed in a cast austenitic stainless steel alloy and a heat treatment thereof are disclosed. The alloy is based on a multicomponent Fe-Cr-Mn-Mo-Si-Nb-C system consisting of an austenitic iron solid solution (.gamma.) matrix reinforced by finely dispersed carbide phases and a heat treatment to produce the micro-structure. The heat treatment includes a prebraze heat treatment followed by a three stage braze cycle heat treatment.

  16. The improvement of ultrasonic characteristics in weld metal of austenitic stainless steel using magnetic stirring method

    International Nuclear Information System (INIS)

    Arakawa, T.; Tomisawa, Y.

    1988-01-01

    The magnetic stirring welding process was tested to save the difficulty of ultrasonic testing of austenitic stainless steel overlayed welds, due to grain refinement of weld solidification structure. The testing involved stirring the molten pool with Lorenz force induced by the interaction of welding current and alternative magnetic field applied from the outside magnetic coil. This report summarizes improvement of ultrasonic characteristic in austenitic stainless steel overlayed welds caused by magnetic stirring welding process

  17. Sensitiaztion of austenitic stainless steels and its significance as regards stress-corrosion cracking of BWR pipe systems

    International Nuclear Information System (INIS)

    Roberts, W.; Otterberg, R.

    1984-05-01

    A critical literature evaluation dealing with sensitization of austenitic stainless steels and its importance in the context of intergranular stress-corrosion cracking (IGSCC) in high-temperature, oxygenated water is presented. The factors influencing the degree of sensitization are discussed, principally for type-304 stainless steels, both as regards sensitization arising as a result of isothermal holding within the critical temperature range and weld sensitization. The phenomenon of low-temperature sensitization is described and its potential significance under BWR operating conditions speculated upon. The principal features of and mechanisms controlling IGSCC of sensitized 304 steels in BWR-type environments are reviewed and some thoughts are given to the relevance of laboratory SCC testing in predicting the occurrence of cracking in actual BWR systems. Finally various countermeasures against IGSCC in existing and projected reactors are presented and discussed. (Author)

  18. On the role of interlath retained austenite in the deformation of lath martensite

    International Nuclear Information System (INIS)

    Maresca, F; Kouznetsova, V G; Geers, M G D

    2014-01-01

    Literature presents extensive experimental evidence of large deformation and ductile fracture behaviour of lath martensite in martensitic and multi-phase high strength steels under quasi-static, uniaxial loading conditions. The physical origin of this apparent ductile behaviour of martensite is not clear, since martensite generally provides a high material strength. The presence of thin films of interlath retained austenite may trigger the observed apparent martensite ductility. The present contribution investigates the role played by interlath retained austenite on the mechanics of lath martensite by means of crystal plasticity simulations. It is shown that independently from the interlath retained austenite volume fraction and the exact lath morphology, localized shearing along the lath habit plane occurs as long as there are enough carriers for plasticity. The austenite film acts like a ‘greasy’ plane on which the stiffer laths can slide. The shearing mechanism is not a mere consequence of the lower flow stress in the austenitic phase, but it is largely due to the orientation relationship between the retained austenite face centred cubic lattice and the body centred cubic lath crystals. (paper)

  19. On the measurement of austenite in supermartensitic stainless steel by X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Tolchard, Julian Richard, E-mail: tolchard@material.ntnu.no [Department of Materials Science and Engineering, Norwegian University of Science and Technology, Trondheim (Norway); Sømme, Astri; Solberg, Jan Ketil [Department of Materials Science and Engineering, Norwegian University of Science and Technology, Trondheim (Norway); Solheim, Karl Gunnar [Statoil, Stavanger (Norway)

    2015-01-15

    Sections of a 13Cr supermartensitic stainless steel were investigated to determine the optimum sample preparation for measurement of the austenite content by X-ray diffraction. The surface of several samples was mechanically ground or polished using media of grit sizes in the range 1–120 μm. The strained surface layer was afterwards removed stepwise by electropolishing, and the austenite content measured at each step. It was found that any level of mechanical grinding or polishing results in a reduction of the measured austenite fraction relative to the true bulk value, and that coarser grinding media impart greater damage and greater reduction in the measured austenite content. The results thus highlight the importance of the electropolishing step in preparation of such samples, but suggest that the American Society for Testing and Materials standard E975-03 substantially overestimates the amount of material which needs to be removed to recover the true “bulk” content. - Highlights: • Quantitative Rietveld analysis of austenite/martensite ratio in supermartensitic stainless steels • Critical evaluation of sample preparation for residual austenite measurements by X-ray diffraction • Highlighting of the importance of electropolishing as a final preparation step.

  20. Theoretical and experimental study of carburisation and decarburisation of a meta-stable austenitic steel

    Directory of Open Access Journals (Sweden)

    Charles West

    2005-12-01

    Full Text Available Metastable austenitic stainless steels are known to undergo a partial transformation of austenite to martensite as a consequence of plastic deformation. In the case of cyclic loading, a certain level of plastic strain must be exceeded, and phase formation takes place after an incubation period, during which the necessary amount of plastic deformation is accumulated. The susceptibility of the austenitic phase to deformation-induced martensite formation is strongly affected by the temperature of loading and the stability of austenite, which itself depends on the chemical composition. A key element in this regard is carbon which stabilizes the austenitic phase. It is shown in this study that the carbon concentration can be analysed systematically and reproducible by means of annealing treatments, if the parameters of these treatments are carefully defined on the basis of advanced theoretical thermodynamic and kinetic considerations. First results on the effect of carbon concentration and temperature of fatigue testing on the austenite/martensite transformation are presented, in order to illustrate the significance of these parameters on the martensite formation rate.

  1. The stability of retained austenite at different locations during straining of I&Q&P steel

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chenghao [School of Materials Science and Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Yu, Hao, E-mail: yuhao@ustb.edu.cn [School of Materials Science and Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Li, Lili; Zhou, Tao; Lu, Jun [School of Materials Science and Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Liu, Xihui [Qingzhou Construction Quality and Safety Supervision Station, Shandong 262500 (China)

    2016-07-18

    This paper presents a detailed investigation of the transformation behavior of retained austenite at different locations of intercritical heating, quenching and partitioning (I&Q&P) steel. The consumption of retained austenite at different strains is investigated by X-ray diffraction (XRD). Results indicate that retained austenite can transform into martensite progressively during the whole deformation process, which is in favor of a good combination of strength and ductility, contributing to a high product of strength and elongation (PSE) of 31.9 GPa%. The transformation characteristics of retained austenite at different locations after different strains are characterized by electron back scattered diffraction (EBSD) and transmission electron microscopy (TEM). Results show that the transformation preferentially occurs in the retained austenite at ferrite grain boundaries, subsequently the one within ferrite grains (at 10% strain) and eventually the one between martensite laths (at 15% strain). In FCC phase, the average local misorientations are 0.547° and 0.674° at 5% and 10% strain, respectively; however, the values are not more than 0.7° at 15% and 20% strain due to the TRIP effect. For the retained austenite within ferrite grains, the interior part preferentially transforms into twin martensite, while the interface still remains due to alloying elements segregation.

