WorldWideScience

Sample records for type 1-induced breakdown

  1. Nuclear envelope breakdown induced by herpes simplex virus type 1 involves the activity of viral fusion proteins

    Energy Technology Data Exchange (ETDEWEB)

    Maric, Martina; Haugo, Alison C. [Department of Microbiology, University of Iowa, Iowa City, IA 52242 (United States); Dauer, William [Department of Neurology, University of Michigan, Ann Arbor, MI 48109 (United States); Johnson, David [Department of Microbiology and Immunology, Oregon Health Sciences University, Portland, OR 97201 (United States); Roller, Richard J., E-mail: richard-roller@uiowa.edu [Department of Microbiology, University of Iowa, Iowa City, IA 52242 (United States)

    2014-07-15

    Herpesvirus infection reorganizes components of the nuclear lamina usually without loss of integrity of the nuclear membranes. We report that wild-type HSV infection can cause dissolution of the nuclear envelope in transformed mouse embryonic fibroblasts that do not express torsinA. Nuclear envelope breakdown is accompanied by an eight-fold inhibition of virus replication. Breakdown of the membrane is much more limited during infection with viruses that lack the gB and gH genes, suggesting that breakdown involves factors that promote fusion at the nuclear membrane. Nuclear envelope breakdown is also inhibited during infection with virus that does not express UL34, but is enhanced when the US3 gene is deleted, suggesting that envelope breakdown may be enhanced by nuclear lamina disruption. Nuclear envelope breakdown cannot compensate for deletion of the UL34 gene suggesting that mixing of nuclear and cytoplasmic contents is insufficient to bypass loss of the normal nuclear egress pathway. - Highlights: • We show that wild-type HSV can induce breakdown of the nuclear envelope in a specific cell system. • The viral fusion proteins gB and gH are required for induction of nuclear envelope breakdown. • Nuclear envelope breakdown cannot compensate for deletion of the HSV UL34 gene.

  2. Nuclear envelope breakdown induced by herpes simplex virus type 1 involves the activity of viral fusion proteins.

    Science.gov (United States)

    Maric, Martina; Haugo, Alison C; Dauer, William; Johnson, David; Roller, Richard J

    2014-07-01

    Herpesvirus infection reorganizes components of the nuclear lamina usually without loss of integrity of the nuclear membranes. We report that wild-type HSV infection can cause dissolution of the nuclear envelope in transformed mouse embryonic fibroblasts that do not express torsinA. Nuclear envelope breakdown is accompanied by an eight-fold inhibition of virus replication. Breakdown of the membrane is much more limited during infection with viruses that lack the gB and gH genes, suggesting that breakdown involves factors that promote fusion at the nuclear membrane. Nuclear envelope breakdown is also inhibited during infection with virus that does not express UL34, but is enhanced when the US3 gene is deleted, suggesting that envelope breakdown may be enhanced by nuclear lamina disruption. Nuclear envelope breakdown cannot compensate for deletion of the UL34 gene suggesting that mixing of nuclear and cytoplasmic contents is insufficient to bypass loss of the normal nuclear egress pathway. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Differential saliva-induced breakdown of starch filled protein gels in relation to sensory perception

    NARCIS (Netherlands)

    Janssen, A.M.; Pijpekamp, A.M. van de; Labiausse, D.

    2009-01-01

    In this study, the differential breakdown of protein gels containing four types of high and low cross-linked starch granules were studied. Susceptibility to saliva-induced breakdown of starch granules and the consequences of these for overall breakdown of the gel matrix were captured using a

  4. Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement

    International Nuclear Information System (INIS)

    Babushok, V.I.; DeLucia, F.C.; Gottfried, J.L.; Munson, C.A.; Miziolek, A.W.

    2006-01-01

    A review of recent results of the studies of double laser pulse plasma and ablation for laser induced breakdown spectroscopy applications is presented. The double pulse laser induced breakdown spectroscopy configuration was suggested with the aim of overcoming the sensitivity shortcomings of the conventional single pulse laser induced breakdown spectroscopy technique. Several configurations have been suggested for the realization of the double pulse laser induced breakdown spectroscopy technique: collinear, orthogonal pre-spark, orthogonal pre-heating and dual pulse crossed beam modes. In addition, combinations of laser pulses with different wavelengths, different energies and durations were studied, thus providing flexibility in the choice of wavelength, pulse width, energy and pulse sequence. The double pulse laser induced breakdown spectroscopy approach provides a significant enhancement in the intensity of laser induced breakdown spectroscopy emission lines up to two orders of magnitude greater than a conventional single pulse laser induced breakdown spectroscopy. The double pulse technique leads to a better coupling of the laser beam with the plasma plume and target material, thus providing a more temporally effective energy delivery to the plasma and target. The experimental results demonstrate that the maximum effect is obtained at some optimum separation delay time between pulses. The optimum value of the interpulse delay depends on several factors, such as the target material, the energy level of excited states responsible for the emission, and the type of enhancement process considered. Depending on the specified parameter, the enhancement effects were observed on different time scales ranging from the picosecond time level (e.g., ion yield, ablation mass) up to the hundred microsecond level (e.g., increased emission intensity for laser induced breakdown spectroscopy of submerged metal target in water). Several suggestions have been proposed to explain

  5. Laser-induced breakdown spectroscopy analysis of asbestos

    International Nuclear Information System (INIS)

    Caneve, L.; Colao, F.; Fabbri, F.; Fantoni, R.; Spizzichino, V.; Striber, J.

    2005-01-01

    Laser-induced breakdown spectroscopy was applied to test the possibility of detecting and identifying asbestos in different samples in view of the perspective at field operation without sample preparation which is peculiar to this technique. Several like-resin materials were first investigated by laser-induced breakdown spectroscopy, in order to find an asbestos container assuring safe laboratory operation during the material characterization aimed to identify indicators suitable for a quick identification on field. Successively, spectra of asbestos samples of both in serpentine and amphibole forms were measured and the variability in elemental composition was calculated from the emission spectra. Ratios of intensities of characteristic elements were tested as indicators for asbestos recognition. Laser-induced breakdown spectroscopy results were compared with those obtained by analyzing the same asbestos samples with a scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy, a good correlation was found for Mg/Si and Fe/Si, thus showing the capability of laser-induced breakdown spectroscopy as a diagnostic tool for this category of materials. In particular, it was demonstrated that the method based on two indicators derived from laser-induced breakdown spectroscopy intensity ratios allows to discriminate between asbestos and cements in single shot measurements suitable to field operation

  6. Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation

    International Nuclear Information System (INIS)

    Rohwetter, Ph.; Stelmaszczyk, K.; Woeste, L.; Ackermann, R.; Mejean, G.; Salmon, E.; Kasparian, J.; Yu, J.; Wolf, J.-P.

    2005-01-01

    We demonstrate laser induced ablation and plasma line emission from a metallic target at distances up to 180 m from the laser, using filaments (self-guided propagation structures ∼ 100 μm in diameter and ∼ 5 x 10 13 W/cm 2 in intensity) appearing as femtosecond and terawatt laser pulses propagating in air. The remarkable property of filaments to propagate over a long distance independently of the diffraction limit opens the frontier to long range operation of the laser-induced breakdown spectroscopy technique. We call this special configuration of remote laser-induced breakdown spectroscopy 'remote filament-induced breakdown spectroscopy'. Our results show main features of filament-induced ablation on the surface of a metallic sample and associated plasma emission. Our experimental data allow us to estimate requirements for the detection system needed for kilometer-range remote filament-induced breakdown spectroscopy experiment

  7. Time-Resolved Spectroscopy Diagnostic of Laser-Induced Optical Breakdown

    Directory of Open Access Journals (Sweden)

    Christian G. Parigger

    2010-01-01

    Full Text Available Transient laser plasma is generated in laser-induced optical breakdown (LIOB. Here we report experiments conducted with 10.6-micron CO2 laser radiation, and with 1.064-micron fundamental, 0.532-micron frequency-doubled, 0.355-micron frequency-tripled Nd:YAG laser radiation. Characterization of laser induced plasma utilizes laser-induced breakdown spectroscopy (LIBS techniques. Atomic hydrogen Balmer series emissions show electron number density of 1017 cm−3 measured approximately 10 μs and 1 μs after optical breakdown for CO2 and Nd:YAG laser radiation, respectively. Recorded molecular recombination emission spectra of CN and C2 Swan bands indicate an equilibrium temperature in excess of 7000 Kelvin, inferred for these diatomic molecules. Reported are also graphite ablation experiments where we use unfocused laser radiation that is favorable for observation of neutral C3 emission due to reduced C3 cation formation. Our analysis is based on computation of diatomic molecular spectra that includes accurate determination of rotational line strengths, or Hönl-London factors.

  8. Standoff Detection of Explosives at 1 m using Laser Induced Breakdown Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Junjuri, R.; Myakalwar, A.K.; Gundawar, M.K.

    2017-01-01

    Roč. 67, č. 6 (2017), s. 623-630 ISSN 0011-748X Institutional support: RVO:67985882 Keywords : Laser induced breakdown spectroscopy * Multivariate analysis * Principal component analysis * Explosive detection Subject RIV: JB - Sensors, Measurment, Regulation OBOR OECD: Electrical and electronic engineering Impact factor: 0.500, year: 2016

  9. [Study on physical deviation factors on laser induced breakdown spectroscopy measurement].

    Science.gov (United States)

    Wan, Xiong; Wang, Peng; Wang, Qi; Zhang, Qing; Zhang, Zhi-Min; Zhang, Hua-Ming

    2013-10-01

    In order to eliminate the deviation between the measured LIBS spectral line and the standard LIBS spectral line, and improve the accuracy of elements measurement, a research of physical deviation factors in laser induced breakdown spectroscopy technology was proposed. Under the same experimental conditions, the relationship of ablated hole effect and spectral wavelength was tested, the Stark broadening data of Mg plasma laser induced breakdown spectroscopy with sampling time-delay from 1.00 to 3.00 micros was also studied, thus the physical deviation influences such as ablated hole effect and Stark broadening could be obtained while collecting the spectrum. The results and the method of the research and analysis can also be applied to other laser induced breakdown spectroscopy experiment system, which is of great significance to improve the accuracy of LIBS elements measuring and is also important to the research on the optimum sampling time-delay of LIBS.

  10. Study of Bacterial Samples Using Laser Induced Breakdown Spectroscopy

    International Nuclear Information System (INIS)

    Farooq W A; Atif M; Tawfik W; Alsalhi M S; Alahmed Z A; Sarfraz M; Singh J P

    2014-01-01

    Laser-induced breakdown spectroscopy (LIBS) technique has been applied to investigate two different types of bacteria, Escherichia coli (B1) and Micrococcus luteus (B2) deposited on glass slides using Spectrolaser 7000. LIBS spectra were analyzed using spectrolaser software. LIBS spectrum of glass substrate was compared with bacteria spectra. Ca, Mg, Na, K, P, S, Cl, Fe, Al, Mn, Cu, C, H and CN-band appeared in bacterial samples in air. Two carbon lines at 193.02 nm, 247.88 nm and one hydrogen line at 656.28 nm with intensity ratios of 1.9, 1.83 and 1.53 appeared in bacterial samples B1 and B2 respectively. Carbon and hydrogen are the important components of the bio-samples like bacteria and other cancer cells. Investigation on LIBS spectra of the samples in He and Ar atmospheres is also presented. Ni lines appeared only in B2 sample in Ar atmosphere. From the present experimental results we are able to show that LIBS technique has a potential in the identification and discrimination of different types of bacteria. (plasma technology)

  11. Dielectric breakdown of ultrathin aluminum oxide films induced by scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Magtoto, N. P.; Niu, C.; Ekstrom, B. M.; Addepalli, S.; Kelber, J. A.

    2000-01-01

    Dielectric breakdown of 7-Aa-thick Al 2 O 3 (111) films grown on Ni 3 Al(111) under ultrahigh vacuum conditions is induced by increasing the bias voltage on the scanning tunneling microscopy tip under constant current feedback. Breakdown is marked by the precipitous retreat of the tip from the surface, and the formation of an elevated feature in the scanning tunneling microscopy image, typically greater than 5 nm high and ∼100 nm in diameter. Constant height measurements performed at tip/sample distances of 1 nm or less yield no tip/substrate physical interaction, indicating that such features do not result from mass transport. Consistent with this, current/voltage measurements within the affected regions indicate linear behavior, in contrast to a band gap of 1.5 eV observed at unaffected regions of the oxide surface. A threshold electric field value of 11±1 MV cm -1 is required to induce breakdown, in good agreement with extrapolated values from capacitance measurements on thicker oxides. (c) 2000 American Institute of Physics

  12. Discrimination of paper and print types based on their laser induced breakdown spectra

    International Nuclear Information System (INIS)

    Metzinger, Anikó; Rajkó, Róbert; Galbács, Gábor

    2014-01-01

    In the present work, the analytical potential of laser induced breakdown spectroscopy (LIBS) for the discrimination of paper types and prints made by digital printers on these papers was assessed. Six different paper types (including standard office papers, color paper and non-bleached paper), and eight printers (including laser and inkjet, as well as color and black printers) were included in the study. Only one or two laser shots were delivered to each sample in order to cause minimal sample destruction and provide maximum spatial resolution. The statistical evaluation of LIBS spectra was performed by multiple methods including three comparative functions (linear correlation, sum of squared deviations and overlapping integral) as well as two advanced statistical methods (multivariate curve resolution alternating least squares (MCR-ALS) combined with classification tree and discriminant analysis (DA)). The best classification results were obtained with the newly introduced MCR-ALS/DA approach, which proved to be 96.3% accurate in the identification of the paper type and 83.3% accurate in the identification of the printer type, based on the LIBS spectrum collected from just a single laser shot to the sample. It was found that the UV part of the LIBS spectrum can be used most efficiently for the discrimination. - Highlights: • The potential of LIBS for the discrimination of paper and print types was assessed. • Six paper types and eight printers (a total of 54 samples) were included in the study. • Data evaluation was done using 3 comparative and 2 multivariate statistical methods. • The MCR-ALS/DA approach, when applied to UV LIBS data, gave best results. • Only one or two LIBS shots are needed for sample discrimination/identification

  13. Discrimination of paper and print types based on their laser induced breakdown spectra

    Energy Technology Data Exchange (ETDEWEB)

    Metzinger, Anikó [Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, 6720 Szeged (Hungary); Rajkó, Róbert [Department of Process Engineering, University of Szeged, P.O. Box 433, 6701 Szeged (Hungary); Galbács, Gábor, E-mail: galbx@chem.u-szeged.hu [Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, 6720 Szeged (Hungary)

    2014-04-01

    In the present work, the analytical potential of laser induced breakdown spectroscopy (LIBS) for the discrimination of paper types and prints made by digital printers on these papers was assessed. Six different paper types (including standard office papers, color paper and non-bleached paper), and eight printers (including laser and inkjet, as well as color and black printers) were included in the study. Only one or two laser shots were delivered to each sample in order to cause minimal sample destruction and provide maximum spatial resolution. The statistical evaluation of LIBS spectra was performed by multiple methods including three comparative functions (linear correlation, sum of squared deviations and overlapping integral) as well as two advanced statistical methods (multivariate curve resolution alternating least squares (MCR-ALS) combined with classification tree and discriminant analysis (DA)). The best classification results were obtained with the newly introduced MCR-ALS/DA approach, which proved to be 96.3% accurate in the identification of the paper type and 83.3% accurate in the identification of the printer type, based on the LIBS spectrum collected from just a single laser shot to the sample. It was found that the UV part of the LIBS spectrum can be used most efficiently for the discrimination. - Highlights: • The potential of LIBS for the discrimination of paper and print types was assessed. • Six paper types and eight printers (a total of 54 samples) were included in the study. • Data evaluation was done using 3 comparative and 2 multivariate statistical methods. • The MCR-ALS/DA approach, when applied to UV LIBS data, gave best results. • Only one or two LIBS shots are needed for sample discrimination/identification.

  14. Quantitative Classification of Quartz by Laser Induced Breakdown Spectroscopy in Conjunction with Discriminant Function Analysis

    Directory of Open Access Journals (Sweden)

    A. Ali

    2016-01-01

    Full Text Available A responsive laser induced breakdown spectroscopic system was developed and improved for utilizing it as a sensor for the classification of quartz samples on the basis of trace elements present in the acquired samples. Laser induced breakdown spectroscopy (LIBS in conjunction with discriminant function analysis (DFA was applied for the classification of five different types of quartz samples. The quartz plasmas were produced at ambient pressure using Nd:YAG laser at fundamental harmonic mode (1064 nm. We optimized the detection system by finding the suitable delay time of the laser excitation. This is the first study, where the developed technique (LIBS+DFA was successfully employed to probe and confirm the elemental composition of quartz samples.

  15. Optical breakdown threshold investigation of 1064 nm laser induced air plasmas

    International Nuclear Information System (INIS)

    Thiyagarajan, Magesh; Thompson, Shane

    2012-01-01

    We present the theoretical and experimental measurements and analysis of the optical breakdown threshold for dry air by 1064 nm infrared laser radiation and the significance of the multiphoton and collisional cascade ionization process on the breakdown threshold measurements over pressures range from 10 to 2000 Torr. Theoretical estimates of the breakdown threshold laser intensities and electric fields are obtained using two distinct theories namely multiphoton and collisional cascade ionization theories. The theoretical estimates are validated by experimental measurements and analysis of laser induced breakdown processes in dry air at a wavelength of 1064 nm by focusing 450 mJ max, 6 ns, 75 MW max high-power 1064 nm IR laser radiation onto a 20 μm radius spot size that produces laser intensities up to 3 - 6 TW/cm 2 , sufficient for air ionization over the pressures of interest ranging from 10 to 2000 Torr. Analysis of the measured breakdown threshold laser intensities and electric fields are carried out in relation with classical and quantum theoretical ionization processes, operating pressures. Comparative analysis of the laser air breakdown results at 1064 nm with corresponding results of a shorter laser wavelength (193 nm) [M. Thiyagarajan and J. E. Scharer, IEEE Trans. Plasma Sci. 36, 2512 (2008)] and a longer microwave wavelength (10 8 nm) [A. D. MacDonald, Microwave Breakdown in Gases (Wiley, New York, 1966)]. A universal scaling analysis of the breakdown threshold measurements provided a direct comparison of breakdown threshold values over a wide range of frequencies ranging from microwave to ultraviolet frequencies. Comparison of 1064 nm laser induced effective field intensities for air breakdown measurements with data calculated based on the collisional cascade and multiphoton breakdown theories is used successfully to determine the scaled collisional microwave portion. The measured breakdown threshold of 1064 nm laser intensities are then scaled to

  16. Development of microwave-enhanced spark-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Ikeda, Yuji; Moon, Ahsa; Kaneko, Masashi

    2010-01-01

    We propose microwave-enhanced spark-induced breakdown spectroscopy with the same measurement and analysis processes as in laser-induced breakdown spectroscopy, but with a different plasma generation mechanism. The size and lifetime of the plasma generated can contribute to increased measurement accuracy and expand its applicability to industrial measurement, such as an exhaust gas analyzer for automobile engine development and its regulation, which has been hard to operate by laser at an engineering evaluation site. The use of microwaves in this application helps lower the cost, reduce the system size, and increase the ease of operation to make it commercially viable. A microwave frequency of 2.45 GHz was used to enhance the volume and lifetime of the plasma at atmospheric condition even at elevated pressure.

  17. Effects of polarization and absorption on laser induced optical breakdown threshold for skin rejuvenation

    Science.gov (United States)

    Varghese, Babu; Bonito, Valentina; Turco, Simona; Verhagen, Rieko

    2016-03-01

    Laser induced optical breakdown (LIOB) is a non-linear absorption process leading to plasma formation at locations where the threshold irradiance for breakdown is surpassed. In this paper we experimentally demonstrate the influence of polarization and absorption on laser induced breakdown threshold in transparent, absorbing and scattering phantoms made from water suspensions of polystyrene microspheres. We demonstrate that radially polarized light yields a lower irradiance threshold for creating optical breakdown compared to linearly polarized light. We also demonstrate that the thermal initiation pathway used for generating seed electrons results in a lower irradiance threshold compared to multiphoton initiation pathway used for optical breakdown.

  18. Comparison of laser induced breakdown spectroscopy and spark induced breakdown spectroscopy for determination of mercury in soils

    International Nuclear Information System (INIS)

    Srungaram, Pavan K.; Ayyalasomayajula, Krishna K.; Yu-Yueh, Fang; Singh, Jagdish P.

    2013-01-01

    Mercury is a toxic element found throughout the environment. Elevated concentrations of mercury in soils are quite hazardous to plants growing in these soils and also the runoff of soils to nearby water bodies contaminates the water, endangering the flora and fauna of that region. This makes continuous monitoring of mercury very essential. This work compares two potential spectroscopic methods (laser induced breakdown spectroscopy (LIBS) and spark induced breakdown spectroscopy (SIBS)) at their optimum experimental conditions for mercury monitoring. For LIBS, pellets were prepared from soil samples of known concentration for generating a calibration curve while for SIBS, soil samples of known concentration were used in the powder form. The limits of detection (LODs) of Hg in soil were calculated from the Hg calibration curves. The LOD for mercury in soil calculated using LIBS and SIBS is 483 ppm and 20 ppm, respectively. The detection range for LIBS and SIBS is discussed. - Highlights: • We compared SIBS and LIBS for mercury (Hg) measurements in soil. • Hg 546.07 nm line was selected for both LIBS and SIBS measurements. • Limit of detection for Hg was found to be 20 ppm with SIBS and 483 ppm with LIBS

  19. Comparison of laser induced breakdown spectroscopy and spark induced breakdown spectroscopy for determination of mercury in soils

    Energy Technology Data Exchange (ETDEWEB)

    Srungaram, Pavan K.; Ayyalasomayajula, Krishna K.; Yu-Yueh, Fang; Singh, Jagdish P., E-mail: singh@icet.msstate.edu

    2013-09-01

    Mercury is a toxic element found throughout the environment. Elevated concentrations of mercury in soils are quite hazardous to plants growing in these soils and also the runoff of soils to nearby water bodies contaminates the water, endangering the flora and fauna of that region. This makes continuous monitoring of mercury very essential. This work compares two potential spectroscopic methods (laser induced breakdown spectroscopy (LIBS) and spark induced breakdown spectroscopy (SIBS)) at their optimum experimental conditions for mercury monitoring. For LIBS, pellets were prepared from soil samples of known concentration for generating a calibration curve while for SIBS, soil samples of known concentration were used in the powder form. The limits of detection (LODs) of Hg in soil were calculated from the Hg calibration curves. The LOD for mercury in soil calculated using LIBS and SIBS is 483 ppm and 20 ppm, respectively. The detection range for LIBS and SIBS is discussed. - Highlights: • We compared SIBS and LIBS for mercury (Hg) measurements in soil. • Hg 546.07 nm line was selected for both LIBS and SIBS measurements. • Limit of detection for Hg was found to be 20 ppm with SIBS and 483 ppm with LIBS.

  20. Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration

    International Nuclear Information System (INIS)

    Benedetti, P.A.; Cristoforetti, G.; Legnaioli, S.; Palleschi, V.; Pardini, L.; Salvetti, A.; Tognoni, E.

    2005-01-01

    In this paper, the effect of laser pulse energy on double-pulse laser induced breakdown spectroscopy signal is studied. In particular, the energy of the first pulse has been changed, while the second pulse energy is held fixed. A systematic study of the laser induced breakdown spectroscopy signal dependence on the interpulse delay is performed, and the results are compared with the ones obtained with a single laser pulse of energy corresponding to the sum of the two pulses. At the same time, the crater formed at the target surface is studied by video-confocal microscopy, and the variation in crater dimensions is correlated to the enhancement of the laser induced breakdown spectroscopy signal. The results obtained are consistent with the interpretation of the double-pulse laser induced breakdown spectroscopy signal enhancement in terms of the changes in ambient gas pressure produced by the shock wave induced by the first laser pulse

  1. Laser-induced breakdown spectroscopy (LIBS): a new spectrochemical technique

    International Nuclear Information System (INIS)

    Radziemski, L.J.; Loree, T.R.; Cremers, D.A.

    1982-01-01

    We have used the breakdown spark from a focused laser beam to generate analytically useful emission spectra of minor constituents in air and other carrier gases. The medium was sampled directly. It was not necessary to reduce the sample to solution nor to introduce electrodes. The apparatus is particularly simple; a pulsed laser, spectrometer, and some method for time resolution. The latter is essential in laser-induced-breakdown spectroscopy (LIBS) because of the strong early continuum. High temperatures in the spark result in vaporization of small particles, dissociation of molecules, and excitation of atomic and ionic spectra, including species which are normally difficult to detect. In one application, we have monitored beryllium in air at conventrations below 1 μg/m 3 , which is below 1 ppB (w/w). In another we have monitored chlorine and fluorine atoms in real time. LIBS has the potential for real-time direct sampling of contaminants in situ

  2. Relations between rheological properties, saliva-induced structure breakdown and sensory texture attributes of custards

    NARCIS (Netherlands)

    Janssen, A.M.; Terpstra, M.E.J.; Wijk, R.A.de; Prinz, J.F.

    2007-01-01

    The relevance of initial rheological properties and mechanical and enzymatic structure breakdown in determining selected sensory texture attributes of custards was studied. The so-called structure breakdown cell was used to characterize saliva-induced breakdown, i.e., by monitoring digestion of

  3. Analysis of organic vapors with laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nozari, Hadi; Tavassoli, Seyed Hassan [Laser and Plasma Research Institute, Shahid Beheshti University, G. C, 1983963113 Evin, Tehran (Iran, Islamic Republic of); Rezaei, Fatemeh, E-mail: fatemehrezaei@kntu.ac.ir [Department of Physics, K. N. Toosi University of Technology, 15875-4416 Shariati, Tehran (Iran, Islamic Republic of)

    2015-09-15

    In this paper, laser induced breakdown spectroscopy (LIBS) is utilized in the study of acetone, ethanol, methanol, cyclohexane, and nonane vapors. Carbon, hydrogen, oxygen, and nitrogen atomic emission spectra have been recorded following laser-induced breakdown of the organic vapors that are mixed with air inside a quartz chamber at atmospheric pressure. The plasma is generated with focused, Q-switched Nd:YAG radiation at the wavelength of 1064 nm. The effects of ignition and vapor pressure are discussed in view of the appearance of the emission spectra. The recorded spectra are proportional to the vapor pressure in air. The hydrogen and oxygen contributions diminish gradually with consecutive laser-plasma events without gas flow. The results show that LIBS can be used to characterize organic vapor.

  4. Analysis of organic vapors with laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Nozari, Hadi; Tavassoli, Seyed Hassan; Rezaei, Fatemeh

    2015-01-01

    In this paper, laser induced breakdown spectroscopy (LIBS) is utilized in the study of acetone, ethanol, methanol, cyclohexane, and nonane vapors. Carbon, hydrogen, oxygen, and nitrogen atomic emission spectra have been recorded following laser-induced breakdown of the organic vapors that are mixed with air inside a quartz chamber at atmospheric pressure. The plasma is generated with focused, Q-switched Nd:YAG radiation at the wavelength of 1064 nm. The effects of ignition and vapor pressure are discussed in view of the appearance of the emission spectra. The recorded spectra are proportional to the vapor pressure in air. The hydrogen and oxygen contributions diminish gradually with consecutive laser-plasma events without gas flow. The results show that LIBS can be used to characterize organic vapor

  5. Effect of neutron irradiation on the breakdown voltage of power MOSFET's

    International Nuclear Information System (INIS)

    Hasan, S.M.Y.; Kosier, S.L.; Schrimpf, R.D.; Galloway, K.F.

    1994-01-01

    The effect of neutron irradiation on power metal-oxide-semiconductor field effect transistor (power MOSFET) breakdown voltage has been investigated. Transistors with various breakdown voltage ratings were irradiated in a TRIGA nuclear reactor with cumulative fluence levels up to 5 x 10 14 neutrons/cm 2 (1 MeV equivalent). Noticeable increases in the breakdown voltages are observed in n-type MOSFET's after 10 13 neutrons/cm 2 and in p-type MOSFETs after 10 12 neutrons/cm 2 . An increase in breakdown voltage of as much as 30% is observed after 5 x 10 14 neutrons/cm 2 . The increase in breakdown voltage is attributed to the neutron-irradiation-induced defects which decrease the mean free path and trap majority carriers in the space charge region. The effect of positive trapped oxide charge due to concomitant gamma radiation and the effect of the termination structure on the increase in breakdown voltage are considered. An empirical model is presented to predict the value of the breakdown voltage as a function of neutron fluence

  6. Chemical consequences of laser-induced breakdown in molecular gases

    Czech Academy of Sciences Publication Activity Database

    Babánková, Dagmar; Civiš, Svatopluk; Juha, Libor

    2006-01-01

    Roč. 30, č. 2-3 (2006), s. 75-88 ISSN 0079-6727 R&D Projects: GA ČR GA203/06/1278; GA MŠk LC510; GA MŠk LC528; GA MŠk 1P04LA235 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z10100523 Keywords : laser spark * laser-induced dielectric breakdown * laser-plasma chemistry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.500, year: 2006

  7. Classification of Explosive Residues on Organic Substrates Using Laser Induced Breakdown Spectroscopy

    Science.gov (United States)

    2013-04-01

    Army Research Laboratory (ARL), we have been using laser induced breakdown spectro - scopy (LIBS), an optical spectroscopic technique that determines the...LX200GPS) was fitted with UV -coated optics to provide full broadband ( UV - VIS-NIR) capability. A custom-made three-channel gated CCD spectrometer (Ocean...Chem. 82, 1389–1400 (2010). 8. F. C. De Lucia, Jr., R. S. Harmon, K. L. McNesby, R. J. Winkel, Jr., and A. W. Miziolek, “Laser-induced breakdown spectro

  8. Identification of inks and structural characterization of contemporary artistic prints by laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Oujja, M.; Vila, A.; Rebollar, E.; Garcia, J.F.; Castillejo, M.

    2005-01-01

    Identification of the inks used in artistic prints and the order in which different ink layers have been applied on a paper substrate are important factors to complement the classical stylistic aspects for the authentication of this type of objects. Laser-induced breakdown spectroscopy (LIBS) is investigated to determine the chemical composition and structural distribution of the constituent materials of model prints made by applying one or two layers of several blue and black inks on an Arches paper substrate. By using suitable laser excitation conditions, identification of the inks was possible by virtue of emissions from key elements present in their composition. Analysis of successive spectra on the same spot allowed the identification of the order in which the inks were applied on the paper. The results show the potential of laser-induced breakdown spectroscopy for the chemical and structural characterization of artistic prints

  9. Vortex-Breakdown-Induced Particle Capture in Branching Junctions.

    Science.gov (United States)

    Ault, Jesse T; Fani, Andrea; Chen, Kevin K; Shin, Sangwoo; Gallaire, François; Stone, Howard A

    2016-08-19

    We show experimentally that a flow-induced, Reynolds number-dependent particle-capture mechanism in branching junctions can be enhanced or eliminated by varying the junction angle. In addition, numerical simulations are used to show that the features responsible for this capture have the signatures of classical vortex breakdown, including an approach flow aligned with the vortex axis and a pocket of subcriticality. We show how these recirculation regions originate and evolve and suggest a physical mechanism for their formation. Furthermore, comparing experiments and numerical simulations, the presence of vortex breakdown is found to be an excellent predictor of particle capture. These results inform the design of systems in which suspended particle accumulation can be eliminated or maximized.

  10. Laser-Induced Breakdown Spectroscopy of Cinematographic Film

    Science.gov (United States)

    Oujja, M.; Abrusci, C.; Gaspard, S.; Rebollar, E.; Amo, A. del; Catalina, F.; Castillejo, M.

    Laser-induced breakdown spectroscopy (LIBS) was used to characterize the composition of black-and-white, silver-gelatine photographic films. LIB spectra of samples and reference gelatine (of various gel strengths, Bloom values 225 and 75 and crosslinking degrees) were acquired in vacuum by excitation at 266 nm. The elemental composition of the gelatine used in the upper protective layer and in the underlying emulsion is revealed by the stratigraphic analysis carried out by delivering successive pulses on the same spot of the sample. Silver (Ag) lines from the light-sensitive silver halide salts are accompanied by iron, lead and chrome lines. Fe and Pb are constituents of film developers and Cr is included in the hardening agent. The results demonstrate the analytical capacity of LIBS for study and classification of different gelatine types and the sensitivity of the technique to minor changes in gelatine composition. In addition LIBS analysis allows extracting important information on the chemicals used as developers and hardeners of archival cinematographic films.

  11. Comparison of the Detection Characteristics of Trace Species Using Laser-Induced Breakdown Spectroscopy and Laser Breakdown Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Zhenzhen Wang

    2015-03-01

    Full Text Available The rapid and precise element measurement of trace species, such as mercury, iodine, strontium, cesium, etc. is imperative for various applications, especially for industrial needs. The elements mercury and iodine were measured by two detection methods for comparison of the corresponding detection features. A laser beam was focused to induce plasma. Emission and ion signals were detected using laser-induced breakdown spectroscopy (LIBS and laser breakdown time-of-flight mass spectrometry (LB-TOFMS. Multi-photon ionization and electron impact ionization in the plasma generation process can be controlled by the pressure and pulse width. The effect of electron impact ionization on continuum emission, coexisting molecular and atomic emissions became weakened in low pressure condition. When the pressure was less than 1 Pa, the plasma was induced by laser dissociation and multi-photon ionization in LB-TOFMS. According to the experimental results, the detection limits of mercury and iodine in N2 were 3.5 ppb and 60 ppb using low pressure LIBS. The mercury and iodine detection limits using LB-TOFMS were 1.2 ppb and 9.0 ppb, which were enhanced due to different detection features. The detection systems of LIBS and LB-TOFMS can be selected depending on the condition of each application.

  12. Enhancement of laser-induced breakdown spectroscopy (LIBS) Detection limit using a low-pressure and short-pulse laser-induced plasma process.

    Science.gov (United States)

    Wang, Zhen Zhen; Deguchi, Yoshihiro; Kuwahara, Masakazu; Yan, Jun Jie; Liu, Ji Ping

    2013-11-01

    Laser-induced breakdown spectroscopy (LIBS) technology is an appealing technique compared with many other types of elemental analysis because of the fast response, high sensitivity, real-time, and noncontact features. One of the challenging targets of LIBS is the enhancement of the detection limit. In this study, the detection limit of gas-phase LIBS analysis has been improved by controlling the pressure and laser pulse width. In order to verify this method, low-pressure gas plasma was induced using nanosecond and picosecond lasers. The method was applied to the detection of Hg. The emission intensity ratio of the Hg atom to NO (IHg/INO) was analyzed to evaluate the LIBS detection limit because the NO emission (interference signal) was formed during the plasma generation and cooling process of N2 and O2 in the air. It was demonstrated that the enhancement of IHg/INO arose by decreasing the pressure to a few kilopascals, and the IHg/INO of the picosecond breakdown was always much higher than that of the nanosecond breakdown at low buffer gas pressure. Enhancement of IHg/INO increased more than 10 times at 700 Pa using picosecond laser with 35 ps pulse width. The detection limit was enhanced to 0.03 ppm (parts per million). We also saw that the spectra from the center and edge parts of plasma showed different features. Comparing the central spectra with the edge spectra, IHg/INO of the edge spectra was higher than that of the central spectra using the picosecond laser breakdown process.

  13. Titanium monoxide spectroscopy following laser-induced optical breakdown

    International Nuclear Information System (INIS)

    Parigger, Christian G.; Woods, Alexander C.; Keszler, Anna; Nemes, László; Hornkohl, James O.

    2012-01-01

    This work investigates Titanium Monoxide (TiO) in ablation-plasma by employing laser-induced breakdown spectroscopy (LIBS) with 1 to 10 TW/cm 2 irradiance, pulsed, 13 nanosecond, Q-switched Nd:YAG laser radiation at the fundamental wavelength of 1064 nm. The analysis of TiO is based on our first accurate determination of transition line strengths for selected TiO A-X, B-X, and E-X transitions, particularly TiO A-X γ and B-X γ′ bands. Electric dipole line strengths for the A 3 Φ-X 3 δ and B 3 Π-X 3 δ bands of TiO are computed. The molecular TiO spectra are observed subsequent to laser-induced breakdown (LIB). We discuss analysis of diatomic molecular spectra that may occur simultaneously with spectra originating from atomic species. Gated detection is applied to investigate the development in time of the emission spectra following LIB. Collected emission spectra allow one to infer micro-plasma parameters such as temperature and electron density. Insight into the state of the micro-plasma is gained by comparing measurements with predictions of atomic and molecular spectra. Nonlinear fitting of recorded and computed diatomic spectra provides the basis for molecular diagnostics, while atomic species may overlap and are simultaneously identified. Molecular diagnostic approaches similar to TiO have been performed for diatomic molecules such as AlO, C 2 , CN, CH, N 2 , NH, NO and OH.

