WorldWideScience

Sample records for type 1-matrix metalloproteinase

  1. Matrix metalloproteinase 2 and membrane type 1 matrix metalloproteinase co-regulate axonal outgrowth of mouse retinal ganglion cells

    DEFF Research Database (Denmark)

    Gaublomme, Djoere; Buyens, Tom; De Groef, Lies

    2014-01-01

    regenerative therapies, an improved understanding of axonal outgrowth and the various molecules influencing it, is highly needed. Matrix metalloproteinases (MMPs) constitute a family of zinc-dependent proteases that were sporadically reported to influence axon outgrowth. Using an ex vivo retinal explant model......, but not MMP-9, are involved in this process. Furthermore, administration of a novel antibody to MT1-MMP that selectively blocks pro-MMP-2 activation revealed a functional co-involvement of these proteinases in determining RGC axon outgrowth. Subsequent immunostainings showed expression of both MMP-2 and MT1...... nervous system is lacking in adult mammals, thereby impeding recovery from injury to the nervous system. Matrix metalloproteinases (MMPs) constitute a family of zinc-dependent proteases that were sporadically reported to influence axon outgrowth. Inhibition of specific MMPs reduced neurite outgrowth from...

  2. Associations between advanced glycation endproducts and matrix metalloproteinases and its inhibitor in individuals with type 1 diabetes

    DEFF Research Database (Denmark)

    Peeters, S A; Engelen, L; Buijs, J

    2018-01-01

    the production of MMPs and/or TIMP-1. Therefore, we investigated associations between specific AGEs and MMP-1, -2, -3, -9, and -10, and TIMP-1 in individuals with type 1 diabetes. METHODS: In 670 type 1 diabetic individuals we determined serum levels of protein-bound AGEs Nε-(carboxymethyl)lysine (CML), Nε-(carboxyethyl)lysine......AIMS: Advanced glycation endproducts (AGEs) and altered extracellular matrix remodeling by matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinase (TIMP) are associated with vascular complications in type 1 diabetes. Experimental studies have shown that AGEs regulate...... (CEL), 5-hydro-5-methylimidazolone (MG-H1) and pentosidine, and MMP-1, -2, -3, -9, and -10, and TIMP-1. We performed linear regression analyses to investigate associations between AGEs and markers of the MMP-TIMP system. Analyses were adjusted for age, sex, HbA1c and duration of diabetes...

  3. Levels of matrix metalloproteinase-1 and tissue inhibitors of metalloproteinase-1 in gastric cancer

    Science.gov (United States)

    Kemik, Ozgur; Kemik, Ahu Sarbay; Sümer, Aziz; Dulger, Ahmet Cumhur; Adas, Mine; Begenik, Huseyin; Hasirci, Ismail; Yilmaz, Ozkan; Purisa, Sevim; Kisli, Erol; Tuzun, Sefa; Kotan, Cetin

    2011-01-01

    AIM: To evaluate the levels of preoperative serum matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinase-1 (TIMP-1) in gastric cancer. METHODS: One hundred gastric cancer patients who underwent gastrectomy were enrolled in this study. The serum concentrations of MMP-1 and TIMP-1 in these patients and in fifty healthy controls were determined using an enzyme-linked immunosorbent assay. RESULTS: Higher serum MMP-1 and TIMP-1 levels were observed in patients than in controls (P < 0.001). Serum MMP-1 and TIMP-1 levels were positively associated with morphological appearance, tumor size, depth of wall invasion, lymph node metastasis, liver metastasis, perineural invasion, and pathological stage. They were not significantly associated with age, gender, tumor location, or histological type. CONCLUSION: Increased MMP-1 and TIMP-1 were associated with gastric cancer. Although these markers are not good markers for diagnosis, these markers show in advanced gastric cancer. PMID:21547130

  4. Genetic Variation in the Matrix Metalloproteinase Genes and Diabetic Nephropathy in Type 1 Diabetes

    OpenAIRE

    Kure, Masahiko; Pezzolesi, Marcus G.; Poznik, G. David; Katavetin, Pisut; Skupien, Jan; Dunn, Jonathon S.; Mychaleckyj, Josyf C.; Warram, James H.; Krolewski, Andrzej S.

    2011-01-01

    Genetic data support the notion that polymorphisms in members of the matrix metalloproteinase (MMP) family of genes play an important role in extracellular matrix remodeling and contribute to the pathogenesis of vascular disease. To identify novel genetic markers for diabetic nephropathy (DN), we examined the relationship between MMP gene polymorphisms and DN in the Genetics of Kidneys in Diabetes (GoKinD) population. Genotypic data from the Genetic Association Information Network (GAIN) type...

  5. Omentin-1 prevents cartilage matrix destruction by regulating matrix metalloproteinases.

    Science.gov (United States)

    Li, Zhigang; Liu, Baoyi; Zhao, Dewei; Wang, BenJie; Liu, Yupeng; Zhang, Yao; Li, Borui; Tian, Fengde

    2017-08-01

    Matrix metalloproteinases (MMPs) play a crucial role in the degradation of the extracellular matrix and pathological progression of osteoarthritis (OA). Omentin-1 is a newly identified anti-inflammatory adipokine. Little information regarding the protective effects of omentin-1 in OA has been reported before. In the current study, our results indicated that omentin-1 suppressed expression of MMP-1, MMP-3, and MMP-13 induced by the proinflammatory cytokine interleukin-1β (IL-1β) at both the mRNA and protein levels in human chondrocytes. Importantly, administration of omentin-1 abolished IL-1β-induced degradation of type II collagen (Col II) and aggrecan, the two major extracellular matrix components in articular cartilage, in a dose-dependent manner. Mechanistically, omentin-1 ameliorated the expression of interferon regulatory factor 1 (IRF-1) by blocking the JAK-2/STAT3 pathway. Our results indicate that omentin-1 may have a potential chondroprotective therapeutic capacity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Circulating matrix metalloproteinases are associated with arterial stiffness in patients with type 1 diabetes

    DEFF Research Database (Denmark)

    Peeters, Stijn A.; Engelen, Lian; Buijs, Jacqueline

    2017-01-01

    BACKGROUND: Altered regulation of extracellular matrix (ECM) composition by matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinase (TIMPs) may contribute to arterial stiffening. We investigated associations between circulating MMP-1, -2, -3, -9, -10 and TIMP-1, and carotid......). Linear regression analyses were used to investigate cross-sectional associations between circulating levels of MMP-1, -2, -3, -9, -10, and TIMP-1 and cfPWV (n = 614) as well as office PP (n = 1517). Data on 24-h brachial and 24-h central PP were available in 638 individuals from PROFIL. Analyses were...... was associated with cfPWV [β per 1 SD higher lnMMP3 0.29 m/s (0.02; 0.55)]. In addition, brachial and central 24-h PP measurements in PROFIL were significantly associated with MMP-2 [(1.40 (0.47:2.33) and 1.43 (0.63:2.23)]. Pooled data analysis showed significant associations of circulating levels of MMP-1...

  7. Plasma matrix metalloproteinases are associated with incident cardiovascular disease and all-cause mortality in patients with type 1 diabetes

    DEFF Research Database (Denmark)

    Peeters, S A; Engelen, L; Buijs, J

    2017-01-01

    BACKGROUND: Altered regulation of extracellular matrix remodeling by matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinase (TIMP) may contribute to vascular complications in type 1 diabetes. We investigated associations between plasma MMP-1, -2, -3, -9, -10 and TIMP-1...... differences in plasma MMP-1, -2, -3, -9, -10, and TIMP-1-levels in patients with and without a cardiovascular event and in those who died vs survivors. All analyses were adjusted for age, sex, duration of diabetes, HbA1c, nephropathy and for other conventional cardiovascular risk factors. RESULTS: After...... adjustment for potential confounders, higher MMP-2 plasma levels were significantly associated with higher incidence of cardiovascular events [HR 1.49 (95% CI 1.11; 1.99)], and higher plasma levels of MMP-1 [1.38 (1.07; 1.78)], MMP-2 [1.60 (1.19; 2.15)] and MMP-3 [1.39 (1.05; 1.85)] were associated with all...

  8. Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in diagnosis of pleural effusion of malignant origin.

    Science.gov (United States)

    Fiorelli, Alfonso; Ricci, Serena; Feola, Antonia; Mazzella, Antonio; D'Angelo, Luigi; Santini, Mario; Di Domenico, Marina; Di Carlo, Angelina

    2016-04-01

    The aim of the present study was to evaluate the diagnostic accuracy of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in differentiating benign from malignant exudative pleural effusions. This is a unicentre observational study including 97 consecutive patients with exudative pleural effusions. Metalloproteinase-9, tissue inhibitor of metalloproteinase-1, lactate dehydrogenase, ferritin, carcinoembryonic antigen and carbohydrate antigen 15-3 were measured in pleural effusion and serum by enzyme-linked immunosorbent assay. The activity of metalloproteinase-9 was also evaluated by substrate zymography. The data were correlated with final diagnosis of pleural effusions to evaluate the diagnostic accuracy. Of the 97 eligible patients, 6 were excluded. Of the 91 patients included in the study, 70 had malignant pleural effusions and 21 had benign pleural effusions. Both in sera and pleural effusions, matrix metalloproteinase-9 (P effusion (P effusion metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 levels showed higher value of sensitivity (97 and 91%, respectively) and specificity (90 and 95%, respectively) compared with other standard markers. Serum metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 levels showed similar results. Among 70 neoplastic patients, 29 had negative pleural cytology. Of these, 25 presented elevated levels of metalloproteinase-9 and tissue inhibitor of metalloproteinase-1, whereas 4 patients had elevated levels of one of the two markers. Our results showed that metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 might be valuable markers in differentiating benign from malignant pleural effusions. Their levels are neither influenced by the histology and tumour origin nor by the presence of tumour cells in pleural effusions. Thus, their use in clinical practice could help in the selection of patients needing more invasive procedures, such as thoracoscopic biopsy. © The Author 2016

  9. Downregulation of membrane type-matrix metalloproteinases in the inflamed or injured central nervous system

    DEFF Research Database (Denmark)

    Toft-Hansen, Henrik; Babcock, Alicia A; Millward, Jason M

    2007-01-01

    BACKGROUND: Matrix metalloproteinases (MMPs) are thought to mediate cellular infiltration in central nervous system (CNS) inflammation by cleaving extracellular matrix proteins associated with the blood-brain barrier. The family of MMPs includes 23 proteinases, including six membrane type-MMPs (M...

  10. Matrix Metalloproteinase Enzyme Family

    Directory of Open Access Journals (Sweden)

    Ozlem Goruroglu Ozturk

    2013-04-01

    Full Text Available Matrix metalloproteinases play an important role in many biological processes such as embriogenesis, tissue remodeling, wound healing, and angiogenesis, and in some pathological conditions such as atherosclerosis, arthritis and cancer. Currently, 24 genes have been identified in humans that encode different groups of matrix metalloproteinase enzymes. This review discuss the members of the matrix metalloproteinase family and their substrate specificity, structure, function and the regulation of their enzyme activity by tissue inhibitors. [Archives Medical Review Journal 2013; 22(2.000: 209-220

  11. Serum matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 levels in patients with tick-borne encephalitis

    Czech Academy of Sciences Publication Activity Database

    Palus, Martin; Žampachová, E.; Elsterová, Jana; Růžek, Daniel

    2014-01-01

    Roč. 68, č. 2 (2014), s. 165-169 ISSN 0163-4453 R&D Projects: GA ČR GAP502/11/2116 Institutional support: RVO:60077344 Keywords : tick-borne encephalitis * matrix metalloproteinase-9 * tissue inhibitor of metalloproteinase-1 * bloodebrain barrier Subject RIV: EC - Immunology Impact factor: 4.441, year: 2014

  12. Tissue Inhibitor of Matrix Metalloproteinase-1 Promotes Myocardial Fibrosis by Mediating CD63-Integrin β1 Interaction.

    Science.gov (United States)

    Takawale, Abhijit; Zhang, Pu; Patel, Vaibhav B; Wang, Xiuhua; Oudit, Gavin; Kassiri, Zamaneh

    2017-06-01

    Myocardial fibrosis is excess accumulation of the extracellular matrix fibrillar collagens. Fibrosis is a key feature of various cardiomyopathies and compromises cardiac systolic and diastolic performance. TIMP1 (tissue inhibitor of metalloproteinase-1) is consistently upregulated in myocardial fibrosis and is used as a marker of fibrosis. However, it remains to be determined whether TIMP1 promotes tissue fibrosis by inhibiting extracellular matrix degradation by matrix metalloproteinases or via an matrix metalloproteinase-independent pathway. We examined the function of TIMP1 in myocardial fibrosis using Timp1 -deficient mice and 2 in vivo models of myocardial fibrosis (angiotensin II infusion and cardiac pressure overload), in vitro analysis of adult cardiac fibroblasts, and fibrotic myocardium from patients with dilated cardiomyopathy (DCM). Timp1 deficiency significantly reduced myocardial fibrosis in both in vivo models of cardiomyopathy. We identified a novel mechanism for TIMP1 action whereby, independent from its matrix metalloproteinase-inhibitory function, it mediates an association between CD63 (cell surface receptor for TIMP1) and integrin β1 on cardiac fibroblasts, initiates activation and nuclear translocation of Smad2/3 and β-catenin, leading to de novo collagen synthesis. This mechanism was consistently observed in vivo, in cultured cardiac fibroblasts, and in human fibrotic myocardium. In addition, after long-term pressure overload, Timp1 deficiency persistently reduced myocardial fibrosis and ameliorated diastolic dysfunction. This study defines a novel matrix metalloproteinase-independent function of TIMP1 in promoting myocardial fibrosis. As such targeting TIMP1 could prove to be a valuable approach in developing antifibrosis therapies. © 2017 American Heart Association, Inc.

  13. Monocyte matrix metalloproteinase production in Type 2 diabetes and controls – a cross sectional study

    Directory of Open Access Journals (Sweden)

    Davies Isabel R

    2003-03-01

    Full Text Available Abstract Background Coronary plaque rupture may result from localised over expression of matrix metalloproteinases (MMPs within the plaque by infiltrating monocyte – macrophages. As MMP expression can be promoted by the modified lipoproteins, oxidative stress and hyperglycaemia that characterises Type 2 diabetes, we hypothesised that peripheral monocytes in these patients, exposed to these factors in vivo, would demonstrate increased MMP production compared to controls. Methods We examined peripheral venous monocyte expression of MMP and tissue inhibitor of metalloproteinase-1 (TIMP-1 in 18 controls and 22 subjects with Type 2 diabetes and no previous cardiovascular complications. Results No significant difference in MMP-1, 3 or 9 or TIMP-1 production was observed between control and diabetes groups. Conclusions Monocyte MMP-1, 3, and 9, and TIMP-1, production are not abnormal in Type 2 diabetes. This data cannot be extrapolated to monocyte – macrophage behaviour in the vessel wall, but it does suggest MMP and TIMP-1 expression prior to monocyte infiltration and transformation are not abnormal in Type 2 diabetes.

  14. Activity and expression of urokinase-type plasminogen activator and matrix metalloproteinases in human colorectal cancer

    International Nuclear Information System (INIS)

    Kim, Tae-Dong; Song, Kyoung-Sub; Li, Ge; Choi, Hoon; Park, Hae-Duck; Lim, Kyu; Hwang, Byung-Doo; Yoon, Wan-Hee

    2006-01-01

    Matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), and urokinase-type plasminogen activator (uPA) are involved in colorectal cancer invasion and metastasis. There is still debate whether the activity of MMP-2 and MMP-9 differs between tumors located in the colon and rectum. We designed this study to determine any differences in the expression of MMP-2, MMP-9 and uPA system between colon and rectal cancer tissues. Cancer tissue samples were obtained from colon carcinoma (n = 12) and rectal carcinomas (n = 10). MMP-2 and MMP-9 levels were examined using gelatin zymography and Western blotting; their endogenous inhibitors, tissue inhibitor of metalloproteinase-2 (TIMP-2) and tissue inhibitor of metalloproteinase-1 (TIMP-1), were assessed by Western blotting. uPA, uPAR and PAI-1 were examined using enzyme-linked immunosorbent assay (ELISA). The activity of uPA was assessed by casein-plasminogen zymography. In both colon and rectal tumors, MMP-2, MMP-9 and TIMP-1 protein levels were higher than in corresponding paired normal mucosa, while TIMP-2 level in tumors was significantly lower than in normal mucosa. The enzyme activities or protein levels of MMP-2, MMP-9 and their endogenous inhibitors did not reach a statistically significant difference between colon and rectal cancer compared with their normal mucosa. In rectal tumors, there was an increased activity of uPA compared with the activity in colon tumors (P = 0.0266), however urokinase-type plasminogen activator receptor (uPAR) and plasminogen activator inhibitor-1 (PAI-1) showed no significant difference between colon and rectal cancer tissues. These findings suggest that uPA may be expressed differentially in colon and rectal cancers, however, the activities or protein levels of MMP-2, MMP-9, TIMP-1, TIMP-2, PAI-1 and uPAR are not affected by tumor location in the colon or the rectum

  15. Matrix metalloproteinase-9-mediated type III collagen degradation as a novel serological biochemical marker for liver fibrogenesis

    DEFF Research Database (Denmark)

    Veidal, Sanne S; Vassiliadis, Efstathios; Barascuk, Natasha

    2010-01-01

    During fibrogenesis in the liver, in which excessive remodelling of the extracellular matrix (ECM) occurs, both the quantity of type III collagen (CO3) and levels of matrix metalloproteinases (MMPs), including MMP-9, increase significantly. MMPs play major roles in ECM remodelling, via...

  16. TISSUE INHIBITOR OF METALLOPROTEINASE 1, MATRIX METALLOPROTEINASE 9, ALPHA-1 ANTITRYPSIN, METALLOTHIONEIN AND UROKINASE TYPE PLASMINOGEN ACTIVATOR RECEPTOR IN SKIN BIOPSIES FROM PATIENTS AFFECTED BY AUTOIMMUNE BLISTERING DISEASES

    Directory of Open Access Journals (Sweden)

    Ana Maria Abreu Velez

    2013-07-01

    Full Text Available Introduction: Proteinases and proteinase inhibitors have been described to play a role in autoimmune skin blistering diseases. We studied skin lesional biopsies from patients affected by several autoimmune skin blistering diseases for proteinases and proteinase inhibitors. Methods: We utilized immunohistochemistry to evaluate biopsies for alpha-1-antitrypsin, human matrix metalloproteinase 9 (MMP9, human tissue inhibitor of metalloproteinases 1 (TIMP-1, metallothionein and urokinase type plasminogen activator receptor (uPAR. We tested 30 patients affected by endemic pemphigus, 30 controls from the endemic area, and 15 normal controls. We also tested 30 biopsies from patients with bullous pemphigoid (BP, 20 with pemphigus vulgaris (PV, 8 with pemphigus foliaceus, and 14 with dermatitis herpetiformis (DH. Results: Contrary to findings in the current literature, most autoimmune skin blistering disease biopsies were negative for uPAR and MMP9. Only some chronic patients with El Bagre-EPF were positive to MMP9 in the dermis, in proximity to telocytes. TIMP-1 and metallothionein were positive in half of the biopsies from BP patients at the basement membrane of the skin, within several skin appendices, in areas of dermal blood vessel inflammation and within dermal mesenchymal-epithelial cell junctions.

  17. Matrix metalloproteinase 2 (MMP-2) levels are increased in active acromegaly patients.

    Science.gov (United States)

    Karci, Alper Cagri; Canturk, Zeynep; Tarkun, Ilhan; Cetinarslan, Berrin

    2017-07-01

    During follow-up of acromegaly patients, there is a discordance rate of 30% between the measurements of growth hormone and insulin-like growth factor-1 levels. Further tests are required to determine disease activity in patients with discordant results. This study was planned to investigate an association of serum levels of matrix metalloproteinase-2, matrix metalloproteinase-9, and cathepsin B with disease activity in acromegaly patients. In this study, 64 acromegaly patients followed in our clinic were divided into two groups according to the 2010 consensus criteria for cure of acromegaly as patients with active disease (n = 24) and patients with controlled disease (n = 40). Serum matrix metalloproteinase-2, matrix metalloproteinase-9, and cathepsin B levels were measured by the enzyme-linked immunosorbent assay method. The mean serum matrix metalloproteinase-2 level was significantly higher in the active acromegaly patients than in the controlled acromegaly patients (150.1 ± 54.5 ng/mL vs. 100.2 ± 44.6 ng/mL; p matrix metalloproteinase-9 and cathepsin B levels (p = 0.205 and p = 0.598, respectively). Serum matrix metalloproteinase-2 levels of 118.3 ng/mL and higher had a sensitivity of 75% and a specificity of 77.5% in determining active disease. The risk of active acromegaly was 3.3 fold higher in the patients with a matrix metalloproteinase-2 level of >118.3 ng/mL than in the patients with a matrix metalloproteinase-2 level of matrix metalloproteinase-2 level is increased in the active acromegaly patients and a threshold value in determining active disease was defined for serum matrix metalloproteinase-2 level. This study is the first to compare acromegaly patients having active or controlled disease in terms of matrix metalloproteinase-2 and matrix metalloproteinase-9 levels. The results need to be confirmed by a study that will be conducted in a larger patient group also including a healthy control group to demonstrate the

  18. Mycobacterium tuberculosis, but not vaccine BCG, specifically upregulates matrix metalloproteinase-1.

    Science.gov (United States)

    Elkington, Paul T G; Nuttall, Robert K; Boyle, Joseph J; O'Kane, Cecilia M; Horncastle, Donna E; Edwards, Dylan R; Friedland, Jon S

    2005-12-15

    Pulmonary cavitation is fundamental to the global success of Mycobacterium tuberculosis. However, the mechanisms of this lung destruction are poorly understood. The biochemistry of lung matrix predicts matrix metalloproteinase (MMP) involvement in immunopathology. We investigated gene expression of all MMPs, proteins with a disintegrin and metalloproteinase domain, and tissue inhibitors of metalloproteinases in M. tuberculosis-infected human macrophages by real-time polymerase chain reaction. MMP secretion was measured by zymography and Western analysis, and expression in patients with pulmonary tuberculosis was localized by immunohistochemistry. MMP-1 and MMP-7 gene expression and secretion are potently upregulated by M. tuberculosis, and no increase in tissue inhibitor of metalloproteinase expression occurs to oppose their activity. Dexamethasone completely suppresses MMP-1 but not MMP-7 gene expression and secretion. In patients with active tuberculosis, macrophages express MMP-1 and MMP-7 adjacent to areas of tissue destruction. MMP-1 but not MMP-7 expression and secretion are relatively M. tuberculosis specific, are not upregulated by tuberculosis-associated cytokines, and are prostaglandin dependent. In contrast, the vaccine M. bovis bacillus Calmette-Guérin (BCG) does not stimulate MMP-1 secretion from human macrophages, although M. tuberculosis and BCG do upregulate MMP-7 equally. BCG-infected macrophages secrete reduced prostaglandin E2 concentrations compared with M. tuberculosis-infected macrophages, and prostaglandin pathway supplementation augments MMP-1 secretion from BCG-infected cells. M. tuberculosis specifically upregulates MMP-1 in a cellular model of human infection and in patients with tuberculosis. In contrast, vaccine BCG, which does not cause lung cavitation, does not upregulate prostaglandin E2-dependent MMP-1 secretion.

  19. The dimer interface of the membrane type 1 matrix metalloproteinase hemopexin domain: crystal structure and biological functions.

    Science.gov (United States)

    Tochowicz, Anna; Goettig, Peter; Evans, Richard; Visse, Robert; Shitomi, Yasuyuki; Palmisano, Ralf; Ito, Noriko; Richter, Klaus; Maskos, Klaus; Franke, Daniel; Svergun, Dmitri; Nagase, Hideaki; Bode, Wolfram; Itoh, Yoshifumi

    2011-03-04

    Homodimerization is an essential step for membrane type 1 matrix metalloproteinase (MT1-MMP) to activate proMMP-2 and to degrade collagen on the cell surface. To uncover the molecular basis of the hemopexin (Hpx) domain-driven dimerization of MT1-MMP, a crystal structure of the Hpx domain was solved at 1.7 Å resolution. Two interactions were identified as potential biological dimer interfaces in the crystal structure, and mutagenesis studies revealed that the biological dimer possesses a symmetrical interaction where blades II and III of molecule A interact with blades III and II of molecule B. The mutations of amino acids involved in the interaction weakened the dimer interaction of Hpx domains in solution, and incorporation of these mutations into the full-length enzyme significantly inhibited dimer-dependent functions on the cell surface, including proMMP-2 activation, collagen degradation, and invasion into the three-dimensional collagen matrix, whereas dimer-independent functions, including gelatin film degradation and two-dimensional cell migration, were not affected. These results shed light on the structural basis of MT1-MMP dimerization that is crucial to promote cellular invasion.

  20. Overexpression of interleukin-1β and interferon-γ in type I thoracic aortic dissections and ascending thoracic aortic aneurysms: possible correlation with matrix metalloproteinase-9 expression and apoptosis of aortic media cells.

    Science.gov (United States)

    Zhang, Lei; Liao, Ming-fang; Tian, Lei; Zou, Si-li; Lu, Qing-sheng; Bao, Jun-min; Pei, Yi-fei; Jing, Zai-ping

    2011-07-01

    To examine the expression of interleukin-1β and interferon-γ and their possible roles in aortic dissections and aneurysms. Aortic specimens were obtained from patients with type I thoracic aortic dissection, ascending thoracic aortic aneurysms, and control organ donors. The expression of interleukin-1β, interferon-γ, matrix metalloproteinase-9, and signal transduction factors phospho-p38 and phosphorylated c-jun N-terminal kinase (phospho-JNK) were detected by real time reverse transcription-polymerase chain reaction (real time RT-PCR), Western blot, and immunohistochemistry, respectively. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining was performed to detect apoptosis of media cells. The correlation of these factors and apoptosis was also studied. Apoptosis in the media of thoracic aortic dissection and in ascending thoracic aortic aneurysms was dramatically higher than in the control group. The expression of interleukin-1β gradually increased from the control group, thoracic aortic dissection to ascending thoracic aortic aneurysms (p matrix metalloproteinase-9 was significantly increased in the media of thoracic aortic dissection and ascending thoracic aortic aneurysms compared with the control group (p correlations between interleukin-1β versus matrix metalloproteinase-9, interleukin-1β versus phospho-p38 in thoracic aortic dissection (p matrix metalloproteinase-9, interferon-γ versus phospho-JNK, interferon-γ versus apoptosis, and interleukin-1β versus apoptosis in ascending thoracic aortic aneurysms (p = 0.02, 0.02, p matrix metalloproteinase-9 and the apoptosis of media cells in humans. Copyright © 2010 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.

  1. Matrix metalloproteinases (MMPs) safeguard osteoblasts from apoptosis during transdifferentiation into osteocytes

    DEFF Research Database (Denmark)

    Karsdal, M A; Levin Andersen, Thomas; Bonewald, L

    2004-01-01

    of osteoblasts forced to transdifferentiate into osteocytes in 3D type I collagen gels were inhibited by more than 50% when exposed to 10 microM GM6001 and to Tissue Inhibitor of Metalloproteinase-2 (TIMP-2), a natural MT1-MMP inhibitor. This shows the importance of MMPs in safeguarding osteoblasts from......Osteoblasts undergo apoptosis or differentiate into either osteocytes or bone-lining cells after termination of bone matrix synthesis. In this study, we investigated the role of matrix metalloproteinases (MMPs) in differentiation of osteoblasts, bone formation, transdifferentiation into osteocytes......, and osteocyte apoptosis. This was accomplished by using calvarial sections from the MT1-MMP-deficient mouse and by culture of the mouse osteoblast cell line MC3T3-E1 and primary mouse calvarial osteoblasts. We found that a synthetic matrix metalloprotease inhibitor, GM6001, strongly inhibited bone formation...

  2. Crystallographic characterization of the radixin FERM domain bound to the cytoplasmic tail of membrane-type 1 matrix metalloproteinase (MT1-MMP)

    International Nuclear Information System (INIS)

    Terawaki, Shin-ichi; Kitano, Ken; Aoyama, Miki; Hakoshima, Toshio

    2008-01-01

    The radixin FERM domain was shown to bind the MT1-MMP cytoplasmic peptide and crystals of the complex were obtained. ERM proteins play a role in the cross-linking found between plasma membranes and actin filaments. The N-terminal FERM domains of ERM proteins are responsible for membrane association through direct interaction with the cytoplasmic tails of integral membrane proteins. During cell migration and movement, membrane-type 1 matrix metalloproteinase (MT1-MMP) on plasma membranes sheds adhesion molecule CD44 in addition to degrading the extracellular matrix. Here, the interaction between the radixin FERM domain and the MT1-MMP cytoplasmic tail is reported and preliminary crystallographic characterization of crystals of the radixin FERM domain bound to the cytoplasmic tail of MT1-MMP is presented. The crystals belong to space group P6 1 22, with unit-cell parameters a = b = 122.7, c = 128.3 Å, and contain one complex in the crystallographic asymmetric unit. The diffraction data were collected to a resolution of 2.4 Å

  3. HIV-1-infected macrophages induce astrogliosis by SDF-1α and matrix metalloproteinases

    International Nuclear Information System (INIS)

    Okamoto, Mika; Wang, Xin; Baba, Masanori

    2005-01-01

    Brain macrophages/microglia and astrocytes are known to be involved in the pathogenesis of HIV-1-associated dementia (HAD). To clarify their interaction and contribution to the pathogenesis, HIV-1-infected or uninfected macrophages were used as a model of brain macrophages/microglia, and their effects on human astrocytes in vitro were examined. The culture supernatants of HIV-1-infected or uninfected macrophages induced significant astrocyte proliferation, which was annihilated with a neutralizing antibody to stromal cell-derived factor (SDF)-1α or a matrix metalloproteinase (MMP) inhibitor. In these astrocytes, CXCR4, MMP, and tissue inhibitors of matrix metalloproteinase mRNA expression and SDF-1α production were significantly up-regulated. The supernatants of infected macrophages were always more effective than those of uninfected cells. Moreover, the enhanced production of SDF-1α was suppressed by the MMP inhibitor. These results indicate that the activated and HIV-1-infected macrophages can indirectly induce astrocyte proliferation through up-regulating SDF-1α and MMP production, which implies a mechanism of astrogliosis in HAD

  4. Matrix Metalloproteinase Activity in Infections by an Encephalitic Virus, Mouse Adenovirus Type 1

    Science.gov (United States)

    Ashley, Shanna L.; Pretto, Carla D.; Stier, Matthew T.; Kadiyala, Padma; Castro-Jorge, Luiza; Hsu, Tien-Huei; Doherty, Robert; Carnahan, Kelly E.; Castro, Maria G.; Lowenstein, Pedro R.

    2017-01-01

    ABSTRACT Mouse adenovirus type 1 (MAV-1) infection causes encephalitis in susceptible strains of mice and alters the permeability of infected brains to small molecules, which indicates disruption of the blood-brain barrier (BBB). Under pathological conditions, matrix metalloproteinases (MMPs) can disrupt the BBB through their proteolytic activity on basement membrane and tight junction proteins. We examined whether MAV-1 infection alters MMP activity in vivo and in vitro. Infected MAV-1-susceptible SJL mice had higher MMP2 and MMP9 activity in brains, measured by gelatin zymography, than mock-infected mice. Infected MAV-1-resistant BALB/c mice had MMP activity levels equivalent to those in mock infection. Primary SJL mouse brain endothelial cells (a target of MAV-1 in vivo) infected ex vivo with MAV-1 had no difference in activities of secreted MMP2 and MMP9 from mock cells. We show for the first time that astrocytes and microglia are also infected in vivo by MAV-1. Infected mixed primary cultures of astrocytes and microglia had higher levels of MMP2 and MMP9 activity than mock-infected cells. These results indicate that increased MMP activity in the brains of MAV-1-infected susceptible mice may be due to MMP activity produced by endothelial cells, astrocytes, and microglia, which in turn may contribute to BBB disruption and encephalitis in susceptible mice. IMPORTANCE RNA and DNA viruses can cause encephalitis; in some cases, this is accompanied by MMP-mediated disruption of the BBB. Activated MMPs degrade extracellular matrix and cleave tight-junction proteins and cytokines, modulating their functions. MAV-1 infection of susceptible mice is a tractable small-animal model for encephalitis, and the virus causes disruption of the BBB. We showed that MAV-1 infection increases enzymatic activity of two key MMPs known to be secreted and activated in neuroinflammation, MMP2 and MMP9, in brains of susceptible mice. MAV-1 infects endothelial cells, astrocytes, and

  5. Identification of membrane-type 1 matrix metalloproteinase tyrosine phosphorylation in association with neuroblastoma progression

    International Nuclear Information System (INIS)

    Nyalendo, Carine; Sartelet, Hervé; Barrette, Stéphane; Ohta, Shigeru; Gingras, Denis; Béliveau, Richard

    2009-01-01

    Neuroblastoma is a pediatric tumor of neural crest cells that is clinically characterized by its variable evolution, from spontaneous regression to malignancy. Despite many advances in neuroblastoma research, 60% of neuroblastoma, which are essentially metastatic cases, are associated with poor clinical outcome due to the lack of effectiveness of current therapeutic strategies. Membrane-type 1 matrix metalloproteinase (MT1-MMP, MMP-14), an enzyme involved in several steps in tumor progression, has previously been shown to be associated with poor clinical outcome for neuroblastoma. Based on our recent demonstration that MT1-MMP phosphorylation is involved in the growth of fibrosarcoma tumors, we examined the potential role of phosphorylated MT1-MMP in neuroblastoma progression. Tyrosine phosphorylated MT1-MMP was immunostained on tissue microarray samples from 55 patients with neuroblastoma detected by mass screening (known to be predominantly associated with favourable outcome), and from 234 patients with standard diagnosed neuroblastoma. In addition, the effects of a non phosphorylable version of MT1-MMP on neuroblastoma cell migration and proliferation were investigated within three-dimensional collagen matrices. Although there is no correlation between the extent of tyrosine phosphorylation of MT1-MMP (pMT1-MMP) and MYCN amplification or clinical stage, we observed greater phosphorylation of pMT1-MMP in standard neuroblastoma, while it is less evident in neuroblastoma from mass screening samples (P = 0.0006) or in neuroblastoma samples from patients younger than one year (P = 0.0002). In vitro experiments showed that overexpression of a non-phosphorylable version of MT1-MMP reduced MT1-MMP-mediated neuroblastoma cell migration and proliferation within a three-dimensional type I collagen matrix, suggesting a role for the phosphorylated enzyme in the invasive properties of neuroblastoma cells. Overall, these results suggest that tyrosine phosphorylated MT1-MMP

  6. Messenger RNA for membrane-type 2 matrix metalloproteinase, MT2-MMP, is expressed in human placenta of first trimester.

    Science.gov (United States)

    Bjørn, S F; Hastrup, N; Larsen, J F; Lund, L R; Pyke, C

    2000-01-01

    An intimately regulated cell surface activation of matrix metalloproteinases (MMPs) is believed to be of critical importance for the control of trophoblast invasion. A histological investigation of the expression and localization of three different MMPs, the membrane-type matrix metalloproteinases 1 and 2 (MT1-MMP, MT2-MMP) and matrix metalloproteinase 2 (MMP-2/gelatinase A) was performed by in situ hybridization on consecutive sections from human placentae of first trimester pregnancies. Cytokeratin immunostaining identified trophoblast cells. Both normal and tubal implantation sites were studied. We observed a high degree of coexpression of MT2-MMP, MT1-MMP and MMP-2 mRNAs in single extravillous cytotrophoblasts that had invaded the endometrium and tubal wall. Furthermore, mRNAs for all three genes were also seen in cytotrophoblasts of cell islands. In contrast to this coexpression pattern, MT2-MMP expression was absent from cell columns and decidual cells, in which signals for MT1-MMP and MMP-2 mRNAs were seen. The present data on the cellular expression of MT2-MMP mRNA in placenta extend our knowledge of the proteolytic events that take place during early pregnancy. The data suggest that MT2-MMP, capable of activating MMP-2 in vitro, is involved in the invasion of extravillous cytotrophoblast, possibly related to the physiological activation of MMP-2. Copyright 2000 Harcourt Publishers Ltd.

  7. Human aqueous humor levels of transforming growth factor-β2: Association with matrix metalloproteinases/tissue inhibitors of matrix metalloproteinases

    OpenAIRE

    Jia, Yan; Yue, Yu; Hu, Dan-Ning; Chen, Ji-Li; Zhou, Ji-Bo

    2017-01-01

    The present study aims to investigate the association of transforming growth factor-β2 (TGF-β2) and matrix metalloproteinases (MMPs), MMP-2 and MMP-3, and tissue inhibitors of matrix metalloproteinases (TIMPs), TIMP-1, TIMP-2 and TIMP-3 in the aqueous humor of patients with high myopia or cataracts. The levels of TGF-β2 and MMPs/TIMPs were measured with the Luminex xMAP Technology using commercially available Milliplex xMAP kits. The association between TGF-β2 and MMPs/TIMPs levels was analyz...

  8. System of matrix metalloproteinases and cytokine secretion in type 2 diabetes mellitus and impaired carbohydrate tolerance associated with arterial hypertension.

    Science.gov (United States)

    Kologrivova, I V; Suslova, T E; Koshel'skaya, O A; Vinnitskaya, I V; Trubacheva, O A

    2014-03-01

    The study included patients with type 2 diabetes mellitus and impaired carbohydrate tolerance associated with arterial hypertension, patients with arterial hypertension, and healthy volunteers. We evaluated the levels of matrix metalloproteinases 2 and 9 (MMP-2, MMP-9), tissue inhibitor of metalloproteinase type 1 (TIMP-1), glucose, insulin, C-peptide, glycated hemoglobin, and spontaneous and mitogen-activated cytokine secretion (IL-2, IL4, IL-6, IL-10, IL-17, TNF-α, and IFN-γ). Patients with type 2 diabetes mellitus in combination with arterial hypertension exhibited maximum TIMP-1 levels and TIMP-1/MMP-2, TIMP-1/ MMP-9 ratios as well as enhanced secretion of TNF-α, IL-6, IL-17 and reduced secretion of IL-10 in comparison with healthy individuals. The observed shifts are probably determined the development of systemic hyperinsulinemia in patients suffering from type 2 diabetes mellitus coupled with arterial hypertension.

  9. Matrix metalloproteinases in exercise and obesity

    OpenAIRE

    Jaoude, Jonathan; Koh, Yunsuk

    2016-01-01

    Jonathan Jaoude,1 Yunsuk Koh2 1Department of Biology, 2Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA Abstract: Matrix metalloproteinases (MMPs) are zinc- and calcium-dependent endoproteinases that have the ability to break down extracellular matrix. The large range of MMPs’ functions widens their spectrum of potential role as activators or inhibitors in tissue remodeling, cardiovascular diseases, and obesity. In particular, MMP-1, -2, and ...

  10. Expression of matrix metalloproteinase 9 (MMP-9) and tissue inhibitor of metalloproteinases 1 (TIMP-1) by colorectal cancer cells and adjacent stroma cells--associations with histopathology and patients outcome

    DEFF Research Database (Denmark)

    Jensen, Søren Astrup; Vainer, Ben; Bartels, Annette

    2010-01-01

    To elucidate cellular features accountable for colorectal cancers' (CRC) capability to invade normal tissue and to metastasize, we investigated the level of the collagenase matrix metalloproteinase 9 (MMP-9) and its physiological inhibitor tissue inhibitor of metalloproteinases 1 (TIMP-1) in canc...

  11. LIM kinase1 modulates function of membrane type matrix metalloproteinase 1: implication in invasion of prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Chakrabarti Ratna

    2011-01-01

    Full Text Available Abstract Background LIM kinase 1 (LIMK1 is an actin and microtubule cytoskeleton modulatory protein that is overexpressed in a number of cancerous tissues and cells and also promotes invasion and metastasis of prostate and breast cancer cells. Membrane type matrix metalloproteinase 1 (MT1-MMP is a critical modulator of extracellular matrix (ECM turnover through pericellular proteolysis and thus plays crucial roles in neoplastic cell invasion and metastasis. MT1-MMP and its substrates pro-MMP-2 and pro-MMP-9 are often overexpressed in a variety of cancers including prostate cancer and the expression levels correlate with the grade of malignancy in prostate cancer cells. The purpose of this study is to determine any functional relation between LIMK1 and MT1-MMP and its implication in cell invasion. Results Our results showed that treatment with the hydroxamate inhibitor of MT1-MMP, MMP-2 and MMP-9 ilomastat inhibited LIMK1-induced invasion of benign prostate epithelial cells. Over expression of LIMK1 resulted in increased collagenolytic activity of MMP-2, and secretion of pro-MMP2 and pro-MMP-9. Cells over expressing LIMK1 also exhibited increased expression of MT1-MMP, transcriptional activation and its localization to the plasma membrane. LIMK1 physically associates with MT1-MMP and is colocalized with it to the Golgi vesicles. We also noted increased expression of both MT1-MMP and LIMK1 in prostate tumor tissues. Conclusion Our results provide new information on regulation of MT1-MMP function by LIMK1 and showed for the first time, involvement of MMPs in LIMK1 induced cell invasion.

  12. Circulating levels of matrix metalloproteinases and tissue inhibitors of metalloproteinases in patients with incisional hernia

    DEFF Research Database (Denmark)

    Henriksen, Nadia A; Sørensen, Lars T; Jorgensen, Lars N

    2013-01-01

    Incisional hernia formation is a common complication to laparotomy and possibly associated with alterations in connective tissue metabolism. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are closely involved in the metabolism of the extracellular matrix. Our...

  13. Matrix metalloproteinase-9-mediated type III collagen degradation as a novel serological biochemical marker for liver fibrogenesis

    DEFF Research Database (Denmark)

    Veidal, Sanne S; Vassiliadis, Efstathios; Barascuk, Natasha

    2010-01-01

    During fibrogenesis in the liver, in which excessive remodelling of the extracellular matrix (ECM) occurs, both the quantity of type III collagen (CO3) and levels of matrix metalloproteinases (MMPs), including MMP-9, increase significantly. MMPs play major roles in ECM remodelling, via...... their activity in the proteolytic degradation of extracellular macromolecules such as collagens, resulting in the generation of specific cleavage fragments. These neo-epitopes may be used as markers of fibrosis....

  14. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in gingival crevicular fluid during orthodontic tooth movement.

    NARCIS (Netherlands)

    Bildt, M.M.; Bloemen, M.; Kuijpers-Jagtman, A.M.; Hoff, J.W. Von den

    2009-01-01

    Orthodontic tooth movement requires extensive re-modelling of the periodontium. Matrix metalloproteinases (MMPs) degrade the extracellular matrix during re-modelling, while their activity is regulated by the tissue inhibitors of metalloproteinases (TIMPs). The aim of this study was to investigate

  15. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in gingival crevicular fluid during orthodontic tooth movement

    NARCIS (Netherlands)

    Bildt, Miriam; Bloemen, M; Kuijpers-Jagtman, A.M.; Von Den Hoff, Johannes W

    2009-01-01

    Orthodontic tooth movement requires extensive re-modelling of the periodontium. Matrix metalloproteinases (MMPs) degrade the extracellular matrix during re-modelling, while their activity is regulated by the tissue inhibitors of metalloproteinases (TIMPs). The aim of this study was to investigate

  16. Clonorchis sinensis excretory-secretory products regulate migration and invasion in cholangiocarcinoma cells via extracellular signal-regulated kinase 1/2/nuclear factor-κB-dependent matrix metalloproteinase-9 expression.

    Science.gov (United States)

    Pak, Jhang Ho; Shin, Jimin; Song, In-Sung; Shim, Sungbo; Jang, Sung-Wuk

    2017-01-01

    Matrix metalloproteinase-9 plays an important role in the invasion and metastasis of various types of cancer cells. We have previously reported that excretory-secretory products from Clonorchis sinensis increases matrix metalloproteinase-9 expression. However, the regulatory mechanisms through which matrix metalloproteinase-9 expression affects cholangiocarcinoma development remain unclear. In the current study, we examined the potential role of excretory-secretory products in regulating the migration and invasion of various cholangiocarcinoma cell lines. We demonstrated that excretory-secretory products significantly induced matrix metalloproteinase-9 expression and activity in a concentration-dependent manner. Reporter gene and chromatin immunoprecipitation assays showed that excretory-secretory products induced matrix metalloproteinase-9 expression by enhancing the activity of nuclear factor-kappa B. Moreover, excretory-secretory products induced the degradation and phosphorylation of IκBα and stimulated nuclear factor-kappa B p65 nuclear translocation, which was regulated by extracellular signal-regulated kinase 1/2. Taken together, our findings indicated that the excretory-secretory product-dependent enhancement of matrix metalloproteinase-9 activity and subsequent induction of IκBα and nuclear factor-kappa B activities may contribute to the progression of cholangiocarcinoma. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  17. Tumor necrosis factor-α-accelerated degradation of type I collagen in human skin is associated with elevated matrix metalloproteinase (MMP)-1 and MMP-3 ex vivo

    DEFF Research Database (Denmark)

    Ågren, Magnus S; Schnabel, Reinhild; Christensen, Lise H

    2015-01-01

    Tumor necrosis factor (TNF)-α induces matrix metalloproteinases (MMPs) that may disrupt skin integrity. We have investigated the effects and mechanisms of exogenous TNF-α on collagen degradation by incubating human skin explants in defined serum-free media with or without TNF-α (10ng/ml) in the a......Tumor necrosis factor (TNF)-α induces matrix metalloproteinases (MMPs) that may disrupt skin integrity. We have investigated the effects and mechanisms of exogenous TNF-α on collagen degradation by incubating human skin explants in defined serum-free media with or without TNF-α (10ng...... tissue-derived collagenolytic activity with TNF-α exposure was blocked by neutralizing MMP-1 monoclonal antibody and was not due to down-regulation of tissue inhibitor of metalloproteinase-1. TNF-α increased production (pendogenous MMP-1...

  18. Matrix metalloproteinases in the brain and blood–brain barrier: Versatile breakers and makers

    Science.gov (United States)

    Rempe, Ralf G; Hartz, Anika MS

    2016-01-01

    Matrix metalloproteinases are versatile endopeptidases with many different functions in the body in health and disease. In the brain, matrix metalloproteinases are critical for tissue formation, neuronal network remodeling, and blood–brain barrier integrity. Many reviews have been published on matrix metalloproteinases before, most of which focus on the two best studied matrix metalloproteinases, the gelatinases MMP-2 and MMP-9, and their role in one or two diseases. In this review, we provide a broad overview of the role various matrix metalloproteinases play in brain disorders. We summarize and review current knowledge and understanding of matrix metalloproteinases in the brain and at the blood–brain barrier in neuroinflammation, multiple sclerosis, cerebral aneurysms, stroke, epilepsy, Alzheimer’s disease, Parkinson’s disease, and brain cancer. We discuss the detrimental effects matrix metalloproteinases can have in these conditions, contributing to blood–brain barrier leakage, neuroinflammation, neurotoxicity, demyelination, tumor angiogenesis, and cancer metastasis. We also discuss the beneficial role matrix metalloproteinases can play in neuroprotection and anti-inflammation. Finally, we address matrix metalloproteinases as potential therapeutic targets. Together, in this comprehensive review, we summarize current understanding and knowledge of matrix metalloproteinases in the brain and at the blood–brain barrier in brain disorders. PMID:27323783

  19. Downregulation of reversion-inducing cysteine-rich protein with Kazal motifs in malignant melanoma: inverse correlation with membrane-type 1-matrix metalloproteinase and tissue inhibitor of metalloproteinase 2.

    Science.gov (United States)

    Jacomasso, Thiago; Trombetta-Lima, Marina; Sogayar, Mari C; Winnischofer, Sheila M B

    2014-02-01

    The invasive phenotype of many tumors is associated with an imbalance between the matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs), and the membrane-anchored reversion-inducing cysteine-rich protein with Kazal motifs (RECK). RECK inhibits MMP-2, MMP-9, and MT1-MMP, and has been linked to patient survival and better prognosis in several types of tumors. However, despite the wide implication of these MMPs in melanoma establishment and progression, the role of RECK in this type of tumor is still unknown. Here, we analyzed the expression of RECK, TIMP1, TIMP2, TIMP3, MT1MMP, MMP2, and MMP9 in two publicly available melanoma microarray datasets and in a panel of human melanoma cell lines. We found that RECK is downregulated in malignant melanoma, accompanied by upregulation of MT1MMP and TIMP2. In both datasets, we observed that the group of samples displaying higher RECK levels show lower median expression levels of MT1MMP and TIMP2 and higher levels of TIMP3. When tested in a sample-wise manner, these correlations were statistically significant. Inverse correlations between RECK, MT1MMP, and TIMP2 were verified in a panel of human melanoma cell lines and in a further reduced model that includes a pair of matched primary tumor-derived and metastasis-derived cell lines. Taken together, our data indicate a consistent correlation between RECK, MT1MMP, and TIMP2 across different models of clinical samples and cell lines and suggest evidence of the potential use of this subset of genes as a gene signature for diagnosing melanoma.

  20. Spontaneous metastasis in matrix metalloproteinase 3-deficient mice

    DEFF Research Database (Denmark)

    Juncker-Jensen, Anna; Rømer, John; Pennington, Caroline J

    2009-01-01

    Matrix metalloproteinases (MMPs) have been linked to the metastatic potential of tumor cells due to their ability to degrade the extracellular matrix. MMP-3 (stromelysin-1) is upregulated in a wide variety of human tumors. We used the MMTV-PyMT breast cancer model to determine if MMP-3 is involved...

  1. Curcumin influences hepatic expression patterns of matrix metalloproteinases in liver toxicity.

    Science.gov (United States)

    Rukkumani, Rajagopalan; Aruna, Kode; Varma, Penumathsa Suresh; Menon, Venugopal Padmanabhan

    2004-07-01

    Hepatic fibrosis is a result of an imbalance between enhanced matrix synthesis and diminished breakdown of connective tissue proteins, the net result of which is increased deposition of Extra Cellular Matrix. In this concept Matrix Metalloproteinases play an important role because their activity is largely responsible for extra cellular matrix breakdown. In the present study we have tested the influence of curcumin, the active principle of turmeric, on matrix metalloproteinase expression during alcohol and thermally oxidised sunflower oil induced liver toxicity. Male albino Wistar rats were used for the study. The matrix metalloproteinase expressions were found to be increased significantly in alcohol as well as thermally oxidised sunflower oil groups and on treatment with curcumin there was a significant decrease. In alcohol + thermally oxidised sunflower oil group, we found a significant decrease in matrix metalloproteinase activities. Administration of curcumin significantly improved their activities. From the results obtained, we could conclude that curcumin influences the hepatic matrix metalloproteinases and effectively protects liver against alcohol and delta PUFA induced toxicity.

  2. Membrane-type-3 matrix metalloproteinase (MT3-MMP functions as a matrix composition-dependent effector of melanoma cell invasion.

    Directory of Open Access Journals (Sweden)

    Olga Tatti

    Full Text Available In primary human melanoma, the membrane-type matrix metalloproteinase, MT3-MMP, is overexpressed in the most aggressive nodular-type tumors. Unlike MT1-MMP and MT2-MMP, which promote cell invasion through basement membranes and collagen type I-rich tissues, the function of MT3-MMP in tumor progression remains unclear. Here, we demonstrate that MT3-MMP inhibits MT1-MMP-driven melanoma cell invasion in three-dimensional collagen, while yielding an altered, yet MT1-MMP-dependent, form of expansive growth behavior that phenocopies the formation of nodular cell colonies. In melanoma cell lines originating from advanced primary or metastatic lesions, endogenous MT3-MMP expression was associated with limited collagen-invasive potential. In the cell lines with highest MT3-MMP expression relative to MT1-MMP, collagen-invasive activity was increased following stable MT3-MMP gene silencing. Consistently, MT3-MMP overexpression in cells derived from less advanced superficially spreading melanoma lesions, or in the MT3-MMP knockdown cells, reduced MT1-MMP-dependent collagen invasion. Rather than altering MT1-MMP transcription, MT3-MMP interacted with MT1-MMP in membrane complexes and reduced its cell surface expression. By contrast, as a potent fibrinolytic enzyme, MT3-MMP induced efficient invasion of the cells in fibrin, a provisional matrix component frequently found at tumor-host tissue interfaces and perivascular spaces of melanoma. Since MT3-MMP was significantly upregulated in biopsies of human melanoma metastases, these results identify MT3-MMP as a matrix-dependent modifier of the invasive tumor cell functions during melanoma progression.

  3. Tissue inhibitor of matrix metalloproteinase-1 expression in colorectal cancer liver metastases is associated with vascular structures

    DEFF Research Database (Denmark)

    Illemann, Martin; Eefsen, Rikke Helene Løvendahl; Bird, Nigel Charles

    2016-01-01

    several proteases, involved in the degradation of extracellular matrix components, are up-regulated. In liver metastases, their expression is growth pattern dependent. Tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) is a strong prognostic marker in plasma from colorectal cancer patients...

  4. Association of matrix metalloproteinase inducer (EMMPRIN) with the expression of matrix metalloproteinases-1, -2 and -9 during periapical lesion development.

    Science.gov (United States)

    Sousa, Natália Guimarães Kalatzis; Cardoso, Cristina Ribeiro de Barros; Silva, João Satana da; Kuga, Milton Carlos; Tanomaru-Filho, Mário; Faria, Gisele

    2014-09-01

    To evaluate the expression of matrix metalloproteinase inducer (EMMPRIN) and its correlation with the expression of matrix metalloproteinases (MMPs)-1, -2 and -9 during the development of periapical lesion in mice. Periapical lesions were induced in the lower first molars of mice and after 7, 14, 21 and 42 days the mandibles were removed. The periapical lesions were measured by micro-computed tomography. The expression of EMMPRIN, MMPs-1, -2, and -9 genes were determined by real-time RT-PCR. The location and expression of EMMPRIN and MMPs were evaluated by immunohistochemistry. At 14 days, the periapical lesion area was higher than at 7 days. At 21 and 42 days no statistically significant bone loss was observed in comparison to 14 days. The control group showed discrete and occasional EMMPRIM, MMP-1, -2 and -9 immunostaining in the periodontal ligament fibroblasts. At 7, 14, 21 and 42 days intense immunoexpression was observed for EMMPRIN, MMPs-1, -2 and -9 in the region adjacent to the apical foramen. The EMMPRIN immunoexpression was higher at 7, 14, 21 and 42 days compared with the control. There was a positive correlation between gene expression of EMMPRIN and MMPs in the active phase of periapical lesion development. There is a high expression of EMMPRIM mainly by the inflammatory infiltrate in the region adjacent to the apical foramen during periapical lesion development. Furthermore, the positive correlation with MMP-1, -2, and -9 during the first days after periapical lesion induction indicates that EMMPRIM may be involved in the active phase of periapical lesions development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Streptococcus sanguinis-induced cytokine and matrix metalloproteinase-1 release from platelets

    OpenAIRE

    Cognasse, Fabrice; Hamzeh-Cognasse, Hind; Chabert, Adrien; Jackson, Elke; Arthaud, Charles-Antoine; Garraud, Olivier; McNicol, Archie

    2014-01-01

    Background Streptococcus sanguinis (S.sanguinis), a predominant bacterium in the human oral cavity, has been widely associated with the development of infective endocarditis. Platelets play both a haemostatic function and can influence both innate and adaptive immune responses. Previous studies have shown that S.sanguinis can interact with, and activate, platelets. Results The aim of this study was to determine whether S.sanguinis stimulates the release of matrix metalloproteinases (MMPs) 1, ...

  6. Fractional Excretion of Survivin, Extracellular Matrix Metalloproteinase Inducer, and Matrix Metalloproteinase 7 in Children with Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Agnieszka Bargenda

    2016-07-01

    Full Text Available Background: Epithelial–mesenchymal transition (EMT is defined as a transformation of tubular epithelial cells into mesenchymal ones. These cells migrate through the extracellular matrix and change into active myofibroblasts, which are responsible for excessive matrix deposition. Such changes may lead to tubular dysfunction and fibrosis of the renal parenchyma, characteristic of chronic kidney disease (CKD. However, there are no data on potential EMT markers in children with CKD. The aim of our study was to assess the usefulness of fractional excretion (FE of survivin, E-cadherin, extracellular matrix metalloproteinase inducer (EMMPRIN, matrix metalloproteinase (MMP7, and transforming growth factor beta 1 (TGF-β1 as potential markers of CKD-related complications such as tubular damage and fibrosis. Methods: Forty-one pre-dialysis children with CKD Stages 3–5 and 23 age-matched controls were enrolled in the study. The serum and urine concentrations of analysed parameters were assessed by an enzyme-linked immunosorbent assay test. Results: Tubular reabsorption of all analysed parameters was >99% in the control group. All FE values rose significantly in children with CKD, yet they remained 1%. Conclusions: FE of the examined markers may become a useful tool in the assessment of tubular dysfunction during the course of CKD. The FE of survivin, EMMPRIN, and MMP7 warrant further research as potential independent markers of kidney-specific EMT.

  7. Expression of extracellular matrix metalloproteinase inducer in odontogenic cysts.

    Science.gov (United States)

    Ali, Mohammad Abdulhadi Abbas

    2008-08-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) is known to induce matrix metalloproteinase (MMP) production. The expression of EMMPRIN in odontogenic cysts has not been previously studied. This study was done to determine the presence and the variability of EMMPRIN expression in various types of odontogenic cysts. An immunohistochemical study using a polyclonal anti-EMMPRIN antibody was done using 48 odontogenic cyst cases: 13 odontogenic keratocysts (OKCs), 18 dentigerous cysts (DCs), and 17 periapical cysts (PAs). Twelve cases of normal dental follicles (DFs) were also included in this study for comparison. EMMPRIN immunoreactivity was detected in all of the cysts and DFs studied. In odontogenic cysts, EMMPRIN immunoreactivity was generally higher in basal cells than in suprabasal cells. The overall EMMPRIN expression in the epithelial lining of the 3 different types of odontogenic cyst was significantly higher than in the DFs. Overall EMMPRIN expression was also found to be significantly higher in the epithelial lining of OKCs than in the other types of cysts. This study confirmed that EMMPRIN is present in odontogenic cysts and DFs. The higher EMMPRIN expression in OKCs suggests that it may be involved in the aggressive behavior of this type of cyst.

  8. Binding of matrix metalloproteinase inhibitors to extracellular matrix: 3D-QSAR analysis.

    Science.gov (United States)

    Zhang, Yufen; Lukacova, Viera; Bartus, Vladimir; Nie, Xiaoping; Sun, Guorong; Manivannan, Ethirajan; Ghorpade, Sandeep R; Jin, Xiaomin; Manyem, Shankar; Sibi, Mukund P; Cook, Gregory R; Balaz, Stefan

    2008-10-01

    Binding to the extracellular matrix, one of the most abundant human protein complexes, significantly affects drug disposition. Specifically, the interactions with extracellular matrix determine the free concentrations of small molecules acting in tissues, including signaling peptides, inhibitors of tissue remodeling enzymes such as matrix metalloproteinases, and other drug candidates. The nature of extracellular matrix binding was elucidated for 63 matrix metalloproteinase inhibitors, for which the association constants to an extracellular matrix mimic were reported here. The data did not correlate with lipophilicity as a common determinant of structure-nonspecific, orientation-averaged binding. A hypothetical structure of the binding site of the solidified extracellular matrix surrogate was analyzed using the Comparative Molecular Field Analysis, which needed to be applied in our multi-mode variant. This fact indicates that the compounds bind to extracellular matrix in multiple modes, which cannot be considered as completely orientation-averaged and exhibit structural dependence. The novel comparative molecular field analysis models, exhibiting satisfactory descriptive and predictive abilities, are suitable for prediction of the extracellular matrix binding for the untested chemicals, which are within applicability domains. The results contribute to a better prediction of the pharmacokinetic parameters such as the distribution volume and the tissue-blood partition coefficients, in addition to a more imminent benefit for the development of more effective matrix metalloproteinase inhibitors.

  9. HPLC-MS/MS method optimisation for matrix metalloproteinase 3 and matrix metalloproteinase 9 determination in human blood serum using target analysis.

    Science.gov (United States)

    Kotnik, Petra; Krajnc, Metka Koren; Pahor, Artur; Finšgar, Matjaž; Knez, Željko

    2018-02-20

    A quantitative analysis of zinc endopeptidases matrix metalloproteinase 9 (MMP9) and matrix metalloproteinase 3 (MMP3) from human blood serum are presented. Both matrix metalloproteinases (MMP) are present in human blood serum and can be used as biomarkers for different diseases. The analysis was performed using LC-MS/MS with a triple quadrupole mass spectrometer, based on two specific peptides of each MMP in comparison with an enzyme-linked immunosorbent assay (ELISA). While the conditions for the LC-MS/MS analysis of MMP9 peptides were previously reported for bronchoalveolar lavage fluid, the analysis of MMP3 peptides was newly quantified for human blood serum herein for the first time. For MMP3, the linear behaviour was determined in the concentration range from 1.0-200.0ng/mL (R 2 =0.997) with an LLOD of 0.5ng/mL. For MMP9, linearity was determined in the concentration range from 6.5-65.0ng/mL (R 2 =0.995) with an LLOD of 2.0ng/mL. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Inhibition of matrix metalloproteinase-14 in osteosarcoma cells by clodronate

    NARCIS (Netherlands)

    Heikkilä, P.; Teronen, O.; Hirn, M.Y.; Sorsa, T.; Tervahartiala, T.; Salo, T.; Konttinen, Y.T.; Halttunen, T.; Moilanen, M.; Hanemaaijer, R.; Laitinen, M.

    2003-01-01

    Background. Bisphosphonates reduce the bone metastasis formation and angiogenesis but the exact molecular mechanisms involved are unclear. Progelatinase A (proMMP-2; 78 KDa) is activated up during the tumor spread and metastasis by a cell surface-associated matrix metalloproteinase (membrane-type

  11. Delayed-type hypersensitivity lesions in the central nervous system are prevented by inhibitors of matrix metalloproteinases.

    Science.gov (United States)

    Matyszak, M K; Perry, V H

    1996-09-01

    We have studied the effect of an inhibitor of matrix metalloproleinases, BB-1101, on a delayed-type hypersensitivity (DTH) response in the CNS. We used a recently described model in which heat-killed bacillus Calmette-Guérin (BCG) sequestered behind the blood-brain barrier (BBB) is targeted by a T-cell mediated response after subcutaneous injection of BCG (Matyszak and Perry, 1995). The DTH lesions are characterised by breakdown of the BBB, macrophage and lymphocyte infiltration and tissue damage including myelin loss. Treatment with BB-1101, which is not only a potent inhibitor of matrix metalloproteinases but also strongly inhibits TNF-alpha release, dramatically attenuated the CNS lesions. Breakdown of the BBB and the recruitment of T-cells into the site of the lesion were significantly reduced. There were many fewer inflammatory macrophages in DTH lesions than in comparable lesions from untreated animals. There was also significantly less myelin damage (assessed by staining with anti-MBP antibody). The DTH response in animals treated with dexamethasone was also reduced, but to a lesser degree. No significant effect was seen after administration of pentoxifylline, a phosphodiesterase inhibitor with effects including the inhibition of TNF-alpha production. Our results suggest that inhibitors of matrix metalloproteinases may be of considerable therapeutic benefit in neuroinflammatory diseases.

  12. Structural properties of matrix metalloproteinases.

    Science.gov (United States)

    Bode, W; Fernandez-Catalan, C; Tschesche, H; Grams, F; Nagase, H; Maskos, K

    1999-04-01

    Matrix metalloproteinases (MMPs) are involved in extracellular matrix degradation. Their proteolytic activity must be precisely regulated by their endogenous protein inhibitors, the tissue inhibitors of metalloproteinases (TIMPs). Disruption of this balance results in serious diseases such as arthritis, tumour growth and metastasis. Knowledge of the tertiary structures of the proteins involved is crucial for understanding their functional properties and interference with associated dysfunctions. Within the last few years, several three-dimensional MMP and MMP-TIMP structures became available, showing the domain organization, polypeptide fold and main specificity determinants. Complexes of the catalytic MMP domains with various synthetic inhibitors enabled the structure-based design and improvement of high-affinity ligands, which might be elaborated into drugs. A multitude of reviews surveying work done on all aspects of MMPs have appeared in recent years, but none of them has focused on the three-dimensional structures. This review was written to close the gap.

  13. Downregulation of Extracellular Matrix Metalloproteinase Inducer by scFv-M6-1B9 Intrabody Suppresses Cervical Cancer Invasion Through Inhibition of Urokinase-Type Plasminogen Activator.

    Science.gov (United States)

    Panich, Tipattaraporn; Tragoolpua, Khajornsak; Pata, Supansa; Tayapiwatana, Chatchai; Intasai, Nutjeera

    2017-02-01

    Overexpression of extracellular matrix metalloproteinase inducer (EMMPRIN) accelerates tumor invasion and metastasis via activation of matrix metalloproteinases (MMPs) and urokinase-type plasminogen activator (uPA) expression. The authors were interested in whether the scFv-M6-1B9 intrabody against EMMPRIN that retains EMMPRIN in endoplasmic reticulum could be a potential tool to suppress cervical cancer invasion through inhibition of uPA. The chimeric adenoviral vector Ad5/F35-scFv-M6-1B9 was transferred into human cervical carcinoma HeLa cells to produce the scFv-M6-1B9 intrabody against EMMPRIN. Cell surface expression of EMMPRIN, the membrane-bound uPA, the enzymatic activity of secreted uPA, and the invasion ability were analyzed. The scFv-M6-1B9 intrabody successfully diminished the cell surface expression of EMMPRIN and the membrane-bound uPA on HeLa cells. uPA activity from tissue culture media of EMMPRIN-downregulated HeLa cells was decreased. The invasion ability of HeLa cells harboring scFv-M6-1B9 intrabody was also suppressed. These results suggested that the scFv-M6-1B9 intrabody might represent a potential approach for invasive cervical cancer treatment. The application of scFv-M6-1B9 intrabody in animal experiments and preclinical studies would be investigated further.

  14. Matrix metalloproteinases (MMP) and cathepsin K contribute differently to osteoclastic activities

    DEFF Research Database (Denmark)

    Delaissé, Jean-Marie; Andersen, Thomas L; Engsig, Michael T

    2003-01-01

    The best established proteolytic event of osteoclasts is bone matrix solubilization by the cysteine proteinase cathepsin K. Here, however, we draw the attention on osteoclastic activities depending on matrix metalloproteinases (MMPs). We discuss the observations supporting that MMPs contribute...... significantly to bone matrix solubilization in specific areas of the skeleton and in some developmental and pathological situations. Our discussion takes into account (1) the characteristics of the bone remodeling persisting in the absence of cathepsin K, (2) the ultrastructure of the resorption zone...... in response to inactivation of MMPs and of cathepsin K in different bone types, (3) bone resorption levels in MMP knockout mice compared to wild-type mice, (4) the identification of MMPs in osteoclasts and surrounding cells, and (5) the effect of different bone pathologies on the serum concentrations...

  15. Expression of matrix metalloproteinase 9 (MMP-9) and tissue inhibitor of metalloproteinases 1 (TIMP-1) by colorectal cancer cells and adjacent stroma cells - associations with histopathology and patients outcome

    DEFF Research Database (Denmark)

    Jensen, Søren Astrup; Vainer, Ben; Bartels, Annette

    2010-01-01

    AIM: To elucidate cellular features accountable for colorectal cancers' (CRC) capability to invade normal tissue and to metastasize, we investigated the level of the collagenase matrix metalloproteinase 9 (MMP-9) and its physiological inhibitor tissue inhibitor of metalloproteinases 1 (TIMP-1) in...... cells is associated with poor prognosis independent of its function as inhibitor of MMP-9. MMP-9 and TIMP-1 are important mediators of the host-cancer cell interaction in the tumour microenvironment with significant influence on the histopathology and on prognosis of CRC....

  16. CopA3 Peptide Prevents Ultraviolet-Induced Inhibition of Type-I Procollagen and Induction of Matrix Metalloproteinase-1 in Human Skin Fibroblasts

    Directory of Open Access Journals (Sweden)

    Dong-Hee Kim

    2014-05-01

    Full Text Available Ultraviolet (UV exposure is well-known to induce premature aging, which is mediated by matrix metalloproteinase-1 (MMP-1 activity. A 9-mer peptide, CopA3 (CopA3 was synthesized from a natural peptide, coprisin, which is isolated from the dung beetle Copris tripartitus. As part of our continuing search for novel bioactive natural products, CopA3 was investigated for its in vitro anti-skin photoaging activity. UV-induced inhibition of type-I procollagen and induction of MMP-1 were partially prevented in human skin fibroblasts by CopA3 peptide in a dose-dependent manner. At a concentration of 25 μM, CopA3 nearly completely inhibited MMP-1 expression. These results suggest that CopA3, an insect peptide, is a potential candidate for the prevention and treatment of skin aging.

  17. Temporal and spatial expression of matrix metalloproteinase-2 and matrix metalloproteinase-9 in trophoblast and endometrial epithelium during pregnancy of pig

    Czech Academy of Sciences Publication Activity Database

    Georgieva, R.; Rashev, P.; Pěknicová, Jana; Michailova, A.

    2004-01-01

    Roč. 52, Suppl.1 (2004), s. 42-43 ISSN 1046-7408. [International Congress of Reproductive Immunology /9./. Hakone, 11.10.2004-15.10.2004] Institutional research plan: CEZ:AV0Z5052915 Keywords : matrix metalloproteinase * trophoblast * endometrium Subject RIV: EC - Immunology Impact factor: 1.808, year: 2004

  18. Membrane Type-1 Matrix Metalloproteinase Expression in Acute Myeloid Leukemia and Its Upregulation by Tumor Necrosis Factor-α

    Directory of Open Access Journals (Sweden)

    Anna Janowska-Wieczorek

    2012-07-01

    Full Text Available Membrane type-1 matrix metalloproteinase (MT1-MMP has been implicated in tumor invasion, as well as trafficking of normal hematopoietic cells, and acts as a physiologic activator of proMMP-2. In this study we examined MT1-MMP expression in primary acute myeloid leukemia (AML cells. Because tumor necrosis factor (TNF-α is known to be elevated in AML, we also investigated the effect of TNF-α on MT1-MMP expression. We found (i MT1-MMP mRNA expression in 41 out of 43 primary AML samples tested; (ii activation of proMMP-2 in co-cultures of AML cells with normal bone marrow stromal cells; and (iii inhibition of proMMP-2 activation and trans-Matrigel migration of AML cells by gene silencing using MT1-MMP siRNA. Moreover, recombinant human TNF-α upregulated MT1-MMP expression in AML cells resulting in enhanced proMMP-2 activation and trans-Matrigel migration. Thus, AML cells express MT1-MMP and TNF-α enhances it leading to increased MMP-2 activation and most likely contributing to the invasive phenotype. We suggest that MT1-MMP, together with TNF-α, should be investigated as potential therapeutic targets in AML.

  19. Membrane Type-1 Matrix Metalloproteinase Expression in Acute Myeloid Leukemia and Its Upregulation by Tumor Necrosis Factor-α

    International Nuclear Information System (INIS)

    Marquez-Curtis, Leah A.; Shirvaikar, Neeta; Turner, A. Robert; Mirza, Imran; Surmawala, Amir; Larratt, Loree M.; Janowska-Wieczorek, Anna

    2012-01-01

    Membrane type-1 matrix metalloproteinase (MT1-MMP) has been implicated in tumor invasion, as well as trafficking of normal hematopoietic cells, and acts as a physiologic activator of proMMP-2. In this study we examined MT1-MMP expression in primary acute myeloid leukemia (AML) cells. Because tumor necrosis factor (TNF)-α is known to be elevated in AML, we also investigated the effect of TNF-α on MT1-MMP expression. We found (i) MT1-MMP mRNA expression in 41 out of 43 primary AML samples tested; (ii) activation of proMMP-2 in co-cultures of AML cells with normal bone marrow stromal cells; and (iii) inhibition of proMMP-2 activation and trans-Matrigel migration of AML cells by gene silencing using MT1-MMP siRNA. Moreover, recombinant human TNF-α upregulated MT1-MMP expression in AML cells resulting in enhanced proMMP-2 activation and trans-Matrigel migration. Thus, AML cells express MT1-MMP and TNF-α enhances it leading to increased MMP-2 activation and most likely contributing to the invasive phenotype. We suggest that MT1-MMP, together with TNF-α, should be investigated as potential therapeutic targets in AML

  20. Membrane Type-1 Matrix Metalloproteinase Expression in Acute Myeloid Leukemia and Its Upregulation by Tumor Necrosis Factor-α

    Energy Technology Data Exchange (ETDEWEB)

    Marquez-Curtis, Leah A.; Shirvaikar, Neeta [Canadian Blood Services R& D, Edmonton, Alberta T6G 2R8 (Canada); Turner, A. Robert [Departments of Medicine and Oncology, University of Alberta, Edmonton, Alberta T6G 2G3 (Canada); Mirza, Imran [Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2B7 (Canada); Surmawala, Amir; Larratt, Loree M. [Departments of Medicine and Oncology, University of Alberta, Edmonton, Alberta T6G 2G3 (Canada); Janowska-Wieczorek, Anna, E-mail: anna.janowska@blood.ca [Canadian Blood Services R& D, Edmonton, Alberta T6G 2R8 (Canada); Departments of Medicine and Oncology, University of Alberta, Edmonton, Alberta T6G 2G3 (Canada)

    2012-07-25

    Membrane type-1 matrix metalloproteinase (MT1-MMP) has been implicated in tumor invasion, as well as trafficking of normal hematopoietic cells, and acts as a physiologic activator of proMMP-2. In this study we examined MT1-MMP expression in primary acute myeloid leukemia (AML) cells. Because tumor necrosis factor (TNF)-α is known to be elevated in AML, we also investigated the effect of TNF-α on MT1-MMP expression. We found (i) MT1-MMP mRNA expression in 41 out of 43 primary AML samples tested; (ii) activation of proMMP-2 in co-cultures of AML cells with normal bone marrow stromal cells; and (iii) inhibition of proMMP-2 activation and trans-Matrigel migration of AML cells by gene silencing using MT1-MMP siRNA. Moreover, recombinant human TNF-α upregulated MT1-MMP expression in AML cells resulting in enhanced proMMP-2 activation and trans-Matrigel migration. Thus, AML cells express MT1-MMP and TNF-α enhances it leading to increased MMP-2 activation and most likely contributing to the invasive phenotype. We suggest that MT1-MMP, together with TNF-α, should be investigated as potential therapeutic targets in AML.

  1. Periodontal Disease, Matrix Metalloproteinases and Chemically Modified Tetracyclines

    OpenAIRE

    Steinsvoll, Svein

    2011-01-01

    Matrix metalloproteinases (MMPs) are crucial in the degradation of the main components in the extracellular matrix and thereby play important roles in cell migration, wound healing and tissue remodelling. MMPs have pathogenic roles in arthritis, periodontitis, hepatitis, glomerulonephritis, atherosclerosis and cancer cell invasion. MMPs are activators of pro-inflammatory mediators that occur in latent forms, such as interleukin (IL)-1β, membrane-bound tumour necrosis factor (TNF) and dif...

  2. Multifaceted role of matrix metalloproteinases (MMPs)

    OpenAIRE

    Singh, Divya; Srivastava, Sanjeev K.; Chaudhuri, Tapas K.; Upadhyay, Ghanshyam

    2015-01-01

    Matrix metalloproteinases (MMPs), a large family of calcium-dependent zinc-containing endopeptidases, are involved in the tissue remodeling and degradation of the extracellular matrix. MMPs are widely distributed in the brain and regulate various processes including microglial activation, inflammation, dopaminergic apoptosis, blood-brain barrier disruption, and modulation of ?-synuclein pathology. High expression of MMPs is well documented in various neurological disorders including Parkinson...

  3. Matrix metalloproteinases in acute coronary syndromes: current perspectives.

    Science.gov (United States)

    Kampoli, Anna-Maria; Tousoulis, Dimitris; Papageorgiou, Nikolaos; Antoniades, Charalambos; Androulakis, Emmanuel; Tsiamis, Eleftherios; Latsios, George; Stefanadis, Christodoulos

    2012-01-01

    Matrix metalloproteinases (MMPs) are a family of zinc metallo-endopeptidases secreted by cells and are responsible for much of the turnover of matrix components. Several studies have shown that MMPs are involved in all stages of the atherosclerotic process, from the initial lesion to plaque rupture. Recent evidence suggests that MMP activity may facilitate atherosclerosis, plaque destabilization, and platelet aggregation. In the heart, matrix metalloproteinases participate in vascular remodeling, plaque instability, and ventricular remodelling after cardiac injury. The aim of the present article is to review the structure, function, regulation of MMPs and to discuss their potential role in the pathogenesis of acute coronary syndromes, as well as their contribution and usefullness in the setting of the disease.

  4. Structural differences of matrix metalloproteinases. Homology modeling and energy minimization of enzyme-substrate complexes

    DEFF Research Database (Denmark)

    Terp, G E; Christensen, I T; Jørgensen, Flemming Steen

    2000-01-01

    Matrix metalloproteinases are extracellular enzymes taking part in the remodeling of extracellular matrix. The structures of the catalytic domain of MMP1, MMP3, MMP7 and MMP8 are known, but structures of enzymes belonging to this family still remain to be determined. A general approach...... to the homology modeling of matrix metalloproteinases, exemplified by the modeling of MMP2, MMP9, MMP12 and MMP14 is described. The models were refined using an energy minimization procedure developed for matrix metalloproteinases. This procedure includes incorporation of parameters for zinc and calcium ions...... in the AMBER 4.1 force field, applying a non-bonded approach and a full ion charge representation. Energy minimization of the apoenzymes yielded structures with distorted active sites, while reliable three-dimensional structures of the enzymes containing a substrate in active site were obtained. The structural...

  5. Matrix metalloproteinases in exercise and obesity.

    Science.gov (United States)

    Jaoude, Jonathan; Koh, Yunsuk

    2016-01-01

    Matrix metalloproteinases (MMPs) are zinc- and calcium-dependent endoproteinases that have the ability to break down extracellular matrix. The large range of MMPs' functions widens their spectrum of potential role as activators or inhibitors in tissue remodeling, cardiovascular diseases, and obesity. In particular, MMP-1, -2, and -9 may be associated with exercise and obesity. Thus, the current study reviewed the effects of different types of exercise (resistance and aerobic) on MMP-1, -2, and -9. Previous studies report that the response of MMP-2 and -9 to resistance exercise is dependent upon the length of exercise training, since long-term resistance exercise training increased both MMP-2 and -9, whereas acute bout of resistance exercise decreased these MMPs. Aerobic exercise produces an inconsistent result on MMPs, although some studies showed a decrease in MMP-1. Obesity is related to a relatively lower level of MMP-9, indicating that an exercise-induced increase in MMP-9 may positively influence obesity. A comprehensive understanding of the relationship between exercise, obesity, and MMPs does not exist yet. Future studies examining the acute and chronic responses of these MMPs using different subject models may provide a better understanding of the molecular mechanisms that are associated with exercise, obesity, and cardiovascular disease.

  6. Polymorphisms in matrix metalloproteinases MMP1 and MMP9 are associated with primary open-angle and angle closure glaucoma in a Pakistani population

    NARCIS (Netherlands)

    Micheal, S.; Yousaf, S.; Khan, M.I.; Akhtar, F.; Islam, F.; Khan, W.A.; Hollander, A.I. den; Qamar, R.; Ahmed, A.

    2013-01-01

    PURPOSE: Matrix metalloproteinases (MMPs) play an important role in remodeling of the extracellular matrix during development and growth of various tissues including the eye. Various functional polymorphisms in MMPs have been implicated in the pathogenesis of different types of glaucoma. The aim of

  7. In vivo imaging of membrane type-1 matrix metalloproteinase with a novel activatable near-infrared fluorescence probe.

    Science.gov (United States)

    Shimizu, Yoichi; Temma, Takashi; Hara, Isao; Makino, Akira; Kondo, Naoya; Ozeki, Ei-Ichi; Ono, Masahiro; Saji, Hideo

    2014-08-01

    Membrane type-1 matrix metalloproteinase (MT1-MMP) is a protease activating MMP-2 that mediates cleavage of extracellular matrix components and plays pivotal roles in tumor migration, invasion and metastasis. Because in vivo noninvasive imaging of MT1-MMP would be useful for tumor diagnosis, we developed a novel near-infrared (NIR) fluorescence probe that can be activated following interaction with MT1-MMP in vivo. MT1-hIC7L is an activatable fluorescence probe comprised of anti-MT1-MMP monoclonal antibodies conjugated to self-assembling polymer micelles that encapsulate NIR dyes (IC7-1, λem : 858 nm) at concentrations sufficient to cause fluorescence self-quenching. In aqueous buffer, MT1-hIC7L fluorescence was suppressed to background levels and increased approximately 35.5-fold in the presence of detergent. Cellular uptake experiments revealed that in MT1-MMP positive C6 glioma cells, MT1-hIC7L showed significantly higher fluorescence that increased with time as compared to hIC7L, a negative control probe lacking the anti-MT1-MMP monoclonal antibody. In MT1-MMP negative MCF-7 breast adenocarcinoma cells, both MT1-hIC7L and hIC7L showed no obvious fluorescence. In addition, the fluorescence intensity of C6 cells treated with MT1-hIC7L was suppressed by pre-treatment with an MT1-MMP endocytosis inhibitor (P imaging using probes intravenously administered to tumor-bearing mice showed that MT1-hIC7L specifically visualized C6 tumors (tumor-to-background ratios: 3.8 ± 0.3 [MT1-hIC7L] vs 3.1 ± 0.2 [hIC7L] 48 h after administration, P fluorescence in MCF-7 tumors. Together, these results show that MT1-hIC7L would be a potential activatable NIR probe for specifically detecting MT1-MMP-expressing tumors. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  8. A study on expression levels of matrix metalloproteinases and their ...

    African Journals Online (AJOL)

    Keywords: Ulcerative colitis, Matrix metalloproteinases, Tissue inhibitors of metalloproteinases, Lamina propria ... The symptoms of UC include diarrhea with blood, fever ..... Eisen A, Jeffrey J, Gross J. Human skin collagenase. Isolation and ...

  9. The plasma and peritoneal fluid concentrations of matrix metalloproteinase-9 are elevated in patients with endometriosis.

    Science.gov (United States)

    Liu, Haiping; Wang, Jianye; Wang, Haiyu; Tang, Ning; Li, Yunfei; Zhang, Yan; Hao, Tianyu

    2016-09-01

    Enzyme matrix metalloproteinase-9 is a member of the matrix metalloproteinase family, which is critical to normal tissue remodelling during embryogenesis and wound healing. In patients with endometriosis, increased expression and activity of matrix metalloproteinase-9 have been observed in ectopic endometrium, but the plasma and peritoneal fluid concentrations of matrix metalloproteinase-9 in patients with endometriosis and their relation to disease severity have not been clear. The aim of the study was to investigate the concentrations of matrix metalloproteinase-9 in plasma and peritoneal fluid of patients with endometriosis. A prospective case-control study was conducted in Jinan Military General Hospital between January 2010 and December 2013. Fifty patients with proven endometriosis and 26 endometriosis-free controls were enrolled in this study. Patients with endometriosis were evaluated and divided into moderate/severe endometriosis group (stage I-II, n = 26) and minimal/mild endometriosis group (stage III-IV, n = 24) according to the revised criteria of the American Society for Reproductive Medicine. Blood samples and peritoneal fluid were obtained from both patients and controls. Matrix metalloproteinase-9 was measured using enzyme-linked immunosorbent assay in plasma and peritoneal fluid. The concentration of matrix metalloproteinase-9 between different groups was compared and its correlation to disease severity was analysed. Plasma and peritoneal fluid concentrations of matrix metalloproteinase-9 in patients with endometriosis were higher than that in controls. In addition, those patients with moderate/severe endometriosis had significantly higher plasma and peritoneal fluid concentrations of matrix metalloproteinase-9 compared to those with minimal/mild endometriosis. Matrix metalloproteinase-9 concentrations in plasma and peritoneal fluid were both positively correlated with severity of endometriosis and plasma matrix metalloproteinase-9

  10. Expressions of matrix metalloproteinase-2 and extracellular matrix metalloproteinase inducer in retinoblastoma

    Directory of Open Access Journals (Sweden)

    Yu-Hong Cheng

    2015-07-01

    Full Text Available AIM: To investigate expressions of matrix metalloproteinase-2(MMP-2and extracellular matrix metalloproteinase inducer(EMMPRINin retinoblastoma(Rband the relationships between MMP-2, EMMPRIN and tumor development.METHODS:Immunohistochemical technique was used to detect expressions of MMP-2 and EMMPRIN in 39 cases of paraffin embedded Rb samples. Quantitative analysis of expressions of MMP-2 and EMMPRIN were assessed by measuring the mean gray scale of Rb tissue with LEICA IM50 Color Pathologic Analysis System. The differences of expressions of MMP-2 and EMMPRIN in each clinical and pathological stage were statistically analyzed, and the same step was also undertaken to study the relationship between Rb with MMP-2 positive expression and that with EMMPRIN positive expression.RESULTS: The positive expression rate of MMP-2 was 90%(Gray value: 109.64±14.52; 35/39, and that of EMMPRIN was 85%(Gray value: 108.01±13.60; 33/39. The expressions of MMP-2 and EMMPRIN were significantly higher in tumors of glaucomatous stage(Gray value: 108.21±11.47 and 107.56±14.32than those in intraocular stage(Gray value: 121.13±11.32 and 119.34±12.66; PPPPPPCONCLUSION: The positive expression levels of MMP-2 and EMMPRIN may correlate with tumor infiltration and metastasis.

  11. Role of matrix metalloproteinases in recurrent corneal melting

    Czech Academy of Sciences Publication Activity Database

    Brejchová, K.; Lisková, P.; Čejková, Jitka; Jirsová, K.

    2010-01-01

    Roč. 90, č. 5 (2010), s. 583-590 ISSN 0014-4835 Institutional research plan: CEZ:AV0Z50390512 Keywords : corneal melting * extracellular matrix degradation * matrix metalloproteinases Subject RIV: FF - HEENT, Dentistry Impact factor: 2.817, year: 2010

  12. Biochemical properties of the matrix metalloproteinase NtMMP1 from Nicotiana tabacum cv. BY-2 suspension cells.

    Science.gov (United States)

    Mandal, Manoj K; Fischer, Rainer; Schillberg, Stefan; Schiermeyer, Andreas

    2010-09-01

    A zinc-dependent matrix metalloproteinase (NtMMP1) found in the plasma membrane of Nicotiana tabacum cv. Bright Yellow 2 (BY-2) suspension cells is thought to be responsible for the degradation of recombinant proteins secreted into the culture supernatant. We have characterized the proteolytic activity of NtMMP1 by expressing a recombinant derivative lacking the C-terminal transmembrane domain in yeast. After purifying the protein by affinity chromatography, its autocatalytic activity was analyzed using monoclonal antibodies raised against its N-terminal and C-terminal portions. Both the unprocessed and processed forms of NtMMP1 displayed caseinolytic activity and N-terminal sequencing identified an autocatalytic cleavage site within the sequence motif HFSFFP, which is similar to the corresponding sequences of the human matrix metalloproteinases stromelysin-1 (MMP-3) and stromelysin-2 (MMP-10). Unlike all other matrix metalloproteinases investigated so far, NtMMP1 contains a disulfide bond within its propeptide thus rendering the proenzyme catalytically active. Kinetic analysis of NtMMP1 with a synthetic substrate revealed a K(m) of 10.55 +/- 0.9 microM, a k(cat) of 0.6 +/- 0.01 s(-1) and maximum activity at pH 7.5. We found that NtMMP1 degrades Desmodus rotundus salivary plasminogen activator alpha 1 (DSPAalpha1), a biopharmaceutical protein, that has proven difficult to produce in tobacco BY-2 cells. This provides a likely explanation for the frequent instability of secreted recombinant biopharmaceuticals produced in plant suspension cell cultures. Our data suggest new avenues that can be explored to improve the production of pharmaceutical proteins in plants and plant cells.

  13. Matrix metalloproteinase 9 level as an indicator for restenosis following cervical and intracranial angioplasty and stenting

    Directory of Open Access Journals (Sweden)

    Jun-peng Liu

    2015-01-01

    Full Text Available Cervical and intracranial angioplasty and stenting is an effective and safe method of reducing the risk of ischemic stroke, but it may be affected by in-stent restenosis. The present study investigated serum level of matrix metalloproteinase 9 as a predictor of restenosis after 40 patients underwent cervical and/or intracranial angioplasty and stenting. Results showed that restenosis occurred in 30% (3/10 of patients when the serum level of matrix metalloproteinase 9 at 3 days after surgery was 2.5 times higher than preoperative level. No restenosis occurred when the serum level of matrix metalloproteinase 9 at 3 days after surgery was not 2.5 times higher than preoperative level. Restenosis occurred in 12% (2/17 of patients when the serum level of matrix metalloproteinase 9 was higher than preoperative level for more than 30 days after surgery, but only occurred in 4% (1/23 of patients when the serum level of matrix metalloproteinase 9 was higher than preoperative level for less than 30 days after surgery. However, the differences observed were not statistically significant (P > 0.05. Experimental findings indicate that when the serum level of matrix metalloproteinase 9 is 2.5 times higher than preoperative level at 3 days after cervical and intracranial angioplasty and stenting, it may serve as a predictor of in-stent restenosis.