  2. Further contribution to the study of buffer layer on austenitic stainless stell overlays obtained by means of automatic submerged arc welding with electrode-wire

    International Nuclear Information System (INIS)

    Colla, G.

    1988-01-01

    The influence of several buffer layer types on a 308 type austenitic stainless steel surface overlay having a 19-21% chromium and 10-12% nikel content have been analysed. Cladding passes have been deposited on carbon steel test samples by using automatic submerged arc welding process with electrode-wire. The experimental tests have involved buffer layers having seven different chemical compositions and the obtained results are reported and discussed in the paper. The achieved experimetal results allow selecting the most suitable buffer layer to be deposited in order to reach the required cladding performance in service

  3. New developments for the ultrasonic inspection of austenitic stainless steel welds

    International Nuclear Information System (INIS)

    Chassignole, Bertrand; Doudet, Loic; Dupond, Olivier; Fouquet, Thierry; Richard, Benoit

    2006-01-01

    EDF R and D undertakes studies in non destructive testing (NDT) for better understanding the influence of various parameters (material, type of defect, geometry) on the 'controllability' of the critical components for nuclear safety. In the field of ultrasonic testing, one of the principal research orientations is devoted to the study of the austenitic stainless steel welds of the primary cooling system. Indeed, the structure of these welds present characteristics making difficult their examination, for example: - a strong anisotropy of the properties of elasticity which, coupled with the heterogeneity of the grain orientations, can involve phenomena of skewing, division and distortion of the beam; - a significant scattering of the waves by the grains involving an high attenuation and sometimes backscattered signals. For several years, actions have been launched to improve comprehension of these disturbing phenomena and to evaluate the controllability of those welds. This work is based on the one hand on experimental analyses on representative mock-ups and on the other hand on the developments of modelling codes taking into account the characteristics of the materials. We present in this document a synthesis of this work by developing the following points in particular: - a description of the phenomena of propagation; - the works undertaken to characterize the structure of the welds; - an example of study coupling experimental and modelling analyses for a butt weld achieved by manual arc welding with coated electrodes. The paper has the following contents: 1. Context; 2. Presentation of the problem; 3. Characterization of austenitic welds; 4. From comprehension to industrial application; 5. Conclusion and perspectives; 5. Conclusion and perspectives. This synthesis shows that each austenitic stainless steel weld is a particular case for the ultrasonic testing. This work allowed to better apprehend the disturbances of the ultrasonic propagation in the welds and thus

  4. Intermetallic Strengthened Alumina-Forming Austenitic Steels for Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Bin [Dartmouth College, Hanover, NH (United States); Baker, Ian [Dartmouth College, Hanover, NH (United States)

    2016-03-31

    In order to achieve energy conversion efficiencies of >50 % for steam turbines/boilers in power generation systems, the materials required must be strong, corrosion-resistant at high temperatures (>700°C), and economically viable. Austenitic steels strengthened with Laves phase and L12 precipitates, and alloyed with aluminum to improve oxidation resistance, are potential candidate materials for these applications. The creep resistance of these alloys is significantly improved through intermetallic strengthening (Laves-Fe2Nb + L12-Ni3Al precipitates) without harmful effects on oxidation resistance. Microstructural and microchemical analyses of the recently developed alumina-forming austenitic (AFA) steels (Fe-14Cr-32Ni-3Nb-3Al-2Ti-based) indicated they are strengthened by Ni3Al(Ti) L12, NiAl B2, Fe2Nb Laves phase and MC carbide precipitates. Different thermomechanical treatments (TMTs) were performed on these stainless steels in an attempt to further improve their mechanical properties. The thermo-mechanical processing produced nanocrystalline grains in AFA alloys and dramatically increased their yield strength at room temperature. Unfortunately, the TMTs didn’t increase the yield strengths of AFA alloys at ≥700ºC. At these temperatures, dislocation climb is the dominant mechanism for deformation of TMT alloys according to strain rate jump tests. After the characterization of aged AFA alloys, we found that the largest strengthening effect from L12 precipitates can be obtained by aging for less than 24 h. The coarsening behavior of the L12 precipitates was not influenced by carbon and boron additions. Failure analysis and post-mortem TEM analysis were performed to study the creep failure mechanisms of these AFA steels after creep tests. Though the Laves and B2-NiAl phase precipitated along the boundaries can improve the creep properties, cracks were

  5. Partial transformation of austenite in Al-Mn-Si TRIP steel upon tensile straining: an in situ EBSD study

    DEFF Research Database (Denmark)

    Lomholt, Trine Nybo; Adachi, Y.; da Silva Fanta, Alice Bastos

    2013-01-01

    The transformation of austenite to martensite in an Al–Mn–Si transformation-induced plasticity steel was investigated with in situ electron backscatter diffraction (EBSD) measurements under tensile straining. The visualisation of the microstructure upon straining allows for an investigation...... to be more stable than large grains, while austenite grains located beside bainitic ferrite are the most stable. Moreover, it is demonstrated that austenite grains transform gradually...

  6. Influence of Plastic Deformation on Low Temperature Surface Hardening of Austenitic and Precipitation Hardening Stainless Steels by Gaseous Nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin

    2015-01-01

    This article addresses an investigation of the influence of plastic deformation on low temperature surface hardening by gaseous nitriding of three commercial austenitic stainless steels: AISI 304, EN 1.4369 and Sandvik Nanoflex® with various degrees of austenite stability. The materials were...... case included X-ray diffraction analysis, reflected light microscopy and microhardness. The results demonstrate that a case of expanded austenite develops and that, in particular, strain-induced martensite has a large influence on the nitrided zone....

  7. Evaluation of neutron irradiation effect on SCC crack growth behaviour for austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Austenitic stainless steels are widely used as structural components in reactor pressure vessel internals because of their high strength, ductility, and fracture toughness. However, exposure to neutron irradiation results in changes in microstructure, mechanical properties and microchemistry of the steels. Irradiation assisted stress corrosion cracking (IASCC) caused by the effect of neutron irradiation during long term plant operation in high temperature water environments is considered to take the form of intergranular stress corrosion cracking (IGSCC) and the critical fluence level has been reported to be about 5x10{sup 24}n/m{sup 2} (E>1MeV) in Type 304 stainless steel in BWR environment. JNES had been conducting IASCC project during the JFY (2000) - JFY (2008) period, and prepared an engineering database on IASCC. However, the data of Crack Growth Rate (CGR) below the critical fluence level are not sufficient. So, this project was initiated to obtain the CGR data below the critical fluence level. Test specimens have been irradiated in the Halden reactor, operating by the OECD Halden Reactor Project, and the post irradiation examination (PIE) will be conducted from JFY (2011) to JFY (2013), finally the modified IASCC guide will be prepared in JFY (2013). (author)

  8. Modeling of cavity swelling-induced embrittlement in irradiated austenitic stainless steels

    International Nuclear Information System (INIS)

    Han, X.