  14. Computational fluid-dynamic model of laser-induced breakdown in air

    International Nuclear Information System (INIS)

    Dors, Ivan G.; Parigger, Christian G.

    2003-01-01

    Temperature and pressure profiles are computed by the use of a two-dimensional, axially symmetric, time-accurate computational fluid-dynamic model for nominal 10-ns optical breakdown laser pulses. The computational model includes a kinetics mechanism that implements plasma equilibrium kinetics in ionized regions and nonequilibrium, multistep, finite-rate reactions in nonionized regions. Fluid-physics phenomena following laser-induced breakdown are recorded with high-speed shadowgraph techniques. The predicted fluid phenomena are shown by direct comparison with experimental records to agree with the flow patterns that are characteristic of laser spark decay

  15. A Simple LIBS (Laser-Induced Breakdown Spectroscopy) Laboratory Experiment to Introduce Undergraduates to Calibration Functions and Atomic Spectroscopy

    Science.gov (United States)

    Chinni, Rosemarie C.

    2012-01-01

    This laboratory experiment introduces students to a different type of atomic spectroscopy: laser-induced breakdown spectroscopy (LIBS). LIBS uses a laser-generated spark to excite the sample; once excited, the elemental emission is spectrally resolved and detected. The students use LIBS to analyze a series of standard synthetic silicate samples…

  16. The effect of polymer type on electric breakdown strength on a nanosecond time scale

    Institute of Scientific and Technical Information of China (English)

    Zhao Liang; Su Jian-Cang; Pan Ya-Feng; Zhang Xi-Bo

    2012-01-01

    Based on the concepts of fast polarization,effective electric field and electron impact ionization criterion,the effect of polymer type on electric breakdown strength (EBD) on a nanosecond time scale is investigated,and a formula that qualitatively characterizes the relation between the electric breakdown strength and the polymer type is derived.According to this formula,it is found that the electric breakdown strength decreases with an increase in the effective relative dielectric constants of the polymers.By calculating the effective relative dielectric constants for different types of polymers,the theoretical relation for the electric breakdown strengths of common polymers is predicted.To verify the prediction,the polymers of PE (polyethylene),PTFE (polytetrafluoroethelene),PMMA (organic glass) and Nylon are tested with a nanosecond-pulse generator.The experimental result shows EBD (PTFE) > EBD (PMMA) > EBD (Nylon) > EBD (PE).This result is consistent with the theoretical prediction.

  17. The structure and dynamics of bubble-type vortex breakdown

    Science.gov (United States)

    Spall, R. E.; Ash, R. L.; Gatski, T. B.

    1990-01-01

    A unique discrete form of the Navier-Stokes equations for unsteady, three-dimensional, incompressible flow has been used to study vortex breakdown numerically. A Burgers-type vortex was introduced along the central axis of the computational domain, and allowed to evolve in space and time. By varying the strength of the vortex and the free stream axial velocity distribution, using a previously developed Rossby number criterion as a guide, the location and size of the vortex breakdown region was controlled. While the boundaries of the vortex breakdown bubble appear to be nominally symmetric, the internal flow field is not. Consequently, the mechanisms for mixing and entrainment required to sustain the bubble region are different from those suggested by earlier axisymmetric models. Results presented in this study, for a Reynolds number of 200, are in good qualitative agreement with higher Reynolds number experimental observations, and a variety of plots have been presented to help illuminate the fluid physics.

  18. Preliminary studies of laser-induced breakdown spectrometry for the determination of Ba, Cd, Cr and Pb in toys

    International Nuclear Information System (INIS)

    Godoi, Quienly; Santos, Dario; Nunes, Lidiane C.; Leme, Flavio O.; Rufini, Iolanda A.; Agnelli, Jose A.M.; Trevizan, Lilian C.; Krug, Francisco J.

    2009-01-01

    The performance of laser-induced breakdown spectrometry (LIBS) for the determination of Ba, Cd, Cr and Pb in toys has been evaluated by using a Nd:YAG laser operating at 1064 nm and an Echelle spectrometer with intensified charge-coupled device detector. Samples were purchased in different cities of Sao Paulo State market and analyzed directly without sample preparation. Laser-induced breakdown spectrometry experimental conditions (number of pulses, delay time, integration time gate and pulse energy) were optimized by using a Doehlert design. Laser-induced breakdown spectrometry signals correlated reasonably well with inductively coupled plasma optical emission spectrometry (ICP OES) concentrations after microwave-assisted acid digestion of selected samples. Thermal analysis was used for polymer identification and scanning electron microscopy to visualize differences in crater geometry of different polymers employed for toy fabrication. Results indicate that laser-induced breakdown spectrometry can be proposed as a rapid screening method for investigation of potentially toxic elements in toys. The unique application of laser-induced breakdown spectrometry for identification of contaminants in successive layers of ink and polymer is also demonstrated.

  19. A Model for the Onset of Vortex Breakdown

    Science.gov (United States)

    Mahesh, K.

    1996-01-01

    A large body of information exists on the breakdown of incompressible streamwise vortices. Less is known about vortex breakdown at high speeds. An interesting example of supersonic vortex breakdown is the breakdown induced by the interaction of vortices with shock waves. The flow in supersonic engine inlets and over high-speed delta wings constitute technologically important examples of this phenomenon, which is termed 'shock-induced vortex breakdown'. In this report, we propose a model to predict the onset of shock-induced vortex breakdown. The proposed model has no adjustable constants, and is compared to both experiment and computation. The model is then extended to consider two other problems: the breakdown of a free compressible vortex, and free incompressible vortex breakdown. The same breakdown criterion is used in all three problems to predict the onset of breakdown. Finally, a new breakdown map is proposed that allows the simultaneous comparison of data from flows ranging from incompressible breakdown to breakdown induced by a shock wave.

  20. Qualitative Analysis of Dairy and Powder Milk Using Laser-Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Alfarraj, Bader A; Sanghapi, Herve K; Bhatt, Chet R; Yueh, Fang Y; Singh, Jagdish P

    2018-01-01

    Laser-induced breakdown spectroscopy (LIBS) technique was used to compare various types of commercial milk products. Laser-induced breakdown spectroscopy spectra were investigated for the determination of the elemental composition of soy and rice milk powder, dairy milk, and lactose-free dairy milk. The analysis was performed using radiative transitions. Atomic emissions from Ca, K, Na, and Mg lines observed in LIBS spectra of dairy milk were compared. In addition, proteins and fat level in milks can be determined using molecular emissions such as CN bands. Ca concentrations were calculated to be 2.165 ± 0.203 g/L in 1% of dairy milk fat samples and 2.809 ± 0.172 g/L in 2% of dairy milk fat samples using the standard addition method (SAM) with LIBS spectra. Univariate and multivariate statistical analysis methods showed that the contents of major mineral elements were higher in lactose-free dairy milk than those in dairy milk. The principal component analysis (PCA) method was used to discriminate four milk samples depending on their mineral elements concentration. In addition, proteins and fat level in dairy milks were determined using molecular emissions such as CN band. We applied partial least squares regression (PLSR) and simple linear regression (SLR) models to predict levels of milk fat in dairy milk samples. The PLSR model was successfully used to predict levels of milk fat in dairy milk sample with the relative accuracy (RA%) less than 6.62% using CN (0,0) band.

  1. Dissociation dynamics of CH3I in electric spark induced breakdown revealed by time-resolved laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Wang, Yang; Liu, Wei-long; Song, Yun-fei; Duo, Li-ping; Liu, Yu-qiang; Yang, Yan-qiang

    2015-01-01

    Highlights: • Emission of electric spark dissociation of CH 3 I is similar to its fs LIBS. • We use fs laser induced breakdown as a simulation for electric spark dissociation. • The I 2 molecule formation is directly observed in the time-resolved LIBS. • Bimolecular collision of I ∗ and CH 3 I is responsible for the formation of I 2 . - Abstract: The electric discharge spark dissociation of gas CH 3 I is found to be similar to its femtosecond laser photodissociation. The almost identical spectra of the two processes show that their initial ionization conditions are very similar. The initial ionization followed by molecular fragmentation is proposed as the dissociation mechanism, in which the characteristic emissions of I + , CH 3 , CH 2 , CH, H, and I 2 are identified as the dissociation products. The emission band of 505 nm I 2 is clearly observed in the time-resolved laser induced breakdown spectroscopy (LIBS). The dynamic curve indicates that I 2 ∗ molecules are formed after the delay time of ∼4.7 ns. The formation of I 2 ∗ molecule results from the bimolecular collision of the highly excited iodine atom I ∗ ( 4 P) and CH 3 I molecule. This dynamical information can help understand the process of electric discharge spark dissociation of CH 3 I

  2. Laser-Induced Breakdown Spectroscopy Infrared Emission From Inorganic and Organic Substances

    National Research Council Canada - National Science Library

    Yang, C.S; Brown, E; Hommerich, U; Trivedi, S. B; Snyder, A. P; Samuels, A. C

    2006-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been established as a powerful method for identifying trace elemental contaminants by analyzing the atomic spectral emission lines that result subsequent to plasmas generated by laser power...

  3. Laser induced breakdown spectroscopy library for the Martian environment

    International Nuclear Information System (INIS)

    Cousin, A.; Forni, O.; Maurice, S.; Gasnault, O.

    2011-01-01

    The NASA Mars Science Laboratory rover will carry the first Laser Induced Breakdown Spectroscopy experiment in space: ChemCam. We have developed a laboratory model which mimics ChemCam's main characteristics. We used a set of target samples relevant to Mars geochemistry, and we recorded individual spectra. We propose a data reduction scheme for Laser Induced Breakdown Spectroscopy data incorporating de-noising, continuum removal, and peak fitting. Known effects of the Martian atmosphere are confirmed with our experiment: better Signal-to-Noise Ratio on Mars compared to Earth, narrower peak width, and essentially no self-absorption. The wavelength shift of emission lines from air to Mars pressure is discussed. The National Institute of Standards and Technology vacuum database is used for wavelength calibration and to identify the elemental lines. Our Martian database contains 1336 lines for 32 elements: H, Li, Be, B, C, N, O, F, Na, Mg, Al, Si, P, S, Cl, K, Ar, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Rb, Sr, Cs, Ba, and Pb. It is a subset of the National Institute of Standards and Technology database to be used for Martian geochemistry. Finally, synthetic spectra can be built from the Martian database. Correlation calculations help to distinguish between elements in case of uncertainty. This work is used to create tools and support data for the interpretation of ChemCam results. - Highlights: ► Chemcam: first Laser Induced Breakdown Spectroscopy technique on Mars. ► Creation of a LIBS specific database to ChemCam on Mars. ► Data reduction scheme is proposed. ► Best signal under Martian conditions. ► LIBS emission lines database: subset of NIST database for Martian geochemistry.

  4. Optimization of laser-induced breakdown spectroscopy for coal powder analysis with different particle flow diameters

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Shunchun, E-mail: epscyao@scut.edu.cn [School of Electric Power, South China University of Technology, Guangzhou, Guangdong 510640 (China); State Key Laboratory of Pulsed Power Laser Technology, Electronic Engineering Institute, Hefei 230037 (China); Xu, Jialong; Dong, Xuan; Zhang, Bo; Zheng, Jianping [School of Electric Power, South China University of Technology, Guangzhou, Guangdong 510640 (China); Lu, Jidong, E-mail: jdlu@scut.edu.cn [School of Electric Power, South China University of Technology, Guangzhou, Guangdong 510640 (China)

    2015-08-01

    The on-line measurement of coal is extremely useful for emission control and combustion process optimization in coal-fired plant. Laser-induced breakdown spectroscopy was employed to directly analyze coal particle flow. A set of tapered tubes were proposed for beam-focusing the coal particle flow to different diameters. For optimizing the measurement of coal particle flow, the characteristics of laser-induced plasma, including optical breakdown, the relative standard deviation of repeated measurement, partial breakdown spectra ratio and line intensity, were carefully analyzed. The comparison of the plasma characteristics among coal particle flow with different diameters showed that air breakdown and the random change in plasma position relative to the collection optics could significantly influence on the line intensity and the reproducibility of measurement. It is demonstrated that the tapered tube with a diameter of 5.5 mm was particularly useful to enrich the coal particles in laser focus spot as well as to reduce the influence of air breakdown and random changes of plasma in the experiment. - Highlights: • Tapered tube was designed for beam-focusing the coal particle flow as well as enriching the particles in laser focus spot. • The characteristics of laser-induced plasma of coal particle flow were investigated carefully. • An appropriate diameter of coal particle flow was proven to benefit for improving the performance of LIBS measurement.

  5. ROCK-1 mediates diabetes-induced retinal pigment epithelial and endothelial cell blebbing: Contribution to diabetic retinopathy.

    Science.gov (United States)

    Rothschild, Pierre-Raphaël; Salah, Sawsen; Berdugo, Marianne; Gélizé, Emmanuelle; Delaunay, Kimberley; Naud, Marie-Christine; Klein, Christophe; Moulin, Alexandre; Savoldelli, Michèle; Bergin, Ciara; Jeanny, Jean-Claude; Jonet, Laurent; Arsenijevic, Yvan; Behar-Cohen, Francine; Crisanti, Patricia

    2017-08-18

    In diabetic retinopathy, the exact mechanisms leading to retinal capillary closure and to retinal barriers breakdown remain imperfectly understood. Rho-associated kinase (ROCK), an effector of the small GTPase Rho, involved in cytoskeleton dynamic regulation and cell polarity is activated by hyperglycemia. In one year-old Goto Kakizaki (GK) type 2 diabetic rats retina, ROCK-1 activation was assessed by its cellular distribution and by phosphorylation of its substrates, MYPT1 and MLC. In both GK rat and in human type 2 diabetic retinas, ROCK-1 is activated and associated with non-apoptotic membrane blebbing in retinal vessels and in retinal pigment epithelium (RPE) that respectively form the inner and the outer barriers. Activation of ROCK-1 induces focal vascular constrictions, endoluminal blebbing and subsequent retinal hypoxia. In RPE cells, actin cytoskeleton remodeling and membrane blebs in RPE cells contributes to outer barrier breakdown. Intraocular injection of fasudil, significantly reduces both retinal hypoxia and RPE barrier breakdown. Diabetes-induced cell blebbing may contribute to ischemic maculopathy and represent an intervention target.

  6. Overview of applications of Laser-Induced Breakdown Spectroscopy (LIBS)

    International Nuclear Information System (INIS)

    Cremers, D.A.

    1987-01-01

    Laser-induced breakdown spectroscopy (LIBS) is a method of performing elemental analyses of solids, liquids, and gases using the microplasma produced by a focused laser pulse. Because the microplasma is formed by optical radiation, LIBS has some important advantages compared to conventional laboratory based analytical methods. Three applications are discussed which use the LIBS method. 6 refs., 8 figs., 2 tabs

  7. Detection and Classification of Live and Dead Escherichia coli by Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Sivakumar, P.; Fernández-Bravo, A.; Taleh, L.; Biddle, J.F.

    2015-01-01

    Abstract A common goal for astrobiology is to detect organic materials that may indicate the presence of life. However, organic materials alone may not be representative of currently living systems. Thus, it would be valuable to have a method with which to determine the health of living materials. Here, we present progress toward this goal by reporting on the application of laser-induced breakdown spectroscopy (LIBS) to study characteristics of live and dead cells using Escherichia coli (E. coli) strain K12 cells as a model organism since its growth and death in the laboratory are well understood. Our goal is to determine whether LIBS, in its femto- and/or nanosecond forms, could ascertain the state of a living organism. E. coli strain K12 cells were grown, collected, and exposed to one of two types of inactivation treatments: autoclaving and sonication. Cells were also kept alive as a control. We found that LIBS yields key information that allows for the discrimination of live and dead E. coli bacteria based on ionic shifts reflective of cell membrane integrity. Key Words: E. coli—Trace elements—Live and dead cells—Laser-induced breakdown spectroscopy—Atomic force microscopy. Astrobiology 15, 144–153. PMID:25683088

  8. Forensic comparative glass analysis by laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Bridge, Candice M.; Powell, Joseph; Steele, Katie L.; Sigman, Michael E.

    2007-01-01

    Glass samples of four types commonly encountered in forensic examinations have been analyzed by laser-induced breakdown spectroscopy (LIBS) for the purpose of discriminating between samples originating from different sources. Some of the glass sets were also examined by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Refractive index (RI) measurements were also made on all glass samples and the refractive index data was combined with the LIBS and with the LA-ICP-MS data to enhance discrimination. The glass types examined included float glass taken from front and side automobile windows (examined on the non-float side), automobile headlamp glass, automobile side-mirror glass and brown beverage container glass. The largest overall discrimination was obtained by employing RI data in combination with LA-ICP-MS (98.8% discrimination of 666 pairwise comparisons at 95% confidence), while LIBS in combination with RI provided a somewhat lower discrimination (87.2% discrimination of 1122 pairwise comparisons at 95% confidence). Samples of side-mirror glass were less discriminated by LIBS due to a larger variance in emission intensities, while discrimination of side-mirror glass by LA-ICP-MS remained high

  9. Obstacle-induced spiral vortex breakdown

    OpenAIRE

    Pasche, Simon; Gallaire, François; Dreyer, Matthieu; Farhat, Mohamed

    2014-01-01

    An experimental investigation on vortex breakdown dynamics is performed. An adverse pressure gradient is created along the axis of a wing-tip vortex by introducing a sphere downstream of an elliptical hydrofoil. The instrumentation involves high-speed visualizations with air bubbles used as tracers and 2D Laser Doppler Velocimeter (LDV). Two key parameters are identified and varied to control the onset of vortex breakdown: the swirl number, defined as the maximum azimuthal velocity divided by...

  10. Elemental analysis of halogens using molecular emission by laser-induced breakdown spectroscopy in air

    Energy Technology Data Exchange (ETDEWEB)

    Gaft, M.; Nagli, L.; Eliezer, N.; Groisman, Y. [Laser Distance Spectrometry, 9 Mota Gur St., Petah Tikva 49514 (Israel); Forni, O. [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); CNRS, IRAP, 9 Av. Colonel Roche, BP 44346, F-31028 Toulouse cedex 4 (France)

    2014-08-01

    Fluorine and chlorine do not produce atomic and ionic line spectra of sufficient intensity to permit their detection by laser-induced breakdown spectroscopy. They do, however, combine with alkali-earths and other elements to form molecules whose spectra may be easily identified, enabling detection in ambient conditions with much higher sensitivity than using F I and Cl I atomic lines. - Highlights: • We studied laser induced breakdown spectra of halogens with alkali-earth elements. • Emission and temporal behavior of CaF and CaCl molecules were determined. • Sensitivity of F and Cl detection by molecules and atoms was compared.

  11. Combined raman/laser-induced breakdown spectrometer: space and non-space applications

    NARCIS (Netherlands)

    Sandtke, M.; Laan, E.C.; Ahlers, B.

    2010-01-01

    TNO has developed the combination of two spectroscopic analysis methods in one instrument. Raman spectroscopy and Laser-induced Breakdown Spectroscopy (LIBS) were brought together for an instrument to be flown on the ExoMars mission from the European Space Agency (ESA) to investigate the Martian

  12. P-n junction diodes with polarization induced p-type graded InxGa1-xN layer

    Science.gov (United States)

    Enatsu, Yuuki; Gupta, Chirag; Keller, Stacia; Nakamura, Shuji; Mishra, Umesh K.

    2017-10-01

    In this study, p-n junction diodes with polarization induced p-type layer are demonstrated on Ga polar (0001) bulk GaN substrates. A quasi-p-type region is obtained by linearly grading the indium composition in un-doped InxGa1-xN layers from 0% to 5%, taking advantage of the piezoelectric and spontaneous polarization fields which exist in group III-nitride heterostructures grown in the typical (0001) or c-direction. The un-doped graded InxGa1-xN layers needed to be capped with a thin Mg-doped InxGa1-xN layer to make good ohmic contacts and to reduce the on-resistance of the p-n diodes. The Pol-p-n junction diodes exhibited similar characteristics compared to reference samples with traditional p-GaN:Mg layers. A rise in breakdown voltage from 30 to 110 V was observed when the thickness of the graded InGaN layer was increased from 100 to 600 nm at the same grade composition.

  13. Quantitative mixture fraction measurements in combustion system via laser induced breakdown spectroscopy

    KAUST Repository

    Mansour, Mohy S.; Imam, Hisham; Elsayed, Khaled A.; Elbaz, Ayman M.; Abbass, Wafaa

    2015-01-01

    Laser induced breakdown spectroscopy (LIBS) technique has been applied to quantitative mixture fraction measurements in flames. The measured spectra of different mixtures of natural gas and air are used to obtain the calibration parameters for local

  14. Laser-Induced Breakdown Spectroscopy for Qualitative Analysis of Metals in Simulated Martian Soils

    Science.gov (United States)

    Mowry, Curtis; Milofsky, Rob; Collins, William; Pimentel, Adam S.

    2017-01-01

    This laboratory introduces students to laser-induced breakdown spectroscopy (LIBS) for the analysis of metals in soil and rock samples. LIBS employs a laser-initiated spark to induce electronic excitation of metal atoms. Ensuing atomic emission allows for qualitative and semiquantitative analysis. The students use LIBS to analyze a series of…

  15. Medical Applications of Laser Induced Breakdown Spectroscopy

    International Nuclear Information System (INIS)

    Pathak, A K; Rai, N K; Singh, Ankita; Rai, A K; Rai, Pradeep K; Rai, Pramod K

    2014-01-01

    Sedentary lifestyle of human beings has resulted in various diseases and in turn we require a potential tool that can be used to address various issues related to human health. Laser Induced Breakdown Spectroscopy (LIBS) is one such potential optical analytical tool that has become quite popular because of its distinctive features that include applicability to any type/phase of samples with almost no sample preparation. Several reports are available that discusses the capabilities of LIBS, suitable for various applications in different branches of science which cannot be addressed by traditional analytical methods but only few reports are available for the medical applications of LIBS. In the present work, LIBS has been implemented to understand the role of various elements in the formation of gallstones (formed under the empyema and mucocele state of gallbladder) samples along with patient history that were collected from Purvancal region of Uttar Pradesh, India. The occurrence statistics of gallstones under the present study reveal higher occurrence of gallstones in female patients. The gallstone occurrence was found more prevalent for those male patients who were having the habit of either tobacco chewing, smoking or drinking alcohols. This work further reports in-situ LIBS study of deciduous tooth and in-vivo LIBS study of human nail

  16. Prospects for laser-induced breakdown spectroscopy for biomedical applications: a review.

    Science.gov (United States)

    Singh, Vivek Kumar; Rai, Awadhesh Kumar

    2011-09-01

    We review the different spectroscopic techniques including the most recent laser-induced breakdown spectroscopy (LIBS) for the characterization of materials in any phase (solid, liquid or gas) including biological materials. A brief history of the laser and its application in bioscience is presented. The development of LIBS, its working principle and its instrumentation (different parts of the experimental set up) are briefly summarized. The generation of laser-induced plasma and detection of light emitted from this plasma are also discussed. The merit and demerits of LIBS are discussed in comparison with other conventional analytical techniques. The work done using the laser in the biomedical field is also summarized. The analysis of different tissues, mineral analysis in different organs of the human body, characterization of different types of stone formed in the human body, analysis of biological aerosols using the LIBS technique are also summarized. The unique abilities of LIBS including detection of molecular species and calibration-free LIBS are compared with those of other conventional techniques including atomic absorption spectroscopy, inductively coupled plasma atomic emission spectroscopy and mass spectroscopy, and X-ray fluorescence.

  17. Time-resolved spectroscopy of laser-induced breakdown in water

    Science.gov (United States)

    Thomas, Robert J.; Hammer, Daniel X.; Noojin, Gary D.; Stolarski, David J.; Rockwell, Benjamin A.; Roach, William P.

    1996-05-01

    Laser pulses of 60-ps and 80-ps at a wavelength of 532-nm and 1064-nm respectively were used to produce laser induced breakdown in triple-distilled water. The resulting luminescent flash from the plasma was captured with an imaging spectrograph coupled to a streak camera with a 5-ps time resolution. The wavelength range was 350 to 900-nm. We present the resulting experimental data which gives plasma duration and time-resolved spectral information. Plasma temperature is also computed from the data. All parameters are presented at a pulse energy of 1-mJ and are compared with time-integrated spectra at the same pulse duration and at 5 to 7-ns pulse duration in a similar energy range.

  18. Gallium Content in PuO2 Using Laser Induced Breakdown Spectroscopy (LIBS)

    International Nuclear Information System (INIS)

    Smith, C.A.; Martinez, M.A.; Veirs, D.K.

    1999-01-01

    Laser Induced Breakdown Spectroscopy (LIBS) has been applied to the semi-quantitative analysis of gallium in plutonium oxide at the Los Alamos Plutonium Facility. The oxide samples were generated by the Thermally Induced Gallium Removal (TIGR) process, a pretreatment step prior to MOX fuel processing. The TIGR process uses PuO 2 containing 1 wt% gallium (nominal) as feed material. Following the TIGR process, gallium content was analyzed by LIBS and also by conventional wet chemical analysis (ICP-MS). Although the data range was insufficient to obtain an adequate calibration, general agreement between the two techniques was good. LIBS was found to have a useful analytical range of 34-400 ppm for Ga in PuO 2

  19. Prospects of real-time single-particle biological aerosol analysis: A comparison between laser-induced breakdown spectroscopy and aerosol time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Beddows, D.C.S.; Telle, H.H.

    2005-01-01

    In this paper we discuss the prospects of real-time, in situ laser-induced breakdown spectroscopy applied for the identification and classification of bio-aerosols (including species of potential bio-hazard) within common urban aerosol mixtures. In particular, we address the issues associated with the picking out of bio-aerosols against common background aerosol particles, comparing laser-induced breakdown spectroscopy measurements with data from a mobile single-particle aerosol mass spectrometer (ATOFMS). The data from the latter provide statistical data over an extended period of time, highlighting the variation of the background composition. While single-particle bio-aerosols are detectable in principle, potential problems with small (∼ 1 μm size) bio-aerosols have been identified; constituents of the air mass other than background aerosols, e.g. gaseous CO 2 in conjunction with common background aerosols, may prevent unique recognition of the bio-particles. We discuss whether it is likely that laser-induced breakdown spectroscopy on its own can provide reliable, real-time identification of bio-aerosol in an urban environment, and it is suggested that more than one technique should be or would have to be used. A case for using a combination of laser-induced breakdown spectroscopy and Raman (and/or) laser-induced fluorescence spectroscopy is made

  20. Nanoparticle detection in aqueous solutions using Raman and Laser Induced Breakdown Spectroscopy

    NARCIS (Netherlands)

    Sovago, M.; Buis, E.-J.; Sandtke, M.

    2013-01-01

    We show the chemical identification and quantification of the concentration and size of nanoparticle (NP) dispersions in aqueous solutions by using a combination of Raman Spectroscopy and Laser Induced Breakdown Spectroscopy (LIBS). The two spectroscopic techniques are applied to demonstrate the NP

  1. Qualitative and quantitative analysis of environmental samples by laser-induced breakdown spectrometry

    International Nuclear Information System (INIS)

    Zorov, N B; Popov, A M; Zaytsev, S M; Labutin, T A

    2015-01-01

    The key achievements in the determination of trace amounts of components in environmental samples (soils, ores, natural waters, etc.) by laser-induced breakdown spectrometry are considered. Unique capabilities of this method make it suitable for rapid analysis of metals and alloys, glasses, polymers, objects of cultural heritage, archaeological and various environmental samples. The key advantages of the method that account for its high efficiency are demonstrated, in particular, a small amount of analyzed material, the absence of sample preparation, the possibility of local and remote analysis of either one or several elements. The use of chemometrics in laser-induced breakdown spectrometry for qualitative sample classification is described in detail. Various approaches to improving the figures of merit of quantitative analysis of environmental samples are discussed. The achieved limits of detection for most elements in geochemical samples are critically evaluated. The bibliography includes 302 references

  2. Detection of boron in simulated corrosion products by using a laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Song, K.; Yeon, J-W.; Jung, S-H.; Hwang, J.; Jung, E-C.

    2010-01-01

    In nuclear power plants, many methods for detection of coolant leakage have been developed and employed for the safe operation. However, these methods have many limitations for analyzing and dealing with the corrosion products due to the high radioactivity. LIBS (Laser-induced breakdown spectroscopy) offer a remote and on-site elemental analysis including the boron in the corrosion products with no sample preparation. In this study, we investigated the feasibility of detecting boron and analyzing an elemental composition of boron-containing iron oxides with the LIBS, in order to develop a coolant leakage detection system. First, we prepared five different boron-containing iron oxides and the element ratios were determined by using ICP-AES (inductive coupled plasma-atomic emission spectrometer). After this, the laser induced emission spectra of these iron oxides were obtained by using a 266 nm Nd:YAG laser. The B/Fe ratios of the oxides were determined by comparing the intensities of the B emission peak at 249.844 nm with those of the Fe peak at 250.217 nm as an internal reference. It was confirmed that the B contents in the oxides could be analyzed over 0.1 wt% by the laser induced breakdown spectroscopic technique. (author)

  3. Laser-induced Breakdown Spectroscopy: A New Approach for Nanoparticle's Mapping and Quantification in Organ Tissue

    Science.gov (United States)

    Sancey, Lucie; Motto-Ros, Vincent; Kotb, Shady; Wang, Xiaochun; Lux, François; Panczer, Gérard; Yu, Jin; Tillement, Olivier

    2014-01-01

    Emission spectroscopy of laser-induced plasma was applied to elemental analysis of biological samples. Laser-induced breakdown spectroscopy (LIBS) performed on thin sections of rodent tissues: kidneys and tumor, allows the detection of inorganic elements such as (i) Na, Ca, Cu, Mg, P, and Fe, naturally present in the body and (ii) Si and Gd, detected after the injection of gadolinium-based nanoparticles. The animals were euthanized 1 to 24 hr after intravenous injection of particles. A two-dimensional scan of the sample, performed using a motorized micrometric 3D-stage, allowed the infrared laser beam exploring the surface with a lateral resolution less than 100 μm. Quantitative chemical images of Gd element inside the organ were obtained with sub-mM sensitivity. LIBS offers a simple and robust method to study the distribution of inorganic materials without any specific labeling. Moreover, the compatibility of the setup with standard optical microscopy emphasizes its potential to provide multiple images of the same biological tissue with different types of response: elemental, molecular, or cellular. PMID:24962015

  4. Characterization of coal fly ash components by laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Ctvrtnickova, Tereza; Mateo, Mari-Paz; Yanez, Armando; Nicolas, Gines

    2009-01-01

    The high sensitivity of laser-induced breakdown spectroscopy (LIBS) for the detection of most of the fly ash components enables the analysis of these residues produced during the combustion of coal. Fly ash consists of oxides (SiO 2 , Al 2 O 3 , Fe 2 O 3 , CaO...) and unburnt carbon which is the major determinant of combustion efficiency in coal fired boilers. For example, an excessive amount of residual carbon dispersed in the fly ash means a significant loss of energy (Styszko et al., 2004). Standard methods employed for the analysis of fly ash make not possible a control of boiler in real time. LIBS technique can significantly reduce the time of analysis, in some cases even an online detection can be performed. For this reason, some studies have been addressed in order to demonstrate the capability of the laser-induced breakdown spectroscopy technique for the detection of carbon content in high pressure conditions typical of thermal power plants (Noda et al., 2002) and for the monitoring of unburnt carbon for the boiler control in real time (Kurihara et al., 2003). In particular, the content of unburnt carbon is a valuable indicator for the control of fly ash quality and for the boiler combustion. Depending on this unburnt carbon content, fly ash can be disposed as an industrial waste or as a raw material for the production of concrete in the construction sector. In this study, analyses were performed on specimens of various forms of preparation. Pressed pellets were prepared with two different binders. Presented results concern the nature and amount of the binder used to pelletize the powder, and the laser-induced breakdown spectroscopy parameters and procedure required to draw calibration curves of elements from the fly ash. Analysis 'on tape' was performed in order to establish the experimental conditions for the future 'online analysis'.

  5. Stress-induced breakdown during galvanostatic anodising of zirconium

    International Nuclear Information System (INIS)

    Van Overmeere, Q.; Proost, J.

    2010-01-01

    Although internal stress is frequently being suggested as a plausible reason for oxide breakdown during valve metal anodising, no direct quantitative evidence has been made available yet. In this work, we anodized sputtered zirconium thin films galvanostatically at room temperature in sulphuric acid until breakdown was observed, and simultaneously measured the internal stress evolution in the oxide in situ, using a high-resolution curvature setup. It was found that the higher the magnitude of the observed internal compressive stress in the oxide, the smaller the oxide thickness at which breakdown occurred. The moment of breakdown was identified from a slope change in the cell voltage evolution, indicative for a decrease in anodising efficiency. The latter presumably occurs as a result of oxygen evolution, initiated by the relative increase of the cubic or tetragonal zirconia phase content relative to the monoclinic one. This was evidenced in turn by comparing electron diffractograms, taken in a transmission electron microscope, before and after breakdown. The critical role of internal stress on oxide breakdown during zirconium anodising can therefore be associated with its promoting effect on the densifying phase transformation of monoclinic oxide.

  6. Characteristics and Breakdown Behaviors of Polysilicon Resistors for High Voltage Applications

    Directory of Open Access Journals (Sweden)

    Xiao-Yu Tang

    2015-01-01

    Full Text Available With the rapid development of the power integrated circuit technology, polysilicon resistors have been widely used not only in traditional CMOS circuits, but also in the high voltage applications. However, there have been few detailed reports about the polysilicon resistors’ characteristics, like voltage and temperature coefficients and breakdown behaviors which are critical parameters of high voltage applications. In this study, we experimentally find that the resistance of the polysilicon resistor with a relatively low doping concentration shows negative voltage and temperature coefficients, while that of the polysilicon resistor with a high doping concentration has positive voltage and temperature coefficients. Moreover, from the experimental results of breakdown voltages of the polysilicon resistors, it could be deduced that the breakdown of polysilicon resistors is thermally rather than electrically induced. We also proposed to add an N-type well underneath the oxide to increase the breakdown voltage in the vertical direction when the substrate is P-type doped.

  7. Laser-induced breakdown spectroscopy for quantification of heavy metals in soils and sediments

    CSIR Research Space (South Africa)

    Ambushe, AA

    2010-09-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS) will be used to determine the contents of heavy metals in soils and sediments. LIBS results will be compared with the results obtained by inductively coupled plasma-optical emission spectrometry (ICP...

  8. Study of early laser-induced plasma dynamics: Transient electron density gradients via Thomson scattering and Stark Broadening, and the implications on laser-induced breakdown spectroscopy measurements

    International Nuclear Information System (INIS)

    Diwakar, P.K.; Hahn, D.W.

    2008-01-01

    To further develop laser-induced breakdown spectroscopy (LIBS) as an analytical technique, it is necessary to better understand the fundamental processes and mechanisms taking place during the plasma evolution. This paper addresses the very early plasma dynamics (first 100 ns) using direct plasma imaging, light scattering, and transmission measurements from a synchronized 532-nm probe laser pulse. During the first 50 ns following breakdown, significant Thomson scattering was observed while the probe laser interacted with the laser-induced plasma. The Thomson scattering was observed to peak 15-25 ns following plasma initiation and then decay rapidly, thereby revealing the highly transient nature of the free electron density and plasma equilibrium immediately following breakdown. Such an intense free electron density gradient is suggestive of a non-equilibrium, free electron wave generated by the initial breakdown and growth processes. Additional probe beam transmission measurements and electron density measurements via Stark broadening of the 500.1-nm nitrogen ion line corroborate the Thomson scattering observations. In concert, the data support the finding of a highly transient plasma that deviates from local thermodynamic equilibrium (LTE) conditions during the first tens of nanoseconds of plasma lifetime. The implications of this early plasma transient behavior are discussed in the context of plasma-analyte interactions and the role on LIBS measurements

  9. Characterization of hard coatings produced by laser cladding using laser-induced breakdown spectroscopy technique

    Energy Technology Data Exchange (ETDEWEB)

    Varela, J.A.; Amado, J.M.; Tobar, M.J.; Mateo, M.P.; Yañez, A.; Nicolas, G., E-mail: gines@udc.es

    2015-05-01

    Highlights: • Chemical mapping and profiling by laser-induced breakdown spectroscopy (LIBS) of coatings produced by laser cladding. • Production of laser clads using tungsten carbide (WC) and nickel based matrix (NiCrBSi) powders. • Calibration by LIBS of hardfacing alloys with different WC concentrations. - Abstract: Protective coatings with a high abrasive wear resistance can be obtained from powders by laser cladding technique, in order to extend the service life of some industrial components. In this work, laser clad layers of self-fluxing NiCrBSi alloy powder mixed with WC powder have been produced on stainless steel substrates of austenitic type (AISI 304) in a first step and then chemically characterized by laser-induced breakdown spectroscopy (LIBS) technique. With the suitable laser processing parameters (mainly output power, beam scan speed and flow rate) and powders mixture proportions between WC ceramics and NiCrBSi alloys, dense pore free layers have been obtained on single tracks and on large areas with overlapped tracks. The results achieved by LIBS technique and applied for the first time to the analysis of laser clads provided the chemical composition of the tungsten carbides in metal alloy matrix. Different measurement modes (multiple point analyses, depth profiles and chemical maps) have been employed, demonstrating the usefulness of LIBS technique for the characterization of laser clads based on hardfacing alloys. The behavior of hardness can be explained by LIBS maps which evidenced the partial dilution of some WC spheres in the coating.