  14. A study on the expression levels of matrix metalloproteinases and ...

    African Journals Online (AJOL)

    Conclusion: MMP-2, MMP-7, and MMP-9 are potential targets for therapeutic control of UC. Keywords: Glandular epithelium, Inflammatory cells, Inhibitors, Matrix metalloproteinases (MMPs),. Tissue inhibitors of metalloproteinases, Ulcerative colitis. Tropical Journal of Pharmaceutical Research is indexed by Science ...

  15. Chemically modified tetracyclines stimulate matrix metalloproteinase-s production by periodontal ligament cells

    NARCIS (Netherlands)

    Bildt, M.M.; Snoek-van Beurden, A.M.P.; Groot, J. de; El, B. van; Kuijpers-Jagtman, A.M.; Hoff, J.W. van den

    2006-01-01

    Background and Objective: The purpose of this study was to investigate the effects of chemically modified tetracyclines (CMTs) on the production of gelatinases [matrix metalloproteinase (MMP)-2 and -9] by human periodontal ligament (PDL) cells, and on the activity of recombinant gelatinases.

  16. Correlation between expression of extracellular matrix metalloproteinase inducer and matrix metalloproteinase-2 and cervical lymph node metastasis of nasopharyngeal carcinoma.

    Science.gov (United States)

    Huang, Tian; Chen, Mao-Huai; Wu, Ming-Yao; Wu, Xian-Ying

    2013-03-01

    We evaluated the expression of extracellular matrix metalloproteinase inducer (EMMPRIN) and matrix metalloproteinase-2 (MMP-2) in nasopharyngeal carcinoma (NPC) and studied their relationship with cervical lymph node metastasis. Immunohistochemical staining was used to detect the expression of EMMPRIN and MMP-2 in specimens from patients with chronic nasopharyngitis (CN), nonmetastastic NPC (NM-NPC), and lymph node-metastatic NPC (LNM-NPC). The rates of positive EMMPRIN expression in CN, NM-NPC, and LNM-NPC were 13.3%, 30.0%, and 66.7%, respectively. Significant differences were found between the rates in CN and LNM-NPC (p correlated (rs = 0.466; p <0.01). Nasopharyngeal carcinoma cells may attain enhanced metastastic capability through the expression of MMP-2 induced by EMMPRIN.

  17. Effects of macelignan isolated from Myristica fragrans (nutmeg) on expression of matrix metalloproteinase-1 and type I procollagen in UVB-irradiated human skin fibroblasts

    International Nuclear Information System (INIS)

    Lee, Kyung-Eun; Mun, Sukyeong; Pyun, Hee-Bong; Kim, Myung-Suk; Hwang, Jae-Kwan

    2012-01-01

    Exposure to ultraviolet (UV) light causes premature skin aging that is associated with upregulated matrix metalloproteinases (MMPs) and decreased collagen synthesis. Macelignan, a natural lignan compound isolated from Myristica fragrans HOUTT. (nutmeg), has been reported to possess antioxidant and antiinflammatory activities. This study assessed the effects of macelignan on photoaging and investigated its mechanisms of action in UV-irradiated human skin fibroblasts (Hs68) by reverse transcription-polymerase chain reaction, Western blot analysis, 2', 7'-dichlorofluorescein diacetate assay, and enzyme-linked immunosorbent assay. Our results show that macelignan attenuated UV-induced MMP-1 expression by suppressing phosphorylation of mitogen-activated protein kinases (MAPKs) induced by reactive oxygen species. Macelignan also increased type I procollagen expression and secretion through transforming growth factor β (TGF-β)/Smad signaling. These findings indicate that macelignan regulates the expression of MMP-1 and type I procollagen in UV-irradiated human skin fibroblasts by modulating MAPK and TGF-β/Smad signaling, suggesting its potential as an efficacious antiphotoaging agent. (author)

  18. Tissue inhibitor of matrix metalloproteinase-1 mediates erythropoietin-induced neuroprotection in hypoxia ischemia.

    Science.gov (United States)

    Souvenir, Rhonda; Fathali, Nancy; Ostrowski, Robert P; Lekic, Tim; Zhang, John H; Tang, Jiping

    2011-10-01

    Previous studies have shown that erythropoietin (EPO) is neuroprotective in both in vivo and in vitro models of hypoxia ischemia. However these studies hold limited clinical translations because the underlying mechanism remains unclear and the key molecules involved in EPO-induced neuroprotection are still to be determined. This study investigated if tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) and its upstream regulator signaling molecule Janus kinase-2 (JAK-2) are critical in EPO-induced neuroprotection. Hypoxia ischemia (HI) was modeled in-vitro by oxygen and glucose deprivation (OGD) and in-vivo by a modified version of Rice-Vannucci model of HI in 10-day-old rat pups. EPO treated cells were exposed to AG490, an inhibitor of JAK-2 or TIMP-1 neutralizing antibody for 2h with OGD. Cell death, phosphorylation of JAK-2 and signal transducers and activators of transcription protein-3 (STAT-3), TIMP-1 expression, and matrix metalloproteinase-9 (MMP-9) activity were measured and compared with normoxic group. Hypoxic ischemic animals were treated one hour following HI and evaluated 48 h after. Our data showed that EPO significantly increased cell survival, associated with increased TIMP-1 activity, phosphorylation of JAK-2 and STAT-3, and decreased MMP-9 activity in vivo and in vitro. EPO's protective effects were reversed by inhibition of JAK-2 or TIMP-1 in both models. We concluded that JAK-2, STAT-3 and TIMP-1 are key mediators of EPO-induced neuroprotection during hypoxia ischemia injury. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Activity of matrix metalloproteinases during antimycobacterial therapy in mice with simulated tuberculous inflammation.

    Science.gov (United States)

    Sumenkova, D V; Russkikh, G S; Poteryaeva, O N; Polyakov, L M; Panin, L E

    2013-05-01

    Matrix metalloproteinases are shown to be involved in the pathogenesis of tuberculosis inflammation. In the early stages of BCG-granuloma formation in mouse liver and lungs, the serum levels of matrix metalloproteinases 2 and 7 increased by 4.5 times and remained unchanged while the pathology developed. Antimycobacterial therapy with isoniazid reduced enzyme activity almost to the level of intact control. The decrease in activity of matrix metalloproteinases 2 and 7 that play the most prominent role in the development of destructive forms of tuberculosis is of great therapeutic importance.

  20. Estimation of Serum Matrix Metalloproteinases-1 Levels in Iraqi Female Patients with Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Vean Sabah Ali

    2018-05-01

    Full Text Available This study was established to investigate the correlation between the expression of matrix metalloproteinases (MMP-1 and the pathogenesis of osteoarthritis (OA. Blood samples were collected from 55 female patients with inflammatory OA and controls for estimation of serum (MMP-1 levels. In the current study, there is significant increase (p<0.001 in the mean of serum MMP-1 levels in osteoarthritis females (4027.73 ± 1345.28 pg/ml than that in control females (798.76 ± 136.79 pg/ml. It was concluded that MMP-1 may be associated with the pathogenesis of osteoarthritis.

  1. Matrix metalloproteinase 2 and tissue inhibitor of matrix metalloproteinases 2 in the diagnosis of colorectal adenoma and cancer patients

    Directory of Open Access Journals (Sweden)

    Magdalena Groblewska

    2010-04-01

    Full Text Available The aim of the study was to assess the importance of the measurement of matrix metalloproteinase 2 (MMP-2and tissue inhibitor of matrix metalloproteinases 2 (TIMP-2 in patients with colorectal cancer (CRC in relation to clinicopathologicalfeatures of tumor and patients' survival. Additionally, we determined serum MMP-2 and TIMP-2 in colorectaladenoma (CA patients and healthy controls and compared them with tumor markers, CEA and CA 19-9. The serum levelsof MMP-2 and TIMP-2 in 91 CRC patients, 28 CA subjects and 91 healthy controls were determined by ELISA method, butconcentrations of CEA and CA 19-9 using MEIA method. Nonparametric statistical analyses were used. Serum levels ofMMP-2 and TIMP-2 were significantly lower in CRC patients than in healthy subjects and decreased with tumor stage.Additionally, MMP-2 concentrations were significantly lower in patients with CRC than in CA group. Diagnostic sensitivityof TIMP-2 (59% was the highest among biomarkers tested and increased in combined use with CEA (79%. Moreover,the area under ROC curve (AUC of TIMP-2 was larger than AUC of MMP-2 in differentiation between CRC and healthysubjects, but lower than AUC of matrix metalloproteinase 2 in differentiation between colorectal cancer and adenoma. Ourfindings suggest clinical usefulness of TIMP-2 as a biomarker in the diagnosis of CRC, especially in combination with CEA.However, further investigation is necessary.

  2. Matrix metalloproteinase 2 and tissue inhibitor of matrix metalloproteinases 2 in the diagnosis of colorectal adenoma and cancer patients.

    Directory of Open Access Journals (Sweden)

    Barbara Mroczko

    2011-04-01

    Full Text Available The aim of the study was to assess the importance of the measurement of matrix metalloproteinase 2 (MMP-2 and tissue inhibitor of matrix metalloproteinases 2 (TIMP-2 in patients with colorectal cancer (CRC in relation to clinicopathological features of tumor and patients' survival. Additionally, we determined serum MMP-2 and TIMP-2 in colorectal adenoma (CA patients and healthy controls and compared them with tumor markers, CEA and CA 19-9. The serum levels of MMP-2 and TIMP-2 in 91 CRC patients, 28 CA subjects and 91 healthy controls were determined by ELISA method, but concentrations of CEA and CA 19-9 using MEIA method. Nonparametric statistical analyses were used. Serum levels of MMP-2 and TIMP-2 were significantly lower in CRC patients than in healthy subjects and decreased with tumor stage. Additionally, MMP-2 concentrations were significantly lower in patients with CRC than in CA group. Diagnostic sensitivity of TIMP-2 (59% was the highest among biomarkers tested and increased in combined use with CEA (79%. Moreover, the area under ROC curve (AUC of TIMP-2 was larger than AUC of MMP-2 in differentiation between CRC and healthy subjects, but lower than AUC of matrix metalloproteinase 2 in differentiation between colorectal cancer and adenoma. Our findings suggest clinical usefulness of TIMP-2 as a biomarker in the diagnosis of CRC, especially in combination with CEA. However, further investigation is necessary.

  3. Tumor cell invasion of collagen matrices requires coordinate lipid agonist-induced G-protein and membrane-type matrix metalloproteinase-1-dependent signaling

    Directory of Open Access Journals (Sweden)

    Anthis Nicholas J

    2006-12-01

    Full Text Available Abstract Background Lysophosphatidic acid (LPA and sphingosine 1-phosphate (S1P are bioactive lipid signaling molecules implicated in tumor dissemination. Membrane-type matrix metalloproteinase 1 (MT1-MMP is a membrane-tethered collagenase thought to be involved in tumor invasion via extracellular matrix degradation. In this study, we investigated the molecular requirements for LPA- and S1P-regulated tumor cell migration in two dimensions (2D and invasion of three-dimensional (3D collagen matrices and, in particular, evaluated the role of MT1-MMP in this process. Results LPA stimulated while S1P inhibited migration of most tumor lines in Boyden chamber assays. Conversely, HT1080 fibrosarcoma cells migrated in response to both lipids. HT1080 cells also markedly invaded 3D collagen matrices (~700 μm over 48 hours in response to either lipid. siRNA targeting of LPA1 and Rac1, or S1P1, Rac1, and Cdc42 specifically inhibited LPA- or S1P-induced HT1080 invasion, respectively. Analysis of LPA-induced HT1080 motility on 2D substrates vs. 3D matrices revealed that synthetic MMP inhibitors markedly reduced the distance (~125 μm vs. ~45 μm and velocity of invasion (~0.09 μm/min vs. ~0.03 μm/min only when cells navigated 3D matrices signifying a role for MMPs exclusively in invasion. Additionally, tissue inhibitors of metalloproteinases (TIMPs-2, -3, and -4, but not TIMP-1, blocked lipid agonist-induced invasion indicating a role for membrane-type (MT-MMPs. Furthermore, MT1-MMP expression in several tumor lines directly correlated with LPA-induced invasion. HEK293s, which neither express MT1-MMP nor invade in the presence of LPA, were transfected with MT1-MMP cDNA, and subsequently invaded in response to LPA. When HT1080 cells were seeded on top of or within collagen matrices, siRNA targeting of MT1-MMP, but not other MMPs, inhibited lipid agonist-induced invasion establishing a requisite role for MT1-MMP in this process. Conclusion LPA is a

  4. Increased expression of matrix metalloproteinase-1 in systemic vessels of preeclamptic women: a critical mediator of vascular dysfunction.

    Science.gov (United States)

    Estrada-Gutierrez, Guadalupe; Cappello, Renato E; Mishra, Nikita; Romero, Roberto; Strauss, Jerome F; Walsh, Scott W

    2011-01-01

    This study was conducted to determine the following: (1) whether matrix metalloproteinase-1 (MMP-1) is increased in systemic vessels of preeclamptic women, (2) whether this increase might be mediated by neutrophils, and (3) whether MMP-1 could be responsible for vascular dysfunction. Omental arteries and plasma were collected from healthy pregnant and preeclamptic women. Omental arteries were evaluated for gene and protein expression of MMP-1, collagen type 1α, tissue inhibitor of metalloproteinase-1, and vascular reactivity to MMP-1. Gene and protein expression levels were also evaluated in human vascular smooth muscle cells (VSMCs) co-cultured with activated neutrophils, reactive oxygen species, or tumor necrosis factor α. Vessel expression of MMP-1 and circulating MMP-1 levels were increased in preeclamptic women, whereas vascular expression of collagen or tissue inhibitor of metalloproteinase-1 were down-regulated or unchanged. In cultured VSMCs, the imbalance in collagen-regulating genes of preeclamptic vessels was reproduced by treatment with neutrophils, tumor necrosis factor α, or reactive oxygen species. Chemotaxis studies with cultured cells revealed that MMP-1 promoted recruitment of neutrophils via vascular smooth muscle release of interleukin-8. Furthermore, MMP-1 induced vasoconstriction via protease-activated receptor-1, whose expression was significantly increased in omental arteries of preeclamptic women and in VSMCs co-cultured with neutrophils. Collectively, these findings disclose a novel role for MMP-1 as a mediator of vasoconstriction and vascular dysfunction in preeclampsia. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  5. Matrix metalloproteinases during and outside of migraine attacks without aura

    DEFF Research Database (Denmark)

    Ashina, M.; Tvedskov, J.F.; Thiesen, Kerstin Lipka

    2010-01-01

    Ashina M, Tvedskov JF, Lipka K, Bilello J, Penkowa M & Olesen J. Matrix metalloproteinases during and outside of migraine attacks without aura. Cephalalgia 2009. London. ISSN 0333-1024To test the hypothesis that permeability of the blood-brain barrier (BBB) is altered during migraine attack due...... to enhanced activation of matrix metalloproteinases (MMPs), we investigated MMP-3, MMP-9 and tissue inhibitor of metalloproteases (TIMP)-1 in the external jugular vein during and outside of migraine attacks in 21 patients with migraine without aura. In addition, we measured plasma levels of several other...... of MMP-3 in the external jugular (P = 0.002) and cubital (P = 0.008) vein during attacks compared with outside of attacks. We found no correlation of ictal or interictal MMP-3, MMP-9 and TIMP-1 to migraine duration and frequency analysed in 21 patients (P > 0.05). There was no difference between ictal...

  6. Imaging with radiolabelled anti-membrane type 1 matrix metalloproteinase (MT1-MMP) antibody: potentials for characterizing atherosclerotic plaques

    International Nuclear Information System (INIS)

    Kuge, Yuji; Takai, Nozomi; Ogawa, Yuki; Temma, Takashi; Nishigori, Kantaro; Ishino, Seigo; Kamihashi, Junko; Saji, Hideo; Zhao, Yan; Kiyono, Yasushi; Shiomi, Masashi

    2010-01-01

    Membrane type 1 matrix metalloproteinase (MT1-MMP) activates pro-MMP-2 and pro-MMP-13 to their active forms and plays important roles in the destabilization of atherosclerotic plaques. This study sought to determine the usefulness of 99m Tc-labelled monoclonal antibody (mAb), recognizing MT1-MMP, for imaging atherosclerosis in a rabbit model (WHHLMI rabbits). Anti-MT1-MMP monoclonal IgG 3 and negative control IgG 3 were radiolabelled with 99m Tc after derivatization with 6-hydrazinonicotinic acid (HYNIC) to yield 99m Tc-MT1-MMP mAb and 99m Tc-IgG 3 , respectively. WHHLMI and control rabbits were injected with these radio-probes. The aorta was removed and radioactivity was measured at 24 h after the injection. Autoradiography and histological studies were performed. 99m Tc-MT1-MMP mAb accumulation in WHHLMI rabbit aortas was 5.4-fold higher than that of control rabbits. Regional 99m Tc-MT1-MMP mAb accumulation was positively correlated with MT1-MMP expression (r = 0.59, p 99m Tc-IgG 3 accumulation was independent of MT1-MMP expression (r = 0.03, p = NS). The highest 99m Tc-MT1-MMP mAb accumulation was found in atheromatous lesions (4.8 ± 1.9, %ID x BW/mm 2 x 10 2 ), followed in decreasing order by fibroatheromatous (1.8 ± 1.3), collagen-rich (1.6 ± 1.0) and neointimal lesions (1.5 ± 1.5). In contrast, 99m Tc-IgG 3 accumulation was almost independent of the histological grade of lesions. Higher 99m Tc-MT1-MMP mAb accumulation in grade IV atheroma was shown in comparison with neointimal lesions or other more stable lesions. Nuclear imaging with 99m Tc-MT1-MMP mAb, in combination with CT and MRI, could provide new diagnostic imaging capabilities for detecting vulnerable plaques, although further investigations to improve target to blood ratios are strongly required. (orig.)

  7. Expression of matrix metalloproteinase-1, -2 and -3 in squamous cell carcinoma and actinic keratosis

    Science.gov (United States)

    Tsukifuji, R; Tagawa, K; Hatamochi, A; Shinkai, H

    1999-01-01

    Matrix metalloproteinase (MMP) plays an important role in extracellular matrix degradation associated with cancer invasion. An expression of MMP-1 (interstitial collagenase), MMP-2 (72-kDa type IV collagenase) and MMP-3 (stromelysin-1) was investigated in squamous cell carcinoma (SCC) and its precancerous condition, actinic keratosis (AK), using in situ hybridization techniques. MMP-1 mRNA was detected in tumour cells and/or in stromal cells in all cases of SCC, four of six AKs adjacent to SCC and four of 16 AKs. MMP-2 and MMP-3 mRNAs were detected in SCC but not in AK. The expression of MMP-3 correlated to that of MMP-1 (P = 0.03) localized at the tumour mass and stroma of the invasive area, while MMP-2 mRNA was detected widely throughout the stroma independent of MMP-1 expression. Our results indicated that the expression of MMP-1, -2 and -3 showed different localization patterns, suggesting a unique role of each MMP in tumour progression. Moreover, MMP-1 expression could be an early event in the development of SCC, and AK demonstrating MMP-1 mRNA, might be in a more advanced dysplastic state, progressing to SCC. © 1999 Cancer Research Campaign PMID:10362121

  8. Zymographic techniques for the analysis of matrix metalloproteinases and their inhibitors.

    NARCIS (Netherlands)

    Snoek, P.A.; Hoff, J.W. Von den

    2005-01-01

    The balance between matrix metalloproteinases (MMPs) and their inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), is largely responsible for the remodeling of tissues. Deregulation of this balance is a characteristic of extensive tissue degradation in certain degenerative diseases. To

  9. Analysis of Enzymatic Activity of Matrix Metalloproteinase (MMP) by Collagen Zymography in Melanoma.

    Science.gov (United States)

    Walia, Vijay; Samuels, Yardena

    2018-01-01

    Protein zymography is the most commonly used technique to study the enzymatic activity of matrix metalloproteinases (MMPs) and their inhibitors. MMPs are proteolytic enzymes that promote extracellular matrix degradation. MMPs are frequently mutated in malignant melanomas as well as other cancers and are linked to increasing incidence of tumor metastasis. Substrate zymography characterizes MMP activity by their ability to degrade preferred substrates. Here we describe the collagen zymography technique to measure the active or latent form of MMPs using MMP-8 as an example, which is a frequently mutated MMP family member in malignant melanomas. The same technique can be used with the modification of substrate to detect metalloproteinase activity of other MMPs. Both wild-type and mutated forms of MMPs can be analyzed using a single gel using this method.

  10. Structure of matrix metalloproteinase-3 with a platinum-based inhibitor.

    Science.gov (United States)

    Belviso, Benny Danilo; Caliandro, Rocco; Siliqi, Dritan; Calderone, Vito; Arnesano, Fabio; Natile, Giovanni

    2013-06-18

    An X-ray investigation has been performed with the aim of characterizing the binding sites of a platinum-based inhibitor (K[PtCl3(DMSO)]) of matrix metalloproteinase-3 (stromelysin-1). The platinum complex targets His224 in the S1' specificity loop, representing the first step in the selective inhibition process (PDB ID code 4JA1).

  11. Kinetic analysis of the inhibition of matrix metalloproteinases: lessons from the study of tissue inhibitors of metalloproteinases.

    Science.gov (United States)

    Willenbrock, Frances; Thomas, Daniel A; Amour, Augustin

    2010-01-01

    Tissue inhibitors of metalloproteinases (TIMPs) are a group of highly potent inhibitors of matrix metalloproteinases (MMPs) and disintegrin metalloproteinases (ADAMs). The high affinity and "tight-binding" nature of the inhibition of MMPs or ADAMs by TIMPs presents challenges for the determination of both equilibrium and dissociation rate constants of these inhibitory events. Methodologies that enable some of these challenges to be overcome are described in this chapter and represent valuable lessons for the in vitro assessment of MMP or ADAM inhibitors within a drug discovery context.

  12. Matrix Metalloproteinase Responsive Delivery of Myostatin Inhibitors.

    Science.gov (United States)

    Braun, Alexandra C; Gutmann, Marcus; Ebert, Regina; Jakob, Franz; Gieseler, Henning; Lühmann, Tessa; Meinel, Lorenz

    2017-01-01

    The inhibition of myostatin - a member of the transforming growth factor (TGF-β) family - drives regeneration of functional skeletal muscle tissue. We developed a bioresponsive drug delivery system (DDS) linking release of a myostatin inhibitor (MI) to inflammatory flares of myositis to provide self-regulated MI concentration gradients within tissues of need. A protease cleavable linker (PCL) - responding to MMP upregulation - is attached to the MI and site-specifically immobilized on microparticle surfaces. The PCL disintegrated in a matrix metalloproteinase (MMP) 1, 8, and particularly MMP-9 concentration dependent manner, with MMP-9 being an effective surrogate biomarker correlating with the activity of myositis. The bioactivity of particle-surface bound as well as released MI was confirmed by luciferase suppression in stably transfected HEK293 cells responding to myostatin induced SMAD phosphorylation. We developed a MMP-responsive DDS for MI delivery responding to inflammatory flare of a diseased muscle matching the kinetics of MMP-9 upregulation, with MMP-9 kinetics matching (patho-) physiological myostatin levels. ᅟ: Graphical Abstract Schematic illustration of the matrix metalloproteinase responsive delivery system responding to inflammatory flares of muscle disease. The protease cleavable linker readily disintegrates upon entry into the diseased tissue, therby releasing the mystatin inhibitor.

  13. Radioimmunodetection of membrane type-1 matrix metalloproteinase relevant to tumor malignancy with a pre-targeting method

    International Nuclear Information System (INIS)

    Sano, Kohei; Temma, Takashi; Kuge, Yuji; Kudo, Takashi; Kamihashi, Junko; Saji, Hideo; Zhao, Songji

    2010-01-01

    Since membrane type-1 matrix metalloproteinase (MT1-MMP) is exclusively expressed in tumors and is closely associated with metastasis and invasion, MT1-MMP is a potential target of radiotracers for the evaluation of tumor malignancy. In this study, we planned to visualize MT1-MMP in vivo by a two-step pre-targeting strategy using a streptavidin (SAv)-biotin system combined with anti-MT1-MMP monoclonal immunoglobulin (IgG) (anti-MT1-MMP monoclonal antibody (mAb)). Streptavidinylated anti-MT1-MMP mAb was synthesized by reacting biotinylated anti-MT1-MMP mAb with SAv. In the pre-targeting study, FM3A mouse breast carcinoma-implanted mice were injected with anti-MT1-MMP mAb-SAv, followed 72 h later with radioiodinated biotin, (3-[ 123/125 I]iodobenzoyl)norbiotinamide( 123/125 I-IBB). Biodistribution and imaging (single photon emission computed tomography (SPECT)/CT) data were collected at several time points in the 24 h period following introduction of the tracer. The comparison groups were injected with 125 I-IBB alone or with 125 I-IBB pre-targeted with negative control IgG-SAv. In the pre-targeting study for MT1-MMP, within 1 h of tracer injection, rapid tumor uptake and abrupt clearance from the blood of radioactivity (2.22, 0.87% injected dose/g at 1 h) were observed. The tumor to blood (T/B) radioactivity ratios were significantly higher than those from mice dosed with the pre-targeting negative control (p 125 I-IBB alone did not accumulate in tumors. SPECT/CT image analysis of FM3A bearing mice showed high-contrast tumor images after 3 h with minimal blood-pool activity. The present study that uses a pre-targeting method showed high T/B radioactivity ratios and clear tumor images of MT1-MMP. This imaging method may be useful for the clinical diagnosis of malignant tumors. (author)

  14. Increased matrix metalloproteinase-9 to tissue inhibitor of metalloproteinase-1 ratio in smokers with airway hyperresponsiveness and accelerated lung function decline

    Directory of Open Access Journals (Sweden)

    Lo CY

    2018-04-01

    Full Text Available Chun-Yu Lo,1 Hung-Yu Huang,1 Jung-Ru He,1 Tzu-Ting Huang,1 Chih-Chen Heh,1 Te-Fang Sheng,1 Kian Fan Chung,2 Han-Pin Kuo,1 Chun-Hua Wang1 1Department of Thoracic Medicine, Chang Gung Medical Foundation, College of Medicine, Chang Gung University, Taipei, Taiwan; 2Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK Background: Airway hyperresponsiveness (AHR is associated with airway inflammation and a rapid decline in lung function and is a predictor of future risk of COPD among smokers. Alveolar macrophages (AMs from patients with COPD release a greater amount of matrix metalloproteinase (MMP-9. We hypothesized that the imbalance between MMP-9 and tissue inhibitor of metalloproteinase-1 (TIMP-1 is related to AHR in smokers.Patients and methods: Healthy smokers with AHR (AHR + S or smokers without AHR (AHR - S; divided according to a methacholine challenge test and nonsmokers without AHR (AHR - NS were enrolled. Spirometry was performed during enrollment and repeated after 5 years. Initially, AMs recovered from bronchoalveolar lavage (BAL fluid were cultured in the presence of p38 mitogen-activated protein kinase (MAPK inhibitor (SB203580, MAPK kinase (MEK 1/2 (the MEK of extracellular signal-regulated kinase [ERK] inhibitor, PD98059, or medium alone for 24 h. The release of MMP-9 and TIMP-1 in culture supernatants was measured by enzyme-linked immunosorbent assay.Results: A greater reduction in forced expiratory volume in 1 s (FEV1/forced vital capacity (FVC, FEV1 (as a percentage of the predicted value [%pred], and maximal mid-expiratory flow (MMEF was observed among AHR + S in the 5-year period. There was a higher proportion of neutrophils and a lower proportion of AMs in BAL fluid recovered from AHR + S. Compared to AMs from AHR - NS and AHR - S, AMs from nonsmokers with AHR (AHR + NS released more MMP-9 and less TIMP-1, with an increase in MMP-9/TIMP-1 ratios. The MMP-9/TIMP-1 ratio in smokers

  15. Beneficial Regulation of Matrix Metalloproteinases for Skin Health

    Directory of Open Access Journals (Sweden)

    Neena Philips

    2011-01-01

    Full Text Available Matrix metalloproteinases (MMPs are essential to the remodeling of the extracellular matrix. While their upregulation facilitates aging and cancer, they are essential to epidermal differentiation and the prevention of wound scars. The pharmaceutical industry is active in identifying products that inhibit MMPs to prevent or treat aging and cancer and products that stimulate MMPs to prevent epidermal hyperproliferative diseases and wound scars.

  16. Effects of Mutations on Structure-Function Relationships of Matrix Metalloproteinase-1.

    Science.gov (United States)

    Singh, Warispreet; Fields, Gregg B; Christov, Christo Z; Karabencheva-Christova, Tatyana G

    2016-10-14

    Matrix metalloproteinase-1 (MMP-1) is one of the most widely studied enzymes involved in collagen degradation. Mutations of specific residues in the MMP-1 hemopexin-like (HPX) domain have been shown to modulate activity of the MMP-1 catalytic (CAT) domain. In order to reveal the structural and conformational effects of such mutations, a molecular dynamics (MD) study was performed of in silico mutated residues in the X-ray crystallographic structure of MMP-1 complexed with a collagen-model triple-helical peptide (THP). The results indicate an important role of the mutated residues in MMP-1 interactions with the THP and communication between the CAT and the HPX domains. Each mutation has a distinct impact on the correlated motions in the MMP-1•THP. An increased collagenase activity corresponded to the appearance of a unique anti-correlated motion and decreased correlated motions, while decreased collagenase activity corresponded both to increased and decreased anti-correlated motions.

  17. Effects of Mutations on Structure–Function Relationships of Matrix Metalloproteinase-1

    Directory of Open Access Journals (Sweden)

    Warispreet Singh

    2016-10-01

    Full Text Available Matrix metalloproteinase-1 (MMP-1 is one of the most widely studied enzymes involved in collagen degradation. Mutations of specific residues in the MMP-1 hemopexin-like (HPX domain have been shown to modulate activity of the MMP-1 catalytic (CAT domain. In order to reveal the structural and conformational effects of such mutations, a molecular dynamics (MD study was performed of in silico mutated residues in the X-ray crystallographic structure of MMP-1 complexed with a collagen-model triple-helical peptide (THP. The results indicate an important role of the mutated residues in MMP-1 interactions with the THP and communication between the CAT and the HPX domains. Each mutation has a distinct impact on the correlated motions in the MMP-1•THP. An increased collagenase activity corresponded to the appearance of a unique anti-correlated motion and decreased correlated motions, while decreased collagenase activity corresponded both to increased and decreased anti-correlated motions.

  18. EMMPRIN mediates beta-adrenergic receptor-stimulated matrix metalloproteinase activity in cardiac myocytes.

    OpenAIRE

    Siwik Deborah A; Kuster Gabriela M; Brahmbhatt Jamin V; Zaidi Zaheer; Malik Julia; Ooi Henry; Ghorayeb Ghassan

    2008-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) expression is increased in myocardium from patients with dilated cardiomyopathy and animal models of heart failure. However little is known about the regulated expression or functional role of EMMPRIN in the myocardium. In rat cardiac cells EMMPRIN is expressed on myocytes but not endothelial cells or fibroblasts. Therefore we tested the hypothesis that EMMPRIN expression regulates matrix metalloproteinase (MMP) activity in rat ventricu...

  19. Curcumin: a potential candidate for matrix metalloproteinase inhibitors.

    Science.gov (United States)

    Kumar, Dileep; Kumar, Manish; Saravanan, Chinnadurai; Singh, Sushil Kumar

    2012-10-01

    Curcumin, a natural yellow pigment of turmeric, has become focus of interest with regard to its role in regulation of matrix metalloproteinases (MMPs). MMPs are metal-dependent endopeptidases capable of degrading components of the extracellular matrix. MMPs are involved in chronic diseases such as arthritis, Alzheimer's disease, psoriasis, chronic obstructive pulmonary disease, asthma, cancer, neuropathic pain, and atherosclerosis. Curcumin regulates the expression and secretion of various MMPs. This review documents the matrix metalloproteinase inhibitory activity of curcumin on various diseases viz., cancer, arthritis, and ulcer. Finally, the steps to be taken for getting potent curcuminoids have also been discussed in the structure-activity relationship (SAR) section. From this review, readers can get answer to the question: Is curcumin a potential MMPI candidate? Numerous approaches have been taken to beget a molecule with specificity restricted to a particular MMP as well as good oral bioavailability; however, nearly all the molecules lack these criteria. Using quantitative structure-activity relationship (QSAR) modeling and virtual screening, new analogs of curcumin can be designed which will be selectively inhibiting different MMPs.

  20. Extracellular matrix metalloproteinase inducer (EMMPRIN) remodels the extracellular matrix through enhancing matrix metalloproteinases (MMPs) and inhibiting tissue inhibitors of MMPs expression in HPV-positive cervical cancer cells.

    Science.gov (United States)

    Xu, Q; Cao, X; Pan, J; Ye, Y; Xie, Y; Ohara, N; Ji, H

    2015-01-01

    PUPOSE OF INVESTIGATION: To study the expression of extracellular matrix metalloproteinase inducer (EMMPRIN), matrix metalloproteinases (MMPs), and tissue inhibitors of MMP (TIMPs) in uterine cervical cancer cell lines in vitro. EMMPRIN, MMPs, and TIMPs expression were assessed by Western blot and real-time RT-PCR from cervical carcinoma SiHa, HeLa, and C33-A cells. EMMPRIN recombinant significantly increased MMP-2, MMP-9 protein and mRNA expression in SiHa and Hela cells, but not in C33-A cells by Western blot analysis and real-time RT-PCR. EMMPRIN recombinant significantly inhibited TIMP-1 protein and mRNA levels in SiHa and Hela cells, but not in C33-A cells. There was no difference on the TIMP-2 expression in those cells with the treatment of EMMPRIN recombinant. EMMPRIN RNAi decreased MMP-2 and MMP-9 and increased TIMP-1 expression in SiHa and HeLa cells, but not in C33-A cells. There was no change on the expression of TIMP-2 mRNA levels in SiHa, HeLa and C33-A cells transfected with siEMMPRIN. EMMPRIN may induce MMP-2 and MMP-9, and downregulate TIMP-1 in HPV-positive cervical cancer cells in vitro.

  1. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells

    International Nuclear Information System (INIS)

    Raufman, Jean-Pierre; Cheng, Kunrong; Saxena, Neeraj; Chahdi, Ahmed; Belo, Angelica; Khurana, Sandeep; Xie, Guofeng

    2011-01-01

    Highlights: ► Muscarinic receptor agonists stimulated robust human colon cancer cell invasion. ► Anti-matrix metalloproteinase1 antibody pre-treatment blocks cell invasion. ► Bile acids stimulate MMP1 expression, cell migration and MMP1-dependent invasion. -- Abstract: Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasion of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers – this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre-treatment with anti-MMP1 antibody. This study contributes to understanding

  2. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Raufman, Jean-Pierre, E-mail: jraufman@medicine.umaryland.edu [Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD (United States); Cheng, Kunrong; Saxena, Neeraj; Chahdi, Ahmed; Belo, Angelica; Khurana, Sandeep; Xie, Guofeng [Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD (United States)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Muscarinic receptor agonists stimulated robust human colon cancer cell invasion. Black-Right-Pointing-Pointer Anti-matrix metalloproteinase1 antibody pre-treatment blocks cell invasion. Black-Right-Pointing-Pointer Bile acids stimulate MMP1 expression, cell migration and MMP1-dependent invasion. -- Abstract: Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasion of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers - this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre

  3. Matrix metalloproteinases outside vertebrates.

    Science.gov (United States)

    Marino-Puertas, Laura; Goulas, Theodoros; Gomis-Rüth, F Xavier

    2017-11-01

    The matrix metalloproteinase (MMP) family belongs to the metzincin clan of zinc-dependent metallopeptidases. Due to their enormous implications in physiology and disease, MMPs have mainly been studied in vertebrates. They are engaged in extracellular protein processing and degradation, and present extensive paralogy, with 23 forms in humans. One characteristic of MMPs is a ~165-residue catalytic domain (CD), which has been structurally studied for 14 MMPs from human, mouse, rat, pig and the oral-microbiome bacterium Tannerella forsythia. These studies revealed close overall coincidence and characteristic structural features, which distinguish MMPs from other metzincins and give rise to a sequence pattern for their identification. Here, we reviewed the literature available on MMPs outside vertebrates and performed database searches for potential MMP CDs in invertebrates, plants, fungi, viruses, protists, archaea and bacteria. These and previous results revealed that MMPs are widely present in several copies in Eumetazoa and higher plants (Tracheophyta), but have just token presence in eukaryotic algae. A few dozen sequences were found in Ascomycota (within fungi) and in double-stranded DNA viruses infecting invertebrates (within viruses). In contrast, a few hundred sequences were found in archaea and >1000 in bacteria, with several copies for some species. Most of the archaeal and bacterial phyla containing potential MMPs are present in human oral and gut microbiomes. Overall, MMP-like sequences are present across all kingdoms of life, but their asymmetric distribution contradicts the vertical descent model from a eubacterial or archaeal ancestor. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Imaging with radiolabelled anti-membrane type 1 matrix metalloproteinase (MT1-MMP) antibody: potentials for characterizing atherosclerotic plaques

    Energy Technology Data Exchange (ETDEWEB)

    Kuge, Yuji [Kyoto University, Department of Patho-functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto (Japan); Hokkaido University, Department of Tracer Kinetics and Bioanalysis, Graduate School of Medicine, Sapporo (Japan); Hokkaido University, Central Institute of Isotope Science, Sapporo (Japan); Takai, Nozomi; Ogawa, Yuki; Temma, Takashi; Nishigori, Kantaro; Ishino, Seigo; Kamihashi, Junko; Saji, Hideo [Kyoto University, Department of Patho-functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto (Japan); Zhao, Yan [Hokkaido University, Department of Tracer Kinetics and Bioanalysis, Graduate School of Medicine, Sapporo (Japan); Kiyono, Yasushi [Kyoto University, Department of Patho-functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto (Japan); University of Fukui, Biomedical Imaging Research Center, Fukui (Japan); Shiomi, Masashi [Kobe University Graduate School of Medicine, Institute for Experimental Animals, Kobe (Japan)

    2010-11-15

    Membrane type 1 matrix metalloproteinase (MT1-MMP) activates pro-MMP-2 and pro-MMP-13 to their active forms and plays important roles in the destabilization of atherosclerotic plaques. This study sought to determine the usefulness of {sup 99m}Tc-labelled monoclonal antibody (mAb), recognizing MT1-MMP, for imaging atherosclerosis in a rabbit model (WHHLMI rabbits). Anti-MT1-MMP monoclonal IgG{sub 3} and negative control IgG{sub 3} were radiolabelled with {sup 99m}Tc after derivatization with 6-hydrazinonicotinic acid (HYNIC) to yield {sup 99m}Tc-MT1-MMP mAb and {sup 99m}Tc-IgG{sub 3}, respectively. WHHLMI and control rabbits were injected with these radio-probes. The aorta was removed and radioactivity was measured at 24 h after the injection. Autoradiography and histological studies were performed. {sup 99m}Tc-MT1-MMP mAb accumulation in WHHLMI rabbit aortas was 5.4-fold higher than that of control rabbits. Regional {sup 99m}Tc-MT1-MMP mAb accumulation was positively correlated with MT1-MMP expression (r = 0.59, p < 0.0001), while {sup 99m}Tc-IgG{sub 3} accumulation was independent of MT1-MMP expression (r = 0.03, p = NS). The highest {sup 99m}Tc-MT1-MMP mAb accumulation was found in atheromatous lesions (4.8 {+-} 1.9, %ID x BW/mm{sup 2} x 10{sup 2}), followed in decreasing order by fibroatheromatous (1.8 {+-} 1.3), collagen-rich (1.6 {+-} 1.0) and neointimal lesions (1.5 {+-} 1.5). In contrast, {sup 99m}Tc-IgG{sub 3} accumulation was almost independent of the histological grade of lesions. Higher {sup 99m}Tc-MT1-MMP mAb accumulation in grade IV atheroma was shown in comparison with neointimal lesions or other more stable lesions. Nuclear imaging with {sup 99m}Tc-MT1-MMP mAb, in combination with CT and MRI, could provide new diagnostic imaging capabilities for detecting vulnerable plaques, although further investigations to improve target to blood ratios are strongly required. (orig.)

  5. Expression of matrix metalloproteinases in Naegleria fowleri and their role in invasion of the central nervous system.

    Science.gov (United States)

    Lam, Charlton; Jamerson, Melissa; Cabral, Guy; Carlesso, Ana Maris; Marciano-Cabral, Francine

    2017-10-01

    Naegleria fowleri is a free-living amoeba found in freshwater lakes and ponds and is the causative agent of primary amoebic meningoencephalitis (PAM), a rapidly fatal disease of the central nervous system (CNS). PAM occurs when amoebae attach to the nasal epithelium and invade the CNS, a process that involves binding to, and degradation of, extracellular matrix (ECM) components. This degradation is mediated by matrix metalloproteinases (MMPs), enzymes that have been described in other pathogenic protozoa, and that have been linked to their increased motility and invasive capability. These enzymes also are upregulated in tumorigenic cells and have been implicated in metastasis of certain tumours. In the present study, in vitro experiments linked MMPs functionally to the degradation of the ECM. Gelatin zymography demonstrated enzyme activity in N. fowleri whole cell lysates, conditioned media and media collected from invasion assays. Western immunoblotting indicated the presence of the metalloproteinases MMP-2 (gelatinase A), MMP-9 (gelatinase B) and MMP-14 [membrane type-1 matrix metalloproteinase (MT1-MMP)]. Highly virulent mouse-passaged amoebae expressed higher levels of MMPs than weakly virulent axenically grown amoebae. The functional relevance of MMPs in media was indicated through the use of the MMP inhibitor, 1,10-phenanthroline. The collective in vitro results suggest that MMPs play a critical role in vivo in invasion of the CNS and that these enzymes may be amenable targets for limiting PAM.

  6. Cortisol/cortisone ratio and matrix metalloproteinase-9 activity are associated with pediatric primary hypertension.

    Science.gov (United States)

    Martinez-Aguayo, Alejandro; Campino, Carmen; Baudrand, Rene; Carvajal, Cristian A; García, Hernán; Aglony, Marlene; Bancalari, Rodrigo; García, Lorena; Loureiro, Carolina; Vecchiola, Andrea; Tapia-Castillo, Alejandra; Valdivia, Carolina; Sanhueza, Sebastian; Fuentes, Cristobal A; Lagos, Carlos F; Solari, Sandra; Allende, Fidel; Kalergis, Alexis M; Fardella, Carlos E

    2016-09-01

    To identify novel biomarkers associated with pediatric primary hypertension. We recruited 350 participants (4-16 years). Anthropometric parameters and aldosterone, plasma renin activity, cortisol, cortisone, Homeostasis Model Assessment Insulin Resistance (HOMA-IR), high-sensitivity C-reactive protein, adiponectin, IL-6, plasminogen activator inhibitor type 1 levels and matrix metalloproteinase-9 and matrix metalloproteinase-2 (MMP-9 and MMP-2) activities were measured. Genomic DNA was isolated. Patients with altered glucose metabolism, severe obesity [BMI-SD score (BMI-SDS) > 2.5], renovascular disease, primary aldosteronism and apparent mineralocorticoid excess syndrome were excluded. In selected participants (n = 320), SBP was positively correlated with BMI-SDS (r = 0.382, P cortisol/cortisone ratio (r = 0.231, P cortisol/cortisone ratio (P cortisol/cortisone ratio (OR = 3.92; 95% CI = 1.98-7.71) and increased MMP-9 activity (OR = 4.23; 95% CI = 2.15-8.32). We report that MMP-9 activity and the cortisol/cortisone ratio were higher in pediatric primary hypertensive patients, and these associations were independent of the effect of obesity. The potential role of these novel biomarkers in predicting hypertension risk and blood pressure regulation warrants further investigation.

  7. Matrix metalloproteinase-10 (MMP-10) interaction with tissue inhibitors of metalloproteinases TIMP-1 and TIMP-2: binding studies and crystal structure.

    Science.gov (United States)

    Batra, Jyotica; Robinson, Jessica; Soares, Alexei S; Fields, Alan P; Radisky, Derek C; Radisky, Evette S

    2012-05-04

    Matrix metalloproteinase 10 (MMP-10, stromelysin-2) is a secreted metalloproteinase with functions in skeletal development, wound healing, and vascular remodeling; its overexpression is also implicated in lung tumorigenesis and tumor progression. To understand the regulation of MMP-10 by tissue inhibitors of metalloproteinases (TIMPs), we have assessed equilibrium inhibition constants (K(i)) of putative physiological inhibitors TIMP-1 and TIMP-2 for the active catalytic domain of human MMP-10 (MMP-10cd) using multiple kinetic approaches. We find that TIMP-1 inhibits the MMP-10cd with a K(i) of 1.1 × 10(-9) M; this interaction is 10-fold weaker than the inhibition of the similar MMP-3 (stromelysin-1) catalytic domain (MMP-3cd) by TIMP-1. TIMP-2 inhibits the MMP-10cd with a K(i) of 5.8 × 10(-9) M, which is again 10-fold weaker than the inhibition of MMP-3cd by this inhibitor (K(i) = 5.5 × 10(-10) M). We solved the x-ray crystal structure of TIMP-1 bound to the MMP-10cd at 1.9 Å resolution; the structure was solved by molecular replacement and refined with an R-factor of 0.215 (R(free) = 0.266). Comparing our structure of MMP-10cd·TIMP-1 with the previously solved structure of MMP-3cd·TIMP-1 (Protein Data Bank entry 1UEA), we see substantial differences at the binding interface that provide insight into the differential binding of stromelysin family members to TIMP-1. This structural information may ultimately assist in the design of more selective TIMP-based inhibitors tailored for specificity toward individual members of the stromelysin family, with potential therapeutic applications.

  8. Matrix metalloproteinases in gastric inflammation and cancer : clinical relevance and prognostic impact

    NARCIS (Netherlands)

    Kubben, Francois Jozef Gerard Marie

    2007-01-01

    The studies in this thesis describe the clinical impact of several matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in H. pylori-induced gastritis and gastric cancer. In patients with H. pylori-induced gastritis, significantly increased mucosal MMP-9 levels were

  9. Matrix Metalloproteinases Are Differentially Regulated and Responsive to Compression Therapy in a Red Duroc Model of Hypertrophic Scar.

    Science.gov (United States)

    Travis, Taryn E; Ghassemi, Pejhman; Prindeze, Nicholas J; Moffatt, Lauren T; Carney, Bonnie C; Alkhalil, Abdulnaser; Ramella-Roman, Jessica C; Shupp, Jeffrey W

    2018-01-01

    Objective: Proteins of the matrix metalloproteinases family play a vital role in extracellular matrix maintenance and basic physiological processes in tissue homeostasis. The function and activities of matrix metalloproteinases in response to compression therapies have yet to be defined. Here, a swine model of hypertrophic scar was used to profile the transcription of all known 26 matrix metalloproteinases in scars treated with a precise compression dose. Methods: Full-thickness excisional wounds were created. Wounds underwent healing and scar formation. A subset of scars underwent 2 weeks of compression therapy. Biopsy specimens were preserved, and microarrays, reverse transcription-polymerase chain reaction, Western blotting, and immunohistochemistry were performed to characterize the transcription and expression of various matrix metalloproteinase family members. Results: Microarray results showed that 13 of the known 26 matrix metalloproteinases were differentially transcribed in wounds relative to the preinjury skin. The predominant upregulation of these matrix metalloproteinases during early wound-healing stages declined gradually in later stages of wound healing. The use of compression therapy reduced this decline in 10 of the 13 differentially regulated matrix metalloproteinases. Further investigation of MMP7 using reverse transcription-polymerase chain reaction confirmed the effect of compression on transcript levels. Assessment of MMP7 at the protein level using Western blotting and immunohistochemistry was concordant. Conclusions: In a swine model of hypertrophic scar, the application of compression to hypertrophic scar attenuated a trend of decreasing levels of matrix metalloproteinases during the process of hypertrophic wound healing, including MMP7, whose enzyme regulation was confirmed at the protein level.

  10. Matrix metalloproteinase-8 overexpression prevents proper tissue repair

    DEFF Research Database (Denmark)

    Danielsen, Patricia L; Holst, Anders V; Maltesen, Henrik R

    2011-01-01

    The collagenolytic matrix metalloproteinase-8 (MMP-8) is essential for normal tissue repair but is often overexpressed in wounds with disrupted healing. Our aim was to study the impact of a local excess of this neutrophil-derived proteinase on wound healing using recombinant adenovirus...

  11. Matrix metalloproteinase-12 (MMP-12) in osteoclasts

    DEFF Research Database (Denmark)

    Hou, Peng; Troen, Tine; Ovejero, Maria C

    2004-01-01

    Osteoclasts require matrix metalloproteinase (MMP) activity and cathepsin K to resorb bone, but the critical MMP has not been identified. Osteoclasts express MMP-9 and MMP-14, which do not appear limiting for resorption, and the expression of additional MMPs is not clear. MMP-12, also called...... bone show MMP-12 expression in osteoclasts in calvariae and long bones. We also demonstrate that recombinant MMP-12 cleaves the putative functional domains of osteopontin and bone sialoprotein, two bone matrix proteins that strongly influence osteoclast activities, such as attachment, spreading...

  12. Diabetes may affect the expression of matrix metalloproteinases and their inhibitors more than smoking in chronic periodontitis.

    Science.gov (United States)

    Bastos, M F; Tucci, M A; de Siqueira, A; de Faveri, M; Figueiredo, L C; Vallim, P C; Duarte, P M

    2017-04-01

    No previous study has directly compared the levels of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) between smokers and individuals with diabetes mellitus (DM) with periodontitis. Therefore, the aim of this study was to evaluate the gene expression of MMP-1, MMP-2, MMP-8, MMP-9, TIMP-1 and TIMP-2 in tissues with chronic periodontitis (ChP) of smokers and individuals with type 2 DM. Gingival biopsies were harvested from: non-smokers and non-diabetic individuals with ChP (n = 18) (ChP group); non-diabetic smokers (≥ 10 cigarettes per day for at least the past 5 years) with ChP (n = 18) (SChP group); non-smoking individuals with type 2 diabetes (glycated hemoglobin levels ≥ 7.5%) and ChP (n = 18) (DMChP group). The tissue levels of mRNA of MMP-1, MMP-2, MMP-8, MMP-9, TIMP-1 and TIMP-2 were evaluated by quantitative real-time polymerase chain reaction. The MMP-8 expression was the lowest in the ChP group (p smoking, which may contribute to a greater extracellular matrix degradation and periodontal breakdown in DM-related periodontitis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Matrix metalloproteinases in inflammatory bowel disease : expression, regulation and clinical relevance

    NARCIS (Netherlands)

    Meijer, Martin Jan-Willem

    2009-01-01

    Crohn’s disease (CD) is characterized by chronic, patchy, transmural inflammation of the entire gastrointestinal tract, while ulcerative colitis (UC) is manifested by chronic, continuous, superficial inflammation of the colon. Matrix metalloproteinases (MMPs) constitute a family of matrix degrading

  14. Developmental roles of the BMP1/TLD metalloproteinases.

    Science.gov (United States)

    Ge, Gaoxiang; Greenspan, Daniel S

    2006-03-01

    The astacin family (M12A) of the metzincin subclan MA(M) of metalloproteinases has been detected in developing and mature individuals of species that range from hydra to humans. Functions of this family of metalloproteinase vary from digestive degradation of polypeptides, to biosynthetic processing of extracellular proteins, to activation of growth factors. This review will focus on a small subgroup of the astacin family; the bone morphogenetic protein 1 (BMP1)/Tolloid (TLD)-like metalloproteinases. In vertebrates, the BMP1/TLD-like metalloproteinases play key roles in regulating formation of the extracellular matrix (ECM) via biosynthetic processing of various precursor proteins into mature functional enzymes, structural proteins, and proteins involved in initiating mineralization of the ECM of hard tissues. Roles in ECM formation include: processing of the C-propeptides of procollagens types I-III, to yield the major fibrous components of vertebrate ECM; proteolytic activation of the enzyme lysyl oxidase, necessary to formation of covalent cross-links in collagen and elastic fibers; processing of NH2-terminal globular domains and C-propeptides of types V and XI procollagen chains to yield monomers that are incorporated into and control the diameters of collagen type I and II fibrils, respectively; processing of precursors for laminin 5 and collagen type VII, both of which are involved in securing epidermis to underlying dermis; and maturation of small leucine-rich proteoglycans. The BMP1/TLD-related metalloproteinases are also capable of activating the vertebrate transforming growth factor-beta (TGF-beta)-like "chalones" growth differentiation factor 8 (GDF8, also known as myostatin), and GDF11 (also known as BMP11), involved in negative feedback inhibition of muscle and neural tissue growth, respectively; by freeing them from noncovalent latent complexes with their cleaved prodomains. BMP1/TLD-like proteinases also liberate the vertebrate TGF

  15. Assessment of Matrix Metalloproteinases by Gelatin Zymography.

    Science.gov (United States)

    Cathcart, Jillian

    2016-01-01

    Matrix metalloproteinases are endopeptidases responsible for remodeling of the extracellular matrix and have been identified as critical contributors to breast cancer progression. Gelatin zymography is a valuable tool which allows the analysis of MMP expression. In this approach, enzymes are resolved electrophoretically on a sodium dodecyl sulfate-polyacrylamide gel copolymerized with the substrate for the MMP of interest. Post electrophoresis, the enzymes are refolded in order for proteolysis of the incorporated substrate to occur. This assay yields valuable information about MMP isoforms or changes in activation and can be used to analyze the role of MMPs in normal versus pathological conditions.

  16. New intracellular activities of matrix metalloproteinases shine in the moonlight.

    Science.gov (United States)

    Jobin, Parker G; Butler, Georgina S; Overall, Christopher M

    2017-11-01

    Adaption of a single protein to perform multiple independent functions facilitates functional plasticity of the proteome allowing a limited number of protein-coding genes to perform a multitude of cellular processes. Multifunctionality is achievable by post-translational modifications and by modulating subcellular localization. Matrix metalloproteinases (MMPs), classically viewed as degraders of the extracellular matrix (ECM) responsible for matrix protein turnover, are more recently recognized as regulators of a range of extracellular bioactive molecules including chemokines, cytokines, and their binders. However, growing evidence has convincingly identified select MMPs in intracellular compartments with unexpected physiological and pathological roles. Intracellular MMPs have both proteolytic and non-proteolytic functions, including signal transduction and transcription factor activity thereby challenging their traditional designation as extracellular proteases. This review highlights current knowledge of subcellular location and activity of these "moonlighting" MMPs. Intracellular roles herald a new era of MMP research, rejuvenating interest in targeting these proteases in therapeutic strategies. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Detection of Matrix Metalloproteinases by Zymography.

    Science.gov (United States)

    Tajhya, Rajeev B; Patel, Rutvik S; Beeton, Christine

    2017-01-01

    Matrix metalloproteinases (MMPs) represent more than 20 zinc-containing endopeptidases that cleave internal peptide bonds, leading to protein degradation. They play a critical role in many physiological cell functions, including tissue remodeling, embryogenesis, and angiogenesis. They are also involved in the pathogenesis of a vast array of diseases, including but not limited to systemic inflammation, various cancers, and cardiovascular, neurological, and autoimmune diseases. Here, we describe gel zymography to detect MMPs in cell and tissue samples and in cell culture supernatants.

  18. Overexpression of matrix metalloproteinase-12 (MMP-12) correlates with radiation-induced lung fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Myung Gu; Jeong, Ye Ji; Lee, Haejune [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Sujae [Hanyang Univ., Seoul (Korea, Republic of)

    2014-05-15

    MMPs are classified into five subgroups: collagenases (MMP-1, MMP-8, MMP-13), gelatinases (MMP-2, MMP-9), stromelysins (MMP-3, MMP-10, MMP-11), as well as metalloelastase (MMP-12), the membrane-type MMPs (MMP14, MMP15), and other MMPS (e. g., MMP-19, and MMP20). MMP-12 (matrix metalloproteinase12), also known as macrophage metalloelastase, was first identified as an elastolytic metalloproteinase secreted by inflammatory macrophages 30 years ago. MMP-12 degrades extracellular matrix (ECM) components to facilitate tissue remodeling. It can degrade elastin and other substrates, such as type IV collagen, fibronectin, laminin, gelatin, vitronectin, entactin, heparin, and chondroitin sulfates. In the lung, MMP-12 is identified in alveolar macrophages of cigarette smokers as an elastolytic MMP. Inactivation of the MMP-12 gene in knockout mice demonstrates a critical role of MMP-12 in smoking-induced chronic obstructive pulmonary disease (COPD). The aim of the present study was to investigate the effects of MMP-12 by radiation in lung, so we evaluate that MMP-12 expression pattern in normal lung tissue and cancer cell following radiation. Radiation induced lung injury most commonly occurs as a result of radiation therapy administered to treat cancer. The present study demonstrates that MMP-12 was highly increased in the lung damaged by radiation Thus, MMP-12 might be of potential relevance as a clinically diagnostic tool and sensitive biomarker for radiation induced lung injury and fibrosis.

  19. Overexpression of matrix metalloproteinase-12 (MMP-12) correlates with radiation-induced lung fibrosis

    International Nuclear Information System (INIS)

    Jung, Myung Gu; Jeong, Ye Ji; Lee, Haejune; Lee, Sujae

    2014-01-01

    MMPs are classified into five subgroups: collagenases (MMP-1, MMP-8, MMP-13), gelatinases (MMP-2, MMP-9), stromelysins (MMP-3, MMP-10, MMP-11), as well as metalloelastase (MMP-12), the membrane-type MMPs (MMP14, MMP15), and other MMPS (e. g., MMP-19, and MMP20). MMP-12 (matrix metalloproteinase12), also known as macrophage metalloelastase, was first identified as an elastolytic metalloproteinase secreted by inflammatory macrophages 30 years ago. MMP-12 degrades extracellular matrix (ECM) components to facilitate tissue remodeling. It can degrade elastin and other substrates, such as type IV collagen, fibronectin, laminin, gelatin, vitronectin, entactin, heparin, and chondroitin sulfates. In the lung, MMP-12 is identified in alveolar macrophages of cigarette smokers as an elastolytic MMP. Inactivation of the MMP-12 gene in knockout mice demonstrates a critical role of MMP-12 in smoking-induced chronic obstructive pulmonary disease (COPD). The aim of the present study was to investigate the effects of MMP-12 by radiation in lung, so we evaluate that MMP-12 expression pattern in normal lung tissue and cancer cell following radiation. Radiation induced lung injury most commonly occurs as a result of radiation therapy administered to treat cancer. The present study demonstrates that MMP-12 was highly increased in the lung damaged by radiation Thus, MMP-12 might be of potential relevance as a clinically diagnostic tool and sensitive biomarker for radiation induced lung injury and fibrosis

  20. Epigallocatechin-3-gallate ameliorates intrahepatic cholestasis of pregnancy by inhibiting matrix metalloproteinase-2 and matrix metalloproteinase-9.

    Science.gov (United States)

    Zhang, Mei; Xu, Meimei

    2017-10-01

    Matrix metalloproteinase (MMP)-2 and matrix metalloproteinase-9 are involved in many illnesses affecting pregnant women, including intrahepatic cholestasis of pregnancy (ICP), a serious liver abnormality during pregnancy. Epigallocatechin-3-gallate (EGCG) has been widely reported to inhibit activities of MMP-2 and MMP-9. We aimed to investigate the role of EGCG in ameliorating ICP symptoms in a rat model. Using 17α-ethinylestradiol to induce ICP in pregnant rats, we investigated the efficacy of EGCG administration on ICP symptoms, including bile flow rate, total bile acids (TBA) and MMP-2 and MMP-9 activities. Correlation study was conducted among levels of the two MMPs with other ICP symptoms. In ICP rats, activities of both MMP-2 and MMP-9 were significantly elevated. EGCG administration could inhibit the upregulation of MMP-2 and MMP-9 post-transcriptionally. Furthermore, EGCG ameliorated ICP symptoms, as evidenced by restored bile flow rate and TBA, showing efficient treatment outcomes. At last, levels of TBA and the two MMPs were found to be strongly correlated. Our study demonstrates that, for the first time, the efficacy of EGCG in ameliorating ICP symptoms by inhibiting both MMP-2 and MMP-9, which supports its potential as a novel drug in ameliorating ICP. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  1. Matrix Metalloproteinases as Therapeutic Targets for Idiopathic Pulmonary Fibrosis

    OpenAIRE

    Craig, Vanessa J.; Zhang, Li; Hagood, James S.; Owen, Caroline A.

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a restrictive lung disease that is associated with high morbidity and mortality. Current medical therapies are not fully effective at limiting mortality in patients with IPF, and new therapies are urgently needed. Matrix metalloproteinases (MMPs) are proteinases that, together, can degrade all components of the extracellular matrix and numerous nonmatrix proteins. MMPs and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the p...

  2. VANGL2 interacts with integrin αv to regulate matrix metalloproteinase activity and cell adhesion to the extracellular matrix.

    Science.gov (United States)

    Jessen, Tammy N; Jessen, Jason R

    2017-12-15

    Planar cell polarity (PCP) proteins are implicated in a variety of morphogenetic processes including embryonic cell migration and potentially cancer progression. During zebrafish gastrulation, the transmembrane protein Vang-like 2 (VANGL2) is required for PCP and directed cell migration. These cell behaviors occur in the context of a fibrillar extracellular matrix (ECM). While it is thought that interactions with the ECM regulate cell migration, it is unclear how PCP proteins such as VANGL2 influence these events. Using an in vitro cell culture model system, we previously showed that human VANGL2 negatively regulates membrane type-1 matrix metalloproteinase (MMP14) and activation of secreted matrix metalloproteinase 2 (MMP2). Here, we investigated the functional relationship between VANGL2, integrin αvβ3, and MMP2 activation. We provide evidence that VANGL2 regulates cell surface integrin αvβ3 expression and adhesion to fibronectin, laminin, and vitronectin. Inhibition of MMP14/MMP2 activity suppressed the cell adhesion defect in VANGL2 knockdown cells. Furthermore, our data show that MMP14 and integrin αv are required for increased proteolysis by VANGL2 knockdown cells. Lastly, we have identified integrin αvβ3 as a novel VANGL2 binding partner. Together, these findings begin to dissect the molecular underpinnings of how VANGL2 regulates MMP activity and cell adhesion to the ECM. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Membrane type 1-matrix metalloproteinase/Akt signaling axis modulates TNF-α-induced procoagulant activity and apoptosis in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Hiroshi Ohkawara

    Full Text Available Membrane type 1-matrix metalloproteinase (MT1-MMP functions as a signaling molecule in addition to a proteolytic enzyme. Our hypothesis was that MT1-MMP cooperates with protein kinase B (Akt in tumor necrosis factor (TNF-α-induced signaling pathways of vascular responses, including tissue factor (TF procoagulant activity and endothelial apoptosis, in cultured human aortic endothelial cells (ECs. TNF-α (10 ng/mL induced a decrease in Akt phosphorylation within 60 minutes in ECs. A chemical inhibitor of MMP, TIMP-2 and selective small interfering RNA (siRNA-mediated suppression of MT1-MMP reversed TNF-α-triggered transient decrease of Akt phosphorylation within 60 minutes, suggesting that MT1-MMP may be a key regulator of Akt phosphorylation in TNF-α-stimulated ECs. In the downstream events, TNF-α increased TF antigen and activity, and suppressed the expression of thrombomodulin (TM antigen. Inhibition of Akt markedly enhanced TNF-α-induced expression of TF antigen and activity, and further reduced the expression of TM antigen. Silencing of MT1-MMP by siRNA also reversed the changed expression of TF and TM induced by TNF-α. Moreover, TNF-α induced apoptosis of ECs through Akt- and forkhead box protein O1 (FoxO1-dependent signaling pathway and nuclear factor-kB (NF-kB activation. Knockdown of MT1-MMP by siRNA reversed apoptosis of ECs by inhibiting TNF-α-induced Akt-dependent regulation of FoxO1 in TNF-α-stimulated ECs. Immunoprecipitation demonstrated that TNF-α induced the changes in the associations between the cytoplasmic fraction of MT1-MMP and Akt in ECs. In conclusion, we show new evidence that MT1-MMP/Akt signaling axis is a key modifier for TNF-α-induced signaling pathways for modulation of procoagulant activity and apoptosis of ECs.

  4. THE ROLE OF MATRIX METALLOPROTEINASE MMP-9, ITS INHIBITOR TIMP-1 AND INTERLEUKINE-1β IN PATHOGENESIS OF TRAUMATIC BRAIN INJURY

    Directory of Open Access Journals (Sweden)

    S. V. Ziablitsev

    2016-09-01

      Resume Traumatic brain injury (TBI is accompanied by high rates of morbidity and mortality in both developed and undeveloped countries that makes it one of the most actual medical and social problems. In recent years matrix metalloproteinases are in increasing interest while studying TBI pathogenesis because of their ability to increase permeability of the blood-brain barrier and to cause nervous tissue matrix reorganization. The goal of given study was to investigate the role of matrix metalloproteinase MMP-9, its inhibitor TIMP-1 and interleukin IL-1β in pathogenesis of TBI. Methods: The study was performed on 98 mature white rats. Moderate severity TBI was modeled with one blow on the cranial vault by means of free-fall­ing plummet. Control group included 30 rats. Cytokines (IL-1b, IL-6, IL-8, TNF-a, MMP-9 and TIMP-1 levels were investi­gated in animals blood by means of ELISA on 1st, 3rd, 7th, 14th and 21st days after trauma. Results and discussion: MMP-9 levels increased by only 38,2% on the 1st day, but on the 3rd day there was its marked increase to 538%. It is known that metalloproteinases are released from the cells under the influence of various factors, including cytokines. On the 1st day after trauma it was IL-1β which increased by 705% showing the highest rise among other cytokines and exceeding increase in MMP-9 levels. This might indicate regulatory role of IL-1β.  A marked increase in MMP-9 levels in turn lead to TIMP-1 activation. Significant increase in TIMP-1 levels was determined on the 3rd day after trauma. On the 7th day there was a critical period with the highest levels of IL-1β (2147,2%, MMP-9 (720,3% and TIMR-1 (339,3%. Then all research indicators were decreasing with the most pronounced decrease in IL-1β and MMP-9. Conclusion: MMP-9 levels began to increase on the 1st day after trauma due to influence mainly IL-1β. An abrupt increase in MMP-9 in its turn caused an increase in TIMR-1 levels. Conclusion: Identified changes in

  5. Evaluation of matrix metalloproteinase-9 expressions in nasopharyngeal carcinoma patients

    Science.gov (United States)

    Farhat; Asnir, R. A.; Yudhistira, A.; Daulay, E. R.; Puspitasari, D.; Yulius, S.

    2018-03-01

    Nasopharyngeal carcinoma (NPC) is one of head and neck cancer with a poor prognosis because of the position of the tumor adjacent to the skull base and vital structures. Degradation of extracellular matrix that will cause tumor cells to invade surrounding tissues, vascular or lymphatic vessels. One that plays a role in the extracellular matrix degradation process is matrix metalloproteinase-9 (MMP-9). MMP-9 plays a role in tumor invasion process, metastasis and induction of tumor tissue vascularization. To determine the expression of MMP-9 in patients with nasopharyngeal carcinoma, a descriptive study was conducted by examining immunohistochemistry MMP-9 in 30 NPC tissues that had never received radiotherapy, chemotherapy or combination. Frequency distribution of NPC patient mostly in the age group 41-50 years old and 51-60 years were nine people (30.0%); men (73.3%) and non-keratinizing squamous cell carcinoma (53.3%) histopathology type. The overexpression of MMP-9 in patients with nasopharyngeal carcinoma were mostly found in advance stage.

  6. Matrix metalloproteinase inhibition reduces intimal hyperplasia in a porcine arteriovenous-graft model

    NARCIS (Netherlands)

    Rotmans, Joris I.; Velema, Evelyn; Verhagen, Hence J. M.; Blankensteijn, Jan D.; de kleijn, Dominique P. V.; Stroes, Erik S. G.; Pasterkamp, Gerard

    2004-01-01

    Background: The patency of arteriovenous (AV) polytetrafluoroethylene grafts for hemodialysis is impaired by intimal hyperplasia (IH) at the venous outflow tract. IH mainly consists of vascular smooth muscle cells, fibroblasts, and extracellular matrix proteins. Because matrix metalloproteinases

  7. Matrix metalloproteinase inhibition reduces intimal hyperplasia in a porcine arteriovenous-graft model.

    NARCIS (Netherlands)

    Rotmans, J.I.; Velema, E.; Verhagen, H.J.; Blankensteijn, J.D.; Kleijn, D.P. de; Stroes, E.S.; Pasterkamp, G.

    2004-01-01

    BACKGROUND: The patency of arteriovenous (AV) polytetrafluoroethylene grafts for hemodialysis is impaired by intimal hyperplasia (IH) at the venous outflow tract. IH mainly consists of vascular smooth muscle cells, fibroblasts, and extracellular matrix proteins. Because matrix metalloproteinases

  8. Matrix metalloproteinase inhibition reduces intimal hyperplasia in a porcine arteriovenous-graft model

    NARCIS (Netherlands)

    Rotmans, JI; Velema, E; Verhagen, HJM; Blankensteijn, JD; de Kleijn, DPV; Stroes, ESG; Pasterkamp, G

    Background: The patency of arteriovenous (AV) polytetrafluoroethylene grafts for hemodialysis is impaired by intimal hyperplasia (IH) at the venous outflow tract. IH mainly consists of vascular smooth muscle cells, fibroblasts, and extracellular matrix proteins. Because matrix metalloproteinases

  9. Serum Matrix Metalloproteinase-9 and Tissue Inhibitor of Metalloproteinase-1 Expression in Patients with Non-alcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Taner Akyol

    2015-06-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is the most common chronic liver disease in developed countries. NAFLD may progress to non-alcoholic steatohepatitis (NASH and cirrhosis. Emerging evidence suggests that NAFLD is the hepatic manifestation of metabolic syndrome (MetS. NAFLD is closely linked to MetS, with a significant increase in cardiovascular risk. Several matrix metalloproteinases (MMPs and tissue inhibitors of MMPs (TIMPs play important roles in the pathophysiology of atherosclerosis and liver fibrosis. In this study we investigated the usefulness of serum metalloproteinases as noninvasive markers of NAFLD. Forty-six patients with NAFLD and twenty-six healthy controls were enrolled into the study, in Gulhane Military Medical Academy, Haydarpasa Training Hospital. Liver biopsies were performed on all patients with NAFLD and histopathological evaluations were made by an experienced pathologist. All NAFLD patients were divided into 2 subgroups according to MetS status using ATP III criteria. MMP-9 and TIMP-1 were studied in serum samples of all groups. Results were compared between both groups and subgroups. In this study, the NAFLD and control groups did not differ significantly on MMP-9, TIMP-1 and TIMP-1/MMP-9 ratio (p > 0.05. However, we found a significant relationship between the HOMA and TIMP-1 (p<0.05. Moreover, MMP-9 and TIMP-1/MMP-9 levels were significantly correlated with waist circumference (p<0.05. Our findings are not sufficient to suggest that MMP-9, TIMP-1 and TIMP-1/MMP-9 ratio might be used as noninvasive biochemical diagnostic tests among NAFLD patients. [Dis Mol Med 2015; 3(2.000: 11-17

  10. Conversion of Stationary to Invasive Tumor Initiating Cells (TICs): Role of Hypoxia in Membrane Type 1-Matrix Metalloproteinase (MT1-MMP) Trafficking

    Science.gov (United States)

    Li, Jian; Zucker, Stanley; Pulkoski-Gross, Ashleigh; Kuscu, Cem; Karaayvaz, Mihriban; Ju, Jingfang; Yao, Herui; Song, Erwei; Cao, Jian

    2012-01-01

    Emerging evidence has implicated the role of tumor initiating cells (TICs) in the process of cancer metastasis. The mechanism underlying the conversion of TICs from stationary to invasive remains to be characterized. In this report, we employed less invasive breast cancer TICs, SK-3rd, that displays CD44high/CD24low with high mammosphere-forming and tumorigenic capacities, to investigate the mechanism by which stationary TICs are converted to invasive TICs. Invasive ability of SK-3rd TICs was markedly enhanced when the cells were cultured under hypoxic conditions. Given the role of membrane type 1-matrix metalloproteinase (MT1-MMP) in cancer invasion/metastasis, we explored a possible involvement of MT1-MMP in hypoxia-induced TIC invasion. Silencing of MT1-MMP by a shRNA approach resulted in diminution of hypoxia-induced cell invasion in vitro and metastasis in vivo. Under hypoxic conditions, MT1-MMP redistributed from cytoplasmic storage pools to the cell surface of TICs, which coincides with the increased cell invasion. In addition, CD44, a cancer stem-like cell marker, inversely correlated with increased cell surface MT1-MMP. Interestingly, cell surface MT1-MMP gradually disappeared when the hypoxia-treated cells were switched to normoxia, suggesting the plasticity of TICs in response to oxygen content. Furthermore, we dissected the pathways leading to upregulated MT1-MMP in cytoplasmic storage pools under normoxic conditions, by demonstrating a cascade involving Twist1-miR10b-HoxD10 leading to enhanced MT1-MMP expression in SK-3rd TICs. These observations suggest that MT1-MMP is a key molecule capable of executing conversion of stationary TICs to invasive TICs under hypoxic conditions and thereby controlling metastasis. PMID:22679501

  11. Matrix Metalloproteinases in Non-Neoplastic Disorders

    Science.gov (United States)

    Tokito, Akinori; Jougasaki, Michihisa

    2016-01-01

    The matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases belonging to the metzincin superfamily. There are at least 23 members of MMPs ever reported in human, and they and their substrates are widely expressed in many tissues. Recent growing evidence has established that MMP not only can degrade a variety of components of extracellular matrix, but also can cleave and activate various non-matrix proteins, including cytokines, chemokines and growth factors, contributing to both physiological and pathological processes. In normal conditions, MMP expression and activity are tightly regulated via interactions between their activators and inhibitors. Imbalance among these factors, however, results in dysregulated MMP activity, which causes tissue destruction and functional alteration or local inflammation, leading to the development of diverse diseases, such as cardiovascular disease, arthritis, neurodegenerative disease, as well as cancer. This article focuses on the accumulated evidence supporting a wide range of roles of MMPs in various non-neoplastic diseases and provides an outlook on the therapeutic potential of inhibiting MMP action. PMID:27455234

  12. Tumorigenic Potential of Extracellular Matrix Metalloproteinase Inducer

    Science.gov (United States)

    Zucker, Stanley; Hymowitz, Michelle; Rollo, Ellen E.; Mann, Richard; Conner, Cathleen E.; Cao, Jian; Foda, Hussein D.; Tompkins, David C.; Toole, Bryan P.

    2001-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN), a glycoprotein present on the cancer cell plasma membrane, enhances fibroblast synthesis of matrix metalloproteinases (MMPs). The demonstration that peritumoral fibroblasts synthesize most of the MMPs in human tumors rather than the cancer cells themselves has ignited interest in the role of EMMPRIN in tumor dissemination. In this report we have demonstrated a role for EMMPRIN in cancer progression. Human MDA-MB-436 breast cancer cells, which are tumorigenic but slow growing in vivo, were transfected with EMMPRIN cDNA and injected orthotopically into mammary tissue of female NCr nu/nu mice. Green fluorescent protein was used to visualize metastases. In three experiments, breast cancer cell clones transfected with EMMPRIN cDNA were considerably more tumorigenic and invasive than plasmid-transfected cancer cells. Increased gelatinase A and gelatinase B expression (demonstrated by in situ hybridization and gelatin substrate zymography) was demonstrated in EMMPRIN-enhanced tumors. In contrast to de novo breast cancers in humans, human tumors transplanted into mice elicited minimal stromal or inflammatory cell reactions. Based on these experimental studies and our previous demonstration that EMMPRIN is prominently displayed in human cancer tissue, we propose that EMMPRIN plays an important role in cancer progression by increasing synthesis of MMPs. PMID:11395366

  13. Matrix metalloproteinases in lung biology

    Directory of Open Access Journals (Sweden)

    Parks William C

    2000-12-01

    Full Text Available Abstract Despite much information on their catalytic properties and gene regulation, we actually know very little of what matrix metalloproteinases (MMPs do in tissues. The catalytic activity of these enzymes has been implicated to function in normal lung biology by participating in branching morphogenesis, homeostasis, and repair, among other events. Overexpression of MMPs, however, has also been blamed for much of the tissue destruction associated with lung inflammation and disease. Beyond their role in the turnover and degradation of extracellular matrix proteins, MMPs also process, activate, and deactivate a variety of soluble factors, and seldom is it readily apparent by presence alone if a specific proteinase in an inflammatory setting is contributing to a reparative or disease process. An important goal of MMP research will be to identify the actual substrates upon which specific enzymes act. This information, in turn, will lead to a clearer understanding of how these extracellular proteinases function in lung development, repair, and disease.

  14. Matrix Metalloproteinases in Normal Pregnancy and Preeclampsia

    Science.gov (United States)

    Chen, Juanjuan; Khalil, Raouf A.

    2017-01-01

    Normal pregnancy is associated with marked hemodynamic and uterine changes that allow adequate uteroplacental blood flow and uterine expansion for the growing fetus. These pregnancy-associated changes involve significant uteroplacental and vascular remodeling. Matrix metalloproteinases (MMPs) are important regulators of vascular and uterine remodeling. Increases in MMP-2 and MMP-9 have been implicated in vasodilation, placentation and uterine expansion during normal pregnancy. The increases in MMPs could be induced by the increased production of estrogen and progesterone during pregnancy. MMP expression/activity may be altered during complications of pregnancy. Decreased vascular MMP-2 and MMP-9 may lead to decreased vasodilation, increased vasoconstriction, hypertensive pregnancy and preeclampsia. Abnormal expression of uteroplacental integrins, cytokines and MMPs may lead to decreased maternal tolerance, apoptosis of invasive trophoblast cells, inadequate remodeling of spiral arteries, and reduced uterine perfusion pressure (RUPP). RUPP may cause imbalance between the anti-angiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin and the pro-angiogenic vascular endothelial growth factor and placental growth factor, or stimulate the release of inflammatory cytokines, hypoxia-inducible factor, reactive oxygen species, and angiotensin AT1 receptor agonistic autoantibodies. These circulating factors could target MMPs in the extracellular matrix as well as endothelial and vascular smooth muscle cells, causing generalized vascular dysfunction, increased vasoconstriction and hypertension in pregnancy. MMP activity can also be altered by endogenous tissue inhibitors of metalloproteinases (TIMPs) and changes in the MMP/TIMP ratio. In addition to their vascular effects, decreases in expression/activity of MMP-2 and MMP-9 in the uterus could impede uterine growth and expansion and lead to premature labor. Understanding the role of MMPs in uteroplacental and

  15. Liposome-mediated amplified detection of cell-secreted matrix metalloproteinase-9†

    Science.gov (United States)

    Banerjee, Jayati; Hanson, Andrea J.; Nyren-Erickson, Erin K.; Ganguli, Bratati; Wagh, Anil; Muhonen, Wallace W.; Law, Benedict; Shabb, John B.; Srivastava, D. K.; Mallik, Sanku

    2018-01-01

    A liposome-based amplified detection system is presented for the cancer cell secreted pathogenic enzyme matrix metalloproteinase-9 which does not require the use of biological antibodies. PMID:20424776

  16. α2 Integrin, extracellular matrix metalloproteinase inducer, and matrix metalloproteinase-3 act sequentially to induce differentiation of mouse embryonic stem cells into odontoblast-like cells

    International Nuclear Information System (INIS)

    Ozeki, Nobuaki; Kawai, Rie; Hase, Naoko; Hiyama, Taiki; Yamaguchi, Hideyuki; Kondo, Ayami; Nakata, Kazuhiko; Mogi, Makio

    2015-01-01

    We previously reported that interleukin 1β acts via matrix metalloproteinase (MMP)-3 to regulate cell proliferation and suppress apoptosis in α2 integrin-positive odontoblast-like cells differentiated from mouse embryonic stem (ES) cells. Here we characterize the signal cascade underpinning odontoblastic differentiation in mouse ES cells. The expression of α2 integrin, extracellular matrix metalloproteinase inducer (Emmprin), and MMP-3 mRNA and protein were all potently increased during odontoblastic differentiation. Small interfering RNA (siRNA) disruption of the expression of these effectors potently suppressed the expression of the odontoblastic biomarkers dentin sialophosphoprotein, dentin matrix protein-1 and alkaline phosphatase, and blocked odontoblast calcification. Our siRNA, western blot and blocking antibody analyses revealed a unique sequential cascade involving α2 integrin, Emmprin and MMP-3 that drives ES cell differentiation into odontoblasts. This cascade requires the interaction between α2 integrin and Emmprin and is potentiated by exogenous MMP-3. Finally, although odontoblast-like cells potently express α2, α6, αV, β1, and β3, integrins, we confirmed that β1 integrin acts as the trigger for ES cell differentiation, apparently in complex with α2 integrin. These results demonstrate a unique and unanticipated role for an α2 integrin-, Emmprin-, and MMP-3-mediated signaling cascade in driving mouse ES cell differentiation into odontoblast-like cells. - Highlights: • Odontoblast differentiation requires activation of α2 integrin, Emmprin and MMP-3. • α2 integrin, Emmprin and MMP-3 form a sequential signaling cascade. • β1 integrin acts a specific trigger for odontoblast differentiation. • The role of these effectors is highly novel and unanticipated

  17. α2 Integrin, extracellular matrix metalloproteinase inducer, and matrix metalloproteinase-3 act sequentially to induce differentiation of mouse embryonic stem cells into odontoblast-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, Nobuaki; Kawai, Rie; Hase, Naoko; Hiyama, Taiki; Yamaguchi, Hideyuki [Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651 (Japan); Kondo, Ayami [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650 (Japan); Nakata, Kazuhiko [Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651 (Japan); Mogi, Makio, E-mail: makio@dpc.agu.ac.jp [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650 (Japan)

    2015-02-01

    We previously reported that interleukin 1β acts via matrix metalloproteinase (MMP)-3 to regulate cell proliferation and suppress apoptosis in α2 integrin-positive odontoblast-like cells differentiated from mouse embryonic stem (ES) cells. Here we characterize the signal cascade underpinning odontoblastic differentiation in mouse ES cells. The expression of α2 integrin, extracellular matrix metalloproteinase inducer (Emmprin), and MMP-3 mRNA and protein were all potently increased during odontoblastic differentiation. Small interfering RNA (siRNA) disruption of the expression of these effectors potently suppressed the expression of the odontoblastic biomarkers dentin sialophosphoprotein, dentin matrix protein-1 and alkaline phosphatase, and blocked odontoblast calcification. Our siRNA, western blot and blocking antibody analyses revealed a unique sequential cascade involving α2 integrin, Emmprin and MMP-3 that drives ES cell differentiation into odontoblasts. This cascade requires the interaction between α2 integrin and Emmprin and is potentiated by exogenous MMP-3. Finally, although odontoblast-like cells potently express α2, α6, αV, β1, and β3, integrins, we confirmed that β1 integrin acts as the trigger for ES cell differentiation, apparently in complex with α2 integrin. These results demonstrate a unique and unanticipated role for an α2 integrin-, Emmprin-, and MMP-3-mediated signaling cascade in driving mouse ES cell differentiation into odontoblast-like cells. - Highlights: • Odontoblast differentiation requires activation of α2 integrin, Emmprin and MMP-3. • α2 integrin, Emmprin and MMP-3 form a sequential signaling cascade. • β1 integrin acts a specific trigger for odontoblast differentiation. • The role of these effectors is highly novel and unanticipated.

  18. EMMPRIN co-expressed with matrix metalloproteinases predicts poor prognosis in patients with osteosarcoma.

    Science.gov (United States)

    Futamura, Naohisa; Nishida, Yoshihiro; Urakawa, Hiroshi; Kozawa, Eiji; Ikuta, Kunihiro; Hamada, Shunsuke; Ishiguro, Naoki

    2014-06-01

    Several studies have focused on the relationships between the expression of extracellular matrix metalloproteinase inducer (EMMPRIN) and the prognosis of patients with malignant tumors. However, few of these have investigated the expression of EMMPRIN in osteosarcoma. We examined expression levels of EMMPRIN immunohistochemically in 53 cases of high-grade osteosarcoma of the extremities and analyzed the correlation of its expression with patient prognosis. The correlation between matrix metalloproteinases (MMPs) and EMMPRIN expression and the prognostic value of co-expression were also analyzed. Staining positivity for EMMPRIN was negative in 7 cases, low in 17, moderate in 19, and strong in 10. The overall and disease-free survivals (OS and DFS) in patients with higher EMMPRIN expression (strong-moderate) were significantly lower than those in the lower (weak-negative) group (0.037 and 0.024, respectively). In multivariate analysis, age (P=0.004), location (P=0.046), and EMMPRIN expression (P=0.038) were significant prognostic factors for overall survival. EMMPRIN expression (P=0.024) was also a significant prognostic factor for disease-free survival. Co-expression analyses of EMMPRIN and MMPs revealed that strong co-expression of EMMPRIN and membrane-type 1 (MT1)-MMP had a poor prognostic value (P=0.056 for DFS, P=0.006 for OS). EMMPRIN expression and co-expression with MMPs well predict the prognosis of patients with extremity osteosarcoma, making EMMPRIN a possible therapeutic target in these patients.

  19. Regulation of Membrane-Type 4 Matrix Metalloproteinase by SLUG Contributes to Hypoxia-Mediated Metastasis

    Directory of Open Access Journals (Sweden)

    Chi-Hung Huang

    2009-12-01

    Full Text Available The hypoxic tumor environment has been shown to be critical to cancer metastasis through the promotion of angiogenesis, induction of epithelial-mesenchymal transition (EMT, and acquisition of invasive potential. However, the impact of hypoxia on the expression profile of the proteolytic enzymes involved in invasiveness is relatively unknown. Membrane-type 4 matrix metalloproteinase (MT4-MMP is a glycosyl-phosphatidyl inositol-anchored protease that has been shown to be overexpressed in human cancers. However, detailed mechanisms regarding the regulation and function of MT4-MMP expression in tumor cells remain unknown. Here, we demonstrate that hypoxia or overexpression of hypoxia-inducible factor-1α (HIF-1α induced MT4-MMP expression in human cancer cells. Activation of SLUG, a transcriptional factor regulating the EMT process of human cancers, by HIF-1α was critical for the induction of MT4-MMP under hypoxia. SLUG regulated the transcription of MT4-MMP through direct binding to the E-box located in its proximal promoter. Short-interference RNA-mediated knockdown of MT4-MMP attenuated in vitro invasiveness and in vivo pulmonary colonization of tumor cells without affecting cell migratory ability. MT4-MMP promoted invasiveness and pulmonary colonization through modulation of the expression profile of MMPs and angiogenic factors. Finally, coexpression of HIF-1α and MT4-MMP in human head and neck cancer was predictive of a worse clinical outcome. These findings establish a novel signaling pathway for hypoxia-mediated metastasis and elucidate the underlying regulatory mechanism and functional significance of MT4-MMP in cancer metastasis.

  20. Structure and evolutionary aspects of matrix metalloproteinases: a brief overview.

    Science.gov (United States)

    Das, Sudip; Mandal, Malay; Chakraborti, Tapati; Mandal, Amritlal; Chakraborti, Sajal

    2003-11-01

    The matrix metalloproteinases (MMPs) are zinc dependent endopeptidases known for their ability to cleave one or several extracellular matrix (ECM) constituents, as well as non-matrix proteins. They comprise a large family of proteinases that share common structural and functional elements and are products of different genes. All members of this family contain a signal peptide, a propeptide and a catalytic domain. The catalytic domain contains two zinc ions and at least one calcium ion coordinated to various residues. All MMPs, with the exception matrilysin, have a hemopexin/vitronectin-like domain that is connected to the catalytic domain by a hinge or linker region. The hemopexin-like domain influences tissue inhibitor of metalloproteinases (TIMP) binding, the binding of certain substrates, membrane activation, and some proteolytic activities. It has been proposed that the origin of MMPs could be traced to before the emergence of vertebrates from invertebrates. It appears conceivable that the domain assemblies occurred at an early stage of the diversification of different MMPs and that they progressed through the evolutionary process independent of one another, and perhaps parallel to each other.

  1. Exercise-induced regulation of matrix metalloproteinases in the skeletal muscle of subjects with type 2 diabetes

    DEFF Research Database (Denmark)

    Scheede-Bergdahl, Celena; Bergdahl, Andreas; Schjerling, Peter

    2014-01-01

    -training. At baseline, there were no effects of diabetes on MMP or TIMP mRNA or protein. mRNA and protein response to training was similar in both groups, except active MMP-2 protein was elevated post training in T2DM only. Our results indicate that exercise-induced stimulation of MMPs is preserved in skeletal muscle......Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMP) play a critical role during vascular remodelling, in both health and disease. Impaired MMP regulation is associated with many diabetes-related complications. This study examined whether exercise-induced regulation of MMPs...... is maintained in the skeletal muscle of patients with uncomplicated type 2 diabetes (T2DM). Subjects [12 T2DM, 9 healthy control subjects (CON)] underwent 8 weeks of physical training. Messenger RNA (mRNA) was measured at baseline, during and after 8 weeks of training. Protein was measured pre- and post...

  2. Dentin matrix degradation by host Matrix Metalloproteinases: inhibition and clinical perspectives towards regeneration.