    2012-01-01

    During long-time neutron irradiation occurred in Pressurized Water Reactors (PWRs), significant changes of the mechanical behavior of materials used in reactor core internals (made of 300 series austenitic stainless steels) are observed, including irradiation induced hardening and softening, loss of ductility and toughness. So far, much effect has been made to identify radiation effects on material microstructure evolution (dislocations, Frank loops, cavities, segregation, etc.). The irradiation-induced cavity swelling, considered as a potential factor limiting the reactor lifetime, could change the mechanical properties of materials (plasticity, toughness, etc.), even lead to a structure distortion because of the dimensional modifications between different components. The principal aim of the present PhD work is to study qualitatively the influence of cavity swelling on the mechanical behaviors of irradiated materials. A micromechanical constitutive model based on dislocation and irradiation defect (Frank loops) density evolution has been developed and implemented into ZeBuLoN and Cast3M finite element codes to adapt the large deformation framework. 3D FE analysis is performed to compute the mechanical properties of a polycrystalline aggregate. Furthermore, homogenization technique is applied to develop a Gurson-type model. Unit cell simulations are used to study the mechanical behavior of porous single crystals, by accounting for various effects of stress triaxiality, of void volume fraction and of crystallographic orientation, in order to study void effect on the irradiated material plasticity and roughness at polycrystalline scale. (author) [fr

  9. Variation behavior of residual stress distribution by manufacturing processes in welded pipes of austenitic stainless steel

    International Nuclear Information System (INIS)

    Ihara, Ryohei; Hashimoto, Tadafumi; Mochizuki, Masahito

    2012-01-01

    Stress corrosion cracking (SCC) has been observed near heat affected zone (HAZ) of primary loop recirculation pipes made of low-carbon austenitic stainless steel type 316L in the nuclear power plants. For the non-sensitization material, residual stress is the important factor of SCC, and it is generated by machining and welding. In the actual plants, welding is conducted after machining as manufacturing processes of welded pipes. It could be considered that residual stress generated by machining is varied by welding as a posterior process. This paper presents residual stress variation due to manufacturing processes of pipes using X-ray diffraction method. Residual stress distribution due to welding after machining had a local maximum stress in HAZ. Moreover, this value was higher than residual stress generated by welding or machining. Vickers hardness also had a local maximum hardness in HAZ. In order to clarify hardness variation, crystal orientation analysis with EBSD method was performed. Recovery and recrystallization were occurred by welding heat near the weld metal. These lead hardness decrease. The local maximum region showed no microstructure evolution. In this region, machined layer was remained. Therefore, the local maximum hardness was generated at machined layer. The local maximum stress was caused by the superposition effect of residual stress distributions due to machining and welding. Moreover, these local maximum residual stress and hardness are exceeded critical value of SCC initiation. In order to clarify the effect of residual stress on SCC initiation, evaluation including manufacturing processes is important. (author)

  10. Measurements of the acoustic field on austenitic welds: a way to higher reliability in ultrasonic tests

    International Nuclear Information System (INIS)

    Kemnitz, P.; Richter, U.; Klueber, H.

    1997-01-01

    In nuclear power plants many of the welds in austenitic tubes have to be inspected by means of ultrasonic techniques. If component-identical test pieces are available, they are used to qualify the ultrasonic test technology. Acoustic field measurements on such test blocks give information whether the beam of the ultrasonic transducer reaches all critical parts of the weld region and which transducer type is best suited. Acoustic fields have been measured at a bimetallic, a V-shaped and a narrow gap weld in test pieces of wall thickness 33, 25 and 17 mm, respectively. Compression wave transducers 45, 60 and 70 and 45 shear wave transducers have been included in the investigation. The results are presented: (1) as acoustic C-scans for one definite probe position, (2) as series of C-scans for the probe moving on a track perpendicular to the weld, (3) as scan along the weld and (4) as effective beam profile. The influence of the scanning electrodynamic probe is also discussed. (orig.)

  11. Evaluation of neutron irradiation effect on SCC crack growth behaviour of austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    Austenitic stainless steels are widely used as structural materials alloy in reactor pressure vessel internal components because of their high strength, ductility and fracture toughness. However, exposure due to neutron irradiation results in changes in microstructure, mechanical properties and microchemistry of the material. Irradiation assisted stress corrosion cracking (IASCC) caused by the effect of neutron irradiation during long term operation in high temperature water environments in nuclear power plants is considered to take the form of intergranular stress corrosion cracking (IGSCC) and the critical fluence level has been reported to be about 5x10{sup 24}n/m{sup 2} (E>1MeV) for Type 304 SS in BWR environment. JNES had been conducting IASCC project during from JFY 2000 to JFY 2008, and prepared an engineering database on IASCC. However, the data of crack growth rate (CGR) below the critical fluence level are not sufficient. Therefore, evaluation of neutron irradiation effect project (ENI) was initiated to obtain the CGR data below the critical fluence level, and prepare the SCC growth rate diagram for life time evaluation of core shroud. Test specimens have been irradiated in the OECD/Halden reactor, and the post irradiation experiments (PIE) have been conducting during from JFY 2011 to JFY 2013, finally the modified IASCC guide will be prepared in JFY 2013. (author)

  12. Study of the Weldability of Austenitic PH Steel for Power Plants

    Directory of Open Access Journals (Sweden)

    Ziewiec A.

    2016-06-01

    Full Text Available The article presents the results of Transvarestraint test of a modern precipitation hardened steel X10CrNiCuNb18-9-3 with copper. For comparison, the results of tests of conventional steel without the addition of copper X5CrNi18-10 are presented. The total length of all cracks and the maximum length of cracks were measured. The study of microstructure (LM, SEM showed that the austenitic stainless steel X10CrNiCuNb18-9-3 is very prone to hot cracking. After performing the Transvarestraint tests three types of cracks were observed: solidification cracks occurring during crystallization, liquation cracks due to segregation in the heat affected zone (HAZ and surface cracks. Niobium carbonitrides dispersed in the bands of segregation are the reason of high susceptibility to liquation cracking. Segregation of copper occurring during solidification causes of surface cracking. A combined effect of copper and stresses contributes to formation of hot microcracks. These microcracks propagate to a depth of 20-30 μm.