  10. dc breakdown conditioning and breakdown rate of metals and metallic alloys under ultrahigh vacuum

    CERN Document Server

    Descoeudres, A; Calatroni, S; Taborelli, M; Wuensch, W

    2009-01-01

    RF accelerating structures of the Compact Linear Collider (CLIC) require a material capable of sustaining high electric field with a low breakdown rate and low induced damage. Because of the similarity of many aspects of DC and RF breakdown, a DC breakdown study is underway at CERN in order to test candidate materials and surface preparations, and have a better understanding of the breakdown mechanism under ultra-high vacuum in a simple setup. Conditioning speeds and breakdown fields of several metals and alloys have been measured. The average breakdown field after conditioning ranges from 100 MV/m for Al to 850 MV/m for stainless steel, and is around 170 MV/m for Cu which is the present base-line material for CLIC structures. The results indicate clearly that the breakdown field is limited by the cathode. The presence of a thin cuprous oxide film at the surface of copper electrodes significantly increases the breakdown field. On the other hand, the conditioning speed of Mo is improved by removing oxides at t...

  11. Real-time monitoring of airborne beryllium, at OSHA limit levels, by time-resolved laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Radziemski, L.J.; Loree, T.R.; Cremers, D.A.

    1982-01-01

    Real-time detection of beryllium particulate is being investigated by the new technique of laser-induced breakdown spectroscopy. For beryllium detection we monitor the 313.1-nm feature of once ionized beryllium (Be II). Numerous publications describe the technique, our beryllium results, and other applications. Here we summarize the important points and describe our experiments with beryllium

  12. Detection of Anomalies in Citrus Leaves Using Laser-Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Sankaran, Sindhuja; Ehsani, Reza; Morgan, Kelly T

    2015-08-01

    Nutrient assessment and management are important to maintain productivity in citrus orchards. In this study, laser-induced breakdown spectroscopy (LIBS) was applied for rapid and real-time detection of citrus anomalies. Laser-induced breakdown spectroscopy spectra were collected from citrus leaves with anomalies such as diseases (Huanglongbing, citrus canker) and nutrient deficiencies (iron, manganese, magnesium, zinc), and compared with those of healthy leaves. Baseline correction, wavelet multivariate denoising, and normalization techniques were applied to the LIBS spectra before analysis. After spectral pre-processing, features were extracted using principal component analysis and classified using two models, quadratic discriminant analysis and support vector machine (SVM). The SVM resulted in a high average classification accuracy of 97.5%, with high average canker classification accuracy (96.5%). LIBS peak analysis indicated that high intensities at 229.7, 247.9, 280.3, 393.5, 397.0, and 769.8 nm were observed of 11 peaks found in all the samples. Future studies using controlled experiments with variable nutrient applications are required for quantification of foliar nutrients by using LIBS-based sensing.

  13. Contributions to process monitoring by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Rusak, David Alexander

    1998-12-01

    When a pulsed laser of sufficient energy and pulse duration is brought to a focus, multi-photon ionization creates free electrons in the focal volume. These electrons are accelerated in a process known as inverse Bremsstrahlung and cause collisional ionization of species in the focal volume. More charge carriers are produced and the process continues for the duration of the laser pulse. The manifestation of this process is a visible spark or plasma which typically lasts for tens of microseconds. This laser-induced plasma can serve as a source in an atomic emission experiment. Because the composition of the plasma is determined in large part by the environment in which it forms, elements in the laser target can be determined spectroscopically. The goal of a laser-induced breakdown spectroscopy (LIBS) experiment is to establish a relationship between the concentration of an element of interest in the target and the intensity of light emitted from the laser-induced plasma at a wavelength characteristic of that element. Because LIBS requires only optical access to the sample and can perform elemental determinations in solids, liquids, or gases with little sample preparation, there is interest in using it as an on-line technique for process monitoring in a number of industrial applications. However, before the technique becomes useful in industrial applications, many issues regarding instrumentation and data analysis need to be addressed in the lab. The first two chapters of this dissertation provide, respectively, the basics of the atomic emission experiment and a background of laser-induced breakdown spectroscopy. The next two chapters examine the effect of target water content on the laser-induced plasma and the use of LIBS for analysis of aqueous samples. Chapter 5 describes construction of a fiber optic LIBS probe and its use to study temporal electron number density evolution in plasmas formed on different metals. Chapter 6 is a study of excitation, vibrational

  14. Electric properties and carrier multiplication in breakdown sites in multi-crystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Schneemann, Matthias; Carius, Reinhard; Rau, Uwe [IEK5-Photovoltaics, Forschungszentrum Jülich, Jülich 52425 (Germany); Kirchartz, Thomas, E-mail: t.kirchartz@fz-juelich.de [IEK5-Photovoltaics, Forschungszentrum Jülich, Jülich 52425 (Germany); Faculty of Engineering and CENIDE, University of Duisburg-Essen, Carl-Benz-Str. 199, Duisburg 47057 (Germany)

    2015-05-28

    This paper studies the effective electrical size and carrier multiplication of breakdown sites in multi-crystalline silicon solar cells. The local series resistance limits the current of each breakdown site and is thereby linearizing the current-voltage characteristic. This fact allows the estimation of the effective electrical diameters to be as low as 100 nm. Using a laser beam induced current (LBIC) measurement with a high spatial resolution, we find carrier multiplication factors on the order of 30 (Zener-type breakdown) and 100 (avalanche breakdown) as new lower limits. Hence, we prove that also the so-called Zener-type breakdown is followed by avalanche multiplication. We explain that previous measurements of the carrier multiplication using thermography yield results higher than unity, only if the spatial defect density is high enough, and the illumination intensity is lower than what was used for the LBIC method. The individual series resistances of the breakdown sites limit the current through these breakdown sites. Therefore, the measured multiplication factors depend on the applied voltage as well as on the injected photocurrent. Both dependencies are successfully simulated using a series-resistance-limited diode model.

  15. A case of pembrolizumab-induced type-1 diabetes mellitus and discussion of immune checkpoint inhibitor-induced type 1 diabetes.

    Science.gov (United States)

    Chae, Young Kwang; Chiec, Lauren; Mohindra, Nisha; Gentzler, Ryan; Patel, Jyoti; Giles, Francis

    2017-01-01

    Immune checkpoint inhibitors such as pembrolizumab, ipilimumab, and nivolumab, now FDA-approved for use in treating several types of cancer, have been associated with immune-related adverse effects. Specifically, the antibodies targeting the programmed-cell death-1 immune checkpoint, pembrolizumab and nivolumab, have been rarely reported to induce the development of type 1 diabetes mellitus. Here we describe a case of a patient who developed antibody-positive type 1 diabetes mellitus following treatment with pembrolizumab in combination with systemic chemotherapy for metastatic adenocarcinoma of the lung. We will also provide a brief literature review of other rarely reported cases of type 1 diabetes presenting after treatment with pembrolizumab and nivolumab, as well as discussion regarding potential mechanisms of this adverse effect and its importance as these drugs continue to become even more widespread.

  16. Nutrient Induced Type 2 and Chemical Induced Type 1 Experimental Diabetes Differently Modulate Gastric GLP-1 Receptor Expression

    Directory of Open Access Journals (Sweden)

    Olga Bloch

    2015-01-01

    Full Text Available T2DM patients demonstrate reduced GLP-1 receptor (GLP-1R expression in their gastric glands. Whether induced T2DM and T1DM differently affect the gastric GLP-1R expression is not known. This study assessed extrapancreatic GLP-1R system in glandular stomach of rodents with different types of experimental diabetes. T2DM and T1DM were induced in Psammomys obesus (PO by high-energy (HE diet and by streptozotocin (STZ in Sprague Dawly (SD rats, respectively. GLP-1R expression was determined in glandular stomach by RT PCR and immunohistomorphological analysis. The mRNA expression and cellular association of the GLP-1R in principal glands were similar in control PO and SD rats. However, nutrient and chemical induced diabetes resulted in opposite alterations of glandular GLP-1R expression. Diabetic PO demonstrated increased GLP-1R mRNA expression, intensity of cellular GLP-1R immunostaining, and frequency of GLP-1R positive cells in the neck area of principal glands compared with controls. In contrast, SD diabetic rats demonstrated decreased GLP-1 mRNA, cellular GLP-1R immunoreactivity, and frequency of GLP-1R immunoreactive cells in the neck area compared with controls. In conclusion, nutrient and chemical induced experimental diabetes result in distinct opposite alterations of GLP-1R expression in glandular stomach. These results suggest that induced T1DM and T2DM may differently modulate GLP-1R system in enteropancreatic axis.

  17. A computational study of the topology of vortex breakdown

    Science.gov (United States)

    Spall, Robert E.; Gatski, Thomas B.

    1991-01-01

    A fully three-dimensional numerical simulation of vortex breakdown using the unsteady, incompressible Navier-Stokes equations has been performed. Solutions to four distinct types of breakdown are identified and compared with experimental results. The computed solutions include weak helical, double helix, spiral, and bubble-type breakdowns. The topological structure of the various breakdowns as well as their interrelationship are studied. The data reveal that the asymmetric modes of breakdown may be subject to additional breakdowns as the vortex core evolves in the streamwise direction. The solutions also show that the freestream axial velocity distribution has a significant effect on the position and type of vortex breakdown.

  18. Minimally invasive non-thermal laser technology using laser-induced optical breakdown for skin rejuvenation

    NARCIS (Netherlands)

    Habbema, L.; Verhagen, R.; Van Hal, R.; Liu, Y.; Varghese, B.

    2011-01-01

    We describe a novel, minimally invasive laser technology for skin rejuvenation by creating isolated microscopic lesions within tissue below the epidermis using laser induced optical breakdown. Using an in-house built prototype device, tightly focused near-infrared laser pulses are used to create

  19. Laser-induced breakdown spectroscopy fundamentals and applications

    CERN Document Server

    Noll, Reinhard

    2012-01-01

    This book is a comprehensive source of the fundamentals, process parameters, instrumental components and applications of laser-induced breakdown spectroscopy (LIBS). The effect of multiple pulses on material ablation, plasma dynamics and plasma emission is presented. A heuristic plasma modeling allows to simulate complex experimental plasma spectra. These methods and findings form the basis for a variety of applications to perform quantitative multi-element analysis with LIBS. These application potentials of LIBS have really boosted in the last years ranging from bulk analysis of metallic alloys and non-conducting materials, via spatially resolved analysis and depth profiling covering measuring objects in all physical states: gaseous, liquid and solid. Dedicated chapters present LIBS investigations for these tasks with special emphasis on the methodical and instrumental concepts as well as the optimization strategies for a quantitative analysis. Requirements, concepts, design and characteristic features of LI...

  20. Determining the mode of high voltage breakdowns in vacuum devices

    International Nuclear Information System (INIS)

    Miller, H.C.; Furno, E.J.; Sturtz, J.P.

    1980-01-01

    Devices were constructed which were essentially vacuum diodes equipped with windows allowing observation of high voltage breakdowns. The waveform of the applied voltage was photographed, and the x-ray output was monitored to investigate electrical breakdown in these vacuum diodes. Results indicate that breakdowns may be divided into two types: (1) vacuum (interelectrode) breakdown - characterized by a diffuse moderately bright discharge, a relative slow and smooth voltage collapse, and a large burst of x-rays, and (2) surface (insulator) flashover - characterized by a bright discharge with a very bright filamentary core, a relatively fast and noisy voltage collapse and no x-ray burst. Useful information concerning the type of breakdown in a vacuum device can be obtained by monitoring the voltage (current) waveform and the x-ray output

  1. Splenectomy attenuates severe thermal trauma-induced intestinal barrier breakdown in rats.

    Science.gov (United States)

    Liu, Xiang-dong; Chen, Zhen-yong; Yang, Peng; Huang, Wen-guang; Jiang, Chun-fang

    2015-12-01

    The severe local thermal trauma activates a number of systemic inflammatory mediators, such as TNF-α, NF-κB, resulting in a disruption of gut barrier. The gastrointestinal tight junction (TJ) is highly regulated by membrane-associated proteins including zonula occludens protein-1 (ZO-1) and occludin, which can be modulated by inflammatory cytokines. As splenectomy has been shown to reduce secretion of cytokines, we hypothesized that (1) severe scald injury up-regulates TNF-α and NF-κB, meanwhile down-regulates expression of ZO-1 and occludin, leading to the increased intestinal permeability, and (2) splenectomy can prevent the burn-induced decrease in ZO-1 and occludin expression, resulting in improved intestinal barrier. Wistar rats undergoing a 30% total body surface area (TBSA) thermal trauma were randomized to receive an accessorial splenectomy meanwhile or not. Intestinal injury was assessed by histological morphological analysis, and serum endotoxin levels, TNF-α, NF-κB, ZO-1 and occludin levels were detected by Western blotting in the terminal ileum mucosal tissue. 30% TBSA burn caused a significant increase in serum endotoxin levels, but NF-κB, and TNF-α, and the average intestinal villus height and mucosal thickness were decreased significantly. Burn injury could also markedly decrease the levels of ZO-1 and occludin in terminal ileum mucosal tissue (all PSplenectomy at 7th day after burn significantly reversed the burn-induced breakdown of ZO-1 and occludin (all PSplenectomy may provide a therapeutic benefit in restoring burn-induced intestinal barrier by decreasing the release of inflammatory cytokines and recovering TJ proteins.

  2. Jerky-type phenomena at nanocomposite surfaces : The breakdown of the coulomb friction law

    NARCIS (Netherlands)

    Hosson, Jeff T.M. De; Pei, Yutao; Chen, Changqiang

    This article concentrates on the jerky-type phenomenon of surfaces in relative motion (i.e., a breakdown of the Coulomb friction law) in nanocomposite materials. Physical arguments are provided to understand the dependence of friction on sliding velocity in the sense of self-lubrication. Also

  3. Three-dimensional supersonic vortex breakdown

    Science.gov (United States)

    Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.

    1993-01-01

    Three-dimensional supersonic vortex-breakdown problems in bound and unbound domains are solved. The solutions are obtained using the time-accurate integration of the unsteady, compressible, full Navier-Stokes (NS) equations. The computational scheme is an implicit, upwind, flux-difference splitting, finite-volume scheme. Two vortex-breakdown applications are considered in the present paper. The first is for a supersonic swirling jet which is issued from a nozzle into a supersonic uniform flow at a lower Mach number than that of the swirling jet. The second is for a supersonic swirling flow in a configured circular duct. In the first application, an extensive study of the effects of grid fineness, shape and grid-point distribution on the vortex breakdown is presented. Four grids are used in this study and they show a substantial dependence of the breakdown bubble and shock wave on the grid used. In the second application, the bubble-type and helix-type vortex breakdown have been captured.

  4. A review of the development of portable laser induced breakdown spectroscopy and its applications

    Czech Academy of Sciences Publication Activity Database

    Rakovský, Jozef; Čermák, P.; Musset, O.; Veis, P.

    2014-01-01

    Roč. 101, NOV 2014 (2014), s. 269-287 ISSN 0584-8547 R&D Projects: GA ČR GA13-11635S Institutional support: RVO:61388955 Keywords : Fiber laser * Fieldable LIBS * Laser-induced breakdown spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.176, year: 2014

  5. Applications of Laser-Induced Breakdown Spectroscopy (LIBS) in Molten Metal Processing

    Science.gov (United States)

    Hudson, Shaymus W.; Craparo, Joseph; De Saro, Robert; Apelian, Diran

    2017-10-01

    In order for metals to meet the demand for critical applications in the automotive, aerospace, and defense industries, tight control over the composition and cleanliness of the metal must be achieved. The use of laser-induced breakdown spectroscopy (LIBS) for applications in metal processing has generated significant interest for its ability to perform quick analyses in situ. The fundamentals of LIBS, current techniques for deployment on molten metal, demonstrated capabilities, and possible avenues for development are reviewed and discussed.

  6. Discrimination of forensic trace evidence using laser induced breakdown spectroscopy

    Science.gov (United States)

    Bridge, Candice Mae

    Elemental analysis in forensic laboratories can be tedious and many trace evidence items are not analyzed to determine their elemental composition. Presently, scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDS) is the primary analytical tool for determining the elemental composition of trace evidence items. However, due to the time it takes to obtain the required vacuum and the limited number of samples that can be analyzed at any one time, SEM-EDS can be impractical for a high volume of evidence items. An alternative instrument that can be used for this type of analysis is laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). While LA-ICP-MS is a very precise and quantitative analytical method that determines elemental composition based on isotopic mass measurements; however, the instrumentation is relatively expensive and therefore is budgetarily prohibitive for many forensic laboratories. It is the purpose of this research to evaluate an inexpensive instrument that can potentially provide rapid elemental analysis for many forensic laboratories. Laser induced breakdown spectroscopy (LIBS) is an analytical method that meets these requirements and offers information about the elemental composition based on ionic, atomic and diatomic molecular emissions.

  7. A computational study of the taxonomy of vortex breakdown

    Science.gov (United States)

    Spall, Robert E.; Gatski, Thomas B.

    1990-01-01

    The results of a fully three-dimensional numerical simulation of vortex breakdown using the unsteady, incompressible Navier-Stokes equations are presented. The solutions show that the freestream axial velocity distribution has a significant effect on the position and type of vortex breakdown. Common features between bubble-type and spiral-type breakdown are identified and the role of flow stagnation and the critical state are discussed as complimentary ideas describing the initiation of breakdown.

  8. Development and Validation of a Laser Induced Breakdown Spectrometry Method for Cancer Detection and Characterization

    International Nuclear Information System (INIS)

    Otieno, E.A.

    2015-01-01

    Laser Induced Breakdown Spectroscopy (LIBS) is a type of atomic emission spectroscopy which employs a highly energetic laser pulse to simultaneously prepare the sample and excite the species. The simplest calibration technique is based on the use of standard calibration curves. The phenomenon of self-absorption may be considered as a factor of linearity deviation in conventional calibration. Chemometrics has the ability to extract underlying phenomena from complex data with the help of multivariate techniques such as SIMCA, ICA, PCA, SVM and ANNs. The techniques are also capable of capturing information about correlated trends in a given dataset. It has been reported that in normal liver the zinc concentration is about 78ug/g, wet weight and the primary liver cancer itself is about 18ug/g

  9. Sensitive elemental detection using microwave-assisted laser-induced breakdown imaging

    Science.gov (United States)

    Iqbal, Adeel; Sun, Zhiwei; Wall, Matthew; Alwahabi, Zeyad T.

    2017-10-01

    This study reports a sensitive spectroscopic method for quantitative elemental detection by manipulating the temporal and spatial parameters of laser-induced plasma. The method was tested for indium detection in solid samples, in which laser ablation was used to generate a tiny plasma. The lifetime of the laser-induced plasma can be extended to hundreds of microseconds using microwave injection to remobilize the electrons. In this novel method, temporal integrated signal of indium emission was significantly enhanced. Meanwhile, the projected detectable area of the excited indium atoms was also significantly improved using an interference-, instead of diffraction-, based technique, achieved by directly imaging microwave-enhanced plasma through a novel narrow-bandpass filter, exactly centered at the indium emission line. Quantitative laser-induce breakdown spectroscopy was also recorded simultaneously with the new imaging method. The intensities recorded from both methods exhibit very good mutual linear relationship. The detection intensity was improved to 14-folds because of the combined improvements in the plasma lifetime and the area of detection.

  10. Speciation of chromium by dispersive liquid–liquid microextraction followed by laser-induced breakdown spectrometry detection (DLLME–LIBS)

    OpenAIRE

    Gaubeur, Ivanise; Aguirre Pastor, Miguel Ángel; Kovachev, Nikolay; Hidalgo Núñez, Montserrat; Canals Hernández, Antonio

    2015-01-01

    In this study, an analytical methodology based on a combination of dispersive liquid–liquid microextraction with laser-induced breakdown spectrometry was evaluated for simultaneous pre-concentration, speciation and detection of Cr. The microextraction procedure was based on the injection of appropriated quantities of 1-undecanol and ethanol into a sample solution containing the complexes formed between Cr(VI) and diethyldithiocarbamate (DDTC). The main experimental factors affecting the compl...

  11. Laser-induced carbon plasma emission spectroscopic measurements on solid targets and in gas-phase optical breakdown

    International Nuclear Information System (INIS)

    Nemes, Laszlo; Keszler, Anna M.; Hornkohl, James O.; Parigger, Christian

    2005-01-01

    We report measurements of time- and spatially averaged spontaneous-emission spectra following laser-induced breakdown on a solid graphite/ambient gas interface and on solid graphite in vacuum, and also emission spectra from gas-phase optical breakdown in allene C3H4 and helium, and in CO2 and helium mixtures. These emission spectra were dominated by CII (singly ionized carbon), CIII (doubly ionized carbon), hydrogen Balmer beta (H b eta), and Swan C2 band features. Using the local thermodynamic equilibrium and thin plasma assumptions, we derived electron number density and electron temperature estimates. The former was in the 1016 cm -3 range, while the latter was found to be near 20000 K. In addition, the vibration-rotation temperature of the Swan bands of the C2 radical was determined to be between 4500 and 7000 K, using an exact theoretical model for simulating diatomic emission spectra. This temperature range is probably caused by the spatial inhomogeneity of the laser-induced plasma plume. Differences are pointed out in the role of ambient CO2 in a solid graphite target and in gas-phase breakdown plasma

  12. Laser-induced breakdown spectroscopy of tantalum plasma

    International Nuclear Information System (INIS)

    Khan, Sidra; Bashir, Shazia; Hayat, Asma; Khaleeq-ur-Rahman, M.; Faizan–ul-Haq

    2013-01-01

    Laser Induced Breakdown spectroscopy (LIBS) of Tantalum (Ta) plasma has been investigated. For this purpose Q-switched Nd: YAG laser pulses (λ∼ 1064 nm, τ∼ 10 ns) of maximum pulse energy of 100 mJ have been employed as an ablation source. Ta targets were exposed under the ambient environment of various gases of Ar, mixture (CO 2 : N 2 : He), O 2 , N 2 , and He under various filling pressure. The emission spectrum of Ta is observed by using LIBS spectrometer. The emission intensity, excitation temperature, and electron number density of Ta plasma have been evaluated as a function of pressure for various gases. Our experimental results reveal that the optical emission intensity, the electron temperature and density are strongly dependent upon the nature and pressure of ambient environment. The SEM analysis of the ablated Ta target has also been carried out to explore the effect of ambient environment on the laser induced grown structures. The growth of grain like structures in case of molecular gases and cone-formation in case of inert gases is observed. The evaluated plasma parameters by LIBS analysis such as electron temperature and the electron density are well correlated with the surface modification of laser irradiated Ta revealed by SEM analysis

  13. Laser-induced breakdown spectroscopy of tantalum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Sidra; Bashir, Shazia; Hayat, Asma; Khaleeq-ur-Rahman, M.; Faizan–ul-Haq [Centre for Advanced Studies in Physics, GC University, Lahore (Pakistan)

    2013-07-15

    Laser Induced Breakdown spectroscopy (LIBS) of Tantalum (Ta) plasma has been investigated. For this purpose Q-switched Nd: YAG laser pulses (λ∼ 1064 nm, τ∼ 10 ns) of maximum pulse energy of 100 mJ have been employed as an ablation source. Ta targets were exposed under the ambient environment of various gases of Ar, mixture (CO{sub 2}: N{sub 2}: He), O{sub 2}, N{sub 2}, and He under various filling pressure. The emission spectrum of Ta is observed by using LIBS spectrometer. The emission intensity, excitation temperature, and electron number density of Ta plasma have been evaluated as a function of pressure for various gases. Our experimental results reveal that the optical emission intensity, the electron temperature and density are strongly dependent upon the nature and pressure of ambient environment. The SEM analysis of the ablated Ta target has also been carried out to explore the effect of ambient environment on the laser induced grown structures. The growth of grain like structures in case of molecular gases and cone-formation in case of inert gases is observed. The evaluated plasma parameters by LIBS analysis such as electron temperature and the electron density are well correlated with the surface modification of laser irradiated Ta revealed by SEM analysis.

  14. A versatile interaction chamber for laser-based spectroscopic applications, with the emphasis on Laser-Induced Breakdown Spectroscopy

    International Nuclear Information System (INIS)

    Novotný, J.; Brada, M.; Petrilak, M.; Prochazka, D.; Novotný, K.; Hrdička, A.; Kaiser, J.

    2014-01-01

    The technical note describes the interaction chamber developed particularly for the laser spectroscopy technique applications, such as Laser-Induced Breakdown Spectroscopy (LIBS), Raman Spectroscopy and Laser-Induced Fluorescence. The chamber was designed in order to provide advanced possibilities for the research in mentioned fields and to facilitate routine research procedures. Parameters and the main benefits of the chamber are described, such as the built-in module for automatic 2D chemical mapping and the possibility to set different ambient gas conditions (pressure value and gas type). Together with the chamber description, selected LIBS application examples benefiting from chamber properties are described. - Highlights: • Development of the interaction chamber for LIBS applications • Example of automated chemical mapping of lead in a chalcopyrite sample • Example of LIBS measurement of fluorine in underpressure • Overview of chamber benefits

  15. Electrical breakdown phenomena of dielectric elastomers

    DEFF Research Database (Denmark)

    Mateiu, Ramona Valentina; Yu, Liyun; Skov, Anne Ladegaard

    2017-01-01

    Silicone elastomers have been heavily investigated as candidates for dielectric elastomers and are as such almost ideal candidates with their inherent softness and compliance but they suffer from low dielectric permittivity. This shortcoming has been sought optimized by many means during recent...... years. However, optimization with respect to the dielectric permittivity solely may lead to other problematic phenomena such as premature electrical breakdown. In this work, we investigate the electrical breakdown phenomena of various types of permittivity-enhanced silicone elastomers. Two types...... of silicone elastomers are investigated and different types of breakdown are discussed. Furthermore the use of voltage stabilizers in silicone-based dielectric elastomers is investigated and discussed....

  16. Laser induced breakdown in gas mixtures. Experimental and statistical investigation on n-decane ignition: Pressure, mixture composition and equivalence ratio effects.

    Science.gov (United States)

    Mokrani, Nabil; Gillard, Philippe

    2018-03-26

    This paper presents a physical and statistical approach to laser-induced breakdown in n-decane/N 2  + O 2 mixtures as a function of incident or absorbed energy. A parametric study, with pressure, fuel purity and equivalence ratio, was conducted to determine the incident and absorbed energies involved in producing breakdown, followed or not by ignition. The experiments were performed using a Q-switched Nd-YAG laser (1064 nm) inside a cylindrical 1-l combustion chamber in the range of 1-100 mJ of incident energy. A stochastic study of breakdown and ignition probabilities showed that the mixture composition had a significant effect on ignition with large variation of incident or absorbed energy required to obtain 50% of breakdown. It was observed that the combustion products absorb more energy coming from the laser. The effect of pressure on the ignition probabilities of lean and near stoichiometric mixtures was also investigated. It was found that a high ignition energy E50% is required for lean mixtures at high pressures (3 bar). The present study provides new data obtained on an original experimental setup and the results, close to laboratory-produced laser ignition phenomena, will enhance the understanding of initial conditions on the breakdown or ignition probabilities for different mixtures. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Dehydration breakdown of antigorite and the formation of B-type olivine CPO

    Science.gov (United States)

    Nagaya, Takayoshi; Wallis, Simon R.; Kobayashi, Hiroaki; Michibayashi, Katsuyoshi; Mizukami, Tomoyuki; Seto, Yusuke; Miyake, Akira; Matsumoto, Megumi

    2014-02-01

    Peridotite formed by contact metamorphism and dehydration breakdown of an antigorite schist from the Happo area, central Japan shows a strong olivine crystallographic preferred orientation (Ol CPO). The lack of mesoscale deformation structures associated with the intrusion and the lack of microstructural evidence for plastic deformation of neoblastic grains suggest that olivine CPO in this area did not form as a result of solid-state deformation. Instead, the good correspondence between the original antigorite orientation and the orientation of the newly formed olivine implies the CPO formed by topotactic growth of the olivine after antigorite. Ol CPO is likely to develop by a similar process in subduction zone environments where foliated serpentinite is dragged down to depths where antigorite is no longer stable. The Happo Ol CPO has a strong a-axis concentration perpendicular to the lineation and within the foliation-commonly referred to as B-type Ol CPO. Seismic fast directions parallel to the ocean trench are observed in many convergent margins and are consistent with the presence of B-type Ol CPO in the mantle wedge of these regions. Experimental work has shown that B-type CPO can form by dislocation creep under hydrous conditions at relatively high stresses. There are, however, several discrepancies between the characteristics of natural and laboratory samples with B-type Ol CPO. (1) The formation conditions (stress and temperature) of some natural examples with B-type CPO fall outside those predicted by experiments. (2) In deformation experiments, slip in the crystallographic c-axis direction is important but has not been observed in natural examples of B-type CPO. (3) Experimental work suggests the presence of H2O and either high shear stress or relatively low temperatures are essential for the formation of B-type CPO. These conditions are most likely to be achieved close to subduction boundaries, but these regions are also associated with serpentinization

  18. dc breakdown conditioning and breakdown rate of metals and metallic alloys under ultrahigh vacuum

    Directory of Open Access Journals (Sweden)

    A. Descoeudres

    2009-03-01

    Full Text Available The rf accelerating structures of the Compact Linear Collider (CLIC require a material capable of sustaining high electric field with a low breakdown rate and low induced damage. Because of the similarity of many aspects of dc and rf breakdown, a dc breakdown study is underway at CERN in order to test candidate materials and surface preparations, and have a better understanding of the breakdown mechanism under ultrahigh vacuum in a simple setup. Conditioning speeds and breakdown fields of several metals and alloys have been measured. The average breakdown field after conditioning ranges from 100  MV/m for Al to 850  MV/m for stainless steel, and is around 170  MV/m for Cu which is the present base-line material for CLIC structures. The results indicate clearly that the breakdown field is limited by the cathode. The presence of a thin cuprous oxide film at the surface of copper electrodes significantly increases the breakdown field. On the other hand, the conditioning speed of Mo is improved by removing oxides at the surface with a vacuum heat treatment, typically at 875°C for 2 hours. Surface finishing treatments of Cu samples only affect the very first breakdowns. More generally, surface treatments have an effect on the conditioning process itself, but not on the average breakdown field reached after the conditioning phase. In analogy to rf, the breakdown probability has been measured in dc with Cu and Mo electrodes. The dc data show similar behavior as rf as a function of the applied electric field.

  19. Experimental study of CO/sub 2/-laser-induced air breakdown over long distances

    Energy Technology Data Exchange (ETDEWEB)

    Caressa, J.; Autric, M.; Dufresne, D.; Bournot, P.

    1979-11-01

    Results of an experimental study on air breakdown produced by radiation from a high-power CO/sub 2/ laser are presented. From these measurements, the breakdown threshold over a flux range (1.5 x 10/sup 8/ 1 to 55 m. The first of these experiments was carried out in the laboratory atmosphere (10breakdown region for different laser parameters (5

  20. Laser-induced breakdown spectroscopy theory and applications

    CERN Document Server

    Perini, Umberto

    2014-01-01

    This book deals with the Laser-Induced Breakdown Spectroscopy (LIBS), a widely used atomic emission spectroscopy technique for elemental analysis of materials. It is based on the use of a high-power, short pulse laser excitation. The book is divided into two main sections: the first one concerning theoretical aspects of the technique, the second one describing the state of the art in applications of the technique in different scientific/technological areas. Numerous examples of state of the art applications provide the readers an almost complete scenario of the LIBS technique. The LIBS theoretical aspects are reviewed. The book helps the readers who are less familiar with the technique to understand the basic principles. Numerous examples of state of the art applications give an almost complete scenario of the LIBS technique potentiality. These examples of applications may have a strong impact on future industrial utilization. The authors made important contributions to the development of this field.

  1. ANALISIS UNSUR Ag PADA SAMPEL CAIR DENGAN LASER INDUCED BREAKDOWN SPECTROSCOPY (LIBS

    Directory of Open Access Journals (Sweden)

    Sinaga Natalia Declarossy

    2014-02-01

    Full Text Available It has been done research on the analysis of Ag element in the liquid electrolyte with Laser Induced Breakdown Spectroscopy (LIBS through electrolysis method. Observations conducted by LIBS using Nd-YAG laser (1064nm, 7ns. Prior to analyze, first looking for the optimum conditions of experiments had been done. The results showed that the optimum laser energy to the characterization of the elements Ag was 100 mJ and optimum conditions of electric current and time deposition on electrolysis process were 4.93 mA and 10 minutes, respectively. These conditions, next, for the application of quantitative analysis of Ag solution that started from concentration 300 ppm to the lowest concentration and limit of detection obtained 1 ppm.

  2. Analysis of bakery products by laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Bilge, Gonca; Boyacı, İsmail Hakkı; Eseller, Kemal Efe; Tamer, Uğur; Çakır, Serhat

    2015-08-15

    In this study, we focused on the detection of Na in bakery products by using laser-induced breakdown spectroscopy (LIBS) as a quick and simple method. LIBS experiments were performed to examine the Na at 589 nm to quantify NaCl. A series of standard bread sample pellets containing various concentrations of NaCl (0.025-3.5%) were used to construct the calibration curves and to determine the detection limits of the measurements. Calibration graphs were drawn to indicate functions of NaCl and Na concentrations, which showed good linearity in the range of 0.025-3.5% NaCl and 0.01-1.4% Na concentrations with correlation coefficients (R(2)) values greater than 0.98 and 0.96. The obtained detection limits for NaCl and Na were 175 and 69 ppm, respectively. Performed experimental studies showed that LIBS is a convenient method for commercial bakery products to quantify NaCl concentrations as a rapid and in situ technique. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Validation of the solidifying soil process using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Lin, Zhao-Xiang; Liu, Lin-Mei; Liu, Lu-Wen

    2016-09-01

    Although an Ionic Soil Stabilizer (ISS) has been widely used in landslide control, it is desirable to effectively monitor the stabilization process. With the application of laser-induced breakdown spectroscopy (LIBS), the ion contents of K, Ca, Na, Mg, Al, and Si in the permeable fluid are detected after the solidified soil samples have been permeated. The processes of the Ca ion exchange are analyzed at pressures of 2 and 3 atm, and it was determined that the cation exchanged faster as the pressure increased. The Ca ion exchanges were monitored for different stabilizer mixtures, and it was found that a ratio of 1:200 of ISS to soil is most effective. The investigated plasticity and liquidity indexes also showed that the 1:200 ratio delivers the best performance. The research work indicates that it is possible to evaluate the engineering performances of soil solidified by ISS in real time and online by LIBS.

  4. Comparative Study of Elemental Nutrients in Organic and Conventional Vegetables Using Laser-Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Bhatt, Chet R; Alfarraj, Bader; Ghany, Charles T; Yueh, Fang Y; Singh, Jagdish P

    2017-04-01

    In this study, the laser-induced breakdown spectroscopy (LIBS) technique was used to identify and compare the presence of major nutrient elements in organic and conventional vegetables. Different parts of cauliflowers and broccolis were used as working samples. Laser-induced breakdown spectra from these samples were acquired at optimum values of laser energy, gate delay, and gate width. Both univariate and multivariate analyses were performed for the comparison of these organic and conventional vegetable flowers. Principal component analysis (PCA) was taken into account for multivariate analysis while for univariate analysis, the intensity of selected atomic lines of different elements and their intensity ratio with some reference lines of organic cauliflower and broccoli samples were compared with those of conventional ones. In addition, different parts of the cauliflower and broccoli were compared in terms of intensity and intensity ratio of elemental lines.