    Directory of Open Access Journals (Sweden)

    Catherine eChaussain

    2013-11-01

    Full Text Available Bacterial enzymes have long been considered solely accountable for the degradation of the dentin matrix during the carious process. However, the emerging literature suggests that host-derived enzymes, and in particular the matrix metalloproteinases (MMPs contained in dentin and saliva can play a major role in this process by their ability to degrade the dentin matrix from within. These findings are important since they open new therapeutic options for caries prevention and treatment. The possibility of using MMP inhibitors to interfere with dentin caries progression is discussed. Furthermore, the potential release of bioactive peptides by the enzymatic cleavage of dentin matrix proteins by MMPs during the carious process is discussed. These peptides, once identified, may constitute promising therapeutical tools for tooth and bone regeneration.

  3. Membrane Type 1Matrix Metalloproteinase/Akt Signaling Axis Modulates TNF-α-Induced Procoagulant Activity and Apoptosis in Endothelial Cells

    Science.gov (United States)

    Ohkawara, Hiroshi; Ishibashi, Toshiyuki; Sugimoto, Koichi; Ikeda, Kazuhiko; Ogawa, Kazuei; Takeishi, Yasuchika

    2014-01-01

    Membrane type 1matrix metalloproteinase (MT1-MMP) functions as a signaling molecule in addition to a proteolytic enzyme. Our hypothesis was that MT1-MMP cooperates with protein kinase B (Akt) in tumor necrosis factor (TNF)-α-induced signaling pathways of vascular responses, including tissue factor (TF) procoagulant activity and endothelial apoptosis, in cultured human aortic endothelial cells (ECs). TNF-α (10 ng/mL) induced a decrease in Akt phosphorylation within 60 minutes in ECs. A chemical inhibitor of MMP, TIMP-2 and selective small interfering RNA (siRNA)-mediated suppression of MT1-MMP reversed TNF-α-triggered transient decrease of Akt phosphorylation within 60 minutes, suggesting that MT1-MMP may be a key regulator of Akt phosphorylation in TNF-α-stimulated ECs. In the downstream events, TNF-α increased TF antigen and activity, and suppressed the expression of thrombomodulin (TM) antigen. Inhibition of Akt markedly enhanced TNF-α-induced expression of TF antigen and activity, and further reduced the expression of TM antigen. Silencing of MT1-MMP by siRNA also reversed the changed expression of TF and TM induced by TNF-α. Moreover, TNF-α induced apoptosis of ECs through Akt- and forkhead box protein O1 (FoxO1)-dependent signaling pathway and nuclear factor-kB (NF-kB) activation. Knockdown of MT1-MMP by siRNA reversed apoptosis of ECs by inhibiting TNF-α-induced Akt-dependent regulation of FoxO1 in TNF-α-stimulated ECs. Immunoprecipitation demonstrated that TNF-α induced the changes in the associations between the cytoplasmic fraction of MT1-MMP and Akt in ECs. In conclusion, we show new evidence that MT1-MMP/Akt signaling axis is a key modifier for TNF-α-induced signaling pathways for modulation of procoagulant activity and apoptosis of ECs. PMID:25162582

  4. Matrix metalloproteinases in stem cell regulation and cancer

    OpenAIRE

    Kessenbrock, K; Wang, CY; Wang, CY; Werb, Z

    2014-01-01

    © 2015. Since Gross and Lapiere firstly discovered matrix metalloproteinases (MMPs) as important collagenolytic enzymes during amphibian tadpole morphogenesis in 1962, this intriguing family of extracellular proteinases has been implicated in various processes of developmental biology. However, the pathogenic roles of MMPs in human diseases such as cancer have also garnered widespread attention. The most straightforward explanation for their role in cancer is that MMPs, through extracellular ...

  5. Polymorphisms in the estrogen receptor 1 and vitamin C and matrix metalloproteinase gene families are associated with susceptibility to lymphoma.

    Directory of Open Access Journals (Sweden)

    Christine F Skibola

    Full Text Available BACKGROUND: Non-Hodgkin lymphoma (NHL is the fifth most common cancer in the U.S. and few causes have been identified. Genetic association studies may help identify environmental risk factors and enhance our understanding of disease mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: 768 coding and haplotype tagging SNPs in 146 genes were examined using Illumina GoldenGate technology in a large population-based case-control study of NHL in the San Francisco Bay Area (1,292 cases 1,375 controls are included here. Statistical analyses were restricted to HIV- participants of white non-Hispanic origin. Genes involved in steroidogenesis, immune function, cell signaling, sunlight exposure, xenobiotic metabolism/oxidative stress, energy balance, and uptake and metabolism of cholesterol, folate and vitamin C were investigated. Sixteen SNPs in eight pathways and nine haplotypes were associated with NHL after correction for multiple testing at the adjusted q<0.10 level. Eight SNPs were tested in an independent case-control study of lymphoma in Germany (494 NHL cases and 494 matched controls. Novel associations with common variants in estrogen receptor 1 (ESR1 and in the vitamin C receptor and matrix metalloproteinase gene families were observed. Four ESR1 SNPs were associated with follicular lymphoma (FL in the U.S. study, with rs3020314 remaining associated with reduced risk of FL after multiple testing adjustments [odds ratio (OR = 0.42, 95% confidence interval (CI = 0.23-0.77 and replication in the German study (OR = 0.24, 95% CI = 0.06-0.94. Several SNPs and haplotypes in the matrix metalloproteinase-3 (MMP3 and MMP9 genes and in the vitamin C receptor genes, solute carrier family 23 member 1 (SLC23A1 and SLC23A2, showed associations with NHL risk. CONCLUSIONS/SIGNIFICANCE: Our findings suggest a role for estrogen, vitamin C and matrix metalloproteinases in the pathogenesis of NHL that will require further validation.

  6. Expression of the dendritic cell-associated C-type lectin DC-SIGN by inflammatory matrix metalloproteinase-producing macrophages in rheumatoid arthritis synovium and interaction with intercellular adhesion molecule 3-positive T cells.

    NARCIS (Netherlands)

    Lent, P.L.E.M. van; Figdor, C.G.; Barrera Rico, P.; Ginkel, K. van; Sloetjes, A.W.; Berg, W.B. van den; Torensma, R.

    2003-01-01

    OBJECTIVE: To determine whether matrix metalloproteinase (MMP)-producing inflammatory macrophages in the synovium of rheumatoid arthritis (RA) patients express the novel dendritic cell (DC)-specific C-type lectin DC-SIGN and whether this expression is associated with the presence of naive T cells

  7. Analysis of matrix metalloproteinase-1 gene polymorphisms and expression in benign and malignant breast tumors

    Science.gov (United States)

    Zhou, Jing; Brinckerhoff, Constance; Lubert, Susan; Yang, Kui; Saini, Jasmine; Hooke, Jeffrey; Mural, Richard; Shriver, Craig; Somiari, Stella

    2013-01-01

    A guanine insertion polymorphism in matrix metalloproteinase-1 promoter (MMP-1 2G) is linked to early onset and aggressiveness in cancer. We determined the role of MMP-1 2G on the level of MMP-1 expression and breast cancer severity in benign breast disease, atypical hyperplasia, invasive and non invasive (in situ) breast cancer. We observed no significant difference in genotype distribution among the different breast disease groups. However, the level of MMP-1 expression was significantly higher in atypical ductal hyperplasia compared to benign breast disease; and in invasive breast cancer compared to in situ breast cancer. MMP-1 2G insertion polymorphism in the invasive group also correlated significantly with the expression of MMP-1 and breast cancer prognostic markers HER2 and P53. PMID:22011282

  8. The evolution of the matrix metalloproteinase inhibitor drug discovery program at abbott laboratories.

    Science.gov (United States)

    Wada, Carol K

    2004-01-01

    Matrix metalloproteinases (MMPs) have been implicated in several pathologies. At Abbott Laboratories, the matrix metalloproteinases inhibitor drug discovery program has focused on the discovery of a potent, selective, orally bioavailable MMP inhibitor for the treatment of cancer. The program evolved from early succinate-based inhibitors to utilizing in-house technology such as SAR by NMR to develop a novel class of biaryl hydroxamate MMP inhibitors. The metabolic instability of the biaryl hydroxamates led to the discovery of a new class of N-formylhydroxylamine (retrohydroxamate) biaryl ethers, exemplified by ABT-770 (16). Toxicity issues with this pre-clinical candidate led to the discovery of another novel class of retrohydroxamate MMP inhibitors, the phenoxyphenyl sulfones such as ABT-518 (19j). ABT-518 is a potent, orally bioavailable, selective inhibitor of MMP-2 and 9 over MMP-1 that has been evaluated in Phase I clinical trials in cancer patients.

  9. The Methoxyflavonoid Isosakuranetin Suppresses UV-B-Induced Matrix Metalloproteinase-1 Expression and Collagen Degradation Relevant for Skin Photoaging

    Directory of Open Access Journals (Sweden)

    Hana Jung

    2016-09-01

    Full Text Available Solar ultraviolet (UV radiation is a main extrinsic factor for skin aging. Chronic exposure of the skin to UV radiation causes the induction of matrix metalloproteinases (MMPs, such as MMP-1, and consequently results in alterations of the extracellular matrix (ECM and skin photoaging. Flavonoids are considered as potent anti-photoaging agents due to their UV-absorbing and antioxidant properties and inhibitory activity against UV-mediated MMP induction. To identify anti-photoaging agents, in the present study we examined the preventative effect of methoxyflavonoids, such as sakuranetin, isosakuranetin, homoeriodictyol, genkwanin, chrysoeriol and syringetin, on UV-B-induced skin photo-damage. Of the examined methoxyflavonoids, pretreatment with isosakuranetin strongly suppressed the UV-B-mediated induction of MMP-1 in human keratinocytes in a concentration-dependent manner. Isosakuranetin inhibited UV-B-induced phosphorylation of mitogen-activated protein kinase (MAPK signaling components, ERK1/2, JNK1/2 and p38 proteins. This result suggests that the ERK1/2 kinase pathways likely contribute to the inhibitory effects of isosakuranetin on UV-induced MMP-1 production in human keratinocytes. Isosakuranetin also prevented UV-B-induced degradation of type-1 collagen in human dermal fibroblast cells. Taken together, our findings suggest that isosakuranetin has the potential for development as a protective agent for skin photoaging through the inhibition of UV-induced MMP-1 production and collagen degradation.

  10. Matrix Metalloproteinases: The Gene Expression Signatures of Head and Neck Cancer Progression

    Energy Technology Data Exchange (ETDEWEB)

    Iizuka, Shinji [Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037 (United States); Ishimaru, Naozumi; Kudo, Yasusei, E-mail: yasusei@tokushima-u.ac.jp [Department of Oral Molecular Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-8-15 Kuramoto, Tokushima 770-8504 (Japan)

    2014-02-13

    Extracellular matrix degradation by matrix metalloproteinases (MMPs) plays a pivotal role in cancer progression by promoting motility, invasion and angiogenesis. Studies have shown that MMP expression is increased in head and neck squamous cell carcinomas (HNSCCs), one of the most common cancers in the world, and contributes to poor outcome. In this review, we examine the expression pattern of MMPs in HNSCC by microarray datasets and summarize the current knowledge of MMPs, specifically MMP-1, -3, -7 -10, -12, -13, 14 and -19, that are highly expressed in HNSCCs and involved cancer invasion and angiogenesis.

  11. Differential expression of lactic acid isomers, extracellular matrix metalloproteinase inducer, and matrix metalloproteinase-8 in vaginal fluid from women with vaginal disorders.

    Science.gov (United States)

    Beghini, J; Linhares, I M; Giraldo, P C; Ledger, W J; Witkin, S S

    2015-11-01

    Do metabolites in vaginal samples vary between women with different vaginal disorders. Cross-sectional study. Campinas, Brazil. Seventy-seven women (39.9%) with no vaginal disorder, 52 women (26.9%) with vulvovaginal candidiasis (VVC), 43 women (22.3%) with bacterial vaginosis (BV), and 21 women (10.9%) with cytolytic vaginosis (CTV). Concentrations of D- and L-lactic acid, extracellular matrix metalloproteinase inducer (EMMPRIN), and matrix metalloproteinase-8 (MMP-8), and the influence of Candida albicans on EMMPRIN production by cultured vaginal epithelial cells, were determined by enzyme-linked immunosorbent assay (ELISA). Associations were determined by the Mann-Whitney U-test and by Spearman's rank correlation test. Metabolite levels and their correlation with diagnoses. Vaginal concentrations of D- and L-lactic acid were reduced from control levels in BV (P vaginal epithelial cells. Vaginal secretions from women with BV are deficient in D- and L-lactic acid, women with VVC have elevated EMMPRIN and MMP-8 levels, and women with CTV have elevated L-lactic acid levels. These deviations may contribute to the clinical signs, symptoms, and sequelae that are characteristic of these disorders. © 2014 Royal College of Obstetricians and Gynaecologists.

  12. Retroviral gene transfer of an antisense construct against membrane type 1 matrix metalloproteinase reduces the invasiveness of rheumatoid arthritis synovial fibroblasts.

    Science.gov (United States)

    Rutkauskaite, Edita; Volkmer, Dagmar; Shigeyama, Yukio; Schedel, Jörg; Pap, Geza; Müller-Ladner, Ulf; Meinecke, Ingmar; Alexander, Dorothea; Gay, Renate E; Drynda, Susanne; Neumann, Wolfram; Michel, Beat A; Aicher, Wilhelm K; Gay, Steffen; Pap, Thomas

    2005-07-01

    Membrane type 1 matrix metalloproteinase (MT1-MMP) is expressed prominently in rheumatoid arthritis synovial fibroblasts (RASFs), but the specific contribution of MT1-MMP to fibroblast-mediated destruction of articular cartilage is incompletely understood. This study used gene transfer of an antisense expression construct to assess the effects of MT1-MMP inhibition on the invasiveness of RASFs. Retroviral gene transfer of a pLXIN vector-based antisense RNA expression construct (MT1-MMPalphaS) to MT1-MMP was used to stably transduce RASFs. Levels of MT1-MMP RNA and protein were determined by quantitative polymerase chain reaction, Western blotting, and immunocytochemistry in MT1-MMPalphaS-transduced RASFs as well as in control cells, with monitoring for 60 days. The effects of MT1-MMPalphaS on the invasiveness of RASFs were analyzed in the SCID mouse co-implantation model of RA. MT1-MMPalphaS-transduced RASFs produced high levels of antisense RNA that exceeded endogenous levels of MT1-MMP messenger RNA by 15-fold and resulted in a down-regulation of MT1-MMP at the protein level. Inhibition of MT1-MMP production was maintained for 60 days and significantly reduced the invasiveness of RASFs in the SCID mouse model. Whereas prominent invasion into cartilage by non-transduced and mock-transduced RASFs was observed (mean invasion scores 3.0 and 3.1, respectively), MT1-MMPalphaS-transduced cells showed only moderate invasiveness (mean invasion score 1.8; P < 0.05). The data demonstrate that an antisense RNA expression construct against MT1-MMP can be generated and expressed in RASFs for at least 60 days. Inhibition of MT1-MMP significantly reduces the cartilage degradation by RASFs.

  13. Regulation of Membrane-Type 4 Matrix Metalloproteinase by SLUG Contributes to Hypoxia-Mediated Metastasis12

    Science.gov (United States)

    Huang, Chi-Hung; Yang, Wen-Hao; Chang, Shyue-Yih; Tai, Shyh-Kuan; Tzeng, Cheng-Hwei; Kao, Jung-Yie; Wu, Kou-Juey; Yang, Muh-Hwa

    2009-01-01

    The hypoxic tumor environment has been shown to be critical to cancer metastasis through the promotion of angiogenesis, induction of epithelial-mesenchymal transition (EMT), and acquisition of invasive potential. However, the impact of hypoxia on the expression profile of the proteolytic enzymes involved in invasiveness is relatively unknown. Membrane-type 4 matrix metalloproteinase (MT4-MMP) is a glycosyl-phosphatidyl inositol-anchored protease that has been shown to be overexpressed in human cancers. However, detailed mechanisms regarding the regulation and function of MT4-MMP expression in tumor cells remain unknown. Here, we demonstrate that hypoxia or overexpression of hypoxia-inducible factor-1α (HIF-1α) induced MT4-MMP expression in human cancer cells. Activation of SLUG, a transcriptional factor regulating the EMT process of human cancers, by HIF-1α was critical for the induction of MT4-MMP under hypoxia. SLUG regulated the transcription of MT4-MMP through direct binding to the E-box located in its proximal promoter. Short-interference RNA-mediated knockdown of MT4-MMP attenuated in vitro invasiveness and in vivo pulmonary colonization of tumor cells without affecting cell migratory ability. MT4-MMP promoted invasiveness and pulmonary colonization through modulation of the expression profile of MMPs and angiogenic factors. Finally, coexpression of HIF-1α and MT4-MMP in human head and neck cancer was predictive of a worse clinical outcome. These findings establish a novel signaling pathway for hypoxia-mediated metastasis and elucidate the underlying regulatory mechanism and functional significance of MT4-MMP in cancer metastasis. PMID:20019845

  14. Differential Expression and Processing of Matrix Metalloproteinase 19 Marks Progression of Gastrointestinal Diseases

    Czech Academy of Sciences Publication Activity Database

    Červinková, Monika; Horák, P.; Kanchev, Ivan; Matej, R.; Fanta, J.; Sequens, R.; Kašpárek, Petr; Sarnová, Lenka; Turečková, Jolana; Sedláček, Radislav

    2014-01-01

    Roč. 60, č. 3 (2014), s. 113-122 ISSN 0015-5500 R&D Projects: GA ČR GAP302/11/2048; GA ČR GAP303/10/2044; GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk EE.2.3.20.0102 Institutional support: RVO:68378050 Keywords : matrix metalloproteinase 19 * macrophages * colon cancer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.000, year: 2014

  15. Transcriptomics of aged Drosophila motor neurons reveals a matrix metalloproteinase that impairs motor function.

    Science.gov (United States)

    Azpurua, Jorge; Mahoney, Rebekah E; Eaton, Benjamin A

    2018-04-01

    The neuromuscular junction (NMJ) is responsible for transforming nervous system signals into motor behavior and locomotion. In the fruit fly Drosophila melanogaster, an age-dependent decline in motor function occurs, analogous to the decline experienced in mice, humans, and other mammals. The molecular and cellular underpinnings of this decline are still poorly understood. By specifically profiling the transcriptome of Drosophila motor neurons across age using custom microarrays, we found that the expression of the matrix metalloproteinase 1 (dMMP1) gene reproducibly increased in motor neurons in an age-dependent manner. Modulation of physiological aging also altered the rate of dMMP1 expression, validating dMMP1 expression as a bona fide aging biomarker for motor neurons. Temporally controlled overexpression of dMMP1 specifically in motor neurons was sufficient to induce deficits in climbing behavior and cause a decrease in neurotransmitter release at neuromuscular synapses. These deficits were reversible if the dMMP1 expression was shut off again immediately after the onset of motor dysfunction. Additionally, repression of dMMP1 enzymatic activity via overexpression of a tissue inhibitor of metalloproteinases delayed the onset of age-dependent motor dysfunction. MMPs are required for proper tissue architecture during development. Our results support the idea that matrix metalloproteinase 1 is acting as a downstream effector of antagonistic pleiotropy in motor neurons and is necessary for proper development, but deleterious when reactivated at an advanced age. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  16. Physical exercise can influence local levels of matrix metalloproteinases and their inhibitors in tendon-related connective tissue

    DEFF Research Database (Denmark)

    Koskinen, S O A; Heinemeier, K M; Olesen, J L

    2004-01-01

    Microdialysis studies indicate that mechanical loading of human tendon tissue during exercise or training can affect local synthesis and degradation of type I collagen. Degradation of collagen and other extracellular matrix proteins is controlled by an interplay between matrix metalloproteinases...... (MMPs) and their tissue inhibitors (TIMPs). However, it is unknown whether local levels of MMPs and TIMPs are affected by tendon loading in humans in vivo. In the present experiment, six healthy young men performed 1 h of uphill (3%) treadmill running. Dialysate was collected from microdialysis probes...... (placed in the peritendinous tissue immediately anterior to the Achilles tendon) before, immediately after, 1 day after, and 3 days after an exercise bout. MMP-2 and MMP-9 were measured in dialysate by gelatin zymography, and amounts were quantified by densitometry in relation to total protein...

  17. The matrix metalloproteinase in larynx cancer

    Directory of Open Access Journals (Sweden)

    Weronika Lucas Grzelczyk

    2016-12-01

    Full Text Available One of the most common carcinoma occurring in the head and neck is laryngeal cancer. Despite the rapid scientific advances in medicine the prognosis for patients with such type of disease is not satisfying. In the last few years matrix metalloproteinases ‑ MMPs and their tissue inhibitors – TIMPs, mostly MMP‑2 and MMP‑9, arouses a great interest, especially in the process of carcinogenesis. It seems that their impact in the formation and development of laryngeal cancer is significant. MMPs a group of zinc‑ and calcium‑ dependent endopeptidases play crucial role extracellular matrix collagen degradation. That are enzymes, that degrade and the basement membrane by facilitating tumor growth, cell migration and tumor invasion. They are implicated in metastasis and angiogenesis potentiate within the tumor. Clear tendency was observed towards the higher MMPs and TIMPs expression in larynx cancer than in the stroma. Recent studies show correlations between increased MMP‑2 gene expression in the tumor tissue and clinical status, histopathological grading and metastases occurrence. The similar MMP2 over expression dependence were found on tumor recurrence and survival. Many authors pointed out, significant higher MMP‑2 expression as a potential marker of tumor invasiveness and worse prognosis in patients with larynx cancer. However, association of MMP 9 gene expression with laryngeal cancer clinicopathological features and survival of patients are ambiguous. Although, numerous researches show that this relationship does exists. Similar correlations could be found in TIMPs, but further studies are necessary because of small amount of literature.

  18. Immunohistochemical correlation of matrix metalloproteinase-2 and tissue inhibitors of metalloproteinase-2 in tobacco associated epithelial dysplasia.

    Science.gov (United States)

    Bajracharya, Dipshikha; Shrestha, Bijayatha; Kamath, Asha; Menon, Aparna; Radhakrishnan, Raghu

    2014-01-01

    To study the immunohistochemical expression of matrix metalloproteinase and tissue inhibitors of matrix metalloproteinase-2 in different histological grades of tobacco associated epithelial dysplasia and correlate the association between these proteases. Potentially malignant oral disorders (PMODs) progressing to oral cancer are related to the severity of epithelial dysplasia. A retrospective immunohistochemical study was carried out on 30 clinically and histologically proven cases of leukoplakia with dysplasia and 10 cases of normal buccal mucosa using anti-MMP-2 and anti-TIMP-2 monoclonal antibodies. Mann Whitney U test, for comparing the expression of both MMP-2 and TIMP-2 in normal mucosa with dysplasia, was highly significant (P correlation between MMP-2 and TIMP-2 through different grades of dysplasia and cells observed showed positive correlation. Concomitant increase in the expression of both MMP-2 and TIMP-2 suggested that the activation of MMP-2 is dependent on TIMP-2 acting as a cofactor. Changes in TIMP-2 levels are considered important because they directly affect the level of MMP-2 activity.

  19. Matrix metalloproteinase-1 expression in oral submucous fibrosis: An immunohistochemical study

    Directory of Open Access Journals (Sweden)

    Mishra Gauri

    2010-01-01

    Full Text Available Context: Oral submucous fibrosis (OSF is a form of pathological fibrosis affecting the oral mucosa. There is compelling evidence to implicate the habitual chewing of areca nut with the development of OSF. Because collagens are the major structural components of connective tissues, including oral submucosa, the composition of collagen within each tissue needs to be precisely regulated to maintain tissue integrity. Arecoline stimulates fibroblasts to increase the production of collagen by 150%. Aim: As the role of collagenase is implicated in cleaving the collagen under physical conditions, this study was carried out to evaluate the role of collagenase-1 (matrix metalloproteinase [MMP]-1 in a pathologic condition like OSF. Settings and Design: A total of 40 patients were included in the study, comprising of 30 OSF as Group 1 and 10 normal buccal mucosa tissue as Group 2. Materials and Methods: Both the groups were stained for MMP-1 by the immunohistochemical method using the streptavidin HRP-biotin labeling technique. MMP-1 expression intensity in the epithelium and connective tissue was decreased in Group 1 when compared to Group 2. Statistical Analysis Used: Chi-square test of association was used to determine the difference in the expression of MMP-1 between OSF and normal buccal mucosa and among different histological gradings of OSF. Results: The results were statistically significant. However, there was no statistically significant difference between the expression of MMP-1 among different histological grades of OSF in Group 1.

  20. Comprehensive profiling and localisation of the matrix metalloproteinases in urothelial carcinoma

    OpenAIRE

    Wallard, M J; Pennington, C J; Veerakumarasivam, A; Burtt, G; Mills, I G; Warren, A; Leung, H Y; Murphy, G; Edwards, D R; Neal, D E; Kelly, J D

    2006-01-01

    The matrix metalloproteinases (MMPs) are endopeptidases which break down the extracellular matrix and regulate cytokine and growth factor activity. Several MMPs have been implicated in the promotion of invasion and metastasis in a broad range of tumours including urothelial carcinoma. In this study, RNA from 132 normal bladder and urothelial carcinoma specimens was profiled for each of the 24 human MMPs, the four endogenous tissue inhibitors of MMPs (TIMPs) and several key growth factors and ...

  1. Downregulation of membrane type-matrix metalloproteinases in the inflamed or injured central nervous system

    Directory of Open Access Journals (Sweden)

    Millward Jason M

    2007-09-01

    Full Text Available Abstract Background Matrix metalloproteinases (MMPs are thought to mediate cellular infiltration in central nervous system (CNS inflammation by cleaving extracellular matrix proteins associated with the blood-brain barrier. The family of MMPs includes 23 proteinases, including six membrane type-MMPs (MT-MMPs. Leukocyte infiltration is an integral part of the pathogenesis of autoimmune inflammation in the CNS, as occurs in multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE, as well as in the response to brain trauma and injury. We have previously shown that gene expression of the majority of MMPs was upregulated in the spinal cord of SJL mice with severe EAE induced by adoptive transfer of myelin basic protein-reactive T cells, whereas four of the six MT-MMPs (MMP-15, 16, 17 and 24 were downregulated. The two remaining MT-MMPs (MMP-14 and 25 were upregulated in whole tissue. Methods We used in vivo models of CNS inflammation and injury to study expression of MT-MMP and cytokine mRNA by real-time RT-PCR. Expression was also assessed in microglia sorted from CNS by flow cytometry, and in primary microglia cultures following treatment with IFNγ. Results We now confirm the expression pattern of MT-MMPs in the B6 mouse, independent of effects of adjuvant. We further show expression of all the MT-MMPs, except MMP-24, in microglia. Microglia isolated from mice with severe EAE showed statistically significant downregulation of MMP-15, 17 and 25 and lack of increase in levels of other MT-MMPs. Downregulation of MT-MMPs was also apparent following CNS injury. The pattern of regulation of MT-MMPs in neuroinflammation showed no association with expression of the proinflammatory cytokines TNFα, IL-1β, or IFNγ. Conclusion CNS inflammation and injury leads to downregulation in expression of the majority of MT-MMPs. Microglia in EAE showed a general downregulation of MT-MMPs, and our findings suggest that MT-MMP levels may

  2. Inhibiting extracellular matrix metalloproteinase inducer maybe beneficial for diminishing the atherosclerotic plaque instability

    Directory of Open Access Journals (Sweden)

    Xie S

    2009-01-01

    Full Text Available Atherosclerotic plaque rupture and local thrombosis activation in the artery cause acute serious incidents such as acute coronary syndrome and stroke. The exact mechanism of plaque rupture remains unclear but excessive degradation of the extracellular matrix scaffold by matrix-degrading metalloproteinases (MMPs has been implicated as one of the major molecular mechanisms in this process. Convincing evidence is available to prove that extracellular matrix metalloproteinase inducer (EMMPRIN induces MMP expression and is involved in the inflammatory responses in the artery wall. The inflammation and MMPs have been shown to play a critical role for atherosclerotic lesion development and progression. More recent data showed that increased EMMPRIN expression was associated with vulnerable atherosclerotic lesions. Therefore, we speculate that EMMPRIN may be pivotal for atherosclerotic plaque instability, and hence inhibition of EMMPRIN expression could be a promising approach for the prevention or treatment of atheroma instability.

  3. Matrix metalloproteinase-9 predicts pulmonary status declines in α1-antitrypsin deficiency

    Directory of Open Access Journals (Sweden)

    Rames Alexis

    2011-03-01

    Full Text Available Abstract Background Matrix metalloproteinase-9 (MMP-9 may be important in the progression of emphysema, but there have been few longitudinal clinical studies of MMP-9 including pulmonary status and COPD exacerbation outcomes. Methods We utilized data from the placebo arm (n = 126 of a clinical trial of patients with alpha1-antitrypsin deficiency (AATD and emphysema to examine the links between plasma MMP-9 levels, pulmonary status, and COPD exacerbations over a one year observation period. Pulmonary function, computed tomography lung density, incremental shuttle walk test (ISWT, and COPD exacerbations were assessed at regular intervals over 12 months. Prospective analyses used generalized estimating equations to incorporate repeated longitudinal measurements of MMP-9 and all endpoints, controlling for age, gender, race-ethnicity, leukocyte count, and tobacco history. A secondary analysis also incorporated highly-sensitive C-reactive protein levels in predictive models. Results At baseline, higher plasma MMP-9 levels were cross-sectionally associated with lower FEV1 (p = 0.03, FVC (p Conclusions Increased plasma MMP-9 levels generally predicted pulmonary status declines, including worsening transfer factor and lung density as well as greater COPD exacerbations in AATD-associated emphysema.

  4. Matrix Metalloproteinases as Therapeutic Targets for Idiopathic Pulmonary Fibrosis

    Science.gov (United States)

    Craig, Vanessa J.; Zhang, Li; Hagood, James S.

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a restrictive lung disease that is associated with high morbidity and mortality. Current medical therapies are not fully effective at limiting mortality in patients with IPF, and new therapies are urgently needed. Matrix metalloproteinases (MMPs) are proteinases that, together, can degrade all components of the extracellular matrix and numerous nonmatrix proteins. MMPs and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the pathogenesis of IPF based upon the results of clinical studies reporting elevated levels of MMPs (including MMP-1, MMP-7, MMP-8, and MMP-9) in IPF blood and/or lung samples. Surprisingly, studies of gene-targeted mice in murine models of pulmonary fibrosis (PF) have demonstrated that most MMPs promote (rather than inhibit) the development of PF and have identified diverse mechanisms involved. These mechanisms include MMPs: (1) promoting epithelial-to-mesenchymal transition (MMP-3 and MMP-7); (2) increasing lung levels or activity of profibrotic mediators or reducing lung levels of antifibrotic mediators (MMP-3, MMP-7, and MMP-8); (3) promoting abnormal epithelial cell migration and other aberrant repair processes (MMP-3 and MMP-9); (4) inducing the switching of lung macrophage phenotypes from M1 to M2 types (MMP-10 and MMP-28); and (5) promoting fibrocyte migration (MMP-8). Two MMPs, MMP-13 and MMP-19, have antifibrotic activities in murine models of PF, and two MMPs, MMP-1 and MMP-10, have the potential to limit fibrotic responses to injury. Herein, we review what is known about the contributions of MMPs and TIMPs to the pathogenesis of IPF and discuss their potential as therapeutic targets for IPF. PMID:26121236

  5. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Craig, Vanessa J; Zhang, Li; Hagood, James S; Owen, Caroline A

    2015-11-01

    Idiopathic pulmonary fibrosis (IPF) is a restrictive lung disease that is associated with high morbidity and mortality. Current medical therapies are not fully effective at limiting mortality in patients with IPF, and new therapies are urgently needed. Matrix metalloproteinases (MMPs) are proteinases that, together, can degrade all components of the extracellular matrix and numerous nonmatrix proteins. MMPs and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the pathogenesis of IPF based upon the results of clinical studies reporting elevated levels of MMPs (including MMP-1, MMP-7, MMP-8, and MMP-9) in IPF blood and/or lung samples. Surprisingly, studies of gene-targeted mice in murine models of pulmonary fibrosis (PF) have demonstrated that most MMPs promote (rather than inhibit) the development of PF and have identified diverse mechanisms involved. These mechanisms include MMPs: (1) promoting epithelial-to-mesenchymal transition (MMP-3 and MMP-7); (2) increasing lung levels or activity of profibrotic mediators or reducing lung levels of antifibrotic mediators (MMP-3, MMP-7, and MMP-8); (3) promoting abnormal epithelial cell migration and other aberrant repair processes (MMP-3 and MMP-9); (4) inducing the switching of lung macrophage phenotypes from M1 to M2 types (MMP-10 and MMP-28); and (5) promoting fibrocyte migration (MMP-8). Two MMPs, MMP-13 and MMP-19, have antifibrotic activities in murine models of PF, and two MMPs, MMP-1 and MMP-10, have the potential to limit fibrotic responses to injury. Herein, we review what is known about the contributions of MMPs and TIMPs to the pathogenesis of IPF and discuss their potential as therapeutic targets for IPF.

  6. A novel marker for assessment of liver matrix remodeling: An enzyme-linked immunosorbent assay (ELISA) detecting a MMP generated type I collagen neo-epitope (C1M)

    DEFF Research Database (Denmark)

    Leeming, Diana Julie; He, Y.; Veidal, S. S.

    2011-01-01

    A competitive enzyme-linked immunosorbent assay (ELISA) for detection of a type I collagen fragment generated by matrix metalloproteinases (MMP) -2, -9 and -13, was developed (CO1-764 or C1M). The biomarker was evaluated in two preclinical rat models of liver fibrosis: bile duct ligation (BDL) an...

  7. Matrix metalloproteinase sensing via porous silicon microcavity devices functionalized with human antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Marta; Gergely, Csilla [GES-UMR 5650, CNRS, Universite Montpellier 2, Pl. Eugene Bataillon 34095, Montpellier Cedex 5 (France); Taleb Bendiab, Chakib; Massif, Laurent; Cuisinier, Frederic [EA4203, Faculte d' Odontologie, Universite Montpellier 1, Montpellier Cedex 5 (France); Palestino, Gabriela [Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Av. Salvador Nava 6, 78000 San Luis Potosi (Mexico); Agarwal, Vivechana [CIICAP, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Col Chamilpa, Cuernavaca, Mor. (Mexico)

    2011-06-15

    Porous silicon microcavity (PSiMc) structures were used as support material for specific sensing of matrix metalloproteinases (MMPs). For lower concentrations of MMP-8, the structures were tested with two types of functionalization methods. Silanization of the oxidized porous silicon structures, followed by glutaraldehyde chemistry was found to give very inconsistent results. The use of biotinilated bovine serum albumin linked to the naked PSiMc was found to be an alternative method to attach the anti MMP-8 human antibody, previously modified with streptavidin, which was further used to sense MMP-8 (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Matrix metalloproteinase activity assays: Importance of zymography.

    Science.gov (United States)

    Kupai, K; Szucs, G; Cseh, S; Hajdu, I; Csonka, C; Csont, T; Ferdinandy, P

    2010-01-01

    Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases capable of degrading extracellular matrix, including the basement membrane. MMPs are associated with various physiological processes such as morphogenesis, angiogenesis, and tissue repair. Moreover, due to the novel non-matrix related intra- and extracellular targets of MMPs, dysregulation of MMP activity has been implicated in a number of acute and chronic pathological processes, such as arthritis, acute myocardial infarction, chronic heart failure, chronic obstructive pulmonary disease, inflammation, and cancer metastasis. MMPs are considered as viable drug targets in the therapy of the above diseases. For the development of selective MMP inhibitor molecules, reliable methods are necessary for target validation and lead development. Here, we discuss the major methods used for MMP assays, focusing on substrate zymography. We highlight some problems frequently encountered during sample preparations, electrophoresis, and data analysis of zymograms. Zymography is a widely used technique to study extracellular matrix-degrading enzymes, such as MMPs, from tissue extracts, cell cultures, serum or urine. This simple and sensitive technique identifies MMPs by the degradation of their substrate and by their molecular weight and therefore helps to understand the widespread role of MMPs in different pathologies and cellular pathways. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Matrix metalloproteinase-2 is a consistent prognostic factor in gastric cancer

    NARCIS (Netherlands)

    Kubben, F.J.G.M.; Sier, C.F.M.; Duijn, W. van; Griffioen, G.; Hanemaaijer, R.; Velde, C.J.H. van de; Krieken, J.H.J.M. van; Lamers, C.B.H.W.; Verspaget, H.W.

    2006-01-01

    In a pioneer study, we showed 10 years ago that enhanced tissue levels of the matrix metalloproteinases (MMPs) MMP-2 and MMP-9 in gastric cancers, as determined by zymography, were related with worse overall survival of the patients. To corroborate these observations, we now assessed MMP-2 and MMP-9

  10. Matrix metalloproteinase-2 is a consistent prognostic factor in gastric cancer.

    NARCIS (Netherlands)

    Kubben, F.J.G.M.; Sier, C.F.M.; Duijn, W. van; Griffioen, G.; Hanemaaijer, R.; Velde, C.J. van de; Krieken, J.H.J.M. van; Lamers, C.B.H.W.; Verspaget, H.W.

    2006-01-01

    In a pioneer study, we showed 10 years ago that enhanced tissue levels of the matrix metalloproteinases (MMPs) MMP-2 and MMP-9 in gastric cancers, as determined by zymography, were related with worse overall survival of the patients. To corroborate these observations, we now assessed MMP-2 and MMP-9

  11. Increased matrix metalloproteinase-8 and -9 activity in patients with infarct rupture after myocardial infarction

    NARCIS (Netherlands)

    Borne, S.W.M. van den; Cleutjens, J.P.M.; Hanemaaijer, R.; Creemers, E.E.; Smits, J.F.M.; Daemen, M.J.A.P.; Blankesteijn, W.M.

    2009-01-01

    Background: Infarct rupture is a usually fatal complication of myocardial infarction (MI), for which no molecular mechanism has been described in humans. Experimental evidence in mouse models suggests that the degradation of the extracellular matrix by matrix metalloproteinases (MMPs) plays an

  12. The Complex Interaction of Matrix Metalloproteinases in the Migration of Cancer Cells through Breast Tissue Stroma

    Directory of Open Access Journals (Sweden)

    Kerry J. Davies

    2014-01-01

    Full Text Available Breast cancer mortality is directly linked to metastatic spread. The metastatic cell must exhibit a complex phenotype that includes the capacity to escape from the primary tumour mass, invade the surrounding normal tissue, and penetrate into the circulation before proliferating in the parenchyma of distant organs to produce a metastasis. In the normal breast, cellular structures change cyclically in response to ovarian hormones leading to regulated cell proliferation and apoptosis. Matrix metalloproteinases (MMPs are a family of zinc dependent endopeptidases. Their primary function is degradation of proteins in the extracellular matrix to allow ductal progression through the basement membrane. A complex balance between matrix metalloproteinases and their inhibitors regulate these changes. These proteinases interact with cytokines, growth factors, and tumour necrosis factors to stimulate branching morphologies in normal breast tissues. In breast cancer this process is disrupted facilitating tumour progression and metastasis and inhibiting apoptosis increasing the life of the metastatic cells. This paper highlights the role of matrix metalloproteinases in cell progression through the breast stroma and reviews the complex relationships between the different proteinases and their inhibitors in relation to breast cancer cells as they metastasise.

  13. Effect of S-1 combined with oxaliplatin on serum tumor markers, matrix metalloproteinase and immune function in elderly patients with gastric cancer

    Directory of Open Access Journals (Sweden)

    Yong-Feng Shan

    2017-10-01

    Full Text Available Objective: To investigate the effect of Compound Tegafur and Oteracil Potassium Sustained Capsules (S-1 combined with oxaliplatin chemotherapy on serum tumor marker matrix metalloproteinase and immune function in elderly patients with gastric cancer. Methods: According to the random data table, 80 cases of elderly patients with gastric cancer were divided into control group and observation group (n=40, patients in the control group were treated with oxaliplatin combined with Capecitabine Tablets, and the observation group patients were treated with S-1 combined with oxaliplatin, all treated for 6 cycles, before and after treatment, levels of serum tumor markers, matrix metalloproteinase and immune function were compared between the two groups. Results: Before treatment, there was no significant difference in the levels of CEA, CA125, CA19-9, MMP-2, MMP-9, CD3 + , CD4 + , CD8 + and CD4 + /CD8 + between the two groups; After treatment, the levels of CEA, CA125, CA19-9, MMP-2, MMP-9 and CD8 + in the two groups were significantly lower than those in the same group before treatment, and the levels of the observation group[(7.79±2.78 ng/ mL, (22.56±7.31 U/mL, (13.48±3.05 U/mL, (57.84±8.93 ng/mL, (199.14±67.39 ng/ mL and (26.21±4.18%] were significantly lower than those in the control group; Compared with the group before treatment, the levels of CD3 + , CD4 + and CD4 + /CD8 + in the two groups were significantly increased, and the observation group [(66.89±5.84%, (41.63±5.24% and (1.37±0.29] was significantly higher than the control group. Conclusion: S-1 combined with oxaliplatin chemotherapy can effectively reduce serum tumor markers and matrix metalloproteinase levels, improve immune function, has an important clinical value.

  14. Salivary matrix metalloproteinase (MMP-8) levels and gelatinase (MMP-9) activities in patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Collin, H L; Sorsa, T; Meurman, J H; Niskanen, L; Salo, T; Rönkä, H; Konttinen, Y T; Koivisto, A M; Uusitupa, M

    2000-10-01

    We studied the salivary levels and activities of the matrix metalloproteinases (MMP) -8 and -9 in 45 type 2 diabetic patients and 77 control subjects. The patients' mean glycosylated haemoglobin (HbA1c) was 8.7%, indicating an unsatisfactory metabolic control of the disease. The MMP levels were further related to the clinical and microbiological periodontal findings as well as to salivary flow rate and other factors. The salivary flow rate, albumin and amylase concentrations were similar in type 2 diabetic patients to those in the control group. The mean gingival and periodontal pocket indexes were higher in the diabetes group. The number of potential periodontopathogenic bacteria was lower, however, in the diabetic than in the control group. Zymography and immunoblotting revealed that the major MMPs in the type 2 diabetic patients' saliva were MMP-8 and MMP-9. Salivary MMP levels and activities in type 2 diabetic patients were in general similar to those in the control group. However, the correlation coefficients using multiple regression analysis revealed that gingival bleeding, pocket depths and HbA1c were associated with increased MMP-8 levels which, in turn, were negatively predicted by elevated plasma lipid peroxide levels in the diabetic group. Our data on salivary MMP-8 and -9 do not support the concept of generalized neutrophil dysfunction in unbalanced diabetes. Moreover, plasma lipid peroxidation levels reflecting the increased oxidative burden, which is generated mainly by triggered neutrophils, do not indicate neutrophil dysfunction due to diabetes, but may rather be related to the increased tissue damage in an uncontrolled disease. However. advanced periodontitis in type 2 diabetes seems to be related to elevated salivary MMP-8 levels which might be useful in monitoring periodontal disease in diabetes.

  15. Identification of dihydrogambogic acid as a matrix metalloproteinase 1 inhibitor by high-throughput screening

    Directory of Open Access Journals (Sweden)

    Li Y

    2017-12-01

    Full Text Available Yong Li, John J Voorhees, Gary J FisherDepartment of Dermatology, University of Michigan, Ann Arbor, MI, USAType I collagen (COL1 is the predominant structural protein in the skin. COL1 forms densely packed fibrils which are essential for maintaining skin mechanical properties and youthful appearance.1 The enzyme matrix metalloproteinase-1 (MMP1 cleaves COL1 fibrils at a single site.2 Once cleaved by MMP1, COL1 fibrils can be degraded by other proteases. MMP1 expression is elevated during natural aging and chronic sun exposure, ie, photoaging, leading to excessive degradation of COL1.3 This excessive degradation contributes to COL1 deficiency in the skin of the elderly. COL1 deficiency impairs skin structural integrity and appearance.Given the detrimental role of MMP1 in mediating age-associated fragmentation of COL1 fibrils, it would be beneficial to include MMP1 inhibitors in topical antiaging skin care products. Naturally existing substances that are safe for human use, such as botanical extracts, are often used in skin care products. We have utilized highthroughput screening (HTS to identify naturally existing MMP1 inhibitors that could be used for cosmetic purposes.

  16. Requirement of matrix metalloproteinase-1 for intestinal homeostasis in the adult Drosophila midgut

    International Nuclear Information System (INIS)

    Lee, Shin-Hae; Park, Joung-Sun; Kim, Young-Shin; Chung, Hae-Young; Yoo, Mi-Ae

    2012-01-01

    Stem cells are tightly regulated by both intrinsic and extrinsic signals as well as the extracellular matrix (ECM) for tissue homeostasis and regenerative capacity. Matrix metalloproteinases (MMPs), proteolytic enzymes, modulate the turnover of numerous substrates, including cytokine precursors, growth factors, and ECM molecules. However, the roles of MMPs in the regulation of adult stem cells are poorly understood. In the present study, we utilize the Drosophila midgut, which is an excellent model system for studying stem cell biology, to show that Mmp1 is involved in the regulation of intestinal stem cells (ISCs). The results showed that Mmp1 is expressed in the adult midgut and that its expression increases with age and with exposure to oxidative stress. Mmp1 knockdown or Timp-overexpressing flies and flies heterozygous for a viable, hypomorphic Mmp1 allele increased ISC proliferation in the gut, as shown by staining with an anti-phospho-histone H3 antibody and BrdU incorporation assays. Reduced Mmp1 levels induced intestinal hyperplasia, and the Mmp1depletion-induced ISC proliferation was rescued by the suppression of the EGFR signaling pathway, suggesting that Mmp1 regulates ISC proliferation through the EGFR signaling pathway. Furthermore, adult gut-specific knockdown and whole-animal heterozygotes of Mmp1 increased additively sensitivity to paraquat-induced oxidative stress and shortened lifespan. Our data suggest that Drosophila Mmp1 is involved in the regulation of ISC proliferation for maintenance of gut homeostasis. -- Highlights: ► Mmp1 is expressed in the adult midgut. ► Mmp1 is involved in the regulation of ISC proliferation activity. ► Mmp1-related ISC proliferation is associated with EGFR signaling. ► Mmp1 in the gut is required for the intestinal homeostasis and longevity.

  17. Requirement of matrix metalloproteinase-1 for intestinal homeostasis in the adult Drosophila midgut

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Shin-Hae; Park, Joung-Sun [Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 609-735 (Korea, Republic of); Kim, Young-Shin [Research Institute of Genetic Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Chung, Hae-Young [Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan 609-735 (Korea, Republic of); Yoo, Mi-Ae, E-mail: mayoo@pusan.ac.kr [Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 609-735 (Korea, Republic of)

    2012-03-10

    Stem cells are tightly regulated by both intrinsic and extrinsic signals as well as the extracellular matrix (ECM) for tissue homeostasis and regenerative capacity. Matrix metalloproteinases (MMPs), proteolytic enzymes, modulate the turnover of numerous substrates, including cytokine precursors, growth factors, and ECM molecules. However, the roles of MMPs in the regulation of adult stem cells are poorly understood. In the present study, we utilize the Drosophila midgut, which is an excellent model system for studying stem cell biology, to show that Mmp1 is involved in the regulation of intestinal stem cells (ISCs). The results showed that Mmp1 is expressed in the adult midgut and that its expression increases with age and with exposure to oxidative stress. Mmp1 knockdown or Timp-overexpressing flies and flies heterozygous for a viable, hypomorphic Mmp1 allele increased ISC proliferation in the gut, as shown by staining with an anti-phospho-histone H3 antibody and BrdU incorporation assays. Reduced Mmp1 levels induced intestinal hyperplasia, and the Mmp1depletion-induced ISC proliferation was rescued by the suppression of the EGFR signaling pathway, suggesting that Mmp1 regulates ISC proliferation through the EGFR signaling pathway. Furthermore, adult gut-specific knockdown and whole-animal heterozygotes of Mmp1 increased additively sensitivity to paraquat-induced oxidative stress and shortened lifespan. Our data suggest that Drosophila Mmp1 is involved in the regulation of ISC proliferation for maintenance of gut homeostasis. -- Highlights: Black-Right-Pointing-Pointer Mmp1 is expressed in the adult midgut. Black-Right-Pointing-Pointer Mmp1 is involved in the regulation of ISC proliferation activity. Black-Right-Pointing-Pointer Mmp1-related ISC proliferation is associated with EGFR signaling. Black-Right-Pointing-Pointer Mmp1 in the gut is required for the intestinal homeostasis and longevity.

  18. Involvement of matrix metalloproteinases and their inhibitors in peripheral synovitis and down-regulation by tumor necrosis factor alpha blockade in spondylarthropathy

    NARCIS (Netherlands)

    Vandooren, Bernard; Kruithof, Elli; Yu, David T. Y.; Rihl, Markus; Gu, Jieruo; de Rycke, Leen; van den Bosch, Filip; Veys, Eric M.; de Keyser, Filip; Baeten, Dominique

    2004-01-01

    OBJECTIVE: To investigate the role of matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) in spondylarthropathy (SpA) synovitis. METHODS: Paired samples of synovial biopsy tissue as well as serum and synovial fluid (SF) from 41 patients with SpA and 20

  19. Prion Fragment Peptides Are Digested with Membrane Type Matrix Metalloproteinases and Acquire Enzyme Resistance through Cu2+-Binding

    Directory of Open Access Journals (Sweden)

    Aya Kojima

    2014-05-01

    Full Text Available Prions are the cause of neurodegenerative disease in humans and other mammals. The structural conversion of the prion protein (PrP from a normal cellular protein (PrPC to a protease-resistant isoform (PrPSc is thought to relate to Cu2+ binding to histidine residues. In this study, we focused on the membrane-type matrix metalloproteinases (MT-MMPs such as MT1-MMP and MT3-MMP, which are expressed in the brain as PrPC-degrading proteases. We synthesized 21 prion fragment peptides. Each purified peptide was individually incubated with recombinant MT1-MMP or MT3-MMP in the presence or absence of Cu2+ and the cleavage sites determined by LC-ESI-MS analysis. Recombinant MMP-7 and human serum (HS were also tested as control. hPrP61-90, from the octapeptide-repeat region, was cleaved by HS but not by the MMPs tested here. On the other hand, hPrP92-168 from the central region was cleaved by MT1-MMP and MT3-MMP at various sites. These cleavages were inhibited by treatment with Cu2+. The C-terminal peptides had higher resistance than the central region. The data obtained from this study suggest that MT-MMPs expressed in the brain might possess PrPC-degrading activity.

  20. Expression of matrix metalloproteinase-2 and metalloproteinase-9 in the skin of dogs with visceral leishmaniasis.

    Science.gov (United States)

    Jacintho, Ana Paula Prudente; Melo, Guilherme D; Machado, Gisele F; Bertolo, Paulo Henrique Leal; Moreira, Pamela Rodrigues Reina; Momo, Claudia; Souza, Thiago A; Vasconcelos, Rosemeri de Oliveira

    2018-06-01

    The skin is the first organ to be infected by the parasite in canine visceral leishmaniasis. The enzyme matrix metalloproteinase (MMP) acts towards degradation of the extracellular matrix (ECM) and modulation of the inflammatory response against many kinds of injuries. The aims of this study were to evaluate the expression of MMP-2 and MMP-9 through immunohistochemistry and zymography on the skin (muzzle, ears, and abdomen) of dogs that were naturally infected by Leishmania spp. and to compare these results with immunodetection of the parasite and with alterations to the dermal ECM. Picrosirius red staining was used to differentiate collagen types I and III in three regions of the skin. The parasite load, intensity of inflammation, and production of MMP-2 (latent) and MMP-9 (active and latent) were higher in the ear and muzzle regions. MMP-9 (active) predominated in the infected group of dogs and its production was significantly different to that of the control group. Macrophages, lymphocytes, and plasma cells predominated in the dermal inflammation and formed granulomas in association with degradation of mature collagen (type I) and with discrete deposition of young collagen (type III). This dermal change was more pronounced in dogs with high parasite load in the skin. Therefore, it was concluded that the greater parasite load and intensity of inflammation in the skin led consequently to increased degradation of mature collagen, caused by increased production of MMPs, particularly active MMP-9, in dogs with visceral leishmaniasis. This host response profile possibly favors systemic dissemination of the parasite.

  1. Possible Association between Serum Matrix Metalloproteinase-9 (MMP-9) Levels and Relapse in Depressed Patients following Electroconvulsive Therapy (ECT).

    Science.gov (United States)

    Shibasaki, Chiyo; Itagaki, Kei; Abe, Hiromi; Kajitani, Naoto; Okada-Tsuchioka, Mami; Takebayashi, Minoru

    2018-03-01

    Matrix metalloproteinases are involved in neuroinflammatory processes, which could underlie depression. Serum levels of MMP-9 and MMP-2 in depressed patients are significantly altered following electroconvulsive therapy, but an association between altered matrix metalloproteinases after successful ECT and possible relapse has yet to be investigated. Serum was obtained twice, before and immediately after a course of electroconvulsive therapy, from 38 depressed patients. Serum was also collected, once, from two groups of age- and gender-matched healthy controls, 40 volunteers in each group. Possible associations between levels of matrix metalloproteinases and relapse during a 1-year follow-up period were analyzed. Excluding patients who did not respond to electroconvulsive therapy and patients lost to follow-up, data from 28 patients were evaluated. Eighteen of the patients (64.3%) relapsed within 1 year. In the group that did not relapse, serum levels of MMP-9 were significantly decreased after a course of electroconvulsive therapy, but not in the group that relapsed. No association between MMP-2 and relapse was observed. The degree of change in serum MMP-9 change could be associated with relapse following electroconvulsive therapy in depressed patients. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  2. Synthetic matrix metalloproteinase inhibitors inhibit growth of established breast cancer osteolytic lesions and prolong survival in mice

    DEFF Research Database (Denmark)

    Winding, Bent; NicAmhlaoibh, Róisín; Misander, Henriette

    2002-01-01

    Breast cancer frequently leads to incurable bone metastasis. Essential requirements for the development of bone metastasis are cell-cell and cell-matrix interactions, release of bioactive growth factors and cytokines, and removal of large amounts of bone matrix. Matrix metalloproteinases (MMPs...

  3. Correlation of bacterial coinfection versus matrix metalloproteinase 9 and tissue inhibitor of metalloproteinase 1 expression in aortic aneurysm and atherosclerosis.

    Science.gov (United States)

    Roggério, Alessandra; Sambiase, Nádia Vieira; Palomino, Suely A P; de Castro, Maria Alice Pedreira; da Silva, Erasmo Simão; Stolf, Noedir G; de Lourdes Higuchi, Maria

    2013-10-01

    We searched for any relationship between Chlamydophila pneumoniae, Mycoplasma pneumoniae, matrix metalloproteinase 9 (MMP-9), and tissue inhibitor of metalloproteinase 1 (TIMP-1) in aneurysmatic atherosclerotic lesions, and whether this relationship differed from that in atherosclerotic nonaneurysmatic lesions. Twenty-eight tissue samples paired by age and sex were grouped as follows: group 1 included 14 nonaneurysmal atherosclerotic fragments obtained from abdominal aortas collected from necropsies; group 2 included 14 aneurysmatic atherosclerotic aortic fragments obtained from patients during corrective surgery. Immunohistochemistry reactions were evaluated for C pneumoniae, M pneumoniae, MMP-9, and TIMP-1 antigens. Both groups were compared using the Mann-Whitney test, and the correlations among variables were obtained using the Spearman correlation test. P ≤ 0.05 was considered statistically significant. C pneumoniae and M pneumoniae antigens were detected in 100% of cases. A higher amount of C pneumoniae (P = 0.005), M pneumoniae (P = 0.002), and MMP-9 (P = 0.021) was found in adventitia of group 2 with aneurysm. A positive correlation was found in the aneurysm group, as follows: intima C pneumoniae versus adventitia thickness (r = 0.70; P = 0.01), media C pneumoniae versus adventitia C pneumoniae (r = 0.75; P = 0.002), intima C pneumoniae versus media C pneumoniae (r = 0.8; P = 0.00), and adventitia C pneumoniae versus intima M pneumoniae (r = 0.54; P = 0.05); negative correlations were as follows: adventitia thickness and adventitia M pneumoniae (r = -0.65; P = 0.01), media MMP-9 and media thickness (r = -0.55; P = 0.04), TIMP-1 media versus adventitia C pneumoniae (r = -0.86; P = 0.00), and TIMP-1 media versus M pneumoniae intima (r = -0.67; P = 0.03). Nonaneurysmal atherosclerotic group 1 results are as follows: adventitia C pneumoniae versus TIMP-1 media (r = 0.75; P = 0.01) and media C pneumoniae and adventitia C pneumoniae (r = 0.59; P = 0.03). The

  4. CDP-choline modulates matrix metalloproteinases in rat sciatic injury.

    Science.gov (United States)

    Gundogdu, Elif Basaran; Bekar, Ahmet; Turkyilmaz, Mesut; Gumus, Abdullah; Kafa, Ilker Mustafa; Cansev, Mehmet

    2016-02-01

    CDP-choline (cytidine-5'-diphosphocholine) improves functional recovery, promotes nerve regeneration, and decreases perineural scarring in rat peripheral nerve injury. The aim of the present study was to investigate the mechanism of action of CDP-choline with regard to matrix metalloproteinase (MMP) activity in the rat-transected sciatic nerve injury model. Male Wistar rats were randomized into Sham, Saline, and CDP-choline groups. Rats in Sham group received Sham surgery, whereas rats in Saline and CDP-choline groups underwent right sciatic nerve transection followed by immediate primary saturation and injected intraperitoneally with 0.9% NaCl (1 mL/kg) and CDP-choline (600 μg/kg), respectively. Sciatic nerve samples were obtained 1, 3, and 7 d after the surgery and analyzed for levels and activities of MMP-2 and MMP-9, levels of tissue inhibitor of metalloproteinases-1 (TIMP-1) and TIMP-3, and axonal regeneration. CDP-choline treatment decreased the levels and activities of MMP-2 and MMP-9, whereas increasing levels of TIMP-1 and TIMP-3 significantly on the third and seventh day after injury compared to Saline group. In addition, CDP-choline administration resulted in new axon formation and formation and advancement of myelination on newly formed islets (compartments) of axonal regrowth. Our data show, for the first time, that CDP-choline modulates MMP activity and promotes the expression of TIMPs to stimulate axonal regeneration. These data help to explain one mechanism by which CDP-choline provides neuroprotection in peripheral nerve injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Matrix Metalloproteinases Contribute to Neuronal Dysfunction in Animal Models of Drug Dependence, Alzheimer's Disease, and Epilepsy

    Directory of Open Access Journals (Sweden)

    Hiroyuki Mizoguchi

    2011-01-01

    Full Text Available Matrix metalloproteinases (MMPs and tissue inhibitors of metalloproteinases (TIMPs remodel the pericellular environment by regulating the cleavage of extracellular matrix proteins, cell surface components, neurotransmitter receptors, and growth factors that mediate cell adhesion, synaptogenesis, synaptic plasticity, and long-term potentiation. Interestingly, increased MMP activity and dysregulation of the balance between MMPs and TIMPs have also been implicated in various pathologic conditions. In this paper, we discuss various animal models that suggest that the activation of the gelatinases MMP-2 and MMP-9 is involved in pathogenesis of drug dependence, Alzheimer's disease, and epilepsy.

  6. Matrix metalloproteinase 2 and 9 activity in patients with colorectal cancer liver metastasis.

    NARCIS (Netherlands)

    Waas, E.T.; Wobbes, Th.; Lomme, R.M.L.M.; Groot, J.H. de; Ruers, T.J.M.; Hendriks, T.

    2003-01-01

    BACKGROUND: Matrix metalloproteinases (MMPs) have been reported to play an important role in tumour cell invasion and metastasis. The bioactivity of MMPs in liver metastasis from colorectal cancer was investigated and correlated with clinicopathological variables. METHOD: Thirty-two patients

  7. Functional relevance of protein glycosylation to the pro-inflammatory effects of extracellular matrix metalloproteinase inducer (EMMPRIN) on monocytes/macrophages.

    Science.gov (United States)

    Ge, Heng; Yuan, Wei; Liu, Jidong; He, Qing; Ding, Song; Pu, Jun; He, Ben

    2015-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) is an important pro-inflammatory protein involved in the cellular functions of monocytes/macrophages. We have hypothesized that high-level heterogeneousness of protein glycosylation of EMMPRIN may have functional relevance to its biological effects and affect the inflammatory activity of monocytes/macrophages. The glycosylation patterns of EMMPRIN expressed by monocytes/macrophages (THP-1 cells) in response to different extracellular stimuli were observed, and the structures of different glycosylation forms were identified. After the purification of highly- and less-glycosylated proteins respectively, the impacts of different glycosylation forms on the pro-inflammatory effects of EMMPRIN were examined in various aspects, such as cell adhesion to endothelial cells, cell migrations, cytokine expression, and activation of inflammatory signalling pathway. 1) It was mainly the highly-glycosylated form of EMMPRIN (HG-EMMPRIN) that increased after being exposed to inflammatory signals (PMA and H2O2). 2) Glycosylation of EMMPRIN in monocytes/macrophages led to N-linked-glycans being added to the protein, with the HG form containing complex-type glycans and the less-glycosylated form (LG) the simple type. 3) Only the HG-EMMPRIN but not the LG-EMMPRIN exhibited pro-inflammatory effects and stimulated inflammatory activities of the monocytes/macrophages (i.e., activation of ERK1/2 and NF-κB pathway, enhanced monocyte-endothelium adhesion, cell migration and matrix metalloproteinase -9 expression). Post-transcriptional glycosylation represents an important mechanism that determines the biological effects of EMMPRIN in monocytes/macrophages. Glycosylation of EMMPRIN may serve as a potential target for regulating the inflammatory activities of monocytes/macrophages.

  8. Functional relevance of protein glycosylation to the pro-inflammatory effects of extracellular matrix metalloproteinase inducer (EMMPRIN on monocytes/macrophages.

    Directory of Open Access Journals (Sweden)

    Heng Ge

    Full Text Available Extracellular matrix metalloproteinase inducer (EMMPRIN is an important pro-inflammatory protein involved in the cellular functions of monocytes/macrophages. We have hypothesized that high-level heterogeneousness of protein glycosylation of EMMPRIN may have functional relevance to its biological effects and affect the inflammatory activity of monocytes/macrophages.The glycosylation patterns of EMMPRIN expressed by monocytes/macrophages (THP-1 cells in response to different extracellular stimuli were observed, and the structures of different glycosylation forms were identified. After the purification of highly- and less-glycosylated proteins respectively, the impacts of different glycosylation forms on the pro-inflammatory effects of EMMPRIN were examined in various aspects, such as cell adhesion to endothelial cells, cell migrations, cytokine expression, and activation of inflammatory signalling pathway.1 It was mainly the highly-glycosylated form of EMMPRIN (HG-EMMPRIN that increased after being exposed to inflammatory signals (PMA and H2O2. 2 Glycosylation of EMMPRIN in monocytes/macrophages led to N-linked-glycans being added to the protein, with the HG form containing complex-type glycans and the less-glycosylated form (LG the simple type. 3 Only the HG-EMMPRIN but not the LG-EMMPRIN exhibited pro-inflammatory effects and stimulated inflammatory activities of the monocytes/macrophages (i.e., activation of ERK1/2 and NF-κB pathway, enhanced monocyte-endothelium adhesion, cell migration and matrix metalloproteinase -9 expression.Post-transcriptional glycosylation represents an important mechanism that determines the biological effects of EMMPRIN in monocytes/macrophages. Glycosylation of EMMPRIN may serve as a potential target for regulating the inflammatory activities of monocytes/macrophages.

  9. Proof of Concept: Matrix metalloproteinase inhibitor decreases inflammation and improves muscle insulin sensitivity in people with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Frankwich Karen

    2012-10-01

    Full Text Available Abstract Background Obesity is a state of subclinical inflammation resulting in loss of function of insulin receptors and decreased insulin sensitivity. Inhibition of the inflammatory enzymes, matrix metalloproteinases (MMPs, for 6 months in rodent models restores insulin receptor function and insulin sensitivity. Methods This 12-week double-blind, randomized, placebo (PL-controlled proof-of-concept study was performed to determine if the MMP inhibitor (MMPI, doxycycline, decreased global markers of inflammation and enhanced muscle insulin sensitivity in obese people with type 2 diabetes (DM2. The study included non-DM2 controls (n = 15, and DM2 subjects randomized to PL (n = 13 or doxycycline 100 mg twice daily (MMPI; n = 11. All participants were evaluated on Day 1; MMPI and PL groups were also evaluated after 84 days of treatment. Results There was a significant decrease in inflammatory markers C-reactive protein (P  Conclusions This study demonstrated short term treatment of people with diabetes with an MMPI resulted in decreased inflammation and improved insulin sensitivity. Larger, longer studies are warranted to determine if doxycycline can improve glucose control in people with diabetes. Trial Registration Clinicaltrials.gov NCT01375491

  10. Immunohistochemical Correlation of Matrix Metalloproteinase-2 and Tissue Inhibitors of Metalloproteinase-2 in Tobacco Associated Epithelial Dysplasia

    Directory of Open Access Journals (Sweden)

    Dipshikha Bajracharya

    2014-01-01

    Full Text Available Aim. To study the immunohistochemical expression of matrix metalloproteinase and tissue inhibitors of matrix metalloproteinase-2 in different histological grades of tobacco associated epithelial dysplasia and correlate the association between these proteases. Potentially malignant oral disorders (PMODs progressing to oral cancer are related to the severity of epithelial dysplasia. Methods. A retrospective immunohistochemical study was carried out on 30 clinically and histologically proven cases of leukoplakia with dysplasia and 10 cases of normal buccal mucosa using anti-MMP-2 and anti-TIMP-2 monoclonal antibodies. Results. Mann Whitney U test, for comparing the expression of both MMP-2 and TIMP-2 in normal mucosa with dysplasia, was highly significant (P<0.001. Kruskal-Wallis test to compare the median score of MMP-2 and TIMP-2 in different grades of dysplasia showed statistical significance (P<0.001, and a Spearman’s correlation between MMP-2 and TIMP-2 through different grades of dysplasia and cells observed showed positive correlation. Conclusion. Concomitant increase in the expression of both MMP-2 and TIMP-2 suggested that the activation of MMP-2 is dependent on TIMP-2 acting as a cofactor. Changes in TIMP-2 levels are considered important because they directly affect the level of MMP-2 activity.

  11. Matrix Metalloproteinase Inhibitors (MMPIs from Marine Natural Products: the Current Situation and Future Prospects

    Directory of Open Access Journals (Sweden)

    Se-Kwon Kim

    2009-03-01

    Full Text Available Matrix metalloproteinases (MMPs are a family of more than twenty five secreted and membrane-bound zinc-endopeptidases which can degrade extracellular matrix (ECM components. They also play important roles in a variety of biological and pathological processes. Matrix metalloproteinase inhibitors (MMPIs have been identified as potential therapeutic candidates for metastasis, arthritis, chronic inflammation and wrinkle formation. Up to present, more than 20,000 new compounds have been isolated from marine organisms, where considerable numbers of these naturally occurring derivatives are developed as potential candidates for pharmaceutical application. Eventhough the quantity of marine derived MMPIs is less when compare with the MMPIs derived from terrestrial materials, huge potential for bioactivity of these marine derived MMPIs has lead to large number of researches. Saccharoids, flavonoids and polyphones, fatty acids are the most important groups of MMPIs derived from marine natural products. In this review we focus on the progress of MMPIs from marine natural products.

  12. Matrix metalloproteinase-7 and matrix metalloproteinase-25 in oral tongue squamous cell carcinoma.

    Science.gov (United States)

    Mäkinen, Laura K; Häyry, Valtteri; Hagström, Jaana; Sorsa, Timo; Passador-Santos, Fabricio; Keski-Säntti, Harri; Haukka, Jari; Mäkitie, Antti A; Haglund, Caj; Atula, Timo

    2014-12-01

    Predicting the clinical course of early-stage oral tongue squamous cell carcinoma (SCC) is challenging. As matrix metalloproteinases (MMPs) are enzymes associated with invasion, metastasis, and poor survival in many cancers, we examined MMP-7 and MMP-25 in oral tongue SCC. We used tissue microarray (TMA) technique and immunohistochemistry to study the expression of MMP-7 and MMP-25 in 73 patients with stage I to II oral tongue SCC and compared their immunoexpressions with clinical data. Immunohistochemistry revealed MMP-7 and MMP-25 expression in 90% (n = 63 of 70) and 90% (n = 64 of 71) of the tumors, respectively. MMP-7 protein expression was associated with presence of occult cervical metastases (odds ratio [OR], 3.67; p = .013), increased invasion depth (OR, 4.60; p = .005), and higher tumor grade (OR, 3.30; p = .007). MMP-7 expression was predictive for poor outcome (p = .021). Immunostaining of MMP-25 did not correlate with any clinical parameters. We conclude that MMP-7, but not MMP-25, expression may have prognostic significance in early-stage oral tongue SCC. © 2014 Wiley Periodicals, Inc.

  13. Bone marrow-derived myofibroblasts are the providers of pro-invasive matrix metalloproteinase 13 in primary tumor

    DEFF Research Database (Denmark)

    Lecomte, Julie; Masset, Anne; Blacher, Silvia

    2012-01-01

    producing cells were exclusively α-SMA(+) cells and derived from GFP(+) BM cells. To investigate their impact on tumor invasion, we isolated mesenchymal stem cells (MSCs) from the BM of wild-type and MMP13-deficient mice. Wild-type MSC promoted cancer cell invasion in a spheroid assay, whereas MSCs obtained......)-derived cells to generate different fibroblast subsets that putatively produce the matrix metalloproteinase 13 (MMP13) and affect cancer cell invasion. A murine model of skin carcinoma was applied to mice, irradiated, and engrafted with BM isolated from green fluorescent protein (GFP) transgenic mice. We...

  14. Immunohistochemical Expression of Tissue Inhibitor of Metalloproteinase-1 (Timp-1 in Invasive Breast Carcinoma

    Directory of Open Access Journals (Sweden)

    Suada Kuskunović

    2009-05-01

    Full Text Available Tissue inhibitor of metalloproteinase-1 (TIMP-1 is a natural inhibitor of matrix metalloproteinas-es (MMPs. Aim of this study was to assess the immunohistochemical expression of TIMP-1 in invasive breast carcinomas, and to examine its association with classical clinico-pathological parameters, oestrogen receptor, progesterone receptor and Her-2/neu protein expression. Immuno-histochemistry was used to determine the expression of TIMP-1 on 38 paraffin-embedded breast tissue specimens - 18 with invasive ductal carcinoma, 10 with invasive lobular carcinoma, and 10 specimens from patients with fibrocystic breast disease. TIMP-1 protein was immunodetected in the carcinoma cells, fibroblasts and inflammatory cells of the stroma in 92,9%, 65,8%, and 65,8% of cases, respectively. TIMP-1 protein expression in carcinoma cells showed positive correlation with TIMP-1 protein expression in peritumoural fibroblasts (p=0,010. Positive peritumoural fibroblast TIMP-1 expression was associated with histological tumour type with higher frequency in ductal carcinomas (p=0,023. Negative association was found between TIMP-1 protein expression in carcinoma cells and HER-2/neu nuclear staining (p=0,005. TIMP-1 may be particularly useful as a predictive marker in breast carcinoma when evaluated along with HER-2/neu protein being a promising indicator of favourable prognosis in breast carcinoma.

  15. Matrix metalloproteinase-2 plays a critical role in overload induced skeletal muscle hypertrophy.

    Science.gov (United States)

    Zhang, Qia; Joshi, Sunil K; Lovett, David H; Zhang, Bryon; Bodine, Sue; Kim, Hubert T; Liu, Xuhui

    2014-01-01

    extracellular matrix (ECM) components are instrumental in maintaining homeostasis and muscle fiber functional integrity. Skeletal muscle hypertrophy is associated with ECM remodeling. Specifically, recent studies have reported the involvement of matrix metalloproteinases (MMPs) in muscle ECM remodeling. However, the functional role of MMPs in muscle hypertrophy remains largely unknown. in this study, we examined the role of MMP-2 in skeletal muscle hypertrophy using a previously validated method where the plantaris muscle of mice were subjected to mechanical overload due to the surgical removal of synergist muscles (gastrocnemius and soleus). following two weeks of overload, we observed a significant increase in MMP-2 activity and up-regulation of ECM components and remodeling enzymes in the plantaris muscles of wild-type mice. However, MMP-2 knockout mice developed significantly less hypertrophy and ECM remodeling in response to overload compared to their wild-type littermates. Investigation of protein synthesis rate and Akt/mTOR signaling revealed no difference between wild-type and MMP-2 knockout mice, suggesting that a difference in hypertrophy was independent of protein synthesis. taken together, our results suggest that MMP-2 is a key mediator of ECM remodeling in the setting of skeletal muscle hypertrophy.

  16. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs.

    Science.gov (United States)

    Jabłońska-Trypuć, Agata; Matejczyk, Marzena; Rosochacki, Stanisław

    2016-01-01

    The main group of enzymes responsible for the collagen and other protein degradation in extracellular matrix (ECM) are matrix metalloproteinases (MMPs). Collagen is the main structural component of connective tissue and its degradation is a very important process in the development, morphogenesis, tissue remodeling, and repair. Typical structure of MMPs consists of several distinct domains. MMP family can be divided into six groups: collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and other non-classified MMPs. MMPs and their inhibitors have multiple biological functions in all stages of cancer development: from initiation to outgrowth of clinically relevant metastases and likewise in apoptosis and angiogenesis. MMPs and their inhibitors are extensively examined as potential anticancer drugs. MMP inhibitors can be divided into two main groups: synthetic and natural inhibitors. Selected synthetic inhibitors are in clinical trials on humans, e.g. synthetic peptides, non-peptidic molecules, chemically modified tetracyclines, and bisphosphonates. Natural MMP inhibitors are mainly isoflavonoids and shark cartilage.

  17. Relationship between the Expression of Matrix Metalloproteinase and Clinicopathologic Features in Oral Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Amir Hossein Jafarian

    2015-05-01

    Full Text Available Introduction: Squamous cell carcinoma of the oral cavity is one of the most important and common types of head and neck malignancy, with an estimated rate of 4% among all human malignancies. The aim of this study was to determine the association between expression of matrix metalloproteinase 2 and 9 and the clinicopathological features of oral squamous cell carcinoma (OSCC.   Materials and Methods: One hundred existing samples of formalin-fixed paraffin embedded specimens of OSCC were evaluated by immunohistochemistry staining for matrix metalloproteinase 2 and 9 antibodies. Samples were divided into four groups: negative, 50%. Patient records were assessed for demographic characteristics such as age and gender, smoking and family history of OSCC as well as tumor features including location, differentiation, stage and lymph node involvement.   Results: In this study, 58 patients (58% were male and 42 (42% female. The mean age of patients was 60.38±14.07 years. The average number of lymph nodes involved was 8.9±3.8. Tumoral grade, tumoral stage, lymphatic metastasis and history of smoking were significantly related to MMP2 and MMP9 expression.   Conclusion:  Our study demonstrated that MMP2 and MMP9 expression are important in the development of OSCC.

  18. How, with whom and when: an overview of CD147-mediated regulatory networks influencing matrix metalloproteinase activity

    Science.gov (United States)

    Grass, G. Daniel; Toole, Bryan P.

    2015-01-01

    Matrix metalloproteinases (MMPs) comprise a family of 23 zinc-dependent enzymes involved in various pathologic and physiologic processes. In cancer, MMPs contribute to processes from tumour initiation to establishment of distant metastases. Complex signalling and protein transport networks regulate MMP synthesis, cell surface presentation and release. Earlier attempts to disrupt MMP activity in patients have proven to be intolerable and with underwhelming clinical efficacy; thus targeting ancillary proteins that regulate MMP activity may be a useful therapeutic approach. Extracellular matrix metalloproteinase inducer (EMMPRIN) was originally characterized as a factor present on lung cancer cells, which stimulated collagenase (MMP-1) production in fibroblasts. Subsequent studies demonstrated that EMMPRIN was identical with several other protein factors, including basigin (Bsg), all of which are now commonly termed CD147. CD147 modulates the synthesis and activity of soluble and membrane-bound [membrane-type MMPs (MT-MMPs)] in various contexts via homophilic/heterophilic cell interactions, vesicular shedding or cell-autonomous processes. CD147 also participates in inflammation, nutrient and drug transporter activity, microbial pathology and developmental processes. Despite the hundreds of manuscripts demonstrating CD147-mediated MMP regulation, the molecular underpinnings governing this process have not been fully elucidated. The present review summarizes our present knowledge of the complex regulatory systems influencing CD147 biology and provides a framework to understand how CD147 may influence MMP activity. PMID:26604323

  19. How, with whom and when: an overview of CD147-mediated regulatory networks influencing matrix metalloproteinase activity.

    Science.gov (United States)

    Grass, G Daniel; Toole, Bryan P

    2015-11-24

    Matrix metalloproteinases (MMPs) comprise a family of 23 zinc-dependent enzymes involved in various pathologic and physiologic processes. In cancer, MMPs contribute to processes from tumour initiation to establishment of distant metastases. Complex signalling and protein transport networks regulate MMP synthesis, cell surface presentation and release. Earlier attempts to disrupt MMP activity in patients have proven to be intolerable and with underwhelming clinical efficacy; thus targeting ancillary proteins that regulate MMP activity may be a useful therapeutic approach. Extracellular matrix metalloproteinase inducer (EMMPRIN) was originally characterized as a factor present on lung cancer cells, which stimulated collagenase (MMP-1) production in fibroblasts. Subsequent studies demonstrated that EMMPRIN was identical with several other protein factors, including basigin (Bsg), all of which are now commonly termed CD147. CD147 modulates the synthesis and activity of soluble and membrane-bound [membrane-type MMPs (MT-MMPs)] in various contexts via homophilic/heterophilic cell interactions, vesicular shedding or cell-autonomous processes. CD147 also participates in inflammation, nutrient and drug transporter activity, microbial pathology and developmental processes. Despite the hundreds of manuscripts demonstrating CD147-mediated MMP regulation, the molecular underpinnings governing this process have not been fully elucidated. The present review summarizes our present knowledge of the complex regulatory systems influencing CD147 biology and provides a framework to understand how CD147 may influence MMP activity. © 2016 Authors.

  20. [Matrix metalloproteinases and their inhibitors in lung cancer with malignant pleural effusion].

    Science.gov (United States)

    Moche, M; Hui, D S C; Huse, K; Chan, K S; Choy, D K L; Scholz, G H; Gosse, H; Winkler, J; Schauer, J; Sack, U; Hoheisel, G

    2005-08-01

    Matrix metalloproteinases (MMP) and tissue inhibitors of metalloproteinases (TIMP) play a crucial role in physiological and pathological matrix turnover. This study aimed to determine the occurrence of MMP and TIMP in lung cancer patients with malignant pleural effusions (CA). MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, TIMP-1, and IMP-2 oncentrations were determined by ELISA and zymography in pleural effusions and plasma of 31 CA and 14 congestive heart failure (CHF) patients and in plasma of 18 healthy controls (CON). MMP-2, TIMP-1, and TIMP-2 ELISA-concentrations were increased in CA pleural fluid vs. CA plasma (p < 0.005, p < 0.005, p < 0.05), in contrast to MMP-9 being higher in plasma (p < 0.005). Pleural fluid MMP-1 and MMP-8 were increased in CA vs. CHF (p < 0.05, p < 0.005). MMP and TIMP plasma concentrations were not different in CA vs. CHF, but MMP-9, TIMP-1, and TIMP-2 were increased vs. CON (p < 0.005, each). Gelatine zymography MMP-9/MMP-2 ratios were increased in CA plasma vs. effusion fluid (p < 0.005), in CA vs. CHF plasma, CA vs. CHF effusions (p < 0.005 each), and in CA vs. CON plasma (p < 0.05). MMP-2, TIMP-1, and TIMP-2 accumulate in the pleural compartment in CA and CHF, probably reflecting an unspecific pleural reaction. MMP-1 and MMP-8 are increased in cellular rich CA pleural effusions only. The determination of MMP-9/MMP-2 ratios in pleural fluid may contribute to differentiate CHF from CA effusions.

  1. Matrix metalloproteinases, tissue inhibitors of matrix metalloproteinases and angiogenic cytokines in peripheral blood of patients with thyroid cancer.

    Science.gov (United States)

    Komorowski, Jan; Pasieka, Z; Jankiewicz-Wika, J; Stepień, H

    2002-08-01

    Stimulation of growth of endothelial cells from preexisting blood vessels, i.e., angiogenesis, is one of the essential elements necessary to create a permissive environment in which a tumor can grow. During angiogenesis, the matrix metalloproteinase (MMP) family of tissue enzymes contributes to normal (embriogenesis or wound repair) and pathologic tissue remodeling (chronic inflammation and tumor genesis). The proposed pathogenic roles of MMPs in cancer are tissue breakdown and remodeling during invasive tumor growth and tumor angiogenesis. Tissue inhibitors of metalloproteinases (TIMPs) form a complex with MMPs, which in turn inhibits active MMPs. Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are unique among mediators of angiogenesis with synergistic effect, and both can also be secreted by thyroid cancer cells. The goal of the study was to evaluate the plasma blood concentration of VEGF, bFGF, MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, TIMP-1, and TIMP-2 in patients with cancer and in normal subjects. Twenty-two patients with thyroid cancers (papillary cancer, 11; partly papillary and partly follicular cancer, 3; anaplastic cancer, 5; medullary cancer, 3) and 16 healthy subjects (controls) were included in the study. VEGF, bFGF MMPs, and TIMPs were evaluated by enzyme-linked immunosorbent assay (ELISA). In patients with thyroid cancer, normal VEGF concentrations (74.29 +/- 13.38 vs. 84.85 +/- 21.71 pg/mL; p > 0.05) and increased bFGF (29.52 +/- 4.99 vs. 6.05 +/- 1.43 pg/mL; p < 0.001), MMP-2 (605.95 +/- 81.83 vs. 148.75 +/- 43.53 ng/mL; p < 0.001), TIMP-2 (114.19 +/- 6.62 vs. 60.75 +/- 9.18 ng/mL; p < 0.001), as well as lower MMP-1 (0.70 +/- 0.42 vs. 3.87 +/- 0.53; p < 0.001) levels have been noted. Increased plasma levels of MMP-3 and MMP-9 were also found in patients with medullary carcinoma. In conclusion, predominance of MMP-2 over TIMP-2 and TIMP-1 over MMP-1 as well as increased concentration of bFGF in peripheral blood are

  2. [Expression of various matrix metalloproteinases in mice with hyperoxia-induced acute lung injury].

    Science.gov (United States)

    Zhang, Xiang-feng; Ding, Shao-fang; Gao, Yuan-ming; Liang, Ying; Foda, Hussein D

    2006-08-01

    To investigate the role of matrix metalloproteinases (MMPs) and extracellular matrix metalloproteinase inducer (EMMPRIN) in the pathogenesis of acute lung injury induced by hyperoxia. Fifty four mice were exposed in sealed cages to >98% oxygen (for 24-72 hours), and another 18 mice to room air. The severity of lung injury was assessed, and the expression of mRNA and protein of MMP-2, MMP-9 and EMMPRIN in lung tissue, after exposure for 24, 48 and 72 hours of hyperoxia were studied by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. Hyperoxia caused acute lung injury; this was accompanied by increased expression of an upregulation of MMP-2, MMP-9 and EMMPRIN mRNA and protein in lung tissues. Hyperoxia causes acute lung injury in mice; increases in MMP-2, MMP-9 and EMMPRIN may play an important role in the development of hyperoxia induced lung injury in mice.

  3. Transmembrane neural cell-adhesion molecule (NCAM), but not glycosyl-phosphatidylinositol-anchored NCAM, down-regulates secretion of matrix metalloproteinases

    DEFF Research Database (Denmark)

    Edvardsen, K; Chen, W; Rucklidge, G

    1993-01-01

    proteinases, and proteinase inhibitors all participate in the construction, maintenance, and remodeling of extracellular matrix by cells. The neural cell-adhesion molecule (NCAM)-negative rat glioma cell line BT4Cn secretes substantial amounts of metalloproteinases, as compared with its NCAM-positive mother......During embryogenesis interactions between cells and extracellular matrix play a central role in the modulation of cell motility, growth, and differentiation. Modulation of matrix structure is therefore crucial during development; extracellular matrix ligands, their receptors, extracellular...... cell line BT4C. We have transfected the BT4Cn cell line with cDNAs encoding the human NCAM-B and -C isoforms. We report here that the expression of transmembrane NCAM-B, but not of glycosyl-phosphatidylinositol-linked NCAM-C, induces a down-regulation of 92-kDa gelatinase (matrix metalloproteinase 9...

  4. Rapid, Automated, and Specific Immunoassay to Directly Measure Matrix Metalloproteinase-9–Tissue Inhibitor of Metalloproteinase-1 Interactions in Human Plasma Using AlphaLISA Technology: A New Alternative to Classical ELISA

    Directory of Open Access Journals (Sweden)

    Helena Pulido-Olmo

    2017-07-01

    Full Text Available The protocol describes a novel, rapid, and no-wash one-step immunoassay for highly sensitive and direct detection of the complexes between matrix metalloproteinases (MMPs and their tissue inhibitor of metalloproteinases (TIMPs based on AlphaLISA® technology. We describe two procedures: (i one approach is used to analyze MMP-9–TIMP-1 interactions using recombinant human MMP-9 with its corresponding recombinant human TIMP-1 inhibitor and (ii the second approach is used to analyze native or endogenous MMP-9–TIMP-1 protein interactions in samples of human plasma. Evaluating native MMP-9–TIMP-1 complexes using this approach avoids the use of indirect calculations of the MMP-9/TIMP-1 ratio for which independent MMP-9 and TIMP-1 quantifications by two conventional ELISAs are needed. The MMP-9–TIMP-1 AlphaLISA® assay is quick, highly simplified, and cost-effective and can be completed in less than 3 h. Moreover, the assay has great potential for use in basic and preclinical research as it allows direct determination of native MMP-9–TIMP-1 complexes in circulating blood as biofluid.

  5. Metastasis is strongly reduced by the matrix metalloproteinase inhibitor Galardin in the MMTV-PymT transgenic breast cancer model

    DEFF Research Database (Denmark)

    Almholt, Kasper; Juncker-Jensen, Anna; Lærum, Ole Didrik

    2008-01-01

    Matrix metalloproteinases (MMP) have several roles that influence cancer progression and dissemination. However, low molecular weight metalloproteinase inhibitors (MPI) have not yet been tested in transgenic/spontaneous metastasis models. We have tested Galardin/GM6001, a potent MPI that reacts w...

  6. Matrix Metalloproteinase Expression in the Rat Myometrium During Pregnancy, Term Labor, and Postpartum1

    Science.gov (United States)

    Nguyen, Tina Tu-Thu Ngoc; Shynlova, Oksana; Lye, Stephen J.

    2016-01-01

    Pregnancy, spontaneous term labor (TL), and postpartum (PP) involution are associated with changes in the cellular and extracellular matrix composition of the uterus. Both the uterine smooth muscle (myometrium) and the infiltrating peripheral blood leukocytes involved in the activation of labor secrete extracellular matrix-degrading enzymes (matrix metalloproteinases, MMPs) that can modulate cellular behavior and barrier function. MMP expression is induced by mechanical stretch in several tissues. We hypothesized that the expression and activity of myometrial MMPs and their tissue inhibitors (TIMPs) are modulated in preparation for TL and PP involution and are regulated by mechanical stretch of uterine walls imposed by the growing fetus. Myometrial tissues were collected from bilaterally and unilaterally pregnant rats across gestation, TL, and PP. Total RNA and proteins were subjected to real-time PCR and immunoblotting, respectively, and tissue localization and activity was examined by immunohistochemistry and in situ zymography. We found that Mmp7, Mmp11, and Mmp12 mRNA levels were upregulated during TL and PP, while Mmp2, Mmp3, Mmp8, Mmp9, Mmp10, and Mmp13 mRNAs were only upregulated during PP. Timp1–Timp4 were stably expressed throughout gestation with some fluctuations PP. Active MMP2 was induced in the empty uterine horn during gestation and in the gravid PP uterus, suggesting negative regulation by biological mechanical stretch. We conclude that specific subsets of uterine MMPs are differentially regulated in the rat myometrium in preparation for two major events: TL and PP uterine involution. PMID:27251092

  7. Correlation of Claudins6 (CLDN6 gene expression in meningioma tissue with the expression of matrix metalloproteinases (MMPs/ tissue inhibitors of matrix metalloproteinase (TIMPs and epithelialmesenchymal transition (EMT genes

    Directory of Open Access Journals (Sweden)

    An-Qiang Yang

    2017-09-01

    Full Text Available Objective: To study the correlation of Claudins6 (CLDN6 gene expression in meningioma tissue with the expression of matrix metalloproteinases (MMPs/tissue inhibitors of matrix metalloproteinase (TIMPs and epithelial-mesenchymal transition (EMT genes. Methods: Meningioma tissue samples that were surgically removed in Yibin First People’s Hospital between April 2014 and May 2017 were selected, normal arachnoid tissue samples that were collected from decompressive craniectomy in Yibin First People’s Hospital during the same period were selected, and the expression of CLDN6, MMPs/TIMPs and EMT genes in tissues were determined. Results: CLDN6 protein expression in meningioma tissue was significantly lower than that in normal arachnoid tissue; EMMPRIN, MMP2, MMP9, Vimentin and N-cadherin protein expression in meningioma tissue were significantly higher than those in normal arachnoid tissue while TIMP1, TIMP2, E-cadherin and α-catenin protein expression were significantly lower than those in normal arachnoid tissue; EMMPRIN, MMP2, MMP9, Vimentin and N-cadherin protein expression in meningioma tissue with higher CLDN6 expression were significantly lower than those in meningioma tissue with lower CLDN6 expression while TIMP1, TIMP2, E-cadherin and α-catenin protein expression were significantly higher than those in meningioma tissue with lower CLDN6 expression. Conclusion: Lowly expressed CLDN6 gene in meningioma tissue can increase the hydrolysis activity of MMPs, induce epithelial-mesenchymal transition and thus promote the invasive growth of meningioma.