  13. Precipitation sequence and its effect on age hardening of alumina-forming austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Joonoh, E-mail: mjo99@kims.re.kr [Ferrous Alloy Department, Advanced Metallic Materials Division, Korea Institute of Materials Science, Changwon, Gyeongnam 642-831 (Korea, Republic of); Lee, Tae-Ho [Ferrous Alloy Department, Advanced Metallic Materials Division, Korea Institute of Materials Science, Changwon, Gyeongnam 642-831 (Korea, Republic of); Heo, Yoon-Uk [Graduate Institute of Ferrous Technology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Gyeongbuk 790-784 (Korea, Republic of); Han, Young-Soo [Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Kang, Jun-Yun; Ha, Heon-Young [Ferrous Alloy Department, Advanced Metallic Materials Division, Korea Institute of Materials Science, Changwon, Gyeongnam 642-831 (Korea, Republic of); Suh, Dong-Woo [Graduate Institute of Ferrous Technology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Gyeongbuk 790-784 (Korea, Republic of)

    2015-10-01

    The precipitation sequence during ageing of Fe–14Cr–20Ni–0.9Nb–2.5Al based alumina-forming austenitic (AFA) steel was explored through a transmission electron microscopy analysis and a small angle neutron scattering experiment. The samples were aged at 700 °C for up to 504 h. Particles of NbC, M{sub 23}C{sub 6} and Ni{sub 3}Al-type L1{sub 2} were observed in the early stage of ageing. Metastable L1{sub 2} particles were formed both in grain interior and along grain boundary. M{sub 23}C{sub 6} carbides precipitated along grain boundary accompanied with precipitation of L1{sub 2} particles. After ageing for longer than 48 h, particles of B2-NiAl and Laves-Fe{sub 2}Nb were newly formed. We suggest the possibility of phase transition from L1{sub 2} to B2 with increase in ageing time. Finally, this study examined the change of mechanical properties during ageing through a Gleeble hot tension test and a Vickers hardness test, and then the relationship between precipitation behavior and mechanical properties was carefully investigated and discussed in terms of precipitation behavior.

  14. Creep and precipitation behaviors of AL6XN austenitic steel at elevated temperatures

    Science.gov (United States)

    Meng, L. J.; Sun, J.; Xing, H.

    2012-08-01

    Creep behaviors of the solution-treated AL6XN austenitic stainless steel have been investigated at 873-1023 K and 120-260 MPa. The results showed that the creep stress exponent and activation energy of the AL6XN steel are 5 and 395.4 kJ/mol, respectively in the power-law breakdown regime. TEM observations revealed that dislocations distributed homogenously in grains. The creep deformation mechanism is mainly attributed to viscous dislocation glide. Precipitates in the steel after creep deformation were additionally analyzed by TEM, and the results showed that there are four different types of precipitates, such as M23C6, M6C, σ phase and Laves phase. The M23C6 carbides were observed at grain boundaries in the steel after creep at 873 K. The M6C, σ phase and Laves phase precipitates were found when the creep temperature increases to 923-1023 K. Although the AL6XN steel exhibited low steady state creep rates, a high volume fraction of brittle precipitates of σ and Laves phases reduced the creep lifetime of the steel at elevated temperatures.

  15. Creep and precipitation behaviors of AL6XN austenitic steel at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Meng, L.J. [School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Road 800, Shanghai 200240 (China); Sun, J., E-mail: jsun@sjtu.edu.cn [School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Road 800, Shanghai 200240 (China); Xing, H. [School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Road 800, Shanghai 200240 (China)

    2012-08-15

    Creep behaviors of the solution-treated AL6XN austenitic stainless steel have been investigated at 873-1023 K and 120-260 MPa. The results showed that the creep stress exponent and activation energy of the AL6XN steel are 5 and 395.4 kJ/mol, respectively in the power-law breakdown regime. TEM observations revealed that dislocations distributed homogenously in grains. The creep deformation mechanism is mainly attributed to viscous dislocation glide. Precipitates in the steel after creep deformation were additionally analyzed by TEM, and the results showed that there are four different types of precipitates, such as M{sub 23}C{sub 6}, M{sub 6}C, {sigma} phase and Laves phase. The M{sub 23}C{sub 6} carbides were observed at grain boundaries in the steel after creep at 873 K. The M{sub 6}C, {sigma} phase and Laves phase precipitates were found when the creep temperature increases to 923-1023 K. Although the AL6XN steel exhibited low steady state creep rates, a high volume fraction of brittle precipitates of {sigma} and Laves phases reduced the creep lifetime of the steel at elevated temperatures.

  16. Microstructural sensitivity of 316H austenitic stainless steel: Residual stress relaxation and grain boundary fracture

    Energy Technology Data Exchange (ETDEWEB)

    Chen, B., E-mail: b.chen@bristol.ac.uk [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom); Flewitt, P.E.J. [Interface Analysis Centre, University of Bristol, 121 St Michael' s Hill, Bristol BS2 8BS (United Kingdom); H.H. Wills Physics Laboratory, School of Physics, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Smith, D.J. [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom)

    2010-10-25

    Research highlights: {yields} Triaxial residual macro-stresses have been measured by neutron diffraction. {yields} Rates of stress relaxation are shown to be a function of the microstructure. {yields} Quantification of M{sub 23}C{sub 6} precipitation was undertaken by a novel approach. {yields} Intergranular M{sub 23}C{sub 6} precipitation promotes the potential to intergranular fracture. {yields} Phosphorous segregation further enhances the potential to intergranular fracture. - Abstract: The present work considers the role of thermo-mechanical history on the generation and relaxation of residual stresses, typical of those encountered in Type 316H austenitic stainless steel thick section weldments. A series of thermo-mechanical pre-treatments have been developed and applied to simulate the critical microstructures observed within the heat affected zone of the thick section parent material. The through thickness distributions of the residual macro-stresses in cylindrical specimens have been measured by neutron diffraction and then the rates of the relaxation are shown to be a function of microstructure. The susceptibility to intergranular brittle fracture at a temperature of -196 deg. C is shown to be a function of M{sub 23}C{sub 6} carbide precipitates and phosphorous segregation at the grain boundaries. Finally, the link of the present study to the understanding of the reheat cracking is briefly discussed.

  17. Effect of liquid sodium on long-term properties of austenitic steels

    International Nuclear Information System (INIS)

    Svoboda, V.; Merta, J.; Slach, J.