  5. Long-wave, infrared laser-induced breakdown (LIBS) spectroscopy emissions from energetic materials.

    Science.gov (United States)

    Yang, Clayton S-C; Brown, Ei E; Hommerich, Uwe; Jin, Feng; Trivedi, Sudhir B; Samuels, Alan C; Snyder, A Peter

    2012-12-01

    Laser-induced breakdown spectroscopy (LIBS) has shown great promise for applications in chemical, biological, and explosives sensing and has significant potential for real-time standoff detection and analysis. In this study, LIBS emissions were obtained in the mid-infrared (MIR) and long-wave infrared (LWIR) spectral regions for potential applications in explosive material sensing. The IR spectroscopy region revealed vibrational and rotational signatures of functional groups in molecules and fragments thereof. The silicon-based detector for conventional ultraviolet-visible LIBS operations was replaced with a mercury-cadmium-telluride detector for MIR-LWIR spectral detection. The IR spectral signature region between 4 and 12 μm was mined for the appearance of MIR and LWIR-LIBS emissions directly indicative of oxygenated breakdown products as well as dissociated, and/or recombined sample molecular fragments. Distinct LWIR-LIBS emission signatures from dissociated-recombination sample molecular fragments between 4 and 12 μm are observed for the first time.

  6. Laser-Induced Breakdown Spectroscopy (LIBS) for Monitoring the Formation of Hydroxyapatite Porous Layers

    OpenAIRE

    Sola, Daniel; Paulés, Daniel; Grima, Lorena; Anzano, Jesús

    2017-01-01

    Laser-induced breakdown spectroscopy (LIBS) is applied to characterize the formation of porous hydroxyapatite layers on the surface of 0.8CaSiO3-0.2Ca3(PO4)2 biocompatible eutectic glass immersed in simulated body fluid (SBF). Compositional and structural characterization analyses were also conducted by field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), and micro-Raman spectroscopy.

  7. Compositional analysis of Hispanic Terra Sigillata by laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Lopez, A.J.; Nicolas, G.; Mateo, M.P.; Pinon, V.; Tobar, M.J.; Ramil, A.

    2005-01-01

    Laser induced breakdown spectroscopy (LIBS) has been applied for the analysis of Roman pottery Hispanic Terra Sigillata dating back to the 1st-5th century A.C. from two important ceramic production centers in Spain. For each sample, several examinations were performed on slip and body providing data necessary to draw depth profiles of the contents of various elements. In all the cases investigated, the amount of some elements such as calcium and iron and the presence of other ones such as silicon and aluminum showed the differences existing between slip and body in these ancient ceramics in relation with their region and period of production. In addition, complementary analyses were carried out with scanning electron microscopy linked with energy dispersive X-ray microanalysis (SEM/EDX) to measure the thickness of slip and to obtain verification of chemical results

  8. Effects of Coupled Rolling and Pitching Oscillations on Transonic Shock-Induced Vortex-Breakdown Flow of a Delta Wing

    Science.gov (United States)

    Kandil, Osama A.; Menzies, Margaret A.

    1996-01-01

    Unsteady, transonic vortex-breakdown flow over a 65 deg. sharp edged, cropped-delta wing of zero thickness undergoing forced coupled pitching and rolling oscillations is investigated computationally. The initial condition of the flow is characterized by a transverse terminating shock which induces of the leading edge vortex cores to breakdown. The computational investigation uses the time-accurate solution of the laminar, unsteady, compressible, full Navier-Stokes equations with the implicit, upwind, Roe flux-difference splitting, finite-volume scheme. The main focus is to analyze the effects of coupled motion on the wing response and vortex-breakdown flow by varying oscillation frequency and phase angle while keeping the maximum pitch and roll amplitude equal.

  9. Cyclotron resonant gas breakdown with a 1.22-nm 13CH3F laser

    International Nuclear Information System (INIS)

    Hacker, M.P.; Lax, B.; Metz, R.N.; Temkin, R.J.

    1979-01-01

    Cyclotron-resonant laser-induced gas breakdown has been studied for the first time in the transverse geometry, using 1.222-nm 13 CH 3 F laser radiation propagating perpendicular to the magnetic field axis. The line shape of absorbed laser radiation versus magnetic field near electron cyclotron resonance (87.75 kG) indicates a strong dependence of the line shape on the focused laser intensity. This dependence is not predicted by the standard equilibrium theory of high-frequency gas breakdown in a magnetic field. We have developed an analytic theory to explain the observed line shapes. The theory takes into account the laser propagation characteristics, in particular that there is nonuniform ionization due to strong resonant absorption of the laser radiation in a length comparable to or shorter than that of the laser focal volume. The transverse geometry simplifies the theoretical analysis because the observed line shapes are not significantly affected by Doppler broadening. Extensive data have been obtained on the fraction of laser pulse energy absorbed in the gas breakdown volume as a function of magnetic field, helium gas pressure, and incident laser pulse energy. Good quantitative agreement is obtained between the observed laser pulse absorption line shapes and the nonuniform ionization theory

  10. Secondary ionization processes in laser induced breakdown of electronegative gases

    International Nuclear Information System (INIS)

    Gamal Yosr, E.E.D.; Shafik, M.S.; Abdel-Moneim, H.M.

    1990-08-01

    This paper presents an investigation of the stepwise ionization processes which occur during the interaction of laser radiation with electronegative gases. Calculations are carried out adopting a modified version of the electron cascade model previously developed by Evans and Gamal. The modifications of the model are performed for the case of molecular oxygen to account for electron attachment losses. Particular attention is devoted to molecular oxygen at a pressure of 2.8 x 10 4 Torr irradiated by 10 ns pulse of Nd:YAG laser (λ=1.064 μm) at a peak intensity of 1.7x10 11 Wcm -2 . The calculations consider the effect of the secondary ionization processes on the electron energy distribution function and its parameters (evolution of the density of the excited molecules, electrons density as well as the electron mean energy during the laser flash). This analysis shows how the removal of slow electrons by attachment to oxygen molecules creates a strong competition between the stepwise ionization processes. These processes namely photoionization and collisional ionization deplete the electronic excited states and contribute eventually to the ionization growth rate in laser induced breakdown of electronegative gases. (author). 7 refs, 6 figs, 1 tab

  11. Evaluation of the Nutritional Changes Caused by Huanglongbing (HLB) to Citrus Plants Using Laser-Induced Breakdown Spectroscopy.

    Science.gov (United States)

    Ranulfi, Anielle Coelho; Romano, Renan Arnon; Bebeachibuli Magalhães, Aida; Ferreira, Ednaldo José; Ribeiro Villas-Boas, Paulino; Marcondes Bastos Pereira Milori, Débora

    2017-07-01

    Huanglongbing (HLB) is the most recent and destructive bacterial disease of citrus and has no cure yet. A promising alternative to conventional methods is to use laser-induced breakdown spectroscopy (LIBS), a multi-elemental analytical technique, to identify the nutritional changes provoked by the disease to the citrus leaves and associate the mineral composition profile with its health status. The leaves were collected from adult citrus trees and identified by visual inspection as healthy, HLB-symptomatic, and HLB-asymptomatic. Laser-induced breakdown spectroscopy measurements were done in fresh leaves without sample preparation. Nutritional variations were evaluated using statistical tools, such as Student's t-test and analysis of variance applied to LIBS spectra, and the largest were found for Ca, Mg, and K. Considering the nutritional profile changes, a classifier induced by classification via regression combined with partial least squares regression was built resulting in an accuracy of 73% for distinguishing the three categories of leaves.

  12. Breakdown characteristics in DC spark experiments of copper focusing on purity and hardness

    CERN Document Server

    Yokoyama, Kazue; Higashi, Yasuo; Higo, Toshi; Matsumoto, Shuji; Santiago-Kern, Ana Rocia; Pasquino, Chiara; Calatroni, Sergio; Wuensch, Walter

    2010-01-01

    The breakdown characteristics related to the differences in purity and hardness were investigated for several types of copper using a DC spark test system. Three types of oxygen-free copper (OFC) materials, usual class 1 OFC 7-nine large-grain copper and 6-nine hot-isotropic-pressed (HIP) copper with/without diamond finish, were tested with the DC spark test system. The measurements of the beta, breakdown fields, and breakdown probability are presented and discussed in this paper.

  13. High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications

    International Nuclear Information System (INIS)

    Martin, Madhavi Z.; Labbe, Nicole; Andre, Nicolas; Harris, Ronny; Ebinger, Michael; Wullschleger, Stan D.; Vass, Arpad A.

    2007-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been used in the elemental analysis for a variety of environmental samples and as a proof of concept for a host of forensic applications. In the first application, LIBS was used for the rapid detection of carbon from a number of different soil types. In this application, a major breakthrough was achieved by using a multivariate analytical approach that has brought us closer towards a 'universal calibration curve'. In a second application, it has been demonstrated that LIBS in combination with multivariate analysis can be employed to analyze the chemical composition of annual tree growth rings and correlate them to external parameters such as changes in climate, forest fires, and disturbances involving human activity. The objectives of using this technology in fire scar determinations are: 1) To determine the characteristic spectra of wood exposed to forest fires and 2) To examine the viability of this technique for detecting fire occurrences in stems that did not develop fire scars. These examples demonstrate that LIBS-based techniques are inherently well suited for diverse environmental applications. LIBS was also applied to a variety of proof of concept forensic applications such as the analysis of cremains (human cremation remains) and elemental composition analysis of prosthetic implants

  14. Laser induced breakdown spectroscopy (LIBS) as a rapid tool for material analysis

    International Nuclear Information System (INIS)

    Hussain, T; Gondal, M A

    2013-01-01

    Laser induced breakdown spectroscopy (LIBS) is a novel technique for elemental analysis based on laser-generated plasma. In this technique, laser pulses are applied for ablation of the sample, resulting in the vaporization and ionization of sample in hot plasma which is finally analyzed by the spectrometer. The elements are identified by their unique spectral signatures. LIBS system was developed for elemental analysis of solid and liquid samples. The developed system was applied for qualitative as well as quantitative measurement of elemental concentration present in iron slag and open pit ore samples. The plasma was generated by focusing a pulsed Nd:YAG laser at 1064 nm on test samples to study the capabilities of LIBS as a rapid tool for material analysis. The concentrations of various elements of environmental significance such as cadmium, calcium, magnesium, chromium, manganese, titanium, barium, phosphorus, copper, iron, zinc etc., in these samples were determined. Optimal experimental conditions were evaluated for improving the sensitivity of developed LIBS system through parametric dependence study. The laser-induced breakdown spectroscopy (LIBS) results were compared with the results obtained using standard analytical technique such as inductively couple plasma emission spectroscopy (ICP). Limit of detection (LOD) of our LIBS system were also estimated for the above mentioned elements. This study demonstrates that LIBS could be highly appropriate for rapid online analysis of iron slag and open pit waste.

  15. Laser induced breakdown spectroscopy (LIBS) as a rapid tool for material analysis

    Science.gov (United States)

    Hussain, T.; Gondal, M. A.

    2013-06-01

    Laser induced breakdown spectroscopy (LIBS) is a novel technique for elemental analysis based on laser-generated plasma. In this technique, laser pulses are applied for ablation of the sample, resulting in the vaporization and ionization of sample in hot plasma which is finally analyzed by the spectrometer. The elements are identified by their unique spectral signatures. LIBS system was developed for elemental analysis of solid and liquid samples. The developed system was applied for qualitative as well as quantitative measurement of elemental concentration present in iron slag and open pit ore samples. The plasma was generated by focusing a pulsed Nd:YAG laser at 1064 nm on test samples to study the capabilities of LIBS as a rapid tool for material analysis. The concentrations of various elements of environmental significance such as cadmium, calcium, magnesium, chromium, manganese, titanium, barium, phosphorus, copper, iron, zinc etc., in these samples were determined. Optimal experimental conditions were evaluated for improving the sensitivity of developed LIBS system through parametric dependence study. The laser-induced breakdown spectroscopy (LIBS) results were compared with the results obtained using standard analytical technique such as inductively couple plasma emission spectroscopy (ICP). Limit of detection (LOD) of our LIBS system were also estimated for the above mentioned elements. This study demonstrates that LIBS could be highly appropriate for rapid online analysis of iron slag and open pit waste.

  16. Laser-Induced Breakdown Spectroscopy (LIBS for Monitoring the Formation of Hydroxyapatite Porous Layers

    Directory of Open Access Journals (Sweden)

    Daniel Sola

    2017-12-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS is applied to characterize the formation of porous hydroxyapatite layers on the surface of 0.8CaSiO3-0.2Ca3(PO42 biocompatible eutectic glass immersed in simulated body fluid (SBF. Compositional and structural characterization analyses were also conducted by field emission scanning electron microscopy (FESEM, energy dispersive X-ray spectroscopy (EDX, and micro-Raman spectroscopy.

  17. Development of a fiber-coupled laser-induced breakdown spectroscopy instrument for analysis of underwater debris in a nuclear reactor core

    International Nuclear Information System (INIS)

    Saeki, Morihisa; Iwanade, Akio; Ohba, Hironori; Ito, Chikara; Wakaida, Ikuo; Thornton, Blair; Sakka, Tetsuo

    2014-01-01

    To inspect the post-accident nuclear core reactor of the TEPCO Fukushima Daiichi nuclear power plant (F1-NPP), a transportable fiber-coupled laser-induced breakdown spectroscopy (LIBS) instrument has been developed. The developed LIBS instrument was designed to analyze underwater samples in a high-radiation field by single-pulse breakdown with gas flow or double-pulse breakdown. To check the feasibility of the assembled fiber-coupled LIBS instrument for the analysis of debris material (mixture of the fuel core, fuel cladding, construction material and so on) in the F1-NPP, we investigated the influence of the radiation dose on the optical transmittance of the laser delivery fiber, compared data quality among various LIBS techniques for an underwater sample and studied the feasibility of the fiber-coupled LIBS system in an analysis of the underwater sample of the simulated debris in F1-NPP. In a feasible study conducted by using simulated debris, which was a mixture of CeO 2 (surrogate of UO 2 ), ZrO 2 and Fe, we selected atomic lines suitable for the analysis of materials, and prepared calibration curves for the component elements. The feasible study has guaranteed that the developed fiber-coupled LIBS system is applicable for analyzing the debris materials in the F1-NPP. (author)

  18. Reply to comment by Nozaka (2014) on ;Dehydration breakdown of antigorite and the formation of B-type olivine CPO;

    Science.gov (United States)

    Nagaya, Takayoshi; Wallis, Simon R.; Kobayashi, Hiroaki; Michibayashi, Katsuyoshi; Mizukami, Tomoyuki; Seto, Yusuke; Miyake, Akira; Matsumoto, Megumi

    2014-12-01

    We would like to thank Dr. Nozaka for his interest in our work and also for supplying some of the crystal orientation data that we used in our study. He presents a detailed discussion of differences in interpretation between our two studies. The main difference is whether the strong B-type olivine CPO developed as a result of topotactic static growth after breakdown of antigorite (Nagaya et al., 2014) or if it developed due to homoepitaxial growth on a limited number of olivine grains that already showed a general B-type CPO (Nozaka, 2014). In both of our studies static growth of olivine due to the breakdown of antigorite is key in the strengthening or formation of B-type olivine CPO. This conclusion has potentially far reaching implications for the interpretation of mantle seismic anisotropy in subduction zones and is the most important take home message. However, the details of interpretation are also important. In our reply, we focus on what we consider to be the 5 main points of disagreement. We refer to Fig. 1 to explain different microstructural domains.

  19. Stand-off laser-induced breakdown spectroscopy of aluminum and geochemical reference materials at pressure below 1 torr

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang-Jae; Choi, Soo-Jin; Yoh, Jack J., E-mail: jjyoh@snu.ac.kr

    2014-11-01

    Laser-induced breakdown spectroscopy (LIBS) is an atomic emission spectroscopy that utilizes a highly irradiated pulse laser focused on the target surface to produce plasma. We obtain spectroscopic information from the microplasma and determine the chemical composition of the sample based on its elemental and molecular emission peaks. We develop a stand-off LIBS system to analyze the effect of the remote sensing of aluminum and various geochemical reference materials at pressures below 1 torr. Using a commercial 4 inch refracting telescope, our stand-off LIBS system is configured at a distance of 7.2 m from the four United States Geological Survey (USGS) geochemical samples that include granodiorite, quartz latite, shale-cody, and diabase, which are selected for planetary exploration. Prepared samples were mixed with a paraffin binder containing only hydrogen and carbon, and were pelletized for experimental convenience. The aluminum plate sample is considered as a reference prior to using the geochemical samples in order to understand the influence of a low pressure condition on the resulting LIBS signal. A Q-switched Nd:YAG laser operating at 1064 nm and pulsed at 10 Hz with 21.7 to 48.5 mJ/pulse was used to obtain signals, which showed that the geochemical samples were successfully detected by the present stand-off detection scheme. A low pressure condition generally results in a decrease of the signal intensity, while the signal to noise ratio can vary according to the samples and elements of various types. We successfully identified the signals at below 1 torr with stand-off detection by a tightly focused light detection and by using a relatively larger aperture telescope. The stand-off LIBS detection at low pressure is promising for potential detection of the minor elements at pressures below 1 torr. - Highlights: • Stand-off LIBS signals at below 1 torr are compared to those of in-situ conditions. • Vacuum condition provides easier detection of the

  20. Multivariate methods for analysis of environmental reference materials using laser-induced breakdown spectroscopy

    Directory of Open Access Journals (Sweden)

    Shikha Awasthi

    2017-06-01

    Full Text Available Analysis of emission from laser-induced plasma has a unique capability for quantifying the major and minor elements present in any type of samples under optimal analysis conditions. Chemometric techniques are very effective and reliable tools for quantification of multiple components in complex matrices. The feasibility of laser-induced breakdown spectroscopy (LIBS in combination with multivariate analysis was investigated for the analysis of environmental reference materials (RMs. In the present work, different (Certified/Standard Reference Materials of soil and plant origin were analyzed using LIBS and the presence of Al, Ca, Mg, Fe, K, Mn and Si were identified in the LIBS spectra of these materials. Multivariate statistical methods (Partial Least Square Regression and Partial Least Square Discriminant Analysis were employed for quantitative analysis of the constituent elements using the LIBS spectral data. Calibration models were used to predict the concentrations of the different elements of test samples and subsequently, the concentrations were compared with certified concentrations to check the authenticity of models. The non-destructive analytical method namely Instrumental Neutron Activation Analysis (INAA using high flux reactor neutrons and high resolution gamma-ray spectrometry was also used for intercomparison of results of two RMs by LIBS.

  1. Chaos induced by quantum effect due to breakdown of the Born-Oppenheimer adiabaticity

    International Nuclear Information System (INIS)

    Fujisaki, Hiroshi; Takatsuka, Kazuo

    2001-01-01

    Chaos in the multimode nonadiabatic system constructed by Heller [J. Chem. Phys. >92, 1718 (1990)], which consists of two diabatic two-dimensional harmonic potentials with the Condon coupling, is studied. A thorough investigation is carried out by scanning the magnitudes of the Condon coupling and the Duschinsky angle. To elucidate mechanisms that can cause chaos in this quantum system, the statistical properties of the energy levels and eigenfunctions of the system are investigated. We find an evidence in terms of the nearest-neighbor spacing distribution of energy levels and other measures that a certain class of chaos is purely induced by the nonadiabatic interaction due to breakdown of the Born-Oppenheimer approximation. Since the nonadiabatic transition can induce repeated bifurcation and merging of a wave packet around the region of quasicrossing between two potential surfaces, and since this interaction does not have a counterpart in the lower adiabatic system, the present chaos deserves being called 'nonadiabatic chaos.' Another type of chaos in a nonadiabatic system was previously identified [D. M. Leitner et al., J. Chem. Phys. >104, 434 (1996)] that reflects the inherent chaos of a corresponding adiabatic potential. We present a comparative study to establish the similarity and difference between these kinds of chaos

  2. Combination of laser-induced breakdown spectroscopy and Raman spectroscopy for multivariate classification of bacteria

    Czech Academy of Sciences Publication Activity Database

    Procházka, D.; Mazura, M.; Samek, Ota; Rebrošová, K.; Pořízka, P.; Klus, J.; Procházková, P.; Novotný, J.; Novotný, K.; Kaiser, J.

    2018-01-01

    Roč. 139 (2018), s. 6-12 ISSN 0584-8547 R&D Projects: GA ČR(CZ) GA15-20645S; GA ČR(CZ) GA16-12477S; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : laser-induced breakdown spectroscopy * Raman spectroscopy * chemometrics * bacteria Impact factor: 3.241, year: 2016

  3. Analysis of fresco by laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Caneve, L.; Diamanti, A.; Grimaldi, F.; Palleschi, G.; Spizzichino, V.; Valentini, F.

    2010-01-01

    The laser-based techniques have been shown to be a very powerful tool for artworks characterization and are used in the field of cultural heritage for the offered advantages of minimum invasiveness, in situ applicability and high sensitivity. Laser induced breakdown spectroscopy, in particular, has been applied in this field to many different kinds of ancient materials with successful results. In this work, a fragment of a Roman wall painting from the archaeological area of Pompeii has been investigated by LIBS. The sample elemental composition resulting from LIBS measurements suggested the presence of certain pigments. The ratio of the intensities of different lines related to some characteristic elements is proposed as an indicator for pigment recognition. The depth profiling permitted to put in evidence the presence of successive paint layers with different compositions. A comparison with the results obtained by the microscopy inspection of the sample has been done.

  4. Breakdown properties of irradiated MOS capacitors

    International Nuclear Information System (INIS)

    Paccagnella, A.; Candelori, A.; Pellizzer, F.; Fuochi, P.G.; Lavale, M.

    1996-01-01

    The authors have studied the effects of ionizing and non-ionizing radiation on the breakdown properties of different types of MOS capacitors, with thick (200 nm) and thin (down to 8 nm) oxides. In general, no large variations of the average breakdown field, time-to-breakdown at constant voltage, or charge-to-breakdown at constant voltage, or charge-to-breakdown values have been observed after high dose irradiation (20 Mrad(Si) 9 MeV electrons on thin and thick oxides, 17(Si) Mrad Co 60 gamma and 10 14 neutrons/cm 2 only on thick oxides). However, some modifications of the cumulative failure distributions have been observed in few of the oxides tested

  5. Numerical Borehole Breakdown Investigations using XFEM

    Science.gov (United States)

    Beckhuis, Sven; Leonhart, Dirk; Meschke, Günther

    2016-04-01

    During pressurization of a wellbore a typical downhole pressure record shows the following regimes: first the applied wellbore pressure balances the reservoir pressure, then after the compressive circumferential hole stresses are overcome, tensile stresses are induced on the inside surface of the hole. When the magnitude of these stresses reach the tensile failure stress of the surrounding rock medium, a fracture is initiated and propagates into the reservoir. [1] In standard theories this pressure, the so called breakdown pressure, is the peak pressure in the down-hole pressure record. However experimental investigations [2] show that the breakdown did not occur even if a fracture was initiated at the borehole wall. Drilling muds had the tendency to seal and stabilize fractures and prevent fracture propagation. Also fracture mechanics analysis of breakdown process in mini-frac or leak off tests [3] show that the breakdown pressure could be either equal or larger than the fracture initiation pressure. In order to gain a deeper understanding of the breakdown process in reservoir rock, numerical investigations using the extended finite element method (XFEM) for hydraulic fracturing of porous materials [4] are discussed. The reservoir rock is assumed to be pre-fractured. During pressurization of the borehole, the injection pressure, the pressure distribution and the position of the highest flux along the fracture for different fracturing fluid viscosities are recorded and the influence of the aforementioned values on the stability of fracture propagation is discussed. [1] YEW, C. H. (1997), "Mechanics of Hydraulic Fracturing", Gulf Publishing Company [2] MORITA, N.; BLACK, A. D.; FUH, G.-F. (1996), "Borehole Breakdown Pressure with Drilling Fluids". International Journal of Rock Mechanics and Mining Sciences 33, pp. 39-51 [3] DETOURNAY, E.; CARBONELL, R. (1996), "Fracture Mechanics Analysis of the Breakdown Process in Minifrac or Leakoff Test", Society of Petroleum

  6. Analysis of material collected on swipes using laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Chinni, Rosemarie; Cremers, David A.; Multari, Rosalie

    2010-01-01

    Laser-induced breakdown spectroscopy (LIBS) was evaluated to determine elements collected on swipes as surface contamination. A series of long laser plasmas formed along the swipe surface (Post-it paper) interrogated the collected contamination. LIBS detection limits, determined for the elements Ag, As, Ba, Be, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Sr, and Zn on swipes (2 cm 2 area), ranged from 0.002 μg (Be) to 1.46 μg (Pb). The elements were introduced as constituents of synthetic silicate particles serving as a contaminant dust stimulant. The average predicted mass was within 16% of the actual mass on the swipe. The efficiency of collecting particles from surfaces including plastic, Formica, and Al metal was also evaluated. The ability to detect and differentiate two amino acids on a swipe from each other and from the swipe using chemometric modeling techniques was also demonstrated.

  7. Quantitative analysis of chromium concentration in nickel based alloys by laser induced breakdown spectroscopy at atmospheric pressure using a nanosecond ultraviolet Nd:YAG laser

    International Nuclear Information System (INIS)

    Gupta, G.P.; Suri, B.M.; Verma, A.; Sundararaman, M.; Unnikrishnan, V.K.; Alti, K.; Kartha, V.B.; Santhosh, C.

    2010-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been well recognized as a simple, fast and direct analytical technique of elemental analysis of multi-element materials by a number of research groups all over the world. It is based on the focusing of a high-power pulsed laser beam with a power density > 100 MW/cm 2 onto a sample surface followed by optical emission spectroscopy of the plasma produced over the surface. In the present work, they have carried out the quantitative analysis of chromium in nickel-based-alloys using laser-induced breakdown spectroscopy (LIBS) in air at atmospheric pressure. In the present work the quantitative analysis of chromium in nickel-based-alloys using laser-induced break-down spectroscopy (LIBS) in air at atmospheric pressure has been carried out

  8. Combining Raman and laser induced breakdown spectroscopy by double pulse lasing.

    Science.gov (United States)

    Lednev, Vasily N; Pershin, Sergey M; Sdvizhenskii, Pavel A; Grishin, Mikhail Ya; Fedorov, Alexander N; Bukin, Vladimir V; Oshurko, Vadim B; Shchegolikhin, Alexander N

    2018-01-01

    A new approach combining Raman spectrometry and laser induced breakdown spectrometry (LIBS) within a single laser event was suggested. A pulsed solid state Nd:YAG laser running in double pulse mode (two frequency-doubled sequential nanosecond laser pulses with dozens microseconds delay) was used to combine two spectrometry methods within a single instrument (Raman/LIBS spectrometer). First, a low-energy laser pulse (power density far below ablation threshold) was used for Raman measurements while a second powerful laser pulse created the plasma suitable for LIBS analysis. A short time delay between two successive pulses allows measuring LIBS and Raman spectra at different moments but within a single laser flash-lamp pumping. Principal advantages of the developed instrument include high quality Raman/LIBS spectra acquisition (due to optimal gating for Raman/LIBS independently) and absence of target thermal alteration during Raman measurements. A series of high quality Raman and LIBS spectra were acquired for inorganic salts (gypsum, anhydrite) as well as for pharmaceutical samples (acetylsalicylic acid). To the best of our knowledge, the quantitative analysis feasibility by combined Raman/LIBS instrument was demonstrated for the first time by calibration curves construction for acetylsalicylic acid (Raman) and copper (LIBS) in gypsum matrix. Combining ablation pulses and Raman measurements (LIBS/Raman measurements) within a single instrument makes it an efficient tool for identification of samples hidden by non-transparent covering or performing depth profiling analysis including remote sensing. Graphical abstract Combining Raman and laser induced breakdown spectroscopy by double pulse lasing.

  9. Laboratory feasibility study of fusion vessel inner wall chemical analysis by Laser Induced Breakdown Spectroscopy

    International Nuclear Information System (INIS)

    Almaviva, Salvatore; Caneve, Luisa; Colao, Francesco; Fantoni, Roberta; Maddaluno, Giorgio

    2012-01-01

    Graphical abstract: Laser-Induced-Breakdown-Spectroscopy was used for the determination of the atomic composition of multilayered samples simulating the tiles of plasma facing components in the next generation fusion machines. Highlights: ► Description and characterization of an LIBS set-up for diagnostics in fusion machines. ► Identification of atomic composition of multilayered tiles simulating plasma facing components. ► Qualitative applicability of the Calibration Free method for quantitative analysis. ► Feasibility of large scale application in the processes of control during the tiles fabrication. ► Feasibility of erosion monitoring during operation of fusion machines. - Abstract: Laser Induced Breakdown Spectroscopy (LIBS) is nowadays a well established tool for qualitative, semi-quantitative and quantitative analyses of surfaces, with micro-destructive characteristics and capabilities for stratigraphy. LIBS is an appealing technique compared with many other types of elemental analysis thanks to the set up versatility facilitating non-invasive and remote analyses, as well as suitability to diagnostics in harsh environments. In this work, LIBS capabilities were used for the determination of the atomic composition of multilayered samples simulating the tiles of plasma facing components in the next generation fusion machines such as ITER. A new experimental setup was designed and realized in order to optimize the characteristics of an LIBS system working at low pressure and remotely, as it should be for an in situ system to be applied in monitoring the erosion and redeposition phenomena occurring on the inner walls of a fusion device. The effects of time delay and laser fluence on LIBS sensitivity at reduced pressure were examined, looking for operational conditions suitable to analytical applications. The quantitative analysis of some atomic species in the superficial layer has been carried out using a Calibration Free (CF) approach in the time

  10. Experimental Study on Breakdown Characteristics of Transformer Oil Influenced by Bubbles

    Directory of Open Access Journals (Sweden)

    Chunxu Qin

    2018-03-01

    Full Text Available Bubbles will reduce the electric strength of transformer oil, and even result in the breakdown of the insulation. This paper has studied the breakdown voltages of transformer oil and oil-impregnated pressboard under alternating current (AC and direct current (DC voltages. In this paper, three types of electrodes were applied: cylinder-plan electrodes, sphere-plan electrodes, and cone-plan electrodes, and the breakdown voltages were measured in both no bubbles and bubbles. The sphere-sphere electrodes were used to study the breakdown voltage of the oil-impregnated pressboard. The results showed that under the influence of bubble, the breakdown voltage of the cylinder-plan electrode dropped the most, and the breakdown voltage of the cone-plan electrode dropped the least. The bubbles motion was the key factor of the breakdown. The discharge types of the oil-impregnated pressboard were different with bubbles, and under DC, the main discharge type was flashover along the oil-impregnated pressboard, while under AC, the main discharge type was breakdown through the oil-impregnated pressboard.

  11. Roughness effects on the hydrogen signal in laser-induced breakdown spectroscopy

    DEFF Research Database (Denmark)

    Rapin, W.; Bousquet, B.; Lasue, J.

    2017-01-01

    On Mars, Laser-Induced Breakdown Spectroscopy (LIBS) as performed by the ChemCam instrument can be used to measure the hydrogen content of targets in situ, under a low pressure CO2 atmosphere. However, unexpected variations observed in the Martian dataset suggest an effect related to target...... to hydrogen, as other emission lines in the spectra are not affected. The increase of the signal could be related to an addition of hydrogen to the plasma due to interaction with the surrounding target surface, yet the exact physical process to explain such effect remains to be identified. More generally...

  12. Nanoparticle-Enhanced Laser Induced Breakdown Spectroscopy for the noninvasive analysis of transparent samples and gemstones.

    Science.gov (United States)

    Koral, C; Dell'Aglio, M; Gaudiuso, R; Alrifai, R; Torelli, M; De Giacomo, A

    2018-05-15

    In this paper, Nanoparticle-Enhanced Laser Induced Breakdown Spectroscopy is applied to transparent samples and gemstones with the aim to overcome the laser induced damage on the sample. We propose to deposit a layer of AuNPs on the sample surface by drying a colloidal solution before ablating the sample with a 532 nm pulsed laser beam. This procedure ensures that the most significant fraction of the beam, being in resonance with the AuNP surface plasmon, is mainly absorbed by the NP layer, which in turn results the breakdown to be induced on NPs rather than on the sample itself. The fast explosion of the NPs and the plasma induction allow the ablation and the transfer in the plasma phase of the portion of sample surface where the NPs were placed. The employed AuNPs are prepared in milliQ water without the use of any chemical stabilizers by Pulsed Laser Ablation in Liquids (PLAL), in order to obtain a strict control of composition and impurities, and to limit possible spectral interferences (except from Au emission lines). Therefore with this technique it is possible to obtain, together with the emission signal of Au (coming from atomized NPs), the emission spectrum of the sample, by limiting or avoiding the direct interaction of the laser pulse with the sample itself. This approach is extremely useful for the elemental analysis by laser ablation of high refractive index samples, where the laser pulse on an untreated surface can otherwise penetrate inside the sample, generate breakdown events below the superficial layer, and consequently cause cracks and other damage. The results obtained with NELIBS on high refractive index samples like glasses, tourmaline, aquamarine and ruby are very promising, and demonstrate the potentiality of this approach for precious gemstones analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Combined raman spectrometer/laser-induced breakdown spectrometer design concept

    Science.gov (United States)

    Bazalgette Courrèges-Lacoste, Gregory; Ahlers, Berit; Boslooper, Erik; Rull-Perez, Fernando; Maurice, Sylvestre

    2017-11-01

    Amongst the different instruments that have been preselected to be on-board the Pasteur payload on ExoMars is the Raman/ Laser Induced Breakdown Spectroscopy (LIBS) instrument. Raman spectroscopy and LIBS will be integrated into a single instrument sharing many hardware commonalities. An international team under the lead of TNO has been gathered to produce a design concept for a combined Raman Spectrometer/ LIBS Elegant Bread-Board (EBB). The instrument is based on a specifically designed extremely compact spectrometer with high resolution over a large wavelength range, suitable for both Raman spectroscopy and LIBS measurements. Low mass, size and resources are the main drivers of the instrument's design concept. The proposed design concept, realization and testing programme for the combined Raman/ LIBS EBB is presented as well as background information on Raman and LIBS.

  14. Laser-Induced Breakdown Spectroscopy (LIBS) for the Measurement of Spatial Structures and Fuel Distribution in Flames.

    Science.gov (United States)

    Kotzagianni, Maria; Kakkava, Eirini; Couris, Stelios

    2016-04-01

    Laser-induced breakdown spectroscopy (LIBS) is used for the mapping of local structures (i.e., reactants and products zones) and for the determination of fuel distribution by means of the local equivalence ratio ϕ in laminar, premixed air-hydrocarbon flames. The determination of laser threshold energy to induce breakdown in the different zones of flames is employed for the identification and demarcation of the local structures of a premixed laminar flame, while complementary results about fuel concentration were obtained from measurements of the cyanogen (CN) band Β(2)Σ(+)--Χ(2)Σ(+), (Δυ = 0) at 388.3 nm and the ratio of the atomic lines of hydrogen (Hα) and oxygen (O(I)), Hα/O. The combination of these LIBS-based methods provides a relatively simple to use, rapid, and accurate tool for online and in situ combustion diagnostics, providing valuable information about the fuel distribution and the spatial variations of the local structures of a flame. © The Author(s) 2016.

  15. Spectroscopic studies of different brands of cigarettes using laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Sayyad, M. H.; Saleem, M.; Shah, M.; Baig, M. A.; Shaikh, N. M.

    2008-01-01

    In this work the technique of laser-induced breakdown spectroscopy (LIBS) has been used for the elemental analysis of cigarettes. For this purpose emission spectra have been measured of eleven different kinds of cigarette brands sold and/or produced in Pakistan. Analysis of the spectral peaks observed shows that Na, Mg, Al, K, Ca, Cr, Fe, Sr and Ba are contained in all brands. Exhibiting the LIBS results, the powerful potential of this method for the identification of the elemental content of cigarettes is demonstrated

  16. Measurements of electron avalanche formation time in W-band microwave air breakdown

    International Nuclear Information System (INIS)

    Cook, Alan M.; Hummelt, Jason S.; Shapiro, Michael A.; Temkin, Richard J.

    2011-01-01

    We present measurements of formation times of electron avalanche ionization discharges induced by a focused 110 GHz millimeter-wave beam in atmospheric air. Discharges take place in a free volume of gas, with no nearby surfaces or objects. When the incident field amplitude is near the breakdown threshold for pulsed conditions, measured formation times are ∼0.1-2 μs over the pressure range 5-700 Torr. Combined with electric field breakdown threshold measurements, the formation time data shows the agreement of 110 GHz air breakdown with the similarity laws of gas discharges.

  17. Measurements of electron avalanche formation time in W-band microwave air breakdown

    Science.gov (United States)

    Cook, Alan M.; Hummelt, Jason S.; Shapiro, Michael A.; Temkin, Richard J.