  8. Tissue inhibitor of metalloproteinase-2 (TIMP-2) regulates myogenesis and β1 integrin expression in vitro

    International Nuclear Information System (INIS)

    Lluri, Gentian; Langlois, Garret D.; Soloway, Paul D.; Jaworski, Diane M.

    2008-01-01

    Myogenesis in vitro involves myoblast cell cycle arrest, migration, and fusion to form multinucleated myotubes. Extracellular matrix (ECM) integrity during these processes is maintained by the opposing actions of matrix metalloproteinase (MMP) proteases and their inhibitors, the tissue inhibitor of metalloproteinases (TIMPs). Here, we report that TIMP-2, MMP-2, and MT1-MMP are differentially expressed during mouse myoblast differentiation in vitro. A specific role for TIMP-2 in myogenesis is demonstrated by altered TIMP-2 -/- myotube formation. When differentiated in horse serum-containing medium, TIMP-2 -/- myotubes are larger than wild-type myotubes. In contrast, when serum-free medium is used, TIMP-2 -/- myotubes are smaller than wild-type myotubes. Regardless of culture condition, myotube size is directly correlated with MMP activity and inversely correlated with β1 integrin expression. Treatment with recombinant TIMP-2 rescues reduced TIMP-2 -/- myotube size and induces increased MMP-9 activation and decreased β1 integrin expression. Treatment with either MMP-2 or MMP-9 similarly rescues reduced myotube size, but has no effect on β1 integrin expression. These data suggest a specific regulatory relationship between TIMP-2 and β1 integrin during myogenesis. Elucidating the role of TIMP-2 in myogenesis in vitro may lead to new therapeutic options for the use of TIMP-2 in myopathies and muscular dystrophies in vivo

  9. Matrix metalloproteinase 9 (MMP-9) mediated release of MMP-9 resistant stromal cell-derived factor 1α (SDF-1α) from surface modified polymer films.

    Science.gov (United States)

    Steinhagen, Max; Hoffmeister, Peter-Georg; Nordsieck, Karoline; Hötzel, Rudi; Baumann, Lars; Hacker, Michael C; Schulz-Siegmund, Michaela; Beck-Sickinger, Annette G

    2014-04-23

    Preparation of smart materials by coatings of established surfaces with biomolecules will lead to the next generation of functionalized biomaterials. Rejection of implants is still a major problem in medical applications but masking the implant material with protein coatings is a promising approach. These layers not only disguise the material but also equip it with a certain biological function. The anti-inflammatory chemokine stromal cell-derived factor 1α (SDF-1α) is well suited to take over this function, because it efficiently attracts stem cells and promotes their differentiation and proliferation. At least the initial stem cell homing requires the formation of a concentration gradient. Thus, a reliable and robust release mechanism of SDF-1α from the material is essential. Several proteases, most notably matrix metalloproteinases, are upregulated during inflammation, which, in principle, can be exploited for a tightly controlled release of SDF-1α. Herein, we present the covalent immobilization of M-[S4V]-SDF-1α on novel biodegradable polymer films, which consist of heterobifunctional poly(ethylene glycol) and oligolactide-based functionalized macromers. A peptidic linker with a trimeric matrix metalloproteinase 9 (MMP-9) cleavage site (MCS) was used as connection and the linkage between the three components was achieved by combination of expressed protein ligation and Cu(I) catalyzed azide/alkyne cycloaddition. The MCS was used for MMP-9 mediated release of M-[S4V]-SDF-1α from the biomaterial and the released SDF-1α derivative was biologically active and induced strong cell migration, which demonstrates the great potential of this system.

  10. Matrix metalloproteinase 2 genotype is associated with nonanastomotic biliary strictures after orthotopic liver transplantation

    NARCIS (Netherlands)

    Ten Hove, W. Rogier; Korkmaz, Kerem S.; den Dries, Sanna Op; de Rooij, Bert-Jan F.; van Hoek, Bart; Porte, Robert J.; van der Reijden, Johan J.; Coenraad, Minneke J.; Dubbeld, Jeroen; Hommes, Daniel W.; Verspaget, Hein W.

    Background: Nonanastomotic biliary strictures (NAS) are a serious complication after orthotopic liver transplantation (OLT). Matrix metalloproteinases (MMPs) are involved in connective tissue remodelling in chronic liver disease and complications after OLT. Aim: To evaluate the relationship between

  11. The effect of tomatine on metastasis related matrix metalloproteinase (MMP) activities in breast cancer cell model.

    Science.gov (United States)

    Yelken, Besra Özmen; Balcı, Tuğçe; Süslüer, Sunde Yılmaz; Kayabaşı, Çağla; Avcı, Çığır Biray; Kırmızıbayrak, Petek Ballar; Gündüz, Cumhur

    2017-09-05

    Breast cancer is one of the most common malignancies in women and metastasis is the cause of morbidity and mortality in patients. In the development of metastasis, the matrix metalloproteinase (MMP) family has a very important role in tumor development. MMP-2 and MMP-9 work together for extracellular matrix (ECM) cleavage to increase migration. Tomatine is a secondary metabolite that has a natural defense role against plants, fungi, viruses and bacteria that are synthesized from tomato. In additıon, tomatine is also known that it breaks down the cell membrane and is a strong inhibitor in human cancer cells. In this study, it was aimed to evaluate the effect of tomatine on cytotoxicity, apoptosis and matrix metalloproteinase inhibition in MCF-7 cell lines. Human breast cancer cell line (MCF-7) was used as a cell line. In MCF-7 cells, the IC 50 dose of tomatine was determined to be 7.07μM. According to the control cells, apoptosis increased 3.4 fold in 48thh. Activation of MMP-2, MMP-9 and MMP-9\\NGAL has been shown to decrease significantly in cells treated with tomatine by gelatin zymography compared to the control. As a result, matrix metalloproteinase activity and cell proliferation were suppressed by tomatine and this may provide support in treatment methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Degradation of tropoelastin by matrix metalloproteinases--cleavage site specificities and release of matrikines

    DEFF Research Database (Denmark)

    Heinz, Andrea; Jung, Michael C; Duca, Laurent

    2010-01-01

    To provide a basis for the development of approaches to treat elastin-degrading diseases, the aim of this study was to investigate the degradation of the natural substrate tropoelastin by the elastinolytic matrix metalloproteinases MMP-7, MMP-9, and MMP-12 and to compare the cleavage site...

  13. Tissue inhibitor of matrix metalloproteinases-1 loaded poly(lactic-co-glycolic acid nanoparticles for delivery across the blood–brain barrier

    Directory of Open Access Journals (Sweden)

    Chaturvedi M

    2014-01-01

    Full Text Available Mayank Chaturvedi,1 Yves Molino,2 Bojja Sreedhar,3 Michel Khrestchatisky,4 Leszek Kaczmarek1 1Laboratory of Neurobiology, Nencki Institute, Warsaw, Poland; 2Vect-Horus, Marseille, France; 3Indian Institute of Chemical Technology, Hyderabad, India; 4Aix-Marseille Université, CNRS, NICN, UMR7259, Marseille, France Aim: The aim of this study was to develop poly(lactic-co-glycolic acid (PLGA nanoparticles (NPs for delivery of a protein – tissue inhibitor of matrix metalloproteinases 1 (TIMP-1 – across the blood–brain barrier (BBB to inhibit deleterious matrix metalloproteinases (MMPs. Materials and methods: The NPs were formulated by multiple-emulsion solvent-evaporation, and for enhancing BBB penetration, they were coated with polysorbate 80 (Ps80. We compared Ps80-coated and uncoated NPs for their toxicity, binding, and BBB penetration on primary rat brain capillary endothelial cell cultures and the rat brain endothelial 4 cell line. These studies were followed by in vivo studies for brain delivery of these NPs. Results: Results showed that neither Ps80-coated nor uncoated NPs caused significant opening of the BBB, and essentially they were nontoxic. NPs without Ps80 coating had more binding to endothelial cells compared to Ps80-coated NPs. Penetration studies showed that TIMP-1 NPs + Ps80 had 11.21%±1.35% penetration, whereas TIMP-1 alone and TIMP-1 NPs without Ps80 coating did not cross the endothelial monolayer. In vivo studies indicated BBB penetration of intravenously injected TIMP-1 NPs + Ps80. Conclusion: The study demonstrated that Ps80 coating of NPs does not cause significant toxic effects to endothelial cells and that it can be used to enhance the delivery of protein across endothelial cell barriers, both in vitro and in vivo. Keywords: PLGA nanoparticles, drug delivery, protein delivery, sustained release, brain delivery, BBB penetration, RBCEC culture

  14. Zinc and metalloproteinases 2 and 9: What is their relation with breast cancer?

    Directory of Open Access Journals (Sweden)

    Aldenora Oliveira do Nascimento Holanda

    Full Text Available Summary Zinc is the catalytic component of proteins that regulate responses to DNA damage, intracellular signaling enzymes, and matrix metalloproteinases, which are important proteins in carcinogenesis. The objective of this review is to bring current information on the participation of zinc and matrix metalloproteinases types 2 and 9 in mechanisms involved in the pathogenesis of breast cancer. We conducted a literature review, in consultation with the PubMed, Lilacs, and Scielo databases. The zinc and cysteine residues are structural elements shared by all members of the family of matrix metalloproteinases, and these proteins appear to be involved in the propagation of various types of neoplasms, including breast cancer. Moreover, transported zinc is likely to be used for the metalation of the catalytic domain of the newly synthesized metalloproteinases before the latter are secreted. Accordingly, increase in zinc concentrations in cellular compartments and the reduction of this trace element in the blood of patients with breast cancer appear to alter the activity of metalloproteinases 2 and 9, contributing to the occurrence of malignancy. Thus, it is necessary to carry out further studies with a view to clarify the role of zinc and metalloproteinases 2 and 9 in the pathogenesis of breast cancer.

  15. The Influence of Autologous Bone Marrow Stem Cell Transplantation on Matrix Metalloproteinases in Patients Treated for Acute ST-Elevation Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Eline Bredal Furenes

    2014-01-01

    Full Text Available Background. Matrix metalloproteinase-9 (MMP-9, regulated by tissue inhibitor of metalloproteinase-9 (TIMP-1 and the extracellular matrix metalloproteinase inducer (EMMPRIN, contributes to plaque instability. Autologous stem cells from bone marrow (mBMC treatment are suggested to reduce myocardial damage; however, limited data exists on the influence of mBMC on MMPs. Aim. We investigated the influence of mBMC on circulating levels of MMP-9, TIMP-1, and EMMPRIN at different time points in patients included in the randomized Autologous Stem-Cell Transplantation in Acute Myocardial Infarction (ASTAMI trial (n=100. Gene expression analyses were additionally performed. Results. After 2-3 weeks we observed a more pronounced increase in MMP-9 levels in the mBMC group, compared to controls (P=0.030, whereas EMMPRIN levels were reduced from baseline to 2-3 weeks and 3 months in both groups (P<0.0001. Gene expression of both MMP-9 and EMMPRIN was reduced from baseline to 3 months. MMP-9 and EMMPRIN were significantly correlated to myocardial injury (CK: P=0.005 and P<0.001, resp. and infarct size (SPECT: P=0.018 and P=0.008, resp.. Conclusion. The results indicate that the regulation of metalloproteinases is important during AMI, however, limited influenced by mBMC.

  16. Fluorescent Water Soluble Polymers for Isozyme-Selective Interactions with Matrix Metalloproteinase-9

    Science.gov (United States)

    Dutta, Rinku; Scott, Michael D.; Haldar, Manas K.; Ganguly, Bratati; Srivastava, D. K.; Friesner, Daniel L.; Mallik, Sanku

    2011-01-01

    Matrix metalloproteinases (MMPs) are overexpressed in various pathological conditions, including various cancers. Although these isozymes have similar active sites, the patterns of exposed amino acids on their surfaces are different. Herein, we report the synthesis and molecular interactions of two water-soluble, fluorescent polymers which demonstrate selective interactions with MMP-9 compared to MMP-7 and -10. PMID:21367603

  17. Matrix metalloproteinase-2 and its correlation with basal membrane components laminin-5 and collagen type IV in paediatric burn patients measured with Surface Plasmon Resonance Imaging (SPRI) biosensors.

    Science.gov (United States)

    Weremijewicz, Artur; Matuszczak, Ewa; Sankiewicz, Anna; Tylicka, Marzena; Komarowska, Marta; Tokarzewicz, Anna; Debek, Wojciech; Gorodkiewicz, Ewa; Hermanowicz, Adam

    2018-01-30

    The purpose of this study was the determination of matrix metalloproteinase-2 and its correlation with basal membrane components laminin-5 and collagen type IV in the blood plasma of burn patients measured with Surface Plasmon Resonance Imaging (SPRI) biosensors. 31 children scalded by hot water who were managed at the Department of Paediatric Surgery between 2014-2015, after primarily presenting with burns in 4-20% TBSA were included into the study (age 9 months up to 14 years, mean age 2,5+1 years). There were 10 girls and 21 boys. Venous blood samples were drawn 2-6h, and 12-16h after the thermal injury, and on the subsequent days 3, 5 and 7. The matrix metalloproteinase-2, collagen type IV and laminin-5 concentrations were assessed using Surface Plasmon Resonance Imaging by the investigators blinded to the other data. The MMP-2, laminin-5 and collagen type IV concentrations in the blood plasma of patients with burns, were highest 12-16h after thermal injury, the difference was statistically significant. The MMP-2, laminin-5 and collagen type IV concentrations measured 3 days, 5 days and 7 days after the thermal injury, slowly decreased over time, and on the 7th day reached the normal range, when compared with the concentration measured in controls. Current work is the first follow-up study regarding MMP-2 in burns. MMP-2, laminin-5 and collagen type IV levels were elevated early after burn injury in the plasma of studied patients, and were highest 12-16h after the injury. MMP-2, laminin-5 and collagen type IV levels were not proportional to the severity of the burn. We believe in the possibility that the gradual decrease of MMP-2, collagen type IV and laminin-5 concentrations could be connected with the process of healing, but to prove it, more investigation is needed in this area. The SPR imaging biosensor is a good diagnostic tool for determination of MMP-2, laminin-5 and collagen type IV in blood plasma of patients with burns. Copyright © 2017 Elsevier Ltd

  18. Expression and prognostic impact of matrix metalloproteinase-2 (MMP-2) in astrocytomas

    DEFF Research Database (Denmark)

    Ramachandran, Rahimsan K.; Sørensen, Mia D.; Aaberg-Jessen, Charlotte

    2017-01-01

    with diffuse astrocytoma, anaplastic astrocytoma and glioblastoma were stained immunohistochemically using a monoclonal MMP-2 antibody. The MMP-2 intensity in cytoplasm/membrane was quantified by a trained software-based classifier using systematic random sampling in 10% of the tumor area. We found MMP-2...... of this tumor. Matrix metalloproteinase-2 (MMP-2) is an extracellular matrix degrading enzyme which has been shown to play important roles in different cancers. The aim of this study was to investigate the expression and prognostic potential of MMP-2 in astrocytomas. Tissue samples from 89 patients diagnosed...

  19. Polymorphism of matrix metalloproteinase genes (MMP1 and MMP3) in patients with varicose veins.

    Science.gov (United States)

    Kurzawski, M; Modrzejewski, A; Pawlik, A; Droździk, M

    2009-07-01

    Several risk factors for varicose veins have been identified: female gender, combined with obesity and pregnancy, occupations requiring standing for long periods, sedentary lifestyle, history of deep-vein thrombosis and family history. However, no specific gene variants related to a wide prevalence of varicosities in general population have been identified. Extracellular matrix composition, predominantly maintained by matrix metalloproteinases (MMPs), may affect the vein-wall structure, which may lead to dilation of vessels and cause varicosities. MMP-1 (tissue collagenase I) and MMP-3 (stromelysin I) expression was found to be raised in varicose veins compared with normal vessels. Therefore, a study was conducted to evaluate a potential association between MMP1 and MMP3 promoter polymorphisms and a risk of varicose veins. Genotyping for the presence of the polymorphisms -1607dupG (rs1799750) in MMP1 and -1171dupA (rs3025058) in the MMP3 promoter region was performed using PCR and restriction-fragment length polymorphism assays in a group of 109 patients diagnosed with varicose veins and 112 healthy controls. The frequencies of the MMP1 and MMP3 alleles (minor allele frequency 0.440 in patients vs. 0.451 in the controls for MMP1-1607*G and 0.514 vs. 0.469 for MMP3-1171*dupA, respectively) and of genotypes did not differ significantly between patients and controls. The MMP1-1607dupG and MMP3-1171dupA promoter polymorphisms are not valuable markers of susceptibility for varicose veins.

  20. Increased expression of matrix metalloproteinases in the murine zymosan-induced multiple organ dysfunction syndrome.

    NARCIS (Netherlands)

    Volman, T.J.H.; Goris, R.J.A.; Lomme, R.M.L.M.; Groot, J. de; Verhofstad, A.A.J.; Hendriks, T.

    2004-01-01

    Matrix metalloproteinases (MMPs) have been implicated as mediators of tissue damage in several inflammatory diseases. Since the multiple organ dysfunction syndrome (MODS) is thought to result from systemic inflammation, overactivation of MMPs could contribute to the organ damage observed. The

  1. Evaluation of matrix metalloproteinases-2 (MMP-2) and tissue inhibitors of metalloproteinases-2 (TIMP-2) in oral submucous fibrosis and their correlation with disease severity.

    Science.gov (United States)

    Shrestha, A; Carnelio, S

    2013-01-01

    Oral submucous fibrosis (OSF), a potentially malignant oral lesion, is a form of pathological fibrosis affecting the oral mucosa. It results from an imbalance in equilibrium of the normal process of synthesis and degradation of extra cellular matrix. Matrix metalloproteinases and its inhibitors play important role in remodeling of the extra cellular matrix which are important in progression and pathogenesis of potentially malignant lesions to malignancy. To evaluate the expression and distribution of Matrix metalloproteinases-2 (MMP- 2) and Tissue inhibitor of metalloproteinases-2 (TIMP-2) in different grades of Oral Submucous Fibrosis(OSF). Immunohistochemical analysis for MMP-2 and its TIMP-2 was performed in 30 histopathologically confirmed, formalin fixed, paraffin embedded specimens of OSF. A semi-quantitative analysis was done to assess the expression, distribution and comparison of these in various stages of this disease. All moderately advanced cases and 64.2% for MMP-2 and 78.5% for TIMP-2 of early stage cases showed positivity. Between two stages of OSF, statistically significant differences were noted in expression of TIMP-2 in lamina propria, deep connective tissue and supra basal layers (p<0.05) and basal and supra basal layers for MMP-2 (p<0.05). The simultaneous increase in expression of MMP-2 and TIMP-2 with advancing stages of OSF can provide a basis for considering the proteases as important mediators in the pathogenesis and progression of OSF which could aid in identifying the aggressiveness of the condition and elucidate its role in its malignant transformation.

  2. Johne's disease in cattle is associated with enhanced expression of genes encoding IL-5, GATA-3, tissue inhibitors of matrix metalloproteinases 1 and 2, and factors promoting apoptosis in peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Coussens, P.M.; Pudrith, C.B.; Skovgaard, Kerstin

    2005-01-01

    remodeling deficiencies through higher expression of tissue inhibitor of matrix metalloproteinase (TIMP) 1 and TIMP2 RNA and lower expression of matrix metalloproteinase (MMP) 14 RNA than similar cells from healthy controls, and that cells within the PBMC population of M. paratuberculosis-infected cows...... upon by quantitative real-time PCR (Q-RT-PCR). Our results indicate that T cells within PBMCs from M. paratuberculosis-infected cows have adopted a predominant Th 2-like phenotype (enhanced expression of IL-5, GATA 3, and possibly IL-4 mRNA), that cells within infected cow PBMCs may exhibit tissue...

  3. Effects of a synthetic retinoid on skin structure, matrix metalloproteinases, and procollagen in healthy and high-risk subjects with diabetes.

    Science.gov (United States)

    Zeng, Wei; Tahrani, Abd; Shakher, Jayadave; Varani, James; Hughes, Sharon; Dubb, Kiran; Stevens, Martin J

    2011-01-01

    In diabetes, foot ulceration may result from increased skin fragility. Retinoids can reverse some diabetes-induced deficits of skin structure and function, but their clinical utility is limited by skin irritation. The effects of diabetes and MDI 301, a nonirritating synthetic retinoid, and retinoic acid have been evaluated on matrix metalloproteinases (MMPs), procollagen expression, and skin structure in skin biopsies from nondiabetic volunteers and diabetic subjects at risk of foot ulceration using organ culture techniques. Zymography and enzyme-linked immunosorbent assay were utilized for analysis of MMP-1, -2, and -9 and tissue inhibitor of metalloproteinase-1 (TIMP-1) and immunohistochemistry for type I procollagen protein abundance. Collagen structure parameters were assessed in formalin-fixed, paraffin-embedded tissue sections. The % of active MMP-1 and -9 was higher and TIMP-1 abundance was lower in subjects with diabetes. Type 1 procollagen abundance was reduced and skin structural deficits were increased in diabetes. Three μM MDI 301 reduced active MMP-1 and -9 abundance by 29% (P structural deficit scores. Two μM retinoic acid reduced MMP-1 but did not significantly affect skin structure. These data indicate that diabetic patients at risk of foot ulceration have deficits of skin structure and function. MDI 301 offers potential for repairing this skin damage complicating diabetes. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Phosphorylated hepatocyte growth factor receptor/c-Met is associated with tumor growth and prognosis in patients with bladder cancer: correlation with matrix metalloproteinase-2 and -7 and E-cadherin.

    Science.gov (United States)

    Miyata, Yasuyoshi; Sagara, Yuji; Kanda, Shigeru; Hayashi, Tomayoshi; Kanetake, Hiroshi

    2009-04-01

    Hepatocyte growth factor receptor/c-Met is associated with malignant aggressiveness and survival in various cancers including bladder cancer. Although phosphorylation of hepatocyte growth factor receptor/c-Met is essential for its function, the pathologic significance of phosphorylated hepatocyte growth factor receptor/c-Met in bladder cancer remains elusive. We investigated the clinical significance of its expression, and its correlation with cancer cell progression-related molecules. The expression levels of 2 tyrosine residues of hepatocyte growth factor receptor/c-Met (pY1234/1235 and pY1349) were examined immunohistochemically in 133 specimens with nonmetastatic bladder cancer. We also investigated their correlation with matrix metalloproteinase-1, -2, -7, and -14; urokinase-type plasminogen activator; E-cadherin; CD44 standard, variant 3, and variant 6; and vascular endothelial growth factor. Expression of phosphorylated hepatocyte growth factor receptor/c-Met was detected in cancer cells, but was rare in normal urothelial cells. Although hepatocyte growth factor receptor/c-Met, pY1234/1235 hepatocyte growth factor receptor/c-Met, and pY1349 hepatocyte growth factor receptor/c-Met were associated with pT stage, multivariate analysis identified pY1349 hepatocyte growth factor receptor/c-met expression only as a significant factor for high pT stage. Expression of pY1349 hepatocyte growth factor receptor/c-Met was a marker of metastasis and (P = .001) and cause-specific survival (P = .003). Expressions of matrix metalloproteinase-2, matrix metalloproteinase-7, and E-cadherin correlated with pY1349 hepatocyte growth factor receptor/c-Met expression. Our results demonstrated that pY1349 hepatocyte growth factor receptor/c-Met plays an important role in tumor development, and its expression is a significant predictor of metastasis and survival of patients with bladder cancer. The results suggest that these activities are mediated, at least in part, by matrix

  5. Effects of matrix metalloproteinase inhibitor doxycycline and CD147 antagonist peptide-9 on gallbladder carcinoma cell lines.

    Science.gov (United States)

    Wang, Shihang; Liu, Chao; Liu, Xinjiang; He, Yanxin; Shen, Dongfang; Luo, Qiankun; Dong, Yuxi; Dong, Haifeng; Pang, Zhigang

    2017-10-01

    Gallbladder carcinoma is the most common and aggressive malignancy of the biliary tree and highly expresses CD147, which is closely related to disease prognosis in a variety of human cancers. Doxycycline exhibited anti-tumor properties in many cancer cells. CD147 antagonist peptide-9 is a polypeptide and can specifically bind to CD147. The effect of these two drugs on gallbladder cancer cells has not been studied. The aim of this study is to investigate the effect of doxycycline and antagonist peptide-9 on gallbladder carcinoma cells and the possible mechanism of inhibition on cancer cell of doxycycline. To investigate the effects of doxycycline and antagonist peptide-9 on gallbladder carcinoma cells (GBC-SD and SGC-996), cell proliferation, CD147 expression, and early-stage apoptosis rate were measured after treated with doxycycline. Matrix metalloproteinase-2 and matrix metalloproteinase-9 activities were measured after treated with different concentrations of doxycycline, antagonist peptide-9, and their combination. The results demonstrated that doxycycline inhibited cell proliferation, reduced CD147 expression level, and induced an early-stage apoptosis response in GBC-SD and SGC-996 cells. The matrix metalloproteinase-2 and matrix metalloproteinase-9 activities were inhibited by antagonist peptide-9 and doxycycline, and the inhibitory effects were enhanced by combined drugs in gallbladder carcinoma cell lines. Taken together, doxycycline showed inhibitory effects on gallbladder carcinoma cell lines and reduced the expression of CD147, and this may be the mechanism by which doxycycline inhibits cancer cells. This study provides new information and tries to implement the design of adjuvant therapy method for gallbladder carcinoma.

  6. Developmental expression of membrane type 4-matrix metalloproteinase (Mt4-mmp/Mmp17) in the mouse embryo

    Science.gov (United States)

    Clemente, Cristina; Montalvo, María Gregoria; Seiki, Motoharu; Arroyo, Alicia G.

    2017-01-01

    Matrix metalloproteinases (MMPs) constitute a large group of endoproteases that play important functions during embryonic development, tumor metastasis and angiogenesis by degrading components of the extracellular matrix. Within this family, we focused our study on Mt4-mmp (also called Mmp17) that belongs to a distinct subset that is anchored to the cell surface via a glycosylphosphatidylinositol (GPI) moiety and with the catalytic site exposed to the extracellular space. Information about its function and substrates is very limited to date, and little has been reported on its role in the developing embryo. Here, we report a detailed expression analysis of Mt4-mmp during mouse embryonic development by using a LacZ reporter transgenic mouse line. We showed that Mt4-mmp is detected from early stages of development to postnatal stages following a dynamic and restricted pattern of expression. Mt4-mmp was first detected at E8.5 limited to the intersomitic vascularization, the endocardial endothelium and the dorsal aorta. Mt4-mmpLacZ/+ cells were also observed in the neural crest cells, somites, floor plate and notochord at early stages. From E10.5, expression localized in the limb buds and persists during limb development. A strong expression in the brain begins at E12.5 and continues to postnatal stages. Specifically, staining was observed in the olfactory bulb, cerebral cortex, hippocampus, striatum, septum, dorsal thalamus and the spinal cord. In addition, LacZ-positive cells were also detected during eye development, initially at the hyaloid artery and later on located in the lens and the neural retina. Mt4-mmp expression was confirmed by quantitative RT-PCR and western blot analysis in some embryonic tissues. Our data point to distinct functions for this metalloproteinase during embryonic development, particularly during brain formation, angiogenesis and limb development. PMID:28926609

  7. Effects of Hormones on the Expression of Matrix Metalloproteinases and Their Inhibitors in Bovine Spermatozoa

    Directory of Open Access Journals (Sweden)

    Sang-Hwan Kim

    2013-03-01

    Full Text Available Proteases and protease inhibitors play key roles in most physiological processes, including cell migration, cell signaling, and cell surface and tissue remodeling. Among these, the matrix metalloproteinase (MMPs pathway is one of the most efficient biosynthetic pathways for controlling the activation of enzymes responsible for protein degradation. This also indicates the association of MMPs with the maturation of spermatozoa. In an attempt to investigate the effect of MMP activation and inhibitors in cultures with various hormones during sperm capacitation, we examined and monitored the localization and expression of MMPs (MMP-2 and MMP-9, tissue inhibitors of metalloproteinases (TIMP-2 and TIMP-3, as well as their expression profiles. Matured spermatozoa were collected from cultures with follicle-stimulating hormone (FSH, luteinizing hormone (LH, and Lutalyse at 1 h, 6 h, 18 h, and 24 h. ELISA detected the expression of MMP-2, MMP-9, TIMP-2, and TIMP-3 in all culture media, regardless of medium type (FSH-supplemented fertilization Brackett-Oliphant medium (FFBO, LH-supplemented FBO (LFBO, or Lutalyse-supplemented FBO (LuFBO. TIMP-2 and TIMP-3 expression patterns decreased in LFBO and LuFBO. MMP-2 and MMP-9 activity in FBO and FFBO progressively increased from 1 h to 24 h but was not detected in LFBO and LuFBO. The localization and expression of TIMP-2 and TIMP-3 in sperm heads was also measured by immunofluorescence analysis. However, MMPs were not detected in the sperm heads. MMP and TIMP expression patterns differed according to the effect of various hormones. These findings suggest that MMPs have a role in sperm viability during capacitation. In conjunction with hormones, MMPs play a role in maintaining capacitation and fertilization by controlling extracellular matrix inhibitors of sperm.

  8. Early increased levels of matrix metalloproteinase-9 in neonates recovering from respiratory distress syndrome

    NARCIS (Netherlands)

    Dik, Willem A.; van Kaam, Anton H. L. C.; Dekker, Tamara; Naber, Brigitta A. E.; Janssen, Daphne J.; Kroon, A. A.; Zimmermann, Luc J. I.; Versnel, Marjan A.; Lutter, René

    2006-01-01

    Aim: Matrix metalloproteinases (MMPs) play an eminent role in airway injury and remodelling. We explored the hypothesis that pulmonary MMP levels would differ early after birth (2-4 days) between infants with resolving respiratory distress syndrome (RDS) and infants developing chronic lung disease

  9. Macrophage overexpression of matrix metalloproteinase-9 in aged mice improves diastolic physiology and cardiac wound healing after myocardial infarction.

    Science.gov (United States)

    Meschiari, Cesar A; Jung, Mira; Iyer, Rugmani Padmanabhan; Yabluchanskiy, Andriy; Toba, Hiroe; Garrett, Michael R; Lindsey, Merry L

    2018-02-01

    Matrix metalloproteinase (MMP)-9 increases in the myocardium with advanced age and after myocardial infarction (MI). Because young transgenic (TG) mice overexpressing human MMP-9 only in macrophages show better outcomes post-MI, whereas aged TG mice show a worse aging phenotype, we wanted to evaluate the effect of aging superimposed on MI to see if the detrimental effect of aging counteracted the benefits of macrophage MMP-9 overexpression. We used 17- to 28-mo-old male and female C57BL/6J wild-type (WT) and TG mice ( n = 10-21 mice/group) to evaluate the effects of aging superimposed on MI. Despite similar infarct areas and mortality rates at day 7 post-MI, aging TG mice showed improved diastolic properties and remodeling index compared with WT mice (both P wound healing through direct and indirect mechanisms to improve diastolic physiology and remodeling. NEW & NOTEWORTHY Aging mice with macrophage overexpression of matrix metalloproteinase-9 have increased macrophage numbers 7 days after myocardial infarction, resulting in improved diastolic physiology and left ventricular remodeling through effects on cardiac wound healing.

  10. THE ROLE OF MATRIX METALLOPROTEINASES IN PROCESSES OF HEART RE-MODELING IN CHILDREN WITH RESTRICTIVE CARDIOMYOPATHY

    Directory of Open Access Journals (Sweden)

    T.V. Bershova

    2009-01-01

    Full Text Available Restrictive cardiomyopathy (RCMP is heart disorder with unclear etiology; it can be characterized as disease with disorder of diastolic myocardium function of left ventricle, conditioned by restriction. The chronic heart failure as a syndrome of RCMP can develop as a result of disbalance in system of complex biochemical, structural, and geometrical mechanisms of myocardium re-modeling. Extra cellular matrix play significant role in heart structure and geometry breaking. The destruction of heart is realized by matrix metalloproteinases (MMP. The activity of MMP, in its turn, is controlled by its tissue inhibitors. The present study analyzed the role of MMP in process of collagen’s synthesis and catabolism deregulation, myocardium fibrosis, change of heart chambers, and development of diastolic dysfunction in children with RCMP.Key words: children, chronic heart failure, restrictive cardiomyopathy, matrix metalloproteinases.(Voprosy sovremennoi pediatrii — Current Pediatrics. 2009;8(5:36-39

  11. Effect of pomegranate juice supplementation on matrix metalloproteinases 2 and 9 following exhaustive exercise in young healthy males

    International Nuclear Information System (INIS)

    Mazani, M.; Fard, A. S.; Baghi, A. N.; Nemati, A.; Mogadam, R. A.

    2014-01-01

    Objectives: To evaluate the efficacy of pomegranate juice supplementation on matrix metalloproteinases 2 and 9 serum levels and improving antioxidant function in young healthy males during exhaustive exercise. Methods: The study was conducted at Ardabil University of Medical Sciences, Iran, in 2010-11 and comprised 28 healthy subjects in 18-24 age bracket. They were randomly divided into control and supplemented groups. One cup of pomegranate juice and one cup of tap water were given to supplemented and control groups daily for two weeks respectively. Fasting blood samples were taken at baseline and at the end of two weeks of intervention. The subjects were given one exhaustive exercise and then fasting blood samples were taken for testing blood glutathione peroxidase and superoxide dismutase and serum levels of high sensitivity C-reactive protein, zinc, ceruloplasmin, matrix metalloproteinases 2 and 9, malondialdehyde and total antioxidant capacity. Data was analysed using descriptive statistical tests, paired and independent sample t-test. Results: The blood levels of glutathione peroxidase and superoxide dismutase and serum levels of total antioxidant capacity after exhaustive exercise in the supplemented group were significantly increased (p<0.05), while the content of matrix metalloproteinases 2 and 9, ceruloplasmin and malondialdehyde showed a significant decrease in comparison to the control group (p<0.05). Besides, there were no significant changes in other biochemical factors. Conclusion: Regular intake of pomegranate juice significantly modulates matrix metalloproteinases 2 and 9 serum levels of some inflammatory factors and thus protects against exhaustive exercise-induced oxidative injury in young healthy males. (author)

  12. Ramiprilate inhibits functional matrix metalloproteinase activity in Crohn's disease fistulas

    DEFF Research Database (Denmark)

    Efsen, Eva; Saermark, Torben; Hansen, Alastair

    2011-01-01

    Increased expression of matrix metalloproteinase (MMP)-2, -3 and -9 has been demonstrated in Crohn's disease fistulas, but it is unknown whether these enzymes are biologically active and represent a therapeutic target. Therefore, we investigated the proteolytic activity of MMPs in fistula tissue...... from six controls were also included. Total functional MMP activity was measured by a high-pressure liquid chromatography (HPLC)-based, fluorogenic MMP-substrate cleavage assay, and the specific activity of MMP-2, -3 and -9 by the MMP Biotrak Activity Assay. The MMP inhibitors comprised ethylene......-9.83) compared with non-Crohn's fistulas, [0.32 ng/ml, range 0-2.66, (p MMP-9 activity [0.64 ng/ml, range 0-5.66 and 0.17 ng/ml, range 0-1.1, respectively (p MMP activity level by 42% and suppressed the specific MMP-3...

  13. Selective small-molecule inhibitors as chemical tools to define the roles of matrix metalloproteinases in disease.

    Science.gov (United States)

    Meisel, Jayda E; Chang, Mayland

    2017-11-01

    The focus of this article is to highlight novel inhibitors and current examples where the use of selective small-molecule inhibitors has been critical in defining the roles of matrix metalloproteinases (MMPs) in disease. Selective small-molecule inhibitors are surgical chemical tools that can inhibit the targeted enzyme; they are the method of choice to ascertain the roles of MMPs and complement studies with knockout animals. This strategy can identify targets for therapeutic development as exemplified by the use of selective small-molecule MMP inhibitors in diabetic wound healing, spinal cord injury, stroke, traumatic brain injury, cancer metastasis, and viral infection. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Expression and response to angiotensin-converting enzyme inhibition of matrix metalloproteinases 2 and 9 in renal glomerular damage in young transgenic rats with renin-dependent hypertension

    NARCIS (Netherlands)

    Bolbrinker, J; Markovic, S; Wehland, M; Melenhorst, WBWH; van Goor, H; Kreutz, R

    Extracellular matrix expansion in the glomerular mesangium contributes to the development of glomerulosclerosis and chronic renal disease in arterial hypertension. Transforming growth factor-beta 1 (TGF-beta 1), matrix metalloproteinases (MMPs), and tissue inhibitors of MMPs (TIMPs) are involved in

  15. Purification and characterization of bioactive his6-tagged recombinant human tissue inhibitor of metalloproteinases-1 (TIMP-1) protein expressed at high yields in mammalian cells

    DEFF Research Database (Denmark)

    Jensen, Lena Vinther; Lademann, Ulrik Axel; Andersen, Elisabeth Veyhe

    2014-01-01

    Tissue inhibitor of metalloproteinases-1 (TIMP-1) is an endogenous inhibitor of matrix metalloproteinases (MMPs) with reported tumor promoting, as well as inhibitory, effects. These paradoxical properties are presumably mediated by different biological functions, MMP-dependent as well as -indepen...... TIMP-1, which structurally and functionally is similar to endogenous human TIMP-1, while using an expression system that is adaptable to most biochemical and biomedical laboratories including those that do not perform protein purifications routinely.......Tissue inhibitor of metalloproteinases-1 (TIMP-1) is an endogenous inhibitor of matrix metalloproteinases (MMPs) with reported tumor promoting, as well as inhibitory, effects. These paradoxical properties are presumably mediated by different biological functions, MMP-dependent as well...... as -independent, and probably related to TIMP-1 levels of protein expression, post-translational modifications, and cellular localization. TIMP-1 is an N-glycosylated protein that folds into two functional domains, a C- and an N-terminal domain, with six disulfide bonds. Furthermore, TIMP-1 is processed in the N...

  16. The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, e.g. acute leukemia

    NARCIS (Netherlands)

    Klein, G.; Vellenga, E.; Fraaije, M.W.; Kamps, W.A.; Bont, E.S.J.M. de

    2004-01-01

    In the past decades, a lot of effort has been put in identifying the role of matrix metalloproteinases (MMPs) in cancer. The main role of MMPs in angiogenesis, tumor growth and metastasis is degradation of extracellular matrix (ECM) and release and/or activation of growth factors through their

  17. Anandamide induces matrix metalloproteinase-2 production through cannabinoid-1 receptor and transient receptor potential vanilloid-1 in human dental pulp cells in culture.

    Science.gov (United States)

    Miyashita, Keiko; Oyama, Tohru; Sakuta, Tetsuya; Tokuda, Masayuki; Torii, Mitsuo

    2012-06-01

    Anandamide (N-arachidonoylethanolamine [AEA]) is one of the main endocannabinoids. Endocannabinoids are implicated in various physiological and pathologic functions, inducing not only nociception but also regeneration and inflammation. The role of the endocannabinoid system in peripheral organs was recently described. The aim of this study was to investigate the effect of AEA on matrix metalloproteinase (MMP)-2 induction in human dental pulp cells (HPC). We examined AEA-induced MMP-2 production and the expression of AEA receptors (cannabinoid [CB] receptor-1, CB2, and transient receptor potential vanilloid-1 [TRPV1]) in HPC by Western blot. MMP-2 concentrations in supernatants were determined by enzyme-linked immunosorbent assay. We then investigated the role of the AEA receptors and mitogen-activated protein kinase in AEA-induced MMP-2 production in HPC. AEA significantly induced MMP-2 production in HPC. HPC expressed all 3 types of AEA receptor (CB1, CB2, and TRPV1). AEA-induced MMP-2 production was blocked by CB1 or TRPV1 antagonists and by small interfering RNA for CB1 or TRPV1. Furthermore, c-Jun N-terminal kinase inhibitor also reduced MMP-2 production. We demonstrated for the first time that AEA induced MMP-2 production via CB1 and TRPV1 in HPC. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells

    International Nuclear Information System (INIS)

    Rose, Peter; Huang, Qing; Ong, Choon Nam; Whiteman, Matt

    2005-01-01

    A high dietary intake of cruciferous vegetables has been associated with a reduction in numerous human pathologies particularly cancer. In the current study, we examined the inhibitory effects of broccoli (Brassica oleracea var. italica) and watercress (Rorripa nasturtium aquaticum) extracts on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cancer cell invasion and matrix metalloproteinase-9 activity using human MDA-MB-231 breast cancer cells. Aberrant overexpression of matrix metalloproteinases, including metalloproteinase-9, is associated with increased invasive potential in cancer cell lines. Our results demonstrate that extracts of broccoli and Rorripa suppressed TPA-induced MMP-9 activity and invasiveness in a concentration dependant manner as determined by zymographic analysis. Furthermore, fractionation of individual extracts followed by liquid chromatography mass spectroscopy analysis (LC-MS) revealed that the inhibitory effects of each vegetable were associated with the presence of 4-methysulfinylbutyl (sulforaphane) and 7-methylsulphinylheptyl isothiocyanates. Taken together, our data indicate that isothiocyanates derived form broccoli and Rorripa inhibit metalloproteinase 9 activities and also suppress the invasive potential of human MDA-MB-231 breast cancer cells in vitro. The inhibitory effects observed in the current study may contribute to the suppression of carcinogenesis by diets high in cruciferous vegetables

  19. IgE-mediated basophil tumour necrosis factor alpha induces matrix metalloproteinase-9 from monocytes

    DEFF Research Database (Denmark)

    Falkencrone, Sidsel; Poulsen, Lars K.; Bindslev-Jensen, Carsten

    2013-01-01

    IgE-mediated activation of mast cells has been reported to induce the release of tumour necrosis alpha (TNF-α), which may display autocrine effects on these cells by inducing the generation of the tissue remodelling protease matrix metalloproteinase-9 (MMP-9). While mast cells and basophils have...

  20. Grooved surface topography alters matrix-metalloproteinase production by human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Brydone, Alistair S; Dominic Meek, R M [Department of Orthopaedics, Southern General Hospital, 1345 Govan Road, Glasgow G51 4TF (United Kingdom); Dalby, Matthew J; Berry, Catherine C; McNamara, Laura E, E-mail: alibrydone@gmail.com [Centre for Cell Engineering, Joseph Black Building, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2011-06-15

    Extracellular matrix (ECM) remodelling is an essential physiological process in which matrix-metalloproteinases (MMPs) have a key role. Manipulating the manner in which cells produce MMPs and ECMs may enable the creation of a desired tissue type, i.e. effect repair, or the prevention of tissue invasion (e.g. metastasis). The aim of this project was to determine if culturing fibroblasts on grooved topography altered collagen deposition or MMP production. Human fibroblasts were seeded on planar or grooved polycaprolactone substrates (grooves were 12.5 {mu}m wide with varying depths of 240 nm, 540 nm or 2300 nm). Cell behaviour and collagen production were studied using fluorescence microscopy and the spent culture medium was assessed using gel zymography to detect MMPs. Total collagen deposition was high on the 240 nm deep grooves, but decreased as the groove depth increased, i.e. as cell contact guidance decreased. There was an increase in gelatinase on the 2300 nm deep grooved topography and there was a difference in the temporal expression of MMP-3 observed on the planar surface compared to the 540 nm and 2300 nm topographies. These results show that topography can alter collagen and MMP production. A fuller understanding of these processes may permit the design of surfaces tailored to tissue regeneration e.g. tendon repair.

  1. Grooved surface topography alters matrix-metalloproteinase production by human fibroblasts

    International Nuclear Information System (INIS)

    Brydone, Alistair S; Dominic Meek, R M; Dalby, Matthew J; Berry, Catherine C; McNamara, Laura E

    2011-01-01

    Extracellular matrix (ECM) remodelling is an essential physiological process in which matrix-metalloproteinases (MMPs) have a key role. Manipulating the manner in which cells produce MMPs and ECMs may enable the creation of a desired tissue type, i.e. effect repair, or the prevention of tissue invasion (e.g. metastasis). The aim of this project was to determine if culturing fibroblasts on grooved topography altered collagen deposition or MMP production. Human fibroblasts were seeded on planar or grooved polycaprolactone substrates (grooves were 12.5 μm wide with varying depths of 240 nm, 540 nm or 2300 nm). Cell behaviour and collagen production were studied using fluorescence microscopy and the spent culture medium was assessed using gel zymography to detect MMPs. Total collagen deposition was high on the 240 nm deep grooves, but decreased as the groove depth increased, i.e. as cell contact guidance decreased. There was an increase in gelatinase on the 2300 nm deep grooved topography and there was a difference in the temporal expression of MMP-3 observed on the planar surface compared to the 540 nm and 2300 nm topographies. These results show that topography can alter collagen and MMP production. A fuller understanding of these processes may permit the design of surfaces tailored to tissue regeneration e.g. tendon repair.

  2. Matrix Metalloproteinase Activities And Some Hormones Levels During Gestation Period In Cows

    International Nuclear Information System (INIS)

    TEAMA, F.E.

    2010-01-01

    Many factors including proteases, growth factors and hormones play important role in implantation and tissue remodelling of endometrium during different stages of gestation.Matrix metalloproteinases (MMP) such as gelatinases mainly MMP-2 and MMP-9 are implicated in the degradation of extracellular matrix for tissue remodelling.The aim of the present study is to evaluate the role of matrix metalloproteinases (MMP-2 and MMP-9) and hormones including progesterone (P4) and estradiol (E2) in the gestation process. The enzyme activities of MMP-2 and MMP-9 in serum collected from 8 Brown Swiss cows during different periods of gestation using zymography technique were examined. Hormonal levels for both P4 and E2 were determined using radioimmunoassay and also total proteins were estimated. A significant increase in MMP-2 activity by about 98%, 115% and 110% in the 1 st , 2 nd and 3 rd trimester of gestation were recorded, respectively, whereas it increased to be 185% in the pre-partum period as compared to non-pregnant cows (P nd trimester was recorded where the activity elevated by about 85% of non-pregnant controls (P st and 3 rd trimesters, the enzyme activity was not detectable. P4 level was increased gradually until its maximum at the 2 nd trimester then decreased until pre-partum.E2 level recorded too little increase at the beginning of the 1 st and 2 nd trimesters then sharply increased at the 3 rd one reached its maximum at pre-partum. There were significant decreases in total protein concentrations in the 2 nd and 3 rd trimesters then reached the lowest level before parturition .It could be concluded that the high activity of MMP-2 but not MMP-9 enzyme has important role throughout the gestation period in cows and P4 has important role in the fetal growth and E2 in the placental loss.

  3. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) promotes lung fibroblast proliferation, survival and differentiation to myofibroblasts.

    Science.gov (United States)

    Hasaneen, Nadia A; Cao, Jian; Pulkoski-Gross, Ashleigh; Zucker, Stanley; Foda, Hussein D

    2016-02-17

    Idiopathic pulmonary fibrosis (IPF) is a chronic progressively fatal disease. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) is a glycosylated transmembrane protein that induces the expression of some matrix metalloproteinase (MMP) in neighboring stromal cells through direct epithelial-stromal interactions. EMMPRIN is highly expressed in type II alveolar epithelial cells at the edges of the fibrotic areas in IPF lung sections. However, the exact role of EMMPRIN in IPF is unknown. To determine if EMMPRIN contributes to lung fibroblast proliferation, resistance to apoptosis, and differentiation to myofibroblasts, normal Human lung fibroblasts (NHLF) transiently transfected with either EMMPRIN/GFP or GFP were treated with TGF- β1 from 0 to 10 ng/ml for 48 h and examined for cell proliferation (thymidine incorporation), apoptosis (FACS analysis and Cell Death Detection ELISA assay), cell migration (Modified Boyden chamber) and differentiation to myofibroblasts using Western blot for α-smooth actin of cell lysates. The effect of EMMPRIN inhibition on NHLF proliferation, apoptosis, migration and differentiation to myofibroblasts after TGF- β1 treatment was examined using EMMPRIN blocking antibody. We examined the mechanism by which EMMPRIN induces its effects on fibroblasts by studying the β-catenin/canonical Wnt signaling pathway using Wnt luciferase reporter assays and Western blot for total and phosphorylated β-catenin. Human lung fibroblasts overexpressing EMMPRIN had a significant increase in cell proliferation and migration compared to control fibroblasts. Furthermore, EMMPRIN promoted lung fibroblasts resistance to apoptosis. Lung fibroblasts overexpressing EMMPRIN showed a significantly increased expression of α- smooth muscle actin, a marker of differentiation to myofibroblasts compared to control cells. TGF-β1 increased the expression of EMMPRIN in lung fibroblasts in a dose-dependent manner. Attenuation of EMMPRIN expression with the use of an

  4. Modulation of Matrix Metalloproteinase 14, Tissue Inhibitor of Metalloproteinase 3, Tissue Inhibitor of Metalloproteinase 4, and Inducible Nitric Oxide Synthase in the Development of Periapical Lesions.

    Science.gov (United States)

    Cassanta, Lorena Teodoro de Castro; Rodrigues, Virmondes; Violatti-Filho, Jose Roberto; Teixeira Neto, Benedito Alves; Tavares, Vinícius Marques; Bernal, Eduarda Castelo Branco Araujo; Souza, Danila Malheiros; Araujo, Marcelo Sivieri; de Lima Pereira, Sanivia Aparecida; Rodrigues, Denise Bertulucci Rocha

    2017-07-01

    Periapical cysts and granulomas are chronic lesions caused by an inflammatory immune response against microbial challenge in the root canal. Different cell types, cytokines, and molecules have been associated with periapical lesion formation and expansion. Therefore, because of the chronic inflammatory state of these lesions, the aim of this study was to evaluate the in situ expression of matrix metalloproteinase (MMP)-14 and -19, tissue inhibitor of metalloproteinase (TIMP)-3 and -4, CD68, and inducible nitric oxide synthase (iNOS) in periapical cysts and granulomas. Sixteen cases of periapical cysts and 15 cases of periapical granulomas were analyzed. Ten normal dental pulps were used as the negative control. Immunohistochemistry was performed with anti-MMP-19, anti-MMP-14, anti-TIMP-3, anti-TIMP-4, anti-iNOS, and anti-CD68 antibodies. The expression of TIMP-3, TIMP-4, iNOS, and CD68 was significantly higher in both the cyst and granuloma groups than in the control group. TIMP-4 was also significantly higher in cases of chronic apical abscess. There was also a significant difference in the expression of MMP-14 between the cyst and control groups. However, there were no differences in the expression of MMP-19 between the 3 groups. Our data suggest that the expression of MMP-14, TIMP-3, and TIMP-4 is associated with the development of periapical lesions. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. High resolution in situ zymography reveals matrix metalloproteinase activity at glutamatergic synapses.

    Science.gov (United States)

    Gawlak, M; Górkiewicz, T; Gorlewicz, A; Konopacki, F A; Kaczmarek, L; Wilczynski, G M

    2009-01-12

    Synaptic plasticity involves remodeling of extracellular matrix. This is mediated, in part, by enzymes of the matrix metalloproteinase (MMP) family, in particular by gelatinase MMP-9. Accordingly, there is a need of developing methods to visualize gelatinolytic activity at the level of individual synapses, especially in the context of neurotransmitters receptors. Here we present a high-resolution fluorescent in situ zymography (ISZ), performed in thin sections of the alcohol-fixed and polyester wax-embedded brain tissue of the rat (Rattus norvegicus), which is superior to the current ISZ protocols. The method allows visualization of structural details up to the resolution-limit of light microscopy, in conjunction with immunofluorescent labeling. We used this technique to visualize and quantify gelatinolytic activity at the synapses in control and seizure-affected rat brain. In particular, we demonstrated, for the first time, frequent colocalization of gelatinase(s) with synaptic N-methyl-D-aspartic acid (NMDA)- and AMPA-type glutamate receptors. We believe that our method represents a valuable tool to study extracellular proteolytic processes at the synapses, it could be used, as well, to investigate proteinase involvement in a range of physiological and pathological phenomena in the nervous system.

  6. Matrix metalloproteinase-1 facilitates MSC migration via cleavage of IGF-2/IGFBP2 complex.

    Science.gov (United States)

    Guan, Shou P; Lam, Alan T L; Newman, Jennifer P; Chua, Kevin L M; Kok, Catherine Y L; Chong, Siao T; Chua, Melvin L K; Lam, Paula Y P

    2018-01-01

    The specific mechanism underlying the tumor tropism of human mesenchymal stem cells (MSCs) for cancer is not well defined. We previously showed that the migration potential of MSCs correlated with the expression and protease activity of matrix metalloproteinase (MMP)-1. Furthermore, highly tumor-tropic MSCs expressed higher levels of MMP-1 and insulin-like growth factor (IGF)-2 than poorly migrating MSCs. In this study, we examined the functional roles of IGF-2 and MMP-1 in mediating the tumor tropism of MSCs. Exogenous addition of either recombinant IGF-2 or MMP-1 could stimulate MSC migration. The correlation between IGF-2, MMP-1 expression, and MSC migration suggests that MMP-1 may play a role in regulating MSC migration via the IGF-2 signaling cascade. High concentrations of IGF binding proteins (IGFBPs) can inhibit IGF-stimulated functions by blocking its binding to its receptors and proteolysis of IGFBP is an important mechanism for the regulation of IGF signaling. We thus hypothesized that MMP-1 acts as an IGFBP2 proteinase, resulting in the cleavage of IGF-2/IGFBP2 complex and extracellular release of free IGF-2. Indeed, our results showed that conditioned media from highly migrating MSCs, which expressed high levels of MMP-1, cleaved the IGF-2/IGFBP2 complex. Taken together, these results showed that the MMP-1 secreted by highly tumor-tropic MSCs cleaved IGF-2/IGFBP2 complex. Free IGF-2 released from the complex may facilitate MSC migration toward tumor.

  7. Matrix metalloproteinases: structures, evolution, and diversification.

    Science.gov (United States)

    Massova, I; Kotra, L P; Fridman, R; Mobashery, S

    1998-09-01

    A comprehensive sequence alignment of 64 members of the family of matrix metalloproteinases (MMPs) for the entire sequences, and subsequently the catalytic and the hemopexin-like domains, have been performed. The 64 MMPs were selected from plants, invertebrates, and vertebrates. The analyses disclosed that as many as 23 distinct subfamilies of these proteins are known to exist. Information from the sequence alignments was correlated with structures, both crystallographic as well as computational, of the catalytic domains for the 23 representative members of the MMP family. A survey of the metal binding sites and two loops containing variable sequences of amino acids, which are important for substrate interactions, are discussed. The collective data support the proposal that the assembly of the domains into multidomain enzymes was likely to be an early evolutionary event. This was followed by diversification, perhaps in parallel among the MMPs, in a subsequent evolutionary time scale. Analysis indicates that a retrograde structure simplification may have accounted for the evolution of MMPs with simple domain constituents, such as matrilysin, from the larger and more elaborate enzymes.

  8. Exogenous L-arginine reduces matrix metalloproteinase-2 and -9 activities and oxidative stress in patients with hypertension

    DEFF Research Database (Denmark)

    Garcia, Vinicius P; Rocha, Helena N M; Silva, Gustavo M.

    2016-01-01

    Aims Increased matrix metalloproteinases activity and reduced nitric oxide (NO) bioavailability contributes to development of hypertension and this may be associated with a defective L-arginine-NO pathway. Exogenous L-arginine improves endothelial function to prevent the onset of cardiovascular...... disease, but the mechanism by which this is accomplished remains unclear. We determined the effects of exogenous L-arginine infusion on vascular biomarkers in patients with hypertension. Main methods Venous blood samples were obtained from seven patients with hypertension (45 ± 5 yrs., HT group...... biomarkers between groups during the saline infusion (P > 0.05). Significance Exogenous L-arginine diminished metalloproteinase-2 and -9 activities and MMP-9/TIMP-1 ratio along with restoring the oxidative stress balance in patients with hypertension....

  9. Increased extracellular matrix metalloproteinase inducer (EMMPRIN) expression in the conjunctival epithelium exposed to antiglaucoma treatments.

    Science.gov (United States)

    Labbé, Antoine; Gabison, Eric; Brignole-Baudouin, Françoise; Riancho, Luisa; Menashi, Suzanne; Baudouin, Christophe

    2015-01-01

    To analyze the effect of preserved antiglaucoma eye drops on the expression of extracellular matrix (ECM) metalloproteinase inducer (EMMPRIN) in conjunctival epithelial cells. A total of 18 patients treated for primary open-angle glaucoma with benzalkonium chloride (BAK) preserved eye drops and eight age-matched controls were included in this study. Glaucoma patients were divided into two groups according to their daily exposure to BAK: high-exposure (HE) group and low-exposure (LE) group. HLA-DR and EMMPRIN were quantified on conjunctival impression cytology specimens using flow cytometry. In parallel, IOBA-NHC conjunctival epithelial cells were exposed to different BAK concentrations, in the presence or absence of cyclosporine A (CsA), and their total and surface expressions of EMMPRIN were assessed by flow cytometry and results are given in relative fluorescence intensities (RFIs). Compared to the control group (1.71 ± 0.39 RFI), EMMPRIN was significantly increased in the HE (4.19 ± 1.50 RFI, p EMMPRIN (R(2) = 0.875, p EMMPRIN, which was proportional to the concentration of BAK. The surface expression of EMMPRIN was inhibited by CsA. The increased expression of EMMPRIN in patients topically treated with multiple antiglaucoma BAK-preserved eye drops suggests a matrix metalloproteinase-related modification of conjunctival ECM remodeling. In vitro results suggest that CsA has the potential to limit BAK effects on EMMPRIN.

  10. Matrix metalloproteinase inhibition reduces contraction by dupuytren fibroblasts.

    Science.gov (United States)

    Townley, William A; Cambrey, Alison D; Khaw, Peng T; Grobbelaar, Adriaan O

    2008-11-01

    Dupuytren's disease is a common fibroproliferative condition of the hand characterized by fibrotic lesions (nodules and cords), leading to disability through progressive digital contracture. Although the etiology of the disease is poorly understood, recent evidence suggests that abnormal matrix metalloproteinase (MMP) activity may play a role in cell-mediated collagen contraction and tissue scarring. The aim of this study was to investigate the efficacy of ilomastat, a broad-spectrum MMP inhibitor, in an in vitro model of Dupuytren fibroblast-mediated contraction. Nodule-derived and cord-derived fibroblasts were isolated from Dupuytren patients; carpal ligament-derived fibroblasts acted as control. Stress-release fibroblast-populated collagen lattices (FPCLs) were used as a model of contraction. FPCLs were allowed to develop mechanical stress (48 hours) during treatment with ilomastat (0-100 micromol/L), released, and allowed to contract over a 48-hour period. Contraction was estimated by measuring lattice area compared with untreated cells or treatment with a control peptide. MMP-1, MMP-2, and MT1-MMP levels were assessed by zymography, Western blotting, and enzyme-linked immunosorbent assay. Nodule-derived fibroblasts contracted lattices (69% +/- 2) to a greater extent than did cord-derived (55% +/- 3) or carpal ligament-derived (55% +/- 1) fibroblasts. Exposure to ilomastat led to significant inhibition of lattice contraction by all fibroblasts, although a reduction in lattice contraction by nodule-derived fibroblasts was most prominent (84% +/- 8). In addition, treatment with ilomastat led to a concomitant suppression of MMP-1 and MMP-2 activity, whereas MT1-MMP activity was found to be upregulated. Our results demonstrate that inhibition of MMP activity results in a reduction in extracellular matrix contraction by Dupuytren fibroblasts and suggest that MMP activity may be a critical target in preventing recurrent contracture caused by this disease.

  11. Matrix metalloproteinases operate redundantly in Arabidopsis immunity against necrotrophic and biotrophic fungal pathogens.

    Directory of Open Access Journals (Sweden)

    Puyan Zhao

    Full Text Available Matrix metalloproteinases (MMPs are evolutionarily conserved and multifunctional effector molecules playing pivotal roles in development and homeostasis. In this study we explored the involvement of the five Arabidopsis thaliana At-MMPs in plant defence against microbial pathogens. Expression of At2-MMP was most responsive to inoculation with fungi and a bacterial pathogen followed by At3-MMP and At5-MMP, while At1-MMP and At4-MMP were non-responsive to these biotic stresses. Loss-of-function mutants for all tested At-MMPs displayed increased susceptibility to the necrotrophic fungus Botrytis cinerea and double mutant at2,3-mmp and triple mutant at2,3,5-mmp plants developed even stronger symptoms. Consistent with this, transgenic Arabidopsis plants that expressed At2-MMP constitutively under the Cauliflower mosaic virus 35S promoter showed enhanced resistance to the necrotrophic pathogen. Similarly, resistance to the biotrophic Arabidopsis powdery mildew fungus Golovinomyces orontii was also compromised particularly in the at2,3-mmp / at2,3,5-mmp multiplex mutants, and increased in At2-MMP overexpressor plants. The degree of disease resistance of at-mmp mutants and At2-MMP overexpressor plants also correlated positively with the degree of MAMP-triggered callose deposition in response to the bacterial flagellin peptide flg22, suggesting that matrix metalloproteinases contribute to pattern-triggered immunity (PTI in interactions of Arabidopsis with necrotrophic and biotrophic pathogens.

  12. Epithelial expression of extracellular matrix metalloproteinase inducer/CD147 and matrix metalloproteinase-2 in neoplasms and precursor lesions derived from cutaneous squamous cells: An immunohistochemical study.

    Science.gov (United States)

    Ayva, Sebnem Kupana; Karabulut, Ayse Anil; Akatli, Ayşe Nur; Atasoy, Pinar; Bozdogan, Onder

    2013-10-01

    Extracellular matrix metalloproteinase inducer (CD147) is a transmembrane glycoprotein involved in the regulation of matrix metalloproteinases (MMPs). The study investigated CD147 and MMP-2 expression in epidermis of cutaneous squamous lesions. CD147 and MMP-2 expressions were evaluated immunohistochemically in 44 specimens: 18 actinic keratoses (AK), 6 squamous cell carcinomas in situ (SCCIS), 13 squamous cell carcinomas (SCC; peritumoral and invasive portions assessed), and 7 normal skins. Patterns of expression were assessed, with MMP-2 in nuclei (MMP-2n) and cytoplasm (MMP-2c) evaluated separately. The expression of each marker was quantified using a calculated immunohistochemical/histologic score (H-score). Correlations were analyzed for the marker H-scores in each study group. Associations between H-scores and histopathologic parameters were also evaluated. CD147 H-score was the highest in SCC (invasive islands), followed by AK, SCCIS, and control specimens, respectively. MMP-2n and MMP-2c H-scores were the highest in AK, followed by SCCIS, SCC, and control specimens, respectively. MMP-2c and MMP-2n H-scores were significantly higher in peritumoral epidermis than in invasive islands of SCC. MMP-2c and CD147 H-scores were positively correlated in the peritumoral SCCs. CD147 H-score was positively correlated with tumor differentiation in SCC. The findings suggest that overexpression of CD147 plays a role in the development of SCC. Copyright © 2013 Elsevier GmbH. All rights reserved.

  13. miR-132 Regulates Dendritic Spine Structure by Direct Targeting of Matrix Metalloproteinase 9 mRNA.

    Science.gov (United States)

    Jasińska, Magdalena; Miłek, Jacek; Cymerman, Iwona A; Łęski, Szymon; Kaczmarek, Leszek; Dziembowska, Magdalena

    2016-09-01

    Mir-132 is a neuronal activity-regulated microRNA that controls the morphology of dendritic spines and neuronal transmission. Similar activities have recently been attributed to matrix metalloproteinase-9 (MMP-9), an extrasynaptic protease. In the present study, we provide evidence that miR-132 directly regulates MMP-9 mRNA in neurons to modulate synaptic plasticity. With the use of luciferase reporter system, we show that miR-132 binds to the 3'UTR of MMP-9 mRNA to regulate its expression in neurons. The overexpression of miR-132 in neurons reduces the level of endogenous MMP-9 protein secretion. In synaptoneurosomes, metabotropic glutamate receptor (mGluR)-induced signaling stimulates the dissociation of miR-132 from polyribosomal fractions and shifts it towards the messenger ribonucleoprotein (mRNP)-containing fraction. Furthermore, we demonstrate that the overexpression of miR-132 in the cultured hippocampal neurons from Fmr1 KO mice that have increased synaptic MMP-9 level provokes enlargement of the dendritic spine heads, a process previously implicated in enhanced synaptic plasticity. We propose that activity-dependent miR-132 regulates structural plasticity of dendritic spines through matrix metalloproteinase 9.

  14. Higher Dialysate Matrix Metalloproteinase-2 Levels Are Associated with Peritoneal Membrane Dysfunction

    Science.gov (United States)

    Cho, Yeoungjee; Johnson, David W.; Vesey, David A.; Hawley, Carmel M.; Pascoe, Elaine M.; Clarke, Margaret; Topley, Nicholas

    2016-01-01

    ♦ Background: Peritoneal dialysis (PD) patients develop progressive and cumulative peritoneal injury with longer time spent on PD. The present study aimed to a) describe the trend of peritoneal injury biomarkers, matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-1 (TIMP-1), in incident PD patients, b) to explore the capacity of dialysate MMP-2 to predict peritoneal solute transport rate (PSTR) and peritonitis, and c) to evaluate the influence of neutral pH, low glucose degradation product (GDP) PD solution on these outcomes. ♦ Methods: The study included 178 participants from the balANZ trial who had at least 1 stored dialysate sample. Changes in PSTR and peritonitis were primary outcome measures, and the utility of MMP-2 in predicting these outcomes was analyzed using multilevel linear regression and multilevel Poisson regression, respectively. ♦ Results: Significant linear increases in dialysate MMP-2 and TIMP-1 concentrations were observed (p < 0.001), but neither was affected by the type of PD solutions received (MMP-2: p = 0.07; TIMP-1: p = 0.63). An increase in PSTR from baseline was associated with higher levels of MMP-2 (p = 0.02), and the use of standard solutions over longer PD duration (p = 0.001). The risk of peritonitis was independently predicted by higher dialysate MMP-2 levels (incidence rate ratio [IRR] per ng/mL 1.01, 95% confidence interval [CI] 1.005 – 1.02, p = 0.002) and use of standard solutions (Biocompatible solution: IRR 0.45, 95% CI 0.24 – 0.85, p = 0.01). ♦ Conclusion: Dialysate MMP-2 and TIMP-1 concentrations increased with longer PD duration. Higher MMP-2 levels were associated with faster PSTR and future peritonitis risk. Administration of biocompatible solutions exerted no significant effect on dialysate levels of MMP-2 or TIMP-1, but did counteract the increase in PSTR and the risk of peritonitis associated with the use of standard PD solutions. This is the first longitudinal study to examine

  15. Matrix metalloproteinase-2 gene variants and abdominal aortic aneurysm.

    Science.gov (United States)

    Smallwood, L; Warrington, N; Allcock, R; van Bockxmeer, F; Palmer, L J; Iacopetta, B; Golledge, J; Norman, P E

    2009-08-01

    To investigate associations between two polymorphisms of the matrix metalloproteinase-2 gene (MMP2) and the incidence and progression of abdominal aortic aneurysm (AAA). Cases and controls were recruited from a trial of screening for AAAs. The association between two variants of MMP2 (-1360C>T, and +649C>T) in men with AAA (n=678) and in controls (n=659) was examined using multivariate analyses. The association with AAA expansion (n=638) was also assessed. In multivariate analyses with adjustments for multiple testing, no association between either SNP and AAA presence or expansion was detected. MMP2 -1360C>T and +649C>T variants are not risk factors for AAA.

  16. Neuronal matrix metalloproteinase-9 is a determinant of selective neurodegeneration.

    Science.gov (United States)

    Kaplan, Artem; Spiller, Krista J; Towne, Christopher; Kanning, Kevin C; Choe, Ginn T; Geber, Adam; Akay, Turgay; Aebischer, Patrick; Henderson, Christopher E

    2014-01-22

    Selective neuronal loss is the hallmark of neurodegenerative diseases. In patients with amyotrophic lateral sclerosis (ALS), most motor neurons die but those innervating extraocular, pelvic sphincter, and slow limb muscles exhibit selective resistance. We identified 18 genes that show >10-fold differential expression between resistant and vulnerable motor neurons. One of these, matrix metalloproteinase-9 (MMP-9), is expressed only by fast motor neurons, which are selectively vulnerable. In ALS model mice expressing mutant superoxide dismutase (SOD1), reduction of MMP-9 function using gene ablation, viral gene therapy, or pharmacological inhibition significantly delayed muscle denervation. In the presence of mutant SOD1, MMP-9 expressed by fast motor neurons themselves enhances activation of ER stress and is sufficient to trigger axonal die-back. These findings define MMP-9 as a candidate therapeutic target for ALS. The molecular basis of neuronal diversity thus provides significant insights into mechanisms of selective vulnerability to neurodegeneration. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Extracellular matrix metalloproteinase inducer (EMMPRIN) is a potential biomarker of angiogenesis in proliferative diabetic retinopathy.

    Science.gov (United States)

    Abu El-Asrar, Ahmed M; Ahmad, Ajmal; Alam, Kaiser; Siddiquei, Mohammad Mairaj; Mohammad, Ghulam; Hertogh, Gert De; Mousa, Ahmed; Opdenakker, Ghislain

    2017-11-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) promotes angiogenesis through matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF) production. We investigated the expression levels of EMMPRIN and correlated these levels with VEGF, MMP-1 and MMP-9 in proliferative diabetic retinopathy (PDR). In addition, we examined the expression of EMMPRIN in the retinas of diabetic rats and the effect of EMMPRIN on the induction of angiogenesis regulatory factors in human retinal microvascular endothelial cells (HRMECs). Vitreous samples from 40 PDR and 19 non-diabetic patients, epiretinal membranes from 12 patients with PDR, retinas of rats and HRMECs were studied by enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, Western blot analysis, zymography analysis and RT-PCR. We showed a significant increase in the expression of EMMPRIN, VEGF, MMP-1 and MMP-9 in vitreous samples from PDR patients compared with non-diabetic controls (p EMMPRIN and the levels of VEGF (r = 0.38; p = 0.003), MMP-1 (r = 0.36; p = 0.005) and MMP-9 (r = 0.46; p = 0.003). In epiretinal membranes, EMMPRIN was expressed in vascular endothelial cells and stromal cells. Significant increase of EMMPRIN mRNA was detected in rat retinas after induction of diabetes. EMMPRIN induced hypoxia-inducible factor-1α, VEGF and MMP-1 expression in HRMEC. These results suggest that EMMPRIN/MMPs/VEGF pathway is involved in PDR angiogenesis. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  18. Nonselective matrix metalloproteinase but not tumor necrosis factor-a inhibition effectively preserves the early critical colon anastomotic integrity

    DEFF Research Database (Denmark)

    Ågren, Magnus S.; Andersen, Thomas L.; Andersen, Line

    2011-01-01

    Increased matrix metalloproteinase (MMP) activity has been implicated in the pathogenesis of colorectal anastomotic leakage. Tumor necrosis factor-a (TNF-a) induces MMPs and may influence anastomosis repair....

  19. Detection of the matrix metalloproteinases MMP-2 and MMP-9 and tissue inhibitors of metalloproteinases TIMP-1 and TIMP-2 in llama (Lama glama) oviduct.

    Science.gov (United States)

    Zampini, R; Argañaraz, M E; Miceli, D C; Apichela, S A

    2014-06-01

    Matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) are involved in several reproductive events like oocyte-spermatozoa interaction and semen liquefaction. In order to study their role in the llama oviductal reproductive process, MMP activity in oviductal fluid (OF) was assayed. Considering that llama genome sequences are partially known, a strategy to procure cDNA sequences of MMP-2, MMP-9, TIMP-1 and TIMP-2 was designed. Afterwards, their expression patterns in the different llama oviductal segments were assayed. Gelatine zymograms detected 62 and 94 kDa protease activities that matched MMP-2 and pro-MMP-9, respectively. Expression pattern analysis showed that MMP and TIMP mRNAs were present in ampulla, isthmus, utero-tubal junction (UTJ) and papilla. Altogether, these findings support the argument that MMPs/TIMPs are produced in the oviduct and secreted into the oviductal lumen. Our results encourage further studies to elucidate the role of these proteins in reproductive oviductal events. © 2014 Blackwell Verlag GmbH.

  20. New Insights into the Role of Matrix Metalloproteinases in Preeclampsia.

    Science.gov (United States)

    Espino Y Sosa, Salvador; Flores-Pliego, Arturo; Espejel-Nuñez, Aurora; Medina-Bastidas, Diana; Vadillo-Ortega, Felipe; Zaga-Clavellina, Veronica; Estrada-Gutierrez, Guadalupe

    2017-07-20

    Preeclampsia is a severe pregnancy complication globally, characterized by poor placentation triggering vascular dysfunction. Matrix metalloproteinases (MMPs) exhibit proteolytic activity implicated in the efficiency of trophoblast invasion to the uterine wall, and a dysregulation of these enzymes has been linked to preeclampsia. A decrease in MMP-2 and MMP-9 interferes with the normal remodeling of spiral arteries at early pregnancy stages, leading to the initial pathophysiological changes observed in preeclampsia. Later in pregnancy, an elevation in MMP-2 and MMP-9 induces abnormal release of vasoactive factors conditioning hypertension. Although these two enzymes lead the scene, other MMPs like MMP-1 and MMP-14 seem to have a role in this pathology. This review gathers published recent evidence about the implications of different MMPs in preeclampsia, and the potential use of these enzymes as emergent biomarkers and biological therapeutic targets, focusing on studies involving human subjects.

  1. New Insights into the Role of Matrix Metalloproteinases in Preeclampsia

    Directory of Open Access Journals (Sweden)

    Salvador Espino Y. Sosa

    2017-07-01

    Full Text Available Preeclampsia is a severe pregnancy complication globally, characterized by poor placentation triggering vascular dysfunction. Matrix metalloproteinases (MMPs exhibit proteolytic activity implicated in the efficiency of trophoblast invasion to the uterine wall, and a dysregulation of these enzymes has been linked to preeclampsia. A decrease in MMP-2 and MMP-9 interferes with the normal remodeling of spiral arteries at early pregnancy stages, leading to the initial pathophysiological changes observed in preeclampsia. Later in pregnancy, an elevation in MMP-2 and MMP-9 induces abnormal release of vasoactive factors conditioning hypertension. Although these two enzymes lead the scene, other MMPs like MMP-1 and MMP-14 seem to have a role in this pathology. This review gathers published recent evidence about the implications of different MMPs in preeclampsia, and the potential use of these enzymes as emergent biomarkers and biological therapeutic targets, focusing on studies involving human subjects.

  2. Synthetic inhibitors of matrix metalloproteinases prevent sulfur mustard-induced epidermal-dermal separation in human skin pieces

    NARCIS (Netherlands)

    Mol, M.A.E.; Alblas, S.W.; Hammer, A.; Benschop, H.P.

    2000-01-01

    Degradation of proteins of the basement membrane zone (BMZ) in the skin depends on the activity of proteolytic enzymes, particularly those belonging to the group of matrix metalloproteinases (MMPs). In the present study we have investigated the contribution of these enzymes to the epidermal-dermal

  3. Bladder cancer risk associated with genotypic polymorphism of the matrix metalloproteinase-1 and 7 in North Indian population.

    Science.gov (United States)

    Srivastava, Priyanka; Gangwar, Ruchika; Kapoor, Rakesh; Mittal, Rama D

    2010-01-01

    Matrix metalloproteinases (MMPs) contribute to tumor invasion and microenvironment, hence are associated with bladder cancer risk. We therefore, tested whether polymorphisms in MMP genes modify the risk of bladder cancer (BC) and whether smoke exposure modifies this risk. Genotyping was performed in 200 BC patients and 200 controls by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). MMP1-1607 2G/2G and MMP7-181 GG genotype were associated with increased risk of BC (p BCG) treated non muscle invasive BC (NMIBC) patients (log rank p, 0.030). Our data suggested that MMP1-1607 2G and MMP7-181 G allele were associated with high risk of BC, which was quite evident amongst smokers too. BCG treated NMIBC patients reflected protective effect for 2G allele carrier (1G/2G + 2G/2G) of MMP1-1607. This study provided new support for the association of MMP1-1607 and MMP7-181 in bladder cancer development, the tumorigenic effect of which was observed to be more enhanced in case of tobacco exposure.

  4. Expression of matrix metalloproteinases 2 and 9 in human gastric cancer and superficial gastritis.

    Science.gov (United States)

    Sampieri, Clara Luz; de la Peña, Sol; Ochoa-Lara, Mariana; Zenteno-Cuevas, Roberto; León-Córdoba, Kenneth

    2010-03-28

    To assess expression of matrix metalloproteinases 2 (MMP2) and MMP9 in gastric cancer, superficial gastritis and normal mucosa, and to measure metalloproteinase activity. MMP2 and MMP9 mRNA expression was determined by quantitative real-time polymerase chain reaction. Normalization was carried out using three different factors. Proteins were analyzed by quantitative gelatin zymography (qGZ). 18S ribosomal RNA (18SRNA) was very highly expressed, while hypoxanthine ribosyltransferase-1 (HPRT-1) was moderately expressed. MMP2 was highly expressed, while MMP9 was not detected or lowly expressed in normal tissues, moderately or highly expressed in gastritis and highly expressed in cancer. Relative expression of 18SRNA and HPRT-1 showed no significant differences. Significant differences in MMP2 and MMP9 were found between cancer and normal tissue, but not between gastritis and normal tissue. Absolute quantification of MMP9 echoed this pattern, but differential expression of MMP2 proved conflictive. Analysis by qGZ indicated significant differences between cancer and normal tissue in MMP-2, total MMP-9, 250 and 110 kDa bands. MMP9 expression is enhanced in gastric cancer compared to normal mucosa; interpretation of differential expression of MMP2 is difficult to establish.

  5. Matrix Metalloproteinases: Inflammatory Regulators of Cell Behaviors in Vascular Formation and Remodeling

    Directory of Open Access Journals (Sweden)

    Qishan Chen

    2013-01-01

    Full Text Available Abnormal angiogenesis and vascular remodeling contribute to pathogenesis of a number of disorders such as tumor, arthritis, atherosclerosis, restenosis, hypertension, and neurodegeneration. During angiogenesis and vascular remodeling, behaviors of stem/progenitor cells, endothelial cells (ECs, and vascular smooth muscle cells (VSMCs and its interaction with extracellular matrix (ECM play a critical role in the processes. Matrix metalloproteinases (MMPs, well-known inflammatory mediators are a family of zinc-dependent proteolytic enzymes that degrade various components of ECM and non-ECM molecules mediating tissue remodeling in both physiological and pathological processes. MMPs including MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-12, and MT1-MMP, are stimulated and activated by various stimuli in vascular tissues. Once activated, MMPs degrade ECM proteins or other related signal molecules to promote recruitment of stem/progenitor cells and facilitate migration and invasion of ECs and VSMCs. Moreover, vascular cell proliferation and apoptosis can also be regulated by MMPs via proteolytically cleaving and modulating bioactive molecules and relevant signaling pathways. Regarding the importance of vascular cells in abnormal angiogenesis and vascular remodeling, regulation of vascular cell behaviors through modulating expression and activation of MMPs shows therapeutic potential.

  6. Correlation between matrix metalloproteinase-9 and endometriosis.

    Science.gov (United States)

    Liu, Haiping; Wang, Jianye; Wang, Haiyu; Tang, Ning; Li, Yunfei; Zhang, Yan; Hao, Tianyu

    2015-01-01

    Endometrial implantation is the major cause of endometriosis (EMS). Matrix metalloproteinase (MMPs) can degrade multiple extracellular matrix and has been postulated to be related with EMC occurrence. This study thus investigated serum and ascites levels of MMP-9 in EMS patients, in an attempt to discuss the correlation between MMP-9 and EMS. A total of 100 EMS patients, including eutopic endometrium and ectopic endometrium, were recruited in this study along with hysteromyoma patients as the control group. Peripheral blood and ascites samples were collected and tested for MMP-9 levels using gelatin zymogram and enzyme-linked immunosorbent assay (ELISA). In EMS patients, MMP-9 levels in serum and ascites were 6.24 ± 0.53 mM and 38.57 ± 4.93 mM, respectively. Both of them were significantly higher than those in control group (P<0.05). Eutopic endometrium group had higher MMP-9 levels compared to those in ectopic endometrium ones (P<0.05). With advancement of disease stage, EMS patients had progressively elevated MMP-9 levels (P<0.05). Patients at proliferative stage had higher MMP-9 secretion (P<0.05). In summary, site of endometrium, clinical stage and proliferative cycle were independent risk factors for EMS. The elevation of serum and ascites MMP-9 existed in EMS patients, of which those had ectopic endometrium, advanced stage and at proliferative stage had higher MMP-9 expression.

  7. Inhibition of Cellular Adhesion by Immunological Targeting of Osteopontin Neoepitopes Generated through Matrix Metalloproteinase and Thrombin Cleavage.

    Science.gov (United States)

    Jürets, Alexander; Le Bras, Marie; Staffler, Günther; Stein, Gesine; Leitner, Lukas; Neuhofer, Angelika; Tardelli, Matteo; Turkof, Edvin; Zeyda, Maximilian; Stulnig, Thomas M

    2016-01-01

    Osteopontin (OPN), a secreted protein involved in inflammatory processes and cancer, induces cell adhesion, migration, and activation of inflammatory pathways in various cell types. Cells bind OPN via integrins at a canonical RGD region in the full length form as well as to a contiguous cryptic site that some have shown is unmasked upon thrombin or matrix metalloproteinase cleavage. Thus, the adhesive capacity of osteopontin is enhanced by proteolytic cleavage that may occur in inflammatory conditions such as obesity, atherosclerosis, rheumatoid arthritis, tumor growth and metastasis. Our aim was to inhibit cellular adhesion to recombinant truncated proteins that correspond to the N-terminal cleavage products of thrombin- or matrix metalloproteinase-cleaved OPN in vitro. We specifically targeted the cryptic integrin binding site with monoclonal antibodies and antisera induced by peptide immunization of mice. HEK 293 cells adhered markedly stronger to truncated OPN proteins than to full length OPN. Without affecting cell binding to the full length form, the raised monoclonal antibodies specifically impeded cellular adhesion to the OPN fragments. Moreover, we show that the peptides used for immunization were able to induce antisera, which impeded adhesion either to all OPN forms, including the full-length form, or selectively to the corresponding truncated recombinant proteins. In conclusion, we developed immunological tools to selectively target functional properties of protease-cleaved OPN forms, which could find applications in treatment and prevention of various inflammatory diseases and cancers.

  8. [Effect of smokers'sera on Porphyromonas gingivalis internalizing KB cells and the expression of matrix metalloproteinase-1, -9 and tissue inhibitor of metalloproteinase-1].

    Science.gov (United States)

    Wang, Hongyan; Tan, Lisi; Liu, Junchao; Li, Qian; Pan, Yaping; Zhong, Ming

    2014-01-01

    To investigate the effects of serum from smoking individuals or non-smoking individuals with periodontitis on Porphyromonas gingivalis (Pg) internalizing KB cells, and the expression of matrix metalloproteinase(MMP)-1, MMP-9, tissue inhibitor of metalloproteinase-1 (TIMP-1) in the culture supernatant of KB cells. The venous blood of 20 periodontitis patients' (10 smoking and 10 non-smoking) was extracted under the informed consent and centrifuged for serum. The smoking-individual serum (Y group) and non-smoking-individual (N group) serum were added to the model of Pg internalizing KB cells for 12 hours, plated on brain-heart infusion (BHI) and incubated anaerobically at 37 °C for 5 days. The colony forming units (CFU) of cell-invasive bacteria were estimated by colony counting. MMP-1, MMP-9 and TIMP-1 protein levels in culture supernatant were determined by enzyme-linked immunosorbent assay(ELISA) in the two groups following co-culture of Pg with KB cells for 12 hours. The CFU were (11.2 ± 1.1)×10(4), (12.6 ± 1.2)×10(4), (44.7 ± 1.3)×10(4) CFU/ml when adding 200, 400, 800 µl Y-group serum to the model of Pg co-culture with KB cells and when the serum was extracted from N group, the CFU were (33.6 ± 1.4)×10(4),(38.9 ± 1.1)×10(4), (11.2 ± 1.2)×10(4) CFU/ml respectively. When 200, 400, 800 µl Y group-serum was added to co-culture fluid of Pg internalizing KB cells, the concentrations of MMP-1 secreted from KB cells were (107.2 ± 21.5), (165.9 ± 20.2), (434.4 ± 48.0) µg/L respectively, the concentrations of MMP-9 were (3.99 ± 0.29), (4.21 ± 0.61), (5.62 ± 0.47) µg/L respectively, the concentrations of TIMP-1 were (401.3 ± 12.7), (418.3 ± 28.5), (637.3 ± 37.3) µg/L. When the serum (200, 400, 800 µl) extracted from N group, the concentration of MMP-1 and MMP-9 secreted by KB cell were (77.6 ± 10.8), (84.7 ± 10.2) and (98.2 ± 9.7) µg/L and (3.84 ± 0.52), (4.02 ± 0.68), (4.25 ± 0.37) µg/L, respectively. The concentration of TIMP-1 were

  9. The Contribution of Matrix Metalloproteinase-1 Genotype to Oral Cancer Susceptibility in Taiwan.

    Science.gov (United States)

    Sun, Kuo-Ting; Tsai, Chia-Wen; Chang, Wen-Shin; Shih, Liang-Chun; Chen, Liang-Yu; Tsai, Ming-Hsiu; Ji, Hong-Xue; Hsiao, Chieh-Lun; Liu, Yu-Cheng; Li, Chi-Yuan; Bau, DA-Tian

    2016-01-01

    Metalloproteinases (MMPs) are a family of multifunctional proteins which have been shown to be up-regulated in various types of cancer. However, the contribution of MMP1 genotype to oral cancer has not been elucidated. This study aimed to evaluate the contribution of MMP1 promoter 1607 genotype to the risk of oral cancer. In this case-control study, MMP1 genotype and its interaction with consumption of areca, cigarettes, and alcohol in determining oral cancer risk were investigated in 788 patients with oral cancer and 956 gender-matched healthy controls. The distribution of 2G/2G, 1G/2G and 1G/1G for MMP1 promoter 1607 genotype was 36.8%, 40.2% and 23.0% in the oral cancer group and 34.3%, 44.9% and 20.8% in the non-cancer control group, respectively (p for trend=0.1454). We also analyzed the allelic frequency distributions and found that the variant 1G allele of MMP1 promoter 1607 conferred similar oral cancer susceptibility as the wild-type 2G allele (odds ratio=0.99, 95% confidence interval=0.87-1.14, p=0.9199). As for the gene-lifestyle interaction, there was an obvious protective effect of MMP1 promoter 1607 1G/2G genotype on the risk of oral cancer among smokers (odds ratio=0.71, 95% confidence interval=0.55-0.91, p=0.0076), but not non-smokers. There was no interaction between MMP1 promoter 1607 genotype and areca chewing or alcohol drinking habits. The 1G/2G genotype of MMP1 promoter 1607 may have a protective effect on oral cancer risk for smokers. The detailed mechanisms involved in this require further investigation. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. Maintenance of the Extracellular Matrix in Rat Anterior Pituitary Gland: Identification of Cells Expressing Tissue Inhibitors of Metalloproteinases.

    Science.gov (United States)

    Azuma, Morio; Tofrizal, Alimuddin; Maliza, Rita; Batchuluun, Khongorzul; Ramadhani, Dini; Syaidah, Rahimi; Tsukada, Takehiro; Fujiwara, Ken; Kikuchi, Motoshi; Horiguchi, Kotaro; Yashiro, Takashi

    2015-12-25

    The extracellular matrix (ECM) is important in creating cellular environments in tissues. Recent studies have demonstrated that ECM components are localized in anterior pituitary cells and affect cell activity. Thus, clarifying the mechanism responsible for ECM maintenance would improve understanding of gland function. Tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of matrix metalloproteinases and participate in ECM degradation. In this study, we investigated whether cells expressing TIMPs are present in rat anterior pituitary gland. Reverse transcription polymerase chain reaction was used to analyze expression of the TIMP family (TIMP1-4), and cells producing TIMPs in the gland were identified by using in situ hybridization. Expression of TIMP1, TIMP2, and TIMP3 mRNAs was detected, and the TIMP-expressing cells were located in the gland. The TIMP-expressing cells were also investigated by means of double-staining with in situ hybridization and immunohistochemical techniques. Double-staining revealed that TIMP1 mRNA was expressed in folliculostellate cells. TIMP2 mRNA was detected in folliculostellate cells, prolactin cells, and thyroid-stimulating hormone cells. TIMP3 mRNA was identified in endothelial cells, pericytes, novel desmin-immunopositive perivascular cells, and folliculostellate cells. These findings indicate that TIMP1-, TIMP2-, and TIMP3-expressing cells are present in rat anterior pituitary gland and that they are involved in maintaining ECM components.