    The effect is discussed of liquid sodium on the long-term properties of austenitic steels corresponding to the ASI 304 and ASI 316 types, mainly of steel CSN 17348. The choice is described of test specimens and of the experimental sodium test equipment. Testing was carried out using the so-called indirect method, i.e., the liquid sodium effect was assessed using the results of creep tests of two groups of specimens, one exposed to sodium and the other to the inert argon atmosphere. Otherwise the tests proceeded under identical conditions. The sodium stand had been manufactured for exposure of test specimens to liquid sodium. The morphology of specimen surfaces was studied by the JSN-50A electron microscope. The results of testing steel CSN 17348-AKV EXTRA S exposed to liquid sodium containing 10 ppm of oxygen at a temperature of 550 degC showed a significant sodium effect on the basic mechanical properties, on long-term creep strength and on the metallurgical properties. (Oy)

  18. Tribological behavior of an austenitic stainless steel AISI 316L nitrurated by DC-pulsed plasma

    International Nuclear Information System (INIS)

    De Las Heras, E; Walther, F; Corengia, P.A; Quinteiro, M.O; Cabo, A; Bruhl, S; Sommadossi, S

    2004-01-01

    Austenitic stainless steels are widely used in different applications because they withstands corrosion. Ionic nitruration has proven to be an adequate technique for modifying this type of steel, in order to improve its resistance to wear without diminishing its resistance to corrosion. While many publications have reported improvements in the tribological properties of the nitrurated AISI 316, systematic studies that evaluate this behavior using industrial equipment for its thermochemical treatment are of interest. This work studied the tribological behavior of an AISI 316L steel nitrurated by DC pulsed plasma in an industrial machine in an atmosphere of 25% N 2 and 75% H 2 for 20 h at 400 o C by means of abrasion tests under different conditions in an A 135 Amsler-disk machine. In order to characterize the abraded samples microhardness, optic and scanning electron microscopy profiles to determine the abrasion mechanisms were performed. The results showed substantial improvement in the abrasion resistance of the nitrurated samples compared to the non nitrurated ones and the different abrasion mechanisms are discussed to explain the test results (CW)

  19. The mechanical properties of austenite stainless steel 304 after structural deformation through cold work

    Energy Technology Data Exchange (ETDEWEB)

    Mubarok, Naila; Manaf, Azwar, E-mail: azwar@ui.ac.id [PPS Materials Science, FMIPA-Universitas Indonesia, Depok 16424 (Indonesia); Notonegoro, Hamdan Akbar [Mechanical Engineering Dept., FT-Universitas Sultan Ageng Tirtayasa,Cilegon 42435 (Indonesia); Thosin, Kemas Ahmad Zaini [Pusat Penelitian Fisika,LIPI, Serpong (Indonesia)

    2016-06-17

    The 304 stainless steel (SS) type is widely used in oil and gas operations due to its excellent corrosion resistance. However, the presence of the fine sand particles and H{sub 2}S gas contained in crude oil could lead the erosion and abrasion in steel. In this study, cold rolled treatments were conducted to the 304 SS in order to increase the wear resistance of the steel. The cold work has resulted in thickness reduction to 20%, 40% and 60% of the original. Various microstructural characterizations were used to analyze the effect of deformation. The hardness characterization showed that the initial hardness value increased from 145 HVC to 395 HVC as the level of deformation increase. Further, the wear resistance increased with the deformation rate from 0% to 40% and subsequently decreased from 40% to 60% deformation rate. Microstructural characterization shows that the boundary change to coincide by 56 µm, 49 µm, 45 µm, and 43 µm width and the grain go to flatten and being folded like needles. The effect of deformation on the grain morphology and structure was also studied by optical metallography and X-Ray Diffraction. It is shown that the deformation by means of a cold rolled process has transformed the austenite structure into martensitic structure.

  20. Facile fabrication of superhydrophobic surfaces from austenitic stainless steel (AISI 304) by chemical etching

    Science.gov (United States)

    Kim, Jae-Hun; Mirzaei, Ali; Kim, Hyoun Woo; Kim, Sang Sub

    2018-05-01

    Stainless steels are among the most common engineering materials and are used extensively in humid areas. Therefore, it is important that these materials must be robust to humidity and corrosion. This paper reports the fabrication of superhydrophobic surfaces from austenitic stainless steel (type AISI 304) using a facile two-step chemical etching method. In the first step, the stainless steel plates were etched in a HF solution, followed by a fluorination process, where they showed a water contact angle (WCA) of 166° and a sliding angle of 5° under the optimal conditions. To further enhance the superhydrophobicity, in the second step, they were dipped in a 0.1 wt.% NaCl solution at 100 °C, where the WCA was increased to 168° and the sliding angle was decreased to ∼2°. The long-term durability of the fabricated superhydrophobic samples for 1 month storage in air and water was investigated. The potential applicability of the fabricated samples was demonstrated by the excellent superhydrophobicity after 1 month. In addition, the self-cleaning properties of the fabricated superhydrophobic surface were also demonstrated. This paper outlines a facile, low-cost and scalable chemical etching method that can be adopted easily for large-scale purposes.

  1. High-cycle fatigue behavior of ultrafine-grained austenitic stainless and TWIP steels

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, A.S. [Materials Engineering Laboratory (4KOMT), Box 4200, University of Oulu, 90014 Oulu (Finland); Metallurgical and Materials Engineering Department, Faculty of Petroleum and Mining Engineering, Suez Canal University, Box 43721, Suez (Egypt); Karjalainen, L.P., E-mail: pentti.karjalainen@oulu.fi [Materials Engineering Laboratory (4KOMT), Box 4200, University of Oulu, 90014 Oulu (Finland)

    2010-08-20

    High-cycle fatigue behavior of ultrafine-grained (UFG) 17Cr-7Ni Type 301LN austenitic stainless and high-Mn Fe-22Mn-0.6C TWIP steels were investigated in a reversed plane bending fatigue and compared to the behavior of steels with conventional coarse grain (CG) size. Optical, scanning and transmission electron microscopy were used to examine fatigue damage mechanisms. Testing showed that the fatigue limits leading to fatigue life beyond 4 x 10{sup 6} cycles were about 630 MPa for 301LN while being 560 MPa for TWIP steel, and being 0.59 and 0.5 of the tensile strength respectively. The CG counterparts were measured to have the fatigue limits of 350 and 400 MPa. The primary damage caused by fatigue took place by grain boundary cracking in UFG 301LN, while slip band cracking occurred in CG 301LN. However, in the case of TWIP steel, the fatigue damage mechanism is similar in spite of the grain size. In the course of cycling neither the formation of a martensite structure nor mechanical twinning occurs, but intense slip bands are created with extrusions and intrusions. Fatigue crack initiates preferentially on grain and twin boundaries, and especially in the intersection sites of slip bands and boundaries.

  2. Comparison of the microstructure, deformation and crack initiation behavior of austenitic stainless steel irradiated in-reactor or with protons

    Science.gov (United States)

    Stephenson, Kale J.; Was, Gary S.