    2011-08-01

    We present measurements of formation times of electron avalanche ionization discharges induced by a focused 110 GHz millimeter-wave beam in atmospheric air. Discharges take place in a free volume of gas, with no nearby surfaces or objects. When the incident field amplitude is near the breakdown threshold for pulsed conditions, measured formation times are ˜0.1-2 μs over the pressure range 5-700 Torr. Combined with electric field breakdown threshold measurements, the formation time data shows the agreement of 110 GHz air breakdown with the similarity laws of gas discharges.

  18. Dynamic of microwave breakdown in the localized places of transmitting line driving by Cherenkov-type oscillator

    Science.gov (United States)

    Xie, Jialing; Chen, Changhua; Chang, Chao; Wu, Cheng; Shi, Yanchao; Cao, Yibing; Song, Zhimin; Zhang, Yuchuan

    2018-02-01

    A breakdown cavity is designed to study the breakdown phenomena of high-power microwaves in transmission waveguides. The maximum electric field within the cavity varies in amplitude from 400 kV/cm to 1.8 MV/cm and may surpass breakdown thresholds. The breakdown cavities were studied in particle-in-cell simulations and experiments, the results of which yielded waveforms that were consistent. The experimental results indicate that the microwave pulse does not shorten, and the amplitude of the electric field does not fall below 800 kV/cm. Moreover, large numbers of electrons are not emitted in microwaves below 670 kV/cm at 9.75 GHz frequency and 25-ns pulse width transmitted in stainless steel waveguides. The radiation waveforms of breakdown cavity with different materials are compared in experiments, with titanium material performing better.

  19. Online analysis of potassium fertilizers by Laser-Induced Breakdown Spectroscopy

    International Nuclear Information System (INIS)

    Groisman, Y.; Gaft, M.

    2010-01-01

    Presently, online analysis in potassium fertilizers industry is performed by Natural Radioactivity Analyzers. Laser Distance Spectrometry (LDS) has tested, by laboratory scale, the possibility of Laser-Induced Breakdown Spectroscopy (LIBS) technique implementation for online fertilizers production control. The main advantage of the system comparing to the existing technique is the principal possibility to analyze all relevant elements, such as K, Na, Mg, and not only K40 isotope as done in natural radiation analytical systems. Good correlations between online LIBS results with chemical analysis data of K, Na and Mg impurities of samples from Russia, Belarus and Israel demonstrate that LIBS system is a perspective tool for online control of those elements in field conditions.

  20. Qualitative and quantitative laser-induced breakdown spectroscopy of bronze objects

    International Nuclear Information System (INIS)

    Tankova, V; Blagoev, K; Grozeva, M; Malcheva, G; Penkova, P

    2016-01-01

    Laser-induced breakdown spectroscopy (LIBS) is an analytical technique for qualitative and quantitative elemental analysis of solids, liquids and gases. In this work, the method was applied for investigation of archaeological bronze objects. The analytical information obtained by LIBS was used for qualitative determination of the elements in the material used for manufacturing of the objects under study. Quantitative chemical analysis was also performed after generating calibration curves with standard samples of similar matrix composition. Quantitative estimation of the elemental concentration of the bulk of the samples was performed, together with investigation of the surface layer of the objects. The results of the quantitative analyses gave indications about the manufacturing process of the investigated objects. (paper)

  1. Classification of alloys using laser induced breakdown spectroscopy with principle component analysis

    Science.gov (United States)

    Syuhada Mangsor, Aneez; Haider Rizvi, Zuhaib; Chaudhary, Kashif; Safwan Aziz, Muhammad

    2018-05-01

    The study of atomic spectroscopy has contributed to a wide range of scientific applications. In principle, laser induced breakdown spectroscopy (LIBS) method has been used to analyse various types of matter regardless of its physical state, either it is solid, liquid or gas because all elements emit light of characteristic frequencies when it is excited to sufficiently high energy. The aim of this work was to analyse the signature spectrums of each element contained in three different types of samples. Metal alloys of Aluminium, Titanium and Brass with the purities of 75%, 80%, 85%, 90% and 95% were used as the manipulated variable and their LIBS spectra were recorded. The characteristic emission lines of main elements were identified from the spectra as well as its corresponding contents. Principal component analysis (PCA) was carried out using the data from LIBS spectra. Three obvious clusters were observed in 3-dimensional PCA plot which corresponding to the different group of alloys. Findings from this study showed that LIBS technology with the help of principle component analysis could conduct the variety discrimination of alloys demonstrating the capability of LIBS-PCA method in field of spectro-analysis. Thus, LIBS-PCA method is believed to be an effective method for classifying alloys with different percentage of purifications, which was high-cost and time-consuming before.

  2. Analysis of preservative-treated wood by multivariate analysis of laser-induced breakdown spectroscopy spectra

    International Nuclear Information System (INIS)

    Martin, Madhavi Z.; Labbe, Nicole; Rials, Timothy G.; Wullschleger, Stan D.

    2005-01-01

    In this work, multivariate statistical analysis (MVA) techniques are coupled with laser-induced breakdown spectroscopy (LIBS) to identify preservative types (chromated copper arsenate, ammoniacal copper zinc or alkaline copper quat), and to predict elemental content in preservative-treated wood. The elemental composition of the samples was measured with a standard laboratory method of digestion followed by atomic absorption spectroscopy analysis. The elemental composition was then correlated with the LIBS spectra using projection to latent structures (PLS) models. The correlations for the different elements introduced by different treatments were very strong, with the correlation coefficients generally above 0.9. Additionally, principal component analysis (PCA) was used to differentiate the samples treated with different preservative formulations. The research has focused not only on demonstrating the application of LIBS as a tool for use in the forest products industry, but also considered sampling errors, limits of detection, reproducibility, and accuracy of measurements as they relate to multivariate analysis of this complex wood substrate

  3. Analysis of preservative-treated wood by multivariate analysis of laser-induced breakdown spectroscopy spectra

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Madhavi Z. [Environmental Sciences Division Oak Ridge National Laboratory, P.O. Box 2008 MS 6422, Oak Ridge TN 37831-6422 (United States); Labbe, Nicole [Forest Products Center, University of Tennessee, 2506 Jacob Drive, Knoxville, TN 37996-4570 (United States)]. E-mail: nlabbe@utk.edu; Rials, Timothy G. [Forest Products Center, University of Tennessee, 2506 Jacob Drive, Knoxville, TN 37996-4570 (United States); Wullschleger, Stan D. [Environmental Sciences Division Oak Ridge National Laboratory, P.O. Box 2008 MS 6422, Oak Ridge TN 37831-6422 (United States)

    2005-08-31

    In this work, multivariate statistical analysis (MVA) techniques are coupled with laser-induced breakdown spectroscopy (LIBS) to identify preservative types (chromated copper arsenate, ammoniacal copper zinc or alkaline copper quat), and to predict elemental content in preservative-treated wood. The elemental composition of the samples was measured with a standard laboratory method of digestion followed by atomic absorption spectroscopy analysis. The elemental composition was then correlated with the LIBS spectra using projection to latent structures (PLS) models. The correlations for the different elements introduced by different treatments were very strong, with the correlation coefficients generally above 0.9. Additionally, principal component analysis (PCA) was used to differentiate the samples treated with different preservative formulations. The research has focused not only on demonstrating the application of LIBS as a tool for use in the forest products industry, but also considered sampling errors, limits of detection, reproducibility, and accuracy of measurements as they relate to multivariate analysis of this complex wood substrate.

  4. RF Breakdown Studies Using a 1.3 GHZ Test Cell

    International Nuclear Information System (INIS)

    Sah, R.; Johnson, R.P.; Neubauer, M.; Conde, M.; Gai, W.; Moretti, A.; Popovic, M.; Yonehara, K.; Byrd, J.; Li, D.; BastaniNejad, M.

    2009-01-01

    Many present and future particle accelerators are limited by the maximum electric gradient and peak surface fields that can be realized in RF cavities. Despite considerable effort, a comprehensive theory of RF breakdown has not been achieved and mitigation techniques to improve practical maximum accelerating gradients have had only limited success. Recent studies have shown that high gradients can be achieved quickly in 805 MHz RF cavities pressurized with dense hydrogen gas without the need for long conditioning times, because the dense gas can dramatically reduce dark currents and multipacting. In this project we use this high pressure technique to suppress effects of residual vacuum and geometry found in evacuated cavities to isolate and study the role of the metallic surfaces in RF cavity breakdown as a function of magnetic field, frequency, and surface preparation. A 1.3-GHz RF test cell with replaceable electrodes (e.g. Mo, Cu, Be, W, and Nb) and pressure barrier capable of operating both at high pressure and in vacuum has been designed and built, and preliminary testing has been completed. A series of detailed experiments is planned at the Argonne Wakefield Accelerator. At the same time, computer simulations of the RF Breakdown process will be carried out to help develop a consistent physics model of RF Breakdown. In order to study the effect of the radiofrequency on RF Breakdown, a second test cell will be designed, fabricated, and tested at a lower frequency, most likely 402.5 MHz.

  5. Extract of Ginkgo Biloba Ameliorates Streptozotocin-Induced Type 1 Diabetes Mellitus and High-Fat Diet-Induced Type 2 Diabetes Mellitus in Mice.

    Science.gov (United States)

    Rhee, Ki-Jong; Lee, Chang Gun; Kim, Sung Woo; Gim, Dong-Hyeon; Kim, Hyun-Cheol; Jung, Bae Dong

    2015-01-01

    Diabetes mellitus (DM) is caused by either destruction of pancreatic β-cells (type 1 DM) or unresponsiveness to insulin (type 2 DM). Conventional therapies for diabetes mellitus have been developed but still needs improvement. Many diabetic patients have complemented conventional therapy with alternative methods including oral supplementation of natural products. In this study, we assessed whether Ginkgo biloba extract (EGb) 761 could provide beneficial effects in the streptozotocin-induced type 1 DM and high-fat diet-induced type 2 DM murine model system. For the type 1 DM model, streptozotocin-induced mice were orally administered EGb 761 for 10 days prior to streptozotocin injection and then again administered EGb 761 for an additional 10 days. Streptozotocin-treated mice administered EGb 761 exhibited lower blood triglyceride levels, lower blood glucose levels and higher blood insulin levels compared to streptozotocin-treated mice. Furthermore, liver LPL and liver PPAR-α were increased whereas IL-1β and TNF-α were decreased in streptozotocin-injected mice treated with EGb 761 compared to mice injected with streptozotocin alone. For the type 2 DM model, mice were given high-fat diet for 60 days and then orally administered EGb 761 every other day for 80 days. We found that mice given a high-fat diet and EGb 761 showed decreased blood triglyceride levels, increased liver LPL, increased liver PPAR-α and decreased body weight compared to mice given high-fat diet alone. These results suggest that EGb 761 can exert protective effects in both type 1 and type 2 DM murine models.

  6. Detection of tire tread particles using laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Prochazka, David, E-mail: prochazka.d@fme.vutbr.cz [Brno University of Technology, Institute of Physical Engineering, Technická 2, 616 00 Brno (Czech Republic); Brno University of Technology, Central European Institute of Technology, Technická 3058/10, CZ-616 00 Brno (Czech Republic); Bilík, Martin [Brno University of Technology, Institute of Forensic Engineering, Údolní 244/53, 602 00 Brno (Czech Republic); Prochazková, Petra [Masaryk University, Faculty of Science, Department of Chemistry, Kamenice 735/5, 625 00 Brno (Czech Republic); Klus, Jakub; Pořízka, Pavel; Novotný, Jan [Brno University of Technology, Central European Institute of Technology, Technická 3058/10, CZ-616 00 Brno (Czech Republic); Novotný, Karel [Masaryk University, Faculty of Science, Department of Chemistry, Kamenice 735/5, 625 00 Brno (Czech Republic); Brno University of Technology, Central European Institute of Technology, Technická 3058/10, CZ-616 00 Brno (Czech Republic); Ticová, Barbora [Masaryk University, Faculty of Science, Department of Chemistry, Kamenice 735/5, 625 00 Brno (Czech Republic); Bradáč, Albert; Semela, Marek [Brno University of Technology, Institute of Forensic Engineering, Údolní 244/53, 602 00 Brno (Czech Republic); and others

    2015-06-01

    The objective of this paper is a study of the potential of laser induced breakdown spectroscopy (LIBS) for detection of tire tread particles. Tire tread particles may represent pollutants; simultaneously, it is potentially possible to exploit detection of tire tread particles for identification of optically imperceptible braking tracks at locations of road accidents. The paper describes the general composition of tire treads and selection of an element suitable for detection using the LIBS method. Subsequently, the applicable spectral line is selected considering interferences with lines of elements that might be present together with the detected particles, and optimization of measurement parameters such as incident laser energy, gate delay and gate width is performed. In order to eliminate the matrix effect, measurements were performed using 4 types of tires manufactured by 3 different producers. An adhesive tape was used as a sample carrier. The most suitable adhesive tape was selected from 5 commonly available tapes, on the basis of their respective LIBS spectra. Calibration standards, i.e. an adhesive tape with different area content of tire tread particles, were prepared for the selected tire. A calibration line was created on the basis of the aforementioned calibration standards. The linear section of this line was used for determination of the detection limit value applicable to the selected tire. Considering the insignificant influence of matrix of various types of tires, it is possible to make a simple recalculation of the detection limit value on the basis of zinc content in a specific tire. - Highlights: • LIBS experimental measurement parameters for tire tread particles were optimize. • Calibration curve was prepared. • Limit of detection was determined.

  7. Detection of tire tread particles using laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Prochazka, David; Bilík, Martin; Prochazková, Petra; Klus, Jakub; Pořízka, Pavel; Novotný, Jan; Novotný, Karel; Ticová, Barbora; Bradáč, Albert; Semela, Marek

    2015-01-01

    The objective of this paper is a study of the potential of laser induced breakdown spectroscopy (LIBS) for detection of tire tread particles. Tire tread particles may represent pollutants; simultaneously, it is potentially possible to exploit detection of tire tread particles for identification of optically imperceptible braking tracks at locations of road accidents. The paper describes the general composition of tire treads and selection of an element suitable for detection using the LIBS method. Subsequently, the applicable spectral line is selected considering interferences with lines of elements that might be present together with the detected particles, and optimization of measurement parameters such as incident laser energy, gate delay and gate width is performed. In order to eliminate the matrix effect, measurements were performed using 4 types of tires manufactured by 3 different producers. An adhesive tape was used as a sample carrier. The most suitable adhesive tape was selected from 5 commonly available tapes, on the basis of their respective LIBS spectra. Calibration standards, i.e. an adhesive tape with different area content of tire tread particles, were prepared for the selected tire. A calibration line was created on the basis of the aforementioned calibration standards. The linear section of this line was used for determination of the detection limit value applicable to the selected tire. Considering the insignificant influence of matrix of various types of tires, it is possible to make a simple recalculation of the detection limit value on the basis of zinc content in a specific tire. - Highlights: • LIBS experimental measurement parameters for tire tread particles were optimize. • Calibration curve was prepared. • Limit of detection was determined

  8. Detection sensitivity of laser-induced breakdown spectroscopy for Cr II in liquid samples

    International Nuclear Information System (INIS)

    Rai, Nilesh K.; Rai, Awadhesh K.; Kumar, Akshaya; Thakur, Surya N.

    2008-01-01

    The performance of laser-induced breakdown spectroscopy (LIBS) has been evaluated for detection of toxic metals such as Cr in water. Pure aqueous solutions (unitary matrix) with variable Cr concentration were used to construct calibration curves and to estimate the LIBS limit of detection (LOD). The calibration curves for Cr in a binary matrix (Cr plus Cd) and a tertiary matrix (Cr plus Cd and Co) were used to evaluate the matrix effect on the LOD. The LOD for Cr was found to be 1.1, 1.5, and 2.0 ppm (parts in 10 6 ) in a unitary, binary, and tertiary matrix, respectively. Once calibrated, the system was utilized for the detection and quantification of the Cr in tannery wastewater collected from different locations in the industrial area of Kanpur, India, where Cr concentrations were determined to be far higher than the U.S. Environmental Protection Agency safe drinking water limit of 0.05 ppm

  9. High voltage research (breakdown strengths of gaseous and liquid insulators). Semiannual report, April 1--September 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Christophorou, L. G.; James, D. R.; Pai, R. Y.; Mathis, R. A.; Pace, M. O.; Bouldin, D. W.; Christodoulides, A. A.; Chan, C. C.

    1977-11-01

    Direct current breakdown strength measurements on a large number of multicomponent gas mixtures at low (approximately less than 1 atm) and high (approximately less than 5 atm) pressures led to the discovery of many gas mixtures of electron-attaching gases and strongly electron-attaching gases with N/sub 2/ and C/sub 3/F/sub 8/ which are superior to SF/sub 6/. Of special significance are mixtures containing C/sub 4/F/sub 6/ (perfluoro-2-butyne). The breakdown strength of one such mixture (20 percent C/sub 4/F/sub 6/ to 80 percent SF/sub 6/) is approximately 30 percent higher than pure SF/sub 6/ under identical conditions, both at low (approximately 0.7 atm) and high (4.6 atm) pressures. Perfluorocyclohexene (C/sub 6/F/sub 10/) and C/sub 5/F/sub 8/ (perfluorocyclopentene) were found at low pressure (approximately 0.2 atm) to be, respectively, approximately 2.1 and 2.2 times better than SF/sub 6/ under comparable conditions; they both have a potential as additives in gas mixtures. The effect of the inelastic electron scattering properties of a gas via negative ion resonances in the low-energy range (1 to approximately 4 eV) on the breakdown strength has been demonstrated for H/sub 2/, N/sub 2/, and CO and binary mixtures of these with SF/sub 6/ and C/sub 4/F/sub 6/ (perfluoro-2-butyne). The construction of a new high pressure (to approximately 11 atm), variable temperature (-50/sup 0/C to + 150/sup 0/C) apparatus has been completed and a practical test facility utilizing cylindrical electrode geometries has been put into operation; the first results on the latter apparatus were on SF/sub 6/-N/sub 2/ and c-C/sub 4/F/sub 8/--N/sub 2/ mixtures. Studies of environmental effects of dielectric gases via their electron-impact-induced decompositions and analysis of their breakdown products have begun using mass spectrometry and gas chromatography; C/sub 4/F/sub 6/ (perfluoro-2-butyne) seems to be resistant to electron-impact-induced decomposition indicating long

  10. Application of Handheld Laser-Induced Breakdown Spectroscopy (LIBS) to Geochemical Analysis.

    Science.gov (United States)

    Connors, Brendan; Somers, Andrew; Day, David

    2016-05-01

    While laser-induced breakdown spectroscopy (LIBS) has been in use for decades, only within the last two years has technology progressed to the point of enabling true handheld, self-contained instruments. Several instruments are now commercially available with a range of capabilities and features. In this paper, the SciAps Z-500 handheld LIBS instrument functionality and sub-systems are reviewed. Several assayed geochemical sample sets, including igneous rocks and soils, are investigated. Calibration data are presented for multiple elements of interest along with examples of elemental mapping in heterogeneous samples. Sample preparation and the data collection method from multiple locations and data analysis are discussed. © The Author(s) 2016.

  11. Temperature and Electron Density Determination on Laser-Induced Breakdown Spectroscopy (LIBS) Plasmas: A Physical Chemistry Experiment

    Science.gov (United States)

    Najarian, Maya L.; Chinni, Rosemarie C.

    2013-01-01

    This laboratory is designed for physical chemistry students to gain experience using laser-induced breakdown spectroscopy (LIBS) in understanding plasma diagnostics. LIBS uses a high-powered laser that is focused on the sample causing a plasma to form. The emission of this plasma is then spectrally resolved and detected. Temperature and electron…

  12. Inclusion Detection in Aluminum Alloys Via Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Hudson, Shaymus W.; Craparo, Joseph; De Saro, Robert; Apelian, Diran

    2018-04-01

    Laser-induced breakdown spectroscopy (LIBS) has shown promise as a technique to quickly determine molten metal chemistry in real time. Because of its characteristics, LIBS could also be used as a technique to sense for unwanted inclusions and impurities. Simulated Al2O3 inclusions were added to molten aluminum via a metal-matrix composite. LIBS was performed in situ to determine whether particles could be detected. Outlier analysis on oxygen signal was performed on LIBS data and compared to oxide volume fraction measured through metallography. It was determined that LIBS could differentiate between melts with different amounts of inclusions by monitoring the fluctuations in signal for elements of interest. LIBS shows promise as an enabling tool for monitoring metal cleanliness.

  13. Correlation between laser-induced breakdown spectroscopy signal and moisture content

    International Nuclear Information System (INIS)

    Liu, Yuan; Gigant, Lionel; Baudelet, Matthieu; Richardson, Martin

    2012-01-01

    The possibility of using Laser-Induced Breakdown Spectroscopy (LIBS) for measuring the moisture content of fresh food samples is studied. The normalized line emission of oxygen is highly correlated with the moisture content of the sample, cheese in our case, and can be used as a moisture marker in situations where oxygen interference from the matrix is not a critical issue. The linear correlation between the oxygen signal and the moisture content in the sample shows great potential for using LIBS as an alternative spectroscopic method for moisture monitoring. - Highlights: ► Quantitative moisture measurement by LIBS. ► Use of matrix effects and normalization for physical information on the sample. ► Use of signal from oxygen and CN radical in air background for moisture measurement.

  14. Analyzing randomly occurring voltage breakdowns

    International Nuclear Information System (INIS)

    Wiltshire, C.W.

    1977-01-01

    During acceptance testing of high-vacuum neutron tubes, 40% of the tubes failed after experiencing high-voltage breakdowns during the aging process. Use of a digitizer in place of an oscilloscope revealed two types of breakdowns, only one of which affected acceptance testing. This information allowed redesign of the aging sequence to prevent tube damage and improve yield and quality of the final product

  15. High-speed photography and holography of laser induced breakdown in liquids

    International Nuclear Information System (INIS)

    Lauterborn, W.

    1979-01-01

    Optical breakdown phenomena in liquids due to focused ruby laser light are investigated by high-speed photography and holography. Special attention is given the dynamics of the cavities produced in the liquid upon breakdown as they can be expected to become a powerful research tool in cavitation physics. To this end the production of three-dimensional breakdown configurations would be desirable as well as their investigation by high-speed holographic means. Both problems are presently under study. To achieve multiple breakdown at preselected points in the liquid a grating-lens assembly and digital holograms in photoresist are used. To film the motion of the cavities high-speed holocinematographic methods are developed. By now four to eight holograms can be taken at a rate of 10 to 20 kHz. (author)

  16. Calibration-free quantitative elemental analysis of meteor plasma using reference laser-induced breakdown spectroscopy of meteorite samples

    Science.gov (United States)

    Ferus, Martin; Koukal, Jakub; Lenža, Libor; Srba, Jiří; Kubelík, Petr; Laitl, Vojtěch; Zanozina, Ekaterina M.; Váňa, Pavel; Kaiserová, Tereza; Knížek, Antonín; Rimmer, Paul; Chatzitheodoridis, Elias; Civiš, Svatopluk

    2018-03-01

    Aims: We aim to analyse real-time Perseid and Leonid meteor spectra using a novel calibration-free (CF) method, which is usually applied in the laboratory for laser-induced breakdown spectroscopic (LIBS) chemical analysis. Methods: Reference laser ablation spectra of specimens of chondritic meteorites were measured in situ simultaneously with a high-resolution laboratory echelle spectrograph and a spectral camera for meteor observation. Laboratory data were subsequently evaluated via the CF method and compared with real meteor emission spectra. Additionally, spectral features related to airglow plasma were compared with the spectra of laser-induced breakdown and electric discharge in the air. Results: We show that this method can be applied in the evaluation of meteor spectral data observed in real time. Specifically, CF analysis can be used to determine the chemical composition of meteor plasma, which, in the case of the Perseid and Leonid meteors analysed in this study, corresponds to that of the C-group of chondrites.

  17. Elemental and mineralogical imaging of a weathered limestone rock by double-pulse micro-Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Senesi, Giorgio S.; Campanella, Beatrice; Grifoni, Emanuela; Legnaioli, Stefano; Lorenzetti, Giulia; Pagnotta, Stefano; Poggialini, Francesco; Palleschi, Vincenzo; De Pascale, Olga

    2018-05-01

    The present work aims to evaluate the alteration conditions of historical limestone rocks exposed to urban environment using the Laser-Induced Breakdown Spectroscopy (LIBS) technique. The approach proposed is based on the microscale three dimensional (3D) compositional imaging of the sample through double-pulse micro-Laser-Induced Breakdown Spectroscopy (DP-μLIBS) in conjunction with optical microscopy. DP-μLIBS allows to perform a quick and detailed in-depth analysis of the composition of the weathered artifact by creating a 'virtual thin section' (VTS) of the sample which can estimate the extent of the alteration processes occurred at the limestone surface. The DP-μLIBS analysis of these thin sections showed a reduction with depth of the elements (mainly Fe, Si and Na) originating from atmospheric dust, particulate deposition and the surrounding environment (due to the proximity of the sea), whereas, the LIBS signal of Ca increased in intensity from the black crust to the limestone underneath.

  18. Laser-Induced Breakdown Spectroscopy to high-resolution analysis of ion distribution in cement-bound solid; Laser-induzierte Breakdown Spektroskopie (LIBS) zur hochaufloesenden Analyse der Ionenverteilung in zementgebundenen Feststoffen

    Energy Technology Data Exchange (ETDEWEB)

    Molkenthin, Andre

    2009-06-03

    The Laser-Induced Breakdown Spectroscopy allows imaging and quantitative analysis of the ion distribution of all relevant elements on the surface of mineral building materials. The measuring system has been characterised by investigations on specimens of hardened cement paste, mortar and concrete. Transport and accumulation processes are visualised. Besides, results are introduced for the peripheral zone close to the surface and the extraction is shown. (orig.) [German] Die Laser-induzierte Breakdown Spektroskopie ermoeglicht eine bildgebende und quantitative Analyse der Ionenverteilung aller massgeblichen Elemente auf mineralischen Baustoffoberflaechen. Das Messsystem wurde durch verfahrenspezifische Untersuchungen an Proben aus Zementstein, -moerteln und Betonen charakterisiert, Transport- und Anlagerungsprozesse wurden visuell dargestellt. Zudem werden Ergebnisse fuer den Ionenhaushalt in der ungestoerten oberflaechenahen Randzone sowie bei deren Auslaugung bzw. Anreicherung vorgestellt.

  19. Characterization of cinematographic films by Laser Induced Breakdown Spectroscopy

    International Nuclear Information System (INIS)

    Gaspard, S.; Oujja, M.; Rebollar, E.; Abrusci, C.; Catalina, F.; Castillejo, M.

    2007-01-01

    The emulsion-coated transparent plastic-base film has been the main carrier for production and preservation of motion picture contents since the 19th century. The knowledge of the composition of black and white silver gelatine cinematographic films is of great importance for the characterization of the photographic process and for identifying the optimum conditions for conservation. A cinematographic film is a multi-component system that consists of a layer of photographic emulsion overcoating a polymeric support (plasticized cellulose triacetate) and a protective transparent cross-linked gelatine layer coating the emulsion. In the present work, Laser Induced Breakdown Spectroscopy (LIBS) is used to characterize the composition of the materials of cinematographic films. LIB spectra of film samples and of different individual film components, polymeric support and reference gelatines, were acquired in vacuum by excitation at 266 nm (Q-switched Nd:YAG laser, 6 ns, 10 Hz). In the cinematographic film, silver lines from the light-sensitive silver halide salts of the photographic emulsion are accompanied by iron, lead, chrome and phosphorus lines. Iron and lead are constituents of film developers, chrome is included in the composition of the hardening agents and phosphorus has its origin in the plasticizer used in the polymeric support. By applying successive pulses on the same spot of the film sample, it was possible to observe through stratigraphic analysis the different layers composition. Additionally, the results obtained reveal the analytical capacity of LIBS for the study and classification of the different gelatine types and qualities used for the protecting layer and the photographic emulsion

  20. Detection of visually unrecognizable braking tracks using Laser-Induced Breakdown Spectroscopy, a feasibility study

    Science.gov (United States)

    Prochazka, David; Bilík, Martin; Prochazková, Petra; Brada, Michal; Klus, Jakub; Pořízka, Pavel; Novotný, Jan; Novotný, Karel; Ticová, Barbora; Bradáč, Albert; Semela, Marek; Kaiser, Jozef

    2016-04-01

    Identification of the position, length and mainly beginning of a braking track has proven to be essential for determination of causes of a road traffic accident. With the introduction of modern safety braking systems and assistance systems such as the Anti-lock Braking System (ABS) or Electronic Stability Control (ESC), the visual identification of braking tracks that has been used up until the present is proving to be rather complicated or even impossible. This paper focuses on identification of braking tracks using a spectrochemical analysis of the road surface. Laser-Induced Breakdown Spectroscopy (LIBS) was selected as a method suitable for fast in-situ element detection. In the course of detailed observations of braking tracks it was determined that they consist of small particles of tire treads that are caught in intrusions in the road surface. As regards detection of the "dust" resulting from wear and tear of tire treads in the environment, organic zinc was selected as the identification element in the past. The content of zinc in tire treads has been seen to differ with regard to various sources and tire types; however, the arithmetic mean and modus of these values are approximately 1% by weight. For in-situ measurements of actual braking tracks a mobile LIBS device equipped with a special module was used. Several measurements were performed for 3 different cars and tire types respectively which slowed down with full braking power. Moreover, the influence of different initial speed, vehicle mass and braking track length on detected signal is discussed here.

  1. Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Lee, Dong-Hyoung; Han, Sol-Chan; Kim, Tae-Hyeong; Yun, Jong-Il

    2011-12-15

    We have applied a dual-pulse laser-induced breakdown spectroscopy (DP-LIBS) to sensitively detect concentrations of boron and lithium in aqueous solution. Sequential laser pulses from two separate Q-switched Nd:YAG lasers at 532 nm wavelength have been employed to generate laser-induced plasma on a water jet. For achieving sensitive elemental detection, the optimal timing between two laser pulses was investigated. The optimum time delay between two laser pulses for the B atomic emission lines was found to be less than 3 μs and approximately 10 μs for the Li atomic emission line. Under these optimized conditions, the detection limit was attained in the range of 0.8 ppm for boron and 0.8 ppb for lithium. In particular, the sensitivity for detecting boron by excitation of laminar liquid jet was found to be excellent by nearly 2 orders of magnitude compared with 80 ppm reported in the literature. These sensitivities of laser-induced breakdown spectroscopy are very practical for the online elemental analysis of boric acid and lithium hydroxide serving as neutron absorber and pH controller in the primary coolant water of pressurized water reactors, respectively.

  2. Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection

    Energy Technology Data Exchange (ETDEWEB)

    Gottfried, Jennifer L. [U.S. Army Research Laboratory, AMSRD-ARL-WM-BD, Aberdeen Proving Ground, MD, 21005-5069 (United States)], E-mail: jennifer.gottfried@arl.army.mil; De Lucia, Frank C.; Munson, Chase A.; Miziolek, Andrzej W. [U.S. Army Research Laboratory, AMSRD-ARL-WM-BD, Aberdeen Proving Ground, MD, 21005-5069 (United States)

    2007-12-15

    We have developed a double-pulse standoff laser-induced breakdown spectroscopy (ST-LIBS) system capable of detecting a variety of hazardous materials at tens of meters. The use of a double-pulse laser improves the sensitivity and selectivity of ST-LIBS, especially for the detection of energetic materials. In addition to various metallic and plastic materials, the system has been used to detect bulk explosives RDX and Composition-B, explosive residues, biological species such as the anthrax surrogate Bacillus subtilis, and chemical warfare simulants at 20 m. We have also demonstrated the discrimination of explosive residues from various interferents on an aluminum substrate.

  3. Apparatus, system, and method for laser-induced breakdown spectroscopy

    Science.gov (United States)

    Effenberger, Jr., Andrew J; Scott, Jill R; McJunkin, Timothy R

    2014-11-18

    In laser-induced breakdown spectroscopy (LIBS), an apparatus includes a pulsed laser configured to generate a pulsed laser signal toward a sample, a constructive interference object and an optical element, each located in a path of light from the sample. The constructive interference object is configured to generate constructive interference patterns of the light. The optical element is configured to disperse the light. A LIBS system includes a first and a second optical element, and a data acquisition module. The data acquisition module is configured to determine an isotope measurement based, at least in part, on light received by an image sensor from the first and second optical elements. A method for performing LIBS includes generating a pulsed laser on a sample to generate light from a plasma, generating constructive interference patterns of the light, and dispersing the light into a plurality of wavelengths.

  4. Influence of temperature on current-induced domain wall motion and its Walker breakdown

    International Nuclear Information System (INIS)

    Fan, Lvchao; Hu, Jingguo; Su, Yuanchang; Zhu, Jinrong

    2016-01-01

    The current-driven domain wall propagation along a thin ferromagnetic strip with thermal field is studied by means of micromagnetic simulations. The results show that the velocity of domain wall is almost independent of temperature until Walker breakdown happened. However the thermal field can suppress Walker breakdown and makes domain wall move faster. Further analysis indicates that the thermal field tends to keep the out-of-plane magnetic moment of the domain wall stay in high value, which can promote domain wall motion and suppress the Walker breakdown by breaking the period of domain wall transformation. - Highlights: • Influences of temperature on the displacement and the velocity of DW are shown. • The suppression of Walker breakdown by temperature is given. • The reason for suppressing Walker breakdown is analyzed. • The breaking transformation period of Walker breakdown by temperature is given.

  5. Temporal and spatial effects of ablation plume on number density distribution of droplets in an aerosol measured by laser-induced breakdown

    International Nuclear Information System (INIS)

    Yashiro, H.; Kakehata, M.

    2013-01-01

    We proposed and experimentally demonstrated a novel method of evaluating the number density of droplets in an aerosol by laser-induced breakdown. The number density of droplets is evaluated from the volume in which the laser intensity exceeds the breakdown threshold intensity for droplets, and the number of droplets in this volume, which is evaluated by the experimentally observed breakdown probability. This measurement method requires a large number of laser shots for not only precise measurement but also highly temporally and spatially resolved density distribution in aerosol. Laser ablation plumes ejected from liquid droplets generated by breakdown disturb the density around the measurement points. Therefore, the recovery time of the density determines the maximum repetition rate of the probe laser irradiating a fixed point. The expansion range of the ablation plume determines the minimum distance at which the measurement points are unaffected by a neighboring breakdown when multiple laser beams are simultaneously irradiated. These laser irradiation procedures enable the measurement of the number density distribution of droplets in an aerosol at a large number of points within a short measurement time.

  6. Temporal and spatial effects of ablation plume on number density distribution of droplets in an aerosol measured by laser-induced breakdown

    Energy Technology Data Exchange (ETDEWEB)

    Yashiro, H.; Kakehata, M. [Electronics and Photonics Research Institute (ESPRIT), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2013-05-07

    We proposed and experimentally demonstrated a novel method of evaluating the number density of droplets in an aerosol by laser-induced breakdown. The number density of droplets is evaluated from the volume in which the laser intensity exceeds the breakdown threshold intensity for droplets, and the number of droplets in this volume, which is evaluated by the experimentally observed breakdown probability. This measurement method requires a large number of laser shots for not only precise measurement but also highly temporally and spatially resolved density distribution in aerosol. Laser ablation plumes ejected from liquid droplets generated by breakdown disturb the density around the measurement points. Therefore, the recovery time of the density determines the maximum repetition rate of the probe laser irradiating a fixed point. The expansion range of the ablation plume determines the minimum distance at which the measurement points are unaffected by a neighboring breakdown when multiple laser beams are simultaneously irradiated. These laser irradiation procedures enable the measurement of the number density distribution of droplets in an aerosol at a large number of points within a short measurement time.

  7. Roughness effects on the hydrogen signal in laser-induced breakdown spectroscopy

    DEFF Research Database (Denmark)

    Rapin, W.; Bousquet, B.; Lasue, J.

    2017-01-01

    On Mars, Laser-Induced Breakdown Spectroscopy (LIBS) as performed by the ChemCam instrument can be used to measure the hydrogen content of targets in situ, under a low pressure CO2 atmosphere. However, unexpected variations observed in the Martian dataset suggest an effect related to target...... roughness. Here, we present a series of laboratory experiments that reproduce the effect observed on Mars and explore possible causes. We show that the hydrogen peak intensity increases significantly with increasing exposure of the target surface to the LIBS plasma, and that these variations are specific......, this effect should be taken into account for the quantification of hydrogen in any LIBS applications where the roughness of the target is significant....