  11. Maintenance of the Extracellular Matrix in Rat Anterior Pituitary Gland: Identification of Cells Expressing Tissue Inhibitors of Metalloproteinases

    International Nuclear Information System (INIS)

    Azuma, Morio; Tofrizal, Alimuddin; Maliza, Rita; Batchuluun, Khongorzul; Ramadhani, Dini; Syaidah, Rahimi; Tsukada, Takehiro; Fujiwara, Ken; Kikuchi, Motoshi; Horiguchi, Kotaro; Yashiro, Takashi

    2015-01-01

    The extracellular matrix (ECM) is important in creating cellular environments in tissues. Recent studies have demonstrated that ECM components are localized in anterior pituitary cells and affect cell activity. Thus, clarifying the mechanism responsible for ECM maintenance would improve understanding of gland function. Tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of matrix metalloproteinases and participate in ECM degradation. In this study, we investigated whether cells expressing TIMPs are present in rat anterior pituitary gland. Reverse transcription polymerase chain reaction was used to analyze expression of the TIMP family (TIMP1-4), and cells producing TIMPs in the gland were identified by using in situ hybridization. Expression of TIMP1, TIMP2, and TIMP3 mRNAs was detected, and the TIMP-expressing cells were located in the gland. The TIMP-expressing cells were also investigated by means of double-staining with in situ hybridization and immunohistochemical techniques. Double-staining revealed that TIMP1 mRNA was expressed in folliculostellate cells. TIMP2 mRNA was detected in folliculostellate cells, prolactin cells, and thyroid-stimulating hormone cells. TIMP3 mRNA was identified in endothelial cells, pericytes, novel desmin-immunopositive perivascular cells, and folliculostellate cells. These findings indicate that TIMP1-, TIMP2-, and TIMP3-expressing cells are present in rat anterior pituitary gland and that they are involved in maintaining ECM components

  12. Valine-based biphenylsulphonamide matrix metalloproteinase inhibitors as tumor imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Oltenfreiter, Ruth [Faculty of Pharmaceutical Sciences, Department of Radiopharmacy, Ghent University, Harelbekestraat 72, 9000 Ghent (Belgium)]. E-mail: ruth.oltenfreiter@ugent.be; Staelens, Ludovicus [Faculty of Pharmaceutical Sciences, Department of Radiopharmacy, Ghent University, Harelbekestraat 72, 9000 Ghent (Belgium); Kersemans, Veerle [Faculty of Pharmaceutical Sciences, Department of Radiopharmacy, Ghent University, Harelbekestraat 72, 9000 Ghent (Belgium); Cornelissen, Bart [Faculty of Pharmaceutical Sciences, Department of Radiopharmacy, Ghent University, Harelbekestraat 72, 9000 Ghent (Belgium); Frankenne, Francis [Laboratory of Tumor and Developmental Biology, University of Liege, Sart-Tilman, Liege (Belgium); Foidart, Jean-Michel [Laboratory of Tumor and Developmental Biology, University of Liege, Sart-Tilman, Liege (Belgium); Wiele, Christophe van de [Division of Nuclear Medicine, Gent University Hospital, De Pintelaan 185, 9000 Gent (Belgium); Slegers, Guido [Faculty of Pharmaceutical Sciences, Department of Radiopharmacy, Ghent University, Harelbekestraat 72, 9000 Ghent (Belgium)

    2006-06-15

    Among matrix metalloproteinases (MMPs), the subfamily of gelatinases (MMP-2, MMP-9) is of particular interest due to their ability to degrade type IV collagen and other non-fibrillar collagen domains and proteins such as fibronectin and laminin. Whilst malignant cells often over-express various MMPs, the gelatinases have been most consistently detected in malignant tissues and associated with tumor growth, metastatic potential and angiogenesis. Radiosynthesis of carboxylic (1') and hydroxamic (2') MMPIs resulted in radiochemical yields of 70+/-5% (n=6) and 60+/-5% (n=4), respectively. Evaluation in A549-inoculated athymic mice showed a tumor uptake of 2.0+/-0.7%ID/g (3h p.i.), a tumor/blood ratio of 0.5 and a tumor/muscle ratio of 4.6 at 48hp.i. for 1'. For compound 2' a tumor uptake of 0.7+/-0.2%ID/g (3hp.i.), a tumor/blood ratio of 1.2 and a tumor/muscle ratio of 1.8 at 24hp.i. were observed. HPLC analysis of the blood (plasma) showed no dehalogenation or other metabolites of 1' 2hp.i. For compound 2', 65.4% of intact compound was found in the blood (plasma) and one polar metabolite (31%) was detected whereas in the tumor 91.8% of the accumulated activity was caused by intact compound and only 8.1% by the metabolite. Planar imaging, using a Toshiba GCA-9300A/hg SPECT camera, showed that tumor tissue could be visualized and that image quality improved by decreasing specific activity resulting in lower liver uptake, indicating some degree of saturable binding in the liver. In vivo evaluation of these radioiodinated carboxylic and hydroxamic MMP inhibitor tracers revealed that MMP inhibitors could have potential as tumor imaging agents, but that further research is necessary.

  13. Valine-based biphenylsulphonamide matrix metalloproteinase inhibitors as tumor imaging agents

    International Nuclear Information System (INIS)

    Oltenfreiter, Ruth; Staelens, Ludovicus; Kersemans, Veerle; Cornelissen, Bart; Frankenne, Francis; Foidart, Jean-Michel; Wiele, Christophe van de; Slegers, Guido

    2006-01-01

    Among matrix metalloproteinases (MMPs), the subfamily of gelatinases (MMP-2, MMP-9) is of particular interest due to their ability to degrade type IV collagen and other non-fibrillar collagen domains and proteins such as fibronectin and laminin. Whilst malignant cells often over-express various MMPs, the gelatinases have been most consistently detected in malignant tissues and associated with tumor growth, metastatic potential and angiogenesis. Radiosynthesis of carboxylic (1') and hydroxamic (2') MMPIs resulted in radiochemical yields of 70+/-5% (n=6) and 60+/-5% (n=4), respectively. Evaluation in A549-inoculated athymic mice showed a tumor uptake of 2.0+/-0.7%ID/g (3h p.i.), a tumor/blood ratio of 0.5 and a tumor/muscle ratio of 4.6 at 48hp.i. for 1'. For compound 2' a tumor uptake of 0.7+/-0.2%ID/g (3hp.i.), a tumor/blood ratio of 1.2 and a tumor/muscle ratio of 1.8 at 24hp.i. were observed. HPLC analysis of the blood (plasma) showed no dehalogenation or other metabolites of 1' 2hp.i. For compound 2', 65.4% of intact compound was found in the blood (plasma) and one polar metabolite (31%) was detected whereas in the tumor 91.8% of the accumulated activity was caused by intact compound and only 8.1% by the metabolite. Planar imaging, using a Toshiba GCA-9300A/hg SPECT camera, showed that tumor tissue could be visualized and that image quality improved by decreasing specific activity resulting in lower liver uptake, indicating some degree of saturable binding in the liver. In vivo evaluation of these radioiodinated carboxylic and hydroxamic MMP inhibitor tracers revealed that MMP inhibitors could have potential as tumor imaging agents, but that further research is necessary

  14. Matrix metalloproteinase 3 polymorphisms as a potential marker of enhanced susceptibility to lung cancer in chronic obstructive pulmonary disease subjects

    Directory of Open Access Journals (Sweden)

    Kamil Brzóska

    2014-09-01

    Full Text Available [b]Introduction and objective[/b]. Chronic obstructive pulmonary disease (COPD is often accompanied by lung cancer. Among the genes that may play a role in the occurrence of COPD and lung cancer are those encoding the proteolytic enzymes, such as matrix metalloproteinases (MMPs and their tissue inhibitors. The objective of this study was to find MMPs-associated markers useful in the identification of COPD subjects with increased susceptibility to developing lung cancer. [b]Materials and methods[/b]. We compared the frequency of single nucleotide polymorphisms in genes coding for matrix proteinases ([i]MMP1, MMP2, MMP3, MMP9, MMP12[/i] as well as tissue inhibitor of metalloproteinases ([i]TIMP1[/i] in two groups of subjects: COPD patients (54 subjects and COPD patients diagnosed for lung cancer occurrence (53 subjects.The levels of the respective proteins in blood serum were also analyzed. [b]Results[/b]. The frequencies of 2 genotypes, [i]MMP3[/i] rs3025058 and MMP3 rs678815, were significantly different between the studied groups. In both cases, more heterozygotes and less homozygotes (both types were observed in the COPD group than in the COPD + cancer group. A significantly higher TIMP1 level in blood serum was observed in the COPD + cancer group than in the COPD group. There were no statistically significant differences in[i] MMPs[/i] blood levels between the studied groups. In addition, no genotype-associated differences in [i]TIMP1[/i] or[i] MMPs[/i] blood levels were observed. [b]Conclusions[/b]. Homozygocity for [i]MMP3[/i] rs3025058 and rs678815 polymorphisms is a potential marker of enhanced susceptibility to lung cancer development among COPD subjects.

  15. Immunohistochemical expression of matrix metalloproteinase 13 in chronic periodontitis.

    Science.gov (United States)

    Nagasupriya, Alapati; Rao, Donimukkala Bheemalingeswara; Ravikanth, Manyam; Kumar, Nalabolu Govind; Ramachandran, Cinnamanoor Rajmani; Saraswathi, Thillai Rajashekaran

    2014-01-01

    The extracellular matrix is a complex integrated system responsible for the physiologic properties of connective tissue. Collagen is the major extracellular component that is altered in pathologic conditions, mainly periodontitis. The destruction involves proteolytic enzymes, primarily matrix metalloproteinases (MMPs), which play a key role in mediating and regulating the connective tissue destruction in periodontitis. The study group included 40 patients with clinically diagnosed chronic periodontitis. The control group included 20 patients with clinically normal gingiva covering impacted third molars undergoing extraction or in areas where crown-lengthening procedures were performed. MMP-13 expression was demonstrated using immunohistochemistry in all the gingival biopsies, and the data were analyzed statistically. MMP-13 expression was observed more in chronic periodontitis when compared with normal gingiva. MMP-13 expression was expressed by fibroblasts, lymphocytes, macrophages, plasma cells, and basal cells of the sulcular epithelium. Comparative evaluation of all the clinical and histologic parameters with MMP-13 expression showed high statistical significance with Spearman correlation coefficient. Elevated levels of MMP-13 may play a role in the pathogenesis of chronic periodontitis. There is a direct correlation of increased expression of MMP-13 with various clinical and histologic parameters in disease severity.

  16. Expression of RECK and matrix metalloproteinase-2 in ameloblastoma

    International Nuclear Information System (INIS)

    Zhang, Bin; Zhang, Jin; Xu, Zhi-Ying; Xie, Hong-Liang

    2009-01-01

    Ameloblastoma is a frequent odontogenic benign tumor characterized by local invasiveness, high risk of recurrence and occasional metastasis and malignant transformation. Matrix metalloproteinase-2 (MMP-2) promotes tumor invasion and progression by destroying the extracellular matrix (ECM) and basement membrane. For this proteolytic activity, the endogenous inhibitor is reversion-inducing cysteine rich protein with Kazal motifs (RECK). The aim of this study was to characterize the relationship between RECK and MMP-2 expression and the clinical manifestation of ameloblastoma. Immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR) were employed to detect the protein and mRNA expression of RECK and MMP-2 in keratocystic odontogenic tumor (KCOT), ameloblastoma and ameloblastic carcinoma. RECK protein expression was significantly reduced in KCOT (87.5%), ameloblastoma (56.5%) and ameloblastic carcinoma (0%) (P < 0.01), and was significantly lower in recurrent ameloblastoma compared with primary ameloblastoma (P < 0.01), but did not differ by histological type of ameloblastoma. MMP-2 protein expression was significantly higher in ameloblastoma and ameloblastic carcinoma compared with KCOT (P < 0.01). RECK mRNA expression was significantly lower in ameloblastoma than in KCOT (P < 0.01), lower in recurrent ameloblastoma than in primary ameloblastoma, and was negative in ameloblastic carcinoma. MMP-2 mRNA expression was significantly higher in ameloblastoma compared with KCOT (P < 0.01), but was no different in recurrent ameloblastoma versus primary ameloblastoma. RECK protein expression was negatively associated with MMP-2 protein expression in ameloblastoma (r = -0.431, P < 0.01). Low or no RECK expression and increased MMP-2 expression may be associated with negative clinical findings in ameloblastoma. RECK may participate in the invasion, recurrence and malignant transformation of ameloblastoma by regulating MMP-2 at the post

  17. Effect of Botulinum Toxin Type A on TGF-β/Smad Pathway Signaling: Implications for Silicone-Induced Capsule Formation.

    Science.gov (United States)

    Kim, Sena; Ahn, Moonsang; Piao, Yibo; Ha, Yooseok; Choi, Dae-Kyoung; Yi, Min-Hee; Shin, Nara; Kim, Dong Woon; Oh, Sang-Ha

    2016-11-01

    One of the most serious complications of breast surgery using implants is capsular contracture. Several preventive treatments have been introduced; however, the mechanism of capsule formation has not been resolved completely. The authors previously identified negative effects of botulinum toxin type A on capsule formation, expression of transforming growth factor (TGF)-β1, and differentiation of fibroblasts into myofibroblasts. Thus, the authors investigated how to prevent capsule formation by using botulinum toxin type A, particularly by means of TGF-β1 signaling, in human fibroblasts. In vitro, cultured human fibroblasts were treated with TGF-β1 and/or botulinum toxin type A. Expression of collagen, matrix metalloproteinase, and Smad was examined by Western blotting. The activation of matrix metalloproteinase was observed by gelatin zymography. In vivo, the effect of botulinum toxin type A on the phosphorylation of Smad2 in silicone-induced capsule formation was evaluated by immunocytochemistry. In vitro, the phosphorylation of Smad2 was inhibited by botulinum toxin type A treatment. The expression levels of collagen types 1 and 3 were inhibited by botulinum toxin type A treatment, whereas those of matrix metalloproteinase-2 and matrix metalloproteinase-9 were enhanced. Gelatin zymography experiments confirmed enhanced matrix metalloproteinase-2 activity in collagen degradation. In vivo, botulinum toxin type A treatment reduced capsule thickness and Smad2 phosphorylation in silicone-induced capsules. This study suggests that botulinum toxin type A plays an important role in the inhibition of capsule formation through the TGF-β/Smad signaling pathway. Therapeutic, V.

  18. The Matrix Metalloproteinase 9 Point-of-Care Test in Dry Eye.

    Science.gov (United States)

    Lanza, Nicole L; Valenzuela, Felipe; Perez, Victor L; Galor, Anat

    2016-04-01

    Dry eye is a common, multifactorial disease currently diagnosed by a combination of symptoms and signs. However, the subjective symptoms of dry eye poorly correlate to the current gold standard for diagnostic tests, reflecting the need to develop better objective tests for the diagnosis of dry eye. This review considers the role of ocular surface matrix metalloproteinase 9 (MMP-9) in dry eye and the implications of a novel point-of-care test that measures MMP-9 levels, InflammaDry (RPS, Sarasota, FL) on choosing appropriate therapeutic treatments. Published by Elsevier Inc.

  19. The Contribution of Matrix Metalloproteinase-1 Promoter Genotypes in Taiwan Lung Cancer Risk.

    Science.gov (United States)

    Shen, Te-Chun; Chang, Wen-Shin; Tsai, Chia-Wen; Chao, Che-Yi; Lin, Yi-Ting; Hsiao, Chieh-Lun; Hsu, Che-Lun; Chen, Wei-Chun; Hsia, Te-Chun; Bau, DA-Tian

    2018-01-01

    Up-regulation of metallo-proteinase (MMP) proteins has been shown in various types of solid cancers and the genotype of MMP1 has been associated with the risk of solid cancers. The contribution of MMP1 genotype to lung cancer has been investigated in various countries, though, to our knowledge, not in Taiwan. Therefore, in this study, we focused on the contribution of a polymorphism in the promoter region of MMP1 to lung cancer risk in Taiwan population. Genomic DNA was isolated from peripheral blood of 358 patients with lung cancer and 716 healthy individuals (non-cancer patients). MMP1 rs1799750 polymorphic genotypes of each sample were determined using the typical methodology of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The percentages of 2G/2G, 1G/2G, and 1G/1G for MMP1 -1607 genotypes were 34.4%, 41.3% and 24.3% in the disease group and 33.9%, 44.0%, and 22.1% in the control group (p trend=0.6298), respectively. The results of carrier comparisons in dominant and recessive models also support the findings that 1G or 2G appears not to be a determinant allelic biomarker for Taiwan lung cancer. The MMP1 -1607 1G allele is a non-significant protective biomarker for lung cancer in Taiwan. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  20. Assessment of chronic spontaneous urticaria by serum-induced tumor necrosis factor alpha and matrix metalloproteinase-9 release

    DEFF Research Database (Denmark)

    Falkencrone, Sidsel; Bindslev-Jensen, Carsten; Skov, Per Stahl

    BACKGROUND Previous studies from our group have demonstrated that IgE-mediated basophil activation leads to release of TNFα that in turn can induce matrix metallo-proteinase-9 (MMP-9) release from monocytes. We wished to investigate if serum from chronic spontaneous urticaria-patients with auto-a...

  1. Expression Levels of Myostatin and Matrix Metalloproteinase 14 mRNAs in Uterine Leiomyoma are Correlated With Dysmenorrhea.

    Science.gov (United States)

    Tsigkou, Anastasia; Reis, Fernando M; Ciarmela, Pasquapina; Lee, Meng H; Jiang, Bingjie; Tosti, Claudia; Shen, Fang-Rong; Shi, Zhendan; Chen, You-Guo; Petraglia, Felice

    2015-12-01

    Uterine leiomyoma is the most common benign neoplasm of female reproductive system, found in about 50% of women in reproductive age. The mechanisms of leiomyoma growth include cell proliferation, which is modulated by growth factors, and deposition of extracellular matrix (ECM). Activin A and myostatin are growth factors that play a role in proliferation of leiomyoma cells. Matrix metalloproteinases (MMPs) are known for their ability to remodel the ECM in different biological systems. The aim of this study was to evaluate the expression levels of activin βA-subunit, myostatin, and MMP14 messenger RNAs (mRNAs) in uterine leiomyomas and the possible correlation of these factors with clinical features of the disease. Matrix metalloproteinase 14 was highly expressed in uterine leiomyoma and correlated with myostatin and activin A mRNA expression. Moreover, MMP14 and myostatin mRNA expression correlated significantly and directly with the intensity of dysmenorrhea. Overall, the present findings showed that MMP14 mRNA is highly expressed in uterine leiomyoma, where it correlates with the molecular expression of growth factors and is further increased in cases of intense dysmenorrhea. © The Author(s) 2015.

  2. Matrix metalloproteinases with gelatinolytic activity induced by Paracoccidioides brasiliensis infection

    Science.gov (United States)

    Nishikaku, Angela Satie; Ribeiro, Luciana Cristina; Molina, Raphael Fagnani Sanchez; Albe, Bernardo Paulo; Cunha, Cláudia da Silva; Burger, Eva

    2009-01-01

    Matrix metalloproteinases (MMPs) modulate extracellular matrix turnover, inflammation and immunity. We studied MMP-9 and MMP-2 in experimental paracoccidioidomycosis. At 15 and 120 days after infection (DAI) with virulent Paracoccidioides brasiliensis, MMP-9 was positive by immunohistochemistry in multinucleated giant cells, in mononuclear cells with macrophage and lymphocyte morphologies and also in fungal cells in the lesions of susceptible and resistant mice. Using gelatin zymography, pro- and active MMP-9 and active MMP-2 were detected in all infected mice, but not in controls. Gelatinolytic activity was not observed in P. brasiliensis extracts. Semiquantitative analysis of gelatinolytic activities revealed weak or absent MMP-2 and strong MMP-9 activity in both mouse strains at 15 DAI, declining at 120 DAI. Avirulent P. brasiliensis-infected mice had residual lesions with MMP-9-positive pseudoxantomatous macrophages, but no gelatinase activity at 120 DAI. Our findings demonstrate the induction of MMPs, particularly MMP-9, in experimental paracoccidioidomycosis, suggesting a possible influence in the pattern of granulomas and in fungal dissemination. PMID:19765107

  3. Matrix Degradation in Human Immunodeficiency Virus Type 1-Associated Tuberculosis and Tuberculosis Immune Reconstitution Inflammatory Syndrome: A Prospective Observational Study.

    Science.gov (United States)

    Walker, Naomi F; Wilkinson, Katalin A; Meintjes, Graeme; Tezera, Liku B; Goliath, Rene; Peyper, Janique M; Tadokera, Rebecca; Opondo, Charles; Coussens, Anna K; Wilkinson, Robert J; Friedland, Jon S; Elkington, Paul T

    2017-07-01

    Extensive immunopathology occurs in human immunodeficiency virus (HIV)/tuberculosis (TB) coinfection, but the underlying molecular mechanisms are not well-defined. Excessive matrix metalloproteinase (MMP) activity is emerging as a key process but has not been systematically studied in HIV-associated TB. We performed a cross-sectional study of matrix turnover in HIV type 1 (HIV-1)-infected and -uninfected TB patients and controls, and a prospective cohort study of HIV-1-infected TB patients at risk of TB immune reconstitution inflammatory syndrome (TB-IRIS), in Cape Town, South Africa. Sputum and plasma MMP concentrations were quantified by Luminex, plasma procollagen III N-terminal propeptide (PIIINP) by enzyme-linked immunosorbent assay, and urinary lipoarabinomannan (LAM) by Alere Determine TB LAM assay. Peripheral blood mononuclear cells from healthy donors were cultured with Mycobacterium tuberculosis and extracellular matrix in a 3D model of TB granuloma formation. MMP activity differed between HIV-1-infected and -uninfected TB patients and corresponded with specific TB clinical phenotypes. HIV-1-infected TB patients had reduced pulmonary MMP concentrations, associated with reduced cavitation, but increased plasma PIIINP, compared to HIV-1-uninfected TB patients. Elevated extrapulmonary extracellular matrix turnover was associated with TB-IRIS, both before and during TB-IRIS onset. The predominant collagenase was MMP-8, which was likely neutrophil derived and M. tuberculosis-antigen driven. Mycobacterium tuberculosis-induced matrix degradation was suppressed by the MMP inhibitor doxycycline in vitro. MMP activity in TB differs by HIV-1 status and compartment, and releases matrix degradation products. Matrix turnover in HIV-1-infected patients is increased before and during TB-IRIS, informing novel diagnostic strategies. MMP inhibition is a potential host-directed therapy strategy for prevention and treatment of TB-IRIS. © The Author 2017. Published by Oxford

  4. Extracellular matrix remodeling and matrix metalloproteinase inhibition in visceral adipose during weight cycling in mice.

    Science.gov (United States)

    Caria, Cíntia Rabelo E Paiva; Gotardo, Érica Martins Ferreira; Santos, Paola Souza; Acedo, Simone Coghetto; de Morais, Thainá Rodrigues; Ribeiro, Marcelo Lima; Gambero, Alessandra

    2017-10-15

    Extracellular matrix (ECM) remodeling is necessary for a health adipose tissue (AT) expansion and also has a role during weight loss. We investigate the ECM alteration during weight cycling (WC) in mice and the role of matrix metalloproteinases (MMPs) was assessed using GM6001, an MMP inhibitor, during weight loss (WL). Obesity was induced in mice by a high-fat diet. Obese mice were subject to caloric restriction for WL followed by reintroduction to high-fat diet for weight regain (WR), resulting in a WC protocol. In addition, mice were treated with GM6001 during WL period and the effects were observed after WR. Activity and expression of MMPs was intense during WL. MMP inhibition during WL results in inflammation and collagen content reduction. MMP inhibition during WL period interferes with the period of subsequent expansion of AT resulting in improvements in local inflammation and systemic metabolic alterations induced by obesity. Our results suggest that MMPs inhibition could be an interesting target to improve adipose tissue inflammation during WL and to support weight cyclers. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Acrolein-activated matrix metalloproteinase 9 contributes to persistent mucin production.

    Science.gov (United States)

    Deshmukh, Hitesh S; Shaver, Colleen; Case, Lisa M; Dietsch, Maggie; Wesselkamper, Scott C; Hardie, William D; Korfhagen, Thomas R; Corradi, Massimo; Nadel, Jay A; Borchers, Michael T; Leikauf, George D

    2008-04-01

    Chronic obstructive pulmonary disease (COPD), a global public health problem, is characterized by progressive difficulty in breathing, with increased mucin production, especially in the small airways. Acrolein, a constituent of cigarette smoke and an endogenous mediator of oxidative stress, increases airway mucin 5, subtypes A and C (MUC5AC) production; however, the mechanism remains unclear. In this study, increased mMUC5AC transcripts and protein were associated with increased lung matrix metalloproteinase 9 (mMMP9) transcripts, protein, and activity in acrolein-exposed mice. Increased mMUC5AC transcripts and mucin protein were diminished in gene-targeted Mmp9 mice [Mmp9((-/-))] or in mice treated with an epidermal growth factor receptor (EGFR) inhibitor, erlotinib. Acrolein also decreased mTissue inhibitor of metalloproteinase protein 3 (an MMP9 inhibitor) transcript levels. In a cell-free system, acrolein increased pro-hMMP9 cleavage and activity in concentrations (100-300 nM) found in sputum from subjects with COPD. Acrolein increased hMMP9 transcripts in human airway cells, which was inhibited by an MMP inhibitor, EGFR-neutralizing antibody, or a mitogen-activated protein kinase (MAPK) 3/2 inhibitor. Together these findings indicate that acrolein can initiate cleavage of pro-hMMP9 and EGFR/MAPK signaling that leads to additional MMP9 formation. Augmentation of hMMP9 activity, in turn, could contribute to persistent excessive mucin production.

  6. Charakterisierung des Extracellular Matrix Metalloproteinase Inducer (EMMPRIN/CD147) auf Thrombozyten und Untersuchung zur funktionellen Relevanz bei der Arteriosklerose

    OpenAIRE

    Fischel, Sina

    2007-01-01

    Der „Extracellular Matrix Metalloproteinase Inducer“ EMMPRIN ist bisher im Wesentlichen bekannt aus der Tumorpathologie; er induziert in umliegenden Fibroblasten eine Aktivierung der Matrix Metalloproteinasen (MMPs). Die Beteiligung von EMMPRIN am arteriosklerotischen Geschehen konnte in früheren Untersuchungen durch den Nachweis der EMMPRIN-Expression in verschiedenen kardiovaskulären Zellen wie Monozyten, Endothelzellen und glatten Muskelzellen in der arteriosklerotischen Plaque erbrach...

  7. Real-time zymography and reverse zymography: a method for detecting activities of matrix metalloproteinases and their inhibitors using FITC-labeled collagen and casein as substrates.

    Science.gov (United States)

    Hattori, Shunji; Fujisaki, Hitomi; Kiriyama, Tomomi; Yokoyama, Tsukao; Irie, Shinkichi

    2002-02-01

    Zymography and reverse zymography are widely used techniques for identifying the proteolytic activity of enzymes and the presence of protease inhibitors in polyacrylamide gels. In the current studies, we utilized a fluorescein-isothiocyanate-labeled substrate to develop novel zymographic and reverse zymographic methods for detecting matrix metalloproteinases and tissue inhibitors of the metalloproteinases, respectively. Using a transilluminator, the results can be observed visually without stopping the enzymatic reaction. For this reason, we have named these methods real-time zymography and real-time reverse zymography. These methods have the following advantages compared with conventional protocols: (1) because the reaction can be repeatedly monitored on the polyacrylamide gels, optimization of the incubation time can be achieved without preliminary analyses; (2) higher sensitivity is achieved with a lower amount of substrate than with conventional methods; (3) a semi-quantitative analysis of matrix metalloproteinases is possible. An additional advantage of the real-time reverse zymography is that, because the fluorescence detection is specific for substrate digestion, the inhibitor bands can be easily distinguished from contaminating proteins.

  8. Correlation between plasma angiopoietin-1, angiopoietin-2 and matrix metalloproteinase-2 in coronary heart disease.

    Science.gov (United States)

    Wu, Haoyu; Shou, Xiling; Liang, Lei; Wang, Congxia; Yao, Xiaowei; Cheng, Gong

    2016-12-01

    Angiopoietin-2 (Ang-2) plays a critical role in inducing tumor cell infiltration, and this invasive phenotype is caused by up-regulation of matrix metalloproteinase (MMP)-2. The relationship between Ang-2 and MMP-2 in atherosclerosis has not been reported yet. The aim is to measure the plasma concentrations of Ang-1, Ang-2 and MMP-2 and assess the correlation between the concentrations of these factors in coronary heart disease (CHD) patients. The testing was done in a cross-sectional study. We prospectively enrolled 42 individuals with acute myocardial infarction, 42 individuals with unstable angina pectoris, 42 individuals with stable angina pectoris and 45 healthy control subjects. Concentrations of Ang-1, Ang-2 and MMP-2 were measured using the enzyme-linked immunosorbent assay (ELISA) method. Spearman's rank correlation was calculated to evaluate the relationships between MMP-2 and Ang-1, and MMP-2 and Ang-2 in patients with CHD. Patients with acute myocardial infarction and unstable angina pectoris had higher Ang-2 and MMP-2 levels compared with stable angina patients and healthy control subjects ( p correlation showed that Ang-2 levels positively correlated with MMP-2 in patients with CHD ( r = 0.679, p correlated weakly with MMP-2, whereas the Ang-2 and MMP-2 correlation was strong in patients with CHD. Ang-2 may play a role in atherosclerosis, and have an interaction with MMP-2.

  9. [Analysis of correlation between pulmonary function and expression levels of matrix metalloproteinases-9 and tissue inhibitor of metalloproteinase-1 among toluene diisocyanate exposed workers].

    Science.gov (United States)

    Miao, P P; Meng, T; Jia, Q; Niu, Y; Ye, M; Ji, Y Q; Ju, R; Chen, X L; Shao, H; Zheng, Y X; Dai, Y F

    2016-05-01

    To investigate the effect of occupational toluene diisocyanate(TDI) exposure on matrix metalloproteinases-9 (MMP-9) and tissue inhibitor of metalloproteinase-1(TIMP-1), and analysis of the correlation of MMP-9,TIMP-1,MMP-9/TIMP-1 and lung function. In October 2014, based on cluster sampling, we conducted a cross-sectional study in a TDI production factory located in China's western region. 61 exposed workers were recruited from workers engaged in packing, operating and checking. Based on different levels of the external exposure, the packers were classified as high exposed group, while operators and checkers as low exposed group. 58 factory managers, matching age and agent, were selected as controls, having same work intense and not contacting the TDI or other allergens. The questionnaire surveys were used to obtain the agent, age, work age, smoking and drinking, personal and family allergic history, occupational history, and the recent health conditions. The levels of MMP-9 and TIMP-1 in serum of subjects were determind by ELISA. The time weighted average concentrations (8h-TWA) were used to describe the levels of TDI air exposure in working environment. Spearman correlation assay was used to investigate the correlation of MMP-9, TIMP-1, MMP-9/TIMP-1 and lung function, exposure time. 8-hour TWA means of TDI air levels in exposed group, packers, operators and checkers were 0.39, 0.76, 0.25 mg/m(3), respectively . According to the external exposure concentration, the packers were classified as high exposed group, and the operators and checkers were classified as low exposed group. In controls, low exposed group and high exposed group, the levels of MMP-9, respectively, were (807.21±347.70),(586.91±317.50),(388.94±312.01) ng/ml (χ(2)=16.69, Pcorrelation analysis showed that levels of MMP-9 were positively associated with FEV1.0, and FEV1.0/FVC (r values were 0.27, 0.25, respectively, all Pcorrelated with exposure time(r=-0.26, P=0.040). The positive correlations

  10. Endothelial sirtuin 1 deficiency perpetrates nephrosclerosis through downregulation of matrix metalloproteinase-14: relevance to fibrosis of vascular senescence.

    Science.gov (United States)

    Vasko, Radovan; Xavier, Sandhya; Chen, Jun; Lin, Chi Hua Sarah; Ratliff, Brian; Rabadi, May; Maizel, Julien; Tanokuchi, Rina; Zhang, Frank; Cao, Jian; Goligorsky, Michael S

    2014-02-01

    Sirtuin 1 (SIRT1) depletion in vascular endothelial cells mediates endothelial dysfunction and premature senescence in diverse cardiovascular and renal diseases. However, the molecular mechanisms underlying these pathologic effects remain unclear. Here, we examined the phenotype of a mouse model of vascular senescence created by genetically ablating exon 4 of Sirt1 in endothelial cells (Sirt1(endo-/-)). Under basal conditions, Sirt1(endo-/-) mice showed impaired endothelium-dependent vasorelaxation and angiogenesis, and fibrosis occurred spontaneously at low levels at an early age. In contrast, induction of nephrotoxic stress (acute and chronic folic acid-induced nephropathy) in Sirt1(endo-/-) mice resulted in robust acute renal functional deterioration followed by an exaggerated fibrotic response compared with control animals. Additional studies identified matrix metalloproteinase-14 (MMP-14) as a target of SIRT1. In the kidneys of Sirt1(endo-/-) mice, impaired angiogenesis, reduced matrilytic activity, and retention of the profibrotic cleavage substrates tissue transglutaminase and endoglin accompanied MMP-14 suppression. Furthermore, restoration of MMP-14 expression in SIRT1-depeleted mice improved angiogenic and matrilytic functions of the endothelium, prevented renal dysfunction, and attenuated nephrosclerosis. Our findings establish a novel mechanistic molecular link between endothelial SIRT1 depletion, downregulation of MMP-14, and the development of nephrosclerosis.

  11. Omega-3 and Omega-6 Fatty Acids Act as Inhibitors of the Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9 Activity.

    Science.gov (United States)

    Nicolai, Eleonora; Sinibaldi, Federica; Sannino, Gianpaolo; Laganà, Giuseppina; Basoli, Francesco; Licoccia, Silvia; Cozza, Paola; Santucci, Roberto; Piro, Maria Cristina

    2017-08-01

    Polyunsaturated fatty acids have been reported to play a protective role in a wide range of diseases characterized by an increased metalloproteinases (MMPs) activity. The recent finding that omega-3 and omega-6 fatty acids exert an anti-inflammatory effect in periodontal diseases has stimulated the present study, designed to determine whether such properties derive from a direct inhibitory action of these compounds on the activity of MMPs. To this issue, we investigated the effect exerted by omega-3 and omega-6 fatty acids on the activity of MMP-2 and MMP-9, two enzymes that actively participate to the destruction of the organic matrix of dentin following demineralization operated by bacteria acids. Data obtained (both in vitro and on ex-vivo teeth) reveal that omega-3 and omega-6 fatty acids inhibit the proteolytic activity of MMP-2 and MMP-9, two enzymes present in dentin. This observation is of interest since it assigns to these compounds a key role as MMPs inhibitors, and stimulates further study to better define their therapeutic potentialities in carious decay.

  12. Influence of vaginal bacteria and D- and L-lactic acid isomers on vaginal extracellular matrix metalloproteinase inducer: implications for protection against upper genital tract infections.

    Science.gov (United States)

    Witkin, Steven S; Mendes-Soares, Helena; Linhares, Iara M; Jayaram, Aswathi; Ledger, William J; Forney, Larry J

    2013-08-06

    We evaluated levels of vaginal extracellular matrix metalloproteinase inducer (EMMPRIN) and matrix metalloproteinase (MMP-8) in vaginal secretions in relation to the composition of vaginal bacterial communities and D- and L-lactic acid levels. The composition of vaginal bacterial communities in 46 women was determined by pyrosequencing the V1 to V3 region of 16S rRNA genes. Lactobacilli were dominant in 71.3% of the women, followed by Gardnerella (17.4%), Streptococcus (8.7%), and Enterococcus (2.2%). Of the lactobacillus-dominated communities, 51.5% were dominated by Lactobacillus crispatus, 36.4% by Lactobacillus iners, and 6.1% each by Lactobacillus gasseri and Lactobacillus jensenii. Concentrations of L-lactic acid were slightly higher in lactobacillus-dominated vaginal samples, but most differences were not statistically significant. D-Lactic acid levels were higher in samples containing L. crispatus than in those with L. iners (Pvaginal communities dominated by species of lactobacilli was in concordance with the proportions found in axenic cultures of the various species grown in vitro. Levels of L-lactic acid (Pvaginal concentrations of EMMPRIN and MMP-8 levels were highly correlated (Pinfections. A large proportion of preterm births (>50%) result from infections caused by bacteria originating in the vagina, which requires that they traverse the cervix. Factors that influence susceptibility to these infections are not well understood; however, there is evidence that matrix metalloproteinase (MMP-8) is known to alter the integrity of the cervix. In this work, we show that concentrations of vaginal extracellular matrix metalloproteinase inducer (EMMPRIN) are influenced by members of the vaginal microbial community and concentrations of D- or L-lactic acid isomers in vaginal secretions. Elevated levels of D-lactic acid and the ratio of D- to L-lactic acid influence EMMPRIN concentrations as well as MMP-8 levels. Thus, isomers of lactic acid may function as

  13. Use of matrix metalloproteinase-9 (MMP-9 and its tissue inhibitor (TIMP-1 in the pathomorphological diagnosis of carotid pathology: literature review and own observations

    Directory of Open Access Journals (Sweden)

    Yu. I. Kuzyk

    2016-04-01

    Full Text Available Matrix metalloproteinases (MMPs are the degradative enzymes of the extracellular matrix. Currently, the role of MMP-2 and MMP-9 in the progression of atherosclerosis (AS is proved. The question of possible involvement of MMP-9 into elastin degradation in fibromuscular dysplasia (FMD and pathological tortuosity (PT remains open and insufficiently explored. The aim of the study – analysis of the current literature on the role of degradative enzymes in the development of carotid pathology and study of the expression of type I, III, IV collagens, MMP-9 and TIPM-1 in the wall of the carotid arteries in FMD, PT and AS. Materials and methods included literature review and own research. Immunohistochemical study of type I, III and IV collagens, TIMP-1 and MMP-9 was carried out on surgical material of patients with main carotid diseases: three observations with AS, two – with FMD, two – with PT. The level of expression was assessed by semiquantitative method. Results. Own observations showed that in FMD types I and III collagen content in the media and in the adventitia remains unchanged. MMP-9 expression level reached the highest level of intensity in atherosclerotic plaques, particularly in macrophages, constituting the main part of the atheromatous mass. Moderate intensity of expression is noted in FMD and PT. In PT expression prevailed in the lower third of the media on the border with adventitia, including the adventitia, in FMD – mainly in the media. The level of TIMP-1 is weakly positive in PT and FMD, negative in AS. Conclusions. These results demonstrate the possibility of using MMP-9 and TIMP-1 as a morphological marker determining pathological processes in carotid pathology. Data of immunohistochemical study of type I, II, IV collagens indicate moderate expression of collagen type I in FMD and PT, severe expression of collagen III in FMD, moderate in PT. Type IV collagen is highly expressed in atherosclerotic plaques. For AS high

  14. Tissue inhibitor of matrix metalloproteinase-1 suppresses apoptosis of mouse bone marrow stromal cell line MBA-1.

    Science.gov (United States)

    Guo, L-J; Luo, X-H; Xie, H; Zhou, H-D; Yuan, L-Q; Wang, M; Liao, E-Y

    2006-05-01

    We investigated the action of tissue inhibitor of metalloproteinase-1 (TIMP-1) on apoptosis and differentiation of mouse bone marrow stromal cell line MBA-1. TIMP-1 did not affect alkaline phosphatase (ALP) activity, suggesting that it is not involved in osteoblastic differentiation in MBA-1 cells. However, TIMP-1 inhibited MBA-1 apoptosis induced by serum deprivation in a dose-dependent manner. Our study also showed increased Bcl-2 protein expression and decreased Bax protein expression with TIMP-1 treatment. TIMP-1 decreased cytochrome c release and caspase-3 activation in MBA-1 cells. TIMP-1 activated phosphatidylinositol 3-kinase (PI3-kinase) and c-Jun N-terminal kinase (JNK), and the PI3-kinase inhibitor LY294002 or the JNK inhibitor SP600125 abolished its antiapoptotic activity. To investigate whether antiapoptotic action of TIMP-1 was mediated through its inhibition on MMP activities, we constructed mutant TIMP-1 by side-directed mutagenesis, which abolished the inhibitory activity of MMPs by deletion of Cys1 to Ala4. Wild-type TIMP-1 and mutant TIMP-1 expression plasmids were transfected in MBA-1 cells, and results showed that mutant TIMP-1 still protected the induced MBA-1 cell against apoptosis. These data suggest that TIMP-1 antiapoptotic actions are mediated via the PI3-kinase and JNK signaling pathways and independent of TIMP-1 inhibition of MMP activities.

  15. Mutant matrix metalloproteinase-9 reduces postoperative peritoneal adhesions in rats.

    Science.gov (United States)

    Atta, Hussein; El-Rehany, Mahmoud; Roeb, Elke; Abdel-Ghany, Hend; Ramzy, Maggie; Gaber, Shereen

    2016-02-01

    Postoperative peritoneal adhesions continue to be a major source of morbidity and occasional mortality. Studies have shown that matrix metalloproteinase-9 (MMP-9) levels are decreased postoperatively which may limits matrix degradation and participate in the development of peritoneal adhesions. In this proof-of-principle study, we evaluated the effect of gene therapy with catalytically inactive mutant MMP-9 on postoperative peritoneal adhesions in rats. Adenovirus encoding mutant MMP-9 (Ad-mMMP-9) or saline was instilled in the peritoneal cavity after cecal and parietal peritoneal injury in rats. Expression of mutant MMP-9 transcript was verified by sequencing. Adenovirus E4 gene expression, adhesion scores, MMP-9, tissue plasminogen activator (tPA), plasminogen activator inhibitor-1 (PAI-1) and transforming growth factor-β1 (TGF-β1) expression were evaluated at sacrifice one week after treatment. Both mutant MMP-9 transcripts and adenovirus E4 gene were expressed in Ad-mMMP-9 treated adhesions. Adhesions severity decreased significantly (p = 0.036) in the Ad-mMMP-9-treated compared with saline-treated adhesions. Expression of MMP-9 mRNA and protein were elevated (p = 0.001 and p = 0.029, respectively) in the Ad-mMMP-9-treated adhesions compared with saline-treated adhesions. While tPA levels were increased (p = 0.02) in Ad-mMMP-9 treated adhesions compared with saline-treated adhesions, TGF-β1 and PAI-1 levels were decreased (p = 0.017 and p = 0.042, respectively). No difference in mortality were found between groups (p = 0.64). Mutant MMP-9 gene therapy effectively transduced peritoneal adhesions resulting in reduction of severity of primary peritoneal adhesions. Copyright © 2016 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  16. The Profile of Tooth and Gingival Crevicular Fluid Matrix Metalloproteinase-1 in Different Dental Diseases

    Directory of Open Access Journals (Sweden)

    Mutlak Shaimaa S

    2017-07-01

    Full Text Available Background: Pulpitis, apical periodontitis, and chronic periodontitis are the most common dental diseases and being the leading cause of tooth loss in adults. Aims: To unravel the changes and the interrelation of the biochemical and immunohistochemical levels of matrix metalloproteinase-1 (MMP-1 in the gingival crevicular fluid (GCF and teeth specimens of patients with different dental diseases. To test the influence of these changes on disease severity. Materials and methods: The GCF and tooth specimens were collected from 20 patients with chronic irreversible pulpitis (CIP, and similar number of patients with chronic periapical lesion (CPL, and chronic periodontitis (CP in addition to 20 healthy controls. Results: Statistically significant increase were found in the mean concentration of GCF-MMP1 of the patients within the CP and CIP groups over those of CIP and CPL groups (P<0.001. Highly significant elevation (P<0.001 in the means of cell with positive expression of the MMP-1 in all patient groups compared with the mean of the control group. The highest percentages of the MMP-1 expression (P=0.000 above the median values were seen in CPL (13.3% vs 86.7% followed by both CIP and CP groups (9.1% vs 90.9%. Using Receiver Operating Characteristic (ROC curve analysis, the GCF MMP-1 was found to be an effective test in CP group at reading ≥ 0.83 pg/ml and in CPL at cut off value of ≥ 2.24 ng/ml. Conclusion: The MMP1 plays a crucial role in the demolition of periodontal tissue and the GCF analyses can be used as noninvasive method to unravel these changes.

  17. Changes in Matrix Metalloproteinases in Diabetes Patients' Tears After Vitrectomy and the Relationship With Corneal Epithelial Disorder.

    Science.gov (United States)

    Matsumura, Takehiro; Takamura, Yoshihiro; Tomomatsu, Takeshi; Arimura, Shogo; Gozawa, Makoto; Takihara, Yuji; Inatani, Masaru

    2015-06-01

    Previous studies indicate involvement of matrix metalloproteinases (MMPs) in the pathogenesis of diabetic keratopathy. To evaluate MMP levels in the tears of patients with diabetes, we investigated changes in MMP levels during perioperative periods and clarify the relationship with corneal epithelial disorders following vitrectomy. Matrix metalloproteinase levels in tears were measured by multiplex bead array in patients with or without diabetes who were scheduled for vitrectomy. Twenty-two patients with diabetes and proliferative diabetic retinopathy, and 20 patients with epiretinal membrane or macular hole (control group), were recruited. Changes in MMP levels during perioperative periods and the relationship with corneal epithelial disorders after vitrectomy were analyzed. The levels of MMP-2, -9, and -10 at 1 day after surgery in the diabetic group were significantly higher than in the control group. At 1 week after surgery, MMP-10 levels in the diabetic group were significantly higher than in the control group. After vitrectomy, corneal epithelial disorders occurred in six patients in the diabetic group but not in the control group. In the diabetic group, MMP-10 levels in tears of patients with corneal epithelial disorders were significantly higher than those in patients without corneal epithelial disorders. The MMP concentration in tears of patients with diabetes was higher than in nondiabetic patients after vitrectomy. High MMP-10 levels were observed in patients with diabetes and corneal epithelial disorders after vitrectomy. Aberrant levels of MMP-10 may cause corneal epithelial disorder after vitrectomy.

  18. Serum amyloid A stimulates matrix-metalloproteinase-9 upregulation via formyl peptide receptor like-1-mediated signaling in human monocytic cells

    International Nuclear Information System (INIS)

    Lee, Ha Young; Kim, Mi-Kyoung; Park, Kyoung Sun; Bae, Yun Hee; Yun, Jeanho; Park, Joo-In; Kwak, Jong-Young; Bae, Yoe-Sik

    2005-01-01

    In the present study, we found that serum amyloid A (SAA) stimulated matrix-metalloproteinase-9 (MMP-9) upregulation at the transcription and translational levels in THP-1 cells. SAA stimulated the activation of nuclear factor κB (NF-κB), which was required for the MMP-9 upregulation by SAA. The signaling events induced by SAA included the activation of ERK and intracellular calcium rise, which were found to be required for MMP-9 upregulation. Formyl peptide receptor like 1 (FPRL1) was found to be involved in the upregulation of MMP-9 by SAA. Among several FPRL1 agonists, including Trp-Lys-Tyr-Met-Val-D-Met (WKYMVm), SAA selectively stimulated MMP-9 upregulation. With respect to the molecular mechanisms involved in the differential action of SAA and WKYMVm, we found that SAA could not competitively inhibit the binding of 125 I-labeled WKYMVm to FPRL1. Taken together, we suggest that SAA plays a role in the modulation of inflammatory and immune responses via FPRL1, by inducing MMP-9 upregulation in human monocytic cells

  19. Terminalia catappa Exerts Antimetastatic Effects on Hepatocellular Carcinoma through Transcriptional Inhibition of Matrix Metalloproteinase-9 by Modulating NF-κB and AP-1 Activity

    Directory of Open Access Journals (Sweden)

    Chao-Bin Yeh

    2012-01-01

    Full Text Available High mortality and morbidity rates for hepatocellular carcinoma (HCC in Taiwan primarily result from uncontrolled tumor metastasis. Previous studies have identified that Terminalia catappa leaf extracts (TCE exert hepatoprotective, antioxidative, antiinflammatory, anticancer, and antimetastatic activities. However, the effects of TCE on HCC and the underlying molecular mechanisms of its activities have yet to be fully elucidated. The present study's findings demonstrate that TCE concentration dependently inhibits human HCC migration/invasion. Zymographic and western blot analyses revealed that TCE inhibited the activities and expression of matrix metalloproteinase-9 (MMP-9. Assessment of mRNA levels, using reverse transcriptase polymerase chain reaction (PCR and real-time PCR, and promoter assays confirmed the inhibitory effects of TCE on MMP-9 expression in HCC cells. The inhibitory effects of TCE on MMP-9 proceeded by upregulating tissue inhibitor of metalloproteinase-1 (TIMP-1, as well as suppressing nuclear translocation and DNA binding activity of nuclear factor-kappa B (NF-κB and activating protein-1 (AP-1 on the MMP-9 promoter in Huh7 cells. In conclusion, TCE inhibits MMP-9 expression and HCC cell metastasis and, thus, has potential use as a chemopreventive agent. Its inhibitory effects are associated with downregulation of the binding activities of the transcription factors NF-κB and AP-1.

  20. Peptide-Based Selective Inhibitors of Matrix Metalloproteinase-Mediated Activities

    Directory of Open Access Journals (Sweden)

    Margaret W. Ndinguri

    2012-11-01

    Full Text Available The matrix metalloproteinases (MMPs exhibit a broad array of activities, some catalytic and some non-catalytic in nature. An overall lack of selectivity has rendered small molecule, active site targeted MMP inhibitors problematic in execution. Inhibitors that favor few or individual members of the MMP family often take advantage of interactions outside the enzyme active site. We presently focus on peptide-based MMP inhibitors and probes that do not incorporate conventional Zn2+ binding groups. In some cases, these inhibitors and probes function by binding only secondary binding sites (exosites, while others bind both exosites and the active site. A myriad of MMP mediated-activities beyond selective catalysis can be inhibited by peptides, particularly cell adhesion, proliferation, motility, and invasion. Selective MMP binding peptides comprise highly customizable, unique imaging agents. Areas of needed improvement for MMP targeting peptides include binding affinity and stability.

  1. Matrix metalloproteinase (MMP) 9 transcription in mouse brain induced by fear learning.

    Science.gov (United States)

    Ganguly, Krishnendu; Rejmak, Emilia; Mikosz, Marta; Nikolaev, Evgeni; Knapska, Ewelina; Kaczmarek, Leszek

    2013-07-19

    Memory formation requires learning-based molecular and structural changes in neurons, whereas matrix metalloproteinase (MMP) 9 is involved in the synaptic plasticity by cleaving extracellular matrix proteins and, thus, is associated with learning processes in the mammalian brain. Because the mechanisms of MMP-9 transcription in the brain are poorly understood, this study aimed to elucidate regulation of MMP-9 gene expression in the mouse brain after fear learning. We show here that contextual fear conditioning markedly increases MMP-9 transcription, followed by enhanced enzymatic levels in the three major brain structures implicated in fear learning, i.e. the amygdala, hippocampus, and prefrontal cortex. To reveal the role of AP-1 transcription factor in MMP-9 gene expression, we have used reporter gene constructs with specifically mutated AP-1 gene promoter sites. The constructs were introduced into the medial prefrontal cortex of neonatal mouse pups by electroporation, and the regulation of MMP-9 transcription was studied after contextual fear conditioning in the adult animals. Specifically, -42/-50- and -478/-486-bp AP-1 binding motifs of the mouse MMP-9 promoter sequence have been found to play a major role in MMP-9 gene activation. Furthermore, increases in MMP-9 gene promoter binding by the AP-1 transcription factor proteins c-Fos and c-Jun have been demonstrated in all three brain structures under investigation. Hence, our results suggest that AP-1 acts as a positive regulator of MMP-9 transcription in the brain following fear learning.

  2. [Immunohistochemical study of the specific features of expression of matrix metalloproteinases 1, 9 in the photoaged skin, the foci of actinic keratosis and basal cell carcinoma].

    Science.gov (United States)

    Kuznetsova, E V; Snarskaya, E S; Zavalishina, L E; Tkachenko, S B

    Matrix metalloproteinases (MMPs) mediate the degradation of all types of collagens and other extracellular matrix components (elastin, proteoglycans, and laminin), their synthesis and accumulation play a key role in the hydrolysis of basement membrane. MMPs are involved in a wide range of proteolytic processes in the presence of different physiological and pathological changes, including inflammation, wound healing, angiogenesis, and carcinogenesis. to study the specific features of MMP-1 and MMP-9 expression in different stages of skin photoaging, in the foci of actinic keratosis and basal cell carcinoma by immunohistochemical examination. 12 samples of the healthy skin (6 samples of the eyelid skin with Glogau grade II photoaging; 6 ones of eyelid skin with Glogau grades III-IV photoaging) and biopsies from 8 foci of actinic keratosis and from 8 ones of basal cell carcinoma were examined. A positive reaction to MMPs was shown as different brown staining intensity in the cytoplasm of keratinocytes/tumor cells. MMP-1 and MMP-9 expression was recorded in 67% of the histological specimens of the Glogau grade III photoaged skin and in 100% of those of Glogau grade IV. In the foci of actinic keratosis, the expression of MMP-1 was observed in 62.5% of cases and that of MMP-9 was seen in 87.5%. In basal cell carcinoma, the expression of MMP-1 and MMP-9 was detected in all investigated samples. The immunomorphological findings are indicative of the important role of the level of MMP-1 and MMP-9 expression that is associated with the degree of progression of skin photoaging processes. Minimal MMP-1 and MMP-9 expression was recorded even in grades III-IV photoaging and in the foci of actinic keratosis. Intense MMP-1 and MMP-9 expression was detected in malignant skin epithelial neoplasms as different clinicomorphological types of basal cell carcinoma.

  3. Distribution and activity levels of matrix metalloproteinase 2 and 9 in canine and feline osteosarcoma

    OpenAIRE

    Gebhard, Christiane; Fuchs-Baumgartinger, Andrea; Razzazi-Fazeli, Ebrahim; Miller, Ingrid; Walter, Ingrid

    2016-01-01

    Overexpression of matrix metalloproteinases (MMPs) has been associated with increased tumor aggressiveness and metastasis dissemination. We investigated whether the contrasting metastatic behavior of feline and canine osteosarcoma is related to levels and activities of MMP2 and MMP9. Zymography and immunohistochemistry were used to determine expression levels of MMP2 and MMP9 in canine and feline osteosarcoma. Using immunohistochemistry, increased MMP9 levels were identified in most canine os...

  4. In vitro induction of matrix metalloproteinase-2 and matrix metalloproteinase-9 expression in keratinocytes by boron and manganese.

    Science.gov (United States)

    Chebassier, Nathalie; El Houssein, Ouijja; Viegas, Isabelle; Dréno, Brigitte

    2004-08-01

    Matrix metalloproteinase (MMP)-2 and MMP-9 are involved in keratinocyte migration and granulation tissue remodeling during wound healing. Thermal water cures are sometimes proposed as complementary treatment for accelerating healing of wounds resulting from burns and/or surgery, but their mechanisms of action remain unknown. Some thermal waters are rich in trace elements such as boron and manganese. Interestingly, clinical studies have shown the beneficial effects of trace elements such as boron and manganese for human wound healing. To try to specify the role of trace elements in cutaneous healing, the present study investigated the effects of these trace elements on the production of MMP-2 and MMP-9 by normal human keratinocytes cultured in vitro. Immunohistochemistry and Western blot showed that intracellular MMP-9 expression in keratinocytes was induced when incubated for 6 h with boron at 10 micro g/ml or manganese at 0.2 micro g/ml. Moreover, gelatin zymography on keratinocyte supernatants showed an increase of gelatinase secretion after 24 h of incubation of keratinocytes with boron or manganese, regardless of concentration. Gelatinase secretion was not associated with keratinocyte proliferation induced by trace elements. Thus, our results suggest that boron and manganese could play a role in the clinical efficiency of thermal water on wound healing.

  5. Matrix metalloproteinases: a review of their structure and role in systemic sclerosis.

    Science.gov (United States)

    Peng, Wen-jia; Yan, Jun-wei; Wan, Ya-nan; Wang, Bing-xiang; Tao, Jin-hui; Yang, Guo-jun; Pan, Hai-feng; Wang, Jing

    2012-12-01

    Matrix metalloproteinases (MMPs) are the main enzymes involved in arterial wall extracellular matrix (ECM) degradation and remodeling, whose activity has been involved in various normal and pathologic processes, such as inflammation, fibrosis. As a result, the MMPs have come to consider as both therapeutic targets and diagnostic tools for the treatment and diagnosis of autoimmune diseases, including systemic lupus erythematosus and rheumatoid arthritis. Systemic sclerosis (SSc) is a rare autoimmune disease of unknown etiology characterized by an excessive over-production of collagen and other ECM, resulting in skin thickening and fibrosis of internal organs. In recent years, abnormal expression of MMPs has been demonstrated with the pathogenesis of SSc, and the association of different polymorphisms on MMPs genes with SSc has been extensively studied. This review describes the structure, function and regulation of MMPs and shortly summarizes current understanding on experimental findings, genetic associations of MMPs in SSc.

  6. Collagenolytic Matrix Metalloproteinases in Chronic Obstructive Lung Disease and Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Woode, Denzel; Shiomi, Takayuki; D’Armiento, Jeanine, E-mail: jmd12@cumc.columbia.edu [Department of Anesthesiology, Columbia University, College of Physicians and Surgeons, New York, NY 10033 (United States)

    2015-02-05

    Chronic obstructive pulmonary disease (COPD) and lung cancer result in significant morbidity and mortality worldwide. In addition to the role of environmental smoke exposure in the development of both diseases, recent epidemiological studies suggests a connection between the development of COPD and lung cancer. Furthermore, individuals with concomitant COPD and cancer have a poor prognosis when compared with individuals with lung cancer alone. The modulation of molecular pathways activated during emphysema likely lead to an increased susceptibility to lung tumor growth and metastasis. This review summarizes what is known in the literature examining the molecular pathways affecting matrix metalloproteinases (MMPs) in this process as well as external factors such as smoke exposure that have an impact on tumor growth and metastasis. Increased expression of MMPs provides a unifying link between lung cancer and COPD.

  7. Collagenolytic Matrix Metalloproteinases in Chronic Obstructive Lung Disease and Cancer

    International Nuclear Information System (INIS)

    Woode, Denzel; Shiomi, Takayuki; D’Armiento, Jeanine

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) and lung cancer result in significant morbidity and mortality worldwide. In addition to the role of environmental smoke exposure in the development of both diseases, recent epidemiological studies suggests a connection between the development of COPD and lung cancer. Furthermore, individuals with concomitant COPD and cancer have a poor prognosis when compared with individuals with lung cancer alone. The modulation of molecular pathways activated during emphysema likely lead to an increased susceptibility to lung tumor growth and metastasis. This review summarizes what is known in the literature examining the molecular pathways affecting matrix metalloproteinases (MMPs) in this process as well as external factors such as smoke exposure that have an impact on tumor growth and metastasis. Increased expression of MMPs provides a unifying link between lung cancer and COPD

  8. 2-Methoxy-2,4-diphenyl-3(2H)-furanone-labeled gelatin zymography and reverse zymography: a rapid real-time method for quantification of matrix metalloproteinases-2 and -9 and tissue inhibitors of metalloproteinases.

    Science.gov (United States)

    Min, Danqing; Lyons, James Guy; Jia, Junhong; Lo, Lisa; McLennan, Susan V

    2006-02-01

    Measurement of matrix metalloproteinases (MMPs) and their specific tissue inhibitors of metalloproteinases (TIMPs) by the techniques of zymography and reverse zymography provide useful information regarding the status of matrix accumulation or breakdown. This report describes the use of 2-methoxy-2,4-diphenyl-3(2H)-furanone (MDPF), a fluorescent compound which can be used to label gelatin as a substrate for detection of the gelatin degrading MMP-2 and -9 by zymography. In addition, a modification of the zymographic technique by addition of excess MMPs enables the use of the MDPF-labeled gelatin substrate for the identification and quantification of TIMPs by reverse zymography. Both systems are real-time sensitive reliable quantification techniques, easily used for measurement of these MMPs and TIMPs in clinical, biological, and tissue culture samples.

  9. Enhanced cerebrovascular expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 via the MEK/ERK pathway during cerebral ischemia in the rat

    Directory of Open Access Journals (Sweden)

    Maddahi Aida

    2009-06-01

    Full Text Available Abstract Background Cerebral ischemia is usually characterized by a reduction in local blood flow and metabolism and by disruption of the blood-brain barrier in the infarct region. The formation of oedema and opening of the blood-brain barrier in stroke is associated with enhanced expression of metalloproteinase-9 (MMP-9 and tissue inhibitor of metalloproteinase-1 (TIMP-1. Results Here, we found an infarct volume of 24.8 ± 2% and a reduced neurological function after two hours of middle cerebral artery occlusion (MCAO, followed by 48 hours of recirculation in rat. Immunocytochemistry and confocal microscopy revealed enhanced expression of MMP-9, TIMP-1, and phosphorylated ERK1/2 in the smooth muscle cells of the ischemic MCA and associated intracerebral microvessels. The specific MEK1/2 inhibitor U0126, given intraperitoneal zero or 6 hours after the ischemic event, reduced the infarct volume significantly (11.8 ± 2% and 14.6 ± 3%, respectively; P Conclusion These data are the first to show that the elevated vascular expression of MMP-9 and TIMP-1, associated with breakdown of the blood-brain barrier following focal ischemia, are transcriptionally regulated via the MEK/ERK pathway.

  10. Snake Venom Metalloproteinases

    Directory of Open Access Journals (Sweden)

    Gâz Florea Şerban Andrei

    2016-03-01

    Full Text Available As more data are generated from proteome and transcriptome analysis revealing that metalloproteinases represent most of the Viperid and Colubrid venom components authors decided to describe in a short review a classification and some of the multiple activities of snake venom metalloproteinases. SVMPs are classified in three major classes (P-I, P-II and P-III classes based on the presence of various domain structures and according to their domain organization. Furthermore, P-II and P-III classes were separated in subclasses based on distinctive post-translational modifications. SVMPs are synthesized in a latent form, being activated through a Cys-switch mechanism similar to matrix metalloproteinases. Most of the metalloproteinases of the snake venom are responsible for the hemorrhagic events but also have fibrinogenolytic activity, poses apoptotic activity, activate blood coagulation factor II and X, inhibit platelet aggregation, demonstrating that SVMPs have multiple functions in addition to well-known hemorrhagic function.

  11.  The role of metalloproteinases in modification of extracellular matrix in invasive tumor growth, metastasis and angiogenesis

    Directory of Open Access Journals (Sweden)

    Krzysztof Fink

    2012-09-01

    Full Text Available Extracellular matrix metalloproteinases (MMPs are a family of endopeptydases which recquire a zinc ion at their active site, for proteolityc activity. There are six members of the MMP family: matrilysins, collagenases, stromelysins, gelatinases, membrane MMPs and other MMPs. Activity of MMPs is regulated at the level of gene transcription, mRNA stability, zymogene proteolitic activation, inhibition of an active enzyme and MMP degradation. Tissue inhibitors of metalloproteinases (TIMPs are main intracellular inhibitors of MMPs. Host cells can be stimulated by tumor cells to produce MMPs by secreted interleukins, interferons, growth factors and an extracellular matrix metalloproteinase inducer (EMMPRIN. MMPs are produced by tumor cells, fibroblasts, macrophages, mast cells, polimorphonuclear neutrophiles (PMNs and endothelial cells (ECs. MMPs affect many stages of tumor development, facilitating its growth through promoting tumor cells proliferation, invasion and migration, new blood vessels formation and blocking tumor cells apoptosis. MMPs can promote tumor development in several ways. ECM degradation results in release of peptide growth factors. Growth factors linked with cell surface or binding proteins can also be liberated by MMPs. MMPs can indirectly regulate integrin signalling or cleave E-cadherins, facilitating cell migration. MMPs support metastasis inducing an epithelial to mesenchymal transition (EMT. MMP also support transendothelial migration. MMPs support angiogenesis by releasing pro-angiogenic factors and degrading ECM to support ECs migration. Cell surface growth factor receptors are also cleaved by MMPs, which results in inhibition of tumor development, so is release of anti-angiogenic factors from ECM. 

  12. Inhibition of matrix metalloproteinase-2 by PARP inhibitors

    International Nuclear Information System (INIS)

    Nicolescu, Adrian C.; Holt, Andrew; Kandasamy, Arulmozhi D.; Pacher, Pal; Schulz, Richard

    2009-01-01

    Matrix metalloproteinase-2 (MMP-2), a ubiquitously expressed zinc-dependent endopeptidase, and poly(ADP-ribosyl) polymerase (PARP), a nuclear enzyme regulating DNA repair, are activated by nitroxidative stress associated with various pathologies. As MMP-2 plays a detrimental role in heart injuries resulting from enhanced nitroxidative stress, where PARP and MMP inhibitors are beneficial, we hypothesized that PARP inhibitors may affect MMP-2 activity. Using substrate degradation assays to determine MMP-2 activity we found that four PARP inhibitors (3-AB, PJ-34, 5-AIQ, and EB-47) inhibited 64 kDa MMP-2 in a concentration-dependent manner. The IC 50 values of PJ-34 and 5-AIQ were in the high micromolar range and comparable to those of known MMP-2 inhibitors doxycycline, minocycline or o-phenanthroline, whereas those for 3-AB and EB-47 were in the millimolar range. Co-incubation of PARP inhibitors with doxycycline showed an additive inhibition of MMP-2 that was significant for 3-AB alone. These data demonstrate that the protective effects of some PARP inhibitors may include inhibition of MMP-2 activity.

  13. Inhibition of matrix metalloproteinase-2 by PARP inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Nicolescu, Adrian C.; Holt, Andrew; Kandasamy, Arulmozhi D. [Departments of Pharmacology and Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Alta., Canada T6G 2S2 (Canada); Pacher, Pal [National Institutes of Health, NIAAA, Laboratory of Physiologic Studies, Bethesda, MD (United States); Schulz, Richard, E-mail: richard.schulz@ualberta.ca [Departments of Pharmacology and Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Alta., Canada T6G 2S2 (Canada)

    2009-10-02

    Matrix metalloproteinase-2 (MMP-2), a ubiquitously expressed zinc-dependent endopeptidase, and poly(ADP-ribosyl) polymerase (PARP), a nuclear enzyme regulating DNA repair, are activated by nitroxidative stress associated with various pathologies. As MMP-2 plays a detrimental role in heart injuries resulting from enhanced nitroxidative stress, where PARP and MMP inhibitors are beneficial, we hypothesized that PARP inhibitors may affect MMP-2 activity. Using substrate degradation assays to determine MMP-2 activity we found that four PARP inhibitors (3-AB, PJ-34, 5-AIQ, and EB-47) inhibited 64 kDa MMP-2 in a concentration-dependent manner. The IC{sub 50} values of PJ-34 and 5-AIQ were in the high micromolar range and comparable to those of known MMP-2 inhibitors doxycycline, minocycline or o-phenanthroline, whereas those for 3-AB and EB-47 were in the millimolar range. Co-incubation of PARP inhibitors with doxycycline showed an additive inhibition of MMP-2 that was significant for 3-AB alone. These data demonstrate that the protective effects of some PARP inhibitors may include inhibition of MMP-2 activity.

  14. Genetic polymorphisms of matrix metalloproteinases and their inhibitors in potentially malignant and malignant lesions of the head and neck

    Directory of Open Access Journals (Sweden)

    Asotra Kamlesh

    2010-02-01

    Full Text Available Abstract Matrix metalloproteinases (MMPs are a family of zinc-dependent proteinases that are capable of cleaving all extra cellular matrix (ECM substrates. Degradation of matrix is a key event in progression, invasion and metastasis of potentially malignant and malignant lesions of the head and neck. It might have an important polymorphic association at the promoter regions of several MMPs such as MMP-1 (-1607 1G/2G, MMP-2 (-1306 C/T, MMP-3 (-1171 5A/6A, MMP-9 (-1562 C/T and TIMP-2 (-418 G/C or C/C. Tissue inhibitors of metalloproteinases (TIMPs are naturally occurring inhibitors of MMPs, which inhibit the activity of MMPs and control the breakdown of ECM. Currently, many MMP inhibitors (MMPIs are under development for treating different malignancies. Useful markers associated with molecular aggressiveness might have a role in prognostication of malignancies and to better recognize patient groups that need more antagonistic treatment options. Furthermore, the introduction of novel prognostic markers may also promote exclusively new treatment possibilities, and there is an obvious need to identify markers that could be used as selection criteria for novel therapies. The objective of this review is to discuss the molecular functions and polymorphic association of MMPs and TIMPs and the possible therapeutic aspects of these proteinases in potentially malignant and malignant head and neck lesions. So far, no promising drug target therapy has been developed for MMPs in the lesions of this region. In conclusion, further research is required for the development of their potential diagnostic and therapeutic possibilities.

  15. Matrix metalloproteinase gene polymorphisms in patients with coronary artery disease

    Directory of Open Access Journals (Sweden)

    Vanessa L.N. Dalepiane

    2007-01-01

    Full Text Available Matrix metalloproteinases (MMPs play an important role in the pathogenesis of atherosclerosis, the pathology underlying the majority of coronary artery disease (CAD. In this study we tested the hypothesis that polymorphic variation in the MMP genes influences the risk of developing atherosclerosis. We analyzed functional polymorphisms in the promoter of the MMP-1, MMP-3, MMP-9 and MMP-12 genes in 183 Brazilian Caucasian individuals submitted to coronary angiography, of which 67 (37% had normal coronary arteries (control group and 116 (63% had CAD (CAD patient group. The -1607 1G/2G MMP-1, -1171 5A/6A MMP-3, -1562 C/T MMP-9, -82 A/G MMP-12 polymorphisms were analyzed by PCR followed by restriction digestion. No significant differences were observed in allele frequencies between the CAD patients and controls. Haplotype analysis showed no differences between the CAD patients and controls. There was a significant difference in the severity of CAD, as assessed by the number of diseased vessels, in MMP-1 1G/1G homozygous individuals and in those homozygous for the 6A allele of the MMP-3 polymorphism. However, multivariate analysis showed that diabetes mellitus was the only variable independently associated with CAD severity. Our findings indicated that MMP polymorphisms have no significant impact on the risk and severity of CAD.

  16. Stimulation of epithelial cell matrix metalloproteinase (MMP-2, -9, -13) and interleukin-8 secretion by fusobacteria.

    Science.gov (United States)

    Gursoy, U K; Könönen, E; Uitto, V-J

    2008-10-01

    Bacterial pathogens involved in periodontal diseases exert their destructive effects primarily by stimulating the host cells to increase their secretion of proinflammatory cytokines and matrix metalloproteinases (MMPs). This study aimed to determine the epithelial cell matrix metalloproteinase and interleukin-8 (IL-8) secretion upon exposure to fusobacteria. Eight different oral and non-oral Fusobacterium strains were incubated with HaCaT epithelial cells. Gelatin zymography and Western blot analysis were performed to detect collagenase 3 (MMP-13), gelatinase A (MMP-2), gelatinase B (MMP-9), and IL-8 secretion by epithelial cells. All Fusobacterium strains, especially Fusobacterium necrophorum ATCC 25286, Fusobacterium nucleatum ATCC 25586, and Fusobacterium varium ATCC 51644, increased MMP-9 and MMP-13 secretion. Fusobacterium simiae ATCC 33568, and to a lesser extent F. nucleatum and F. necrophorum, increased epithelial MMP-2 secretion. F. nucleatum and F. necrophorum also increased IL-8 secretion. F. varium ATCC 27725, a strain that only weakly stimulated MMP production, strongly increased the IL-8 production, suggesting that their expression is differently regulated. We conclude that the pathogenic potential of fusobacteria may partly result from their ability to stimulate secretion of MMP-9, MMP-13, and IL-8 from epithelial cells.

  17. Metalloproteinases and their regulators in colorectal cancer.

    NARCIS (Netherlands)

    Jagt, M.F.P. van der; Wobbes, T.; Strobbe, L.J.; Sweep, F.C.; Span, P.N.

    2010-01-01

    Metalloproteinases (MPs) such as the matrix metalloproteinases (MMPs) and adamalysins (ADAMs and ADAMTS) are expressed in various stages of colorectal cancer (CRC), and some correlate with survival and prognosis. The MPs are regulated by various factors including EMMPRIN, TIMPs, and RECK. In

  18. Genetic polymorphisms of matrix metalloproteinase 3 in primary sclerosing cholangitis

    Science.gov (United States)

    Juran, Brian D.; Atkinson, Elizabeth J.; Schlicht, Erik M.; Larson, Joseph J.; Ellinghaus, David; Franke, Andre; Lazaridis, Konstantinos N.

    2011-01-01

    Background The damaging cholestasis inherent to primary sclerosing cholangitis (PSC) results from bile duct stricturing because of progressive fibrosis. The matrix metalloproteinase 3 (MMP3) degrades a wide range of matrix components and is expressed by activated liver stellate cells, and so is a candidate for involvement with the fibrotic processes underlying PSC. Moreover, the MMP3 gene harbours polymorphisms associated with variation in its activity directly impacting clinical phenotypes. Aims We aimed to examine the influence of MMP3 polymorphisms on PSC risk and progression. Methods Nine single nucleotide polymorphisms (SNPs) tagging the common genetic variation of MMP3 were genotyped in 266 PSC patients and 407 controls. SNPs and inferred haplotypes were assessed for PSC association by logistic regression and score tests. The effect of SNPs on survival to liver transplant or death was analysed using Cox regression, and Kaplan–Meier curves were constructed. Results No association of PSC with individual SNPs or haplotypes of MMP3 was detected. However, progression to death or liver transplant was significantly associated with homozygosity for minor alleles of rs522616, rs650108 and rs683878, particularly among PSC patients with concurrent ulcerative colitis (UC) (strongest in redundant SNPs rs650108/rs683878, hazard ratio = 3.23, 95% confidence interval 1.45–7.25, P = 0.004). Conclusions Genetic variation in MMP3 influences PSC progression, possibly in the context of coexisting UC. While the functional variants and specific mechanisms remain unknown, this finding implicates the turnover of the extracellular matrix as an important and variable component of PSC pathogenesis. Efforts to understand this process could form the basis for developing effective treatments, which are currently lacking for PSC. PMID:21134112

  19. Matrix metalloproteinase-1 inhibitory activities of Morinda citrifolia seed extract and its constituents in UVA-irradiated human dermal fibroblasts.

    Science.gov (United States)

    Masuda, Megumi; Murata, Kazuya; Naruto, Shunsuke; Uwaya, Akemi; Isami, Fumiyuki; Matsuda, Hideaki

    2012-01-01

    The objective of this study was to examine whether a 50% ethanolic extract (MCS-ext) of the seeds of Morinda citrifolia (noni) and its constituents have matrix metalloproteinase-1 (MMP-1) inhibitory activity in UVA-irradiated normal human dermal fibroblasts (NHDFs). The MCS-ext (10 μg/mL) inhibited MMP-1 secretion from UVA-irradiated NHDFs, without cytotoxic effects, at 48 h after UV exposure. The ethyl acetate-soluble fraction of MCS-ext was the most potent inhibitor of MMP-1 secretion. Among the constituents of the fraction, a lignan, 3,3'-bisdemethylpinoresinol (1), inhibited the MMP-1 secretion at a concentration of 0.3 μM without cytotoxic effects. Furthermore, 1 (0.3 μM) reduced the level of intracellular MMP-1 expression. Other constituents, namely americanin A (2), quercetin (3) and ursolic acid (4), were inactive. To elucidate inhibition mechanisms of MMP-1 expression and secretion, the effect of 1 on mitogen-activated protein kinases (MAPKs) phosphorylation was examined. Western blot analysis revealed that 1 (0.3 μM) reduced the phosphorylations of p38 and c-Jun-N-terminal kinase (JNK). These results suggested that 1 suppresses intracellular MMP-1 expression, and consequent secretion from UVA-irradiated NHDFs, by down-regulation of MAPKs phosphorylation.

  20. Buddleja officinalis inhibits high glucose-induced matrix metalloproteinase activity in human umbilical vein endothelial cells.

    Science.gov (United States)

    Lee, Yun Jung; Kang, Dae Gill; Kim, Jin Sook; Lee, Ho Sub

    2008-12-01

    The aim of the present investigation was to investigate whether an aqueous extract of Buddleja officinalis (ABO), a traditional Korean herbal medicine, suppresses the endothelial extracellular matrix degradation under high glucose condition. The incubation with high concentration of glucose (25 mM) increased significantly matrix metalloproteinase (MMP)-2/-9 expressions and activities in primary cultured human umbilical vein endothelial cells (HUVEC). Pretreatment with ABO decreased high glucose-induced increase of MMP-2/-9 activities in a dose-dependent manner. Real time qRT-PCR revealed that high glucose-induced MMP-2/-9 mRNA expression levels were attenuated by pretreatment with ABO. High glucose-induced MCP-1 and IL-8 mRNA expression levels also decreased by ABO. ABO decreased high glucose-induced hydrogen peroxide production, oxidative stress marker. These results provide new insights into the pathophysiological mechanisms for anti-inflammatory properties of ABO in vascular diseases associated with diabetes mellitus. (c) 2008 John Wiley & Sons, Ltd.

  1. Correlation analysis of levels of adiponectin and matrix metalloproteinase-9 with stability of coronary heart disease.

    Science.gov (United States)

    Li, Ya

    2015-01-01

    To analyze the changes of adiponection (ANP) and matrix metalloproteinase-9 (MMP-9) in patients with coronary heart diseases (CHD) of different types, to investigate the correlation between these changes and stability of coronary artery plague. Inpatients of our hospital were divided into 56 cases with acute myocardial infarction (AMI), 56 cases with unstable angina pectoris (UA), 54 cases with stable angina pectoris (SA), and 60 cases with CHD excluded by using coronary arteriongraphy as the control group. Changes of ANP and MMP-9 were determined, and the correlation was analyzed. 1. ANP and MMP-9 levels in CHD group were higher than those of control group (P < 0.01). 2. Serum ANP and MMP-9 levels in AMI and UA groups were significantly higher than those in control group and SA group (P < 0.05). 3. MMP-9 level in AMI group was significantly higher than that in UA group (P < 0.01). 1. Increased ANP and MMP-9 levels are the independent risk factors of CHD; 2. Increased levels of ANP and MMP-9 in patients with CHD suggest instability of atherosclerotic plaque.

  2. Effect of food on the pharmacokinetics of oral MMI270B (CGS 27023A), a novel matrix metalloproteinase inhibitor

    NARCIS (Netherlands)

    F.A.L.M. Eskens (Ferry); N.C. Levitt; A. Sparreboom (Alex); L. Choi; R. Mather; J. Verweij (Jaap); A.L. Harris

    2000-01-01

    textabstractMMI270B is a matrix metalloproteinase inhibitor (MMPI) with in vitro and in vivo activity. To exert optimal target inhibition, MMPI must be given chronically, and therefore, oral bioavailability is important. We analyzed the effect of food intake on AUC0-8

  3. Non-Surgical Periodontal Therapy Reduces Saliva Adipokine and Matrix Metalloproteinase Levels in Periodontitis.

    Science.gov (United States)

    Özcan, Erkan; Işıl Saygun, N; Serdar, Muhittin A; Umut Bengi, V; Kantarcı, Alpdoğan

    2016-08-01

    Adipokines enhance the synthesis of proinflammatory cytokines and matrix metalloproteinases (MMPs), which play a role in extracellular matrix degeneration. The aim of this study is to determine the levels of some adipokines, proinflammatory cytokines, and MMPs in the saliva of patients with periodontitis and healthy individuals and to evaluate the changes after non-surgical periodontal therapy (NSPT). Of 32 individuals included in the study, 17 had periodontitis and 15 had healthy gingiva. Saliva samples were obtained from all individuals. In patients with periodontitis, samples were recollected 3 and 6 months after NSPT. Visfatin, chemerin, progranulin, interleukin (IL)-1β, IL-8, MMP-8, and MMP-13 levels were measured using enzyme-linked immunosorbent assay. In patients with periodontitis, all of the parameters measured in the saliva were higher than those of healthy individuals. At 3 months, visfatin, progranulin, IL-8, and MMP-8 levels were significantly decreased compared with baseline values. The levels of other biochemical parameters, chemerin and IL-1β, were significantly decreased compared with baseline values at 6 months, and the levels became similar to those in healthy individuals. In the periodontitis group, positive correlations were found among visfatin and IL-8 (r = 0.909, P periodontal tissue in periodontitis by stimulating the expression of proinflammatory cytokines and MMPs.

  4. Topical photodynamic therapy following excisional wounding of human skin increases production of transforming growth factor-β3 and matrix metalloproteinases 1 and 9, with associated improvement in dermal matrix organization.

    Science.gov (United States)

    Mills, S J; Farrar, M D; Ashcroft, G S; Griffiths, C E M; Hardman, M J; Rhodes, L E

    2014-07-01

    Animal studies report photodynamic therapy (PDT) to improve healing of excisional wounds; the mechanism is uncertain and equivalent human studies are lacking. To explore the impact of methyl aminolaevulinate (MAL)-PDT on clinical and microscopic parameters of human cutaneous excisional wound healing, examining potential modulation through production of transforming growth factor (TGF)-β isoforms. In 27 healthy older men (60-77 years), a 4-mm punch biopsy wound was created in skin of the upper inner arm and treated with MAL-PDT three times over 5 days. An identical control wound to the contralateral arm was untreated and both wounds left to heal by secondary intention. Wounds were re-excised during the inflammatory phase (7 days, n = 10), matrix remodelling (3 weeks, n = 8) and cosmetic outcome/dermal structure (9 months, n = 9). Production of TGF-β1, TGF-β3 and matrix metalloproteinases (MMPs) was assessed by immunohistochemistry alongside microscopic measurement of wound size/area and clinical assessment of wound appearance. MAL-PDT delayed re-epithelialization at 7 days, associated with increased inflammation. However, 3 weeks postwounding, treated wounds were smaller with higher production of MMP-1 (P = 0·01), MMP-9 (P = 0·04) and TGF-β3 (P = 0·03). TGF-β1 was lower than control at 7 days and higher at 3 weeks (both P = 0·03). At 9 months, MAL-PDT-treated wounds showed greater, more ordered deposition of collagen I, collagen III and elastin (all P < 0·05). MAL-PDT increases MMP-1, MMP-9 and TGF-β3 production during matrix remodelling, ultimately producing scars with improved dermal matrix architecture. © 2014 British Association of Dermatologists.

  5. RELATIONSHIP BETWEEN EXPRESSION OF MATRIX METALLOPROTEINASES AND MORPHOLOGICAL HETEROGENEITY, TUMOR DIFFERENTIATION AND LYMPHOGENOUS METASTASIS OF SQUAMOUS CELL LARYNGEAL CARCINOMA

    Directory of Open Access Journals (Sweden)

    О. V. Savenkova

    2015-01-01

    Full Text Available The study included 58 patients with stage Т1–3N0–3M0–1 squamous cell laryngeal carcinoma. The age range was from 31 to 77 years. Patients received no cancer treatment before surgery. The expression of metalloproteinases (ММP-1, -2, -9, their inhibitors (TIMP-1, -2 and inductor of metalloproteinase expression (CD147 were determined in tumor cells of different structures of squamous cell carcinoma using immunohistochemical method. Results were compared with the presence of lymphogenous metastases. Results. Five morphological structures of squamous cell carcinomas were studied: with keratinization (type 1, with cells of basaloid and acanthocyte types without kartinization (type 2, with cells of basaloid type (type 3, with pronounced cellular polymorphism (type 4 and single tumor cells (type 5. With regard to combination of these structures, tumors were divided into high-grade, low-grade and mixed tumor structures. In tumors without lymphogenous metastases, the increased expression of ММP-1, -2, and-9 was only revealed in discrete cells. In tumors with lymphogenic metastases, the increased MMP-9 expression was observed in more differentiated structures of 1, 2 and 3 types. Less frequent lymphogenous metastasis of vocal cord carcinomas was associated only with tumors of mixed structure, in which the expression of TIMP1 was reduced.  Conclusion. To assess the histological differentiation of squamous cell carcinoma of the larynx, it should be considered a combination of high and low-grade tumor structures. The expression of metalloproteinases should be studied considering morphological heterogeneity of squamous cell carcinomas. The frequency of lymphogenous metastasis of high-or low-grade squamous cell carcinoma of the vocal cords did not differ from that of squamous cell carcinoma of the supra-glottal area. The frequency of lymphogenous metastasis was significantly lower in mixed squamous cell carcinomas of the vocal cords than in similar

  6. Porphyromonas gingivalis-mediated shedding of extracellular matrix metalloproteinase inducer (EMMPRIN) by oral epithelial cells: a potential role in inflammatory periodontal disease.

    Science.gov (United States)

    Feldman, Mark; La, Vu Dang; Lombardo Bedran, Telma Blanca; Palomari Spolidorio, Denise Madalena; Grenier, Daniel

    2011-12-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) or CD147 is a transmembrane glycoprotein expressed by various cell types, including oral epithelial cells. Recent studies have brought evidence that EMMPRIN plays a role in periodontitis. In the present study, we investigated the effect of Porphyromonas gingivalis, a major pathogen in chronic periodontitis, on the shedding of membrane-anchored EMMPRIN and on the expression of the EMMPRIN gene by oral epithelial cells. A potential contribution of shed EMMPRIN to the inflammatory process of periodontitis was analyzed by evaluating the effect of recombinant EMMPRIN on cytokine and matrix metalloproteinase (MMP) secretion by human gingival fibroblasts. ELISA and immunofluorescence analyses revealed that P. gingivalis mediated the shedding of epithelial cell-surface EMMPRIN in a dose- and time-dependent manner. Cysteine proteinase (gingipain)-deficient P. gingivalis mutants were used to demonstrate that both Arg- and Lys-gingipain activities are involved in EMMPRIN shedding. Real-time PCR showed that P. gingivalis had no significant effect on the expression of the EMMPRIN gene in epithelial cells. Recombinant EMMPRIN induced the secretion of IL-6 and MMP-3 by gingival fibroblasts, a phenomenon that appears to involve mitogen activated protein kinases. The present study brought to light a new mechanism by which P. gingivalis can promote the inflammatory response during periodontitis. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  7. Collagenolytic Matrix Metalloproteinases in Chronic Obstructive Lung Disease and Cancer

    Directory of Open Access Journals (Sweden)

    Denzel Woode

    2015-02-01

    Full Text Available Chronic obstructive pulmonary disease (COPD and lung cancer result in significant morbidity and mortality worldwide. In addition to the role of environmental smoke exposure in the development of both diseases, recent epidemiological studies suggests a connection between the development of COPD and lung cancer. Furthermore, individuals with concomitant COPD and cancer have a poor prognosis when compared with individuals with lung cancer alone. The modulation of molecular pathways activated during emphysema likely lead to an increased susceptibility to lung tumor growth and metastasis. This review summarizes what is known in the literature examining the molecular pathways affecting matrix metalloproteinases (MMPs in this process as well as external factors such as smoke exposure that have an impact on tumor growth and metastasis. Increased expression of MMPs provides a unifying link between lung cancer and COPD.

  8. Effect of Agmatine Sulfate on Modulation of Matrix Metalloproteinases via PI3K/Akt-1 in HT1080 Cells.

    Science.gov (United States)

    Kim, Hyejeong; Kim, Moon-Moo

    2017-11-01

    The purpose of this study was to investigate the mechanism by which agmatine sulfate induces an anti-metastatic effect in human HT1080 fibrosarcoma cells, by affecting matrix metalloproteinases (MMPs). For the experiments, we used a non-toxic concentration of agmatine, below 512 μM, that was determined using an MTT assay. The effect of agmatine sulfate on metastasis was gelatin zymography, western blot, immunofluorescence staining and cell invasion assay. Agmatine sulfate inhibited MMP-2 activity stimulated by phenazine methosulfate (PMS). Furthermore, the expression level of MMP-2 stimulated by PMS, was decreased, but the expression level of TIMP-1 was increased in the presence of agmatine sulfate. Moreover, it was observed that the expression levels of ERK and p38 were increased, but those of PI3K and Akt-1 associated with the modulation of MMP-2 were decreased in this study. Furthermore, agmatine sulfate decreased the invasion level of human fibrosarcoma cells stimulated by VEGF. These results suggest that agmatine sulfate could inhibit metastasis through inhibition of MMP-2 via the PI3K/Akt-1 signaling pathway. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  9. Increased ratio of serum matrix metalloproteinase-9 against TIMP-1 predicts poor wound healing in diabetic foot ulcers.

    Science.gov (United States)

    Li, Zhihong; Guo, Shuqin; Yao, Fang; Zhang, Yunliang; Li, Tingting

    2013-01-01

    Little is known about serum concentrations of Matrix Metalloproteinase-9 (MMP-9), MMP-2, TIMP-1 and TIMP-2 in diabetic patients with foot ulcers. This study demonstrates their relationship with wound healing. Ninety-four patients with diabetic foot ulcers were recruited in the study. Serum MMP-9, MMP-2, TIMP-1 and TIMP-2 were measured at the first clinic visit and the end of 4-week treatment and followed up till 12 weeks. According to the decreasing rate of ulcer healing area at the fourth week, we divided those cases into good and poor healers. Through analyses, we explore the possible relationship among those factors and degree of wound healing. The median level of serum MMP-9 in good healers was lower than poor healers at first visit (124.2 μg/L vs 374.6 μg/L, phealing than MMP-9 alone before therapy and after 4 week treatment (r = -0.6475 vs -0.3251, r = -0.7096 vs -0.1231, respectively). Receiver Operator Curve (ROC) showed that the cutoff for MMP-9/TIMP-1 ratio at healing and might provide a novel target for the future therapy in diabetic foot ulcers. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Urinary high molecular weight matrix metalloproteinases as non-invasive biomarker for detection of bladder cancer

    OpenAIRE

    Mohammed, Mohammed A; Seleim, Manar F; Abdalla, Mohga S; Sharada, Hayat M; Abdel Wahab, Abdel Hady A

    2013-01-01

    Background Matrix Metalloproteinases (MMPs) are key molecules for tumor growth, invasion and metastasis. Over-expression of different MMPs in tumor tissues can disturb the homeostasis and increase the level of various body fluids. Many MMPs including high molecular weights (HMWs) were detected in the urine of prostate and bladder cancer patients. Our aim here is to assess the usefulness of HMW MMPs as non invasive biomarkers in bilharzial bladder cancer in Egyptian patients. Methods The activ...