    2015-01-01

    The objective of this study was to compare the microstructures, microchemistry, hardening, susceptibility to IASCC initiation, and deformation behavior resulting from proton or reactor irradiation. Two commercial purity and six high purity austenitic stainless steels with various solute element additions were compared. Samples of each alloy were irradiated in the BOR-60 fast reactor at 320 °C to doses between approximately 4 and 12 dpa or by a 3.2 MeV proton beam at 360 °C to a dose of 5.5 dpa. Irradiated microstructures consisted mainly of dislocation loops, which were similar in size but lower in density after proton irradiation. Both irradiation types resulted in the formation of Ni-Si rich precipitates in a high purity alloy with added Si, but several other high purity neutron irradiated alloys showed precipitation that was not observed after proton irradiation, likely due to their higher irradiation dose. Low densities of small voids were observed in several high purity proton irradiated alloys, and even lower densities in neutron irradiated alloys, implying void nucleation was in process. Elemental segregation at grain boundaries was very similar after each irradiation type. Constant extension rate tensile experiments on the alloys in simulated light water reactor environments showed excellent agreement in terms of the relative amounts of intergranular cracking, and an analysis of localized deformation after straining showed a similar response of cracking to surface step height after both irradiation types. Overall, excellent agreement was observed after proton and reactor irradiation, providing additional evidence that proton irradiation is a useful tool for accelerated testing of irradiation effects in austenitic stainless steel.

  3. Comparison of the microstructure, deformation and crack initiation behavior of austenitic stainless steel irradiated in-reactor or with protons

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, Kale J., E-mail: kalejs@umich.edu; Was, Gary S.

    2015-01-15

    Highlights: • Dislocation loops were the prominent defect, but neutron irradiation caused higher loop density. • Grain boundaries had similar amounts of radiation-induced segregation. • The increment in hardness and yield stress due to irradiation were very similar. • Relative IASCC susceptibility was nearly identical. • The effect of dislocation channel step height on IASCC was similar. - Abstract: The objective of this study was to compare the microstructures, microchemistry, hardening, susceptibility to IASCC initiation, and deformation behavior resulting from proton or reactor irradiation. Two commercial purity and six high purity austenitic stainless steels with various solute element additions were compared. Samples of each alloy were irradiated in the BOR-60 fast reactor at 320 °C to doses between approximately 4 and 12 dpa or by a 3.2 MeV proton beam at 360 °C to a dose of 5.5 dpa. Irradiated microstructures consisted mainly of dislocation loops, which were similar in size but lower in density after proton irradiation. Both irradiation types resulted in the formation of Ni–Si rich precipitates in a high purity alloy with added Si, but several other high purity neutron irradiated alloys showed precipitation that was not observed after proton irradiation, likely due to their higher irradiation dose. Low densities of small voids were observed in several high purity proton irradiated alloys, and even lower densities in neutron irradiated alloys, implying void nucleation was in process. Elemental segregation at grain boundaries was very similar after each irradiation type. Constant extension rate tensile experiments on the alloys in simulated light water reactor environments showed excellent agreement in terms of the relative amounts of intergranular cracking, and an analysis of localized deformation after straining showed a similar response of cracking to surface step height after both irradiation types. Overall, excellent agreement was observed

  4. Low temperature plasma carburizing of AISI 316L austenitic stainless steel and AISI F51 duplex stainless steel

    OpenAIRE

    Pinedo,Carlos Eduardo; Tschiptschin,André Paulo

    2013-01-01

    In this work an austenitic AISI 316L and a duplex AISI F51 (EN 1.4462) stainless steel were DC-Plasma carburized at 480ºC, using CH4 as carbon carrier gas. For the austenitic AISI 316L stainless steel, low temperature plasma carburizing induced a strong carbon supersaturation in the austenitic lattice and the formation of carbon expanded austenite (γC) without any precipitation of carbides. The hardness of the carburized AISI 316L steel reached a maximum of 1000 HV due to ∼13 at% c...

  5. Low temperature plasma carburizing of AISI 316L austenitic stainless steel and AISI F51 duplex stainless steel

    OpenAIRE

    Pinedo, Carlos Eduardo; Tschiptschin, André Paulo

    2013-01-01

    In this work an austenitic AISI 316L and a duplex AISI F51 (EN 1.4462) stainless steel were DC-Plasma carburized at 480ºC, using CH4 as carbon carrier gas. For the austenitic AISI 316L stainless steel, low temperature plasma carburizing induced a strong carbon supersaturation in the austenitic lattice and the formation of carbon expanded austenite (γC) without any precipitation of carbides. The hardness of the carburized AISI 316L steel reached a maximum of 1000 HV due to ∼13 at% carbon super...

  6. Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling

    International Nuclear Information System (INIS)

    Dijk, N.H. van; Butt, A.M.; Zhao, L.; Sietsma, J.; Offerman, S.E.; Wright, J.P.; Zwaag, S. van der

    2005-01-01

    We have performed in situ X-ray diffraction measurements at a synchrotron source in order to study the thermal stability of the retained austenite phase in transformation induced plasticity steels during cooling from room temperature to 100 K. A powder analysis of the diffraction data reveals a martensitic transformation of part of the retained austenite during cooling. The fraction of austenite that transforms during cooling is found to depend strongly on the bainitic holding time and the composition of the steel. It is shown that that austenite grains with a lower average carbon concentration have a lower stability during cooling

  7. Proof of fatigue strength of ferritic and austenitic nuclear components

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E.; Herter, K.H.; Schuler, X.; Weissenberg, T. [Materialpruefungsanstalt, Univ. Stuttgart (Germany)

    2009-07-01

    For the construction, design and operation of nuclear components and systems the appropriate technical codes and standards provide material data, detailed stress analysis procedures and a design philosophy which guarantees a reliable behaviour of the structural components throughout the specified lifetime. Especially for cyclic stress evaluation the different codes and standards provide different fatigue analyses procedures to be performed considering the various mechanical and thermal loading histories and geometric complexities of the components. For the fatigue design curves used as limiting criteria the influence of different factors like e.g., environment, surface finish and temperature must be taken into consideration in an appropriate way. Fatigue tests were performed with low alloy steels as well as with Nb- and Ti-stabilized German austenitic stainless steels in air and simulated high temperature boiling water reactor environment. The experimental results are compared and valuated with the mean data curves in air as well as with mean data curves under high temperature water environment published in the international literature. (orig.)

  8. Corrosion behavior of austenitic stainless steel containing Ti

    International Nuclear Information System (INIS)

    Cha, Sueng Ok; Choe, Han Cheol; Kim, Kwan Hyu

    1998-01-01

    Corrosion behavior of austenitic stainless steel containing Ti has been studied by using electrochemical techniques. The samples containing Ti from 0.1 to 1.0 wt% were solutionized at 1050 .deg. C for 1hr and then sensitized at 650 .deg. C for 5hr under argon atmosphere. Microstructure and phase analysis of the samples after heat treatment and corrosion tests were carried out by using XRD. TEM, SEM and optical microscope. The amount of δ-ferrite and TiC precipitates in matrix increased as the Ti content increased. In the sensitized samples, Cr 23 C 6 precipitates were observed at γ/δ interface. Degree Of Sensitization(DOS) was lower than 1.0 in all of the solutionized samples and the sensitized samples of Ti content above 0.4% wt% whereas the sensitized samples of Ti content lower than 0.4 wt% showed DOS higher than 1.0. Intergranular attack appeared mainly at grain boundaries in the sensitized sample containing 0.1 wt% Ti and at the γ/δ interface of the higher Ti content. In the latter, however, the attack was not so severe. Pitting potential(E pit ) and repassivation potential(E rep ) of the solutionized and sensitized samples were increased with increasing Ti content. The number and size of the pits decreased with increasing Ti content in the sensitized samples. The pits nucleated at Cr 23 C 6 site and the γ/δ interface

  9. Dynamical recrystallization of high purity austenitic stainless steels

    International Nuclear Information System (INIS)

    Gavard, L.