  8. Laser-induced breakdown spectroscopy with laser irradiation resonant with vibrational transitions

    International Nuclear Information System (INIS)

    Khachatrian, Ani; Dagdigian, Paul J.

    2010-01-01

    An investigation of laser-induced breakdown spectroscopy (LIBS) of polymers, both in bulk form and spin coated on Si wafers, with laser irradiation in the mid-infrared spectral region is presented. Of particular interest is whether the LIBS signals are enhanced when the laser wavelength is resonant with a fundamental vibrational transition of the polymer. Significant increases in the LIBS signals were observed for irradiation on hydride stretch fundamental transitions, and the magnitude of the enhancement showed a strong dependence on the mode excited. The role of the substrate was investigated by comparison of results for bulk and spin-coated samples. The polymers investigated were Nylon 12 and poly(vinyl alcohol-co-ethylene).

  9. Characterization of organic photovoltaic devices using femtosecond laser induced breakdown spectroscopy

    Science.gov (United States)

    Banerjee, S. P.; Sarnet, Thierry; Siozos, Panayiotis; Loulakis, Michalis; Anglos, Demetrios; Sentis, Marc

    2017-10-01

    The potential of laser induced breakdown spectroscopy (LIBS) as a non-contact probe, for characterizing organic photovoltaic devices during selective laser scribing, was investigated. Samples from organic solar cells were studied, which consisted of several layers of materials including a top electrode (Al, Mg or Mo), organic layer, bottom electrode (indium tin oxide), silicon nitride barrier layer and substrate layer situated from the top consecutively. The thickness of individual layers varies from 115 to 250 nm. LIBS measurements were performed by use of a 40 femtosecond Ti:Sapphire laser operated at very low pulse energy (solar cell structure, demonstrating the potential of LIBS for fast, non-contact characterization of organic photovoltaic coatings.

  10. Analyzing silver concentration in soil using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Prasetyo, S.; Isnaeni; Zaitun; Mitchell, K.; Suliyanti, M. M.; Herbani, Y.

    2018-03-01

    Determination of concentration of heavy metal ions in soil, such as silver, is very important to study soil pollution levels. Several techniques have been developed to determine silver ion concentration in soil. In this paper, we utilized laser-induced breakdown spectroscopy (LIBS) to study silver concentration in soil. We used four different data analysis methods to calculate silver concentration. In this case, we prepared soil samples with different silver ion concentrations from 400 ppm to 1000 ppm. Our analysis was focused on the 843.15 nm silver atomic absorption line. We found that plasma intensity increased as silver concentration increased. Our findings were based on our analysis using four different analysis methods. We believe that these analysis methods are able to calculate silver concentration in soil using LIBS.

  11. Correlation between laser-induced breakdown spectroscopy signal and moisture content

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuan [Townes Laser Institute, CREOL - The College of Optics and Photonics, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816 (United States); Gigant, Lionel [Townes Laser Institute, CREOL - The College of Optics and Photonics, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816 (United States); Universite Bordeaux 1, 351 cours de la Liberation 33405 Talence Cedex (France); Baudelet, Matthieu, E-mail: baudelet@creol.ucf.edu [Townes Laser Institute, CREOL - The College of Optics and Photonics, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816 (United States); Richardson, Martin [Townes Laser Institute, CREOL - The College of Optics and Photonics, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816 (United States)

    2012-07-15

    The possibility of using Laser-Induced Breakdown Spectroscopy (LIBS) for measuring the moisture content of fresh food samples is studied. The normalized line emission of oxygen is highly correlated with the moisture content of the sample, cheese in our case, and can be used as a moisture marker in situations where oxygen interference from the matrix is not a critical issue. The linear correlation between the oxygen signal and the moisture content in the sample shows great potential for using LIBS as an alternative spectroscopic method for moisture monitoring. - Highlights: Black-Right-Pointing-Pointer Quantitative moisture measurement by LIBS. Black-Right-Pointing-Pointer Use of matrix effects and normalization for physical information on the sample. Black-Right-Pointing-Pointer Use of signal from oxygen and CN radical in air background for moisture measurement.

  12. New Approach to Quantitative Analysis by Laser-induced Breakdown Spectroscopy

    International Nuclear Information System (INIS)

    Lee, D. H.; Kim, T. H.; Yun, J. I.; Jung, E. C.

    2009-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been studied as the technique of choice in some particular situations like screening, in situ measurement, process monitoring, hostile environments, etc. Especially, LIBS can fulfill the qualitative and quantitative analysis for radioactive high level waste (HLW) glass in restricted experimental conditions. Several ways have been suggested to get quantitative information from LIBS. The one approach is to use the absolute intensities of each element. The other approach is to use the elemental emission intensities relative to the intensity of the internal standard element whose concentration is known already in the specimen. But these methods are not applicable to unknown samples. In the present work, we introduce new approach to LIBS quantitative analysis by using H α (656.28 nm) emission line as external standard

  13. Use of laser induced breakdown spectroscopy in the determination of gem provenance: beryls

    International Nuclear Information System (INIS)

    McManus, Catherine E.; McMillan, Nancy J.; Harmon, Russell S.; Whitmore, Robert C.; De Lucia, Frank C. Jr.; Miziolek, Andrzej W.

    2008-01-01

    The provenance of gem stones has been of interest to geologists, gemologists, archeologists, and historians for centuries. Laser induced breakdown spectroscopy (LIBS) provides a minimally destructive tool for recording the rich chemical signatures of gem beryls (aquamarine, goshenite, heliodor, and morganite). Broadband LIBS spectra of 39 beryl (Be3Al2Si6O18) specimens from 11 pegmatite mines in New Hampshire, Connecticut, and Maine (USA) are used to assess the potential of using principal component analysis of LIBS spectra to determine specimen provenance. Using this technique, beryls from the three beryl-bearing zones in the Palermo no. 1 pegmatite (New Hampshire) can be recognized. However, the compositional variation within this single mine is comparable to that in beryls from all three states. Thus, a very large database with detailed location metadata will be required to routinely determine gem beryl provenance

  14. Non-linear dynamics of the passivity breakdown of iron in acidic solutions

    CERN Document Server

    Sazou, D

    2003-01-01

    Breakdown of the iron passivity in acid solutions accompanied by current oscillations was investigated by using electrochemical techniques, which reveal the non-linear dynamical response of the system in the current-potential (I-E) and current-time (I-t) planes. Current oscillations of the Fe-electrolyte electrochemical system were studied in the (a) absence and (b) presence of chlorides. In case (a) two oscillatory regions were distinguished; one at low potentials associated with the formation-dissolution of a ferrous salt and another at higher potentials associated with the formation-breakdown of the oxide film. Chaotic oscillations appear in the former region whereas periodic oscillations of a relaxation type appear in the latter region. In case (b), complex periodic and aperiodic oscillations are induced by small amounts of chlorides due to pitting corrosion. Pitting corrosion is a multistage localized process of a great technological importance. It consists of a local breakdown of the passive oxide film ...

  15. Laser-induced breakdown spectroscopy for the study of the pattern of silicon deposition in leaves of saccharum species

    NARCIS (Netherlands)

    Tripathi, D.K.; Kumar, R.; Chauhan, D.K.; Rai, A.K.; Bicanic, D.D.

    2011-01-01

    The spatial distribution pattern of silicon in the leaves of three species of Saccharum has been demonstrated by means of laser induced breakdown spectroscopy (LIBS). The in-situ point detection capability of LIBS was used to determine different elements in leaf samples. The concentrations of

  16. ["Nervous breakdown": a diagnostic characterization study].

    Science.gov (United States)

    Salmán, E; Carrasco, J L; Liebowitz, M; Díaz Marsá, M; Prieto, R; Jusino, C; Cárdenas, D; Klein, D

    1997-01-01

    An evaluation was made of the influence of different psychiatric co-morbidities on the symptoms of the disorder popularly known as "ataque de nervios" (nervous breakdown) among the US Hispanic population. Using a self-completed instrument designed specially for both traditional nervous breakdown and for panic symptoms, and structured or semi-structured psychiatric interviews for Axis I disorders, and evaluation was made of Hispanic subjects who sought treatment for anxiety in a clinic (n = 156). This study centered on 102 subjects who presented symptoms of "nervous breakdown" and comorbidity with panic disorder, other anxiety disorders, or affective disorder. Variations in co-morbidity with "nervous breakdown" enabled the identification of different patterns of "nervous breakdown" presenting symptoms. Individuals with "nervous breakdown" and panic disorder characteristically expressed a greater sense of asphyxiation, fear of dying, and growing fear (panic-like) during their breakdowns. Subjects with "nervous breakdown" and affective disorder had a greater sensation of anger and more tendency toward screaming and aggressive behavior such as breaking things during the breakdown (emotional anger). Finally, subjects with "nervous breakdown" and co-morbidity with another anxiety disorder had fewer "paniclike" or "emotional anger" symptoms. These findings suggest that: a) the widely used term "nervous breakdown" is a popular label for different patterns of loss of emotional control; b) the type of loss of emotional control is influenced by the associated psychiatric disorder; and c) the symptoms characteristics of the "nervous breakdown" can be useful clinical markers for associated psychiatric disorders. Future research is needed to determine whether the known Hispanic entity "ataque de nervios" is simply a popular description for different aspects of well-known psychiatric disorders, or if it reflects specific demographic, environmental, personality and/or clinical

  17. Remote imaging laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy using nanosecond pulses from a mobile lidar system.

    Science.gov (United States)

    Grönlund, Rasmus; Lundqvist, Mats; Svanberg, Sune

    2006-08-01

    A mobile lidar system was used in remote imaging laser-induced breakdown spectroscopy (LIBS) and laser-induced fluorescence (LIF) experiments. Also, computer-controlled remote ablation of a chosen area was demonstrated, relevant to cleaning of cultural heritage items. Nanosecond frequency-tripled Nd:YAG laser pulses at 355 nm were employed in experiments with a stand-off distance of 60 meters using pulse energies of up to 170 mJ. By coaxial transmission and common folding of the transmission and reception optical paths using a large computer-controlled mirror, full elemental imaging capability was achieved on composite targets. Different spectral identification algorithms were compared in producing thematic data based on plasma or fluorescence light.

  18. Laser-induced breakdown spectroscopy and chemometrics for classification of toys relying on toxic elements

    International Nuclear Information System (INIS)

    Godoi, Quienly; Leme, Flavio O.; Trevizan, Lilian C.; Pereira Filho, Edenir R.; Rufini, Iolanda A.; Santos, Dario; Krug, Francisco J.

    2011-01-01

    Quality control of toys for avoiding children exposure to potentially toxic elements is of utmost relevance and it is a common requirement in national and/or international norms for health and safety reasons. Laser-induced breakdown spectroscopy (LIBS) was recently evaluated at authors' laboratory for direct analysis of plastic toys and one of the main difficulties for the determination of Cd, Cr and Pb was the variety of mixtures and types of polymers. As most norms rely on migration (lixiviation) protocols, chemometric classification models from LIBS spectra were tested for sampling toys that present potential risk of Cd, Cr and Pb contamination. The classification models were generated from the emission spectra of 51 polymeric toys and by using Partial Least Squares - Discriminant Analysis (PLS-DA), Soft Independent Modeling of Class Analogy (SIMCA) and K-Nearest Neighbor (KNN). The classification models and validations were carried out with 40 and 11 test samples, respectively. Best results were obtained when KNN was used, with corrected predictions varying from 95% for Cd to 100% for Cr and Pb.

  19. Portable laser-induced breakdown spectroscopy/diffuse reflectance hybrid spectrometer for analysis of inorganic pigments

    Science.gov (United States)

    Siozos, Panagiotis; Philippidis, Aggelos; Anglos, Demetrios

    2017-11-01

    A novel, portable spectrometer, combining two analytical techniques, laser-induced breakdown spectroscopy (LIBS) and diffuse reflectance spectroscopy, was developed with the aim to provide an enhanced instrumental and methodological approach with regard to the analysis of pigments in objects of cultural heritage. Technical details about the hybrid spectrometer and its operation are presented and examples are given relevant to the analysis of paint materials. Both LIBS and diffuse reflectance spectra in the visible and part of the near infrared, corresponding to several neat mineral pigment samples, were recorded and the complementary information was used to effectively distinguish different types of pigments even if they had similar colour or elemental composition. The spectrometer was also employed in the analysis of different paints on the surface of an ancient pottery sherd demonstrating the capabilities of the proposed hybrid diagnostic approach. Despite its instrumental simplicity and compact size, the spectrometer is capable of supporting analytical campaigns relevant to archaeological, historical or art historical investigations, particularly when quick data acquisition is required in the context of surveys of large numbers of objects and samples.

  20. Laser induced breakdown detection for the assessment of colloid mediated radionuclide migration

    CERN Document Server

    Walther, C; Hauser, W; Kim, J I; Scherbaum, F J

    2002-01-01

    Colloids play an important role in the transport of pollutants in the environment. Harmful substances can undergo transport over large distances if bound to colloids in aqueous surrounding. One important example is the migration of Pu(IV) at unexpectedly high rates over several miles at a Nevada nuclear detonation test site. For long term safety assessments of radioactive waste repositories, it is hence crucial to know about the amount, size distribution and chemical composition of colloids in the ground water. Standard methods (e.g. light scattering) can be applied for high concentrations and large sizes of particles. Colloids smaller than 50 nm, however, are detected with very low efficiency. Laser induced breakdown detection (LIBD) can fill this gap. A new instrumentation is presented, which as compared to previous instruments, opens up a much wider operational dynamic range, now covering three orders of magnitude in size (5-1000 nm) and seven orders of magnitude in particle concentration (1 ppt - several ...

  1. Surface behavior based on ion-induced secondary electron emission from semi-insulating materials in breakdown evolution

    Energy Technology Data Exchange (ETDEWEB)

    Koc, Emrah; Karakoese, Sema [Department of Physics, Faculty of Sciences, Gazi University, 06500 Ankara (Turkey); Salamov, Bahtiyar G. [Department of Physics, Faculty of Sciences, Gazi University, 06500 Ankara (Turkey); Institute of Physics, National Academy of Science, 1143 Baku (Azerbaijan)

    2013-09-15

    This study focuses on analyses of secondary electron emission (SEE) at semiconductor surfaces when the sufficient conditions of space-time distribution occur. Experimental measurements and calculations with the approach of Townsend coefficients, which include the evaluations of ionization coefficient ({alpha}) and SEE coefficient ({gamma}) were performed in high-ohmic InP, GaAs, and Si semiconductor cathodes with argon and air environments in a wide range of E/N (300-10 000 Td). The direct calculations of {gamma} were carried out to determine the behavior of cold-semiconductor cathode current in a wide range of microgaps (45-525 {mu}m). Paschen curves are interpreted in the dependence of large pd range on breakdown voltage through {gamma} and {alpha}/N. Ion-induced secondary electrons exhibit the direct behaviors affecting the timescale of breakdown evolution in the vicinity of the Paschen minimum during the natural bombardment process with ions of semiconductor cathodes. Also, when {alpha}/N rapidly drops and the excitations of gas atoms densely occupy the gas volume, we determined that the photoelectric effect provides a growth for electron emission from semiconductor surfaces at the breakdown stage at the reduced values of E/N. At all pressures, the emission magnitudes of electrons liberated by semiconductor cathodes into vacuum are found as {gamma}{sub InP} > {gamma}{sub GaAs} > {gamma}{sub Si} in breakdown evolution. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Infrared (1-12 μm) atomic and molecular emission signatures from energetic materials using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Kumi Barimah, E.; Hömmerich, U.; Brown, E.; Yang, C. S.-C.; Trivedi, S. B.; Jin, F.; Wijewarnasuriya, P. S.; Samuels, A. C.; Snyder, A. P.

    2013-05-01

    Laser-induced breakdown spectroscopy (LIBS) is a powerful analytical technique to detect the elemental composition of solids, liquids, and gases in real time. For example, recent advances in UV-VIS LIBS have shown great promise for applications in chemical, biological, and explosive sensing. The extension of conventional UVVIS LIBS to the near-IR (NIR), mid-IR (MIR) and long wave infrared (LWIR) regions (~1-12 μm) offers the potential to provide additional information due to IR atomic and molecular signatures. In this work, a Q-switched Nd: YAG laser operating at 1064 nm was employed as the excitation source and focused onto several chlorate and nitrate compounds including KClO3, NaClO3, KNO3, and NaNO3 to produce intense plasma at the target surface. IR LIBS studies on background air, KCl , and NaCl were also included for comparison. All potassium and sodium containing samples revealed narrow-band, atomic-like emissions assigned to transitions of neutral alkali-metal atoms in accordance with the NIST atomic spectra database. In addition, first evidence of broad-band molecular LIBS signatures from chlorate and nitrate compounds were observed at ~10 μm and ~7.3 μm, respectively. The observed molecular emissions showed strong correlation with FTIR absorption spectra of the investigated materials.

  3. Detection of early caries by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Sasazawa, Shuhei; Kakino, Satoko; Matsuura, Yuji

    2015-07-01

    To improve sensitivity of dental caries detection by laser-induced breakdown spectroscopy (LIBS) analysis, it is proposed to utilize emission peaks in the ultraviolet. We newly focused on zinc whose emission peaks exist in ultraviolet because zinc exists at high concentration in the outer layer of enamel. It was shown that by using ratios between heights of an emission peak of Zn and that of Ca, the detection sensitivity and stability are largely improved. It was also shown that early caries are differentiated from healthy part by properly setting a threshold in the detected ratios. The proposed caries detection system can be applied to dental laser systems such as ones based on Er:YAG-lasers. When ablating early caries part by laser light, the system notices the dentist that the ablation of caries part is finished. We also show the intensity of emission peaks of zinc decreased with ablation with Er:YAG laser light.

  4. Analysis of human nails by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Hosseinimakarem, Zahra; Tavassoli, Seyed Hassan

    2011-05-01

    Laser-induced breakdown spectroscopy (LIBS) is applied to analyze human fingernails using nanosecond laser pulses. Measurements on 45 nail samples are carried out and 14 key species are identified. The elements detected with the present system are: Al, C, Ca, Fe, H, K, Mg, N, Na, O, Si, Sr, Ti as well as CN molecule. Sixty three emission lines have been identified in the spectrum that are dominated by calcium lines. A discriminant function analysis is used to discriminate among different genders and age groups. This analysis demonstrates efficient discrimination among these groups. The mean concentration of each element is compared between different groups. Correlation between concentrations of elements in fingernails is calculated. A strong correlation is found between sodium and potassium while calcium and magnesium levels are inversely correlated. A case report on high levels of sodium and potassium in patients with hyperthyroidism is presented. It is shown that LIBS could be a promising technique for the analysis of nails and therefore identification of health problems.

  5. Atomization efficiency and photon yield in laser-induced breakdown spectroscopy analysis of single nanoparticles in an optical trap

    Science.gov (United States)

    Purohit, Pablo; Fortes, Francisco J.; Laserna, J. Javier

    2017-04-01

    Laser-induced breakdown spectroscopy (LIBS) was employed for investigating the influence of particle size on the dissociation efficiency and the absolute production of photons per mass unit of airborne solid graphite spheres under single-particle regime. Particles of average diameter of 400 nm were probed and compared with 2 μm particles. Samples were first catapulted into aerosol form and then secluded in an optical trap set by a 532 nm laser. Trap stability was quantified before subjecting particles to LIBS analysis. Fine alignment of the different lines comprising the optical catapulting-optical trapping-laser-induced breakdown spectroscopy instrument and tuning of excitation parameters conditioning the LIBS signal such as fluence and acquisition delay are described in detail with the ultimate goal of acquiring clear spectroscopic data on masses as low as 75 fg. The atomization efficiency and the photon yield increase as the particle size becomes smaller. Time-resolved plasma imaging studies were conducted to elucidate the mechanisms leading to particle disintegration and excitation.

  6. Mid-infrared, long wave infrared (4-12 μm) molecular emission signatures from pharmaceuticals using laser-induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Yang, Clayton S-C; Brown, Ei E; Kumi-Barimah, Eric; Hommerich, Uwe H; Jin, Feng; Trivedi, Sudhir B; Samuels, Alan C; Snyder, A Peter

    2014-01-01

    In an effort to augment the atomic emission spectra of conventional laser-induced breakdown spectroscopy (LIBS) and to provide an increase in selectivity, mid-wave to long-wave infrared (IR), LIBS studies were performed on several organic pharmaceuticals. Laser-induced breakdown spectroscopy signature molecular emissions of target organic compounds are observed for the first time in the IR fingerprint spectral region between 4-12 μm. The IR emission spectra of select organic pharmaceuticals closely correlate with their respective standard Fourier transform infrared spectra. Intact and/or fragment sample molecular species evidently survive the LIBS event. The combination of atomic emission signatures derived from conventional ultraviolet-visible-near-infrared LIBS with fingerprints of intact molecular entities determined from IR LIBS promises to be a powerful tool for chemical detection.

  7. Evaluation of Optical Depths and Self-Absorption of Strontium and Aluminum Emission Lines in Laser-Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Alfarraj, Bader A; Bhatt, Chet R; Yueh, Fang Yu; Singh, Jagdish P

    2017-04-01

    Laser-induced breakdown spectroscopy (LIBS) is a widely used laser spectroscopic technique in various fields, such as material science, forensic science, biological science, and the chemical and pharmaceutical industries. In most LIBS work, the analysis is performed using radiative transitions from atomic emissions. In this study, the plasma temperature and the product [Formula: see text] (the number density N and the absorption path length [Formula: see text]) were determined to evaluate the optical depths and the self-absorption of Sr and Al lines. A binary mixture of strontium nitrate and aluminum oxide was used as a sample, consisting of variety of different concentrations in powder form. Laser-induced breakdown spectroscopy spectra were collected by varying various parameters, such as laser energy, gate delay time, and gate width time to optimize the LIBS signals. Atomic emission from Sr and Al lines, as observed in the LIBS spectra of different sample compositions, was used to characterize the laser induced plasma and evaluate the optical depths and self-absorption of LIBS.

  8. Optical-fiber-based laser-induced breakdown spectroscopy for detection of early caries

    Science.gov (United States)

    Sasazawa, Shuhei; Kakino, Satoko; Matsuura, Yuji

    2015-06-01

    A laser-induced breakdown spectroscopy (LIBS) system targeting for the in vivo analysis of tooth enamel is described. The system is planned to enable real-time analysis of teeth during laser dental treatment by utilizing a hollow optical fiber that transmits both Q-switched Nd:YAG laser light for LIBS and infrared Er:YAG laser light for tooth ablation. The sensitivity of caries detection was substantially improved by expanding the spectral region under analysis to ultraviolet (UV) light and by focusing on emission peaks of Zn in the UV region. Subsequently, early caries were distinguished from healthy teeth with accuracy rates above 80% in vitro.

  9. A Simple Laser Induced Breakdown Spectroscopy (LIBS) System for Use at Multiple Levels in the Undergraduate Chemistry Curriculum

    Science.gov (United States)

    Randall, David W.; Hayes, Ryan T.; Wong, Peter A.

    2013-01-01

    A LIBS (laser induced breakdown spectroscopy) spectrometer constructed by the instructor is reported for use in undergraduate analytical chemistry experiments. The modular spectrometer described here is based on commonly available components including a commercial Nd:YAG laser and a compact UV-vis spectrometer. The modular approach provides a…

  10. A categorization of water system breakdowns: Evidence from Liberia, Nigeria, Tanzania, and Uganda.

    Science.gov (United States)

    Klug, Tori; Cronk, Ryan; Shields, Katherine F; Bartram, Jamie

    2018-04-01

    In rural sub-Saharan Africa, one in three handpumps are non-functional at any time. While there is some evidence describing factors associated with non-functional water systems, there is little evidence describing the categories of water system breakdowns that commonly occur. Insufficient water availability from broken down systems can force people to use unimproved water sources, which undermines the health benefits of an improved water source. We categorized common water system breakdowns using quantitative and qualitative monitoring data from Liberia, Nigeria, Tanzania, and Uganda (each N>3600 water systems) and examined how breakdown category varies by water system type and management characteristics. Specific broken parts were mentioned more frequently than all other reasons for breakdown; hardware parts frequently found at fault for breakdown were aprons (Liberia), pipes (Tanzania and Uganda), taps/spouts (Tanzania and Uganda), and lift mechanisms (Nigeria). Statistically significant differences in breakdown category were identified based on system type, age, management type, and fee collection type. Categorization can help to identify common reasons for water system breakdown. The analysis of these data can be used to develop improved monitoring instruments to inform actors of different breakdown types and provide reasons for system non-functionality. Improved monitoring instruments would enable actors to target appropriate resources to address specific breakdowns likely to arise based on system type and management characteristics in order to inform improved implementation of and post-construction support for water systems in sub-Saharan Africa. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Investigation of archaeological metal artefacts by laser-induced breakdown spectroscopy (LIBS)

    Science.gov (United States)

    Tankova, V.; Malcheva, G.; Blagoev, K.; Leshtakov, L.

    2018-03-01

    In this work, laser-induced breakdown spectroscopy was applied to determining the elemental composition of a set of ancient bronze artefacts dated from the Late Bronze Age and Early Iron Age (14th – 10th century BC). We used a Nd:YAG laser at 1064 nm with pulse duration of 10 ns and energy of 10 mJ and determined the elemental composition of the bronze alloy that was used in manufacturing the samples under study. The concentrations of tin and lead in the bulk of the examined materials was estimated after generating calibration curves for a set of four standard samples. The preliminary results of the analysis will provide information on the artefacts provenance and on the production process.

  12. Determination of lanthanides in fossil samples using laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Anzano, J.M.; Lasheras, R.J.; Canudo, I.; Laguna, M.

    2017-01-01

    As being a fast, simple and relatively non-destructive analytical technique Laser-induced breakdown spectroscopy (LIBS) has a large variety of applications including the analysis of paleontological samples. In this work LIBS is employed for the quantitative determination of lanthanides (Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Sm, Tb, Tm and Yb) in vertebrate fossil samples comprising teeth, disarticulated complete or fragmented bones, eggshell fragments, and coprolites of dinosaurs, mammals and crocodiles. For emission line data, standard AnalaR grade salts of lanthanides were used. The major components: iron, calcium, magnesium, silicon and aluminum in the samples were also determined. The analytical information may be helpful in studying the samples for their age, formation environment and other paleontological properties. (author)

  13. The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry

    International Nuclear Information System (INIS)

    Lindner, Helmut; Loper, Kristofer H.; Hahn, David W.; Niemax, Kay

    2011-01-01

    Particles produced by previous laser shots may have significant influence on the analytical signal in laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma (LA-ICP) spectrometry if they remain close to the position of laser sampling. The effects of these particles on the laser-induced breakdown event are demonstrated in several ways. LIBS-experiments were conducted in an ablation cell at atmospheric conditions in argon or air applying a dual-pulse arrangement with orthogonal pre-pulse, i.e., plasma breakdown in a gas generated by a focussed laser beam parallel and close to the sample surface followed by a delayed crossing laser pulse in orthogonal direction which actually ablates material from the sample and produces the LIBS plasma. The optical emission of the LIBS plasma as well as the absorption of the pre-pulse laser was measured. In the presence of particles in the focus of the pre-pulse laser, the plasma breakdown is affected and more energy of the pre-pulse laser is absorbed than without particles. As a result, the analyte line emission from the LIBS plasma of the second laser is enhanced. It is assumed that the enhancement is not only due to an increase of mass ablated by the second laser but also to better atomization and excitation conditions favored by a reduced gas density in the pre-pulse plasma. Higher laser pulse frequencies increase the probability of particle-laser interaction and, therefore, reduce the shot-to-shot line intensity variation as compared to lower particle loadings in the cell. Additional experiments using an aerosol chamber were performed to further quantify the laser absorption by the plasma in dependence on time both with and without the presence of particles. The overall implication of laser-particle interactions for LIBS and LA-ICP-MS/OES are discussed.

  14. The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry

    Science.gov (United States)

    Lindner, Helmut; Loper, Kristofer H.; Hahn, David W.; Niemax, Kay

    2011-02-01

    Particles produced by previous laser shots may have significant influence on the analytical signal in laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma (LA-ICP) spectrometry if they remain close to the position of laser sampling. The effects of these particles on the laser-induced breakdown event are demonstrated in several ways. LIBS-experiments were conducted in an ablation cell at atmospheric conditions in argon or air applying a dual-pulse arrangement with orthogonal pre-pulse, i.e., plasma breakdown in a gas generated by a focussed laser beam parallel and close to the sample surface followed by a delayed crossing laser pulse in orthogonal direction which actually ablates material from the sample and produces the LIBS plasma. The optical emission of the LIBS plasma as well as the absorption of the pre-pulse laser was measured. In the presence of particles in the focus of the pre-pulse laser, the plasma breakdown is affected and more energy of the pre-pulse laser is absorbed than without particles. As a result, the analyte line emission from the LIBS plasma of the second laser is enhanced. It is assumed that the enhancement is not only due to an increase of mass ablated by the second laser but also to better atomization and excitation conditions favored by a reduced gas density in the pre-pulse plasma. Higher laser pulse frequencies increase the probability of particle-laser interaction and, therefore, reduce the shot-to-shot line intensity variation as compared to lower particle loadings in the cell. Additional experiments using an aerosol chamber were performed to further quantify the laser absorption by the plasma in dependence on time both with and without the presence of particles. The overall implication of laser-particle interactions for LIBS and LA-ICP-MS/OES are discussed.

  15. Aluminum alloy analysis using microchip-laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, Andrew [Center for Sensor Systems and Technologies, Aerodyne Research, Inc., 45 Manning Road Billerica, MA, 01821-3976 (United States)]. E-mail: af@aerodyne.com; Iannarilli, Frank J. [Center for Sensor Systems and Technologies, Aerodyne Research, Inc., 45 Manning Road Billerica, MA, 01821-3976 (United States); Wormhoudt, Joda C. [Center for Sensor Systems and Technologies, Aerodyne Research, Inc., 45 Manning Road Billerica, MA, 01821-3976 (United States)

    2005-08-31

    A laser induced breakdown spectroscopy-based apparatus for the analysis of aluminum alloys which employs a microchip laser and a handheld spectrometer with an ungated, non-intensified CCD array has been built and tested. The microchip laser, which emits low energy pulses (4-15 {mu}J) at high repetition rates (1-10 kHz) at 1064 nm, produces, when focused, an ablation crater with a radius on the order of only 10 {mu}m. The resulting emission is focused onto an optical fiber connected to 0.10 m focal length spectrometer with a spectral range of 275-413 nm. The apparatus was tested using 30 different aluminum alloy reference samples. Two techniques for constructing calibration curves from the data, peak integration and partial least squares regression, were quantitatively evaluated. Results for Fe, Mg, Mn, Ni, Si, and Zn indicated limits of detection (LOD) that ranged from 0.05 to 0.14 wt.% and overall measurement errors which varied from 0.06 to 0.18 wt.%. Higher limits of detection and overall error for Cu (> 0.3 wt.%) were attributed to analysis problems associated with the presence of optically thick lines and a spectral interference from Zn. Improvements in design and component sensitivity should increase overall performance by at least a factor of 2, allowing for dependable aluminum alloy classification.

  16. The use of laser-induced breakdown spectroscopy for the determination of fluorine concentration in glass ionomer cement

    Czech Academy of Sciences Publication Activity Database

    Kratochvíl, T.; Pouzar, M.; Novotný, K.; Havránek, Vladimír; Černohorský, T.; Zvolská, M.

    2013-01-01

    Roč. 88, OCT (2013), s. 26-31 ISSN 0584-8547 Grant - others:GA ČR(CZ) GAP207/11/0555 Institutional support: RVO:61389005 Keywords : Fluorine * GIC * Laser-induced breakdown spectroscopy * Quantitative analysis Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.150, year: 2013 http://www.sciencedirect.com/science/article/pii/S0584854713002243#

  17. Rapid long-wave infrared laser-induced breakdown spectroscopy measurements using a mercury-cadmium-telluride linear array detection system.

    Science.gov (United States)

    Yang, Clayton S-C; Brown, Eiei; Kumi-Barimah, Eric; Hommerich, Uwe; Jin, Feng; Jia, Yingqing; Trivedi, Sudhir; D'souza, Arvind I; Decuir, Eric A; Wijewarnasuriya, Priyalal S; Samuels, Alan C

    2015-11-20

    In this work, we develop a mercury-cadmium-telluride linear array detection system that is capable of rapidly capturing (∼1-5  s) a broad spectrum of atomic and molecular laser-induced breakdown spectroscopy (LIBS) emissions in the long-wave infrared (LWIR) region (∼5.6-10  μm). Similar to the conventional UV-Vis LIBS, a broadband emission spectrum of condensed phase samples covering the whole 5.6-10 μm region can be acquired from just a single laser-induced microplasma or averaging a few single laser-induced microplasmas. Atomic and molecular signature emission spectra of solid inorganic and organic tablets and thin liquid films deposited on a rough asphalt surface are observed. This setup is capable of rapidly probing samples "as is" without the need of elaborate sample preparation and also offers the possibility of a simultaneous UV-Vis and LWIR LIBS measurement.

  18. Feasibility of atomic and molecular laser induced breakdown spectroscopy (LIBS) to in-situ determination of chlorine in concrete : final report.

    Science.gov (United States)

    2016-10-01

    Laser-induced breakdown spectroscopy (LIBS) has been studied as a fast method of detecting chlorine in concrete samples. Both single pulse (SP) and double pulse (DP) experiments have been tested. Several combinations of lasers (Neodymium-Yttrium Alum...

  19. Q-switched Nd:YAG/V:YAG microchip 1338 nm laser for laser-induced breakdown spectroscopy

    Science.gov (United States)

    Šulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav

    2017-12-01

    Q-switched microchip laser emitting radiation at wavelength 1338nm was tested as a radiation source for laser induced breakdown spectroscopy (LIBS). This laser used sandwich crystal which combined in one piece the cooling part (undoped YAG crystal 4mm long), the active laser part (Nd:YAG crystal 12mm long), and the saturable absorber (V:YAG crystal 0.7mm long). The diameter of this crystal was 5 mm. The microchip resonator consisted of dielectric mirrors directly deposited on the monolith crystal surfaces. The pump mirror (HT @ 808 nm, HR @ 1.3 ¹m) was placed on the undoped YAG part. The output coupler (R = 90% @ 1338 nm) was placed on the V:YAG part. The fibre-coupled 808nm pumping laser diode was operating in pulsed regime (rep. rate 250 Hz, pulse width 300 ¹s, pulse energy 6 mJ). Using this pumping, stable and high reproducible Q-switched pulses were generated at wavelength 1338 nm. Pulse length was 6.2 ns (FWHM) and the mean output power was 33mW. The single pulse energy and peak power was 0.13mJ and 21kW, respectively. Laser was operating in fundamental TEM00 mode. The laser radiation was focused on a tested sample using single plano-convex lens (focal length 75 mm). The focal spot radius was 40 ¹m. The corresponding peak-power density was 0.83GW/cm2. The laser induced break-down was successfully reached and corresponding laser-induced plasma spectra were recorded for set of metallic elements (Cu, Ag, Au, In, Zn, Al, Fe, Ni, Cr) and alloys (Sn-Pb solder, duralumin, stainless-steel, brass). To record the spectra, StellarNet BLACK-Comet concave grating CCD-based spectrometer was used without any special collimation optics. Thanks to used laser wavelength far from the detector sensitivity, no special filtering was needed to overcome the CCD dazzling. The constructed laser could significantly improve repletion-rate of up-to-date LIBS devices.

  20. Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis

    Energy Technology Data Exchange (ETDEWEB)

    Baudelet, Matthieu; Boueri, Myriam [Laboratoire de Spectrometrie Ionique et Moleculaire, Universite Claude Bernard Lyon 1, UMR CNRS 5579, 43, Bd. du 11 Novembre 1918, F-69622 Villeurbanne Cedex (France); Yu Jin [Laboratoire de Spectrometrie Ionique et Moleculaire, Universite Claude Bernard Lyon 1, UMR CNRS 5579, 43, Bd. du 11 Novembre 1918, F-69622 Villeurbanne Cedex (France)], E-mail: jin.yu@lasim.univ-lyon1.fr; Mao, Samuel S; Piscitelli, Vincent; Xianglei, Mao; Russo, Richard E [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2007-12-15

    Ultraviolet pulses (266 nm) delivered by a quadrupled Nd:YAG laser were used to analyze organic samples with laser-induced breakdown spectroscopy (LIBS). We present characteristics of the spectra obtained from organic samples with special attentions on the emissions of organic elements, O and N, and molecular bonds CN. The choice of these atomic or molecular species is justified on one hand, by the importance of these species to specify organic or biological materials; and on the other hand by the possible interferences with ambient air when laser ablation takes place in the atmosphere. Time-resolved LIBS was used to determine the time-evolution of line intensity emitted from these species. We demonstrate different kinetic behaviors corresponding to different origins of emitters: native atomic or molecular species directly vaporized from the sample or those generated through dissociation or recombination due to interaction between laser-induced plasma and air molecules. Our results show the ability of time-resolved UV-LIBS for detection and identification of native atomic or molecular species from an organic sample.