  11. Increased expression of metalloproteinase-2 and -9 (MMP-2, MMP-9), tissue inhibitor of metalloproteinase-1 and -2 (TIMP-1, TIMP-2), and EMMPRIN (CD147) in multiple myeloma.

    Science.gov (United States)

    Urbaniak-Kujda, Donata; Kapelko-Slowik, Katarzyna; Prajs, Iwona; Dybko, Jarosław; Wolowiec, Dariusz; Biernat, Monika; Slowik, Miroslaw; Kuliczkowski, Kazimierz

    2016-01-01

    Activity of metalloproteinases (MMP) is controlled both by specific tissue inhibitors (TIMP) and activators (extracellular matrix metalloproteinase inducer, EMMPRIN). There are few data available concerning concentration the bone marrow of MMP-2, MMP-9, TIMP-1, and TIMP-2, or EMMPRIM expression by bone marrow mesenchymal stromal cells (BMSCs) in patients with multiple myeloma (MM). We studied 40 newly diagnosed, untreated patients: 18 males and 22 females with de novo MM and 11 healthy controls. Bone marrow was collected prior to therapy. BMSCs were derived by culturing bone marrow cells on MesenCult. Protein concentrations were determined in bone marrow plasma and culture supernatants by ELISA. EMMPRIN expression by BMSCs was assessed by flow cytometry. The median concentrations of MMP-9, TIMP-1, and TIMP-2 in both marrow plasma and culture supernatants were significantly higher in MM patients than controls. EMMPRIN expression and ratios MMP-9/TIMP-1 and MMP-2/TIMP-2 were higher in MM patients, our results demonstrate that in MM patients MMP-2 and MMP-9 are secreted in higher amounts and are not balanced by inhibitors.

  12. Black rice (Oryza sativa L.) extract modulates ultraviolet-induced expression of matrix metalloproteinases and procollagen in a skin cell model.

    Science.gov (United States)

    Han, Mira; Bae, Jung-Soo; Ban, Jae-Jun; Shin, Hee Soon; Lee, Dong Hun; Chung, Jin Ho

    2018-05-01

    Exposure of the skin to ultraviolet (UV) radiation causes extracellular matrix (ECM) collapse in the dermis, owing to an increase in matrix metalloproteinase (MMP) production in both the epidermis and dermis, and a decrease in type I collagen expression in the dermis. Recently, black rice (Oryza sativa L.) was reported to have a wide range of pharmacological effects in various settings. However, the effects of black rice extract (BRE) on UV‑irradiated skin cells have not yet been characterized. BRE treatment did not affect cell morphology and viability of HaCaT and human dermal fibroblasts (HDF). We demonstrated that BRE downregulated basal and UV‑induced MMP‑1 expression in HaCaT cells. Furthermore, BRE significantly increased type I procollagen expression, and decreased MMP‑1 and MMP‑3 expression in UV‑irradiated HDF. The underlying mechanisms of these results involve a decrease in p38 and c‑Jun N‑terminal kinase activity, and suppression of UV‑induced activation of activator protein‑1 (AP‑1). BRE reduced UV‑induced reactive oxygen species production in HaCaT cells in a dose‑dependent manner. Indeed, mass spectrometry revealed that BRE contained antioxidative flavonoid components such as cyanidin‑3‑O‑β‑D‑glycoside and taxifolin‑7‑O‑glucoside. These findings suggest that BRE attenuates UV‑induced ECM damage by modulating mitogen‑activated protein kinase and AP‑1 signaling, and could be used as an active ingredient for preventing photoaging of the skin.

  13. Neutrophil gelatinase-associated lipocalin (NGAL) and matrix metalloproteinases as novel stress markers in children and young adults on chronic dialysis

    OpenAIRE

    Musiał, Kinga; Zwolińska, Danuta

    2010-01-01

    Phenomena related to chronic kidney disease, such as atherosclerosis, aggravate with the introduction of dialysis. Matrix metalloproteinases (MMP) and factors modifying their activity, such as their tissue inhibitors (TIMP) or neutrophil gelatinase-associated lipocalin (NGAL), take part in the matrix turnover and the endothelial damage characteristic for atherogenesis. However, there are no data on the associations between these parameters and other known pro-atherogenic factors, or on the im...

  14. Matrix metalloproteinase-3 gene polymorphism in renal transplant patients with gingival overgrowth.

    Science.gov (United States)

    Drozdzik, A; Kurzawski, M; Lener, A; Kozak, M; Banach, J; Drozdzik, M

    2010-02-01

    Gingival enlargement frequently occurs in transplant patients receiving immunosuppressive drugs. It was hypothesized that gingival enlargement associated with cyclosporine use results from reduced degradation of extracellular matrix in the gingiva. Matrix metalloproteinase-3 (MMP-3) is involved in biodegradation of the extracellular matrix, and its inhibition may contribute to an abnormal accumulation of fibronectin and proteoglycans, which are MMP-3 substrates. The aim of this study was to investigate whether an association exists between MMP-3 genotypes and gingival enlargement in kidney transplant patients medicated with cyclosporine A. Sixty-four unrelated kidney transplant patients suffering from gingival overgrowth, as well as 111 control transplant patients without gingival overgrowth, were enrolled in the study. Gingival overgrowth was assessed 6 mo after transplantation. During the post-transplant period all patients were given cyclosporine A as a principal immunosuppressive agent. MMP-3 polymorphism was determined using a PCR restriction fragment length polymorphism assay. In kidney transplant patients suffering from gingival overgrowth the mean gingival overgrowth score was 1.35 +/- 0.57, whereas in control subjects the mean gingival overgrowth score was 0.0. The distribution of MMP-3-1178A/dupA alleles among all kidney transplant patients, as well as in the two study subgroups, did not differ significantly from Hardy-Weinberg equilibrium. The frequency of the MMP-3-1171A/A genotype (28.1% for gingival overgrowth vs. 26.1% for controls) and of the MMP-3-1171dupA/dupA genotype (32.8% for gingival overgrowth vs. 22.5% for controls) was similar for both study groups. The risk of gingival overgrowth was lowest among patients carrying the MMP-3-1171A/dupA genotype (odds ratio 0.52), but this did not differ markedly from the other genotypes. No association between MMP-3 gene polymorphism and gingival overgrowth was revealed in kidney transplant patients

  15. Matrix Metalloproteinases as Regulators of Vein Structure and Function: Implications in Chronic Venous Disease.

    Science.gov (United States)

    MacColl, Elisabeth; Khalil, Raouf A

    2015-12-01

    Lower-extremity veins have efficient wall structure and function and competent valves that permit upward movement of deoxygenated blood toward the heart against hydrostatic venous pressure. Matrix metalloproteinases (MMPs) play an important role in maintaining vein wall structure and function. MMPs are zinc-binding endopeptidases secreted as inactive pro-MMPs by fibroblasts, vascular smooth muscle (VSM), and leukocytes. Pro-MMPs are activated by various activators including other MMPs and proteinases. MMPs cause degradation of extracellular matrix (ECM) proteins such as collagen and elastin, and could have additional effects on the endothelium, as well as VSM cell migration, proliferation, Ca(2+) signaling, and contraction. Increased lower-extremity hydrostatic venous pressure is thought to induce hypoxia-inducible factors and other MMP inducers/activators such as extracellular matrix metalloproteinase inducer, prostanoids, chymase, and hormones, leading to increased MMP expression/activity, ECM degradation, VSM relaxation, and venous dilation. Leukocyte infiltration and inflammation of the vein wall cause further increases in MMPs, vein wall dilation, valve degradation, and different clinical stages of chronic venous disease (CVD), including varicose veins (VVs). VVs are characterized by ECM imbalance, incompetent valves, venous reflux, wall dilation, and tortuosity. VVs often show increased MMP levels, but may show no change or decreased levels, depending on the VV region (atrophic regions with little ECM versus hypertrophic regions with abundant ECM) and MMP form (inactive pro-MMP versus active MMP). Management of VVs includes compression stockings, venotonics, and surgical obliteration or removal. Because these approaches do not treat the causes of VVs, alternative methods are being developed. In addition to endogenous tissue inhibitors of MMPs, synthetic MMP inhibitors have been developed, and their effects in the treatment of VVs need to be examined

  16. Collagenolytic Matrix Metalloproteinase Activities toward Peptomeric Triple-Helical Substrates.

    Science.gov (United States)

    Stawikowski, Maciej J; Stawikowska, Roma; Fields, Gregg B

    2015-05-19

    Although collagenolytic matrix metalloproteinases (MMPs) possess common domain organizations, there are subtle differences in their processing of collagenous triple-helical substrates. In this study, we have incorporated peptoid residues into collagen model triple-helical peptides and examined MMP activities toward these peptomeric chimeras. Several different peptoid residues were incorporated into triple-helical substrates at subsites P3, P1, P1', and P10' individually or in combination, and the effects of the peptoid residues were evaluated on the activities of full-length MMP-1, MMP-8, MMP-13, and MMP-14/MT1-MMP. Most peptomers showed little discrimination between MMPs. However, a peptomer containing N-methyl Gly (sarcosine) in the P1' subsite and N-isobutyl Gly (NLeu) in the P10' subsite was hydrolyzed efficiently only by MMP-13 [nomenclature relative to the α1(I)772-786 sequence]. Cleavage site analysis showed hydrolysis at the Gly-Gln bond, indicating a shifted binding of the triple helix compared to the parent sequence. Favorable hydrolysis by MMP-13 was not due to sequence specificity or instability of the substrate triple helix but rather was based on the specific interactions of the P7' peptoid residue with the MMP-13 hemopexin-like domain. A fluorescence resonance energy transfer triple-helical peptomer was constructed and found to be readily processed by MMP-13, not cleaved by MMP-1 and MMP-8, and weakly hydrolyzed by MT1-MMP. The influence of the triple-helical structure containing peptoid residues on the interaction between MMP subsites and individual substrate residues may provide additional information about the mechanism of collagenolysis, the understanding of collagen specificity, and the design of selective MMP probes.

  17. Dysregulated miR-127-5p contributes to type II collagen degradation by targeting matrix metalloproteinase-13 in human intervertebral disc degeneration.

    Science.gov (United States)

    Hua, Wen-Bin; Wu, Xing-Huo; Zhang, Yu-Kun; Song, Yu; Tu, Ji; Kang, Liang; Zhao, Kang-Cheng; Li, Shuai; Wang, Kun; Liu, Wei; Shao, Zeng-Wu; Yang, Shu-Hua; Yang, Cao

    2017-08-01

    Intervertebral disc degeneration (IDD) is a chronic disease associated with the degradation of extracellular matrix (ECM). Matrix metalloproteinase (MMP)-13 is a major enzyme that mediates the degradation of ECM components. MMP-13 has been predicted to be a potential target of miR-127-5p. However, the exact function of miR-127-5p in IDD is still unclear. We designed this study to evaluate the correlation between miR-127-5p level and the degeneration of human intervertebral discs and explore the potential mechanisms. miR-127-5p levels and MMP-13 mRNA levels were detected by quantitative real-time polymerase chain reaction (qPCR). To determine whether MMP-13 is a target of miR-127-5p, dual luciferase reporter assays were performed. miR-127-5p mimic and miR-127-5p inhibitor were used to overexpress or downregulate miR-127-5p expression in human NP cells, respectively. Small interfering RNA (siRNA) was used to knock down MMP-13 expression in human NP cells. Type II collagen expression in human NP cells was detected by qPCR, western blotting, and immunofluorescence staining. We confirmed that miR-127-5p was significantly downregulated in nucleus pulposus (NP) tissue of degenerative discs and its expression was inversely correlated with MMP-13 mRNA levels. We reveal that MMP-13 may act as a target of miR-127-5p. Expression of miR-127-5p was inversely correlated with type II collagen expression in human NP cells. Moreover, suppression of MMP-13 expression by siRNA blocked downstream signaling and increased type II collagen expression. Dysregulated miR-127-5p contributed to the degradation of type II collagen by targeting MMP-13 in human IDD. Our findings highlight that miR-127-5p may serve as a new therapeutic target in IDD. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  18. Identification of accelerated evolution in the metalloproteinase ...

    African Journals Online (AJOL)

    U

    2016-02-24

    Feb 24, 2016 ... drugs for different diseases. Key words: SVMPs, evolution, multiple sequence alignment, phylogenic tree, secondary structure, homology. ... in matrix metalloproteinase genes MMP1, MMP9 and. MMP12 are shown to be ... Evolution and diversification of snake venom is a very interesting phenomenon.

  19. Suppression of local invasion of ameloblastoma by inhibition of matrix metalloproteinase-2 in vitro

    International Nuclear Information System (INIS)

    Wang, Anxun; Zhang, Bin; Huang, Hongzhang; Zhang, Leitao; Zeng, Donglin; Tao, Qian; Wang, Jianguang; Pan, Chaobin

    2008-01-01

    Ameloblastomas are odontogenic neoplasms characterized by local invasiveness. This study was conducted to address the role of matrix metalloproteinase-2 (MMP-2) in the invasiveness of ameloblastomas. Plasmids containing either MMP-2 siRNA or tissue inhibitor of metalloproteinase-2 (TIMP-2) cDNA were created and subsequently transfected into primary ameloblastoma cells. Zymography, RT-PCR, and Western blots were used to assess MMP-2 activity and expression of MMP-2 and TIMP-2, as well as protein levels. Primary cultures of ameloblastoma cells expressed cytokeratin (CK) 14 and 16, and MMP-2, but only weakly expressed CK18 and vimentin. MMP-2 mRNA and protein levels were significantly inhibited by RNA interference (P < 0.05). Both MMP-2 siRNA and TIMP-2 overexpression inhibited MMP-2 activity and the in vitro invasiveness of ameloblastoma. These results indicate that inhibition of MMP-2 activity suppresses the local invasiveness of ameloblastoma cells. This mechanism may serve as a novel therapeutic target in ameloblastomas pursuant to additional research

  20. Expression of extracellular matrix metalloproteinase inducer (EMMPRIN) and its expected roles in the bovine endometrium during gestation.

    Science.gov (United States)

    Mishra, B; Kizaki, K; Koshi, K; Ushizawa, K; Takahashi, T; Hosoe, M; Sato, T; Ito, A; Hashizume, K

    2012-02-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) and its induced matrix metalloproteinases (MMPs) play a crucial role in tissue remodeling during the peri-implantation period. However, the role of EMMPRIN in the bovine placenta is still unclear. We have postulated that EMMPRIN might play a regulatory role in trophoblastic cell functions during gestation by itself or through the regulation of MMP expression. In this study, EMMPRIN mRNA was detected in the bovine placentome and interplacentome throughout gestation, and its expression was significantly higher in the cotyledon during late gestation. In situ hybridization showed that EMMPRIN mRNA was expressed in the caruncular epithelium and the cotyledonary epithelium, including binucleate cells. Western blot analysis detected a band representing a protein of approximately 65 kDa in the caruncular and cotyledonary tissues, and the intensity of its expression was increased in both of these tissues during late gestation. The expression levels of MMP-2 and MMP-14 in the bovine placenta were higher during late gestation, as was observed for EMMPRIN. Therefore, EMMPRIN might regulate trophoblastic cell functions, especially those of binucleate cells, through MMP expression in the bovine placenta. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Expression pattern of matrix metalloproteinases in human gynecological cancer cell lines

    International Nuclear Information System (INIS)

    Schröpfer, Andrea; Kammerer, Ulrike; Kapp, Michaela; Dietl, Johannes; Feix, Sonja; Anacker, Jelena

    2010-01-01

    Matrix metalloproteinases (MMPs) are involved in the degradation of protein components of the extracellular matrix and thus play an important role in tumor invasion and metastasis. Their expression is related to the progression of gynecological cancers (e.g. endometrial, cervical or ovarian carcinoma). In this study we investigated the expression pattern of the 23 MMPs, currently known in humans, in different gynecological cancer cell lines. In total, cell lines from three endometrium carcinomas (Ishikawa, HEC-1-A, AN3 CA), three cervical carcinomas (HeLa, Caski, SiHa), three chorioncarcinomas (JEG, JAR, BeWo), two ovarian cancers (BG-1, OAW-42) and one teratocarcinoma (PA-1) were examined. The expression of MMPs was analyzed by RT-PCR, Western blot and gelatin zymography. We demonstrated that the cell lines examined can constitutively express a wide variety of MMPs on mRNA and protein level. While MMP-2, -11, -14 and -24 were widely expressed, no expression was seen for MMP-12, -16, -20, -25, -26, -27 in any of the cell lines. A broad range of 16 MMPs could be found in the PA1 cells and thus this cell line could be used as a positive control for general MMP experiments. While the three cervical cancer cell lines expressed 10-14 different MMPs, the median expression in endometrial and choriocarcinoma cells was 7 different enzymes. The two investigated ovarian cancer cell lines showed a distinctive difference in the number of expressed MMPs (2 vs. 10). Ishikawa, Caski, OAW-42 and BeWo cell lines could be the best choice for all future experiments on MMP regulation and their role in endometrial, cervical, ovarian or choriocarcinoma development, whereas the teratocarcinoma cell line PA1 could be used as a positive control for general MMP experiments

  2. Expression of matrix metalloproteinase-8 gene in fixed orthodontic patients

    Directory of Open Access Journals (Sweden)

    Susilowati Susilowati

    2011-03-01

    Full Text Available Background: Orthodontic treatment with fixed appliance produces structural and biochemical changes and breaking the balance between the synthesis and the breakdown of the collagen in the periodontium. Matrix metalloproteinase-8 (MMP-8 plays an important role in the remodeling of periodontal ligament during orthodontic movement. Purpose: The purpose of this study was to observe the expression of MMP-8 gene in the gingival crevicular fluid (GCF of fixed orthodontic patients. It is expexted that the result can be used as a reference to decide the proper time for elastomeric chain to be reactivated. Methods: Orthodontic fixed appliances were placed on 8 patients and elastomeric chains exerting 75 grams were attached to produce canine distalization. GCF samples were collected from the distal side of upper canines before force application, 1-, 2-, 3-, and 4 weeks after application consecutively. The samples were analyzed by using RT-PCR. Statistical analyses used were univariate analysis and Mann-WhitneyU test. Results: The expression of MMP-8 in the GCF at t0 was 31.3% but the force application elevated its expression to 65.6% at t1, and then decreased continously at t2, t3, and t4. There was no statistically significant difference of MMP-8 gene expression between t0 and t3. Conclusion: The highest level of MMP-8 gene expression due to orthodontic forces was occured in the first week, but it declined continously in the following weeks. The proper time to reactivate an elastomeric chain was 3 weeks after application.Latar belakang: Perawatan ortodontik dengan peranti cekat menghasilkan perubahan-perubahan stuktural dan biokimiawi pada jaringan periodontal dan mengganggu keseimbangan antara sintesis dan pemecahan kolagen pada periodonsium. Matrix metalloproteinase-8MMP-8 memainkan peran yang penting dalam remodeling ligamentum periodontal selama pergerakan gigi ortodontik. Tujuan: Tujuan dari penelitian ini ialah untuk mengamati ekspresi gen MMP-8

  3. The extracellular matrix metalloproteinase inducer EMMPRIN is a target of nitric oxide in myocardial ischemia/reperfusion.

    Science.gov (United States)

    Tarin, Carlos; Lavin, Begoña; Gomez, Monica; Saura, Marta; Diez-Juan, Antonio; Zaragoza, Carlos

    2011-07-15

    Nitric oxide (NO) is an important defense against myocardial ischemia/reperfusion (I/R) injury. Although matrix metalloproteinase (MMP)-mediated necrosis of cardiac myocytes is well characterized, the role of inducible NO synthase (iNOS)-derived NO in this process is poorly understood. I/R injury was increased in iNOS-deficient mice and in mice treated with 1400 W (a pharmacological iNOS inhibitor) and was associated with significantly increased expression of extracellular matrix metalloproteinase inducer (EMMPRIN) and EMMPRIN-associated MMPs. Transcriptional activity of an EMMPRIN luciferase promoter reporter expressed in cardiac myocytes was inhibited by NO in a cGMP-dependent manner, and this transcriptional inhibition was abolished by mutation of a putative E2F site. Consistent with these findings, EMMPRIN null mice, in which iNOS is normally induced, are partially protected against I/R injury. Pharmacological inhibition of iNOS in EMMPRIN null mice had no additional protective effect, suggesting that EMMPRIN is a downstream target of NO. Administration of anti-EMMPRIN neutralizing antibodies partly reduced the excess heart damage and MMP-9 expression induced by I/R in iNOS null mice, indicating that regulation of EMMPRIN is an important mechanism of NO-mediated cardioprotection. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Regulation of matrix metalloproteinase-9 expression between gingival fibroblast cells from old and young rats

    International Nuclear Information System (INIS)

    Kim, Su-Jung; Chung, Yong-Koo; Chung, Tae-Wook; Kim, Jeong-Ran; Moon, Sung-Kwon; Kim, Cheorl-Ho; Park, Young-Guk

    2009-01-01

    Gingival fibroblast cells (rGF) from aged rats have an age-related decline in proliferative capacity compared with young rats. We investigated G1 phase cell cycle regulation and MMP-9 expression in both young and aged rGF. G1 cell cycle protein levels and activity were significantly reduced in response to interleukin-1β (IL-1β) stimulation with increasing in vitro age. Tumor necrosis factor-α (TNF-α)-induced matrix metalloproteinase-9 (MMP-9) expression was also decreased in aged rGF in comparison with young rGF. Mutational analysis and gel shift assays demonstrated that the lower MMP-9 expression in aged rGF is associated with lower activities of transcription factors NF-κB and AP-1. These results suggest that cell cycle dysregulation and down-regulation of MMP-9 expression in rGF may play a role in gingival remodeling during in vitro aging.

  5. Intraoperative ventilation strategy during cardiopulmonary bypass attenuates the release of matrix metalloproteinases and improves oxygenation.

    Science.gov (United States)

    Beer, Lucian; Warszawska, Joanna Maria; Schenk, Peter; Debreceni, Tamás; Dworschak, Martin; Roth, Georg A; Szerafin, Tamás; Ankersmit, Hendrik Jan

    2015-05-01

    Patients undergoing open heart surgery with cardiopulmonary bypass (CPB) often develop a systemic immune reaction, characterized by an increase of proinflammatory and anti-inflammatory mediators. We previously demonstrated that continued mechanical ventilation during CPB reduces this response. We hypothesized that this strategy may also impact on matrix metalloproteinase (MMP) release. Thirty consecutive patients undergoing coronary artery bypass grafting with CPB were randomized into a ventilated (VG) (n = 15) and a standard non-ventilated group (NVG) (n = 15). Blood was collected at the beginning, at the end of surgery, and on the five consecutive days. MMPs, tissue inhibitor of matrix metalloproteinase 1 (TIMP-1), and lipocalin 2 (LCN2) were measured by enzyme-linked immunosorbent assay. Parameters of transpulmonary oxygen transport were assessed at different time points. MMP-8, MMP-9, and LCN2 were significantly lower at the end of surgery in VG compared with those in NVG patients (MMP-8 [ng/mL]: 7.1 [3.5] versus 12.5 [7.7], P = 0.02; MMP-9 [ng/mL]: 108 [42] versus 171 [98], P = 0.029; LCN2 [ng/mL]: 109 [42] versus 171 [98], P = 0.03). TIMP-1 concentrations were lower on postoperative day one, (TIMP-1 [ng/mL]: 174 [55] versus 273 [104], P = 0.003), whereas MMP-3 levels were lower on postoperative days four and five (MMP-3 [ng/mL]: 44 [17] versus 67 [35], P = 0.026). The arterial partial pressure of oxygen/fraction of inspired oxygen ratio was significantly higher in VG patients throughout the postoperative observation period, which did not affect the length of postoperative ventilatory support. Continued mechanical ventilation during CPB reduces serum levels of MMPs, their inhibitor TIMP-1 and LCN2, which preserves MMP-9 activity. The present study suggests that continued mechanical ventilation improves postoperative oxygenation and could potentially prevent aggravation of lung injury after CPB. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Icotinib inhibits the invasion of Tca8113 cells via downregulation of nuclear factor κB-mediated matrix metalloproteinase expression.

    Science.gov (United States)

    Yang, Cailing; Yan, Jianguo; Yuan, Guoyan; Zhang, Yinghua; Lu, Derong; Ren, Mingxin; Cui, Weigang

    2014-09-01

    Icotinib is an epidermal growth factor receptor tyrosine kinase inhibitor, which has been revealed to inhibit proliferation in tumor cells. However, the effect of icotinib on cancer cell metastasis remains to be explained. This study examines the effect of icotinib on the migration and invasion of squamous cells of tongue carcinoma (Tca8113 cells) in vitro . The results of the Boyden chamber invasion assay demonstrated that icotinib reduced cell invasion, suppressed the protein levels of matrix metalloproteinases (MMPs), MMP-2 and MMP-9, and increased the expression of tissue inhibitor of metalloproteinase-1. In addition, icotinib was found to significantly decrease the protein levels of nuclear factor κB (NF-κB) p65, which suggested that icotinib inhibits NF-κB activity. Furthermore, treatment with the NF-κB inhibitor, pyrrolidine dithiocarbamate, suppressed cell invasion and MMP-2 expression. These results suggested that icotinib inhibits the invasion of Tca8113 cells by downregulating MMP via the inactivation of the NF-κB signaling pathways.

  7. Preclinical Evaluation of RYM1, a Matrix Metalloproteinase-Targeted Tracer for Imaging Aneurysm.

    Science.gov (United States)

    Toczek, Jakub; Ye, Yunpeng; Gona, Kiran; Kim, Hye-Yeong; Han, Jinah; Razavian, Mahmoud; Golestani, Reza; Zhang, Jiasheng; Wu, Terence L; Jung, Jae-Joon; Sadeghi, Mehran M

    2017-08-01

    Matrix metalloproteinases (MMPs) play a key role in abdominal aortic aneurysm (AAA) development. Accordingly, MMP-targeted imaging provides important information regarding vessel wall biology in the course of aneurysm development. Given the small size of the vessel wall and its proximity with blood, molecular imaging of aneurysm optimally requires highly sensitive tracers with rapid blood clearance. To this end, we developed a novel hydrosoluble zwitterionic MMP inhibitor, RYM, on the basis of which a pan-MMP tracer, RYM1, was designed. Here, we describe the development and preclinical evaluation of RYM1 in comparison with RP805, a commonly used pan-MMP tracer in murine models of aneurysm. Methods: The macrocyclic hydroxamate-based pan-MMP inhibitor coupled with 6-hydrazinonicotinamide, RYM1, was synthesized and labeled with 99m Tc. Radiochemical stability of 99m Tc-RYM1 was evaluated by radio-high-performance liquid chromatography analysis. Tracer blood kinetics and biodistribution were compared with 99m Tc-RP805 in C57BL/6J mice ( n = 10). 99m Tc-RYM1 binding to aneurysm and specificity were evaluated by quantitative autoradiography in apolipoprotein E-deficient (apoE -/- ) mice with CaCl 2 -induced carotid aneurysm ( n = 11). Angiotensin II-infused apoE -/- ( n = 16) mice were used for small-animal SPECT/CT imaging. Aortic tissue MMP activity and macrophage marker CD68 expression were assessed by zymography and reverse-transcription polymerase chain reaction. Results: RYM1 showed nanomolar range inhibition constants for several MMPs. 99m Tc-RYM1 was radiochemically stable in mouse blood for 5 h and demonstrated rapid renal clearance and lower blood levels in vivo compared with 99m Tc-RP805. 99m Tc-RYM1 binding to aneurysm and its specificity were shown by autoradiography in carotid aneurysm. Angiotensin II infusion in apoE -/- mice for 4 wk resulted in AAA formation in 36% (4/11) of surviving animals. In vivo 99m Tc-RYM1 small-animal SPECT/CT images showed

  8. Metaloproteinases 1 e 7 e câncer colorretal Metalloproteinases 1 and 7 and colorectal cancer

    Directory of Open Access Journals (Sweden)

    Mário Jucá

    2008-09-01

    Full Text Available A metaloproteinase-1 (MMP-1 e a metaloproteinase-7 (MMP-7 são proteinases da matriz extracelular (MEC, zinco-dependentes, envolvidas no processo inicial da carcinogênese por permitirem a invasão tumoral na célula e promover o processo de metastatização. O polimorfismo dessas proteinases tem sido estudado recentemente com o objetivo de validar susa expressão e/ou atividade como marcador prognóstico. Evidências cumulativas revelam importante papel das MMP's 1 e 7 em diferentes fases da carcinogênese. A MMP-1 tem ação direta sobre a principal proteína da MEC, que é o colágeno do tecido intersticial conectivo. Sua expressão aumentada neste tecido pode indicar alto potencial de disseminação tumoral em diferentes tipos de câncer, incluindo o colorretal. A associação deste aumento da expressão também parece ser verdadeira para a MMP-7.The metalloproteinase-1 (MMP-1 and metalloproteinase-7 (MMP-7 are proteinases of the extracellular matrix (MEC, zinc-dependent, involved in the initial process of carcinogenesis, allowing the invasion by the tumor cell and promoting the process of metastasis. The polymorphism of these proteinases has been studied recently in order to validate its expression and / or activity as a marker prognosis. Evidence shows cumulative important role of MMPs 1 and 7 in different stages of carcinogenesis. The MMP-1 is direct action on the main protein of the MEC, which is the collagen of interstitial connective tissue. Its increased expression in this tissue may indicate high potential for spread in different tumor types of cancer, including colorectal. The association of this increase of expression also appears to be true for MMP-7.

  9. RANK ligand signaling modulates the matrix metalloproteinase-9 gene expression during osteoclast differentiation

    International Nuclear Information System (INIS)

    Sundaram, Kumaran; Nishimura, Riko; Senn, Joseph; Youssef, Rimon F.; London, Steven D.; Reddy, Sakamuri V.

    2007-01-01

    Osteoclast differentiation is tightly regulated by receptor activator of NF-κB ligand (RANKL) signaling. Matrix metalloproteinase-9 (MMP-9), a type IV collagenase is highly expressed in osteoclast cells and plays an important role in degradation of extracellular matrix; however, the molecular mechanisms that regulate MMP-9 gene expression are unknown. In this study, we demonstrate that RANKL signaling induces MMP-9 gene expression in osteoclast precursor cells. We further show that RANKL regulates MMP-9 gene expression through TRAF6 but not TRAF2. Interestingly, blockade of p38 MAPK activity by pharmacological inhibitor, SB203580 increases MMP-9 activity whereas ERK1/2 inhibitor, PD98059 decreases RANKL induced MMP-9 activity in RAW264.7 cells. These data suggest that RANKL differentially regulates MMP-9 expression through p38 and ERK signaling pathways during osteoclast differentiation. Transient expression of MMP-9 gene (+ 1 to - 1174 bp relative to ATG start codon) promoter-luciferase reporter plasmids in RAW264.7 cells and RANKL stimulation showed significant increase (20-fold) of MMP-9 gene promoter activity; however, there is no significant change with respect to + 1 bp to - 446 bp promoter region and empty vector transfected cells. These results indicated that MMP-9 promoter sequence from - 446 bp to - 1174 bp relative to start codon is responsive to RANKL stimulation. Sequence analysis of the mouse MMP-9 gene promoter region further identified the presence of binding motif (- 1123 bp to - 1153 bp) for the nuclear factor of activated T cells 1 (NFATc1) transcription factor. Inhibition of NFATc1 using siRNA and VIVIT peptide inhibitor significantly decreased RANKL stimulation of MMP-9 activity. We further confirm by oligonucleotide pull-down assay that RANKL stimuli enhanced NFATc1 binding to MMP-9 gene promoter element. In addition, over-expression of constitutively active NFAT in RAW264.7 cells markedly increased (5-fold) MMP-9 gene promoter activity in

  10. Galangin and kaempferol suppress phorbol-12-myristate-13-acetate-induced matrix metalloproteinase-9 expression in human fibrosarcoma HT-1080 cells.

    Science.gov (United States)

    Choi, Yu Jung; Lee, Young Hun; Lee, Seung-Taek

    2015-01-01

    Matrix metalloproteinase (MMP)-9 degrades type IV collagen in the basement membrane and plays crucial roles in several pathological implications, including tumorigenesis and inflammation. In this study, we analyzed the effect of flavonols on MMP-9 expression in phorbol-12-myristate-13-acetate (PMA)-induced human fibrosarcoma HT-1080 cells. Galangin and kaempferol efficiently decreased MMP-9 secretion, whereas fisetin only weakly decreased its secretion. Galangin and kaempferol did not affect cell viability at concentrations up to 30 μM. Luciferase reporter assays showed that galangin and kaempferol decrease transcription of MMP-9 mRNA. Moreover, galangin and kaempferol strongly reduce IκBα phosphorylation and significantly decrease JNK phosphorylation. These results indicate that galangin and kaempferol suppress PMA-induced MMP-9 expression by blocking activation of NF-κB and AP-1. Therefore, these flavonols could be used as chemopreventive agents to lower the risk of diseases involving MMP-9.

  11. Matrix metalloproteinase-8 levels in periodontal disease patients: A systematic review.

    Science.gov (United States)

    de Morais, E F; Pinheiro, J C; Leite, R B; Santos, P P A; Barboza, C A G; Freitas, R A

    2018-04-01

    Periodontal disease is characterized as a disorder of the oral microbiota resulting in an immune response which, in turn, leads to the destruction of periodontal tissue. Matrix metalloproteinase-8 (MMP-8) has been reported as the major metalloproteinase involved in periodontal disease, being present at high levels in gingival crevicular fluid and salivary fluid (SF). The aim of this systematic review was to evaluate the scientific literature regarding the expression of MMP-8 in gingival crevicular fluid and SF in patients with periodontal disease, analyzing its validity as a possible biomarker in the diagnosis of periodontal disease. A systematic review of the literature was performed using the PubMed/Medline, CENTRAL and Science Direct databases. Studies concerning the use of MMP-8 in the diagnosis of periodontal disease that evaluated its effectiveness as a biomarker for periodontal disease were selected. The search strategy provided a total of 6483 studies. After selection, six articles met all the inclusion criteria and were included in the present systematic review. The studies demonstrated significantly higher concentrations of MMP-8 in patients with periodontal disease compared with controls, as well as in patients presenting more advanced stages of periodontal disease. The findings on higher MMP-8 concentrations in patients with periodontal disease compared with controls imply the potential adjunctive use of MMP-8 in the diagnosis of periodontal disease. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Oral administration of curcumin suppresses production of matrix metalloproteinase (MMP)-1 and MMP-3 to ameliorate collagen-induced arthritis: inhibition of the PKCdelta/JNK/c-Jun pathway.

    Science.gov (United States)

    Mun, Se Hwan; Kim, Hyuk Soon; Kim, Jie Wan; Ko, Na Young; Kim, Do Kyun; Lee, Beob Yi; Kim, Bokyung; Won, Hyung Sik; Shin, Hwa-Sup; Han, Jeung-Whan; Lee, Hoi Young; Kim, Young Mi; Choi, Wahn Soo

    2009-09-01

    We investigated whether oral administration of curcumin suppressed type II collagen-induced arthritis (CIA) in mice and its effect and mechanism on matrix metalloproteinase (MMP)-1 and MMP-3 production in CIA mice, RA fibroblast-like synoviocytes (FLS), and chondrocytes. CIA in mice was suppressed by oral administration of curcumin in a dose-dependent manner. Macroscopic observations were confirmed by histological examinations. Histological changes including infiltration of immune cells, synovial hyperplasia, cartilage destruction, and bone erosion in the hind paw sections were extensively suppressed by curcumin. The histological scores were consistent with clinical arthritis indexes. Production of MMP-1 and MMP-3 were inhibited by curcumin in CIA hind paw sections and tumor necrosis factor (TNF)-alpha-stimulated FLS and chondrocytes in a dose-dependent manner. As for the mechanism, curcumin inhibited activating phosphorylation of protein kinase Cdelta (PKCdelta) in CIA, FLS, and chondrocytes. Curcumin also suppressed the JNK and c-Jun activation in those cells. This study suggests that the suppression of MMP-1 and MMP-3 production by curcumin in CIA is mediated through the inhibition of PKCdelta and the JNK/c-Jun signaling pathway.

  13. Overexpression of membrane sialic acid-specific sialidase Neu3 inhibits matrix metalloproteinase-9 expression in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Moon, Sung-Kwon; Cho, Seung-Hak; Kim, Kyung-Woon; Jeon, Jae Heung; Ko, Jeong-Heon; Kim, Bo Yeon; Kim, Cheorl-Ho

    2007-01-01

    The ganglioside-specific sialidase Neu3 has been suggested to participate in cell growth, migration, and differentiation. Recent reports suggest that sialidase may be involved in intimal thickening, an early stage in the development of atherosclerosis. However, the role of the Neu3 gene in vascular smooth muscle cells (VSMC) responses has not yet been elucidated. To determine whether a Neu3 is able to modulate VSMC growth, the effect of overexpression of the Neu3 gene on cell proliferation was examined. However, the results show that the overexpression of this gene has no effect on DNA synthesis and ERK phosphorylation in cultured VSMC in the presence of TNF-α. Because atherogenic effects need not be limited to proliferation, we decided to examine whether Neu3 exerted inhibitory effects on matrix metalloproteinase-9 (MMP-9) activity in TNF-α-induced VSMC. The expression of the Neu3 gene led to the inhibition of TNF-α-induced matrix metalloproteinase-9 (MMP-9) expression in VSMC as determined by zymography and immunoblot. Furthermore, Neu3 gene expression strongly decreased MMP-9 promoter activity in response to TNF-α. This inhibition was characterized by the down-regulation of MMP-9, which was transcriptionally regulated at NF-κB and activation protein-1 (AP-1) sites in the MMP-9 promoter. These findings suggest that the Neu3 gene represents a physiological modulator of VSMC responses that may contribute to plaque instability in atherosclerosis

  14. Role of Matrix Metalloproteinase-2, Matrix Metalloproteinase-9, and Vascular Endothelial Growth Factor in the Development of Chronic Subdural Hematoma

    Science.gov (United States)

    Hua, Cong; Feng, Yan; Yuan, Hongyan; Song, Hongmei

    2016-01-01

    Abstract Chronic subdural hematoma (CSDH) is an inflammatory and angiogenic disease. Vascular endothelial growth factor (VEGF) has an important effect on the pathological progression of CSDH. The matrix metalloproteinases (MMPs) and VEGF also play a significant role in pathological angiogenesis. Our research was to investigate the level of MMPs and VEGF in serum and hematoma fluid. Magnetic Resonance Imaging (MRI) shows the characteristics of different stages of CSDH. We also analyzed the relationship between the level of VEGF in subdural hematoma fluid and the appearances of the patients' MRI. We performed a study comparing serum and hematoma fluid in 37 consecutive patients with primary CSDHs using enzyme-linked immunosorbent assay (ELISA). MMP-2 and MMP-9 activity was assayed by the gelatin zymography method. The patients were divided into five groups according to the appearance of the hematomas on MRI: group 1 (T1-weighted low, T2-weighted low, n=4), group 2 (T1-weighted high, T2-weighted low, n=11), group 3 (T1-weighted mixed, T2-weighted mixed, n=9), group 4 (T1-weighted high, T2-weighted high, n=5), and group 5 (T1-weighted low, T2-weighted high, n=8). Neurological status was assessed by Markwalder score on admission and at follow-up. The mean age, sex, and Markwalder score were not significantly different among groups. The mean concentration of VEGF, MMP-2, and MMP-9 were significantly higher in hematoma fluid than in serum (phematoma fluid (phematoma fluid (phematoma fluid, suggesting that the MMPs/VEGF system may be involved in the angiogenesis of CSDH. We also demonstrate a significant correlation between the concentrations of VEGF and MRI appearance. This finding supports the hypothesis that high VEGF concentration in the hematoma fluid is of major pathophysiological importance in the generation and steady increase of the hematoma volume, as well as the determination of MRI appearance. PMID:25646653

  15. Active site specificity profiling datasets of matrix metalloproteinases (MMPs 1, 2, 3, 7, 8, 9, 12, 13 and 14

    Directory of Open Access Journals (Sweden)

    Ulrich Eckhard

    2016-06-01

    Full Text Available The data described provide a comprehensive resource for the family-wide active site specificity portrayal of the human matrix metalloproteinase family. We used the high-throughput proteomic technique PICS (Proteomic Identification of protease Cleavage Sites to comprehensively assay 9 different MMPs. We identified more than 4300 peptide cleavage sites, spanning both the prime and non-prime sides of the scissile peptide bond allowing detailed subsite cooperativity analysis. The proteomic cleavage data were expanded by kinetic analysis using a set of 6 quenched-fluorescent peptide substrates designed using these results. These datasets represent one of the largest specificity profiling efforts with subsequent structural follow up for any protease family and put the spotlight on the specificity similarities and differences of the MMP family. A detailed analysis of this data may be found in Eckhard et al. (2015 [1]. The raw mass spectrometry data and the corresponding metadata have been deposited in PRIDE/ProteomeXchange with the accession number http://www.ebi.ac.uk/pride/archive/projects/PXD002265.

  16. Contrasting expression of membrane metalloproteinases, MT1-MMP and MT3-MMP, suggests distinct functions in skeletal development.

    Science.gov (United States)

    Yang, Maozhou; Zhang, Bingbing; Zhang, Liang; Gibson, Gary

    2008-07-01

    Membrane-type 1 matrix metalloproteinase (MT1-MMP) is the most ubiquitous and widely studied of the membrane-type metalloproteinases (MT-MMPs). It was thus surprising to find no published data on chicken MT1-MMP. We report here the characterization of the chicken gene. Its low sequence identity with the MT1-MMP genes of other species, high GC content, and divergent catalytic domain explains the absence of data and our difficulties in characterizing the gene. The absence of structural features in the chicken gene that have been suggested to be critical for the activation of MMP-2 by MT1-MMP; for the effect of MT1-MMP on cell migration and for the recycling of MT1-MMP suggest these features are either not essential or that MT1-MMP does not perform these functions in chickens. Comparison of the expression of chicken MT1-MMP with MT3-MMP and with MMP-2 and MMP-13 has confirmed the previously recognized co-expression of MT1-MMP with MMP-2 and MMP-13 in fibrous and vascular tissues, particularly those surrounding the developing long bones in other species. By contrast, MT3-MMP expression differs markedly from that of MT1-MMP and of both MMP-2 and MMP-13. MT3-MMP is expressed by chondrocytes of the developing articular surface. Similar expression patterns of this group of MT-MMPs and MMPs have been observed in mouse embryos and suggest distinct and specific functions for MT1-MMP and MT3-MMP in skeletal development.

  17. Galectin-3 facilitates cell motility in gastric cancer by up-regulating protease-activated receptor-1 (PAR-1 and matrix metalloproteinase-1 (MMP-1.

    Directory of Open Access Journals (Sweden)

    Seok-Jun Kim

    Full Text Available BACKGROUND: Galectin-3 is known to regulate cancer metastasis. However, the underlying mechanism has not been defined. Through the DNA microarray studies after galectin-3 silencing, we demonstrated here that galectin-3 plays a key role in up-regulating the expressions of protease-activated receptor-1 (PAR-1 and matrix metalloproteinase-1 (MMP-1 PAR-1 thereby promoting gastric cancer metastasis. METHODOLOGY/PRINCIPAL FINDINGS: We examined the expression levels of Galectin-3, PAR-1, and MMP-1 in gastric cancer patient tissues and also the effects of silencing these proteins with specific siRNAs and of over-expressing them using specific lenti-viral constructs. We also employed zebrafish embryo model for analysis of in vivo gastric cancer cell invasion. These studies demonstrated that: a galectin-3 silencing decreases the expression of PAR-1. b galectin-3 over-expression increases cell migration and invasion and this increase can be reversed by PAR-1 silencing, indicating that galectin-3 increases cell migration and invasion via PAR-1 up-regulation. c galectin-3 directly interacts with AP-1 transcriptional factor, and this complex binds to PAR-1 promoter and drives PAR-1 transcription. d galectin-3 also amplifies phospho-paxillin, a PAR-1 downstream target, by increasing MMP-1 expression. MMP-1 silencing blocks phospho-paxillin amplification and cell invasion caused by galectin-3 over-expression. e Silencing of either galectin-3, PAR-1 or MMP-1 significantly reduced cell migration into the vessels in zebrafish embryo model. f Galectin-3, PAR-1, and MMP-1 are highly expressed and co-localized in malignant tissues from gastric cancer patients. CONCLUSIONS/SIGNIFICANCE: Galectin-3 plays the key role of activating cell surface receptor through production of protease and boosts gastric cancer metastasis. Galectin-3 has the potential to serve as a useful pharmacological target for prevention of gastric cancer metastasis.

  18. Salivary matrix metalloproteinase (MMP)-8 as a biomarker for periodontitis: A PRISMA-compliant systematic review and meta-analysis.

    Science.gov (United States)

    Zhang, Lin; Li, Xiue; Yan, Hong; Huang, Lei

    2018-01-01

    Salivary matrix metalloproteinase (MMP)-8 is currently considered to be one of the most promising biomarkers for early diagnosis of periodontitis, however, several recent studies showed conflicting results. To determine the salivary matrix metalloproteinase (MMP)-8 levels between periodontitis patients and healthy individuals, and to assess its diagnostic value in periodontitis. Literatures were searched on PubMed and Embase databases up to August 2017, for articles reporting salivary MMP-8 levels between periodontitis patients and health controls with the data of means ± standard deviation (SD). Methodological quality was assessed by the Newcastle Ottawa scale (NOS). Standard mean differences (SMDs), heterogeneity, and publication bias were assessed by Stata 13.0 software. A total of 10 studies including 485 periodontitis patients and 379 healthy controls that met the preset inclusion criteria were included, the qualities of these studies were either good (n = 7) or moderate (n = 3). Eight studies showed salivary MMP-8 levels were higher in periodontitis patients compared with healthy controls (P  .05). The pooled SMD was 1.195 (95% CI: 0.720-1.670), with I of 89.3%, indicating high heterogeneity. Funnel plot showed publication bias existed. Our meta-analysis showed that salivary MMP-8 levels were significantly higher in periodontitis patients compared with healthy controls overall. Due to the heterogeneity and publication bias of included studies, further high quality studies are still needed to verify the conclusion. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  19. Lysophosphatidic acid (LPA) effects on endometrial carcinoma in vitro proliferation, invasion, and matrix metalloproteinase activity.

    Science.gov (United States)

    Wang, Feng-qiang; Ariztia, Edgardo V; Boyd, Leslie R; Horton, Faith R; Smicun, Yoel; Hetherington, Jessica A; Smith, Phillip J; Fishman, David A

    2010-04-01

    Lysophosphatidic acid (LPA) has potent growth-regulatory effect in many cell types and has been linked to the in vivo tumor growth and metastasis in several malignancies. The goal of this study was to assess the regulation of (EC) microenvironment by LPA through the examination of its effect on cell proliferation, migration, invasion, uPA activity, and matrix metalloproteinase (MMP) secretion/activation. All experiments were performed in vitro using an EC cell line, HEC-1A. Cell proliferation was determined using the Promega MTS proliferation assay following 48 h of exposures to different concentrations of LPA (0.1, 1.0 and 10.0 microM). Cell invasion was assessed using a modified Boyden chamber assay with collagen I coated on the membrane. HEC-1A motility was examined by Boyden chamber migration assay as well as the scratch wound closure assay on type I collagen. MMP secretion/activation in HEC-1A conditioned medium was detected by gelatin zymography. MMP-7 mRNA expression was determined using real-time PCR. uPA activity was measured using a coupled colorimetric assay. LPA, at the concentrations of 0.1 and 1.0 microM, significantly induced the proliferation of HEC-1A cells (p0.05). Gelatin zymogram showed that HEC-1A cells secreted high levels of MMP-7, while MMP-2 and MMP-9 are barely detectable. In addition, LPA significantly enhanced uPA activity in HEC-1A conditioned medium in a concentration-dependent manner. LPA is a potent modulator of cellular proliferation and invasion for EC cells. It also has the capacity to stimulate the secretion/activity of uPA and MMP-7. Those results suggest that LPA is a bioactive modulator of EC microenvironment and may have a distinct regulation mechanism as observed in epithelial ovarian cancer. Copyright 2009. Published by Elsevier Inc.

  20. CCR5 delta32, matrix metalloproteinase-9 and disease activity in multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, Finn; Madsen, Hans O; Jensen, Claus V

    2000-01-01

    Chemokines and matrix metalloproteinases (MMPs) appear to be crucial in leukocyte recruitment to the central nervous system in multiple sclerosis (MS). CCR5 delta32, a truncated allele of the CC chemokine receptor CCR5 gene encoding a non-functional receptor, did not confer protection from MS. CCR5...... delta32 was, however, associated with a lower risk of recurrent clinical disease activity. High CSF levels of MMP-9 activity were also associated with recurrent disease activity. These results directly link intrathecal inflammation to disease activity in patients with MS, suggesting that treatments...... targeting CCR5 or treatment with MMP inhibitors may attenuate disease activity in MS...

  1. Matrix metalloproteinase expression in excimer laser wounded rabbit corneas

    Science.gov (United States)

    Hahn, Taewon; Chamon, Wallace; Akova, Yonja; Stark, Walter J.; Stetler-Stevenson, William G.; Azar, Dimitri T.

    1994-06-01

    This study was performed to obtain information about matrix metalloproteinase (MMP) expression in excimer-wounded corneas and to determine whether MMPs expression correlates with the depth of the ablation. 6-mm excimer keratectomy (60 or 180 micrometers ) was performed using the 193-mm ArF excimer laser on 12 NZW rabbits. Corneas treated with mechanical epithelial debridement and untreated corneas served as controls. Rabbits were killed at 20 and 30 hr after laser ablation. Zymography after SDS extraction was performed on regenerated central epithelium and the central stroma to determine MMPs expression. We observed enzymatic activity of a 92 KDa band in the epithelium of excimer-ablated corneas but not in that following debridement wounds and untreated controls. The expression of the 92 KDa MMP was most pronounced with the deeper excimer ablation. A 72 KDa band of enzymatic activity present in the stroma of all treated and control eyes was also seen in the epithelium of excimer-ablated corneas. These proteolytic enzymes may play an important role in wound healing and remodelling after excimer keratectomy.

  2. Detection of functional matrix metalloproteinases by zymography.

    Science.gov (United States)

    Hu, Xueyou; Beeton, Christine

    2010-11-08

    Matrix metalloproteinases (MMPs) are zinc-containing endopeptidases. They degrade proteins by cleavage of peptide bonds. More than twenty MMPs have been identified and are separated into six groups based on their structure and substrate specificity (collagenases, gelatinases, membrane type [MT-MMP], stromelysins, matrilysins, and others). MMPs play a critical role in cell invasion, cartilage degradation, tissue remodeling, wound healing, and embryogenesis. They therefore participate in both normal processes and in the pathogenesis of many diseases, such as rheumatoid arthritis, cancer, or chronic obstructive pulmonary disease. Here, we will focus on MMP-2 (gelatinase A, type IV collagenase), a widely expressed MMP. We will demonstrate how to detect MMP-2 in cell culture supernatants by zymography, a commonly used, simple, and yet very sensitive technique first described in 1980 by C. Heussen and E.B. Dowdle. This technique is semi-quantitative, it can therefore be used to determine MMP levels in test samples when known concentrations of recombinant MMP are loaded on the same gel. Solutions containing MMPs (e.g. cell culture supernatants, urine, or serum) are loaded onto a polyacrylamide gel containing sodium dodecyl sulfate (SDS; to linearize the proteins) and gelatin (substrate for MMP-2). The sample buffer is designed to increase sample viscosity (to facilitate gel loading), provide a tracking dye (bromophenol blue; to monitor sample migration), provide denaturing molecules (to linearize proteins), and control the pH of the sample. Proteins are then allowed to migrate under an electric current in a running buffer designed to provide a constant migration rate. The distance of migration is inversely correlated with the molecular weight of the protein (small proteins move faster through the gel than large proteins do and therefore migrate further down the gel). After migration, the gel is placed in a renaturing buffer to allow proteins to regain their tertiary

  3. Impressic acid from Acanthopanax koreanum, possesses matrix metalloproteinase-13 down-regulating capacity and protects cartilage destruction.

    Science.gov (United States)

    Lim, Hyun; Min, Dong Suk; Yun, Han Eul; Kim, Kil Tae; Sun, Ya Nan; Dat, Le Duc; Kim, Young Ho; Kim, Hyun Pyo

    2017-09-14

    Acanthopanax koreanum (Araliaceae) has been used in traditional medicine for enhancing vitality, rheumatism, and bone-related pains. But its activity on cartilage protection has not been known yet. Matrix metalloproteinase (MMP)-13 has an important role in degrading cartilage materials under pathologic conditions such as arthritis. The present study was designed to find the inhibitory activity of impressic acid on MMP-13 expression and cartilage protective action. 70% ethanol extract of Acanthopanax koreanum leaves and impressic acid, a major constituent isolated from the same plant materials, were examined on MMP-13 down-regulating capacity in IL-1β-treated human chondrocyte cell line (SW1353) and rabbit cartilage explants. In IL-1β-treated SW1353 cells, impressic acid significantly and concentration-dependently inhibited MMP-13 expression at 0.5-10μM. Impressic acid was found to be able to inhibit MMP-13 expression by blocking the phosphorylation of signal transducer and activator of transcription-1/-2 (STAT-1/-2) and activation of c-Jun and c-Fos among the cellular signaling pathways involved. Further, impressic acid was found to inhibit the expression of MMP-13 mRNA (47.7% inhibition at 10μM), glycosaminoglycan release (42.2% reduction at 10μM) and proteoglycan loss in IL-1-treated rabbit cartilage explants culture. In addition, a total of 21 lupane-type triterpenoids structurally-related to impressic acid were isolated from the same plant materials and their suppressive activities against MMP-13 expression were also examined. Among these derivatives, compounds 2, 3, 16, and 18 clearly down-regulated MMP-13 expression. However, impressic acid was more potent than these derivatives in down-regulating MMP-13 expression. Impressic acid, its related triterpenoids, and A. koreanum extract have potential as therapeutic agents to prevent cartilage degradation by inhibiting matrix protein degradation. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  4. Photorefractive keratectomy: measuring the matrix metalloproteinase activity and chondroitin sulfate concentration in tear fluid

    Directory of Open Access Journals (Sweden)

    Tetsuya Mutoh

    2010-09-01

    Full Text Available Tetsuya Mutoh, Masaya Nishio, Yukihiro Matsumoto, Kiyomi Arai, Makoto ChikudaDepartment of Ophthalmology, Dokkyo Medical University Koshigaya Hospital, Saitama, JapanAbstract: We herein report the case of a 20-year-old man who underwent a photorefractive keratectomy (PRK. We measured matrix metalloproteinase-9 (MMP-9 activity and chondroitin 4 sulfate and chondroitin 6 sulfate concentrations in tear fluid. Tear fluid was collected preoperatively via microcapillary tube, and was collected postoperatively on the first and fourth days, and after one week, one month, three months, and six months. Samples were formulated by dilution with 200 µL of saline. MMP-9 activity was analyzed by an enzyme immunocapture activity assay, and the concentrations of chondroitin sulfate were analyzed by enzyme-linked immunosorbent assay. No complications were observed after surgery, except for a minimal subepithelial haze. Although MMP-9 activity changed on the fourth postoperative day, the activity changed only minimally at this time. Chondroitin 4 sulfate concentrations in tear fluid increased dramatically from one week to one month, decreased transiently at three months, and increased by six months. The chondroitin 6 sulfate concentration did not normalize within one week, and decreased from one week to three months compared with the preoperative score, and was close to the preoperative score at six months. We conclude that corneal wound healing was still incomplete six months after PRK, and chondroitin 4 sulfate appears to be critical in this process.Keywords: matrix metalloproteinase, chondroitin sulfate, human tear fluid, photorefractive keratectomy, corneal wound healing

  5. Matrix metalloproteinase 2 is required for ovulation and corpus luteum formation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Lylah D Deady

    2015-02-01

    Full Text Available Ovulation is critical for successful reproduction and correlates with ovarian cancer risk, yet genetic studies of ovulation have been limited. It has long been thought that the mechanism controlling ovulation is highly divergent due to speciation and fast evolution. Using genetic tools available in Drosophila, we now report that ovulation in Drosophila strongly resembles mammalian ovulation at both the cellular and molecular levels. Just one of up to 32 mature follicles per ovary pair loses posterior follicle cells ("trimming" and protrudes into the oviduct, showing that a selection process prefigures ovulation. Follicle cells that remain after egg release form a "corpus luteum (CL" at the end of the ovariole, develop yellowish pigmentation, and express genes encoding steroid hormone biosynthetic enzymes that are required for full fertility. Finally, matrix metalloproteinase 2 (Mmp2, a type of protease thought to facilitate mammalian ovulation, is expressed in mature follicle and CL cells. Mmp2 activity is genetically required for trimming, ovulation and CL formation. Our studies provide new insights into the regulation of Drosophila ovulation and establish Drosophila as a model for genetically investigating ovulation in diverse organisms, including mammals.

  6. [Expression and clinical significance of kisspeptin-1, matrix metalloproteinase-2 and vascular endothelial growth factor in tissue of colon cancer].

    Science.gov (United States)

    Wang, Wenhui; Qi, Yuanling; Xu, Qian; Ren, Haipeng

    2016-03-01

    To detect the expression of kisspeptin-1 (KISS-1), matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF) in the tissue of colon cancer, and analyze the relativity between KISS-1, MMP-2, VEGF and pathological characteristics of colon cancer. A total of 60 colon cancer patients and 60 patients with benign colorectal disease who received surgical treatment in our hospital from January 2009 to June 2010 were selected as observation group and control group respectively. The cancer tissue samples and excision samples collected from them were used to detect KISS-1, MMP-2 and VEGF with immunohistochemistry. The positive rates of KISS-1, MMP-2 and VEGF were 31.7%, 58.3% and 78.3% in observation group, and 73.3%, 16.7% and 33.3% in control group. The positive rate of KISS-1 in observation group was lower than that in control group (χ(2)=23.489, Pcolon cancer (χ(2)=8.997, P=0.011; χ(2)=6.163, P=0.013; χ(2)=8.519, P=0.014; χ(2)=9.160, P=0.002; χ(2)=16.577, Pclinical stage of colon cancer and provide evidence for clinical diagnosis and prognosis prediction by detecting KISS-1, MMP-2 and VEGF.

  7. The Role of Matrix Metalloproteinases in Diabetic Wound Healing in relation to Photobiomodulation.

    Science.gov (United States)

    Ayuk, Sandra Matabi; Abrahamse, Heidi; Houreld, Nicolette Nadene

    2016-01-01

    The integration of several cellular responses initiates the process of wound healing. Matrix Metalloproteinases (MMPs) play an integral role in wound healing. Their main function is degradation, by removal of damaged extracellular matrix (ECM) during the inflammatory phase, breakdown of the capillary basement membrane for angiogenesis and cell migration during the proliferation phase, and contraction and remodelling of tissue in the remodelling phase. For effective healing to occur, all wounds require a certain amount of these enzymes, which on the contrary could be very damaging at high concentrations causing excessive degradation and impaired wound healing. The imbalance in MMPs may increase the chronicity of a wound, a familiar problem seen in diabetic patients. The association of diabetes with impaired wound healing and other vascular complications is a serious public health issue. These may eventually lead to chronic foot ulcers and amputation. Low intensity laser irradiation (LILI) or photobiomodulation (PBM) is known to stimulate several wound healing processes; however, its role in matrix proteins and diabetic wound healing has not been fully investigated. This review focuses on the role of MMPs in diabetic wound healing and their interaction in PBM.

  8. The Role of Matrix Metalloproteinases in Diabetic Wound Healing in relation to Photobiomodulation

    Directory of Open Access Journals (Sweden)

    Sandra Matabi Ayuk

    2016-01-01

    Full Text Available The integration of several cellular responses initiates the process of wound healing. Matrix Metalloproteinases (MMPs play an integral role in wound healing. Their main function is degradation, by removal of damaged extracellular matrix (ECM during the inflammatory phase, breakdown of the capillary basement membrane for angiogenesis and cell migration during the proliferation phase, and contraction and remodelling of tissue in the remodelling phase. For effective healing to occur, all wounds require a certain amount of these enzymes, which on the contrary could be very damaging at high concentrations causing excessive degradation and impaired wound healing. The imbalance in MMPs may increase the chronicity of a wound, a familiar problem seen in diabetic patients. The association of diabetes with impaired wound healing and other vascular complications is a serious public health issue. These may eventually lead to chronic foot ulcers and amputation. Low intensity laser irradiation (LILI or photobiomodulation (PBM is known to stimulate several wound healing processes; however, its role in matrix proteins and diabetic wound healing has not been fully investigated. This review focuses on the role of MMPs in diabetic wound healing and their interaction in PBM.

  9. Cleavage/alteration of interleukin-8 by matrix metalloproteinase-9 in the female lower genital tract.

    Science.gov (United States)

    Zariffard, M Reza; Anastos, Kathryn; French, Audrey L; Munyazesa, Elisaphane; Cohen, Mardge; Landay, Alan L; Spear, Gregory T

    2015-01-01

    Interleukin-8 (IL-8, CXCL8) plays important roles in immune responses at mucosal sites including in the lower genital tract. Since several types of bacteria produce proteases that cleave IL-8 and many types of bacteria can be present in lower genital tract microbiota, we assessed genital fluids for IL-8 cleavage/alteration. Genital fluids collected by lavage from 200 women (23 HIV-seronegative and 177 HIV-seropositive) were tested for IL-8 cleavage/alteration by ELISA. IL-8 cleaving/altering activity was observed in fluids from both HIV-positive (28%) and HIV-negative women (35%). There was no clear relationship between the activity and the types of bacteria present in the lower genital tract as determined by high-throughput sequencing of the 16S rRNA gene. Protease inhibitors specific for matrix metalloproteinases (MMPs) reduced the activity and a multiplex assay that detects both inactive and active MMPs showed the presence of multiple MMPs, including MMP-1, -3, -7, -8, -9, -10 and -12 in genital secretions from many of the women. The IL-8-cleaving/altering activity significantly correlated with active MMP-9 as well as with cleavage of a substrate that is acted on by several active MMPs. These studies show that multiple MMPs are present in the genital tract of women and strongly suggest that MMP-9 in genital secretions can cleave IL-8 at this mucosal site. These studies suggest that MMP-mediated cleavage of IL-8 can modulate inflammatory responses in the lower genital tract.

  10. SERUM CONCENTRATIONS OF MATRIX METALLOPROTEINASE-9, -13 AND TIMP-1 IN AN OVARIECTOMIZED WISTAR RAT MODEL OF OSTEOPOROSIS

    Directory of Open Access Journals (Sweden)

    Armine V. Grigoryan

    2017-12-01

    Full Text Available Introduction. Osteoporosis is a disease characterized by decreased bone density and destruction of the microarchitectonics of the bone structure. This leads to increased bone fragility and risk of fracture, particularly of the hip, spine, wrist and shoulder. Osteoporosis is known as „The Silent Epidemic of the Century“ because bone loss occurs without symptoms. An altered ovarian function is one of the most common causes of osteoporosis. Indicators for altered bone homeostasis are the changes in serum levels of matrix metalloproteinases (MMPs and their tissue inhibitors (TIMPs. Objective. The aim of current study was to determine the activity of alkaline phosphatase (ALP and serum concentrations of MMP-9, MMP-13 and TIMP-1 in the ovariectomized rats. Materials and Methods. An experiment was performed on 35 female Wistar rats at reproductive age – 2 months divided into 2 groups: group 1 (G1-20 animals were sham-operated (sham and group 2 (G2-15 were ovariectomized (ovx. Results. The concentrations of ALP, MMP-9, MMP-13 and TIMP-1 in G2 were significantly increased compared to G1 (p<0.05. Conclusion. Our study confirmed that the serum activity of ALP, which is a marker of bone formation, was elevated in rats with OVX-induced osteoporosis. Although the level of TIMP-1 is increased, the level of MMP 9 in G2 is also increased, that confirms the thesis that MMP-9 may be a marker for osteoclast activity.

  11. The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells

    OpenAIRE

    Simian, Marina; Hirai, Yohei; Navre, Marc; Werb, Zena; Lochter, Andre; Bissell, Mina J.

    2001-01-01

    The mammary gland develops its adult form by a process referred to as branching morphogenesis. Many factors have been reported to affect this process. We have used cultured primary mammary epithelial organoids and mammary epithelial cell lines in three-dimensional collagen gels to elucidate which growth factors, matrix metalloproteinases (MMPs) and mammary morphogens interact in branching morphogenesis. Branching stimulated by stromal fibroblasts, epidermal growth factor, fibroblast growth fa...

  12. The role of extracellular matrix metalloproteinase inducer (EMMPRIN) in the regulation of bovine endometrial cell functions.

    Science.gov (United States)

    Mishra, Birendra; Kizaki, Keiichiro; Sato, Takashi; Ito, Akira; Hashizume, Kazuyoshi

    2012-06-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) is a cell surface glycoprotein that stimulates the production of several matrix metalloproteinases (MMPs) for tissue remodeling. Previously, we detected EMMPRIN in the bovine endometrium, and it is mainly expressed in the luminal and glandular epithelium whereas MMPs are expressed in the underlying stroma. From this expression pattern, we hypothesized that EMMPRIN may regulate stromal MMPs in endometrial cell functions. To test this hypothesis, a coculture of epithelial and stromal cells was performed using a transwell system. In the coculture, epithelial cells were cultured on the insert membrane and stromal cell on the surface of well plates. Expression of stromal MMP-2 and MMP-14 was significantly higher in coculture with epithelial cell. Further, with the addition of anti-EMMPRIN antibody into the epithelial cell compartment, the expression of stromal EMMPRIN and MMP-2 and MMP-14 was decreased. To identify the active site of EMMPRIN for the augmentation of MMPs, EMMPRIN synthetic peptides that correspond to the extracellular loop domain-I (EM1, EM2, EM3, and EM4) were added into the epithelial cell compartment, and only EM2 at a higher dose interfered with EMMPRIN-mediated expression of MMP-14. Next, we examined the effects of progesterone and/or estrogen on the expression of EMMPRIN, MMP-2, and MMP-14. Progesterone (300 nM) significantly stimulated the expression of EMMPRIN but had no effects on any of the MMPs. These results suggest that EMMPRIN derived from epithelial cells regulates MMPs in the endometrium under progesterone-rich conditions and may thereby modulate bovine endometrial cell functions during gestation.

  13. Correlation of matrix metalloproteinase-2 single nucleotide polymorphisms with the risk of small vessel disease (SVD).

    Science.gov (United States)

    Zhang, Min; Zhu, Wusheng; Yun, Wenwei; Wang, Qizhang; Cheng, Maogang; Zhang, Zhizhong; Liu, Xinfeng; Zhou, Xianju; Xu, Gelin

    2015-09-15

    Maladjustment of matrix metalloproteinases (MMPs) results in cerebral vasculature and blood-brain barrier dysfunction, which is associated with small vessel disease (SVD). This study was to aim at evaluating correlations between matrix metalloproteinase-2 and 9 single nucleotide polymorphisms and the risk of SVD. A total of 178 patients with SVD were enrolled into this study via Nanjing Stroke Registry Program (NSRP) from January 2010 to November 2011. SVD patients were further subtyped as isolated lacunar infarction (ILI, absent or with mild leukoaraiosis) and ischemic leukoaraiosis (ILA, with moderate or severe leukoaraiosis) according to the Fazekas scale. 100 age- and gender-matched individuals from outpatient medical examination were recruited as the control group. The genotypes of MMP-2-1306 T/C and MMP-9-1562 C/T were determined by the TaqMan method. Of 178 SVD patients, 86 and 92 patients were classified as ILI and ILA, respectively. Comparison analysis between SVD patients and controls revealed a significant correlation between SVD and hypertension, as well as a prevalence of hypertension in ILA. Further genotype analysis showed that the frequency of MMP-2-1306 CC genotype was higher in ILA patients than in controls (P=0.009, χ(2) test; P=0.027, the multiple test with Bonferroni correction). Finally, logistic regression analysis with adjustment of age, sex and vascular risk factors showed that the MMP-2-1306 T/C polymorphism was an independent predictor for ILA (OR: 2.605; 95% confidence interval [CI], 1.067-6.364; P=0.036). Our findings suggest that the MMP-2-1306 T/C polymorphism is a direct risk factor for ILA. Copyright © 2015. Published by Elsevier B.V.

  14. Spontaneous and cytokine induced expression and activity of matrix metalloproteinases in human colonic epithelium

    DEFF Research Database (Denmark)

    Pedersen, G; Saermark, T; Kirkegaard, T

    2009-01-01

    levels in cells from inflamed IBD mucosa. MMP-2 and -8 mRNA were expressed inconsistently and MMP-11, -13 and -14 mRNA undetectable. Proteolytic MMP activity was detected in CEC supernatants and the level was increased significantly in inflamed IBD epithelium. The enzyme activity was inhibited strongly......Matrix metalloproteinases (MMPs) have been implicated in tissue damage associated with inflammatory bowel disease (IBD).As the role of the intestinal epithelium in this process is unknown, we determined MMP expression and enzyme activity in human colonic epithelial cells (CEC). MMP mRNA expression...... was assessed by reverse transcription-polymerase chain reaction in HT-29 and DLD-1 cells and in CEC isolated from biopsies from IBD and control patients. Total MMP activity in the cells was measured by a functional assay, based on degradation of a fluorescent synthetic peptide containing the specific bond...

  15. Bone Marrow-derived Myofibroblasts Are the Providers of Pro-invasive Matrix Metalloproteinase 13 in Primary Tumor

    Directory of Open Access Journals (Sweden)

    Julie Lecomte

    2012-10-01

    Full Text Available Carcinoma-associated fibroblasts are key contributors of the tumor microenvironment that regulates carcinoma progression. They consist of a heterogeneous cell population with diverse origins, phenotypes, and functions. In the present report, we have explored the contribution of bone marrow (BM-derived cells to generate different fibroblast subsets that putatively produce the matrix metalloproteinase 13 (MMP13 and affect cancer cell invasion. A murine model of skin carcinoma was applied to mice, irradiated, and engrafted with BM isolated from green fluorescent protein (GFP transgenic mice. We provide evidence that one third of BM-derived GFP+ cells infiltrating the tumor expressed the chondroitin sulfate proteoglycan NG2 (pericytic marker or α-smooth muscle actin (α-SMA, myofibroblast marker, whereas almost 90% of Thy1+ fibroblasts were originating from resident GFP-negative cells. MMP13producing cells were exclusively α-SMA+ cells and derived from GFP+ BM cells. To investigate their impact on tumor invasion, we isolated mesenchymal stem cells (MSCs from the BM of wild-type and MMP13-deficient mice. Wild-type MSC promoted cancer cell invasion in a spheroid assay, whereas MSCs obtained from MMP13-deficient mice failed to. Our data support the concept of fibroblast subset specialization with BM-derived α-SMA+ cells being the main source of MMP13, a stromal mediator of cancer cell invasion.

  16. Membrane-type matrix metalloproteases as diverse effectors of cancer progression.

    Science.gov (United States)

    Turunen, S Pauliina; Tatti-Bugaeva, Olga; Lehti, Kaisa

    2017-11-01

    Membrane-type matrix metalloproteases (MT-MMP) are pivotal regulators of cell invasion, growth and survival. Tethered to the cell membranes by a transmembrane domain or GPI-anchor, the six MT-MMPs can exert these functions via cell surface-associated extracellular matrix degradation or proteolytic protein processing, including shedding or release of signaling receptors, adhesion molecules, growth factors and other pericellular proteins. By interactions with signaling scaffold or cytoskeleton, the C-terminal cytoplasmic tail of the transmembrane MT-MMPs further extends their functionality to signaling or structural relay. MT-MMPs are differentially expressed in cancer. The most extensively studied MMP14/MT1-MMP is induced in various cancers along malignant transformation via pathways activated by mutations in tumor suppressors or proto-oncogenes and changes in tumor microenvironment including cellular heterogeneity, extracellular matrix composition, tissue oxygenation, and inflammation. Classically such induction involves transcriptional programs related to epithelial-to-mesenchymal transition. Besides inhibition by endogenous tissue inhibitors, MT-MMP activities are spatially and timely regulated at multiple levels by microtubular vesicular trafficking, dimerization/oligomerization, other interactions and localization in the actin-based invadosomes, in both tumor and the stroma. The functions of MT-MMPs are multifaceted within reciprocal cellular responses in the evolving tumor microenvironment, which poses the importance of these proteases beyond the central function as matrix scissors, and necessitates us to rethink MT-MMPs as dynamic signaling proteases of cancer. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effects of oxaliplatin, leucovorin and fluorouracil on serum tumor markers, VEGF, CRP and matrix metalloproteinases in patients with advanced esophageal cancer

    Directory of Open Access Journals (Sweden)

    Lei Lei

    2017-08-01

    Full Text Available Objective: To investigate the effects of oxaliplatin, leucovorin and fluorouracil on serum tumor markers, VEGF, CRP and matrix metalloproteinases in patients with advanced esophageal cancer. Methods: From March 2012 to March 2017 a total of 248 patients with advanced esophageal cancer were selected as the study subjects. According to random data table, they were divided into control group (n=123 and observation group (n=125 according to random data table. The control group was treated with cisplatin combined with fluorouracil, leucovorin chemotherapy, and patients in the observation group received oxaliplatin, leucovorin and fluorouracil chemotherapy, all patients were treated for 2 cycles. The changes of serum tumor markers, VEGF, CRP and matrix metalloproteinase levels in the two groups before and after treatment was compared. Results: Before treatment, there was no significant difference of the levels of serum CA125, CA19-9, CEA, VEGF, CRP, MMP-2 and MMP-9 between the control group and the observation group. Compared with the group before treatment, the levels of CA125, CA19-9, CEA, VEGF, CRP, MMP-2 and MMP-9 in the two groups were significantly lower. After treatment, the level of CA125, CA19-9, CEA, VEGF, CRP, MMP-2 and MMP-9 in the observation group was significantly lower than those of the control group. Conclusion: Oxaliplatin, leucovorin and fluorouracil chemotherapy can effectively reduce the levels of serum tumor markers, VEGF, CRP and matrix metalloproteinase in patients with advanced esophageal cancer, it has important clinical value.

  18. [Expression of erythroblastic leukemia viral oncogene homolog 3 (ErbB-3) binding protein-1, matrix metalloproteinases, eplthelial cadherin in adenoid cystic carcinoma and correlation analysis].

    Science.gov (United States)

    Sun, Jian; Yu, You-cheng; Luo, Yi-xi; Tian, Zhen

    2012-12-01

    To investigate the expression of ErbB-3 binding protein-1 (EBP-1), matrix metalloproteinase 9 (MMP-9) and E-cadherin (E-cad) in adenoid cystic carcinoma and their correlation. Immunohistochemistry(PV6000 method) was used to detect EBP-1, MMP-9 and E-cad expression in 66 cases of adenoid cystic carcinoma tissues and matched para-cancerous normal tissues. In this study all cases were successfully followed up. The positive expression rate of EBP-1 in adenoid cystic carcinoma tissues was 85%. EBP-1 expression was significantly correlated to pathological pattern and clinical stage (P correlation between EBP-1 and E-cad expression, and positive correlation between EBP-1 and MMP-9. EBP-1 and its correlation with MMP-9 and E-cad may be used as useful indicators for clinical assessment of tumor biological behavior and prognosis in patients with adenoid cystic carcinoma.

  19. High matrix metalloproteinase activity is a hallmark of periapical granulomas.

    Science.gov (United States)

    de Paula-Silva, Francisco Wanderley Garcia; D'Silva, Nisha J; da Silva, Léa Assed Bezerra; Kapila, Yvonne Lorraine

    2009-09-01

    The inability to distinguish periapical cysts from granulomas before performing root canal treatment leads to uncertainty in treatment outcomes because cysts have lower healing rates. Searching for differential expression of molecules within cysts or granulomas could provide information with regard to the identity of the lesion or suggest mechanistic differences that may form the basis for future therapeutic intervention. Thus, we investigated whether granulomas and cysts exhibit differential expression of extracellular matrix (ECM) molecules. Human periapical granulomas, periapical cysts, and healthy periodontal ligament tissues were used to investigate the differential expression of ECM molecules by microarray analysis. Because matrix metalloproteinases (MMP) showed the highest differential expression in the microarray analysis, MMPs were further examined by in situ zymography and immunohistochemistry. Data were analyzed by using one-way analysis of variance followed by the Tukey test. We observed that cysts and granulomas differentially expressed several ECM molecules, especially those from the MMP family. Compared with cysts, granulomas exhibited higher MMP enzymatic activity in areas stained for MMP-9. These areas were composed of polymorphonuclear cells (PMNs) in contrast to cysts. Similarly, MMP-13 was expressed by a greater number of cells in granulomas compared with cysts. Our findings indicate that high enzymatic MMP activity in PMNs together with MMP-9 and MMP-13 stained cells could be a molecular signature of granulomas unlike periapical cysts.

  20. Tissue levels of matrix metalloproteinases MMP-2 and MMP-9 are related to the overall survival of patients with gastric carcinoma

    NARCIS (Netherlands)

    Sier, C.F.M.; Kubben, F.J.G.M.; Ganesh, S.; Heerding, M.M.; Griffioen, G.; Hanemaaijer, R.; Krieken, J.H.J.M. van; Lamers, C.B.H.W.; Verspaget, H.W.

    1996-01-01

    Proteinases are involved in tumour invasion and metastasis. Several matrix metalloproteinases (MMPs) have been shown to be increased in various human carcinomas. We assessed the levels of MMP-2 (gelatinase A) and MMP-9 (gelatinase B) in 50 gastric carcinomas and corresponding mucosa using

  1. Leflunomide and methotrexate reduce levels of activated matrix metalloproteinases in complexes with α2 macroglobulin in serum of rheumatoid arthritis patients

    NARCIS (Netherlands)

    Tchetverikov, I.; Kraan, M.C.; El, B. van; Hanemaaijer, R.; Groot, J. de; Huizinga, T.W.J.

    2008-01-01

    Objective: To analyse the effects of leflunomide and methotrexate treatment on matrix metalloproteinase (MMP) activity levels in a2 macroglobulin/MMP (α2M/MMP) complexes in the systemic circulation of rheumatoid arthritis (RA) patients. Methods: A total of 102 RA patients from a prospective,

  2. Urinary metalloproteinases: noninvasive biomarkers for breast cancer risk assessment

    DEFF Research Database (Denmark)

    Pories, Susan E; Zurakowski, David; Roy, Roopali

    2008-01-01

    Matrix metalloproteinases (MMP) and a disintegrin and metalloprotease 12 (ADAM 12) can be detected in the urine of breast cancer patients and provide independent prediction of disease status. To evaluate the potential of urinary metalloproteinases as biomarkers to predict breast cancer risk statu...

  3. Red Grape Skin Polyphenols Blunt Matrix Metalloproteinase-2 and -9 Activity and Expression in Cell Models of Vascular Inflammation: Protective Role in Degenerative and Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Nadia Calabriso

    2016-08-01

    Full Text Available Matrix metalloproteinases (MMPs are endopeptidases responsible for the hydrolysis of various components of extracellular matrix. MMPs, namely gelatinases MMP-2 and MMP-9, contribute to the progression of chronic and degenerative diseases. Since gelatinases’ activity and expression are regulated by oxidative stress, we sought to evaluate whether supplementation with polyphenol-rich red grape skin extracts modulated the matrix-degrading capacity in cell models of vascular inflammation. Human endothelial and monocytic cells were incubated with increasing concentrations (0.5–25 μg/mL of Negroamaro and Primitivo red grape skin polyphenolic extracts (NSPE and PSPE, respectively or their specific components (0.5–25 μmol/L, before stimulation with inflammatory challenge. NSPE and PSPE inhibited, in a concentration-dependent manner, endothelial invasion as well as the MMP-9 and MMP-2 release in stimulated endothelial cells, and MMP-9 production in inflamed monocytes, without affecting tissue inhibitor of metalloproteinases (TIMP-1 and TIMP-2. The matrix degrading inhibitory capacity was the same for both NSPE and PSPE, despite their different polyphenolic profiles. Among the main polyphenols of grape skin extracts, trans-resveratrol, trans-piceid, kaempferol and quercetin exhibited the most significant inhibitory effects on matrix-degrading enzyme activities. Our findings appreciate the grape skins as rich source of polyphenols able to prevent the dysregulation of vascular remodelling affecting degenerative and inflammatory diseases.

  4. Extracellular matrix metalloproteinase inducer enhances host resistance against pseudomonas aeruginosa infection through MAPK signaling pathway

    OpenAIRE

    Li, Yongwei; Chen, Lu; Wang, Chunxia; Chen, Jianshe; Zhang, Xiaoqian; Hu, Yue; Niu, Xiaobin; Pei, Dongxu; He, Zhiqiang; Bi, Yongyi

    2016-01-01

    This study aims to explore the role of extra-cellular matrix metalloproteinase inducer (EMMPRIN) in the drug resistance of the pseudomonas aeruginosa (PA). The BALB/c mice were transfected with PA, then the mice were infected with the siRNA of EMMPRIN to silence the EMMPRIN gene. The EMMPRIN mRNA and protein were detected by using RT-PCR and western blot, respectively. In order to examine the function of EMMPRIN in drug resistance of PA, the BALB/c and C57BL/6 mice were treated with EMMPRIN s...

  5. Targeted Fluoro Positioning for the Discovery of a Potent and Highly Selective Matrix Metalloproteinase Inhibitor.

    Science.gov (United States)

    Fischer, Thomas; Riedl, Rainer

    2017-04-01

    Invited for this month's cover picture is the group of Professor Rainer Riedl from the Institute of Chemistry and Biotechnology at the Zurich University of Applied Sciences (ZHAW), Switzerland. The cover picture depicts the structure-based design of a drug-like small molecule inhibitor of matrix metalloproteinase-13 (MMP-13) with a combined dual binding motif. The targeted introduction of a single fluoro atom was of vital importance for the optimization of the inhibitor. For more details, read the full text of the Communication at 10.1002/open.201600158.

  6. Relationship between plasma matrix metalloproteinase levels, pulmonary function, bronchodilator response, and emphysema severity.

    Science.gov (United States)

    Koo, Hyeon-Kyoung; Hong, Yoonki; Lim, Myoung Nam; Yim, Jae-Joon; Kim, Woo Jin

    2016-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation in the airway and lung. A protease-antiprotease imbalance has been suggested as a possible pathogenic mechanism for COPD. We evaluated the relationship between matrix metalloproteinase (MMP) levels and COPD severity. Plasma levels of MMP-1, MMP-8, MMP-9, and MMP-12 were measured in 57 COPD patients and 36 normal controls. The relationship between MMP levels and lung function, emphysema index, bronchial wall thickness, pulmonary artery pressure, and quality of life was examined using general linear regression analyses. There were significant associations of MMP-1 with bronchodilator reversibility and of MMP-8 and MMP-9 with lung function. Also, MMP-1, MMP-8, and MMP-9 levels were correlated with the emphysema index, independent of lung function. However, MMP-12 was not associated with lung function or emphysema severity. Associations between MMP levels and bronchial wall thickness, pulmonary artery pressure, and quality of life were not statistically significant. Plasma levels of MMP-1, MMP-8, and MMP-9 are associated with COPD severity and can be used as a biomarker to better understand the characteristics of COPD patients.

  7. Role of matrix metalloproteinases in radicular cysts and periapical granulomas.

    Science.gov (United States)

    D'addazio, G; Artese, L; Piccirilli, M; Perfetti, G

    2014-01-01

    The aim of the present study was to evaluate the expression and distribution of different classes of matrix metalloproteinases (MMPs) in radicular cysts and periapical granulomas. Twenty consecutive specimens of radicular cysts and 20 of periapical granulomas were selected. Expression of MMP-2, -9, -8, -13, -3 was immunohistochemically evaluated. The intensity of expression of the MMPs was evaluated using a semi-quantitative analysis: low = +; intermediate = ++; high = +++. Positive expression of MMPs was present with different distribution. MMP-9 expressed differently in the lesions. Indeed, in periapical granulomas low expression was found in endothelial cells and fibroblasts, whilst high intensities were only detected in inflammatory cells. On the contrary, in radicular cysts the high intensities were mainly present in keratinocytes and fibroblasts. MMP-8 was mainly expressed in inflammatory cells of periapical granulomas. MMP-2 and -3 presented a low intensity of expression in both groups. MMP-13 showed a variable pattern of distribution in the different cell types of the two different lesions. The present investigation supports the role of MMPs in the inflammatory process leading to the development of radicular cysts and periapical granulomas. The results of the present study suggested that the increased enlargement of radicular cysts, compared to periapical granulomas, might be related to a higher expression of MMP-9. On the other hands, the higher intensity of expression of MMP-8 in periapical granulomas could be related to an active inflammatory process. MMP-8 could play an important role in the inflammation processes during the development of periapical lesions.

  8. Andrographolide suppresses the migratory ability of human glioblastoma multiforme cells by targeting ERK1/2-mediated matrix metalloproteinase-2 expression.

    Science.gov (United States)

    Yang, Shih-Liang; Kuo, Fu-Hsuan; Chen, Pei-Ni; Hsieh, Yi-Hsien; Yu, Nuo-Yi; Yang, Wei-En; Hsieh, Ming-Ju; Yang, Shun-Fa

    2017-12-01

    Glioblastoma multiforme (GBM) can be a fatal tumor because of difficulties in treating the related metastasis. Andrographolide is the bioactive component of the Andrographis paniculata . Andrographolide possesses the anti-inflammatory activity and inhibits the growth of various cancers; however, its effect on GBM cancer motility remains largely unknown. In this study, we examined the antimetastatic properties of andrographolide in human GBM cells. Our results revealed that andrographolide inhibited the invasion and migration abilities of GBM8401 and U251 cells. Furthermore, andrographolide inhibited matrix metalloproteinase (MMP)-2 activity and expression. Real-time PCR and promoter activity assays indicated that andrographolide inhibited MMP-2 expression at the transcriptional level. Such inhibitory effects were associated with the suppression of CREB DNA-binding activity and CREB expression. Mechanistically, andrographolide inhibited the cell motility of GBM8401 cells through the extracellular-regulated kinase (ERK) 1/2 pathway, and the blocking of the ERK 1/2 pathway could reverse MMP-2-mediated cell motility. In conclusion, CREB is a crucial target of andrographolide for suppressing MMP-2-mediated cell motility in GBM cells. Therefore, a combination of andrographolide and an ERK inhibitor might be a good strategy for preventing GBM metastasis.

  9. Polymorphisms of the matrix metalloproteinase 9 gene and abdominal aortic aneurysm.

    Science.gov (United States)

    Smallwood, L; Allcock, R; van Bockxmeer, F; Warrington, N; Palmer, L J; Iacopetta, B; Golledge, J; Norman, P E

    2008-10-01

    Increased matrix metalloproteinase (MMP) 9 activity has been implicated in the formation of abdominal aortic aneurysm (AAA). The aim was to explore the association between potentially functional variants of the MMP-9 gene and AAA. The -1562C > T and -1811A > T variants of the MMP-9 gene were genotyped in 678 men with an AAA (at least 30 mm in diameter) and 659 control subjects (aortic diameter 19-22 mm) recruited from a population-based trial of screening for AAA. Levels of MMP-9 were measured in a random subset of 300 cases and 84 controls. The association between genetic variants (including haplotypes) and AAA was assessed by multivariable logistic regression. There was no association between the MMP-9-1562C > T (odds ratio (OR) 0.70 (95 per cent confidence interval (c.i.) 0.27 to 1.82)) or -1811A > T (OR 0.71 (95 per cent c.i. 0.28 to 1.85)) genotypes, or the most common haplotype (OR 0.81 (95 per cent c.i. 0.62 to 1.05)) and AAA. The serum MMP-9 concentration was higher in cases than controls, and in minor allele carriers in cases and controls, although the differences were not statistically significant. In this study, the genetic tendency to higher levels of circulating MMP-9 was not associated with AAA.

  10. Perioceutics: Matrix metalloproteinase inhibitors as an adjunctive therapy for inflammatory periodontal disease

    Directory of Open Access Journals (Sweden)

    Esther Nalini Honibald

    2012-01-01

    Full Text Available Matrix metalloproteinases (MMPs form a group of more than 20 zinc-dependent enzymes that are crucial in the degradation of the main components in the extracellular matrix, and thereby play important roles in cell migration, wound healing, and tissue remodeling. MMPs have outgrown the field of extracellular matrix biology and have progressed toward being important regulatory molecules in inflammation, and hence are key components in the pathogenesis of periodontitis. This rise in status has led to the development of MMP inhibitors which can act as switches or delicate tuners in acute and chronic inflammation and the regenerative phase after inflammation. The new challenge in MMP research is to better understand the complex role these enzymes play in periodontal disease and to design inhibitors that are successful in the clinic. Perioceutics or the use of the pharmacological agents specifically developed to manage periodontitis is an interesting and emerging aid in the management of periodontal diseases along with mechanical debridement. The purpose of this review is to provide an introduction to MMPs and their inhibitors, the pathologic effects of a disturbance in the functions of enzyme cascades in balance with natural inhibitors, and highlight on the adjunctive use of MMP inhibitors in periodontal therapy and some of the current challenges with an overview of what has been achieved till date.