    2001-01-01

    The aim of this work is to optimize the performance of structural materials. The elementary mechanisms (strain hardening and dynamical regeneration, germination and growth of new grains) occurring during the hot working of metals and low pile defect energy alloys have been studied for austenitic stainless steels. In particular, the influence of the main experimental parameters (temperature, deformation velocity, initial grain size, impurities amount, deformation way) on the process of discontinuous dynamical recrystallization has been studied. Alloys with composition equal to those of the industrial stainless steel-304L have been fabricated from ultra-pure iron, chromium and nickel. Tests carried out in hot compression and torsion in order to cover a wide range of deformations, deformation velocities and temperatures for two very different deformation ways have allowed to determine the rheological characteristics (sensitivity to the deformation velocity, apparent activation energy) of materials as well as to characterize their microstructural deformations by optical metallography and electron back-scattered diffraction. The influence of the initial grain size and the influence of the purity of the material on the dynamical recrystallization kinetics have been determined. An analytical model for the determination of the apparent mobility of grain boundaries, a semi-analytical model for the dynamical recrystallization and at last an analytical model for the stationary state of dynamical recrystallization are proposed as well as a new criteria for the transition between the refinement state and the state of grain growth. (O.M.)

  10. TEM studies of plasma nitrided austenitic stainless steel.

    Science.gov (United States)

    Stróz, D; Psoda, M

    2010-03-01

    Cross-sectional transmission electron microscopy and X-ray phase analysis were used to study the structure of a layer formed during nitriding the AISI 316L stainless steel at temperature 440 degrees C. It was found that the applied treatment led to the formation of 6-microm-thick layer of the S-phase. There is no evidence of CrN precipitation. The X-ray diffraction experiments proved that the occurred austenite lattice expansion - due to nitrogen atoms - depended on the crystallographic direction. The cross-sectional transmission electron microscopy studies showed that the layer consisted of a single cubic phase that contained a lot of defects such as dislocations, stacking faults, slip bands and twins. The high-resolution electron microscopy observations were applied to study the defect formation due to the nitriding process. It was shown that the presence of great number of stacking faults leads to formation of nanotwins. Weak, forbidden {100} reflections were still another characteristic feature of the S-phase. These were not detected in the X-ray spectra of the phase. Basing on the high-resolution electron microscopy studies it can be suggested that the short-range ordering of the nitrogen atoms in the octahedral sites inside the f.c.c. matrix lattice takes place and gives rise to appearance of these spots. It is suggested that the cubic lattice undergoes not only expansion but also slight rombohedral distortion that explains differences in the lattice expansion for different crystallographic directions.

  11. Material Parameters for Creep Rupture of Austenitic Stainless Steel Foils

    Science.gov (United States)

    Osman, H.; Borhana, A.; Tamin, M. N.

    2014-08-01

    Creep rupture properties of austenitic stainless steel foil, 347SS, used in compact recuperators have been evaluated at 700 °C in the stress range of 54-221 MPa to establish the baseline behavior for its extended use. Creep curves of the foil show that the primary creep stage is brief and creep life is dominated by tertiary creep deformation with rupture lives in the range of 10-2000 h. Results are compared with properties of bulk specimens tested at 98 and 162 MPa. Thin foil 347SS specimens were found to have higher creep rates and higher rupture ductility than their bulk specimen counterparts. Power law relationship was obtained between the minimum creep rate and the applied stress with stress exponent value, n = 5.7. The value of the stress exponent is indicative of the rate-controlling deformation mechanism associated with dislocation creep. Nucleation of voids mainly occurred at second-phase particles (chromium-rich M23C6 carbides) that are present in the metal matrix by decohesion of the particle-matrix interface. The improvement in strength is attributed to the precipitation of fine niobium carbides in the matrix that act as obstacles to the movement of dislocations.

  12. Hot compression deformation behavior of AISI 321 austenitic stainless steel

    Science.gov (United States)

    Haj, Mehdi; Mansouri, Hojjatollah; Vafaei, Reza; Ebrahimi, Golam Reza; Kanani, Ali

    2013-06-01

    The hot compression behavior of AISI 321 austenitic stainless steel was studied at the temperatures of 950-1100°C and the strain rates of 0.01-1 s-1 using a Baehr DIL-805 deformation dilatometer. The hot deformation equations and the relationship between hot deformation parameters were obtained. It is found that strain rate and deformation temperature significantly influence the flow stress behavior of the steel. The work hardening rate and the peak value of flow stress increase with the decrease of deformation temperature and the increase of strain rate. In addition, the activation energy of deformation ( Q) is calculated as 433.343 kJ/mol. The microstructural evolution during deformation indicates that, at the temperature of 950°C and the strain rate of 0.01 s-1, small circle-like precipitates form along grain boundaries; but at the temperatures above 950°C, the dissolution of such precipitates occurs. Energy-dispersive X-ray analyses indicate that the precipitates are complex carbides of Cr, Fe, Mn, Ni, and Ti.

  13. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing.

    Science.gov (United States)

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands.

  14. Modified Monkman–Grant relationship for austenitic stainless steel foils

    Energy Technology Data Exchange (ETDEWEB)

    Osman Ali, Hassan, E-mail: hassaninsan@gmail.com [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Tamin, Mohd Nasir, E-mail: taminmn@fkm.utm.my [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)

    2013-02-15

    Characteristics of creep deformation for austenitic stainless steel foils are examined using the modified Monkman–Grant equation. A series of creep tests are conducted on AISI 347 steel foils at 700 °C and different stress levels ranging from 54 to 221 MPa. Results showed that at lower stress levels below 110 MPa, the creep life parameters ε{sub min},ε{sub r},t{sub r} can be expressed using the modified Monkman–Grant equation with exponent m′= 0.513. This indicates significant deviation of the creep behavior from the first order reaction kinetics theory for creep (m′ = 1.0). The true tertiary creep damage in AISI 347 steel foil begins after 65.9% of the creep life of the foil has elapsed at stress levels above 150 MPa. At this high stress levels, Monkman–Grant ductility factor λ{sup ′} saturates to a value of 1.3 with dislocation-controlled deformation mechanisms operating. At low stress levels, λ{sup ′} increases drastically (λ{sup ′}=190 at 54 MPa) when slow diffusion-controlled creep is dominant.