  1. Characterization and forensic analysis of soil samples using laser-induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Jantzi, Sarah C; Almirall, José R

    2011-07-01

    A method for the quantitative elemental analysis of surface soil samples using laser-induced breakdown spectroscopy (LIBS) was developed and applied to the analysis of bulk soil samples for discrimination between specimens. The use of a 266 nm laser for LIBS analysis is reported for the first time in forensic soil analysis. Optimization of the LIBS method is discussed, and the results compared favorably to a laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) method previously developed. Precision for both methods was LIBS limits of detection were LIBS method successfully discriminated samples from two different sites in Dade County, FL. Analysis of variance, Tukey's post hoc test and Student's t test resulted in 100% discrimination with no type I or type II errors. Principal components analysis (PCA) resulted in clear groupings of the two sites. A correct classification rate of 99.4% was obtained with linear discriminant analysis using leave-one-out validation. Similar results were obtained when the same samples were analyzed by LA-ICP-MS, showing that LIBS can provide similar information to LA-ICP-MS. In a forensic sampling/spatial heterogeneity study, the variation between sites, between sub-plots, between samples and within samples was examined on three similar Dade sites. The closer the sampling locations, the closer the grouping on a PCA plot and the higher the misclassification rate. These results underscore the importance of careful sampling for geographic site characterization.

  2. Experiments and Computational Theory for Electrical Breakdown in Critical Components: THz Imaging of Electronic Plasmas.

    Energy Technology Data Exchange (ETDEWEB)

    Zutavern, Fred J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hjalmarson, Harold P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bigman, Verle Howard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gallegos, Richard Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    This report describes the development of ultra-short pulse laser (USPL) induced terahertz (THz) radiation to image electronic plasmas during electrical breakdown. The technique uses three pulses from two USPLs to (1) trigger the breakdown, (2) create a 2 picosecond (ps, 10 -12 s), THz pulse to illuminate the breakdown, and (3) record the THz image of the breakdown. During this three year internal research program, sub-picosecond jitter timing for the lasers, THz generation, high bandwidth (BW) diagnostics, and THz image acquisition was demonstrated. High intensity THz radiation was optically-induced in a pulse-charged gallium arsenide photoconductive switch. The radiation was collected, transported, concentrated, and co-propagated through an electro-optic crystal with an 800 nm USPL pulse whose polarization was rotated due to the spatially varying electric field of the THz image. The polarization modulated USPL pulse was then passed through a polarizer and the resulting spatially varying intensity was detected in a high resolution digital camera. Single shot images had a signal to noise of %7E3:1. Signal to noise was improved to %7E30:1 with several experimental techniques and by averaging the THz images from %7E4000 laser pulses internally and externally with the camera and the acquisition system (40 pulses per readout). THz shadows of metallic films and objects were also recorded with this system to demonstrate free-carrier absorption of the THz radiation and improve image contrast and resolution. These 2 ps THz pulses were created and resolved with 100 femtosecond (fs, 10 -15 s) long USPL pulses. Thus this technology has the capability to time-resolve extremely fast repetitive or single shot phenomena, such as those that occur during the initiation of electrical breakdown. The goal of imaging electrical breakdown was not reached during this three year project. However, plans to achieve this goal as part of a follow-on project are described in this document

  3. Formation of vortex breakdown in conical–cylindrical cavities

    International Nuclear Information System (INIS)

    Martins, Diego Alves de Moro; Souza, Francisco José de; Salvo, Ricardo de Vasconcelos

    2014-01-01

    Highlights: • Rotating flows in conical–cylindrical cavities were simulated via an in-house code using unstructured meshes. • The vortex breakdown phenomenon was verified in the geometries analyzed. • The influence of Stewartson and Bödewadt layers was observed in the vortex breakdown formation. • A curve of stability and number of breakdowns was obtained as a function of Reynolds number. • Spiral vortex breakdown was observed in some situations. - Abstract: Numerical simulations in confined rotating flows were performed in this work, in order to verify and characterize the formation of the vortex breakdown phenomenon. Cylindrical and conical–cylindrical geometries, both closed, were used in the simulations. The rotating flow is induced by the bottom wall, which rotates at constant angular velocity. Firstly the numerical results were compared to experimental results available in references, with the purpose to verify the capacity of the computational code to predict the vortex breakdown phenomenon. Further, several simulations varying the parameters which govern the characteristics of the flows analyzed in this work, i.e., the Reynolds number and the aspect ratio, were performed. In these simulations, the limits for the transitional regime and the vortex breakdown formation were verified. Steady and transient cases, with and without turbulence modeling, were simulated. In general, some aspects of the process of vortex breakdown in conical–cylindrical geometries were observed to be different from that in cylinders

  4. Rapid detection of soils contaminated with heavy metals and oils by laser induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Kim, Gibaek; Kwak, Jihyun; Kim, Ki-Rak; Lee, Heesung; Kim, Kyoung-Woong; Yang, Hyeon; Park, Kihong

    2013-12-15

    A laser induced breakdown spectroscopy (LIBS) coupled with the chemometric method was applied to rapidly discriminate between soils contaminated with heavy metals or oils and clean soils. The effects of the water contents and grain sizes of soil samples on LIBS emissions were also investigated. The LIBS emission lines decreased by 59-75% when the water content increased from 1.2% to 7.8%, and soil samples with a grain size of 75 μm displayed higher LIBS emission lines with lower relative standard deviations than those with a 2mm grain size. The water content was found to have a more pronounced effect on the LIBS emission lines than the grain size. Pelletizing and sieving were conducted for all samples collected from abandoned mining areas and military camp to have similar water contents and grain sizes before being analyzed by the LIBS with the chemometric analysis. The data show that three types of soil samples were clearly discerned by using the first three principal components from the spectral data of soil samples. A blind test was conducted with a 100% correction rate for soil samples contaminated with heavy metals and oil residues. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Matrix effect on emission/current correlated analysis in laser-induced breakdown spectroscopy of liquid droplets

    International Nuclear Information System (INIS)

    Huang, J.-S.; Ke, C.-B.; Lin, K.-C.

    2004-01-01

    We have investigated influence of matrix salts on the liquid droplets by laser-induced breakdown spectroscopy (LIBS). An electrospray ionization technique coupled with LIBS is employed to generate the microdroplets of the Na sample solution with various matrix salts added. A sequence of single-shot time-resolved LIB emission signals is detected. The LIB signal intensity integrated within a gate linearly correlates with the plasma-induced current response obtained simultaneously on a single-shot basis. The slopes thus obtained increase with the sample concentration, but appear to be irrespective of different matrix salts, added up to a 2000 mg/l concentration. The matrix salts involved have the same K + cation but different anions. Given a laser radiation emitting at 355 nm with the energy fixed at 23±1 mJ, a limit of detection (LOD) of 1.0 mg/l may be achieved for the Na analysis. The current normalization might have probably taken into account the ablated amount of the sample and the plasma temperature. Accordingly, the LIB/current correlated analysis becomes efficient to suppress the signal fluctuation, improve the LOD determination, and concurrently correct the matrix effect

  6. Compositional depth profiles of the type 316 stainless steel undergone the corrosion in liquid lithium using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Li, Ying; Ke, Chuan; Liu, Xiang; Gou, Fujun; Duan, Xuru; Zhao, Yong

    2017-12-01

    Liquid metal lithium cause severe corrosion on the surface of metal structure material that used in the blanket and first wall of fusion device. Fast and accurate compositional depth profile measurement for the boundary layer of the corroded specimen will reveal the clues for the understanding and evaluation of the liquid lithium corrosion process as well as the involved corrosion mechanism. In this work, the feasibility of laser-induced breakdown spectroscopy for the compositional depth profile analysis of type 316 stainless steel which was corroded by liquid lithium in certain conditions was demonstrated. High sensitivity of LIBS was revealed especially for the corrosion medium Li in addition to the matrix elements of Fe, Cr, Ni and Mn by the spectral analysis of the plasma emission. Compositional depth profile analysis for the concerned elements which related to corrosion was carried out on the surface of the corroded specimen. Based on the verified local thermodynamic equilibrium shot-by-shot along the depth profile, the matrix effect was evaluated as negligible by the extracted physical parameter of the plasmas generated by each laser pulse in the longitudinal depth profile. In addition, the emission line intensity ratios were introduced to further reduce the impact on the emission line intensity variations arise from the strong inhomogeneities on the corroded surface. Compositional depth profiles for the matrix elements of Fe, Cr, Ni, Mn and the corrosion medium Li were constructed with their measured relative emission line intensities. The distribution and correlations of the concerned elements in depth profile may indicate the clues to the complicated process of composition diffusion and mass transfer. The results obtained demonstrate the potentiality of LIBS as an effective technique to perform spectrochemical measurement in the research fields of liquid metal lithium corrosion.

  7. Analysis of copper contamination in transformer insulating material with nanosecond- and femtosecond-laser-induced breakdown spectroscopy

    Science.gov (United States)

    Aparna, N.; Vasa, N. J.; Sarathi, R.

    2018-06-01

    This work examines the oil-impregnated pressboard insulation of high-voltage power transformers, for the determination of copper contamination. Nanosecond- and femtosecond-laser-induced breakdown spectroscopy revealed atomic copper lines and molecular copper monoxide bands due to copper sulphide diffusion. X-ray diffraction studies also indicated the presence of CuO emission. Elemental and molecular mapping compared transformer insulating material ageing in different media—air, N2, He and vacuum.

  8. Ultra-short laser pulse ablation using shear-force feedback: Femtosecond laser induced breakdown spectroscopy feasibility study

    International Nuclear Information System (INIS)

    Samek, Ota; Kurowski, Andre; Kittel, Silke; Kukhlevsky, Sergei; Hergenroeder, Roland

    2005-01-01

    This work reports on a feasibility study of proximity ablation using femtosecond pulses. Ultra-short pulses were launched to a bare tapered optical fiber and delivered to the sample. The tip-sample distance was controlled by means of shear-force feedback. Consequently, ablation craters with submicrometer dimensions were obtained. Potential analytical applications for Laser Induced Breakdown Spectroscopy (LIBS) technique, such as e.g. inclusions in steel or bio cells, are suggested

  9. Impurity diagnosis of a KSTAR graphite divertor tile using laser induced breakdown spectroscopy technique

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minju; Cho, Min Sang; Cho, Byoung Ick, E-mail: bicho@gist.ac.kr

    2017-04-15

    Laser induced breakdown spectroscopy (LIBS) has been tested to diagnose impurity elements on a Korea Superconducting Tokamak Advanced Research (KSTAR) divertor tile. Spectral lines of various impurity elements such as iron, chromium, and nickel were detected from the divertor surface. The variation of spectra with consecutive laser pulses demonstrates the potential for depth profiling analysis for the deposited impurity layer. The LIBS plasma parameters have been qualitatively determined from analysis of the relative line intensities and linewidths for each element. The validity of this analysis has been checked with atomic spectral simulations.

  10. Application of laser-induced breakdown spectroscopy to the analysis of algal biomass for industrial biotechnology

    International Nuclear Information System (INIS)

    Pořízka, P.; Prochazka, D.; Pilát, Z.; Krajcarová, L.; Kaiser, J.; Malina, R.; Novotný, J.; Zemánek, P.; Ježek, J.; Šerý, M.; Bernatová, S.; Krzyžánek, V.; Dobranská, K.; Novotný, K.; Trtílek, M.; Samek, O.

    2012-01-01

    We report on the application of laser-induced breakdown spectroscopy (LIBS) to the determination of elements distinctive in terms of their biological significance (such as potassium, magnesium, calcium, and sodium) and to the monitoring of accumulation of potentially toxic heavy metal ions in living microorganisms (algae), in order to trace e.g. the influence of environmental exposure and other cultivation and biological factors having an impact on them. Algae cells were suspended in liquid media or presented in a form of adherent cell mass on a surface (biofilm) and, consequently, characterized using their spectra. In our feasibility study we used three different experimental arrangements employing double-pulse LIBS technique in order to improve on analytical selectivity and sensitivity for potential industrial biotechnology applications, e.g. for monitoring of mass production of commercial biofuels, utilization in the food industry and control of the removal of heavy metal ions from industrial waste waters. - Highlights: ► We realized laser-induced breakdown spectroscopy (LIBS) analysis of algal biomass. ► We used water jet setup, bulk liquid arrangement and algal biofilms. ► LIBS analysis of macro- and micro-element concentrations in algae was shown. ► LIBS can be of assistance in research of sustainable biofuel generation. ► LIBS can be used in research of algal food applications and bioremediation.

  11. Application of laser-induced breakdown spectroscopy to the analysis of algal biomass for industrial biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Porizka, P.; Prochazka, D. [X-ray micro CT and nano CT research group, CEITEC-Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, 616 00 Brno (Czech Republic); Pilat, Z. [Institute of Scientific Instruments of the ASCR v.v.i., Academy of Sciences of the Czech Republic, Kralovopolska 147, Brno 61669 (Czech Republic); Krajcarova, L. [Department of Chemistry, Faculty of Sciences, Masaryk University, Kotlarska 2, Brno 611 37 (Czech Republic); Kaiser, J., E-mail: kaiser@fme.vutbr.cz [X-ray micro CT and nano CT research group, CEITEC-Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, 616 00 Brno (Czech Republic); Malina, R.; Novotny, J. [X-ray micro CT and nano CT research group, CEITEC-Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, 616 00 Brno (Czech Republic); Zemanek, P.; Jezek, J.; Sery, M.; Bernatova, S.; Krzyzanek, V.; Dobranska, K. [Institute of Scientific Instruments of the ASCR v.v.i., Academy of Sciences of the Czech Republic, Kralovopolska 147, Brno 61669 (Czech Republic); Novotny, K. [Department of Chemistry, Faculty of Sciences, Masaryk University, Kotlarska 2, Brno 611 37 (Czech Republic); Trtilek, M. [Photon Systems Instruments, Drasov 470, 664 24 Drasov (Czech Republic); Samek, O. [Institute of Scientific Instruments of the ASCR v.v.i., Academy of Sciences of the Czech Republic, Kralovopolska 147, Brno 61669 (Czech Republic)

    2012-08-15

    We report on the application of laser-induced breakdown spectroscopy (LIBS) to the determination of elements distinctive in terms of their biological significance (such as potassium, magnesium, calcium, and sodium) and to the monitoring of accumulation of potentially toxic heavy metal ions in living microorganisms (algae), in order to trace e.g. the influence of environmental exposure and other cultivation and biological factors having an impact on them. Algae cells were suspended in liquid media or presented in a form of adherent cell mass on a surface (biofilm) and, consequently, characterized using their spectra. In our feasibility study we used three different experimental arrangements employing double-pulse LIBS technique in order to improve on analytical selectivity and sensitivity for potential industrial biotechnology applications, e.g. for monitoring of mass production of commercial biofuels, utilization in the food industry and control of the removal of heavy metal ions from industrial waste waters. - Highlights: Black-Right-Pointing-Pointer We realized laser-induced breakdown spectroscopy (LIBS) analysis of algal biomass. Black-Right-Pointing-Pointer We used water jet setup, bulk liquid arrangement and algal biofilms. Black-Right-Pointing-Pointer LIBS analysis of macro- and micro-element concentrations in algae was shown. Black-Right-Pointing-Pointer LIBS can be of assistance in research of sustainable biofuel generation. Black-Right-Pointing-Pointer LIBS can be used in research of algal food applications and bioremediation.

  12. Criterion for vortex breakdown on shock wave and streamwise vortex interactions.

    Science.gov (United States)

    Hiejima, Toshihiko

    2014-05-01

    The interactions between supersonic streamwise vortices and oblique shock waves are theoretically and numerically investigated by three-dimensional (3D) Navier-Stokes equations. Based on the two inequalities, a criterion for shock-induced breakdown of the streamwise vortex is proposed. The simple breakdown condition depends on the Mach number, the swirl number, the velocity deficit, and the shock angle. According to the proposed criterion, the breakdown region expands as the Mach number increases. In numerical simulations, vortex breakdown appeared under conditions of multiple pressure increases and the helicity disappeared behind the oblique shock wave along the line of the vortex center. The numerical results are consistent with the predicted breakdown condition at Mach numbers 2.0 and 3.0. This study also found that the axial velocity deficit is important for classifying the breakdown configuration.

  13. Evaluation of laser induced breakdown spectroscopy for the determination of micronutrients in plant materials

    International Nuclear Information System (INIS)

    Trevizan, Lilian Cristina; Santos, Dario; Elgul Samad, Ricardo; Dias Vieira, Nilson; Nunes, Lidiane Cristina; Aparecida Rufini, Iolanda; Krug, Francisco Jose

    2009-01-01

    Laser induced breakdown spectroscopy (LIBS) has been evaluated for the determination of micronutrients (B, Cu, Fe, Mn and Zn) in pellets of plant materials, using NIST, BCR and GBW biological certified reference materials for analytical calibration. Pellets of approximately 2 mm thick and 15 mm diameter were prepared by transferring 0.5 g of powdered material to a 15 mm die set and applying 8.0 tons cm -2 . An experimental setup was designed by using a Nd:YAG laser operating at 1064 nm (200 mJ per pulse, 10 Hz) and an Echelle spectrometer with ICCD detector. Repeatability precision varied from 4 to 30% from measurements obtained in 10 different positions (8 laser shots per test portion) in the same sample pellet. Limits of detection were appropriate for routine analysis of plant materials and were 2.2 mg kg -1 B, 3.0 mg kg -1 Cu, 3.6 mg kg -1 Fe, 1.8 mg kg -1 Mn and 1.2 mg kg -1 Zn. Analysis of different plant samples were carried out by LIBS and results were compared with those obtained by ICP OES after wet acid decomposition.

  14. Effect of sample preparation on the discrimination of bacterial isolates cultured in liquid nutrient media using laser induced breakdown spectroscopy

    Science.gov (United States)

    Laser induced breakdown spectroscopy (LIBS) is used as the basis for discrimination between 2 genera of gram-negative bacteria and 2 genera of gram-positive bacteria representing pathogenic threats commonly found in poultry processing rinse waters. Because LIBS-based discrimination relies primarily ...

  15. Numerical simulation and physical aspects of supersonic vortex breakdown

    Science.gov (United States)

    Liu, C. H.; Kandil, O. A.; Kandil, H. A.

    1993-01-01

    Existing numerical simulations and physical aspects of subsonic and supersonic vortex-breakdown modes are reviewed. The solution to the problem of supersonic vortex breakdown is emphasized in this paper and carried out with the full Navier-Stokes equations for compressible flows. Numerical simulations of vortex-breakdown modes are presented in bounded and unbounded domains. The effects of different types of downstream-exit boundary conditions are studied and discussed.

  16. Elemental analysis of cotton by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Schenk, Emily R.; Almirall, Jose R.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the elemental characterization of unprocessed cotton. This research is important in forensic and fraud detection applications to establish an elemental fingerprint of U.S. cotton by region, which can be used to determine the source of the cotton. To the best of our knowledge, this is the first report of a LIBS method for the elemental analysis of cotton. The experimental setup consists of a Nd:YAG laser that operates at the fundamental wavelength as the LIBS excitation source and an echelle spectrometer equipped with an intensified CCD camera. The relative concentrations of elements Al, Ba, Ca, Cr, Cu, Fe, Mg, and Sr from both nutrients and environmental contributions were determined by LIBS. Principal component analysis was used to visualize the differences between cotton samples based on the elemental composition by region in the U.S. Linear discriminant analysis of the LIBS data resulted in the correct classification of >97% of the cotton samples by U.S. region and >81% correct classification by state of origin.

  17. Laser-induced breakdown spectroscopy in industrial and security applications

    International Nuclear Information System (INIS)

    Bol'shakov, Alexander A.; Yoo, Jong H.; Liu Chunyi; Plumer, John R.; Russo, Richard E.

    2010-01-01

    Laser-induced breakdown spectroscopy (LIBS) offers rapid, localized chemical analysis of solid or liquid materials with high spatial resolution in lateral and depth profiling, without the need for sample preparation. Principal component analysis and partial least squares algorithms were applied to identify a variety of complex organic and inorganic samples. This work illustrates how LIBS analyzers can answer a multitude of real-world needs for rapid analysis, such as determination of lead in paint and children's toys, analysis of electronic and solder materials, quality control of fiberglass panels, discrimination of coffee beans from different vendors, and identification of generic versus brand-name drugs. Lateral and depth profiling was performed on children's toys and paint layers. Traditional one-element calibration or multivariate chemometric procedures were applied for elemental quantification, from single laser shot determination of metal traces at ∼10 μg/g to determination of halogens at 90 μg/g using 50-shot spectral accumulation. The effectiveness of LIBS for security applications was demonstrated in the field by testing the 50-m standoff LIBS rasterizing detector.

  18. Comparative analysis of automotive paints by laser induced breakdown spectroscopy and nonparametric permutation tests

    International Nuclear Information System (INIS)

    McIntee, Erin; Viglino, Emilie; Rinke, Caitlin; Kumor, Stephanie; Ni Liqiang; Sigman, Michael E.

    2010-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been investigated for the discrimination of automobile paint samples. Paint samples from automobiles of different makes, models, and years were collected and separated into sets based on the color, presence or absence of effect pigments and the number of paint layers. Twelve LIBS spectra were obtained for each paint sample, each an average of a five single shot 'drill down' spectra from consecutive laser ablations in the same spot on the sample. Analyses by a nonparametric permutation test and a parametric Wald test were performed to determine the extent of discrimination within each set of paint samples. The discrimination power and Type I error were assessed for each data analysis method. Conversion of the spectral intensity to a log-scale (base 10) resulted in a higher overall discrimination power while observing the same significance level. Working on the log-scale, the nonparametric permutation tests gave an overall 89.83% discrimination power with a size of Type I error being 4.44% at the nominal significance level of 5%. White paint samples, as a group, were the most difficult to differentiate with the power being only 86.56% followed by 95.83% for black paint samples. Parametric analysis of the data set produced lower discrimination (85.17%) with 3.33% Type I errors, which is not recommended for both theoretical and practical considerations. The nonparametric testing method is applicable across many analytical comparisons, with the specific application described here being the pairwise comparison of automotive paint samples.

  19. Characterization of hard coatings produced by laser cladding using laser-induced breakdown spectroscopy technique

    Science.gov (United States)

    Varela, J. A.; Amado, J. M.; Tobar, M. J.; Mateo, M. P.; Yañez, A.; Nicolas, G.

    2015-05-01

    Protective coatings with a high abrasive wear resistance can be obtained from powders by laser cladding technique, in order to extend the service life of some industrial components. In this work, laser clad layers of self-fluxing NiCrBSi alloy powder mixed with WC powder have been produced on stainless steel substrates of austenitic type (AISI 304) in a first step and then chemically characterized by laser-induced breakdown spectroscopy (LIBS) technique. With the suitable laser processing parameters (mainly output power, beam scan speed and flow rate) and powders mixture proportions between WC ceramics and NiCrBSi alloys, dense pore free layers have been obtained on single tracks and on large areas with overlapped tracks. The results achieved by LIBS technique and applied for the first time to the analysis of laser clads provided the chemical composition of the tungsten carbides in metal alloy matrix. Different measurement modes (multiple point analyses, depth profiles and chemical maps) have been employed, demonstrating the usefulness of LIBS technique for the characterization of laser clads based on hardfacing alloys. The behavior of hardness can be explained by LIBS maps which evidenced the partial dilution of some WC spheres in the coating.

  20. Laser-induced breakdown spectroscopy measurement of a small fraction of rhenium in bulk tungsten

    Science.gov (United States)

    Nishijima, D.; Ueda, Y.; Doerner, R. P.; Baldwin, M. J.; Ibano, K.

    2018-03-01

    Laser-induced breakdown spectroscopy (LIBS) of bulk rhenium (Re) and tungsten (W)-Re alloy has been performed using a Q-switched Nd:YAG laser (wavelength = 1064 nm, pulse width ∼4-6 ns, laser energy = 115 mJ). It is found that the electron temperature, Te, of laser-induced Re plasma is lower than that of W plasma, and that Te of W-Re plasma is in between Re and W plasmas. This indicates that material properties affect Te in a laser-induced plasma. For analysis of W-3.3%Re alloy, only the strongest visible Re I 488.9 nm line is found to be used because of the strong enough intensity without contamination with W lines. Using the calibration-free LIBS method, the atomic fraction of Re, cRe, is evaluated as a function of the ambient Ar gas pressure, PAr. At PAr 10 Torr due to spectral overlapping of the Re I 488.9 nm line by an Ar II 488.9 nm line.

  1. A comparative study of the laser induce breakdown spectroscopy in single- and double-pulse laser geometry

    International Nuclear Information System (INIS)

    Sun Duixiong; Su Maogen; Dong Chenzhong; Wen Guanhong; Cao Xiangnian

    2013-01-01

    A time resolved laser induced breakdown spectroscopy technique (LIBS) was used for the investigation of emission signal enhancement on double-pulse LIBS. Two Q-switched Nd:YAG lasers at 1064 nm wavelength have been employed to generate laser-induced plasma on aluminium-based alloys. The plasma emission signals were recorded by spectrometer with ICCD detector. Spectral response calibration was performed by using deuterium and tungsten halogen lamps. Time evolution of the plasma temperature and electron density was investigated in SP and DP experiments. Based on the investigation of plasma parameters, the enhancements of emission line intensities were investigated, and the mechanisms of it were discussed. (author)

  2. High-gradient breakdown studies of an X-band Compact Linear Collider prototype structure

    Directory of Open Access Journals (Sweden)

    Xiaowei Wu

    2017-05-01

    Full Text Available A Compact Linear Collider prototype traveling-wave accelerator structure fabricated at Tsinghua University was recently high-gradient tested at the High Energy Accelerator Research Organization (KEK. This X-band structure showed good high-gradient performance of up to 100  MV/m and obtained a breakdown rate of 1.27×10^{−8} per pulse per meter at a pulse length of 250 ns. This performance was similar to that of previous structures tested at KEK and the test facility at the European Organization for Nuclear Research (CERN, thereby validating the assembly and bonding of the fabricated structure. Phenomena related to vacuum breakdown were investigated and are discussed in the present study. Evaluation of the breakdown timing revealed a special type of breakdown occurring in the immediately succeeding pulse after a usual breakdown. These breakdowns tended to occur at the beginning of the rf pulse, whereas usual breakdowns were uniformly distributed in the rf pulse. The high-gradient test was conducted under the international collaboration research program among Tsinghua University, CERN, and KEK.

  3. Laser-induced breakdown spectroscopy (LIBS) for rapid analysis of ash, potassium and magnesium in gluten free flours.

    Science.gov (United States)

    Markiewicz-Keszycka, Maria; Casado-Gavalda, Maria P; Cama-Moncunill, Xavier; Cama-Moncunill, Raquel; Dixit, Yash; Cullen, Patrick J; Sullivan, Carl

    2018-04-01

    Gluten free (GF) diets are prone to mineral deficiency, thus effective monitoring of the elemental composition of GF products is important to ensure a balanced micronutrient diet. The objective of this study was to test the potential of laser-induced breakdown spectroscopy (LIBS) analysis combined with chemometrics for at-line monitoring of ash, potassium and magnesium content of GF flours: tapioca, potato, maize, buckwheat, brown rice and a GF flour mixture. Concentrations of ash, potassium and magnesium were determined with reference methods and LIBS. PCA analysis was performed and presented the potential for discrimination of the six GF flours. For the quantification analysis PLSR models were developed; R 2 cal were 0.99 for magnesium and potassium and 0.97 for ash. The study revealed that LIBS combined with chemometrics is a convenient method to quantify concentrations of ash, potassium and magnesium and present the potential to classify different types of flours. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Remote metal analysis by laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Duckworth, A.

    1996-01-01

    This paper describes a new technique by which the composition of irradiated or inaccessible reactor components can be determined remotely. The technique uses very short duration, high energy laser pulses at a wavelength which can be transmitted down an optical fibre to ablate a tiny plasma from the surface of a metal component. Light from the plasma is collected by a second fibre and returned to a spectrometer where it is split into the characteristic emission wavelengths of the elements in the sample. Comparison of the emission line amplitude for a particular element with that of a chosen calibration line can be used to deduce the concentration of the element in the sample. The technique has been used successfully to differentiate between different highly radioactive control rod batches at Sizewell ''A'' and Hinkley Point ''A'' Power Stations. The material analysis accuracy is comparable with that obtained from electron microphobe analysis and other direct spectroscopic methods. However, by analysing the mild steel control rod casing material remotely, difficult sample removal becomes unneccessary and the integrity of the component remains essentially unaltered. In addition, removal of deposits or surface corrosion is incorporated very neatly into the process. These factors make remote laser induced breakdown spectroscopy an ideal tool for material analysis in the nuclear environment. (UK)

  5. Remote metal analysis by laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Duckworth, A.

    1996-01-01

    This paper describes a new technique by which the composition of irradiated or inaccessible reactor components can be determined remotely. The technique uses very short duration, high energy laser pulses at a wavelength which can be transmitted down an optical fibre to ablate a tiny plasma from the surface of a metal component. Light from the plasma is collected by a second fibre and returned to a spectrometer where it is split into the characteristic emission wavelengths of the elements in the sample. Comparison of the emission line amplitude for a particular element with that of a chosen calibrationline can be used to deduce the concentration of the element in the sample. The technique has been used successfully to differentiate between highly radioactive control rod batches at Sizewell 'A' and Hinkley Point 'A Power Stations. The material analysis accuracy is comparable with that obtained from electron microprobe analysis and other direct spectroscopic methods. However, by analysing the mild steel control rod casing material remotely, difficult sample removal becomes unnecessary and the integrity of the component remains essentially unaltered. In addition, removal of deposits or surface corrosion is incorporated very neatly into the process. These factors make remote laser induced breakdown spectroscopy an ideal tool for material analysis in the nuclear environment. (Author)

  6. Method for spectrochemical analysis using time-resolved laser-induced breakdown. [Patent application

    Energy Technology Data Exchange (ETDEWEB)

    Loree, T.R.; Radziemski, L.J.

    1982-01-26

    A method for real-time elemental analysis using laser-induced breakdown of the material under investigation and spectroscopic analysis of the light emitted from the plasma consequently formed is described. By delaying the observation of the emitted radiation, the unwanted background continuum and line spectra from excited ionic species can be rendered unimportant relative to the excited atomic line spectra, thereby producing sharp, well-defined characteristic identifying atomic spectral features. These features provide the indicia for detailed elemental analyses of substances. The method is quite general in that it applies to gases, surfaces, and particulates entrained in gases. It requires no electrodes and can excite atomic species like fluorine and chlorine which are difficult to observe by more conventional analytical procedures.

  7. Detection of Minerals in Green Leafy Vegetables Using Laser Induced Breakdown Spectroscopy

    Science.gov (United States)

    Shukla, P.; Kumar, R.; Raib, A. Kumar

    2016-11-01

    The distribution of minerals in different green leafy vegetables, such as spinach, chenopodium, chickpea, mustard, and fenugreek, was calculated using laser induced breakdown spectroscopy (LIBS). LIBS can provide an easy, reliable, efficient, low-cost, and in situ chemical analysis with a reasonable precision. In situ LIBS spectra in the range 200-500 nm were carried out using fresh leaves and leaves in the pellet form. As the spectra suggest, magnesium and calcium are present in each vegetable; however, the amount of them varies. It is observed that the amount of iron is maximal in spinach. The nutrition value of the plants was analyzed, and it was revealed that they are low in calories and fat and high in protein, fiber, iron, calcium, and phytochemicals.

  8. Consumption of Polyphenol-Rich Zingiber Zerumbet Rhizome Extracts Protects against the Breakdown of the Blood-Retinal Barrier and Retinal Inflammation Induced by Diabetes

    Directory of Open Access Journals (Sweden)

    Thing-Fong Tzeng

    2015-09-01

    Full Text Available The present study investigates the amelioration of diabetic retinopathy (DR by Zingiber zerumbet rhizome ethanol extracts (ZZRext in streptozotocin-induced diabetic rats (STZ-diabetic rats. ZZRext contains high phenolic and flavonoid contents. STZ-diabetic rats were treated orally with ZZRext (200, 300 mg/kg per day for three months. Blood-retinal barrier (BRB breakdown and increased vascular permeability were found in diabetic rats, with downregulation of occludin, and claudin-5. ZZRext treatment effectively preserved the expression of occludin, and claudin-5, leading to less BRB breakdown and less vascular permeability. Retinal histopathological observation showed that the disarrangement and reduction in thickness of retinal layers were reversed in ZZRext-treated diabetic rats. Retinal gene expression of tumor necrosis factor-α, interleukin (IL-1β, IL-6, vascular endothelial growth factor, intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 were all decreased in ZZRext-treated diabetic rats. Moreover, ZZRext treatment not only inhibited the nuclear factor κB (NF-κB activation, but also downregulated the protein expression of p38 mitogen-activated protein kinase (MAPK in diabetic retina. In conclusion, the results suggest that the retinal protective effects of ZZRext occur through improved retinal structural change and inhibiting retinal inflammation. The antiretinopathy property of ZZRext might be related to the downregulation of p38 MAPK and NF-κB signal transduction induced by diabetes.

  9. Laser-induced breakdown spectroscopy analysis of minerals: Carbonates and silicates

    International Nuclear Information System (INIS)

    McMillan, Nancy J.; Harmon, Russell S.; De Lucia, Frank C.; Miziolek, Andrzej M.

    2007-01-01

    Laser-induced breakdown spectroscopy (LIBS) provides an alternative chemical analytical technique that obviates the issues of sample preparation and sample destruction common to most laboratory-based analytical methods. This contribution explores the capability of LIBS analysis to identify carbonate and silicate minerals rapidly and accurately. Fifty-two mineral samples (18 carbonates, 9 pyroxenes and pyroxenoids, 6 amphiboles, 8 phyllosilicates, and 11 feldspars) were analyzed by LIBS. Two composite broadband spectra (averages of 10 shots each) were calculated for each sample to produce two databases each containing the composite LIBS spectra for the same 52 mineral samples. By using correlation coefficients resulting from the regression of the intensities of pairs of LIBS spectra, all 52 minerals were correctly identified in the database. If the LIBS spectra of each sample were compared to a database containing the other 51 minerals, 65% were identified as a mineral of similar composition from the same mineral family. The remaining minerals were misidentified for two reasons: 1) the mineral had high concentrations of an element not present in the database; and 2) the mineral was identified as a mineral with similar elemental composition from a different family. For instance, the Ca-Mg carbonate dolomite was misidentified as the Ca-Mg silicate diopside. This pilot study suggests that LIBS has promise in mineral identification and in situ analysis of minerals that record geological processes

  10. Measurement of Irradiated Pyroprocessing Samples via Laser Induced Breakdown Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Phongikaroon, Supathorn [Virginia Commonwealth Univ., Richmond, VA (United States)

    2016-10-31

    The primary objective of this research is to develop an applied technology and provide an assessment to remotely measure and analyze the real time or near real time concentrations of used nuclear fuel (UNF) dissolute in electrorefiners. Here, Laser-Induced Breakdown Spectroscopy (LIBS), in UNF pyroprocessing facilities will be investigated. LIBS is an elemental analysis method, which is based on the emission from plasma generated by focusing a laser beam into the medium. This technology has been reported to be applicable in the media of solids, liquids (includes molten metals), and gases for detecting elements of special nuclear materials. The advantages of applying the technology for pyroprocessing facilities are: (i) Rapid real-time elemental analysis|one measurement/laser pulse, or average spectra from multiple laser pulses for greater accuracy in < 2 minutes; (ii) Direct detection of elements and impurities in the system with low detection limits|element specific, ranging from 2-1000 ppm for most elements; and (iii) Near non-destructive elemental analysis method (about 1 g material). One important challenge to overcome is achieving high-resolution spectral analysis to quantitatively analyze all important fission products and actinides. Another important challenge is related to accessibility of molten salt, which is heated in a heavily insulated, remotely operated furnace in a high radiation environment with an argon atmosphere.