  11. Matrix metalloproteases and tissue inhibitors of metalloproteinases in medial plica and pannus-like tissue contribute to knee osteoarthritis progression.

    Science.gov (United States)

    Yang, Chih-Chang; Lin, Cheng-Yu; Wang, Hwai-Shi; Lyu, Shaw-Ruey

    2013-01-01

    Osteoarthritis (OA) is characterized by degradation of the cartilage matrix, leading to pathologic changes in the joints. However, the pathogenic effects of synovial tissue inflammation on OA knees are not clear. To investigate whether the inflammation caused by the medial plica is involved in the pathogenesis of osteoarthritis, we examined the expression of matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), interleukin (IL)-1β, and tumor necrosis factor (TNF)-α in the medial plica and pannus-like tissue in the knees of patients with medial compartment OA who underwent either arthroscopic medial release (stage II; 15 knee joints from 15 patients) or total knee replacement (stage IV; 18 knee joints from 18 patients). MMP-2, MMP-3, MMP-9, IL-1β, and TNF-α mRNA and protein levels measured, respectively, by quantitative real-time PCR and Quantibody human MMP arrays, were highly expressed in extracts of medial plica and pannus-like tissue from stage IV knee joints. Immunohistochemical staining also demonstrated high expression of MMP-2, MMP-3, and MMP-9 in plica and pannus-like tissue of stage IV OA knees and not in normal cartilage. Some TIMP/MMP ratios decreased significantly in both medial plica and pannus-like tissue as disease progressed from stage II to stage IV. Furthermore, the migration of cells from the pannus-like tissue was enhanced by IL-1β, while plica cell migration was enhanced by TNF-α. The results suggest that medial plica and pannus-like tissue may be involved in the process of cartilage degradation in medial compartment OA of the knee.

  12. Matrix metalloproteases and tissue inhibitors of metalloproteinases in medial plica and pannus-like tissue contribute to knee osteoarthritis progression.

    Directory of Open Access Journals (Sweden)

    Chih-Chang Yang

    Full Text Available Osteoarthritis (OA is characterized by degradation of the cartilage matrix, leading to pathologic changes in the joints. However, the pathogenic effects of synovial tissue inflammation on OA knees are not clear. To investigate whether the inflammation caused by the medial plica is involved in the pathogenesis of osteoarthritis, we examined the expression of matrix metalloproteinases (MMPs, tissue inhibitors of metalloproteinases (TIMPs, interleukin (IL-1β, and tumor necrosis factor (TNF-α in the medial plica and pannus-like tissue in the knees of patients with medial compartment OA who underwent either arthroscopic medial release (stage II; 15 knee joints from 15 patients or total knee replacement (stage IV; 18 knee joints from 18 patients. MMP-2, MMP-3, MMP-9, IL-1β, and TNF-α mRNA and protein levels measured, respectively, by quantitative real-time PCR and Quantibody human MMP arrays, were highly expressed in extracts of medial plica and pannus-like tissue from stage IV knee joints. Immunohistochemical staining also demonstrated high expression of MMP-2, MMP-3, and MMP-9 in plica and pannus-like tissue of stage IV OA knees and not in normal cartilage. Some TIMP/MMP ratios decreased significantly in both medial plica and pannus-like tissue as disease progressed from stage II to stage IV. Furthermore, the migration of cells from the pannus-like tissue was enhanced by IL-1β, while plica cell migration was enhanced by TNF-α. The results suggest that medial plica and pannus-like tissue may be involved in the process of cartilage degradation in medial compartment OA of the knee.

  13. Defining the role of mesenchymal stromal cells on the regulation of matrix metalloproteinases in skeletal muscle cells

    International Nuclear Information System (INIS)

    Sassoli, Chiara; Nosi, Daniele; Tani, Alessia; Chellini, Flaminia; Mazzanti, Benedetta; Quercioli, Franco; Zecchi-Orlandini, Sandra; Formigli, Lucia

    2014-01-01

    Recent studies indicate that mesenchymal stromal cell (MSC) transplantation improves healing of injured and diseased skeletal muscle, although the mechanisms of benefit are poorly understood. In the present study, we investigated whether MSCs and/or their trophic factors were able to regulate matrix metalloproteinase (MMP) expression and activity in different cells of the muscle tissue. MSCs in co-culture with C2C12 cells or their conditioned medium (MSC-CM) up-regulated MMP-2 and MMP-9 expression and function in the myoblastic cells; these effects were concomitant with the down-regulation of the tissue inhibitor of metalloproteinases (TIMP)-1 and -2 and with increased cell motility. In the single muscle fiber experiments, MSC-CM administration increased MMP-2/9 expression in Pax-7 + satellite cells and stimulated their mobilization, differentiation and fusion. The anti-fibrotic properties of MSC-CM involved also the regulation of MMPs by skeletal fibroblasts and the inhibition of their differentiation into myofibroblasts. The treatment with SB-3CT, a potent MMP inhibitor, prevented in these cells, the decrease of α-smooth actin and type-I collagen expression induced by MSC-CM, suggesting that MSC-CM could attenuate the fibrogenic response through mechanisms mediated by MMPs. Our results indicate that growth factors and cytokines released by these cells may modulate the fibrotic response and improve the endogenous mechanisms of muscle repair/regeneration. - Highlights: • MSC-CM contains paracrine factors that up-regulate MMP expression and function in different skeletal muscle cells. • MSC-CM promotes myoblast and satellite cell migration, proliferation and differentiation. • MSC-CM negatively interferes with fibroblast-myoblast transition in primary skeletal fibroblasts. • Paracrine factors from MSCs modulate the fibrotic response and improve the endogenous mechanisms of muscle regeneration

  14. Defining the role of mesenchymal stromal cells on the regulation of matrix metalloproteinases in skeletal muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Sassoli, Chiara; Nosi, Daniele; Tani, Alessia; Chellini, Flaminia [Dept. of Experimental and Clinical Medicine—Section of Anatomy and Histology, University of Florence, Largo Brambilla, 3, 50134, Florence (Italy); Mazzanti, Benedetta [Dept. of Experimental and Clinical Medicine—Section of Haematology, University of Florence, Largo Brambilla, 3, 50134, Florence (Italy); Quercioli, Franco [CNR-National Institute of Optics (INO), Largo Enrico Fermi 6, 50125 Arcetri-Florence (Italy); Zecchi-Orlandini, Sandra [Dept. of Experimental and Clinical Medicine—Section of Anatomy and Histology, University of Florence, Largo Brambilla, 3, 50134, Florence (Italy); Formigli, Lucia, E-mail: formigli@unifi.it [Dept. of Experimental and Clinical Medicine—Section of Anatomy and Histology, University of Florence, Largo Brambilla, 3, 50134, Florence (Italy)

    2014-05-01

    Recent studies indicate that mesenchymal stromal cell (MSC) transplantation improves healing of injured and diseased skeletal muscle, although the mechanisms of benefit are poorly understood. In the present study, we investigated whether MSCs and/or their trophic factors were able to regulate matrix metalloproteinase (MMP) expression and activity in different cells of the muscle tissue. MSCs in co-culture with C2C12 cells or their conditioned medium (MSC-CM) up-regulated MMP-2 and MMP-9 expression and function in the myoblastic cells; these effects were concomitant with the down-regulation of the tissue inhibitor of metalloproteinases (TIMP)-1 and -2 and with increased cell motility. In the single muscle fiber experiments, MSC-CM administration increased MMP-2/9 expression in Pax-7{sup +} satellite cells and stimulated their mobilization, differentiation and fusion. The anti-fibrotic properties of MSC-CM involved also the regulation of MMPs by skeletal fibroblasts and the inhibition of their differentiation into myofibroblasts. The treatment with SB-3CT, a potent MMP inhibitor, prevented in these cells, the decrease of α-smooth actin and type-I collagen expression induced by MSC-CM, suggesting that MSC-CM could attenuate the fibrogenic response through mechanisms mediated by MMPs. Our results indicate that growth factors and cytokines released by these cells may modulate the fibrotic response and improve the endogenous mechanisms of muscle repair/regeneration. - Highlights: • MSC-CM contains paracrine factors that up-regulate MMP expression and function in different skeletal muscle cells. • MSC-CM promotes myoblast and satellite cell migration, proliferation and differentiation. • MSC-CM negatively interferes with fibroblast-myoblast transition in primary skeletal fibroblasts. • Paracrine factors from MSCs modulate the fibrotic response and improve the endogenous mechanisms of muscle regeneration.

  15. Matrix metalloproteinase activity and prostaglandin E2 are elevated in the synovial fluid of meniscus tear patients.

    Science.gov (United States)

    Liu, Betty; Goode, Adam P; Carter, Teralyn E; Utturkar, Gangadhar M; Huebner, Janet L; Taylor, Dean C; Moorman, Claude T; Garrett, William E; Kraus, Virginia B; Guilak, Farshid; DeFrate, Louis E; McNulty, Amy L

    Meniscus tears are a common knee injury and are associated with the development of post-traumatic osteoarthritis (OA). The purpose of this study is to evaluate potential OA mediators in the synovial fluid and serum of meniscus tear subjects compared to those in the synovial fluid of radiographic non-OA control knees. Sixteen subjects with an isolated unilateral meniscus injury and six subjects who served as reference controls (knee Kellgren-Lawrence grade 0-1) were recruited. Twenty-one biomarkers were measured in serum from meniscus tear subjects and in synovial fluid from both groups. Meniscus tear subjects were further stratified by tear type to assess differences in biomarker levels. Synovial fluid total matrix metalloproteinase (MMP) activity and prostaglandin E2 (PGE2) were increased 25-fold and 290-fold, respectively, in meniscus tear subjects as compared to reference controls (p meniscus tear subjects (R = 0.83, p meniscus tear subjects, synovial fluid levels of MMP activity, MMP-2, MMP-3, sGAG, COMP, IL-6, and PGE2 were higher than serum levels (p meniscus tears had higher synovial fluid MMP-10 (p meniscus injury may be targets to promote meniscus repair and prevent OA development.

  16. Apoptosis Signal-Regulating Kinase 1 Is Involved in Brain-Derived Neurotrophic Factor (BDNF)-Enhanced Cell Motility and Matrix Metalloproteinase 1 Expression in Human Chondrosarcoma Cells

    Science.gov (United States)

    Lin, Chih-Yang; Chang, Sunny Li-Yun; Fong, Yi-Chin; Hsu, Chin-Jung; Tang, Chih-Hsin

    2013-01-01

    Chondrosarcoma is the primary malignancy of bone that is characterized by a potent capacity to invade locally and cause distant metastasis, and is therefore associated with poor prognoses. Chondrosarcoma further shows a predilection for metastasis to the lungs. The brain-derived neurotrophic factor (BDNF) is a small molecule in the neurotrophin family of growth factors that is associated with the disease status and outcome of cancers. However, the effect of BDNF on cell motility in human chondrosarcoma cells is mostly unknown. Here, we found that human chondrosarcoma cell lines had significantly higher cell motility and BDNF expression compared to normal chondrocytes. We also found that BDNF increased cell motility and expression of matrix metalloproteinase-1 (MMP-1) in human chondrosarcoma cells. BDNF-mediated cell motility and MMP-1 up-regulation were attenuated by Trk inhibitor (K252a), ASK1 inhibitor (thioredoxin), JNK inhibitor (SP600125), and p38 inhibitor (SB203580). Furthermore, BDNF also promoted Sp1 activation. Our results indicate that BDNF enhances the migration and invasion activity of chondrosarcoma cells by increasing MMP-1 expression through a signal transduction pathway that involves the TrkB receptor, ASK1, JNK/p38, and Sp1. BDNF thus represents a promising new target for treating chondrosarcoma metastasis. PMID:23892595

  17. Gene-expression analysis of matrix metalloproteinases 1 and 2 and their tissue inhibitors in chronic periapical inflammatory lesions.

    Science.gov (United States)

    Hadziabdic, Naida; Kurtovic-Kozaric, Amina; Pojskic, Naris; Sulejmanagic, Nedim; Todorovic, Ljubomir

    2016-03-01

    Periapical inflammatory lesions have been investigated previously, but understanding of pathogenesis of these lesions (granulomas and radicular cysts) at the molecular level is still questionable. Matrix metalloproteinases (MMPs) are enzymes involved in the development of periapical pathology, specifically inflammation and tissue destruction. To elucidate pathogenesis of periapical granulomas and radicular cysts, we undertook a detailed analysis of gene expression of MMP-1, MMP-2 and their tissue inhibitors, TIMP-1 and TIMP-2. A total of 149 samples were analyzed using real-time PCR (59 radicular cysts, 50 periapical granulomas and 40 healthy gingiva samples as controls) for expression of MMP-1, MMP-2, TIMP-1 and TIMP-2 genes. The determination of best reference gene for expression analysis of periapical lesions was done using a panel of 12 genes. We have shown that β-actin and GAPDH are not the most stable reference controls for gene expression analysis of inflammatory periapical tissues and healthy gingiva. The most suitable reference gene was determined to be SDHA (a succinate dehydrogenase complex, subunit A, flavoprotein [Fp]). We found that granulomas (n = 50) and radicular cysts (n = 59) exhibited significantly higher expression of all four examined genes, MMP-1, MMP-2, TIMP-1, and TIMP-2, when compared to healthy gingiva (n = 40; P periapical inflammatory lesions. Since the abovementioned markers were not differentially expressed in periapical granulomas and radicular cysts, the challenge of finding the genetic differences between the two lesions still remains. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Aluminum Chloride Pretreatment of Elastin Inhibits Elastolysis by Matrix Metalloproteinases and Leads to Inhibition of Elastin-Oriented Calcification

    OpenAIRE

    Bailey, Michael; Xiao, Hui; Ogle, Matthew; Vyavahare, Naren

    2001-01-01

    Calcification of elastin occurs in many pathological cardiovascular diseases including atherosclerosis. We have previously shown that purified elastin when subdermally implanted in rats undergoes severe calcification and aluminum chloride (AlCl3) pretreatment of elastin inhibits calcification. In the present study we investigated whether matrix metalloproteinase (MMP) binding to elastin and elastin degradation is prevented by AlCl3 pretreatment. Subdermal implantation of AlCl3-pretreated elas...

  19. EMMPRIN-Mediated Induction of Uterine and Vascular Matrix Metalloproteinases during Pregnancy and in Response to Estrogen and Progesterone

    OpenAIRE

    Dang, Yiping; Li, Wei; Tran, Victoria; Khalil, Raouf A.

    2013-01-01

    Pregnancy is associated with uteroplacental and vascular remodeling in order to adapt for the growing fetus and the hemodynamic changes in the maternal circulation. We have previously shown upregulation of uterine matrix metalloproteinases (MMPs) during pregnancy. Whether pregnancy-associated changes in MMPs are localized to the uterus or are generalized in feto-placental and maternal circulation is unclear. Also, the mechanisms causing the changes in uteroplacental and vascular MMPs during p...

  20. Zymography as a Research Tool in the Study of Matrix Metalloproteinase Inhibitors.

    Science.gov (United States)

    Ren, Zongli; Chen, Juanjuan; Khalil, Raouf A

    2017-01-01

    Matrix metalloproteinases (MMPs) are proteolytic enzymes that degrade various components of the extracellular matrix (ECM) and play a role in tissue remodeling. Changes in MMPs have been observed in cancer, connective tissue disorders, and vascular disease, and both endogenous tissue inhibitors of MMPs (TIMPs) and synthetic MMP inhibitors (MMPIs) have been evaluated as modulators of MMP activity in various biological systems. Zymography is a simple technique that is commonly used to assess MMP activity and the efficacy of MMPIs. Also, reverse zymography is a modified technique to study the activity of endogenous TIMPs. However, problems are often encountered during the zymography procedure, which could interfere with accurate assessment of MMP activity in control specimens, and thus make it difficult to determine the pathological changes in MMPs and their responsiveness to MMPIs. Simplified protocols for preparation of experimental solutions, tissue preparation, regular and reverse zymography procedures, and zymogram analysis are presented. Additional helpful tips to troubleshoot problems in the zymography technique and to enhance the quality of the zymograms should make it more feasible to determine the changes in MMPs and assess the efficacy of MMPIs in modulating MMP activity in various biological systems and pathological conditions.

  1. Tumor Necrosis Factors, Interferons and Matrix Metalloproteinase-9 in Sera of Non-Hodgkin's Lymphoma Patients

    International Nuclear Information System (INIS)

    Abdel Malak, C.A.; Karawya, E.M.; Hammouda, G.A.; Zakhary, N.I.

    2003-01-01

    In the present study, the serum levels of some cytokines and the matrix metalloproteinase-9 (MMP-9) were studied in an attempt to find suitable markers for early diagnosis of non- Hodgkin's lymphoma (NHL) and to assess their role in differentiating between disseminated and non disseminated cases. The present study was conducted on 60 patients with non disseminated NHL, 14 patients with disseminated NHL, in addition to 10 healthy controls. Their sera were used to determine tumor necrosis factor-α (TNF--α), tumor necrosis factor--β (TNF-β), interferon---α), (IFN--α), interferon-γ (IFN--γ) and Matrix Metalloproteinase-9 (MMP-9) using the ELISA technique. The results showed that the serum level of TNF---α), and IFN---α), can be used to differentiate between the control group and the group of NHL patients. However, they could not differentiate between non disseminated NHL (nd- NHL) and disseminated NHL (d- NHL). On the other hand, the serum level of TNF-β) can be used to differentiate between nd- NHL and d- NHL, but not between the control group and nd-NHL. Each of [FN--γ and MMP-9 were not useful in discrimination between the control group and the diseased ones. Our data revealed no correlation between serum level of the parameters investigated and the gender of the patients. The present results revealed that TNF-α) and INF-α), can be used as diagnostic tools for NHL. On the other hand, TNF-β) is useful in the differentiation between nd-NHL and d-NHL

  2. Laminin and Matrix metalloproteinase 11 regulate Fibronectin levels in the zebrafish myotendinous junction.

    Science.gov (United States)

    Jenkins, Molly H; Alrowaished, Sarah S; Goody, Michelle F; Crawford, Bryan D; Henry, Clarissa A

    2016-01-01

    Remodeling of the extracellular matrix (ECM) regulates cell adhesion as well as signaling between cells and their microenvironment. Despite the importance of tightly regulated ECM remodeling for normal muscle development and function, mechanisms underlying ECM remodeling in vivo remain elusive. One excellent paradigm in which to study ECM remodeling in vivo is morphogenesis of the myotendinous junction (MTJ) during zebrafish skeletal muscle development. During MTJ development, there are dramatic shifts in the primary components comprising the MTJ matrix. One such shift involves the replacement of Fibronectin (Fn)-rich matrix, which is essential for both somite and early muscle development, with laminin-rich matrix essential for normal function of the myotome. Here, we investigate the mechanism underlying this transition. We show that laminin polymerization indirectly promotes Fn downregulation at the MTJ, via a matrix metalloproteinase 11 (Mmp11)-dependent mechanism. Laminin deposition and organization is required for localization of Mmp11 to the MTJ, where Mmp11 is both necessary and sufficient for Fn downregulation in vivo. Furthermore, reduction of residual Mmp11 in laminin mutants promotes a Fn-rich MTJ that partially rescues skeletal muscle architecture. These results identify a mechanism for Fn downregulation at the MTJ, highlight crosstalk between laminin and Fn, and identify a new in vivo function for Mmp11. Taken together, our data demonstrate a novel signaling pathway mediating Fn downregulation. Our data revealing new regulatory mechanisms that guide ECM remodeling during morphogenesis in vivo may inform pathological conditions in which Fn is dysregulated.

  3. Recanalization and flow regulate venous thrombus resolution and Matrix metalloproteinases expression in vivo

    Science.gov (United States)

    Chabasse, Christine; Siefert, Suzanne A.; Chaudry, Mohammed; Hoofnagle, Mark H.; Lal, Brajesh K.; Sarkar, Rajabrata

    2016-01-01

    Objective We examined the role of thrombus recanalization and ongoing blood flow in the process of thrombus resolution by comparing two murine in vivo models of deep venous thrombosis. Design of study In CD1 mice, we performed surgical inferior vena cava (IVC) ligation (stasis thrombosis), stenosis (thrombosis with recanalization) or sham procedure. We analyzed thrombus weight over time as a measure of thrombus resolution, and quantified the mRNA and protein levels of Membrane-Type Matrix Metalloproteinases (MT-MMPs) as well as effectors of the plasmin complex at day 4, 8 and 12 post-surgery. Results Despite similar initial thrombus size, the presence of ongoing blood flow (stenosis model) was associated with a 45.91% subsequent improvement in thrombus resolution at day 8, and 12.57% at day 12, as compared with stasis thrombosis (ligation model). Immunoblot and real-time PCR demonstrated a difference in MMP-2 and MMP-9 activity at day 8 between the two models (P=.03 and P=.006 respectively), as well as a difference in MT2-MMP gene expression at day 8 (P=.044) and day 12 (P=0.03) and MT1-MMP protein expression at day 4 (P=.021). Histological analyses revealed distinct areas of recanalization in the thrombi of the stenosis model compared to the ligation model, as well as the recruitment of inflammatory cells, especially macrophages, and a focal pattern of localized expression of MT1-MMP and MT3-MMP proteins surrounding the areas of recanalization in the stenosis model. Conclusions Recanalization and ongoing blood flow accelerate deep venous thrombus resolution in vivo, and are associated with distinct patterns of MT1- and MT3-MMP expression and macrophages localization in areas of intra-thrombus recanalization. PMID:26993683

  4. Recanalization and flow regulate venous thrombus resolution and matrix metalloproteinase expression in vivo.

    Science.gov (United States)

    Chabasse, Christine; Siefert, Suzanne A; Chaudry, Mohammed; Hoofnagle, Mark H; Lal, Brajesh K; Sarkar, Rajabrata

    2015-01-01

    We examined the role of thrombus recanalization and ongoing blood flow in the process of thrombus resolution by comparing two murine in vivo models of deep venous thrombosis. In CD1 mice, we performed surgical inferior vena cava ligation (stasis thrombosis), stenosis (thrombosis with recanalization), or sham procedure. We analyzed thrombus weight over time as a measure of thrombus resolution and quantified the messenger RNA and protein levels of membrane-type matrix metalloproteinases (MT-MMPs) as well as effectors of the plasmin complex at days 4, 8, and 12 after surgery. Despite similar initial thrombus size, the presence of ongoing blood flow (stenosis model) was associated with a 45.91% subsequent improvement in thrombus resolution at day 8 and 12.57% at day 12 compared with stasis thrombosis (ligation model). Immunoblot and real-time polymerase chain reaction analysis demonstrated a difference in MMP-2 and MMP-9 activity at day 8 between the two models (P = .03 and P = .006, respectively) as well as a difference in MT2-MMP gene expression at day 8 (P = .044) and day 12 (P = .03) and MT1-MMP protein expression at day 4 (P = .021). Histologic analyses revealed distinct areas of recanalization in the thrombi of the stenosis model compared with the ligation model as well as the recruitment of inflammatory cells, especially macrophages, and a focal pattern of localized expression of MT1-MMP and MT3-MMP proteins surrounding the areas of recanalization in the stenosis model. Recanalization and ongoing blood flow accelerate deep venous thrombus resolution in vivo and are associated with distinct patterns of MT1-MMP and MT3-MMP expression and macrophage localization in areas of intrathrombus recanalization. Copyright © 2015 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  5. Differential in vivo zymography: a method for observing matrix metalloproteinase activity in the zebrafish embryo.

    Science.gov (United States)

    Keow, Jonathan Y; Herrmann, Kurt M; Crawford, Bryan D

    2011-04-01

    Investigations into the molecular mechanisms of, and cellular signaling pathways modulating ECM remodeling are especially challenging due to the complex post-translational regulation of the primary effectors of ECM catabolism - the matrix metalloproteinases (MMPs). Recently a variety of approaches to the detection of MMP activity have been developed, and the prospect of visualizing ECM remodeling activity in living tissues is now opening exciting avenues of research for matrix biologists. In particular the use of FRET-quenched MMP substrates, which generate a fluorescent signal upon hydrolysis, is becoming increasingly popular, especially because linkers with defined and/or restricted proteolytic sensitivity can be used to bind fluorophore-quencher pairs, making these probes useful in characterizing the activity of specific proteases. We have taken advantage of the transparency and amenability to reverse genetics of the zebrafish embryo, in combination with these fluorogenic MMP substrates, to develop a multiplex in vivo assay for MMP activity that we dub "differential in vivo zymography." Copyright © 2011 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  6. Role of Matrix Metalloproteinases-1 and -2 in Interleukin-13-Suppressed Elastin in Airway Fibroblasts in Asthma.

    Science.gov (United States)

    Ingram, Jennifer L; Slade, David; Church, Tony D; Francisco, Dave; Heck, Karissa; Sigmon, R Wesley; Ghio, Michael; Murillo, Anays; Firszt, Rafael; Lugogo, Njira L; Que, Loretta; Sunday, Mary E; Kraft, Monica

    2016-01-01

    Elastin synthesis and degradation in the airway and lung parenchyma contribute to airway mechanics, including airway patency and elastic recoil. IL-13 mediates many features of asthma pathobiology, including airway remodeling, but the effects of IL-13 on elastin architecture in the airway wall are not known. We hypothesized that IL-13 modulates elastin expression in airway fibroblasts from subjects with allergic asthma. Twenty-five subjects with mild asthma (FEV1, 89 ± 3% predicted) and 30 normal control subjects (FEV1, 102 ± 2% predicted) underwent bronchoscopy with endobronchial biopsy. Elastic fibers were visualized in airway biopsy specimens using Weigert's resorcin-fuchsin elastic stain. Airway fibroblasts were exposed to IL-13; a pan-matrix metalloproteinase (MMP) inhibitor (GM6001); specific inhibitors to MMP-1, -2, -3, and -8; and combinations of IL-13 with MMP inhibitors in separate conditions in serum-free media for 48 hours. Elastin (ELN) expression as well as MMP secretion and activity were quantified. Results of this study show that elastic fiber staining of airway biopsy tissue was significantly associated with methacholine PC20 (i.e., the provocative concentration of methacholine resulting in a 20% fall in FEV1 levels) in patients with asthma. IL-13 significantly suppressed ELN expression in asthmatic airway fibroblasts as compared with normal control fibroblasts. The effect of IL-13 on ELN expression was significantly correlated with postbronchodilator FEV1/FVC in patients with asthma. MMP inhibition significantly stimulated ELN expression in patients with asthma as compared with normal control subjects. Specific inhibition of MMP-1 and MMP-2, but not MMP-3 or MMP-8, reversed the IL-13-induced suppression of ELN expression. In asthma, MMP-1 and MMP-2 mediate IL-13-induced suppression of ELN expression in airway fibroblasts.

  7. A collagen-based scaffold delivering exogenous microrna-29B to modulate extracellular matrix remodeling.

    Science.gov (United States)

    Monaghan, Michael; Browne, Shane; Schenke-Layland, Katja; Pandit, Abhay

    2014-04-01

    Directing appropriate extracellular matrix remodeling is a key aim of regenerative medicine strategies. Thus, antifibrotic interfering RNA (RNAi) therapy with exogenous microRNA (miR)-29B was proposed as a method to modulate extracellular matrix remodeling following cutaneous injury. It was hypothesized that delivery of miR-29B from a collagen scaffold will efficiently modulate the extracellular matrix remodeling response and reduce maladaptive remodeling such as aggressive deposition of collagen type I after injury. The release of RNA from the scaffold was assessed and its ability to silence collagen type I and collagen type III expression was evaluated in vitro. When primary fibroblasts were cultured with scaffolds doped with miR-29B, reduced levels of collagen type I and collagen type III mRNA expression were observed for up to 2 weeks of culture. When the scaffolds were applied to full thickness wounds in vivo, reduced wound contraction, improved collagen type III/I ratios and a significantly higher matrix metalloproteinase (MMP)-8: tissue inhibitor of metalloproteinase (TIMP)-1 ratio were detected when the scaffolds were functionalized with miR-29B. Furthermore, these effects were significantly influenced by the dose of miR-29B in the collagen scaffold (0.5 versus 5 μg). This study shows a potential of combining exogenous miRs with collagen scaffolds to improve extracellular matrix remodeling following injury.

  8. Matrix metalloproteinase-13 expression in the progression of colorectal adenoma to carcinoma : Matrix metalloproteinase-13 expression in the colorectal adenoma and carcinoma.

    Science.gov (United States)

    Foda, Abd Al-Rahman Mohammad; El-Hawary, Amira K; Abdel-Aziz, Azza

    2014-06-01

    Most colorectal carcinomas (CRCs) are considered to arise from conventional adenoma based on the concept of the adenoma-carcinoma sequence. Matrix metalloproteinases (MMPs) are known to be overexpressed as normal mucosa progresses to adenomas and carcinomas. There has been little previous investigation about MMP-13 expression in adenoma-carcinoma sequence. In this study, we aimed to investigate the immunohistochemical expression of MMP-13 in colorectal adenoma and CRC specimens using tissue microarray (TMA) technique. A total of 40 cases of CRC associated with adenoma were collected from files of the Pathology laboratory at Mansoura Gastroenterology Center between January 2007 and January 2012. Sections from TMA blocks were prepared and stained for MMP-13. Immunoreactivity to MMP-13 staining was localized to the cytoplasm of mildly, moderately, and severely dysplatic cells of adenomas and CRC tumor cells that were either homogenous or heterogeneous. There was no significant difference in MMP-13 expression between adenomas and CRCs either non-mucinous or mucinous. Adenomas with high MMP-13 expression were significantly associated with moderate to marked degree of inflammatory cellular infiltrate and presence of familial adenomatous polyps. In conclusion, MMP-13 may be a potential biological marker of early tumorigenesis in the adenoma-carcinoma sequence.

  9. Effect of the anti-tumor necrosis factor-α antibody infliximab on the ex vivo mucosal matrix metalloproteinase-proteolytic phenotype in inflammatory bowel disease

    NARCIS (Netherlands)

    Meijer, M.J.; Mieremet-Ooms, M.A.C.; Duijn, W. van; Zon, A.M. van der; Hanemaaijer, R.; Verheijen, J.H.; Hogezand, R.A. van; Lamers, C.B.H.W.; Verspaget, H.W.

    2007-01-01

    Background: Previous studies have shown an upregulation of matrix metalloproteinases (MMPs) in intestinal tissue of patients with inflammatory bowel disease (IBD) and significant clinical improvement after administration of the anti-TNF-α antibody infliximab. The aims of our study were to determine

  10. The secreted protein ANGPTL2 promotes metastasis of osteosarcoma cells through integrin α5β1, p38 MAPK, and matrix metalloproteinases.

    Science.gov (United States)

    Odagiri, Haruki; Kadomatsu, Tsuyoshi; Endo, Motoyoshi; Masuda, Tetsuro; Morioka, Masaki Suimye; Fukuhara, Shigetomo; Miyamoto, Takeshi; Kobayashi, Eisuke; Miyata, Keishi; Aoi, Jun; Horiguchi, Haruki; Nishimura, Naotaka; Terada, Kazutoyo; Yakushiji, Toshitake; Manabe, Ichiro; Mochizuki, Naoki; Mizuta, Hiroshi; Oike, Yuichi

    2014-01-21

    The tumor microenvironment can enhance the invasive capacity of tumor cells. We showed that expression of angiopoietin-like protein 2 (ANGPTL2) in osteosarcoma (OS) cell lines increased and the methylation of its promoter decreased with time when grown as xenografts in mice compared with culture. Compared with cells grown in normal culture conditions, the expression of genes encoding DNA demethylation-related enzymes increased in tumor cells implanted into mice or grown in hypoxic, serum-starved culture conditions. ANGPTL2 expression in OS cell lines correlated with increased tumor metastasis and decreased animal survival by promoting tumor cell intravasation mediated by the integrin α5β1, p38 mitogen-activated protein kinase, and matrix metalloproteinases. The tolloid-like 1 (TLL1) protease cleaved ANGPTL2 into fragments in vitro that did not enhance tumor progression when overexpressed in xenografts. Expression of TLL1 was weak in OS patient tumors, suggesting that ANGPTL2 may not be efficiently cleaved upon secretion from OS cells. These findings demonstrate that preventing ANGPTL2 signaling stimulated by the tumor microenvironment could inhibit tumor cell migration and metastasis.

  11. Leptin and Pro-Inflammatory Stimuli Synergistically Upregulate MMP-1 and MMP-3 Secretion in Human Gingival Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Rachel C Williams

    Full Text Available Gingival fibroblast-mediated extracellular matrix remodelling is implicated in the pathogenesis of periodontitis, yet the stimuli that regulate this response are not fully understood. The immunoregulatory adipokine leptin is detectable in the gingiva, human gingival fibroblasts express functional leptin receptor mRNA and leptin is known to regulate extracellular matrix remodelling responses in cardiac fibroblasts. We therefore hypothesised that leptin would enhance matrix metalloproteinase secretion in human gingival fibroblasts.We used in vitro cell culture to investigate leptin signalling and the effect of leptin on mRNA and protein expression in human gingival fibroblasts. We confirmed human gingival fibroblasts expressed cell surface leptin receptor, found leptin increased matrix metalloproteinase-1, -3, -8 and -14 expression in human gingival fibroblasts compared to unstimulated cells, and observed that leptin stimulation activated MAPK, STAT1/3 and Akt signalling in human gingival fibroblasts. Furthermore, leptin synergised with IL-1 or the TLR2 agonist pam2CSK4 to markedly enhance matrix metalloproteinase-1 and -3 production by human gingival fibroblasts. Signalling pathway inhibition demonstrated ERK was required for leptin-stimulated matrix metalloproteinase-1 expression in human gingival fibroblasts; whilst ERK, JNK, p38 and STAT3 were required for leptin+IL-1- and leptin+pam2CSK4-induced matrix metalloproteinase-1 expression. A genome-wide expression array and gene ontology analysis confirmed genes differentially expressed in leptin+IL-1-stimulated human gingival fibroblasts (compared to unstimulated cells were enriched for extracellular matrix organisation and disassembly, and revealed that matrix metalloproteinase-8 and -12 were also synergistically upregulated by leptin+IL-1 in human gingival fibroblasts.We conclude that leptin selectively enhances the expression and secretion of certain matrix metalloproteinases in human gingival

  12. Collagenolytic Matrix Metalloproteinase Structure-Function Relationships: Insights From Molecular Dynamics Studies.

    Science.gov (United States)

    Karabencheva-Christova, Tatyana G; Christov, Christo Z; Fields, Gregg B

    2017-01-01

    Several members of the zinc-dependent matrix metalloproteinase (MMP) family catalyze collagen degradation. Experimental data reveal a collaboration between different MMP domains in order to achieve efficient collagenolysis. Molecular dynamics (MD) simulations have been utilized to provide atomistic details of the collagenolytic process. The triple-helical structure of collagen exhibits local regions of flexibility, with modulation of interchain salt bridges and water bridges contributing to accessibility of individual chains by the enzyme. In turn, the hemopexin-like (HPX) domain of the MMP initially binds the triple helix and facilitates the presentation of individual strands to active site in the catalytic (CAT) domain. Extensive positive and negative correlated motions are observed between the CAT and HPX domains when collagen is bound. Ultimately, the MD simulation studies have complemented structural (NMR spectroscopy, X-ray crystallography) and kinetic analyses to provide a more detailed mechanistic view of MMP-catalyzed collagenolysis. © 2017 Elsevier Inc. All rights reserved.

  13. CleavPredict: A Platform for Reasoning about Matrix Metalloproteinases Proteolytic Events.

    Directory of Open Access Journals (Sweden)

    Sonu Kumar

    Full Text Available CleavPredict (http://cleavpredict.sanfordburnham.org is a Web server for substrate cleavage prediction for matrix metalloproteinases (MMPs. It is intended as a computational platform aiding the scientific community in reasoning about proteolytic events. CleavPredict offers in silico prediction of cleavage sites specific for 11 human MMPs. The prediction method employs the MMP specific position weight matrices (PWMs derived from statistical analysis of high-throughput phage display experimental results. To augment the substrate cleavage prediction process, CleavPredict provides information about the structural features of potential cleavage sites that influence proteolysis. These include: secondary structure, disordered regions, transmembrane domains, and solvent accessibility. The server also provides information about subcellular location, co-localization, and co-expression of proteinase and potential substrates, along with experimentally determined positions of single nucleotide polymorphism (SNP, and posttranslational modification (PTM sites in substrates. All this information will provide the user with perspectives in reasoning about proteolytic events. CleavPredict is freely accessible, and there is no login required.

  14. The presence of promatrix metalloproteinase-3 and its relation with different categories of coal workers' pneumoconiosis

    Directory of Open Access Journals (Sweden)

    Remzi Altin

    2004-01-01

    Full Text Available Extracellular matrix formation (ECM and remodeling are critical events related to the pathogenesis of pulmonary fibrosis. Matrix metalloproteinases play an essential role in degrading and remodeling the ECM. In this study, we tried to show the presence and correlation of promatrix metalloproteinase-3 (proMMP-3 (the inactive form of metalloproteinase-3 levels in coal workers' pneumoconiosis (CWP with different categories.

  15. Inhibiting Invasion into Human Bladder Carcinoma 5637 Cells with Diallyl Trisulfide by Inhibiting Matrix Metalloproteinase Activities and Tightening Tight Junctions

    Directory of Open Access Journals (Sweden)

    Yung Hyun Choi

    2013-10-01

    Full Text Available Diallyl trisulfide (DATS, an organosulfur compound in garlic, possesses pronounced anti-cancer potential. However, the anti-invasive mechanism of this compound in human bladder carcinoma is not fully understood. In this study, we evaluated the anti-invasive effects of DATS on a human bladder carcinoma (5637 cell line and investigated the underlying mechanism. The results indicated that DATS suppressed migration and invasion of 5637 cells by reducing the activities and expression of matrix metalloproteinase (MMP-2 and MMP-9 at both the protein and mRNA levels. DATS treatment up-regulated expression of tissue inhibitor of metalloproteinase (TIMP-1 and TIMP-2 in 5637 cells. The inhibitory effects of DATS on invasiveness were associated with an increase in transepithelial electrical resistance and repression of the levels of claudin family members. Although further studies are needed, our data demonstrate that DATS exhibits anti-invasive effects in 5637 cells by down-regulating the activity of tight junctions and MMPs. DATS may have future utility in clinical applications for treating bladder cancer.

  16. New radioiodinated carboxylic and hydroxamic matrix metalloproteinase inhibitor tracers as potential tumor imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Oltenfreiter, Ruth E-mail: ruth.oltenfreiter@rug.ac.be; Staelens, Ludovicus; Lejeune, Annabelle; Dumont, Filip; Frankenne, Francis; Foidart, Jean-Michel; Slegers, Guido

    2004-05-01

    Several studies have demonstrated a positive correlation between tumor progression and expression of extracellular proteinases such as matrix metalloproteinases (MMPs). MMP-2 and MMP-9 have become attractive targets for cancer research because of their increased expression in human malignant tumor tissues of various organs, providing a target for medical imaging techniques. Radioiodinated carboxylic and hydroxamic MMP inhibitors 2-(4'-[{sup 123}I]iodo-biphenyl-4-sulfonylamino)-3-(1H-indol-3-yl)-propionic acid (9) and 2-(4'-[{sup 123}I]iodo-biphenyl-4-sulfonylamino)-3-(1H-indol-3-yl)-propionamide (11) were synthesized by electrophilic aromatic substitution of the tributylstannyl derivatives and resulted in radiochemical yields of 60% {+-} 5% (n = 3) and 70% {+-} 5% (n = 6), respectively. In vitro zymography and enzyme assays showed high inhibition capacities of the inhibitors on gelatinases. In vivo biodistribution showed no long-term accumulation in organs and the possibility to accumulate in the tumor. These results warrant further studies of radioiodinated carboxylic and hydroxamic MMP inhibitor tracers as potential SPECT tumor imaging agents.

  17. New radioiodinated carboxylic and hydroxamic matrix metalloproteinase inhibitor tracers as potential tumor imaging agents

    International Nuclear Information System (INIS)

    Oltenfreiter, Ruth; Staelens, Ludovicus; Lejeune, Annabelle; Dumont, Filip; Frankenne, Francis; Foidart, Jean-Michel; Slegers, Guido

    2004-01-01

    Several studies have demonstrated a positive correlation between tumor progression and expression of extracellular proteinases such as matrix metalloproteinases (MMPs). MMP-2 and MMP-9 have become attractive targets for cancer research because of their increased expression in human malignant tumor tissues of various organs, providing a target for medical imaging techniques. Radioiodinated carboxylic and hydroxamic MMP inhibitors 2-(4'-[ 123 I]iodo-biphenyl-4-sulfonylamino)-3-(1H-indol-3-yl)-propionic acid (9) and 2-(4'-[ 123 I]iodo-biphenyl-4-sulfonylamino)-3-(1H-indol-3-yl)-propionamide (11) were synthesized by electrophilic aromatic substitution of the tributylstannyl derivatives and resulted in radiochemical yields of 60% ± 5% (n = 3) and 70% ± 5% (n = 6), respectively. In vitro zymography and enzyme assays showed high inhibition capacities of the inhibitors on gelatinases. In vivo biodistribution showed no long-term accumulation in organs and the possibility to accumulate in the tumor. These results warrant further studies of radioiodinated carboxylic and hydroxamic MMP inhibitor tracers as potential SPECT tumor imaging agents

  18. By activating matrix metalloproteinase-7, shear stress promotes chondrosarcoma cell motility, invasion and lung colonization.

    Science.gov (United States)

    Guan, Pei-Pei; Yu, Xin; Guo, Jian-Jun; Wang, Yue; Wang, Tao; Li, Jia-Yi; Konstantopoulos, Konstantinos; Wang, Zhan-You; Wang, Pu

    2015-04-20

    Interstitial fluid flow and associated shear stress are relevant mechanical signals in cartilage and bone (patho)physiology. However, their effects on chondrosarcoma cell motility, invasion and metastasis have yet to be delineated. Using human SW1353, HS.819.T and CH2879 chondrosarcoma cell lines as model systems, we found that fluid shear stress induces the accumulation of cyclic AMP (cAMP) and interleukin-1β (IL-1β), which in turn markedly enhance chondrosarcoma cell motility and invasion via the induction of matrix metalloproteinase-7 (MMP-7). Specifically, shear-induced cAMP and IL-1β activate PI3-K, ERK1/2 and p38 signaling pathways, which lead to the synthesis of MMP-7 via transactivating NF-κB and c-Jun in human chondrosarcoma cells. Importantly, MMP-7 upregulation in response to shear stress exposure has the ability to promote lung colonization of chondrosarcomas in vivo. These findings offer a better understanding of the mechanisms underlying MMP-7 activation in shear-stimulated chondrosarcoma cells, and provide insights on designing new therapeutic strategies to interfere with chondrosarcoma invasion and metastasis.

  19. Enzyme-linked immunosorbent assay (ELISAs) for metalloproteinase derived type II collagen neoepitope, CIIM--increased serum CIIM in subjects with severe radiographic osteoarthritis

    DEFF Research Database (Denmark)

    Bay-Jensen, Anne-Christine; Liu, Qi; Byrjalsen, Inger

    2011-01-01

    OBJECTIVES: In joint degenerative diseases, the collagens are degraded by matrix metalloproteinases and protein fragments are released to serum as potential biomarkers. METHODS: A collagen type II specific neoepitope, CIIM, was identified (…RDGAAG(1053)) by mass spectrometry. Two ELISAs against...... the neoepitope were developed. CIIM was measured in cartilage explants in the presence or absence of protease inhibitors. CIIM was measured in OA synovial fluid (n=51) and serum (n=156). Knee OA was graded by standard Kellgren-Lawrence (KL) score. RESULTS: The ELISAs showed good technical performance; CV%,

  20. Expression of extracellular matrix metalloproteinase inducer (EMMPRIN and its related extracellular matrix degrading enzymes in the endometrium during estrous cycle and early gestation in cattle

    Directory of Open Access Journals (Sweden)

    Hosoe Misa

    2010-06-01

    Full Text Available Abstract Background Extracellular matrix metalloproteinase inducer (EMMPRIN regulates several biological functions involving the modulation of cell behaviors via cell-cell and cell-matrix interactions. According to its diverse functions, we hypothesized that EMMPRIN may play an important role in endometrial remodeling and establishment of pregnancy in cow. Methods In this study, endometrial tissues from the cyclic cows during before ovulation, after ovulation and middle of estrous cycle; and pregnant endometrial tissues from Day 19 to 35 of gestation have been used. Expression of mRNA was analyzed by RT-PCR, qPCR and in situ hybridization whereas protein expression by immunohistochemistry and western blot analysis. Results EMMPRIN mRNA was expressed in both cyclic and pregnant endometrium and significantly higher in the endometrium at Day 35 of gestation than the cyclic endometrium. In Western blot analysis, an approximately 65 kDa band was detected in the endometrium, and approximately 51 kDa in the cultured bovine epithelial cells and BT-1 cells, respectively. Both in situ hybridization and immunohistochemistry data showed that EMMPRIN was primarily expressed in luminal and glandular epithelium with strong staining on Day 19 conceptus. At Day 19 of gestation, expression of EMMPRIN mRNA on luminal epithelium was decreased than that observed at middle of estrous cycle, however, on Day 30 of gestation, slightly increased expression was found at the site of placentation. Expression of matrix metalloproteinase-2 (MMP-2 and MMP-14 mRNA were mainly detected in stroma and their expression also decreased at Day 19 of gestation however it was also expressed at the site of placentation at Day 30 of gestation as observed for EMMPRIN. Expression of MMP-1 or -9 mRNA was very low and was below the detection limit in the cyclic and pregnant endometrium. Conclusion EMMPRIN from the luminal epithelium may regulate the expression of stromal MMP-2 and -14

  1. Increased expression of Matrix Metalloproteinase 9 in liver from NZB/W F1 mice received antibody against human parvovirus B19 VP1 unique region protein

    Directory of Open Access Journals (Sweden)

    Hsu Gwo-Jong

    2009-01-01

    Full Text Available Abstract Background Human parvovirus B19 infection has been postulated to the anti-phospholipid syndrome (APS in autoimmunity. However, the influence of anti-B19-VP1u antibody in autoimmune diseases is still obscure. Methods To elucidate the effect of anti-B19-VP1u antibodies in systemic lupus erythematosus (SLE, passive transfer of rabbit anti-B19-VP1u IgG was injected intravenously into NZB/W F1 mice. Results Significant reduction of platelet count and prolonged thrombocytopenia time were detected in anti-B19-VP1u IgG group as compared to other groups, whereas significant increases of anti-B19-VP1u, anti-phospholipid (APhL, and anti-double strand DNA (dsDNA antibody binding activity were detected in anti-B19-VP1u group. Additionally, significant increases of matrix metalloproteinase-9 (MMP9 activity and protein expression were detected in B19-VP1u IgG group. Notably, phosphatidylinositol 3-phosphate kinase (PI3K and phosphorylated extracellular signal-regulated kinase (ERK proteins were involved in the induction of MMP9. Conclusion These experimental results firstly demonstrated the aggravated effects of anti-B19-VP1u antibody in disease activity of SLE.

  2. Experimental resin cements containing bioactive fillers reduce matrix metalloproteinase-mediated dentin collagen degradation.

    Science.gov (United States)

    Osorio, Raquel; Yamauti, Monica; Sauro, Salvatore; Watson, Thimoty F; Toledano, Manuel

    2012-09-01

    Collagen dentin matrix may represent a suitable scaffold to be remineralized in the presence of bioactive materials. The purpose of this study was to determine if experimental resin cements containing bioactive fillers may modulate matrix metalloproteinase-mediated collagen degradation of etched dentin. Human dentin beams demineralized using 10% phosphoric acid or 0.5 mol/L EDTA were infiltrated with the following experimental resins: (1) unfilled resin, (2) resin with Bioglass 45S5 particles (Sylc; OSspray Ltd, London, UK), and (3) resin with β-tricalcium phosphate-modified calcium silicate cement (HCAT-β) particles. The filler/resin ratio was 40/60 wt%. The specimens were stored in artificial saliva, and the determination of C-terminal telopeptide (ICTP) was performed by radioimmunoassay after 24 hours, 1 week, and 4 weeks. Scanning electron microscopic analysis of dentin surfaces after 4 weeks of storage was also executed. Collagen degradation was prominent both in phosphoric acid and EDTA-treated dentin. Resin infiltration strongly reduced the MMP activity in demineralized dentin. Resin-containing Bioglass 45S5 particles exerted higher and more stable protection of collagen at all tested dentin states and time points. HCAT-β induced collagen protection from MMPs only in EDTA-treated specimens. Dentin remineralization was achieved when dentin was infiltrated with the resin cements containing bioactive fillers. MMP degradation of dentin collagen is strongly reduced in resin-infiltrated dentin. The inclusion of Bioglass 45S5 particles exerted an additional protection of collagen during dentin remineralization. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Neuropsychotoxicity of abused drugs: involvement of matrix metalloproteinase-2 and -9 and tissue inhibitor of matrix metalloproteinase-2 in methamphetamine-induced behavioral sensitization and reward in rodents.

    Science.gov (United States)

    Mizoguchi, Hiroyuki; Yamada, Kiyofumi; Nabeshima, Toshitaka

    2008-01-01

    Matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) function to remodel the pericellular environment. We have investigated the role of the MMP/TIMP system in methamphetamine (METH) dependence in rodents, in which the remodeling of neural circuits may be crucial. Repeated METH treatment induced behavioral sensitization, which was accompanied by an increase in MMP-2/-9/TIMP-2 activity in the brain. An antisense TIMP-2 oligonucleotide enhanced the sensitization, which was associated with a potentiation of the METH-induced release of dopamine in the nucleus accumbens (NAc). MMP-2/-9 inhibitors blocked the METH-induced behavioral sensitization and conditioned place preference (CPP), a measure of the rewarding effect of a drug, and reduced the METH-increased dopamine release in the NAc. In MMP-2- and MMP-9-deficient mice, METH-induced behavioral sensitization and CPP as well as dopamine release were attenuated. The MMP/TIMP system may be involved in METH-induced sensitization and reward by regulating extracellular dopamine levels.

  4. Haloperidol Abrogates Matrix Metalloproteinase-9 Expression by Inhibition of NF-κB Activation in Stimulated Human Monocytic Cells

    Directory of Open Access Journals (Sweden)

    Yueh-Lun Lee

    2018-01-01

    Full Text Available Much evidence has indicated that matrix metalloproteinases (MMPs participate in the progression of neuroinflammatory disorders. The present study was undertaken to investigate the inhibitory effect and mechanism of the antipsychotic haloperidol on MMP activation in the stimulated THP-1 monocytic cells. Haloperidol exerted a strong inhibition on tumor necrosis factor- (TNF- α-induced MMP-9 gelatinolysis of THP-1 cells. A concentration-dependent inhibitory effect of haloperidol was observed in TNF-α-induced protein and mRNA expression of MMP-9. On the other hand, haloperidol slightly affected cell viability and tissue inhibition of metalloproteinase-1 levels. It significantly inhibited the degradation of inhibitor-κB-α (IκBα in activated cells. Moreover, it suppressed activated nuclear factor-κB (NF-κB detected by a mobility shift assay, NF-κB reporter gene, and chromatin immunoprecipitation analyses. Consistent with NF-κB inhibition, haloperidol exerted a strong inhibition of lipopolysaccharide- (LPS- induced MMP-9 gelatinolysis but not of transforming growth factor-β1-induced MMP-2. In in vivo studies, administration of haloperidol significantly attenuated LPS-induced intracerebral MMP-9 activation of the brain homogenate and the in situ in C57BL/6 mice. In conclusion, the selective anti-MMP-9 activation of haloperidol could possibly involve the inhibition of the NF-κB signal pathway. Hence, it was found that haloperidol treatment may represent a bystander of anti-MMP actions for its conventional psychotherapy.

  5. The involvement of osteopontin and matrix metalloproteinase- 9 in the migration of endometrial epithelial cells in patients with endometriosis

    OpenAIRE

    Yang, Mei; Jiang, Chunfan; Chen, Hua; Nian, Yan; Bai, Zhimiao; Ha, Chunfang

    2015-01-01

    Background Endometriosis, which shares certain characteristics with cancers, may cause abnormal expression of proteins involved in cell migration. Endometrial epithelial cells (EECs) are believed to play an important role in endometriotic migration. The aim of this study was to investigate the relationship between the expression of osteopontin (OPN) and matrix metalloproteinase-9 (MMP-9) in endometriotic migration. Methods We performed primary culture of EECs and investigated the expression o...

  6. Matrix Metalloproteinase Stromelysin-1 Triggers a Cascade of Molecular Alterations that leads to stable epithelial-to-Mesenchymal Conversion and a Premalignant Phenotype in Mammary Epithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Lochter, A.; Galosy, S.; Muschler, J.; Freedman, N.; Werb, Z.; Bissell, M.J.

    1997-08-11

    Matrix metalloproteinases (MMPs) regulate ductal morphogenesis, apoptosis, and neoplastic progression in mammary epithelial cells. To elucidate the direct effects of MMPs on mammary epithelium, we generated functionally normal cells expressing an inducible autoactivating stromelysin-1 (SL-1) transgene. Induction of SL-1 expression resulted in cleavage of E-cadherin, and triggered progressive phenotypic conversion characterized by disappearance of E-cadherin and catenins from cell-cell contacts, downregulation of cytokeratins, upregulation of vimentin, induction of keratinocyte growth factor expression and activation, and upregulation of endogenous MMPs. Cells expressing SL-1 were unable to undergo lactogenic differentiation and became invasive. Once initiated, this phenotypic conversion was essentially stable, and progressed even in the absence of continued SL-1 expression. These observations demonstrate that inappropriate expression of SL-1 initiates a cascade of events that may represent a coordinated program leading to loss of the differentiated epithelial phenotype and gain of some characteristics of tumor cells. Our data provide novel insights into how MMPs function in development and neoplastic conversion.

  7. Cobalt (III) complexes as novel matrix metalloproteinase-9 inhibitors

    International Nuclear Information System (INIS)

    Lee, Jiyoun

    2012-01-01

    We have synthesized a series of novel MMP-9 inhibitors containing cobalt(III) complexes. The synthesized cobalt(III) complexes are effective as enzyme inhibitors and the attachment of a biphenyl group enhanced the efficiency of enzyme inhibition up to 6-fold. When compared to the reported non-hydroxamate MMP inhibitors, the synthesized complexes showed comparable in vitro potency. The enzyme assay showed that the cobalt(III) complex can disrupt the zinc binding active site of MMP-9 and is proposed to work via a ligand exchange mechanism. Since histidine residues are essential for the catalytic activity of a large percentage of enzymes and zinc finger proteins, these cobalt(III) complexes can serve as a prototype inhibitor towards various zinc containing enzymes and proteins. Matrix metalloproteinases (MMPs) are a family of zinc binding endopeptidases that play crucial roles in various physiological processes and diseases such as embryogenic growth, angiogenesis, arthritis, skin ulceration, liver fibrosis and tumor metastasis. Because of their implications in a wide range of diseases, MMPs are considered as intriguing drug targets. The majority of MMP inhibitors are organic small molecules containing a hydroxamate functionality for the zinc binding group. This hydroxamate group binds to a zinc(II) center in a bidentate fashion and creates a distorted trigonal bipyramidal geometry

  8. Cobalt (III) complexes as novel matrix metalloproteinase-9 inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jiyoun [Sungshin Women' s Univ., Seoul (Korea, Republic of)

    2012-04-15

    We have synthesized a series of novel MMP-9 inhibitors containing cobalt(III) complexes. The synthesized cobalt(III) complexes are effective as enzyme inhibitors and the attachment of a biphenyl group enhanced the efficiency of enzyme inhibition up to 6-fold. When compared to the reported non-hydroxamate MMP inhibitors, the synthesized complexes showed comparable in vitro potency. The enzyme assay showed that the cobalt(III) complex can disrupt the zinc binding active site of MMP-9 and is proposed to work via a ligand exchange mechanism. Since histidine residues are essential for the catalytic activity of a large percentage of enzymes and zinc finger proteins, these cobalt(III) complexes can serve as a prototype inhibitor towards various zinc containing enzymes and proteins. Matrix metalloproteinases (MMPs) are a family of zinc binding endopeptidases that play crucial roles in various physiological processes and diseases such as embryogenic growth, angiogenesis, arthritis, skin ulceration, liver fibrosis and tumor metastasis. Because of their implications in a wide range of diseases, MMPs are considered as intriguing drug targets. The majority of MMP inhibitors are organic small molecules containing a hydroxamate functionality for the zinc binding group. This hydroxamate group binds to a zinc(II) center in a bidentate fashion and creates a distorted trigonal bipyramidal geometry.

  9. Expression of matrix metalloproteinases in patients with bipolar disorder

    Directory of Open Access Journals (Sweden)

    Fábria Chiarani

    2013-12-01

    Full Text Available Objective: High cardiovascular mortality rates have been reported in patients with bipolar disorder (BD. Studies indicate that matrix metalloproteinases (MMPs are implicated in cardiovascular diseases. We evaluated the expression pattern of MMP-2 and MMP-9 in blood from patients with BD during acute mania and after euthymia, in comparison with healthy controls. Methods: Twenty patients and 20 controls were recruited and matched for sex and age. MMP messenger RNA (mRNA levels were measured using real-time quantitative polymerase chain reaction (PCR. Body mass index (BMI was calculated for all subjects. Results: There were no significant differences in MMP-2 and MMP-9 mRNA expression between patients and controls. mRNA levels were not significantly different during mania and euthymia. However, MMP-2 mRNA levels were negatively associated with BMI in BD patients and positively associated with BMI in controls. There was no difference in the pattern of MMP-9 expression between patients and controls. Conclusions: Our results suggest a different pattern of association between MMP-2 and BMI in BD patients as compared with controls. Despite some study limitations, we believe that the role of MMPs in BD should be further investigated to elucidate its relationship with cardiovascular risk.

  10. Effect of non-surgical periodontal therapy on C-reactive protein, oxidative stress, and matrix metalloproteinase (MMP)-9 and MMP-2 levels in patients with type 2 diabetes: a randomized controlled study.

    Science.gov (United States)

    Koromantzos, Panagiotis A; Makrilakis, Konstantinos; Dereka, Xanthippi; Offenbacher, Steven; Katsilambros, Nicholas; Vrotsos, Ioannis A; Madianos, Phoebus N

    2012-01-01

    It is well accepted that glycemic control in patients with diabetes mellitus (DM) is affected by systemic inflammation and oxidative stress. The effect of periodontal therapy on these systemic factors may be related to improvement on glycemic status. The aim of the present study is to assess over a period of 6 months the effect of non-surgical periodontal therapy on serum levels of high-sensitivity C-reactive protein (hsCRP), d-8-iso prostaglandin F2a (d-8-iso) as a marker of oxidative stress, and matrix metalloproteinase (MMP)-2 and MMP-9 on patients with type 2 DM. Sixty participants with type 2 DM and moderate to severe periodontal disease were randomized into intervention (IG) and control (CG) groups. IG received scaling and root planing, whereas CG received supragingival cleaning at baseline and scaling and root planing at 6 months. Participants of both groups were evaluated at baseline and 1, 3, and 6 months. Periodontal data recorded at each visit included probing depth, clinical attachment loss, bleeding on probing, and gingival index. Blood was collected at each visit for the assay of serum glycated hemoglobin A1c (A1c), hsCRP, d-8-iso, MMP-2, and MMP-9. Although there was a trend to a reduction in hsCRP, d-8-iso and MMP-9 it did not reach statistical significance. MMP-2 levels remained unchanged after periodontal treatment. Effective non-surgical periodontal treatment of participants with type 2 DM and moderate to severe periodontal disease improved significantly A1c levels but did not result in a statistically significant improvement in hsCRP, d-8-iso, MMP-2, and MMP-9 levels.

  11. Naringenin regulates production of matrix metalloproteinases in the knee-joint and primary cultured articular chondrocytes and alleviates pain in rat osteoarthritis model.

    Science.gov (United States)

    Wang, C C; Guo, L; Tian, F D; An, N; Luo, L; Hao, R H; Wang, B; Zhou, Z H

    2017-03-23

    Inflammation of cartilage is a primary symptom for knee-joint osteoarthritis. Matrix metalloproteinases (MMPs) are known to play an important role in the articular cartilage destruction related to osteoarthritis. Naringenin is a plant-derived flavonoid known for its anti-inflammatory properties. We studied the effect of naringenin on the transcriptional expression, secretion and enzymatic activity of MMP-3 in vivo in the murine monosodium iodoacetate (MIA) osteoarthritis model. The assessment of pain behavior was also performed in the MIA rats. The destruction of knee-joint tissues was analyzed microscopically. Moreover, the effect of naringenin was also studied in vitro in IL-1β activated articular chondrocytes. The transcriptional expression of MMP-3, MMP-1, MMP-13, thrombospondin motifs (ADAMTS-4) and ADAMTS-5 was also studied in primary cultured chondrocytes of rats. Naringenin caused significant reduction in pain behavior and showed marked improvement in the tissue morphology of MIA rats. Moreover, a significant inhibition of MMP-3 expression in MIA rats was observed upon treatment with naringenin. In the in vitro tests, naringenin caused a significant reduction in the transcriptional expression, secretion and enzymatic activity of the studied degradative enzymes. The NF-κB pathway was also found to be inhibited upon treatment with naringenin in vitro. Overall, the study suggests that naringenin alleviated pain and regulated the production of matrix-metalloproteinases via regulation of NF-κB pathway. Thus, naringenin could be a potent therapeutic option for the treatment of osteoarthritis.

  12. Naringenin regulates production of matrix metalloproteinases in the knee-joint and primary cultured articular chondrocytes and alleviates pain in rat osteoarthritis model

    Directory of Open Access Journals (Sweden)

    C.C. Wang

    Full Text Available Inflammation of cartilage is a primary symptom for knee-joint osteoarthritis. Matrix metalloproteinases (MMPs are known to play an important role in the articular cartilage destruction related to osteoarthritis. Naringenin is a plant-derived flavonoid known for its anti-inflammatory properties. We studied the effect of naringenin on the transcriptional expression, secretion and enzymatic activity of MMP-3 in vivo in the murine monosodium iodoacetate (MIA osteoarthritis model. The assessment of pain behavior was also performed in the MIA rats. The destruction of knee-joint tissues was analyzed microscopically. Moreover, the effect of naringenin was also studied in vitro in IL-1β activated articular chondrocytes. The transcriptional expression of MMP-3, MMP-1, MMP-13, thrombospondin motifs (ADAMTS-4 and ADAMTS-5 was also studied in primary cultured chondrocytes of rats. Naringenin caused significant reduction in pain behavior and showed marked improvement in the tissue morphology of MIA rats. Moreover, a significant inhibition of MMP-3 expression in MIA rats was observed upon treatment with naringenin. In the in vitro tests, naringenin caused a significant reduction in the transcriptional expression, secretion and enzymatic activity of the studied degradative enzymes. The NF-κB pathway was also found to be inhibited upon treatment with naringenin in vitro. Overall, the study suggests that naringenin alleviated pain and regulated the production of matrix-metalloproteinases via regulation of NF-κB pathway. Thus, naringenin could be a potent therapeutic option for the treatment of osteoarthritis.

  13. Matrix metalloproteinase (MMP-9 in cancer-associated fibroblasts (CAFs is suppressed by omega-3 polyunsaturated fatty acids in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Ayumi Taguchi

    Full Text Available Cancer associated fibroblasts (CAFs are responsible for tumor growth, angiogenesis, invasion, and metastasis. Matrix metalloproteinase (MMP-9 secreted from cancer stroma populated by CAFs is a prerequisite for cancer angiogenesis and metastasis. Omega-3 polyunsaturated fatty acids (omega-3 PUFA have been reported to have anti-tumor effects on diverse types of malignancies. Fat-1 mice, which can convert omega-6 to omega-3 PUFA independent of diet, are useful to investigate the functions of endogenous omega-3 PUFA. To examine the effect of omega-3 PUFA on tumorigenesis, TC-1 cells, a murine epithelial cell line immortalized by human papillomavirus (HPV oncogenes, were injected subcutaneously into fat-1 or wild type mice. Tumor growth and angiogenesis of the TC-1 tumor were significantly suppressed in fat-1 compared to wild type mice. cDNA microarray of the tumors derived from fat-1 and wild type mice revealed that MMP-9 is downregulated in fat-1 mice. Immunohistochemical study demonstrated immunoreactivity for MMP-9 in the tumor stromal fibroblasts was diffusely positive in wild type whereas focal in fat-1 mice. MMP-9 was expressed in primary cultured fibroblasts isolated from fat-1 and wild type mice but was not expressed in TC-1 cells. Co-culture of fibroblasts with TC-1 cells enhanced the expression and the proteinase activity of MMP-9, although the protease activity of MMP-9 in fat-1-derived fibroblasts was lower than that in wild type fibroblasts. Our data suggests that omega-3 PUFAs suppress MMP-9 induction and tumor angiogenesis. These findings may provide insight into mechanisms by which omega-3 PUFAs exert anti-tumor effects by modulating tumor microenvironment.

  14. Matrix metalloproteinase-3, vitamin D receptor gene polymorphisms, and occupational risk factors in lumbar disc degeneration.

    Science.gov (United States)

    Zawilla, N H; Darweesh, H; Mansour, N; Helal, S; Taha, F M; Awadallah, M; El Shazly, R

    2014-06-01

    Lumbar disc degeneration (LDD) is a process that begins early in life, contributing to the development of low back pain. LDD is a consequence of a variety of factors, and its etiology remains poorly understood. Objectives to investigate occupational and genetic risk factors inducing lumbar disc degeneration, and to evaluate the possible association of genetic polymorphisms of matrix metalloproteinase 3 (MMP-3) and vitamin D receptor (VDR) with the severity of LDD in an Egyptian population. A case control study involving 84 LDD and 60 controls was carried out. Five types of work related factors were investigated by questionnaire, complete neurological examination for all subjects and MRI for the cases. Polymerase chain reaction and restriction fragment length polymorphism methods were applied to detect polymorphisms in MMP-3 Promoter (-1,171 6A/5A) (rs 731236) and VDR-Apa (rs 35068180). We found that family history, back injury, smoking, high level of sitting, bending/twisting, physical workload, lifting, whole body vibration, mutant allele 5A of MMP-3 and mutant allele T of VDR were significantly associated with LDD (OR = 2.9, 3.1, 2.1, 11.1, 15.9, 11.7, 8.2, 12.6, 2.5 and 3.1 respectively, p < 0.05). Cases that carry allele 5A and/or allele T were associated with LDD severity. LDD is closely associated in occurrence and severity with occupational, environmental risk factors and susceptibility genes namely MMP-3, and VDR (ApaI). This study throws light on the importance of screening for early detection of susceptible individuals and disease prevention.

  15. TGF-beta1 modulates matrix metalloproteinase-13 expression in hepatic stellate cells by complex mechanisms involving p38MAPK, PI3-kinase, AKT, and p70S6k.

    Science.gov (United States)

    Lechuga, Carmen G; Hernández-Nazara, Zamira H; Domínguez Rosales, José-Alfredo; Morris, Elena R; Rincón, Ana Rosa; Rivas-Estilla, Ana María; Esteban-Gamboa, Andrés; Rojkind, Marcos

    2004-11-01

    Transforming growth factor-beta1 (TGF-beta1), the main cytokine involved in liver fibrogenesis, induces expression of the type I collagen genes in hepatic stellate cells by a transcriptional mechanism, which is hydrogen peroxide and de novo protein synthesis dependent. Our recent studies have revealed that expression of type I collagen and matrix metalloproteinase-13 (MMP-13) mRNAs in hepatic stellate cells is reciprocally modulated. Because TGF-beta1 induces a transient elevation of alpha1(I) collagen mRNA, we investigated whether this cytokine was able to induce the expression of MMP-13 mRNA during the downfall of the alpha1(I) collagen mRNA. In the present study, we report that TGF-beta1 induces a rapid decline in steady-state levels of MMP-13 mRNA at the time that it induces the expression of alpha1(I) collagen mRNA. This change in MMP-13 mRNA expression occurs within the first 6 h postcytokine administration and is accompanied by a twofold increase in gene transcription and a fivefold decrease in mRNA half-life. This is followed by increased expression of MMP-13 mRNA, which reaches maximal values by 48 h. Our results also show that this TGF-beta1-mediated effect is de novo protein synthesis-dependent and requires the activity of p38MAPK, phosphatidylinositol 3-kinase, AKT, and p70(S6k). Altogether, our data suggest that regulation of MMP-13 by TGF-beta1 is a complex process involving transcriptional and posttranscriptional mechanisms.

  16. Progesterone receptor membrane component 1 as the mediator of the inhibitory effect of progestins on cytokine-induced matrix metalloproteinase 9 activity in vitro.

    Science.gov (United States)

    Allen, Terrence K; Feng, Liping; Grotegut, Chad A; Murtha, Amy P

    2014-02-01

    Progesterone (P4) and the progestin, 17α-hydroxyprogesterone caproate, are clinically used to prevent preterm births (PTBs); however, their mechanism of action remains unclear. Cytokine-induced matrix metalloproteinase 9 (MMP-9) activity plays a key role in preterm premature rupture of the membranes and PTB. We demonstrated that the primary chorion cells and the HTR8/SVneo cells (cytotrophoblast cell line) do not express the classical progesterone receptor (PGR) but instead a novel progesterone receptor, progesterone receptor membrane component 1 (PGRMC1), whose role remains unclear. Using HTR8/SVneo cells in culture, we further demonstrated that 6 hours pretreatment with medroxyprogesterone acetate (MPA) and dexamethasone (Dex) but not P4 or 17α-hydroxyprogesterone hexanoate significantly attenuated tumor necrosis factor α-induced MMP-9 activity after a 24-hour incubation period. The inhibitory effect of MPA, but not Dex, was attenuated when PGRMC1 expression was successfully reduced by PGRMC1 small interfering RNA. Our findings highlight a possible novel role of PGRMC1 in mediating the effects of MPA and in modulating cytokine-induced MMP-9 activity in cytotrophoblast cells in vitro.

  17. Sphingosine-1-Phosphate/Sphingosine-1-Phosphate Receptor 2 Axis Can Promote Mouse and Human Primary Mast Cell Angiogenic Potential through Upregulation of Vascular Endothelial Growth Factor-A and Matrix Metalloproteinase-2

    Directory of Open Access Journals (Sweden)

    Alena Chumanevich

    2016-01-01

    Full Text Available Mast cells (MC are present in most vascularized tissues around the vasculature likely exerting immunomodulatory functions. Endowed with diverse mediators, resident MC represent first-line fine-tuners of local microenvironment. Sphingosine-1-phosphate (S1P functions as a pluripotent signaling sphingolipid metabolite in health and disease. S1P formation occurs at low levels in resting MC and is upregulated upon activation. Its export can result in type 2 S1P receptor- (S1PR2- mediated stimulation of MC, further fueling inflammation. However, the role of S1PR2 ligation in proangiogenic vascular endothelial growth factor- (VEGF- A and matrix metalloproteinase- (MMP- 2 release from MC is unknown. Using a preclinical MC-dependent model of acute allergic responses and in vitro stimulated primary mouse bone marrow-derived MC (BMMC or human primary skin MC, we report that S1P signaling resulted in substantial amount of VEGF-A release. Similar experiments using S1pr2-deficient mice or BMMC or selective S1P receptor agonists or antagonists demonstrated that S1P/S1PR2 ligation on MC is important for VEGF-A secretion. Further, we show that S1P stimulation triggered transcriptional upregulation of VEGF-A and MMP-2 mRNA in human but not in mouse MC. S1P exposure also triggered MMP-2 secretion from human MC. These studies identify a novel proangiogenic axis encompassing MC/S1P/S1PR2 likely relevant to inflammation.

  18. Production of matrix metalloproteinases in response to mycobacterial infection.

    Science.gov (United States)

    Quiding-Järbrink, M; Smith, D A; Bancroft, G J

    2001-09-01

    Matrix metalloproteinases (MMPs) constitute a large family of enzymes with specificity for the various proteins of the extracellular matrix which are implicated in tissue remodeling processes and chronic inflammatory conditions. To investigate the role of MMPs in immunity to mycobacterial infections, we incubated murine peritoneal macrophages with viable Mycobacterium bovis BCG or Mycobacterium tuberculosis H37Rv and assayed MMP activity in the supernatants by zymography. Resting macrophages secreted only small amounts of MMP-9 (gelatinase B), but secretion increased dramatically in a dose-dependent manner in response to either BCG or M. tuberculosis in vitro. Incubation with mycobacteria also induced increased MMP-2 (gelatinase A) activity. Neutralization of tumor necrosis alpha (TNF-alpha), and to a lesser extent interleukin 18 (IL-18), substantially reduced MMP production in response to mycobacteria. Exogenous addition of TNF-alpha or IL-18 induced macrophages to express MMPs, even in the absence of bacteria. The immunoregulatory cytokines gamma interferon (IFN-gamma), IL-4, and IL-10 all suppressed BCG-induced MMP production, but through different mechanisms. IFN-gamma treatment increased macrophage secretion of TNF-alpha but still reduced their MMP activity. Conversely, IL-4 and IL-10 seemed to act by reducing the amount of TNF-alpha available to the macrophages. Finally, infection of BALB/c or severe combined immunodeficiency (SCID) mice with either BCG or M. tuberculosis induced substantial increases in MMP-9 activity in infected tissues. In conclusion, we show that mycobacterial infection induces MMP-9 activity both in vitro and in vivo and that this is regulated by TNF-alpha, IL-18, and IFN-gamma. These findings indicate a possible contribution of MMPs to tissue remodeling processes that occur in mycobacterial infections.

  19. Correlation of matrix metalloproteinases-1 and -3 with patient age and grade of lumbar disc herniation.

    Science.gov (United States)

    Zigouris, Andreas; Batistatou, Anna; Alexiou, George A; Pachatouridis, Dimitrios; Mihos, Evaggelos; Drosos, Dimitrios; Fotakopoulos, George; Doukas, Michail; Voulgaris, Spyridon; Kyritsis, Athanasios P

    2011-02-01

    The authors studied the histological alterations and the expression of matrix metalloproteinase (MMP)-1 and MMP-3 in disc specimens of patients who had undergone operations for lumbar disc herniation. Forty-three lumbar disc specimens were evaluated histopathologically for degenerative changes and immunohistochemical expression of MMP-1 and MMP-3. The observed degenerative changes provided a degenerative score that was applied in each patient. Sections of disc immunostained for MMP-1 and MMP-3 were evaluated semiquantitatively. Patients were categorized in 3 age groups: 60 years of age. The expression of MMP-1 and MMP-3 were correlated to patient's age, degenerative score, and grade of lumbar disc herniation. There was no statistically significant difference in the degenerative score between the age groups. Degenerative changes were more pronounced in greater grades of herniation (p correlation between MMP-1 and MMP-3 expression and both degenerative score and herniation grade. For the group of patients 30-60 years of age, there was no significant difference between MMP-1 expression and degenerative score, but the correlation between MMP-1 expression and grade of herniation was significant. There was a significant correlation between MMP-3 expression and both degenerative score and herniation grade. Regarding the patients > 60 years of age, there was a significant correlation between MMP-1 and MMP-3 expression and both degenerative score and herniation grade. There was a significantly lower expression of both MMP-1 and MMP-3 in the group correlation was found in MMP-1 and MMP-3 expression between the groups of patients who were 30-60 and > 60 years of age. Interestingly, in age groups > 30 years, there were no statistically significant differences between the expression of MMP-1 and MMP-3, whereas in patients correlated to the age of the patients and the grade of herniation. An important finding in this study is the differential expression of MMP-1 and MMP-3

  20. PPARγ agonist pioglitazone reduces matrix metalloproteinase-9 activity and neuronal damage after focal cerebral ischemia

    International Nuclear Information System (INIS)

    Lee, Seong-Ryong; Kim, Hahn-Young; Hong, Jung-Suk; Baek, Won-Ki; Park, Jong-Wook

    2009-01-01

    Pioglitazone, a peroxisome proliferator-activated receptor gamma (PPARγ) agonist, has shown protective effects against ischemic insult in various tissues. Pioglitazone is also reported to reduce matrix metalloproteinase (MMP) activity. MMPs can remodel extracellular matrix components in many pathological conditions. The current study was designed to investigate whether the neuroprotection of pioglitazone is related to its MMP inhibition in focal cerebral ischemia. Mice were subjected to 90 min focal ischemia and reperfusion. In gel zymography, pioglitazone reduced the upregulation of active form of MMP-9 after ischemia. In in situ zymograms, pioglitazone also reduced the gelatinase activity induced by ischemia. After co-incubation with pioglitazone, in situ gelatinase activity was directly reduced. Pioglitazone reduced the infarct volume significantly compared with controls. These results demonstrate that pioglitazone may reduce MMP-9 activity and neuronal damage following focal ischemia. The reduction of MMP-9 activity may have a possible therapeutic effect for the management of brain injury after focal ischemia.

  1. TCDD induces dermal accumulation of keratinocyte-derived matrix metalloproteinase-10 in an organotypic model of human skin

    Energy Technology Data Exchange (ETDEWEB)

    De Abrew, K. Nadira [Molecular and Environmental Toxicology Center, University of Wisconsin—Madison, Madison, WI 53706 (United States); Thomas-Virnig, Christina L.; Rasmussen, Cathy A. [Department of Pathology, University of Wisconsin—Madison, Madison, WI 53706 (United States); Bolterstein, Elyse A. [Molecular and Environmental Toxicology Center, University of Wisconsin—Madison, Madison, WI 53706 (United States); Schlosser, Sandy J. [Department of Pathology, University of Wisconsin—Madison, Madison, WI 53706 (United States); Allen-Hoffmann, B. Lynn, E-mail: blallenh@wisc.edu [Molecular and Environmental Toxicology Center, University of Wisconsin—Madison, Madison, WI 53706 (United States); Department of Pathology, University of Wisconsin—Madison, Madison, WI 53706 (United States)

    2014-05-01

    The epidermis of skin is the first line of defense against the environment. A three dimensional model of human skin was used to investigate tissue-specific phenotypes induced by the environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Continuous treatment of organotypic cultures of human keratinocytes with TCDD resulted in intracellular spaces between keratinocytes of the basal and immediately suprabasal layers as well as thinning of the basement membrane, in addition to the previously reported hyperkeratinization. These tissue remodeling events were preceded temporally by changes in expression of the extracellular matrix degrading enzyme, matrix metalloproteinase-10 (MMP-10). In organotypic cultures MMP-10 mRNA and protein were highly induced following TCDD treatment. Q-PCR and immunoblot results from TCDD-treated monolayer cultures, as well as indirect immunofluorescence and immunoblot analysis of TCDD-treated organotypic cultures, showed that MMP-10 was specifically contributed by the epidermal keratinocytes but not the dermal fibroblasts. Keratinocyte-derived MMP-10 protein accumulated over time in the dermal compartment of organotypic cultures. TCDD-induced epidermal phenotypes in organotypic cultures were attenuated by the keratinocyte-specific expression of tissue inhibitor of metalloproteinase-1, a known inhibitor of MMP-10. These studies suggest that MMP-10 and possibly other MMP-10-activated MMPs are responsible for the phenotypes exhibited in the basement membrane, the basal keratinocyte layer, and the cornified layer of TCDD-treated organotypic cultures. Our studies reveal a novel mechanism by which the epithelial–stromal microenvironment is altered in a tissue-specific manner thereby inducing structural and functional pathology in the interfollicular epidermis of human skin. - Highlights: • TCDD causes hyperkeratosis and basement membrane changes in a model of human skin. • TCDD induces MMP-10 expression in organotypic cultures

  2. A membrane-bound matrix-metalloproteinase from Nicotiana tabacum cv. BY-2 is induced by bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Wahner Verena

    2009-06-01

    Full Text Available Abstract Background Plant matrix metalloproteinases (MMP are conserved proteolytic enzymes found in a wide range of monocotyledonous and dicotyledonous plant species. Acting on the plant extracellular matrix, they play crucial roles in many aspects of plant physiology including growth, development and the response to stresses such as pathogen attack. Results We have identified the first tobacco MMP, designated NtMMP1, and have isolated the corresponding cDNA sequence from the tobacco suspension cell line BY-2. The overall domain structure of NtMMP1 is similar to known MMP sequences, although certain features suggest it may be constitutively active rather than dependent on proteolytic processing. The protein appears to be expressed in two forms with different molecular masses, both of which are enzymatically active as determined by casein zymography. Exchanging the catalytic domain of NtMMP1 with green fluorescent protein (GFP facilitated subcellular localization by confocal laser scanning microscopy, showing the protein is normally inserted into the plasma membrane. The NtMMP1 gene is expressed constitutively at a low level but can be induced by exposure to bacterial pathogens. Conclusion Our biochemical analysis of NtMMP1 together with bioinformatic data on the primary sequence indicate that NtMMP1 is a constitutively-active protease. Given its induction in response to bacterial pathogens and its localization in the plasma membrane, we propose a role in pathogen defense at the cell periphery.

  3. Ureaplasma isolates stimulate pro-inflammatory CC chemokines and matrix metalloproteinase-9 in neonatal and adult monocytes

    Science.gov (United States)

    Silwedel, Christine; Fehrholz, Markus; Henrich, Birgit; Waaga-Gasser, Ana Maria; Claus, Heike; Speer, Christian P.

    2018-01-01

    Being generally regarded as commensal bacteria, the pro-inflammatory capacity of Ureaplasma species has long been debated. Recently, we confirmed Ureaplasma–driven pro-inflammatory cytokine responses and a disturbance of cytokine equilibrium in primary human monocytes in vitro. The present study addressed the expression of CC chemokines and matrix metalloproteinase-9 (MMP-9) in purified term neonatal and adult monocytes stimulated with serovar 8 of Ureaplasma urealyticum (Uu) and serovar 3 of U. parvum (Up). Using qRT-PCR and multi-analyte immunoassay, we assessed mRNA and protein expression of the monocyte chemotactic proteins 1 and 3 (MCP-1/3), the macrophage inflammatory proteins 1α and 1β (MIP-1α/β) as well as MMP-9. For the most part, both isolates stimulated mRNA expression of all given chemokines and MMP-9 in cord blood and adult monocytes (pUreaplasma isolates in vitro, adding to our previous data. Findings from co-stimulated cells indicate that Ureaplasma may modulate monocyte immune responses to a second stimulus. PMID:29558521

  4. Luteolin decreases invasiveness, deactivates STAT3 signaling, and reverses interleukin-6 induced epithelial–mesenchymal transition and matrix metalloproteinase secretion of pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Huang XC

    2015-10-01

    Full Text Available Xince Huang,1 Shengjie Dai,1 Juji Dai,1 Yuwu Xiao,1 Yongyu Bai,1 Bicheng Chen,1,2 Mengtao Zhou1 1Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China; 2Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Wenzhou, Zhejiang Province, People’s Republic of China Abstract: Luteolin, a flavone, has been shown to exhibit anticancer properties. Here, we investigated whether luteolin affects epithelial–mesenchymal transition (EMT and invasiveness of pancreatic cancer cell lines and their underlying mechanism. Pancreatic cancer cell lines PANC-1 and SW1990 were used in our study, and their EMT characters, matrix metalloproteinase (MMP expression level, invasiveness, and signal transducer and activator of transcription 3 (STAT3 activity were determined after luteolin treatment. We also treated pancreatic cancer cells with interleukin-6 (IL-6 to see whether IL-6-induced activation of STAT3, EMT, and MMP secretion was affected by luteolin. We found that luteolin inhibits EMT and MMP2, MMP7, and MMP9 expression in a dose-dependent manner, similar to STAT3 signaling. Through Transwell assay, we found that invasiveness of pancreatic cancer cells was inhibited by luteolin. EMT characters and MMP secretion increase with STAT3 activity after IL-6 treatment and these effects, caused by IL-6, were inhibited by luteolin. We concluded that luteolin inhibits invasiveness of pancreatic cancer cells, and we speculated that luteolin inhibits EMT and MMP secretion likely through deactivation of STAT3 signaling. Luteolin has potential antitumor effects and merits further investigation. Keywords: epithelial–mesenchymal transition, matrix metalloproteinase, luteolin, STAT3

  5. Role of Matrix Metalloproteinases-1 and -2 in Interleukin-13–Suppressed Elastin in Airway Fibroblasts in Asthma

    Science.gov (United States)

    Slade, David; Church, Tony D.; Francisco, Dave; Heck, Karissa; Sigmon, R. Wesley; Ghio, Michael; Murillo, Anays; Firszt, Rafael; Lugogo, Njira L.; Que, Loretta; Sunday, Mary E.; Kraft, Monica

    2016-01-01

    Elastin synthesis and degradation in the airway and lung parenchyma contribute to airway mechanics, including airway patency and elastic recoil. IL-13 mediates many features of asthma pathobiology, including airway remodeling, but the effects of IL-13 on elastin architecture in the airway wall are not known. We hypothesized that IL-13 modulates elastin expression in airway fibroblasts from subjects with allergic asthma. Twenty-five subjects with mild asthma (FEV1, 89 ± 3% predicted) and 30 normal control subjects (FEV1, 102 ± 2% predicted) underwent bronchoscopy with endobronchial biopsy. Elastic fibers were visualized in airway biopsy specimens using Weigert’s resorcin-fuchsin elastic stain. Airway fibroblasts were exposed to IL-13; a pan-matrix metalloproteinase (MMP) inhibitor (GM6001); specific inhibitors to MMP-1, -2, -3, and -8; and combinations of IL-13 with MMP inhibitors in separate conditions in serum-free media for 48 hours. Elastin (ELN) expression as well as MMP secretion and activity were quantified. Results of this study show that elastic fiber staining of airway biopsy tissue was significantly associated with methacholine PC20 (i.e., the provocative concentration of methacholine resulting in a 20% fall in FEV1 levels) in patients with asthma. IL-13 significantly suppressed ELN expression in asthmatic airway fibroblasts as compared with normal control fibroblasts. The effect of IL-13 on ELN expression was significantly correlated with postbronchodilator FEV1/FVC in patients with asthma. MMP inhibition significantly stimulated ELN expression in patients with asthma as compared with normal control subjects. Specific inhibition of MMP-1 and MMP-2, but not MMP-3 or MMP-8, reversed the IL-13–induced suppression of ELN expression. In asthma, MMP-1 and MMP-2 mediate IL-13–induced suppression of ELN expression in airway fibroblasts. PMID:26074138

  6. Bee venom induces apoptosis and suppresses matrix metaloprotease-2 expression in human glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Mohsen Sisakht

    Full Text Available Abstract Glioblastoma is the most common malignant brain tumor representing with poor prognosis, therapy resistance and high metastasis rate. Increased expression and activity of matrix metalloproteinase-2, a member of matrix metalloproteinase family proteins, has been reported in many cancers including glioblastoma. Inhibition of matrix metalloproteinase-2 expression has resulted in reduced aggression of glioblastoma tumors in several reports. In the present study, we evaluated effect of bee venom on expression and activity of matrix metalloproteinase-2 as well as potential toxicity and apoptogenic properties of bee venom on glioblastoma cells. Human A172 glioblastoma cells were treated with increasing concentrations of bee venom. Then, cell viability, apoptosis, matrix metalloproteinase-2 expression, and matrix metalloproteinase-2 activity were measured using MMT assay, propidium iodide staining, real time-PCR, and zymography, respectively. The IC50 value of bee venom was 28.5 µg/ml in which it leads to decrease of cell viability and induction of apoptosis. Incubation with bee venom also decreased the expression of matrix metalloproteinase-2 in this cell line (p < 0.05. In zymography, there was a reverse correlation between bee venom concentration and total matrix metalloproteinase-2 activity. Induction of apoptosis as well as inhibition of matrix metalloproteinase-2 activity and expression can be suggested as molecular mechanisms involved in cytotoxic and antimetastatic effects of bee venom against glioblastoma cells.