  15. Microstructure Evolution During Creep of Cold Worked Austenitic Stainless Steel

    Science.gov (United States)

    Krishan Yadav, Hari; Ballal, A. R.; Thawre, M. M.; Vijayanand, V. D.

    2018-04-01

    The 14Cr–15Ni austenitic stainless steel (SS) with additions of Ti, Si, and P has been developed for their superior creep strength and better resistance to void swelling during service as nuclear fuel clad and wrapper material. Cold working induces defects such as dislocations that interact with point defects generated by neutron irradiation and facilitates recombination to make the material more resistant to void swelling. In present investigation, creep properties of the SS in mill annealed condition (CW0) and 40 % cold worked (CW4) condition were studied. D9I stainless steel was solution treated at 1333 K for 30 minutes followed by cold rolling. Uniaxial creep tests were performed at 973 K for various stress levels ranging from 175-225 MPa. CW4 samples exhibited better creep resistance as compared to CW0 samples. During creep exposure, cold worked material exhibited phenomena of recovery and recrystallization wherein new strain free grains were observed with lesser dislocation network. In contrast CW0 samples showed no signs of recovery and recrystallization after creep exposure. Partial recrystallization on creep exposure led to higher drop in hardness in cold worked sample as compared to that in mill annealed sample. Accelerated precipitation of carbides at the grain boundaries was observed during creep exposure and this phenomenon was more pronounced in cold worked sample.

  16. Surface modification of austenitic stainless steel by titanium ion implantation

    International Nuclear Information System (INIS)

    Evans, P.J.; Hyvarinen, J.; Samandi, M.

    1995-01-01

    The wear properties of AISI 316 austenitic stainless steel implanted with Ti were investigated for ion doses in the range (2.3-5.4)x10 16 ionscm -2 and average ion energies of 60 and 90keV. The implanted layer was examined by Rutherford backscattering, from which the retained doses were determined, and glow discharge optical emission spectroscopy. Following implantation, the surface microhardness was observed to increase with the greatest change occurring at higher ion energy. Pin-on-disc wear tests and associated friction measurements were also performed under both dry and lubricated conditions using applied loads of 2N and 10N. In the absence of lubrication, breakthrough of the implanted layer occurred after a short sliding time; only for a dose of 5.1x10 16 ionscm -2 implanted at an average energy of 90keV was the onset of breakthrough appreciably delayed. In contrast, the results of tests with lubrication showed a more gradual variation, with the extent of wear decreasing with implant dose at both 2N and 10N loads. Finally, the influence of Ti implantation on possible wear mechanisms is discussed in the light of information provided by several surface characterization techniques. ((orig.))

  17. Inspection of austenitic welds with ultrasonic phased array technology

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A.; Fernandez, F. [Tecnatom (Spain); Dutruc, R.; Ferriere, R. [Metalscan (France)

    2011-07-01

    This series of slides presents the use of ultrasonic phased array technology in the inspection of austenitic welds. The inspection from outside surface (the inspection is performed in contact using wedges to couple the probe to the outer surface of the component) shows that longitudinal wave is the most adequate for perpendicular scans and transversal ultrasonic wave is the most adequate for parallel scans. Detection and length sizing are performed optimally in perpendicular scans. The inspection from inside surface shows: -) Good results in the detection of defects (Sizing has met the requirements imposed by the Authority of the Russian Federation); -) The new design of the mechanical equipment and of the numerous ultrasonic beams refracted by the array probes has increased the volume inspected. The design of the mechanical equipment has also allowed new areas to be inspected (example a piping weld that was not accessible from the outer surface; -) The ultrasonic procedure and Inspection System developed have been validated by the Authority of the Russian Federation. Phase array technique supplies solutions to solve accessibility concerns and improve the ultrasonic inspections of nuclear components

  18. High cycle fatigue of austenitic stainless steels under random loading

    International Nuclear Information System (INIS)

    Gauthier, J.P.; Petrequin, P.

    1987-08-01

    To investigate reactor components, load control random fatigue tests were performed at 300 0 C and 550 0 C, on specimens from austenitic stainless steels plates in the transverse orientation. Random solicitations are produced on closed loop servo-hydraulic machines by a mini computer which generates random load sequence by the use of reduced Markovian matrix. The method has the advantage of taking into account the mean load for each cycle. The solicitations generated are those of a stationary gaussian process. Fatigue tests have been mainly performed in the endurance region of fatigue curve, with scattering determination using stair case method. Experimental results have been analysed aiming at determining design curves for components calculations, depending on irregularity factor and temperature. Analysis in term of mean square root fatigue limit calculation, shows that random loading gives more damage than constant amplitude loading. Damage calculations following Miner rule have been made using the probability density function for the case where the irregularity factor is nearest to 100 %. The Miner rule is too conservative for our results. A method using design curves including random loading effects with irregularity factor as an indexing parameter is proposed

  19. Creep-fatigue damage in austenitic stainless steels

    International Nuclear Information System (INIS)

    Rezgui, Brahim.

    1980-06-01

    This is a study of hold time effects on the low cycle fatigue (L.C.F.) properties of 316L austenitic stainless steel at 600 0 C in air. Results obtained for different plastic strain levels indicate that a tension hold time at peak strain lead to a reduction in fatigue life. The importance of this effect depend on the length of hold period, and also on the strain amplitude. No saturation had been observed. Metallographic and microstructural analysis of failed specimens indicates mechanisms by which failure is produced. For continuous cycling the fractures occurs by the initiation and the propagation of a trans-granular crack. Creep damage in the bulk of material is formed during periods of tensile stress relaxation; it causes a change in the failure mode which became intergranular. It is the interaction between this creep-damage and fatigue cracks which is partly responsable for the reduction in the fatigue life. Predictions based upon linear cumulative damage method indicate that virgin material properties may be irrelevant in creep-fatigue interactions [fr

  20. Stress corrosion cracking in superheater and reheater austenitic tubing

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, R. Barry [Structural Integrity Associates, Inc., Charlotte, NC (United States); Bursik, Albert [PowerPlant Chemistry GmbH, Neulussheim (Germany)

    2011-02-15

    University 101 courses are typically designed to help incoming first-year undergraduate students to adjust to the university, develop a better understanding of the college environment, and acquire essential academic success skills. Why are we offering a special Boiler and HRSG Tube Failures PPChem 101? The answer is simple, yet very conclusive: - There is a lack of knowledge on the identification of tube failure mechanisms and for the implementation of adequate counteractions in many power plants, particularly at industrial power and steam generators. - There is a lack of knowledge to prevent repeat tube failures. The vast majority of BTF/HTF have been, and continue to be, repeat failures. It is hoped that the information about the failure mechanisms of BTF supplied in this course will help to put plant engineers and chemists on the right track. The major goal of this course is the avoidance of repeat BTF. This eights lesson is focused on Stress Corrosion Cracking in Superheater and Reheater Austenitic Tubing. (orig.)