  7. Release of Liposomal Contents by Cell-Secreted Matrix Metalloproteinase-9

    Science.gov (United States)

    Banerjee, Jayati; Hanson, Andrea J.; Gadam, Bhushan; Elegbede, Adekunle I.; Tobwala, Shakila; Ganguly, Bratati; Wagh, Anil; Muhonen, Wallace W.; Law, Benedict; Shabb, John B.; Srivastava, D. K.; Mallik, Sanku

    2011-01-01

    Liposomes have been widely used as a drug delivery vehicle and currently, more than 10 liposomal formulations are approved by the Food and Drug Administration for clinical use. However, upon targeting, the release of the liposome-encapsulated contents is usually slow. We have recently demonstrated that contents from appropriately-formulated liposomes can be rapidly released by the cancer-associated enzyme matrix metalloproteinase-9 (MMP-9). Herein, we report our detailed studies to optimize the liposomal formulations. By properly selecting the lipopeptide, the major lipid component and their relative amounts, we demonstrate that the contents are rapidly released in the presence of cancer-associated levels of recombinant human MMP-9. We observed that the degree of lipid mismatch between the lipopepides and the major lipid component profoundly affects the release profiles from the liposomes. By utilizing the optimized liposomal formulations, we also demonstrate that cancer cells (HT-29) which secrete low levels of MMP-9 failed to release significant amount of the liposomal contents. Metastatic cancer cells (MCF7) secreting high levels of the enzyme rapidly release the encapsulated contents from the liposomes. PMID:19601658

  8. Sirtuin 1 regulates matrix metalloproteinase-13 expression induced by Porphyromonas endodontalis lipopolysaccharide via targeting nuclear factor–κB in osteoblasts

    Science.gov (United States)

    Qu, Liu; Yu, Yaqiong; Qiu, Lihong; Yang, Di; Yan, Lu; Guo, Jiajie; Jahan, Rabita

    2017-01-01

    ABSTRACT Porphyromonas endodontalis lipopolysaccharide (P.e LPS) is an important initiating factor for periapical inflammation and bone destruction. Matrix metalloproteinase-13 (MMP-13) has been shown to participate in the formation and diffusion of periapical bone lesion in chronic apical periodontitis. Sirtuin 1 (SIRT1) is a key regulator of inflammation in mammalian cells which suppresses the release of inflammatory mediators. This study aimed to explore the role of SIRT1 in regulating MMP-13 expression induced by P.e LPS in osteoblasts. P.e LPS stimulated MMP-13 expression in MC3T3-E1 cells. Knockdown of SIRT1 reinforced the increase of MMP-13mRNA expression induced by P.e LPS. SIRT1 activator resveratrol significantly reduced the expression of MMP-13 and SIRT1 inhibitor EX-527 enhanced the expression of MMP-13. Moreover, SIRT1 activation with resveratrol inhibited acetylation of NF-κB p65 and NF-κB transcriptional activity, which were enhanced by P.e LPS. In addition, NF-κB p65 was involved in P.e LPS-induced MMP-13 expression via directly binding to the MMP-13 promoter. However, SIRT1 activation significantly interfered with this binding. These findings strongly suggest that P.e LPS induces MMP-13 expression in osteoblasts, and SIRT1 suppresses this expression of MMP-13 through targeting NF-κB p65. This provides new insights into understanding the actions of SIRT1 on anti-inflammatory and anti-bone resorption activity. PMID:28473882

  9. Sirtuin 1 regulates matrix metalloproteinase-13 expression induced by Porphyromonas endodontalis lipopolysaccharide via targeting nuclear factor-κB in osteoblasts.

    Science.gov (United States)

    Qu, Liu; Yu, Yaqiong; Qiu, Lihong; Yang, Di; Yan, Lu; Guo, Jiajie; Jahan, Rabita

    2017-01-01

    Porphyromonas endodontalis lipopolysaccharide (P.e LPS) is an important initiating factor for periapical inflammation and bone destruction. Matrix metalloproteinase-13 (MMP-13) has been shown to participate in the formation and diffusion of periapical bone lesion in chronic apical periodontitis. Sirtuin 1 (SIRT1) is a key regulator of inflammation in mammalian cells which suppresses the release of inflammatory mediators. This study aimed to explore the role of SIRT1 in regulating MMP-13 expression induced by P.e LPS in osteoblasts. P.e LPS stimulated MMP-13 expression in MC3T3-E1 cells. Knockdown of SIRT1 reinforced the increase of MMP-13mRNA expression induced by P.e LPS. SIRT1 activator resveratrol significantly reduced the expression of MMP-13 and SIRT1 inhibitor EX-527 enhanced the expression of MMP-13. Moreover, SIRT1 activation with resveratrol inhibited acetylation of NF-κB p65 and NF-κB transcriptional activity, which were enhanced by P.e LPS. In addition, NF-κB p65 was involved in P.e LPS-induced MMP-13 expression via directly binding to the MMP-13 promoter. However, SIRT1 activation significantly interfered with this binding. These findings strongly suggest that P.e LPS induces MMP-13 expression in osteoblasts, and SIRT1 suppresses this expression of MMP-13 through targeting NF-κB p65. This provides new insights into understanding the actions of SIRT1 on anti-inflammatory and anti-bone resorption activity.

  10. Effects of high glucose and thiamine on the balance between matrix metalloproteinases and their tissue inhibitors in vascular cells.

    Science.gov (United States)

    Tarallo, Sonia; Beltramo, Elena; Berrone, Elena; Dentelli, Patrizia; Porta, Massimo

    2010-06-01

    Pericyte survival in diabetic retinopathy depends also on interactions with extracellular matrix (ECM) proteins, which are degraded by matrix metalloproteinases (MMP). Elevated glucose influences ECM turnover, through expression of MMP and their tissue inhibitors, TIMP. We reported on reduced pericyte adhesion to high glucose-conditioned ECM and correction by thiamine. We aimed at verifying the effects of thiamine and benfotiamine on MMP-2, MMP-9 and TIMP expression and activity in human vascular cells with high glucose. In HRP, MMP-2 activity, though not expression, increased with high glucose and decreased with thiamine and benfotiamine; TIMP-1 expression increased with high glucose plus thiamine and benfotiamine; MMP-9 was not expressed. In EC, MMP-9 and MMP-2 expression and activity increased with high glucose, but thiamine and benfotiamine had no effects; TIMP-1 expression was unchanged. Neither glucose nor thiamine modified TIMP-2 and TIMP-3 expression. TIMP-1 concentrations did not change in either HRP or EC. High glucose imbalances MMP/TIMP regulation, leading to increased ECM turnover. Thiamine and benfotiamine correct the increase in MMP-2 activity due to high glucose in HRP, while increasing TIMP-1.

  11. DIDS prevents ischemic membrane degradation in cultured hippocampal neurons by inhibiting matrix metalloproteinase release.

    Directory of Open Access Journals (Sweden)

    Matthew E Pamenter

    Full Text Available During stroke, cells in the infarct core exhibit rapid failure of their permeability barriers, which releases ions and inflammatory molecules that are deleterious to nearby tissue (the penumbra. Plasma membrane degradation is key to penumbral spread and is mediated by matrix metalloproteinases (MMPs, which are released via vesicular exocytosis into the extracellular fluid in response to stress. DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid preserves membrane integrity in neurons challenged with an in vitro ischemic penumbral mimic (ischemic solution: IS and we asked whether this action was mediated via inhibition of MMP activity. In cultured murine hippocampal neurons challenged with IS, intracellular proMMP-2 and -9 expression increased 4-10 fold and extracellular latent and active MMP isoform expression increased 2-22 fold. MMP-mediated extracellular gelatinolytic activity increased ∼20-50 fold, causing detachment of 32.1±4.5% of cells from the matrix and extensive plasma membrane degradation (>60% of cells took up vital dyes and >60% of plasma membranes were fragmented or blebbed. DIDS abolished cellular detachment and membrane degradation in neurons and the pathology-induced extracellular expression of latent and active MMPs. DIDS similarly inhibited extracellular MMP expression and cellular detachment induced by the pro-apoptotic agent staurosporine or the general proteinase agonist 4-aminophenylmercuric acetate (APMA. Conversely, DIDS-treatment did not impair stress-induced intracellular proMMP production, nor the intracellular cleavage of proMMP-2 to the active form, suggesting DIDS interferes with the vesicular extrusion of MMPs rather than directly inhibiting proteinase expression or activation. In support of this hypothesis, an antagonist of the V-type vesicular ATPase also inhibited extracellular MMP expression to a similar degree as DIDS. In addition, in a proteinase-independent model of vesicular exocytosis, DIDS

  12. Loss of Matrix Metalloproteinase-13 Attenuates Murine Radiation-Induced Pulmonary Fibrosis

    International Nuclear Information System (INIS)

    Flechsig, Paul; Hartenstein, Bettina; Teurich, Sybille; Dadrich, Monika; Hauser, Kai; Abdollahi, Amir; Groene, Hermann-Josef; Angel, Peter; Huber, Peter E.

    2010-01-01

    Purpose: Pulmonary fibrosis is a disorder of the lungs with limited treatment options. Matrix metalloproteinases (MMPs) constitute a family of proteases that degrade extracellular matrix with roles in fibrosis. Here we studied the role of MMP13 in a radiation-induced lung fibrosis model using a MMP13 knockout mouse. Methods and Materials: We investigated the role of MMP13 in lung fibrosis by investigating the effects of MMP13 deficiency in C57Bl/6 mice after 20-Gy thoracic irradiation (6-MV Linac). The morphologic results in histology were correlated with qualitative and quantitative results of volume computed tomography (VCT), magnetic resonance imaging (MRI), and clinical outcome. Results: We found that MMP13 deficient mice developed less pulmonary fibrosis than their wildtype counterparts, showed attenuated acute pulmonary inflammation (days after irradiation), and a reduction of inflammation during the later fibrogenic phase (5-6 months after irradiation). The reduced fibrosis in MMP13 deficient mice was evident in histology with reduced thickening of alveolar septi and reduced remodeling of the lung architecture in good correlation with reduced features of lung fibrosis in qualitative and quantitative VCT and MRI studies. The partial resistance of MMP13-deficient mice to fibrosis was associated with a tendency towards a prolonged mouse survival. Conclusions: Our data indicate that MMP13 has a role in the development of radiation-induced pulmonary fibrosis. Further, our findings suggest that MMP13 constitutes a potential drug target to attenuate radiation-induced lung fibrosis.

  13. Mucosa-Associated Lymphoid Tissue Lymphoma Translocation Protein 1 Positively Modulates Matrix Metalloproteinase-9 Production in Alveolar Macrophages upon Toll-Like Receptor 7 Signaling and Influenza Virus Infection

    Directory of Open Access Journals (Sweden)

    Yu-Hsiang Lee

    2017-09-01

    Full Text Available Influenza A virus (IAV infection causes significant morbidity and mortality worldwide. Matrix metalloproteinase-9 (MMP-9 degrades extracellular matrix and is involved in the pathology of influenza. It has been reported that MMP-9 mediates neutrophil migration in IAV infection. Whether alveolar macrophages, the first immune cells that encounter IAV, produce MMP-9, and the mechanism of its regulation have never been investigated. As Toll-like receptor 7 (TLR7 is one of the receptors in innate immune cells that recognize IAV, we used TLR7 agonists and IAV to stimulate alveolar macrophage MH-S cells, primary macrophages, and bone marrow neutrophils. Results showed that MMP-9 expression in macrophages is inducible by TLR7 agonists and IAV, yet, MMP-9 production by neutrophils is not inducible by either one of them. We hypothesized that MMP-9 production in macrophages is mediated through TLR7-NF-κB pathway and used microarray to analyze TLR7 agonist-induced NF-κB-related genes. Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1, a positive regulator of NF-κB, is amongst the top highly induced genes. By use of MALT1 inhibitor (z-VRPR-fmk and alveolar macrophages from MALT1-deficient mice, we found that MMP-9 production is MALT1-dependent. While MALT1 can act as a paracaspase in lymphocytes through degrading various signaling proteins, we discovered that MALT1 functions to reduce a negative regulator of NF-κB, cylindromatosis (CYLD, in alveolar macrophages. IAV-induced MMP-9, TNF, and IL-6 in lungs of MALT1-deficient mice are significantly lower than in wild-type mice after intratracheal infection. MALT1-deficient mice also have less body weight loss and longer survival after infection. Taken together, we demonstrated a novel role of MALT1 in regulating alveolar macrophage MMP-9 production whose presence exacerbates the severity of influenza.

  14. The association between individual SNPs or haplotypes of matrix metalloproteinase 1 and gastric cancer susceptibility, progression and prognosis.

    Directory of Open Access Journals (Sweden)

    Yong-Xi Song

    Full Text Available BACKGROUND: The single nucleotide polymorphisms (SNPs in matrix metalloproteinase 1(MMP-1 play important roles in some cancers. This study examined the associations between individual SNPs or haplotypes in MMP-1 and susceptibility, clinicopathological parameters and prognosis of gastric cancer in a large sample of the Han population in northern China. METHODS: In this case-controlled study, there were 404 patients with gastric cancer and 404 healthy controls. Seven SNPs were genotyped using the MALDI-TOF MS system. Then, SPSS software, Haploview 4.2 software, Haplo.states software and THEsias software were used to estimate the association between individual SNPs or haplotypes of MMP-1 and gastric cancer susceptibility, progression and prognosis. RESULTS: Among seven SNPs, there were no individual SNPs correlated to gastric cancer risk. Moreover, only the rs470206 genotype had a correlation with histologic grades, and the patients with GA/AA had well cell differentiation compared to the patients with genotype GG (OR=0.573; 95%CI: 0.353-0.929; P=0.023. Then, we constructed a four-marker haplotype block that contained 4 common haplotypes: TCCG, GCCG, TTCG and TTTA. However, all four common haplotypes had no correlation with gastric cancer risk and we did not find any relationship between these haplotypes and clinicopathological parameters in gastric cancer. Furthermore, neither individual SNPs nor haplotypes had an association with the survival of patients with gastric cancer. CONCLUSIONS: This study evaluated polymorphisms of the MMP-1 gene in gastric cancer with a MALDI-TOF MS method in a large northern Chinese case-controlled cohort. Our results indicated that these seven SNPs of MMP-1 might not be useful as significant markers to predict gastric cancer susceptibility, progression or prognosis, at least in the Han population in northern China.

  15. Hepatocyte produced matrix metalloproteinases are regulated by CD147 in liver fibrogenesis.

    Science.gov (United States)

    Calabro, Sarah R; Maczurek, Annette E; Morgan, Alison J; Tu, Thomas; Wen, Victoria W; Yee, Christine; Mridha, Auvro; Lee, Maggie; d'Avigdor, William; Locarnini, Stephen A; McCaughan, Geoffrey W; Warner, Fiona J; McLennan, Susan V; Shackel, Nicholas A

    2014-01-01

    The classical paradigm of liver injury asserts that hepatic stellate cells (HSC) produce, remodel and turnover the abnormal extracellular matrix (ECM) of fibrosis via matrix metalloproteinases (MMPs). In extrahepatic tissues MMP production is regulated by a number of mechanisms including expression of the glycoprotein CD147. Previously, we have shown that CD147 is expressed on hepatocytes but not within the fibrotic septa in cirrhosis [1]. Therefore, we investigated if hepatocytes produce MMPs, regulated by CD147, which are capable of remodelling fibrotic ECM independent of the HSC. Non-diseased, fibrotic and cirrhotic livers were examined for MMP activity and markers of fibrosis in humans and mice. CD147 expression and MMP activity were co-localised by in-situ zymography. The role of CD147 was studied in-vitro with siRNA to CD147 in hepatocytes and in-vivo in mice with CCl4 induced liver injury using ãCD147 antibody intervention. In liver fibrosis in both human and mouse tissue MMP expression and activity (MMP-2, -9, -13 and -14) increased with progressive injury and localised to hepatocytes. Additionally, as expected, MMPs were abundantly expressed by activated HSC. Further, with progressive fibrosis there was expression of CD147, which localised to hepatocytes but not to HSC. Functionally significant in-vitro regulation of hepatocyte MMP production by CD147 was demonstrated using siRNA to CD147 that decreased hepatocyte MMP-2 and -9 expression/activity. Further, in-vivo α-CD147 antibody intervention decreased liver MMP-2, -9, -13, -14, TGF-β and α-SMA expression in CCl4 treated mice compared to controls. We have shown that hepatocytes produce active MMPs and that the glycoprotein CD147 regulates hepatocyte MMP expression. Targeting CD147 regulates hepatocyte MMP production both in-vitro and in-vivo, with the net result being reduced fibrotic matrix turnover in-vivo. Therefore, CD147 regulation of hepatocyte MMP is a novel pathway that could be targeted by

  16. Hepatocyte produced matrix metalloproteinases are regulated by CD147 in liver fibrogenesis.

    Directory of Open Access Journals (Sweden)

    Sarah R Calabro

    Full Text Available The classical paradigm of liver injury asserts that hepatic stellate cells (HSC produce, remodel and turnover the abnormal extracellular matrix (ECM of fibrosis via matrix metalloproteinases (MMPs. In extrahepatic tissues MMP production is regulated by a number of mechanisms including expression of the glycoprotein CD147. Previously, we have shown that CD147 is expressed on hepatocytes but not within the fibrotic septa in cirrhosis [1]. Therefore, we investigated if hepatocytes produce MMPs, regulated by CD147, which are capable of remodelling fibrotic ECM independent of the HSC.Non-diseased, fibrotic and cirrhotic livers were examined for MMP activity and markers of fibrosis in humans and mice. CD147 expression and MMP activity were co-localised by in-situ zymography. The role of CD147 was studied in-vitro with siRNA to CD147 in hepatocytes and in-vivo in mice with CCl4 induced liver injury using ãCD147 antibody intervention.In liver fibrosis in both human and mouse tissue MMP expression and activity (MMP-2, -9, -13 and -14 increased with progressive injury and localised to hepatocytes. Additionally, as expected, MMPs were abundantly expressed by activated HSC. Further, with progressive fibrosis there was expression of CD147, which localised to hepatocytes but not to HSC. Functionally significant in-vitro regulation of hepatocyte MMP production by CD147 was demonstrated using siRNA to CD147 that decreased hepatocyte MMP-2 and -9 expression/activity. Further, in-vivo α-CD147 antibody intervention decreased liver MMP-2, -9, -13, -14, TGF-β and α-SMA expression in CCl4 treated mice compared to controls.We have shown that hepatocytes produce active MMPs and that the glycoprotein CD147 regulates hepatocyte MMP expression. Targeting CD147 regulates hepatocyte MMP production both in-vitro and in-vivo, with the net result being reduced fibrotic matrix turnover in-vivo. Therefore, CD147 regulation of hepatocyte MMP is a novel pathway that could be

  17. Serum Matrix Metalloproteinase-9 and Cognitive Impairment After Acute Ischemic Stroke.

    Science.gov (United States)

    Zhong, Chongke; Bu, Xiaoqing; Xu, Tan; Guo, Libing; Wang, Xuemei; Zhang, Jintao; Cui, Yong; Li, Dong; Zhang, Jianhui; Ju, Zhong; Chen, Chung-Shiuan; Chen, Jing; Zhang, Yonghong; He, Jiang

    2018-01-06

    The impact of serum matrix metalloproteinases-9 (MMP-9) on cognitive impairment after ischemic stroke is unclear. We aimed to investigate the association between serum MMP-9 in the short-term acute phase of ischemic stroke and cognitive impairment at 3 months. Our study was based on a subsample from the CATIS (China Antihypertensive Trial in Acute Ischemic Stroke); a total of 558 patients with serum MMP-9 levels from 7 of 26 participating sites of the trial were included in this analysis. Cognitive impairment severity was categorized as severe, mild, or none (Mini-Mental State Examination score, impairment was defined as a score of impairment and 153 (27.4%) had severe cognitive impairment at 3 months. After adjustment for age, National Institutes of Health stroke score, education, and other covariates, the odds ratio for the highest quartile of serum MMP-9 compared with the lowest quartile was 3.20 (95% confidence interval, 1.87-5.49) for cognitive impairment. Multiple-adjusted spline regression model showed a linear association between MMP-9 levels and cognitive impairment ( P impairment was defined by Montreal Cognitive Assessment score. Increased serum MMP-9 levels in the short-term phase of ischemic stroke were associated with 3-month cognitive impairment, independently of established risk factors. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  18. Regulation of PDGFC signalling and extracellular matrix composition by FREM1 in mice

    Directory of Open Access Journals (Sweden)

    Fenny Wiradjaja

    2013-11-01

    Fras1-related extracellular matrix protein 1 (FREM1 is required for epidermal adhesion during embryogenesis, and mice lacking the gene develop fetal skin blisters and a range of other developmental defects. Mutations in members of the FRAS/FREM gene family cause diseases of the Fraser syndrome spectrum. Embryonic epidermal blistering is also observed in mice lacking PdgfC and its receptor, PDGFRα. In this article, we show that FREM1 binds to PDGFC and that this interaction regulates signalling downstream of PDGFRα. Fibroblasts from Frem1-mutant mice respond to PDGFC stimulation, but with a shorter duration and amplitude than do wild-type cells. Significantly, PDGFC-stimulated expression of the metalloproteinase inhibitor Timp1 is reduced in cells with Frem1 mutations, leading to reduced basement membrane collagen I deposition. These results show that the physical interaction of FREM1 with PDGFC can regulate remodelling of the extracellular matrix downstream of PDGFRα. We propose that loss of FREM1 function promotes epidermal blistering in Fraser syndrome as a consequence of reduced PDGFC activity, in addition to its stabilising role in the basement membrane.

  19. Expressions of Matrix Metalloproteinases (MMP-2, MMP-7, and MMP-9) and Their Inhibitors (TIMP-1, TIMP-2) in Inflammatory Bowel Diseases.

    Science.gov (United States)

    Jakubowska, Katarzyna; Pryczynicz, Anna; Iwanowicz, Piotr; Niewiński, Andrzej; Maciorkowska, Elżbieta; Hapanowicz, Jerzy; Jagodzińska, Dorota; Kemona, Andrzej; Guzińska-Ustymowicz, Katarzyna

    2016-01-01

    Crohn's disease (CD) and ulcerative colitis (UC) belong to a group of inflammatory bowel diseases (IBD). The aim of our study was to evaluate the expression of MMP-2, MMP-7, MMP-9, TIMP-1, and TIMP-2 in ulcerative colitis and Crohn's disease. The study group comprised 34 patients with UC and 10 patients with CD. Evaluation of MMP-2, MMP-7, MMP-9, TIMP-1, and TIMP-2 expression in tissue samples was performed using immunohistochemistry. The overexpression of MMP-9 and TIMP-1 was dominant in both the glandular epithelium and inflammatory infiltration in UC patients. In contrast, in CD subjects the positive expression of MMP-2 and TIMP-1 was in glandular tubes while mainly MMP-7 and TIMP-2 expression was in inflammatory infiltration. Metalloproteinases' expression was associated with the presence of erosions, architectural tissue changes, and inflammatory infiltration in the lamina propria of UC patients. The expression of metalloproteinase inhibitors correlated with the presence of eosinophils and neutrophils in UC and granulomas in CD patients. Our studies indicate that the overexpression of metalloproteinases and weaker expression of their inhibitors may determine the development of IBD. It appears that MMP-2, MMP-7, and MMP-9 may be a potential therapeutic target and the use of their inhibitors may significantly reduce UC progression.

  20. Achaete-scute complex homolog-1 promotes DNA repair in the lung carcinogenesis through matrix metalloproteinase-7 and O(6-methylguanine-DNA methyltransferase.

    Directory of Open Access Journals (Sweden)

    Xiao-Yang Wang

    Full Text Available Lung cancer is the leading cause of cancer-related deaths in the world. Achaete-scute complex homolog-1 (Ascl1 is a member of the basic helix-loop-helix (bHLH transcription factor family that has multiple functions in the normal and neoplastic lung such as the regulation of neuroendocrine differentiation, prevention of apoptosis and promotion of tumor-initiating cells. We now show that Ascl1 directly regulates matrix metalloproteinase-7 (MMP-7 and O(6-methylguanine-DNA methyltransferase (MGMT. Loss- and gain-of-function experiments in human bronchial epithelial and lung carcinoma cell lines revealed that Ascl1, MMP-7 and MGMT are able to protect cells from the tobacco-specific nitrosamine NNK-induced DNA damage and the alkylating agent cisplatin-induced apoptosis. We also examined the role of Ascl1 in NNK-induced lung tumorigenesis in vivo. Using transgenic mice which constitutively expressed human Ascl1 in airway lining cells, we found that there was a delay in lung tumorigenesis. We conclude that Ascl1 potentially enhances DNA repair through activation of MMP-7 and MGMT which may impact lung carcinogenesis and chemoresistance. The study has uncovered a novel and unexpected function of Ascl1 which will contribute to better understanding of lung carcinogenesis and the broad implications of transcription factors in tobacco-related carcinogenesis.

  1. Matrix metalloproteinases (MMPs) in the endometrium of bitches.

    Science.gov (United States)

    Chu Py, Po-yin; Salamonsen, L A; Lee, C S; Wright, P J

    2002-03-01

    The relationships between activities of matrix metalloproteinases (MMPs) in the canine uterus and the occurrence of degeneration of the luminal epithelium, cystic endometrial hyperplasia, pyometra and uterine remodelling post partum were determined. Mature bitches (n = 10) were ovariectomized, treated with hormones (oestradiol benzoate, progestagen) and investigated at stages simulating pro-oestrus (n = 2), oestrus (n = 2), dioestrus (n = 2), and mid- (n = 2) and late (n = 2) anoestrus (3 and 9 weeks, respectively, after cessation of treatment with progestagen). Untreated bitches (n = 1 per group) served as controls (Expt 1). An additional 10 ovariectomized bitches, at the end of treatment-induced simulated dioestrus, were treated each day for a further 3 weeks either with the same dose (standard dose, n = 3), a decreased dose (n = 3) or an increased dose (n = 3) of progestagen, or no treatment (withdrawal dose, n = 1). These bitches were then investigated (Expt 2). A suture was placed in the lumen of one uterine horn of another five bitches at ovariectomy. Three of these bitches were treated to induce simulated dioestrus and two bitches served as untreated controls. In the hormone-treated bitches, the suture resulted in cystic endometrial hyperplasia in one bitch and in cystic endometrial hyperplasia with pyometra in two bitches. The control bitches showed no cystic endometrial hyperplasia or pyometra (Expt 3). Four intact bitches were studied at 2 (n = 1), 3 (n = 2) and 11 (n = 1) weeks post partum. Uterine tissues were also collected from two bitches with naturally occurring cystic endometrial hyperplasia with pyometra (Expt 4). All uteri were examined histologically and the activities of MMP-2, -7 and -9 (latent and active forms) were assessed using zymography of extracts of endometrium. In Expts 1 and 2, marked degeneration of the luminal epithelium in six of 25 bitches (simulated mid-anoestrus, withdrawal dose and decreased dose groups) was not associated

  2. Friends or Foes: Matrix Metalloproteinases and Their Multifaceted Roles in Neurodegenerative Diseases.

    Science.gov (United States)

    Brkic, Marjana; Balusu, Sriram; Libert, Claude; Vandenbroucke, Roosmarijn E

    2015-01-01

    Neurodegeneration is a chronic progressive loss of neuronal cells leading to deterioration of central nervous system (CNS) functionality. It has been shown that neuroinflammation precedes neurodegeneration in various neurodegenerative diseases. Matrix metalloproteinases (MMPs), a protein family of zinc-containing endopeptidases, are essential in (neuro)inflammation and might be involved in neurodegeneration. Although MMPs are indispensable for physiological development and functioning of the organism, they are often referred to as double-edged swords due to their ability to also inflict substantial damage in various pathological conditions. MMP activity is strictly controlled, and its dysregulation leads to a variety of pathologies. Investigation of their potential use as therapeutic targets requires a better understanding of their contributions to the development of neurodegenerative diseases. Here, we review MMPs and their roles in neurodegenerative diseases: Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and multiple sclerosis (MS). We also discuss MMP inhibition as a possible therapeutic strategy to treat neurodegenerative diseases.

  3. Friends or Foes: Matrix Metalloproteinases and Their Multifaceted Roles in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Marjana Brkic

    2015-01-01

    Full Text Available Neurodegeneration is a chronic progressive loss of neuronal cells leading to deterioration of central nervous system (CNS functionality. It has been shown that neuroinflammation precedes neurodegeneration in various neurodegenerative diseases. Matrix metalloproteinases (MMPs, a protein family of zinc-containing endopeptidases, are essential in (neuroinflammation and might be involved in neurodegeneration. Although MMPs are indispensable for physiological development and functioning of the organism, they are often referred to as double-edged swords due to their ability to also inflict substantial damage in various pathological conditions. MMP activity is strictly controlled, and its dysregulation leads to a variety of pathologies. Investigation of their potential use as therapeutic targets requires a better understanding of their contributions to the development of neurodegenerative diseases. Here, we review MMPs and their roles in neurodegenerative diseases: Alzheimer’s disease (AD, Parkinson’s disease (PD, amyotrophic lateral sclerosis (ALS, Huntington’s disease (HD, and multiple sclerosis (MS. We also discuss MMP inhibition as a possible therapeutic strategy to treat neurodegenerative diseases.

  4. Matrix metalloproteinase-2 is elevated in midtrimester amniotic fluid prior to the development of preeclampsia

    Directory of Open Access Journals (Sweden)

    Daniel-Spiegel Etty

    2009-08-01

    Full Text Available Abstract Objective To evaluate levels of matrix metalloproteinases (MMP and their inhibitors (TIMP in second trimester amniotic fluid of women with hypertensive disorders compared to normotensive women. Study Design Amniotic fluid was obtained from 133 women undergoing genetic second trimester amniocentesis. Zymography was performed for MMP characterization and an MMP-2 ELISA kit was used to determine MMP-2 levels. TIMP-2 expression was evaluated using western blot. Results Mean amniotic fluid MMP-2 and TIMP-2 levels were significantly higher in women who developed a hypertensive disorder compared to normotensive women (P Conclusion Higher amniotic fluid MMP-2 and TIMP-2 levels are found in women who eventually develop preeclampsia.

  5. A failure of matrix metalloproteinase inhibition in the prevention of rat intracranial aneurysm formation

    International Nuclear Information System (INIS)

    Kaufmann, T.J.; Kallmes, D.F.; Marx, W.F.

    2006-01-01

    We tested the hypothesis that nonspecific matrix metalloproteinase (MMP) inhibition with doxycycline would decrease the incidence of intracranial aneurysm formation in a rat aneurysm model. We performed common carotid artery ligation on 96 Long-Evans rats. A treatment group of 48 animals was chosen at random to receive oral doxycycline (3 mg/kg) in addition to standard rat chow, and the control group of 48 animals received standard rat chow only. The major circle of Willis arteries was dissected at 1 year following carotid ligation, and the proportions of animals with aneurysms were compared between groups using Fisher's exact test. Four animals given oral doxycycline and ten control animals expired before 1 year. Of the examined animals, eight saccular intracranial aneurysms were found in 8 of 45 animals which had received doxycycline (17.8%) and seven saccular intracranial aneurysms were found in 7 of 37 control animals (18.9%). There was no significant difference in aneurysm formation between the doxycycline-treated and control groups (P=0.894). Nonspecific MMP inhibition with doxycycline is not effective in preventing intracranial aneurysm formation in a rat model. (orig.)

  6. Effect of flavones on rat brain and lung matrix metalloproteinase activity measured by film in-situ zymography.

    Science.gov (United States)

    Sasaki, K; Tateoka, N; Ando, H; Yoshizaki, F

    2005-04-01

    We have evaluated the inhibitory activity of flavone, nobiletin, and heptamethoxyflavone on matrix metalloproteinase (MMP) activity in the rat. MMP in 9000-g supernatant fraction of lung homogenate was activated by p-aminophenyl mercuric acetate (APMA), and gelatinolytic activity was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) followed by Coomassie staining. This activity should be related to MMP-2 and/or MMP-9 and was confirmed by gelatin zymography. Fluorescent-conjugated collagen used as a substrate for collagenolytic activity wasinvestigated by SDS-PAGE also. The film in-situ zymography method was applied to rat brain and lung tissue in the same manner. Flavone and nobiletin inhibited the APMA-stimulated gelatinolytic activity and also the collagenolytic activity by more than 75%. The film in-situ zymography method indicated that these compounds might be potent inhibitors of MMP, suggesting the specific inhibition of localized MMP in brain hippocampus and/or lung terminal bronchioles, which may contribute to the prevention of some types of brain disease or cancer invasion and metastasis.

  7. Castor oil polymer induces bone formation with high matrix metalloproteinase-2 expression.

    Science.gov (United States)

    Saran, Wallace Rocha; Chierice, Gilberto Orivaldo; da Silva, Raquel Assed Bezerra; de Queiroz, Alexandra Mussolino; Paula-Silva, Francisco Wanderley Garcia; da Silva, Léa Assed Bezerra

    2014-02-01

    The aim of this study was to evaluate the modulation of matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) expression in newly formed bone tissue at the interface between implants derived from castor oil (Ricinus communis) polymer and the tibia medullary canal. Forty-four rabbits were assigned to either Group 1 (n = 12; control) or Group 2 (n = 30), which had the tibial medullary canals reamed bilaterally and filled with polymer. CT scans showed no space between the material surface and the bone at the implant/bone marrow interface, and the density of the tissues at this interface was similar to the density measured of other regions of the bone. At 90 days postimplantation, the interface with the polymer presented a thick layer of newly formed bone tissue rich in osteocytes. This tissue exhibited ongoing maturation at 120 and 150 days postimplantation. Overall, bone remodeling process was accompanied by positive modulation of MMP-2 and low MMP-9 expression. Differently, in control group, the internal surface close to the medullary canal was lined by osteoblasts, followed by a bone tissue zone with few lacunae filled with osteocytes. Maturation of the tissue of the medullary internal surface occurred in the inner region, with the bone being nonlamellar. © 2013 Wiley Periodicals, Inc.

  8. TIMP-1 resistant matrix metalloproteinase-9 is the predominant serum active isoform associated with MRI activity in patients with multiple sclerosis.

    Science.gov (United States)

    Trentini, Alessandro; Manfrinato, Maria C; Castellazzi, Massimiliano; Tamborino, Carmine; Roversi, Gloria; Volta, Carlo A; Baldi, Eleonora; Tola, Maria R; Granieri, Enrico; Dallocchio, Franco; Bellini, Tiziana; Fainardi, Enrico

    2015-08-01

    The activity of matrix metalloproteinase-9 (MMP-9) depends on two isoforms, an 82 kDa active MMP-9 modulated by its specific tissue inhibitor (TIMP-1), and a 65 kDa TIMP-1 resistant active MMP-9. The relevance of these two enzymatic isoforms in multiple sclerosis (MS) is still unknown. To investigate the contribution of the TIMP-1 modulated and resistant active MMP-9 isoforms to MS pathogenesis. We measured the serum levels of the 82 kDa and TIMP-1 resistant active MMP-9 isoforms by activity assay systems in 86 relapsing-remitting MS (RRMS) patients, categorized according to clinical and magnetic resonance imaging (MRI) evidence of disease activity, and in 70 inflammatory (OIND) and 69 non-inflammatory (NIND) controls. Serum levels of TIMP-1 resistant MMP-9 were more elevated in MS patients than in OIND and NIND (p < 0.05, p < 0.02, respectively). Conversely, 82 kDa active MMP-9 was higher in NIND than in the OIND and MS patients (p < 0.01 and p < 0.00001, respectively). MRI-active patients had higher levels of TIMP-1 resistant MMP-9 and 82 kDa active MMP-9, than did those with MRI inactive MS (p < 0.01 and p < 0.05, respectively). Our findings suggested that the TIMP-1 resistant MMP-9 seem to be the predominantly active isoform contributing to MS disease activity. © The Author(s), 2015.

  9. Inhibition of the metastatic spread and growth of B16-BL6 murine melanoma by a synthetic matrix metalloproteinase inhibitor.

    Science.gov (United States)

    Chirivi, R G; Garofalo, A; Crimmin, M J; Bawden, L J; Stoppacciaro, A; Brown, P D; Giavazzi, R

    1994-08-01

    The synthetic matrix metalloproteinase inhibitor batimastat was tested for its ability to inhibit growth and metastatic spread of the B16-BL6 murine melanoma in syngeneic C57BL/6N mice. Intraperitoneal administration of batimastat resulted in a significant inhibition in the number of lung colonies produced by B16-BL6 cells injected i.v. The effect of batimastat on spontaneous metastases was examined in mice inoculated in the hind footpad with B16-BL6 melanoma. The primary tumor was removed surgically after 26-28 days. Batimastat was administered twice a day from day 14 to day 28 (pre-surgery) or from day 26 to day 44 (post-surgery). With both protocols, the median number of lung metastases was not significantly affected, but there was a significant reduction in the weight of the metastases. Finally, the effect of batimastat was examined on s.c. growth of B16-BL6 melanoma. Batimastat administered daily, starting at day of tumor transplantation, resulted in a significant growth delay, whereas treatment starting at advanced stage tumor only reduced tumor growth marginally. Our results indicate that a matrix metalloproteinase inhibitor can not only prevent the colonization of secondary organs by B16-BL6 cells but also limit the growth of solid tumors.

  10. Decrease in Survival Rate of Colorectal Cancer Patients Due to Insertion of a Single Guanine Base in Promoter Sequences of Matrix Metalloproteinase-1 Gene (in Tehran Population

    Directory of Open Access Journals (Sweden)

    Z Hojati

    2009-01-01

    Full Text Available Introduction: Insertion or deletion of a guanine in -1607 at promoter region of matrix metalloproteinase-1 enzyme creates two allelic types for this gene in the population: 2G and 1G, respectively. 2G allele contains an extra binding site for ETS transcription factors that this may increase the level of gene expression. Therefore, aim of this study was investigation of the single Guanine insertion in the promoter gene and its association with colorectal cancer patient survival rate and tumor progression. Methods: Blood samples from 150 colorectal patients and 100 cases were extracted. The mean follow-up was 25 months (12-36 months. Cases and patients were genotyped using genomic DNA extraction and PCR-RFLP. Results: Colorectal cancer patients were divided in two groups; with activity of metastasis (M+ and without activity of metastasis (M-. 2G allele in metastasis group (55% showed more frequency rather than controls (23%. Survival analyses showed that 3 years survival patients rate in the patients without metastasis activity carrying 1G allele (homo and heterozygote was 81% and for 2G homozygote is 66% (p=0.04. The survival rate dependent to cancer was 90% and 71%, respectively (P=0.01. Conclusion: According to the results, it seems that patients carrying 1G allele show a better survival rate dependent on cancer as compared to patients who do not carry this allele.

  11. Intracellular Wnt/Beta-Catenin Signaling Underlying 17beta-Estradiol-Induced Matrix Metalloproteinase 9 Expression in Human Endometriosis.

    Science.gov (United States)

    Zhang, Ling; Xiong, Wenqian; Xiong, Yao; Liu, Hengwei; Li, Na; Du, Yu; Liu, Yi

    2016-03-01

    Extracellular matrix remodeling is necessary for ectopic endometrium implantation. Many studies have shown an increased expression of matrix metalloproteinase 9 (MMP9) in the ectopic endometrium of endometriosis. However, the signaling pathways and cellular effects related to this process remain incompletely elucidated. The objective of our study was to investigate the association between MMP9 and the Wnt signaling pathway under the regulation of 17beta-estradiol (E2) in endometrial stromal cells. We found that MMP9 was elevated in tissues from women with endometriosis compared with normal women. Furthermore, MMP9 and beta-catenin increased concurrently in a time- and dose-dependent manner after E2 treatment. To clarify the relationship between MMP9 and beta-catenin, we performed luciferase promoter reporter and chromatin immunoprecipitation assays. A beta-catenin/TCF3/LEF1 complex bound to a specific site on the MMP9 promoter that promoted MMP9 gene and protein expression. The promotion of MMP9 by the Wnt signaling pathway under the regulation of E2 may contribute to the pathophysiology of this disease. © 2016 by the Society for the Study of Reproduction, Inc.

  12. Dietary treatments enriched in olive and safflower oils regulate seric and placental matrix metalloproteinases in maternal diabetes.

    Science.gov (United States)

    Martinez, N; Sosa, M; Higa, R; Fornes, D; Capobianco, E; Jawerbaum, A

    2012-01-01

    Matrix metalloproteinases (MMPs) are proteolytic enzymes involved in placental development and function, although related to the pro-inflammatory environment when produced in excess. Previous studies have identified MMP-2 and MMP-9 overactivities in the placenta from diabetic rats. In this study, we aimed to determine whether diets supplemented with olive and safflower oil, enriched in natural PPAR ligands, are able to regulate MMP-2 and MMP-9 activities in the placenta and serum from diabetic rats. Diabetes was induced in rat neonates by streptozotocin administration (90mg/kg s.c.). Control and diabetic rats were fed with 6% olive oil- or 6% safflower oil-supplemented diets from days 0.5-13.5 of gestation. On day 13.5 of gestation, placentas and sera were isolated for further determination of matrix metalloproteinases (MMPs) 2 and 9 activities by zymography. Placental MMP-2 and MMP-9 protein concentration and immunolocalization were also determined. Sera from diabetic pregnant animals showed MMP-2 and MMP-9 overactivities when compared to controls. Serum MMP-9 activity was significantly decreased when the diabetic animals received the olive and safflower oil dietary treatments. Placentas from diabetic rats showed increased MMP-2 and MMP-9 activities and protein concentrations, and both were decreased when diabetic rats received the olive and safflower dietary treatments. This study demonstrates that both olive and safflower oil-supplemented diets were able to prevent MMPs overactivities in the placenta from diabetic rats, and that these beneficial effects are reflected in rat sera. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. The diagnostic importance of matrix metalloproteinase-7 and nestin in gastrointestinal stromal tumors

    Science.gov (United States)

    Peker, Kemal; Sayar, Ilyas; Gelincik, İbrahim; Bulut, Gülay; Ünal, Tuba Dilay Kökenek; Şenol, Serkan; Gökçe, Aysun; Isik, Arda

    2014-01-01

    Background The importance of the matrix metalloproteinase-7 (MMP-7) and nestin immunomarkers, C-kit proto-oncogene (CD117), and the efficiency of the Ki-67 proliferation index for gastrointestinal stromal tumors were evaluated. Material/Methods This study was conducted by examining the microscope slides of 72 patients with gastrointestinal stromal tumors that were sent to the pathology laboratory between 2007 and 2012. Immunohistochemical staining for CD117, MMP-7, nestin, and marker of proliferation Ki-67 was performed. The correlations between the positive results for Ki-67, CD117, MMP-7, and nestin were evaluated relative to the tumor characteristics of size, localization, grade, cellular type, cellularity, cytology type, growth pattern, ulceration, necrosis, hemorrhage, invasion depth, and lymph node metastasis. Results The tumor was localized in the stomach in 42 of the patients, the intestines in 19, the colon in 7, and the rectum in 4. Comparisons among the groups showed that MMP-7 was correlated with the tumor grade (p<0.001), cellularity (p<0.009), cytologic atypia (p<0.001), ulceration (p=0.002), necrosis (p<0.001), and tumor size (p=0.001). Nestin was correlated with the tumor grade (p=0.013), and tumor size (p=0.024). Correlations among CD117, MMP-7, nestin, and Ki-67 were examined. Nestin and Ki-67 were both significantly correlated with CD117 and MMP-7 [(r=0.279, p=0.018), (r=0.322, p=0.006), (r=0.386, p=0.001), (r=0.386, p=0.002)], respectively. Conclusions MMP-7 and nestin may be beneficial as markers, given their sensitivity to gastrointestinal stromal tumors. PMID:24755685

  14. Matrix metalloproteinase-14 mediates formation of bile ducts and hepatic maturation of fetal hepatic progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Otani, Satoshi [Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo (Japan); Kakinuma, Sei, E-mail: skakinuma.gast@tmd.ac.jp [Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo (Japan); Department for Liver Disease Control, Tokyo Medical and Dental University, Tokyo (Japan); Kamiya, Akihide [Institute of Innovative Science and Technology, Tokai University, Isehara (Japan); Goto, Fumio; Kaneko, Shun; Miyoshi, Masato; Tsunoda, Tomoyuki; Asano, Yu; Kawai-Kitahata, Fukiko; Nitta, Sayuri; Nakata, Toru; Okamoto, Ryuichi; Itsui, Yasuhiro; Nakagawa, Mina; Azuma, Seishin [Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo (Japan); Asahina, Yasuhiro [Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo (Japan); Department for Liver Disease Control, Tokyo Medical and Dental University, Tokyo (Japan); Yamaguchi, Tomoyuki [Division of Stem Cell Therapy, Institute of Medical Science, The University of Tokyo, Tokyo (Japan); Koshikawa, Naohiko [Division of Cancer Cell Research, Institute of Medical Science, The University of Tokyo, Tokyo (Japan); Seiki, Motoharu [Medical School, Kanazawa University, Kanazawa (Japan); Nakauchi, Hiromitsu [Division of Stem Cell Therapy, Institute of Medical Science, The University of Tokyo, Tokyo (Japan); and others

    2016-01-22

    Fetal hepatic stem/progenitor cells, called hepatoblasts, play central roles in liver development; however, the molecular mechanisms regulating the phenotype of these cells have not been completely elucidated. Matrix metalloproteinase (MMP)-14 is a type I transmembrane proteinase regulating pericellular proteolysis of the extracellular matrix and is essential for the activation of several MMPs and cytokines. However, the physiological functions of MMP-14 in liver development are unknown. Here we describe a functional role for MMP-14 in hepatic and biliary differentiation of mouse hepatoblasts. MMP-14 was upregulated in cells around the portal vein in perinatal stage liver. Formation of bile duct-like structures in MMP-14–deficient livers was significantly delayed compared with wild-type livers in vivo. In vitro biliary differentiation assays showed that formation of cholangiocytic cysts derived from MMP-14–deficient hepatoblasts was completely impaired, and that overexpression of MMP-14 in hepatoblasts promoted the formation of bile duct-like cysts. In contrast, the expression of molecules associated with metabolic functions in hepatocytes, including hepatic nuclear factor 4α and tryptophan 2,3-dioxygenase, were significantly increased in MMP-14–deficient livers. Expression of the epidermal growth factor receptor and phosphorylation of mitogen-activated protein kinases were significantly upregulated in MMP-14–deficient livers. We demonstrate that MMP-14–mediated signaling in fetal hepatic progenitor cells promotes biliary luminal formation around the portal vein and negatively controls the maturation of hepatocytes. - Highlights: • Loss of MMP-14 delayed formation of bile duct-like structures in perinatal liver. • Overexpression of MMP-14 in hepatobalsts promoted the biliary formation in vitro. • Loss of MMP-14 promoted hepatocyte maturation of hepatoblasts in vivo. • MMP-14–mediated signaling regulates terminal differentiation of

  15. Exercise Prevents Diaphragm Wasting Induced by Cigarette Smoke through Modulation of Antioxidant Genes and Metalloproteinases

    Directory of Open Access Journals (Sweden)

    Gracielle Vieira Ramos

    2018-01-01

    Full Text Available Background. The present study aimed to analyze the effects of physical training on an antioxidant canonical pathway and metalloproteinases activity in diaphragm muscle in a model of cigarette smoke-induced chronic obstructive pulmonary disease (COPD. Methods. Male mice were randomized into control, smoke, exercise, and exercise + smoke groups, which were maintained in trial period of 24 weeks. Gene expression of kelch-like ECH-associated protein 1; nuclear factor erythroid-2 like 2; and heme-oxygenase1 by polymerase chain reaction was performed. Metalloproteinases 2 and 9 activities were analyzed by zymography. Exercise capacity was evaluated by treadmill exercise test before and after the protocol. Results. Aerobic training inhibited diaphragm muscle wasting induced by cigarette smoke exposure. This inhibition was associated with improved aerobic capacity in those animals that were submitted to 24 weeks of aerobic training, when compared to the control and smoke groups, which were not submitted to training. The aerobic training also downregulated the increase of matrix metalloproteinases (MMP-2 and MMP-9 and upregulated antioxidant genes, such as nuclear factor erythroid-2 like 2 (NRF2 and heme-oxygenase1 (HMOX1, in exercise + smoke group compared to smoke group. Conclusions. Treadmill aerobic training protects diaphragm muscle wasting induced by cigarette smoke exposure involving upregulation of antioxidant genes and downregulation of matrix metalloproteinases.

  16. Influence of matrix metalloproteinase gene polymorphisms in healthy North Indians compared to variations in other ethnic groups worldwide.

    Science.gov (United States)

    Srivastava, Priyanka; Kapoor, Rakesh; Mittal, Rama Devi

    2009-01-01

    Matrix metalloproteinases have a range of biological functions, including the liberation of cytokines and membrane-bound receptors, with roles in promotion of tumor invasion and angiogenesis. Several polymorphisms in MMPs have been implicated in the development of cancer as well as other diseases. Since their frequency distributions in the general North Indian population is not known the present study was conducted with the focus on MMP-1(-519) Aandgt; G, MMP-1(-1607) 1Gandgt; 2G, and MMP-7(-181) Aandgt; G gene polymorphisms. PCR-based analysis was conducted for 200 normal healthy individuals of similar ethnicity. Allelic frequencies in wild type of MMP-1(-519) Aandgt; G were 71.2% A; MMP-1(-1607) 1Gandgt; 2G 48.2% 1G; MMP-7(-181) Aandgt; G 60.7% A. The variant allele frequencies were 29% A in MMP-1(-519) Aandgt; G; 52% 2G in MMP-1(-1607) 1Gandgt; 2G; and 39.3% G in MMP-7(-181) Aandgt; G respectively. We further compared frequency distribution for these genes with various published studies in different ethnicity globally. Our results suggest that frequency in these MMP genes exhibit distinctive patterns in India that could perhaps be attributed to ethnic variation. This study is important as it can form a baseline for screening individuals who are at high risk when exposed to environmental carcinogens. More emphasis is needed on evaluating polymorphisms, alone or in combination, as modifiers of risk from relevant environmental/lifestyle exposures.

  17. Mechanistic Studies on the Triggered Release of Liposomal Contents by Matrix Metalloproteinase-9

    Science.gov (United States)

    Elegbede, Adekunle I.; Banerjee, Jayati; Hanson, Andrea J.; Tobwala, Shakila; Ganguli, Bratati; Wang, Rongying; Lu, Xiaoning; Srivastava, D. K.; Mallik, Sanku

    2009-01-01

    Matrix metalloproteinases (MMPs) are a class of extracellular matrix degrading enzymes over-expressed in many cancers and contribute to the metastatic ability of the cancer cells. We have recently demonstrated that liposomal contents can be released when triggered by the enzyme MMP-9. Herein, we report our results on the mechanistic studies of the MMP-9 triggered release of the liposomal contents. We synthesized peptides containing the cleavage site for MMP-9 and conjugated them with fatty acids to prepare the corresponding lipopeptides. By employing Circular Dichroism spectroscopy, we demonstrate that the lipopeptides, when incorporated in liposomes, are de-mixed in the lipid bilayers and generate triple helical structures. MMP-9 cleaves the triple helical peptides, leading to the release of the liposomal contents. Other MMPs, which cannot hydrolyze triple helical peptides, failed to release the contents from the liposomes. We also observed that the rate and the extent of release of the liposomal contents depend on the mismatch between acyl chains of the synthesized lipopeptide and phospholipid components of the liposomes. Circular Dichroism spectroscopic studies imply that the observed differences in the release reflect the ability of the liposomal membrane to anneal the defects following the enzymatic cleavage of the liposome-incorporated lipopeptides. PMID:18642903

  18. Diosgenin, a steroidal saponin, inhibits migration and invasion of human prostate cancer PC-3 cells by reducing matrix metalloproteinases expression.

    Directory of Open Access Journals (Sweden)

    Pin-Shern Chen

    Full Text Available BACKGROUND: Diosgenin, a steroidal saponin obtained from fenugreek (Trigonella foenum graecum, was found to exert anti-carcinogenic properties, such as inhibiting proliferation and inducing apoptosis in a variety of tumor cells. However, the effect of diosgenin on cancer metastasis remains unclear. The aim of the study is to examine the effect of diosgenin on migration and invasion in human prostate cancer PC-3 cells. METHODS AND PRINCIPAL FINDINGS: Diosgenin inhibited proliferation of PC-3 cells in a dose-dependent manner. When treated with non-toxic doses of diosgenin, cell migration and invasion were markedly suppressed by in vitro wound healing assay and Boyden chamber invasion assay, respectively. Furthermore, diosgenin reduced the activities of matrix metalloproteinase-2 (MMP-2 and MMP-9 by gelatin zymography assay. The mRNA level of MMP-2, -9, -7 and extracellular inducer of matrix metalloproteinase (EMMPRIN were also suppressed while tissue inhibitor of metalloproteinase-2 (TIMP-2 was increased by diosgenin. In addition, diosgenin abolished the expression of vascular endothelial growth factor (VEGF in PC-3 cells and tube formation of endothelial cells. Our immunoblotting assays indicated that diosgenin potently suppressed the phosphorylation of phosphatidylinositide-3 kinase (PI3K, Akt, extracellular signal regulating kinase (ERK and c-Jun N-terminal kinase (JNK. In addition, diosgenin significantly decreased the nuclear level of nuclear factor kappa B (NF-κB, suggesting that diosgenin inhibited NF-κB activity. CONCLUSION/SIGNIFICANCE: The results suggested that diosgenin inhibited migration and invasion of PC-3 cells by reducing MMPs expression. It also inhibited ERK, JNK and PI3K/Akt signaling pathways as well as NF-κB activity. These findings reveal new therapeutic potential for diosgenin in anti-metastatic therapy.

  19. Methamphetamine transiently increases the blood-brain barrier permeability in the hippocampus: role of tight junction proteins and matrix metalloproteinase-9.

    Science.gov (United States)

    Martins, Tânia; Baptista, Sofia; Gonçalves, Joana; Leal, Ermelindo; Milhazes, Nuno; Borges, Fernanda; Ribeiro, Carlos F; Quintela, Oscar; Lendoiro, Elena; López-Rivadulla, Manuel; Ambrósio, António F; Silva, Ana P

    2011-09-09

    Methamphetamine (METH) is a powerful stimulant drug of abuse that has steadily gained popularity worldwide. It is known that METH is highly neurotoxic and causes irreversible damage of brain cells leading to neurological and psychiatric abnormalities. Recent studies suggested that METH-induced neurotoxicity might also result from its ability to compromise blood-brain barrier (BBB) function. Due to the crucial role of BBB in the maintenance of brain homeostasis and protection against toxic molecules and pathogenic organisms, its dysfunction could have severe consequences. In this study, we investigated the effect of an acute high dose of METH (30mg/kg) on BBB permeability after different time points and in different brain regions. For that, young adult mice were sacrificed 1h, 24h or 72h post-METH administration. METH increased BBB permeability, but this effect was detected only at 24h after administration, being therefore a transitory effect. Interestingly, we also found that the hippocampus was the most susceptible brain region to METH, comparing to frontal cortex and striatum. Moreover, in an attempt to identify the key players in METH-induced BBB dysfunction we further investigated potential alterations in tight junction (TJ) proteins and matrix metalloproteinase-9 (MMP-9). METH was able to decrease the protein levels of zonula occludens (ZO)-1, claudin-5 and occludin in the hippocampus 24h post-injection, and increased the activity and immunoreactivity of MMP-9. The pre-treatment with BB-94 (30mg/kg), a matrix metalloproteinase inhibitor, prevented the METH-induced increase in MMP-9 immunoreactivity in the hippocampus. Overall, the present data demonstrate that METH transiently increases the BBB permeability in the hippocampus, which can be explained by alterations on TJ proteins and MMP-9. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Structural differences of matrix metalloproteinases with potential implications for inhibitor selectivity examined by the GRID/CPCA approach

    DEFF Research Database (Denmark)

    Terp, Gitte Elgaard; Cruciani, Gabriele; Christensen, Inge Thøger

    2002-01-01

    The matrix metalloproteinases (MMPs) are a family of proteolytic enzymes, which have been the focus of a lot of research in recent years because of their involvement in various disease conditions. In this study, structures of 10 enzymes (MMP1, MMP2, MMP3, MMP7, MMP8, MMP9, MMP12, MMP13, MMP14......, and MMP20) were examined with the intention of highlighting regions that could be potential sites for obtaining selectivity. For this purpose, the GRID/CPCA approach as implemented in GOLPE was used. Counterions were included to take into account the different electrostatic properties of the proteins......, and the GRID calculations were performed, allowing the protein side chains to move in response to interaction with the probes. In the search for selectivity, the MMPs are known to be a very difficult case because the enzymes of this family are very similar. The well-known differences in the S1' pocket were...

  1. Urine matrix metalloproteinases and their extracellular inducer EMMPRIN in children with chronic kidney disease.

    Science.gov (United States)

    Musiał, Kinga; Bargenda, Agnieszka; Zwolińska, Danuta

    2015-07-01

    Transforming growth factor (TGF)beta1 and matrix metalloproteinases (MMPs) play an essential role in CKD-related tissue remodeling. However, there are no data on urine MMPs and their extracellular inducer EMMPRIN in CKD patients. The aim of study was to assess the concentrations of MMP-2, MMP-7, MMP-9, EMMPRIN and TGFbeta1 in serum and urine of CKD children and to analyze the potential relations between those parameters. Forty-one pre-dialysis CKD children and 23 age-matched controls were enrolled in the study. The concentrations of analyzed parameters were assessed by ELISA. Serum and urine values of MMP-2, MMP-7, MMP-9, EMMPRIN and TGFbeta1 were significantly elevated in CKD patients versus controls. The MMP-2 and MMP-9 levels in urine correlated significantly with the corresponding values in serum, whereas MMP-7, EMMPRIN and TGFbeta1 urine concentrations did not. There were also significant correlations between urine values of all parameters. The increased urine levels of MMPs, EMMPRIN and TGFbeta1 indicate enhanced proteolysis and renal tissue remodeling. In the case of MMP-7, EMMPRIN and TGFbeta1 those disturbances seem independent of enhanced serum activity of the corresponding enzymes. The urine MMP-7 and EMMPRIN concentrations may serve as new independent indices of tissue remodeling and renal interstitial fibrosis in children with CKD.

  2. Ulex europaeus I lectin induces activation of matrix-metalloproteinase-2 in endothelial cells.

    Science.gov (United States)

    Gomez, D E; Yoshiji, H; Kim, J C; Thorgeirsson, U P

    1995-11-02

    In this report, we show that the lectin Ulex europaeus agglutinin I (UEA I), which binds to alpha-linked fucose residues on the surface of endothelial cells, mediates activation of the 72-kDa matrix metalloproteinase-2 (MMP-2). A dose-dependent increase in the active 62-kDa form of MMP-2 was observed in conditioned medium from monkey aortic endothelial cells (MAEC) following incubation with concentrations of UEA I ranging from 2 to 100 micrograms/ml. The increase in the 62-kDa MMP-2 gelatinolytic activity was not reflected by a rise in MMP-2 gene expression. The UEA I-mediated activation of MMP-2 was blocked by L-fucose, which competes with UEA I for binding to alpha-fucose. These findings may suggest that a similar in vivo mechanism exists, whereby adhesive interactions between tumor cell lectins and endothelial cells can mediate MMP-2 activation.

  3. Transforming growth factor β1, matrix metalloproteinase-2 and its tissue inhibitor in patients with pseudoexfoliation glaucoma/syndrome

    Directory of Open Access Journals (Sweden)

    Đorđević-Jocić Jasmina

    2012-01-01

    Full Text Available Background/Aim. Transforming growth factor-b1 (TGF-b1, oxidative stress and imbalance between matrix metalloproteinases (MMPs and their tissue inhibitors (TIMPs may play an important role in pathogenesis of pseudoexfoliation syndrome/glaucoma (PEX Sy/Gl. The aim of the study was to measure concentrations of TGF- b1, MMP-2, TIMP-2 in the aqueous humor in the examined group, as well as to compare the biochemical findings with the following clinical parameters: degree of chamber angle pigmantation, presence of pseudoexfoliation and the value of intraocular pressure (IOP. Methods. Aqueous samples from 30 patients with cataract, 30 patients with PEX Sy, 36 patients with PEX Gl, and 42 patients with primary open-angle glaucoma (POAG were collected during phacoemulsification cataract surgery. TGF b1, MMP-2, TIMP-2 Fluotokine Multi Analyze Profiling kits and Luminex technology were used to simultaneously measure TGF b1, MMP-2 and TIMP-2. Results. TGF- β1, MMP-2, TIMP-2 were detected in human aqueous from all the groups with the highest level in the group with PEX Gl. Statistically, a significant correlation between the levels of TGF b1, MMP-2, TIMP-2 in the aqueous humor of the patients with PEX Gl and the IOP value was confirmed (p < 0.05. In this group, the positive correlations between the TGF b1 concentration in the aqueous humor and the presence of pseudoexfoliation (p < 0.01, on the one hand, and between the TIMP-2 level and the presence of pseudoexfoliation (p < 0.05, on the other, were reported. A statistically significant positive correlation of TGF-b1 and MMP-2, and the degree of chamber angle pigmentation in the PEX Gl group was confirmed (p < 0.05. In the POAG group, TIMP-2 values were in a negative correlation with the degree of pigmentation (p < 0.05, and the IOP value (p < 0.05. Conclusion. TGF b1 and MMP-2 affect the degree of chamber angle pigmentation and the degree of pseudoexfoliation in patients with pseudoexfoliative glaucoma.

  4. Increments in cytokines and matrix metalloproteinases in skeletal muscle after injection of tissue-damaging toxins from the venom of the snake Bothrops asper

    Directory of Open Access Journals (Sweden)

    Alexandra Rucavado

    2002-01-01

    Full Text Available Envenomations by the snake Bothrops asper are characterized by prominent local tissue damage (i.e. myonecrosis, blistering, hemorrhage and edema. Various phospholipases A2 and metalloproteinases that induce local pathological alterations have been purified from this venom. Since these toxins induce a conspicuous inflammatory response, it has been hypothesized that inflammatory mediators may contribute to the local pathological alterations described. This study evaluated the local production of cytokines and matrix metalloproteinases (MMPs as a consequence of intramuscular injections of an Asp-49 myotoxic phospholipase A2 (myotoxin III (MT-III and a P-I type hemorrhagic metalloproteinase (BaP1 isolated from B. asper venom. Both enzymes induced prominent tissue alterations and conspicuous increments in interleukin (IL-1β, IL-6 and a number of MMPs, especially gelatinase MMP-9, rapidly after injection. In contrast, no increments in tumor necrosis factor-α (TNF-α and interferon-γ were detected. In agreement, MT-III and BaP1 did not induce the synthesis of TNF-α by resident peritoneal macrophages in vitro. Despite the conspicuous expression of latent forms of MMPs in muscle, evidenced by zymography, there were no increments in activated MMP-2 and only a small increase in activated MMP-9, as detected by a functional enzymatic assay. This suggests that MMP activity was regulated by a highly controlled activation of latent forms and, probably, by a concomitant synthesis of MMP inhibitors. Since no hemorrhage nor dermonecrosis were observed after injection of MT-III, despite a prominent increase in MMP expression, and since inflammatory exudate did not enhance hemorrhage induced by BaP1, it is suggested that endogenous MMPs released in the tissue are not responsible for the dermonecrosis and hemorrhage characteristic of B. asper envenomation. Moreover, pretreatment of mice with the peptidomimetic MMP inhibitor batimastat did not reduce myotoxic nor

  5. In contrast to matrix metalloproteinases, serum adiponectin concentrations increase after radioiodine treatment of thyrotoxicosis

    Directory of Open Access Journals (Sweden)

    Lewiński A

    2012-10-01

    Full Text Available Abstract Background Matrix metalloproteinases (MMPs, together with their tissue inhibitors (TIMPs, remodel extracellular matrix under physiological and pathological conditions and are implicated in pathogenesis of cardiovascular diseases, cancer and in chronic inflammation. We have endeavoured to assess whether concentrations of MMPs, TIMPs, and anti-inflammatory adiponectin are altered by pharmacological treatment of acute thyrotoxicosis or by radioiodine therapy (RIT. Material and methods We measured serum concentrations of MMP-2, MMP-9, TIMP-1, TIMP-2, and adiponectin, TSH, free T4 (FT4 and free T3 (FT3 in 15 patients (4 males, age (years 51.8±15.3 (mean±SD with hyperthyroidism treated with thiamazole (Group 1 and in 20 subjects (2 males, treated for thyrotoxicosis with radioiodine, age 52.3±12.4 (Group 2, where blood samples were taken before RIT, visit 1 (V1, seven days post RIT, visit 2 (V2, and two to three months post RIT, visit 3 (V3. Results In Group 1 there was no significant change in concentrations of MMP-2, MMP-9, TIMP-1, TIMP-2 or adiponectin, despite a fall in FT4 and FT3 (8.74±4.79 pg/ml vs 3.54±2.40 pg/ml, for FT3, and 4.48 ±2.21 ng/ml vs 1.02±1.07 ng/ml, for FT4, p4 and FT3 from 24.4±15.4 pmol/l (V1 to 14.7±10.6 pmol/l (V3, and from 10.0±5.65 (V1 to 6.1±4.8 pmol/l (V2, p4 and FT3, respectively. Conclusions Radioiodine therapy of thyrotoxicosis does not alter serum MMP-2, MMP-9 or TIMP-1 concentrations either acutely or after about three months of observation. An increase in serum adiponectin might reflect favourable effects of radioiodine administration on cardiovascular risk factors, while an increase in TIMP-2 (principal MMP-2 inhibitor might lead to a decrease in free MMP-2 concentrations.

  6. Matrix metalloproteinases. Their role in degenerative chronic diseases of abdominal aorta.

    Science.gov (United States)

    Palombo, D; Maione, M; Cifiello, B I; Udini, M; Maggio, D; Lupo, M

    1999-04-01

    The main chronic degenerative diseases of the abdominal aorta, namely aneurysmatic and steno-obstructive pathologies, have a common denominator: atherosclerosis. Both pathologies are characterised by the destruction of the structural integrity of the extracellular protein matrix (ME). A number of studies have shown the presence and involvement of a group of enzymes with proteolytic activity towards one or more ME components, the matrix metalloproteinases (MMPs), in the pathogenesis of aneurysms of the abdominal aorta. Other authors have underlined the role of MMPs in the proliferation and migration process of smooth muscle cells into the intima in the pathogenesis of atheromasic plaque. The aim of this study was to evaluate the possible role of these enzymes in the pathogenesis of chronic degenerative diseases of the aorta. Fragments of aortic wall were removed from patients undergoing elective aortic surgery for aneurysms (14 patients) or aortic steno-obstruction (4 patients). The samples obtained were treated appropriately and then subject to immunohistochemical analysis. The preparations were incubated with specific anti-MMP antibodies and were also incubated with substrate and chromogen, forming a pigmented precipitate on the site of the antigen, before being observed using an optic microscopic at an enlargement of 250x. Nuclear positivity linked to the presence of the antigen testified the validity of staining. Lastly, the MMP INDEX, or in other words the number of positive cells out of 100, was stained in the adventitia and in the tunica media in each preparation. MMPs were divided into three main groups: interstitial collagenase (MMP1) which degrade type I and III native collagen; gelatinases (MMP9, MMP2) which act on elastin and type IV collagen; stromelysins (MMP3) with specific proteolytic action towards proteoglycans, fibronectin and laminine. In our experience, those preparations obtained from aorta affected by steno-obstructive pathologies (4 patients

  7. A novel functional site of extracellular matrix metalloproteinase inducer (EMMPRIN) that limits the migration of human uterine cervical carcinoma cells.

    Science.gov (United States)

    Sato, Takashi; Watanabe, Mami; Hashimoto, Kei; Ota, Tomoko; Akimoto, Noriko; Imada, Keisuke; Nomizu, Motoyoshi; Ito, Akira

    2012-01-01

    EMMPRIN (extracellular matrix metalloproteinase inducer)/CD147, a membrane-bound glycoprotein with two extracellular loop domains (termed loops I and II), progresses tumor invasion and metastasis by increasing the production of matrix metalloproteinase (MMP) in peritumoral stoma cells. EMMPRIN has also been associated with the control of migration activity in some tumor cells, but little is known about how EMMPRIN regulates tumor cell migration. In the present study, EMMPRIN siRNA suppressed the gene expression and production of EMMPRIN in human uterine cervical carcinoma SKG-II cells. An in vitro scratch wound assay showed enhancement of migration of EMMPRIN-knockdown SKG-II cells. In addition, the SKG-II cell migration was augmented by adding an E. coli-expressed human EMMPRIN mutant with two extracellular loop domains (eEMP-I/II), which bound to the cell surface of SKG-II cells. However, eEMP-I/II suppressed the native EMMPRIN-mediated augmentation of proMMP-1/procollagenase-1 production in a co-culture of the SKG-II cells and human uterine cervical fibroblasts, indicating that the augmentation of SKG-II cell migration resulted from the interference of native EMMPRIN functions by eEMP-I/II on the cell surface. Furthermore, a systematic peptide screening method using nine synthetic EMMPRIN peptides coding the loop I and II domains (termed EM1-9) revealed that EM9 (170HIENLNMEADPGQYR184) facilitated SKG-II cell migration. Moreover, SKG-II cell migration was enhanced by administration of an antibody against EM9, but not EM1 which is a crucial site for the MMP inducible activity of EMMPRIN. Therefore, these results provide novel evidence that EMMPRIN on the cell surface limits the cell migration of human uterine cervical carcinoma cells through 170HIENLNMEADPGQYR184 in the loop II domain. Finally, these results should provide an increased understanding of the functions of EMMPRIN in malignant cervical carcinoma cells, and could contribute to the development of

  8. Novel molecular imaging ligands targeting matrix metalloproteinases 2 and 9 for imaging of unstable atherosclerotic plaques.

    Directory of Open Access Journals (Sweden)

    Nazanin Hakimzadeh

    Full Text Available Molecular imaging of matrix metalloproteinases (MMPs may allow detection of atherosclerotic lesions vulnerable to rupture. In this study, we develop a novel radiolabelled compound that can target gelatinase MMP subtypes (MMP2/9 with high selectivity and inhibitory potency. Inhibitory potencies of several halogenated analogues of MMP subtype-selective inhibitors (N-benzenesulfonyliminodiacetyl monohydroxamates and N-halophenoxy-benzenesulfonyl iminodiacetyl monohydroxamates were in the nanomolar range for MMP2/9. The analogue with highest inhibitory potency and selectivity was radiolabelled with [123I], resulting in moderate radiochemical yield, and high radiochemical purity. Biodistribution studies in mice, revealed stabilization in blood 1 hour after intravenous bolus injection. Intravenous infusion of the radioligand and subsequent autoradiography of excised aortas showed tracer uptake in atheroprone mice. Distribution of the radioligand showed co-localization with MMP2/9 immunohistochemical staining. In conclusion, we have developed a novel selective radiolabeled MMP2/9 inhibitor, suitable for single photon emission computed tomography (SPECT imaging that effectively targets atherosclerotic lesions in mice.

  9. Novel molecular imaging ligands targeting matrix metalloproteinases 2 and 9 for imaging of unstable atherosclerotic plaques

    Science.gov (United States)

    Molenaar, Ger; de Waard, Vivian; Lutgens, Esther; van Eck-Smit, Berthe L. F.; de Bruin, Kora; Piek, Jan J.; Eersels, Jos L. H.; Booij, Jan; Verberne, Hein J.; Windhorst, Albert D.

    2017-01-01

    Molecular imaging of matrix metalloproteinases (MMPs) may allow detection of atherosclerotic lesions vulnerable to rupture. In this study, we develop a novel radiolabelled compound that can target gelatinase MMP subtypes (MMP2/9) with high selectivity and inhibitory potency. Inhibitory potencies of several halogenated analogues of MMP subtype-selective inhibitors (N-benzenesulfonyliminodiacetyl monohydroxamates and N-halophenoxy-benzenesulfonyl iminodiacetyl monohydroxamates) were in the nanomolar range for MMP2/9. The analogue with highest inhibitory potency and selectivity was radiolabelled with [123I], resulting in moderate radiochemical yield, and high radiochemical purity. Biodistribution studies in mice, revealed stabilization in blood 1 hour after intravenous bolus injection. Intravenous infusion of the radioligand and subsequent autoradiography of excised aortas showed tracer uptake in atheroprone mice. Distribution of the radioligand showed co-localization with MMP2/9 immunohistochemical staining. In conclusion, we have developed a novel selective radiolabeled MMP2/9 inhibitor, suitable for single photon emission computed tomography (SPECT) imaging that effectively targets atherosclerotic lesions in mice. PMID:29190653

  10. Acrolein activates matrix metalloproteinases by increasing reactive oxygen species in macrophages

    International Nuclear Information System (INIS)

    O'Toole, Timothy E.; Zheng Yuting; Hellmann, Jason; Conklin, Daniel J.; Barski, Oleg; Bhatnagar, Aruni

    2009-01-01

    Acrolein is a ubiquitous component of environmental pollutants such as automobile exhaust, cigarette, wood, and coal smoke. It is also a natural constituent of several foods and is generated endogenously during inflammation or oxidation of unsaturated lipids. Because increased inflammation and episodic exposure to acrolein-rich pollutants such as traffic emissions or cigarette smoke have been linked to acute myocardial infarction, we examined the effects of acrolein on matrix metalloproteinases (MMPs), which destabilize atherosclerotic plaques. Our studies show that exposure to acrolein resulted in the secretion of MMP-9 from differentiated THP-1 macrophages. Acrolein-treatment of macrophages also led to an increase in reactive oxygen species (ROS), free intracellular calcium ([Ca 2+ ] i ), and xanthine oxidase (XO) activity. ROS production was prevented by allopurinol, but not by rotenone or apocynin and by buffering changes in [Ca 2+ ] I with BAPTA-AM. The increase in MMP production was abolished by pre-treatment with the antioxidants Tiron and N-acetyl cysteine (NAC) or with the xanthine oxidase inhibitors allopurinol or oxypurinol. Finally, MMP activity was significantly stimulated in aortic sections from apoE-null mice containing advanced atherosclerotic lesions after exposure to acrolein ex vivo. These observations suggest that acrolein exposure results in MMP secretion from macrophages via a mechanism that involves an increase in [Ca 2+ ] I , leading to xanthine oxidase activation and an increase in ROS production. ROS-dependent activation of MMPs by acrolein could destabilize atherosclerotic lesions during brief episodes of inflammation or pollutant exposure.

  11. Acrolein activates matrix metalloproteinases by increasing reactive oxygen species in macrophages.

    Science.gov (United States)

    O'Toole, Timothy E; Zheng, Yu-Ting; Hellmann, Jason; Conklin, Daniel J; Barski, Oleg; Bhatnagar, Aruni

    2009-04-15

    Acrolein is a ubiquitous component of environmental pollutants such as automobile exhaust, cigarette, wood, and coal smoke. It is also a natural constituent of several foods and is generated endogenously during inflammation or oxidation of unsaturated lipids. Because increased inflammation and episodic exposure to acrolein-rich pollutants such as traffic emissions or cigarette smoke have been linked to acute myocardial infarction, we examined the effects of acrolein on matrix metalloproteinases (MMPs), which destabilize atherosclerotic plaques. Our studies show that exposure to acrolein resulted in the secretion of MMP-9 from differentiated THP-1 macrophages. Acrolein-treatment of macrophages also led to an increase in reactive oxygen species (ROS), free intracellular calcium ([Ca2+](i)), and xanthine oxidase (XO) activity. ROS production was prevented by allopurinol, but not by rotenone or apocynin and by buffering changes in [Ca2+](I) with BAPTA-AM. The increase in MMP production was abolished by pre-treatment with the antioxidants Tiron and N-acetyl cysteine (NAC) or with the xanthine oxidase inhibitors allopurinol or oxypurinol. Finally, MMP activity was significantly stimulated in aortic sections from apoE-null mice containing advanced atherosclerotic lesions after exposure to acrolein ex vivo. These observations suggest that acrolein exposure results in MMP secretion from macrophages via a mechanism that involves an increase in [Ca2+](I), leading to xanthine oxidase activation and an increase in ROS production. ROS-dependent activation of MMPs by acrolein could destabilize atherosclerotic lesions during brief episodes of inflammation or pollutant exposure.

  12. Regulation of pituitary hormones and cell proliferation by components of the extracellular matrix

    Directory of Open Access Journals (Sweden)

    M. Paez-Pereda

    2005-10-01

    Full Text Available The extracellular matrix is a three-dimensional network of proteins, glycosaminoglycans and other macromolecules. It has a structural support function as well as a role in cell adhesion, migration, proliferation, differentiation, and survival. The extracellular matrix conveys signals through membrane receptors called integrins and plays an important role in pituitary physiology and tumorigenesis. There is a differential expression of extracellular matrix components and integrins during the pituitary development in the embryo and during tumorigenesis in the adult. Different extracellular matrix components regulate adrenocorticotropin at the level of the proopiomelanocortin gene transcription. The extracellular matrix also controls the proliferation of adrenocorticotropin-secreting tumor cells. On the other hand, laminin regulates the production of prolactin. Laminin has a dynamic pattern of expression during prolactinoma development with lower levels in the early pituitary hyperplasia and a strong reduction in fully grown prolactinomas. Therefore, the expression of extracellular matrix components plays a role in pituitary tumorigenesis. On the other hand, the remodeling of the extracellular matrix affects pituitary cell proliferation. Matrix metalloproteinase activity is very high in all types of human pituitary adenomas. Matrix metalloproteinase secreted by pituitary cells can release growth factors from the extracellular matrix that, in turn, control pituitary cell proliferation and hormone secretion. In summary, the differential expression of extracellular matrix components, integrins and matrix metalloproteinase contributes to the control of pituitary hormone production and cell proliferation during tumorigenesis.

  13. CcMP-II, a new hemorrhagic metalloproteinase from Cerastes cerastes snake venom: purification, biochemical characterization and amino acid sequence analysis.

    Science.gov (United States)

    Boukhalfa-Abib, Hinda; Laraba-Djebari, Fatima

    2015-01-01

    Snake venom metalloproteinases (SVMPs) are the most abundant components in snake venoms. They are important in the induction of systemic alterations and local tissue damage after envenomation. CcMP-II, which is a metalloproteinase purified from Cerastes cerastes snake venom, was obtained by a combination of gel filtration, ion-exchange and affinity chromatographies. It was homogeneous on SDS-PAGE, with a molecular mass estimated to 35kDa and presents a pI of 5.6. CcMP-II has an N-terminal sequence of EDRHINLVSVADHRMXTKY, with high levels of homology with those of the members of class P-II of SVMPs, which comprises metalloproteinase and disintegrin-like domains together. This proteinase displayed a fibrinogenolytic and hemorrhagic activities. The proteolytic and hemorrhagic activities of CcMP-II were inhibited by EDTA and 1,10-phenanthroline. However, these activities were not affected by aprotinine and PMSF, suggesting that CcMP-II is a zinc-dependent hemorrhagic metalloproteinase with an α-fibrinogenase activity. The hemorrhagic metalloproteinase CcMP-II was also able to hydrolyze extracellular matrix components, such as type IV collagen and laminin. These results indicate that CcMP-II is implicated in the local and systemic bleeding, contributing thus in the toxicity of C. cerastes venom. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Increased electrocatalyzed performance through high content potassium doped graphene matrix and aptamer tri infinite amplification labels strategy: Highly sensitive for matrix metalloproteinases-2 detection.

    Science.gov (United States)

    Ren, Xiang; Zhang, Tong; Wu, Dan; Yan, Tao; Pang, Xuehui; Du, Bin; Lou, Wanruo; Wei, Qin

    2017-08-15

    Herein, a super-labeled immunoassay was fabricated for matrix metalloproteinases-2 detection. A self-corrosion ITO micro circuit board was designed in this sensing platform to reduce the random error in the same testing condition, and the self-constructed sensing platform is portable with a cheap price. The K-modified graphene (K-GS) was utilized as the matrix material, which was synthesized well by phenylate and phenanthrene through the polar bond of nonpolar molecule phenylate and the π-π interaction for the first time. An aptamer-based labels based on Au nanoparticles (AuNPs), thionine (Th) and horseradish peroxidase (HRP) were applied as the signal source for tri infinite amplification. This fabricated super-labeled immunoassay exhibit excellent performance for MMPs-2 detection. It displayed a broad linear range of 10 -4 -10ng/mL with a low detection limit of 35 fg/mL, which may have a potential application in the clinical diagnose. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. ASH1L Suppresses Matrix Metalloproteinase through Mitogen-activated Protein Kinase Signaling Pathway in Pulpitis.

    Science.gov (United States)

    Bei, Yin; Tianqian, Hui; Fanyuan, Yu; Haiyun, Luo; Xueyang, Liao; Jing, Yang; Chenglin, Wang; Ling, Ye

    2017-02-01

    Pulpitis is an inflammation of dental pulp produced by a response to external stimuli. The response entails substantial cellular and molecular activities. Both genetic and epigenetic regulators contribute to the occurrence of pulpitis. However, the epigenetic mechanisms are still poorly understood. In this research, we studied the role of the absent, small, or homeotic-like (ASH1L) gene in the process of pulpitis. Human dental pulp cells (HDPCs) were stimulated with proinflammatory cytokine tumor necrosis factor alpha (TNF-α). Gene expression profiling was performed to assess the occurrence of epigenetic regulators. Pulp tissue from rat experimental pulpitis was subjected to immunofluorescence to detect the occurrence of ASH1L and trimethylation of lysine 4 histone 3 (H3K4me3). The presence of ASH1L in HDPCs that had been generated by TNF-α stimulation was analyzed by Western blot procedures and cellular immunofluorescence. Once detected, ASH1L was silenced through the use of specific small interfering RNA. The effects of ASH1L on the occurrence and operation of matrix metalloproteinases (MMPs) were then tested by analysis of quantitative polymerase chain reactions, Western blotting, and zymography. Chromatin immunoprecipitation was performed to detect whether ASH1L and H3K4me3 were present in the promoter regions of MMPs. We then used Western blot procedures to examine the nuclear factor kappa B and the mitogen-activated protein kinase (MAPK) responses to the silencing of ASH1L. We also examined the specific pathway involved in ASH1L regulation of the MMPs. After stimulating HDPCs with TNF-α, ASH1L emerged as 1 of the most strongly induced epigenetic mediators. We found that TNF-α treatment induced the expression of ASH1L through the nuclear factor kappa B and MAPK signal pathways. ASH1L was found in both the nucleus and the cytoplasm. TNF-α treatment was particularly active in inducing the accumulation of ASH1L in cellular cytoplasm. As is also consistent

  16. Pro-oxidant status and matrix metalloproteinases in apical lesions and gingival crevicular fluid as potential biomarkers for asymptomatic apical periodontitis and endodontic treatment response

    Directory of Open Access Journals (Sweden)

    Dezerega Andrea

    2012-03-01

    Full Text Available Abstract Background Oxidative stress and matrix metalloproteinases -9 and -2 are involved in periodontal breakdown, whereas gingival crevicular fluid has been reported to reflect apical status. The aim of this study was to characterize oxidant balance and activity levels of MMP -2 and -9 in apical lesions and healthy periodontal ligament; and second, to determine whether potential changes in oxidant balance were reflected in gingival crevicular fluid from asymptomatic apical periodontitis (AAP-affected teeth at baseline and after endodontic treatment. Methods Patients with clinical diagnosis of AAP and healthy volunteers having indication of tooth extraction were recruited. Apical lesions and healthy periodontal ligaments, respectively, were homogenized or processed to obtain histological tissue sections. Matrix metalloproteinase -9 and -2 levels and/or activity were analyzed by Immunowestern blot, zymography and consecutive densitometric analysis, and their tissue localization was confirmed by immunohistochemistry. A second group of patients with AAP and indication of endodontic treatment was recruited. Gingival crevicular fluid was extracted from AAP-affected teeth at baseline, after endodontic treatment and healthy contralateral teeth. Total oxidant and antioxidant status were determined in homogenized tissue and GCF samples. Statistical analysis was performed using STATA v10 software with unpaired t test, Mann-Whitney test and Spearman's correlation. Results Activity of MMP-2 and MMP-9 along with oxidant status were higher in apical lesions (p Conclusions Apical lesions display an oxidant imbalance along with increased activity of matrix metalloproteinase-2 and -9 and might contribute to AAP progression. Oxidant imbalance can also be reflected in GCF from AAP-affected teeth and was restored to normal levels after conservative endodontic treatment. These mediators might be useful as potential biomarkers for chair-side complementary diagnostic

  17. Pro-oxidant status and matrix metalloproteinases in apical lesions and gingival crevicular fluid as potential biomarkers for asymptomatic apical periodontitis and endodontic treatment response.

    Science.gov (United States)

    Dezerega, Andrea; Madrid, Sonia; Mundi, Verónica; Valenzuela, María A; Garrido, Mauricio; Paredes, Rodolfo; García-Sesnich, Jocelyn; Ortega, Ana V; Gamonal, Jorge; Hernández, Marcela

    2012-03-21

    Oxidative stress and matrix metalloproteinases -9 and -2 are involved in periodontal breakdown, whereas gingival crevicular fluid has been reported to reflect apical status. The aim of this study was to characterize oxidant balance and activity levels of MMP -2 and -9 in apical lesions and healthy periodontal ligament; and second, to determine whether potential changes in oxidant balance were reflected in gingival crevicular fluid from asymptomatic apical periodontitis (AAP)-affected teeth at baseline and after endodontic treatment. Patients with clinical diagnosis of AAP and healthy volunteers having indication of tooth extraction were recruited. Apical lesions and healthy periodontal ligaments, respectively, were homogenized or processed to obtain histological tissue sections. Matrix metalloproteinase -9 and -2 levels and/or activity were analyzed by Immunowestern blot, zymography and consecutive densitometric analysis, and their tissue localization was confirmed by immunohistochemistry. A second group of patients with AAP and indication of endodontic treatment was recruited. Gingival crevicular fluid was extracted from AAP-affected teeth at baseline, after endodontic treatment and healthy contralateral teeth. Total oxidant and antioxidant status were determined in homogenized tissue and GCF samples. Statistical analysis was performed using STATA v10 software with unpaired t test, Mann-Whitney test and Spearman's correlation. Activity of MMP-2 and MMP-9 along with oxidant status were higher in apical lesions (p Apical lesions display an oxidant imbalance along with increased activity of matrix metalloproteinase-2 and -9 and might contribute to AAP progression. Oxidant imbalance can also be reflected in GCF from AAP-affected teeth and was restored to normal levels after conservative endodontic treatment. These mediators might be useful as potential biomarkers for chair-side complementary diagnostic of apical status in GCF.

  18. Overhydroxylation of Lysine of Collagen Increases Uterine Fibroids Proliferation: Roles of Lysyl Hydroxylases, Lysyl Oxidases, and Matrix Metalloproteinases

    Directory of Open Access Journals (Sweden)

    Marwa Kamel

    2017-01-01

    Full Text Available The role of the extracellular matrix (ECM in uterine fibroids (UF has recently been appreciated. Overhydroxylation of lysine residues and the subsequent formation of hydroxylysylpyridinoline (HP and lysylpyridinoline (LP cross-links underlie the ECM stiffness and profoundly affect tumor progression. The aim of the current study was to investigate the relationship between ECM of UF, collagen and collagen cross-linking enzymes [lysyl hydroxylases (LH and lysyl oxidases (LOX], and the development and progression of UF. Our results indicated that hydroxyl lysine (Hyl and HP cross-links are significantly higher in UF compared to the normal myometrial tissues accompanied by increased expression of LH (LH2b and LOX. Also, increased resistance to matrix metalloproteinases (MMP proteolytic degradation activity was observed. Furthermore, the extent of collagen cross-links was positively correlated with the expression of myofibroblast marker (α-SMA, growth-promoting markers (PCNA; pERK1/2; FAKpY397; Ki-67; and Cyclin D1, and the size of UF. In conclusion, our study defines the role of overhydroxylation of collagen and collagen cross-linking enzymes in modulating UF cell proliferation, differentiation, and resistance to MMP. These effects can establish microenvironment conducive for UF progression and thus represent potential target treatment options of UF.

  19. Matrix Metalloproteinase-9 (MMP-9 polymorphisms in patients with cutaneous malignant melanoma

    Directory of Open Access Journals (Sweden)

    Busam Klaus

    2007-03-01

    Full Text Available Abstract Background Cutaneous Malignant Melanoma causes over 75% of skin cancer-related deaths, and it is clear that many factors may contribute to the outcome. Matrix Metalloproteinases (MMPs play an important role in the degradation and remodeling of the extracellular matrix and basement membrane that, in turn, modulate cell division, migration and angiogenesis. Some polymorphisms are known to influence gene expression, protein activity, stability, and interactions, and they were shown to be associated with certain tumor phenotypes and cancer risk. Methods We tested seven polymorphisms within the MMP-9 gene in 1002 patients with melanoma in order to evaluate germline genetic variants and their association with progression and known risk factors of melanoma. The polymorphisms were selected based on previously published reports and their known or potential functional relevance using in-silico methods. Germline DNA was then genotyped using pyrosequencing, melting temperature profiles, heteroduplex analysis, and fragment size analysis. Results We found that reference alleles were present in higher frequency in patients who tend to sunburn, have family history of melanoma, higher melanoma stage, intransit metastasis and desmoplastic melanomas among others. However, after adjustment for age, sex, phenotypic index, moles, and freckles only Q279R, P574R and R668Q had significant associations with intransit metastasis, propensity to tan/sunburn and primary melanoma site. Conclusion This study does not provide strong evidence for further investigation into the role of the MMP-9 SNPs in melanoma progression.

  20. Expression of matrix metalloproteinase enzymes in endometrium of women with abnormal uterine bleeding.

    Science.gov (United States)

    Grzechocinska, Barbara; Dabrowski, Filip A; Chlebus, Marcin; Gondek, Agata; Czarzasta, Katarzyna; Michalowski, Lukasz; Cudnoch-Jedrzejewska, Agnieszka; Wielgos, Miroslaw

    2018-02-01

    Abnormal uterine bleeding (AUB) is caused by derangement of physiological processes of tissue growth, shedding and regeneration. It is known that interplay between metalloproteinases (MMP's) and tissue inhibitors of metalloproteinases (TIMP's) may play a crucial role in its occurrence. To define if expression of proMMP-2, MMP-2 and TIMP-1 in endometrium of women with AUB is dependent on steroid sex hormone concentration and histopathological picture. Endometrial scraps were taken from 21 women with AUB and 19 controls. Samples were evaluated in light microscopy by a certified pathologist. Activity of proMMP-2 and MMP-2 proteins levels were evaluated by gelatin zymography and TIMP-1 by reversed zymography. The results has been correlated with serum estradiol and progesterone concentrations in linear regression model. Expression: of proMMP-2 in endometrium of women with AUB is correlated with estradiol concentration and inversely correlated with progesterone levels. It was significantly higher in women with dysfunctional endometrium (pbleeding (pbleeding.