  11. Salicylate prevents virus-induced type 1 diabetes in the BBDR rat.

    Directory of Open Access Journals (Sweden)

    Chaoxing Yang

    Full Text Available Epidemiologic and clinical evidence suggests that virus infection plays an important role in human type 1 diabetes pathogenesis. We used the virus-inducible BioBreeding Diabetes Resistant (BBDR rat to investigate the ability of sodium salicylate, a non-steroidal anti-inflammatory drug (NSAID, to modulate development of type 1 diabetes. BBDR rats treated with Kilham rat virus (KRV and polyinosinic:polycytidylic acid (pIC, a TLR3 agonist develop diabetes at nearly 100% incidence by ~2 weeks. We found distinct temporal profiles of the proinflammatory serum cytokines, IL-1β, IL-6, IFN-γ, IL-12, and haptoglobin (an acute phase protein in KRV+pIC treated rats. Significant elevations of IL-1β and IL-12, coupled with sustained elevations of haptoglobin, were specific to KRV+pIC and not found in rats co-treated with pIC and H1, a non-diabetogenic virus. Salicylate administered concurrently with KRV+pIC inhibited the elevations in IL-1β, IL-6, IFN-γ and haptoglobin almost completely, and reduced IL-12 levels significantly. Salicylate prevented diabetes in a dose-dependent manner, and diabetes-free animals had no evidence of insulitis. Our data support an important role for innate immunity in virus-induced type 1 diabetes pathogenesis. The ability of salicylate to prevent diabetes in this robust animal model demonstrates its potential use to prevent or attenuate human autoimmune diabetes.

  12. Mineral content analysis of root canal dentin using laser-induced breakdown spectroscopy

    Science.gov (United States)

    2018-01-01

    Objectives This study aimed to introduce the use of laser-induced breakdown spectroscopy (LIBS) for evaluation of the mineral content of root canal dentin, and to assess whether a correlation exists between LIBS and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) methods by comparing the effects of irrigation solutions on the mineral content change of root canal dentin. Materials and Methods Forty teeth with a single root canal were decoronated and longitudinally sectioned to expose the canals. The root halves were divided into 4 groups (n = 10) according to the solution applied: group NaOCl, 5.25% sodium hypochlorite (NaOCl) for 1 hour; group EDTA, 17% ethylenediaminetetraacetic acid (EDTA) for 2 minutes; group NaOCl+EDTA, 5.25% NaOCl for 1 hour and 17% EDTA for 2 minutes; a control group. Each root half belonging to the same root was evaluated for mineral content with either LIBS or SEM/EDS methods. The data were analyzed statistically. Results In groups NaOCl and NaOCl+EDTA, the calcium (Ca)/phosphorus (P) ratio decreased while the sodium (Na) level increased compared with the other groups (p LIBS and SEM/EDS analyses (r = 0.84, p LIBS method proved to be reliable while providing data for the elemental composition of root canal dentin. PMID:29487841

  13. Quantitative laser-induced breakdown spectroscopy of potassium for in-situ geochronology on Mars

    Energy Technology Data Exchange (ETDEWEB)

    Stipe, Christopher B., E-mail: stipec@seattleu.edu [Department of Mechanical Engineering, Seattle University, Seattle, WA 98122 (United States); Guevara, Edward; Brown, Jonathan [Department of Mechanical Engineering, Seattle University, Seattle, WA 98122 (United States); Rossman, George R. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)

    2012-04-15

    Laser-induced breakdown spectroscopy is explored for the development of an in-situ K-Ar geochronology instrument for Mars. Potassium concentrations in standard basaltic glasses and equivalent rock samples in their natural form are quantified using the potassium doublet at 766.49 and 769.90 nm. Measurement precision varies from 0.5 to 5.5 (% RSD) over the 3.63% to 0.025% potassium by weight for the standard samples, and little additional precision is achieved above 20 laser shots at 5 locations. For the glass standards, the quantification limits are 920 and 66 ppm for non-weighted and weighted calibration methods, respectively. For the basaltic rocks, the quantification limits are 2650 and 328 ppm for the non-weighted and weighted calibration methods, respectively. The heterogeneity of the rock samples leads to larger variations in potassium signal; however, normalizing the potassium peak by base area at 25 locations on the rock improved calibration accuracy. Including only errors in LIBS measurements, estimated age errors for the glasses range from approximately {+-} 30 Ma for 3000 Ma samples to {+-} 2 Ma for 100 Ma samples. For the basaltic rocks, the age errors are approximately {+-} 120 Ma for 3000 Ma samples and {+-} 8 Ma for 100 Ma samples. - Highlights: Black-Right-Pointing-Pointer Measurement of basaltic glasses and rocks by laser-induced breakdown spectroscopy. Black-Right-Pointing-Pointer Quantification of potassium for K-Ar dating. Black-Right-Pointing-Pointer Development of an instrument for in-situ geochronology on Mars. Black-Right-Pointing-Pointer Detection limit is 35 ppm, relative standard deviations range from 0.5% to 5.5%. Black-Right-Pointing-Pointer Estimated errors for the glass standards range from {+-} 30 Ma for 3000 Ma and {+-} 2 Ma for 100 Ma; estimated errors for the basaltic rocks range from {+-} 120 Ma for 3000 Ma and {+-} 8 Ma for 100 Ma.

  14. Analysis of pigments in polychromes by use of laser induced breakdown spectroscopy and Raman microscopy

    Science.gov (United States)

    Castillejo, M.; Martín, M.; Silva, D.; Stratoudaki, T.; Anglos, D.; Burgio, L.; Clark, R. J. H.

    2000-09-01

    Two laser-based analytical techniques, Laser Induced Breakdown Spectroscopy (LIBS) and Raman microscopy, have been used for the identification of pigments on a polychrome from the Rococo period. Detailed spectral data are presented from analyses performed on a fragment of a gilded altarpiece from the church of Escatrón, Zaragoza, Spain. LIBS measurements yielded elemental analytical data which suggest the presence of certain pigments and, in addition, provide information on the stratigraphy of the paint layers. Identification of most pigments and of the materials used in the preparation layer was performed by Raman microscopy.

  15. Prenatal exposure to chromium induces early reproductive senescence by increasing germ cell apoptosis and advancing germ cell cyst breakdown in the F1 offspring.

    Science.gov (United States)

    Sivakumar, Kirthiram K; Stanley, Jone A; Arosh, Joe A; Pepling, Melissa E; Burghardt, Robert C; Banu, Sakhila K

    2014-04-01

    Hexavalent chromium (CrVI), one of the more toxic heavy metals, is widely used in more than 50 industries such as chrome plating, welding, wood processing and tanneries. As one of the world's leading producers of chromium compounds, the U.S. is facing growing challenges in protecting human health against multiple adverse effects of CrVI. CrVI is rapidly converted to CrIII intracellularly, and can induce apoptosis through different mechanisms. Our previous studies demonstrated postnatal exposure to CrVI results in a delay or arrest in follicle development and puberty. Pregnant rats were treated with 25 ppm potassium dichromate (CrVI) from gestational day (GD) 9.5 to 14.5 through drinking water, placentae were removed on GD 20, and total Cr was estimated in the placentae; ovaries were removed from the F1 offspring on postnatal day (PND)-1 and various analyses were performed. Our results show that gestational exposure to CrVI resulted in (i) increased Cr concentration in the placenta, (ii) increased germ cell apoptosis by up-regulating p53/p27-Bax-caspase-3 proteins and by increasing p53-SOD-2 co-localization; (iii) accelerated germ cell cyst (GCC) breakdown; (iv) advanced primordial follicle assembly and primary follicle transition and (v) down regulation of p-AKT, p-ERK and XIAP. As a result of the above events, CrVI induced early reproductive senescence and decrease in litter size in F1 female progeny. Published by Elsevier Inc.

  16. Vorticity generation and jetting caused by a laser-induced optical breakdown

    Science.gov (United States)

    Wang, Jonathan; Buchta, David; Freund, Jonathan

    2017-11-01

    A focused laser can cause optical breakdown of a gas that absorbs energy and can seed ignition. The local hydrodynamics are complex. The breakdown is observed to produce vorticity that subsequently collects into a jetting flow towards the laser source. The strength and the very direction of the jet is observed to be sensitive to the plasma kernel geometry. We use detailed numerical simulations to examine the short-time (inverse Bremsstrahlung, and 11 charged and neutral species for air. We quantify the early-time contributions of different thermodynamic and gas-dynamic effects to the baroclinic torque. It is found that the breakdown produces compression waves within the plasma kernel, and that the mismatch in their strengths precipitates the involution of the plasma remnants and yields the net vorticity that ultimately develops into the jet. We also quantify the temperature distribution and local strain rates and demonstrate their importance in seeding ignition in non-homogeneous hydrogen/air mixtures.

  17. Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Madhavi Z [ORNL; Fox, Dr. Richard V [Idaho National Laboratory (INL); Miziolek, Andrzej W [United States Army Research Laboratory; DeLucia, Frank C [United States Army Research Laboratory; Andre, Nicolas O [ORNL

    2015-01-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.

  18. Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Madhavi Z [ORNL; Fox, Dr. Richard V [Idaho National Laboratory (INL); Miziolek, Andrzej W [United States Army Research Laboratory; DeLucia, Frank C [United States Army Research Laboratory; Andre, Nicolas O [ORNL

    2015-01-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in real-world complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.

  19. Effects of elevated temperature on protein breakdown in muscles from septic rats

    International Nuclear Information System (INIS)

    Hall-Angeras, M.A.; Angeras, U.H.; Hasselgren, P.O.; Fischer, J.E.

    1990-01-01

    Elevated temperature has been proposed to contribute to accelerated muscle protein degradation during fever and sepsis. The present study examined the effect of increased temperature in vitro on protein turnover in skeletal muscles from septic and control rats. Sepsis was induced by cecal ligation and puncture (CLP); control rats were sham operated. After 16 h, the extensor digitorum longus (EDL) and soleus (SOL) muscles were incubated at 37 or 40 degrees C. Protein synthesis was determined by measuring incorporation of [14C]phenylalanine into protein. Total and myofibrillar protein breakdown was assessed from release of tyrosine and 3-methylhistidine (3-MH), respectively. Total protein breakdown was increased at 40 degrees C by 15% in EDL and by 29% in SOL from control rats, whereas 3-MH release was not affected. In muscles from septic rats, total and myofibrillar protein breakdown was increased by 22 and 30%, respectively, at 40 degrees C in EDL but was not altered in SOL. Protein synthesis was unaffected by high temperature both in septic and nonseptic muscles. The present results suggest that high temperature is not the primary mechanism of increased muscle protein breakdown in sepsis because the typical response to sepsis, i.e., a predominant increase in myofibrillar protein breakdown, was not induced by elevated temperature in normal muscle. It is possible, however, that increased temperature may potentiate protein breakdown that is already stimulated by sepsis because elevated temperature increased both total and myofibrillar protein breakdown in EDL from septic rats

  20. Pregnancy-induced rise in serum C-peptide concentrations in women with type 1 diabetes

    DEFF Research Database (Denmark)

    Nielsen, Lene Ringholm; Rehfeld, Jens F; Pedersen-Bjergaard, Ulrik

    2009-01-01

    OBJECTIVE: The purpose of this study was to investigate whether pregnancy induces increased insulin production as a marker of improved beta-cell function in women with long-term type 1 diabetes. RESEARCH DESIGN AND METHODS: This was a prospective study of 90 consecutive pregnant women with type 1.......85). Multivariate regression analysis revealed a positive association between the absolute increase in C-peptide concentrations during pregnancy and decreased A1C from 8 to 33 weeks (P = 0.003). CONCLUSIONS: A pregnancy-induced increase in C-peptide concentrations in women with long-term type 1 diabetes...... in 35 women. RESULTS: C-peptide concentrations gradually increased throughout pregnancy regardless of serum glucose concentrations in the 90 women with a median duration of diabetes of 17 years (range 1-36 years). Among 35 women with paired recordings of stimulated C-peptide, C-peptide production...

  1. Laser-induced breakdown spectroscopy for analysis of plant materials: A review

    International Nuclear Information System (INIS)

    Santos, Dário; Nunes, Lidiane Cristina; Gustinelli Arantes de Carvalho, Gabriel; Gomes, Marcos da Silva; Souza, Paulino Florêncio de; Leme, Flavio de Oliveira; Gustavo Cofani dos Santos, Luis; Krug, Francisco José

    2012-01-01

    Developments and contributions of laser-induced breakdown spectroscopy (LIBS) for the determination of elements in plant materials are reviewed. Several applications where the solid samples are interrogated by simply focusing the laser pulses directly onto a fresh or dried surface of leaves, roots, fruits, vegetables, wood and pollen are presented. For quantitative purposes aiming at plant nutrition diagnosis, the test sample presentation in the form of pressed pellets, prepared from clean, dried and properly ground/homogenized leaves, and the use of univariate or multivariate calibration strategies are revisited. - Highlights: ► Qualitative and quantitative LIBS analysis of plant materials are reviewed. ► Fresh or dried leaves, fruits, roots and pellets can be easily interrogated by LIBS. ► LIBS is a powerful tool for plant nutrition diagnosis and elemental mapping. ► Intended LIBS users will find a survey of applications in a comprehensive table.

  2. Detection of Elemental Composition of Lubricating Grease Using Laser Induced Breakdown Spectroscopy

    Directory of Open Access Journals (Sweden)

    Cherry Dhiman

    2014-12-01

    Full Text Available The elemental composition of lubricating soft grease used in rail engines are studied using laser induced breakdown spectroscopy (LIBS technique. LIBS spectra of fresh, partially used and fully used grease samples are recorded using time-gated ICCD spectrometer for verification of compositional degradation of the used grease. LIBS spectra of grease samples are analyzed by comparing with emission spectra of elements published by NIST standard database. Many spectral lines of impurity elements like Fe, Cu, Ba, Mg, Mn, Ni, S, Zn, Si, Pb, Ti, Ca and Al present in the grease in ppm or ppb level in trace level concentrations are observed in excess in the used grease mainly due to wear and tear. On the other hand in fresh grease, spectral lines of Ca, Al and Na are observed predominantly.

  3. Quantitative mixture fraction measurements in combustion system via laser induced breakdown spectroscopy

    KAUST Repository

    Mansour, Mohy S.

    2015-01-01

    Laser induced breakdown spectroscopy (LIBS) technique has been applied to quantitative mixture fraction measurements in flames. The measured spectra of different mixtures of natural gas and air are used to obtain the calibration parameters for local elemental mass fraction measurements and hence calculate the mixture fraction. The results are compared with the mixture fraction calculations based on the ratios of the spectral lines of H/N elements, H/O elements and C/(N+O) and they show good agreement within the reaction zone of the flames. Some deviations are observed outside the reaction zone. The ability of LIBS technique as a tool for quantitative mixture fraction as well as elemental fraction measurements in reacting and non-reacting of turbulent flames is feasible. © 2014 Elsevier Ltd. All rights reserved.

  4. Psychosocial stress and inflammation driving tryptophan breakdown in children and adolescents: A cross-sectional analysis of two cohorts.

    Science.gov (United States)

    Michels, Nathalie; Clarke, Gerard; Olavarria-Ramirez, Loreto; Gómez-Martínez, Sonia; Díaz, Ligia Esperanza; Marcos, Ascensión; Widhalm, Kurt; Carvalho, Livia A

    2018-05-15

    Tryptophan breakdown is an important mechanism in several diseases e.g. inflammation and stress-induced inflammation have been associated with the development of depression via enhanced tryptophan breakdown. Depression is a major public health problem which commonly starts during adolescence, thus identifying underlying mechanisms during early life is crucial in prevention. The aim of this work was to verify whether independent and interacting associations of psychosocial stress and inflammation on tryptophan breakdown already exist in children and adolescents as a vulnerable age group. Two cross-sectional population-based samples of children/adolescents (8-18 y) were available: 315 from the European HELENA study and 164 from the Belgian ChiBS study. In fasting serum samples, tryptophan, kynurenine, kynurenic acid, C-reactive protein (CRP), interleukin (IL)-6, tumor necrosis factor (TNF)-α, interferon (IFN)-ɣ, soluble vascular adhesion molecule 1 (sVCAM1) and soluble intercellular adhesion molecule 1 (sICAM1) were measured. Psychological stress was measured by stress reports (subjective) and cortisol (objective - awakening salivary cortisol or hair cortisol). Linear regressions with stress or inflammation as predictor were adjusted for age, sex, body mass index, puberty, socio-economic status and country. In both cohorts, inflammation as measured by higher levels of CRP, sVCAM1 and sICAM1 was associated with kynurenine/tryptophan ratio and thus enhanced tryptophan breakdown (beta: 0.145-0.429). Psychological stress was only associated with tryptophan breakdown in the presence of higher inflammatory levels (TNF-α in both populations). Inflammatory levels were replicable key in enhancing tryptophan breakdown along the kynurenine pathway, even at young age and in a non-clinical sample. The stress-inflammation interaction indicated that only the stress exposures inducing higher inflammatory levels (or in an already existing inflammatory status) were associated

  5. New method for determining avalanche breakdown voltage of silicon photomultipliers

    International Nuclear Information System (INIS)

    Chirikov-Zorin, I.

    2017-01-01

    The avalanche breakdown and Geiger mode of the silicon p-n junction is considered. A precise physically motivated method is proposed for determining the avalanche breakdown voltage of silicon photomultipliers (SiPM). The method is based on measuring the dependence of the relative photon detection efficiency (PDE rel ) on the bias voltage when one type of carriers (electron or hole) is injected into the avalanche multiplication zone of the p-n junction. The injection of electrons or holes from the base region of the SiPM semiconductor structure is performed using short-wave or long-wave light. At a low overvoltage (1-2 V) the detection efficiency is linearly dependent on the bias voltage; therefore, extrapolation to zero PDE rel value determines the SiPM avalanche breakdown voltage with an accuracy within a few millivolts. [ru

  6. A Novel and Effective Multivariate Method for Compositional Analysis using Laser Induced Breakdown Spectroscopy

    International Nuclear Information System (INIS)

    Wang, W; Qi, H; Ayhan, B; Kwan, C; Vance, S

    2014-01-01

    Compositional analysis is important to interrogate spectral samples for direct analysis of materials in agriculture, environment and archaeology, etc. In this paper, multi-variate analysis (MVA) techniques are coupled with laser induced breakdown spectroscopy (LIBS) to estimate quantitative elemental compositions and determine the type of the sample. In particular, we present a new multivariate analysis method for composition analysis, referred to as s pectral unmixing . The LIBS spectrum of a testing sample is considered as a linear mixture with more than one constituent signatures that correspond to various chemical elements. The signature library is derived from regression analysis using training samples or is manually set up with the information from an elemental LIBS spectral database. A calibration step is used to make all the signatures in library to be homogeneous with the testing sample so as to avoid inhomogeneous signatures that might be caused by different sampling conditions. To demonstrate the feasibility of the proposed method, we compare it with the traditional partial least squares (PLS) method and the univariate method using a standard soil data set with elemental concentration measured a priori. The experimental results show that the proposed method holds great potential for reliable and effective elemental concentration estimation

  7. Spectroscopic analysis of femtosecond laser-induced gas breakdown

    International Nuclear Information System (INIS)

    Hermann, J.; Bruneau, S.; Sentis, M.

    2004-01-01

    The plasma generated by the interaction of a femtosecond laser pulse with gas has been analyzed using time- and space-resolved emission spectroscopy. The laser beam has been focused with a microscope objective into different gases (air, Ar, He) at pressures ranging from 10 2 to 10 5 Pa. From the analysis of spectral line emission from ions and neutral atoms, the plasma parameters and the plasma composition have been determined as a function of time and space. Furthermore, the generation of fast electrons and/or VUV radiation by the femtosecond laser interaction with the gas was brought to the fore. From the time- and space-evolution of the plasma parameters, a rough estimation of initial values of electron density and refraction index in the focal volume has been performed. These results are compared to analysis of the laser beam transmitted by the plasma. The latter show that only a small fraction of the laser energy is absorbed by the plasma while the spatial distribution of the transmitted laser beam is strongly perturbed by the plasma, which acts like a defocusing lens. However, in ambient helium, the plasma defocusing is weak due to the high ionization potential of helium. The understanding of femtosecond laser-induced gas breakdown is useful for process optimization in femtosecond laser applications like micromachining or surface microanalysis, etc

  8. Determination of Rare Earth Elements in Geological Samples Using Laser-Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Bhatt, Chet R; Jain, Jinesh C; Goueguel, Christian L; McIntyre, Dustin L; Singh, Jagdish P

    2018-01-01

    Laser-induced breakdown spectroscopy (LIBS) was used to detect rare earth elements (REEs) in natural geological samples. Low and high intensity emission lines of Ce, La, Nd, Y, Pr, Sm, Eu, Gd, and Dy were identified in the spectra recorded from the samples to claim the presence of these REEs. Multivariate analysis was executed by developing partial least squares regression (PLS-R) models for the quantification of Ce, La, and Nd. Analysis of unknown samples indicated that the prediction results of these samples were found comparable to those obtained by inductively coupled plasma mass spectrometry analysis. Data support that LIBS has potential to quantify REEs in geological minerals/ores.

  9. Investigation of laser-induced pre-breakdown material modifications. Final report, September 15, 1977--March 14, 1979

    International Nuclear Information System (INIS)

    Braeunlich, P.; Schmid, A.

    1979-01-01

    A new mechanism is presented for dielectric breakdown of wide gap materials in intense fields of photons having wavelengths in the visible region of the electromagnetic spectrum. It is based on multiphoton generation of free carriers and energy deposition from the photon field to the lattice via electron--photon--phonon collision processes. This laser breakdown model represents an alternative to the so-called avalanche ionization mechanism. It is further demonstrated that laser pulses with peak fluxes below the single-shot threshold for both bulk and surface damage of sodium chloride crystals modify the properties of this material. As a result of multiphoton exciton generation primary defects are formed which lead to intense directional emission of neutral halogen and alkali atoms. As a consequence, the crystal surface is severely perturbed. The technique of thermally stimulated exoemission of particles to assess the degree of surface pertubation after laser exposure was developed. Ongoing experiments present for the first time evidence that the single-shot laser surface damage threshold decreases with laser-induced surface perturbation

  10. Optimization of chemical and instrumental parameters in hydride generation laser-induced breakdown spectrometry for the determination of arsenic, antimony, lead and germanium in aqueous samples.

    Science.gov (United States)

    Yeşiller, Semira Unal; Yalçın, Serife

    2013-04-03

    A laser induced breakdown spectrometry hyphenated with on-line continuous flow hydride generation sample introduction system, HG-LIBS, has been used for the determination of arsenic, antimony, lead and germanium in aqueous environments. Optimum chemical and instrumental parameters governing chemical hydride generation, laser plasma formation and detection were investigated for each element under argon and nitrogen atmosphere. Arsenic, antimony and germanium have presented strong enhancement in signal strength under argon atmosphere while lead has shown no sensitivity to ambient gas type. Detection limits of 1.1 mg L(-1), 1.0 mg L(-1), 1.3 mg L(-1) and 0.2 mg L(-1) were obtained for As, Sb, Pb and Ge, respectively. Up to 77 times enhancement in detection limit of Pb were obtained, compared to the result obtained from the direct analysis of liquids by LIBS. Applicability of the technique to real water samples was tested through spiking experiments and recoveries higher than 80% were obtained. Results demonstrate that, HG-LIBS approach is suitable for quantitative analysis of toxic elements and sufficiently fast for real time continuous monitoring in aqueous environments. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Laser-induced breakdown spectroscopy for the real-time analysis of mixed waste samples containing Sr

    International Nuclear Information System (INIS)

    Barefield, J.E. II; Koskelo, A.C.; Multari, R.A.; Cremers, D.A.; Gamble, T.K.; Han, C.Y.

    1995-01-01

    In this report, the use of Laser-induced breakdown spectroscopy to analyze mixed waste samples containing Sr is discussed. The mixed waste samples investigated include vitrified waste glass and contaminated soil. Compared to traditional analysis techniques, the laser-based method is fast (i.e., analysis times on the order of minutes) and essentially waste free since little or no sample preparation is required. Detection limits on the order of pmm Sr were determined. Detection limits obtained using a fiber optic cable to deliver laser pulses to soil samples containing Cr, Zr, Pb, Be, Cu, and Ni will also be discussed

  12. Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements

    International Nuclear Information System (INIS)

    El Sherbini, A.M.; El Sherbini, Th.M.; Hegazy, H.; Cristoforetti, G.; Legnaioli, S.; Palleschi, V.; Pardini, L.; Salvetti, A.; Tognoni, E.

    2005-01-01

    In quantitative Laser Induced Breakdown Spectroscopy (LIBS) measurements it is essential to account for the effect of self-absorption on the emission lines intensity. In order to quantify this effect, in this paper we propose a simple method for evaluating the ratio between the actual measured line intensity and the intensity expected in absence of self-absorption and, if necessary, correcting the effect of self-absorption on line intensity. The method, based on a homogeneous plasma model, is applicable when the plasma electron density is known and in particular to lines whose Stark broadening parameter is available

  13. Laser-induced breakdown spectroscopy for lambda quantification in a direct-injection engine

    International Nuclear Information System (INIS)

    Buschbeck, M.; Büchler, F.; Halfmann, T.; Arndt, S.

    2012-01-01

    We apply laser-induced breakdown spectroscopy (LIBS) to determine local lambda values (i.e. the normalized air-fuel mass ratio) at the ignition location λ ip in a direct-injection single-cylinder optical research engine. The technique enables us to determine variations of λ ip for different fuel injection strategies, as well as correlations between variations in λ ip and the combustion dynamics. In particular we observe, that fluctuations in λ ip are not the major cause of cycle-to-cycle variations in the combustion process. Moreover, our experiments identify insufficient lean λ ip values as a source of misfires in lean combustions. In a combination of LIBS with laser-induced fluorescence (LIF), we obtain additionally information about the two-dimensional λ distribution. These results demonstrate the potential of LIBS to monitor λ values during mixture formation in gasoline engines. - Highlights: ► Determination of λ values by means of LIBS in an optical gasoline engine. ► Evaluation of λ fluctuations for different fuel injection strategies. ► Investigation of the effect of λ upon combustion dynamics. ► Combination of LIBS and LIF to obtain two-dimensional λ distributions.

  14. High frequency breakdown voltage

    International Nuclear Information System (INIS)

    Chu, Thanh Duy.

    1992-03-01

    This report contains information about the effect of frequency on the breakdown voltage of an air gap at standard pressure and temperature, 76 mm Hg and O degrees C, respectively. The frequencies of interest are 47 MHz and 60 MHz. Additionally, the breakdown in vacuum is briefly considered. The breakdown mechanism is explained on the basis of collision and ionization. The presence of the positive ions produced by ionization enhances the field in the gap, and thus determines the breakdown. When a low-frequency voltage is applied across the gap, the breakdown mechanism is the same as that caused by the DC or static voltage. However, when the frequency exceeds the first critical value f c , the positive ions are trapped in the gap, increasing the field considerably. This makes the breakdown occur earlier; in other words, the breakdown voltage is lowered. As the frequency increases two decades or more, the second critical frequency, f ce , is reached. This time the electrons start being trapped in the gap. Those electrons that travel multiple times across the gap before reaching the positive electrode result in an enormous number of electrons and positive ions being present in the gap. The result is a further decrease of the breakdown voltage. However, increasing the frequency does not decrease the breakdown voltage correspondingly. In fact, the associated breakdown field intensity is almost constant (about 29 kV/cm).The reason is that the recombination rate increases and counterbalances the production rate, thus reducing the effect of the positive ions' concentration in the gap. The theory of collision and ionization does not apply to the breakdown in vacuum. It seems that the breakdown in vacuum is primarily determined by the irregularities on the surfaces of the electrodes. Therefore, the effect of frequency on the breakdown, if any, is of secondary importance

  15. Detection of hazardous pollutants in chrome-tanned leather using locally developed laser-induced breakdown spectrometer.

    Science.gov (United States)

    Nasr, M M; Gondal, Mohammed Asharf; Seddigi, Z S

    2011-04-01

    Highly toxic contaminants like Cr, As, and Pb were detected in chrome-tanning process of animal skin to produce leather by applying locally developed laser-induced breakdown spectrometer. An Nd-YAG laser with 1,064 nm wavelength was focused on the surface of leather samples (natural and manufactured) to generate a plasma spark and spectrally resolved spectra were used for identification and quantification of contaminants. The leather samples were collected from a tannery located in industrial cities of Riyadh and Jeddah, Saudi Arabia. The study was carried out on fully, half manufactured (wet blue leather), and natural hide (skin). To the best of our knowledge, this is the first attempt where laser-induced breakdown spectroscopy (LIBS) technique has been applied for the analysis of leather before and after tanning process. The maximum concentration of different elements of environmental significance like chromium, lead, arsenic, sulfur, magnesium were 199, 289, 31, 38, and 39 ppm, respectively, in one of the manufactured leather samples. The limit of detection (LOD) of our LIBS system for chromium, lead, arsenic, sulfur, and magnesium were 2, 3, 1.5,7, and 3 ppm, respectively. The safe permissible limit for tanned leather for highly toxic elements like chromium, lead, and arsenic are 1, 0.5, 0.01 ppm, respectively, as prescribed in Environmental Regulation Standards for Saudi Industries set by Royal Commission Jubail, Saudi Arabia. The LIBS technique is superior to other conventional techniques like ICP or atomic absorption that a little or no sample preparation is required, no chemicals are needed, multi-elemental analysis is possible for all kinds of samples (natural and anthropogenic materials), microgram of sample is essential, and LIBS could be applied for remote analysis. It is highly selective and sensitivity higher than ICP, and as no sample and chemicals are required, it is cost effective for multi-sample analysis per unit time as compared with other

  16. Fs–ns double-pulse Laser Induced Breakdown Spectroscopy of copper-based-alloys: Generation and elemental analysis of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Guarnaccio, A.; Parisi, G.P.; Mollica, D. [CNR-ISM, U.O.S. Tito Scalo, Zona Industriale, 85050 Tito Scalo, PZ (Italy); De Bonis, A. [CNR-ISM, U.O.S. Tito Scalo, Zona Industriale, 85050 Tito Scalo, PZ (Italy); Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell' Ateneo Lucano 10, 85100 Potenza (Italy); Teghil, R. [Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell' Ateneo Lucano 10, 85100 Potenza (Italy); Santagata, A. [CNR-ISM, U.O.S. Tito Scalo, Zona Industriale, 85050 Tito Scalo, PZ (Italy)

    2014-11-01

    Evolution of nanoparticles ejected during ultra-short (250 fs) laser ablation of certified copper alloys and relative calibration plots of a fs–ns double-pulse Laser Induced Breakdown Spectroscopy orthogonal configuration is presented. All work was performed in air at atmospheric pressure using certified copper-based-alloy samples irradiated by a fs laser beam and followed by a delayed perpendicular ns laser pulse. In order to evaluate possible compositional changes of the fs induced nanoparticles, it was necessary to consider, for all samples used, comparable features of the detected species. With this purpose the induced nanoparticles black-body-like emission evolution and their relative temperature decay have been studied. These data were exploited for defining the distance between the target surface and the successive ns laser beam to be used. The consequent calibration plots of minor constituents (i.e. Sn, Pb and Zn) of the certified copper-based-alloy samples have been reported by taking into account self-absorption effects. The resulting linear regression coefficients suggest that the method used, for monitoring and ruling the fs laser induced nanoparticles, could provide a valuable approach for establishing the occurrence of potential compositional changes of the detected species. All experimental data reveal that the fs laser induced nanoparticles can be used for providing a coherent composition of the starting target. In the meantime, the fs–ns double-pulse Laser Induced Breakdown Spectroscopy orthogonal configuration here used can be considered as an efficient technique for compositional determination of the nanoparticles ejected during ultra-short laser ablation processes. - Highlights: • Laser induced NP continuum black-body-like emission was used for T determination. • Invariable composition of generated NPs was assumed in the range of 20 μs. • Fs-ns DP-LIBS was employed for the compositional characterization of NPs. • NPs obtained by fs

  17. Effect of gate length on breakdown voltage in AlGaN/GaN high-electron-mobility transistor

    International Nuclear Information System (INIS)

    Luo Jun; Zhao Sheng-Lei; Mi Min-Han; Zhang Jin-Cheng; Ma Xiao-Hua; Hao Yue; Chen Wei-Wei; Hou Bin

    2016-01-01

    The effects of gate length L G on breakdown voltage V BR are investigated in AlGaN/GaN high-electron-mobility transistors (HEMTs) with L G = 1 μm∼ 20 μm. With the increase of L G , V BR is first increased, and then saturated at L G = 3 μm. For the HEMT with L G = 1 μm, breakdown voltage V BR is 117 V, and it can be enhanced to 148 V for the HEMT with L G = 3 μm. The gate length of 3 μm can alleviate the buffer-leakage-induced impact ionization compared with the gate length of 1 μm, and the suppression of the impact ionization is the reason for improving the breakdown voltage. A similar suppression of the impact ionization exists in the HEMTs with L G > 3 μm. As a result, there is no obvious difference in breakdown voltage among the HEMTs with L G = 3 μm∼20 μm, and their breakdown voltages are in a range of 140 V–156 V. (paper)

  18. Effects of load voltage on voltage breakdown modes of electrical exploding aluminum wires in air

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jian; Li, Xingwen, E-mail: xwli@mail.xjtu.edu.cn; Yang, Zefeng; Wang, Kun; Chao, Youchuang; Shi, Zongqian; Jia, Shenli; Qiu, Aici [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China)

    2015-06-15

    The effects of the load voltage on the breakdown modes are investigated in exploding aluminum wires driven by a 1 kA, 0.1 kA/ns pulsed current in air. From laser probing images taken by laser shadowgraphy, schlieren imaging, and interferometry, the position of the shockwave front, the plasma channel, and the wire core edge of the exploding product can be determined. The breakdown mode makes a transition from the internal mode, which involves breakdown inside the wire core, to the shunting mode, which involves breakdown in the compressed air, with decreasing charging voltage. The breakdown electrical field for a gaseous aluminum wire core of nearly solid density is estimated to be more than 20 kV/cm, while the value for gaseous aluminum of approximately 0.2% solid density decreases to 15–20 kV/cm. The breakdown field in shunting mode is less than 20 kV/cm and is strongly affected by the vaporized aluminum, the desorbed gas, and the electrons emitted from the wire core during the current pause. Ohmic heating during voltage collapses will induce further energy deposition in the current channel and thus will result in different expansion speeds for both the wire core and the shockwave front in the different modes.

  19. Numerical simulation of incidence and sweep effects on delta wing vortex breakdown

    Science.gov (United States)

    Ekaterinaris, J. A.; Schiff, Lewis B.

    1994-01-01

    The structure of the vortical flowfield over delta wings at high angles of attack was investigated. Three-dimensional Navier-Stokes numerical simulations were carried out to predict the complex leeward-side flowfield characteristics, including leading-edge separation, secondary separation, and vortex breakdown. Flows over a 75- and a 63-deg sweep delta wing with sharp leading edges were investigated and compared with available experimental data. The effect of variation of circumferential grid resolution grid resolution in the vicinity of the wing leading edge on the accuracy of the solutions was addressed. Furthermore, the effect of turbulence modeling on the solutions was investigated. The effects of variation of angle of attack on the computed vortical flow structure for the 75-deg sweep delta wing were examined. At moderate angles of attack no vortex breakdown was observed. When a critical angle of attack was reached, bubble-type vortex breakdown was found. With further increase in angle of attack, a change from bubble-type breakdown to spiral-type vortex breakdown was predicted by the numerical solution. The effects of variation of sweep angle and freestream Mach number were addressed with the solutions on a 63-deg sweep delta wing.

  20. Vortex breakdown in a supersonic jet

    Science.gov (United States)

    Cutler, Andrew D.; Levey, Brian S.

    1991-01-01

    This paper reports a study of a vortex breakdown in a supersonic jet. A supersonic vortical jets were created by tangential injection and acceleration through a convergent-divergent nozzle. Vortex circulation was varied, and the nature of the flow in vortical jets was investigated using several types of flow visualization, including focusing schlieren and imaging of Rayleigh scattering from a laser light sheet. Results show that the vortical jet mixed much more rapidly with the ambient air than a comparable straight jet. When overexpanded, the vortical jet exhibited considerable unsteadiness and showed signs of vortex breakdown.

  1. Diacylglycerol production induced by growth hormone in Ob1771 preadipocytes arises from phosphatidylcholine breakdown

    International Nuclear Information System (INIS)

    Catalioto, R.M.; Ailhaud, G.; Negrel, R.

    1990-01-01

    Growth Hormone has recently been shown to stimulate the formation of diacylglycerol in Ob1771 mouse preadipocyte cells without increasing inositol lipid turnover. Addition of growth hormone to Ob1771 cells prelabelled with [ 3 H]glycerol or [ 3 H]choline led to a rapid, transient and stoechiometric formation of labelled diacylglycerol and phosphocholine, respectively. In contrast, no change was observed in the level of choline and phosphatidic acid whereas the release of water-soluble metabolites in [ 3 H]ethanolamine prelabelled cells exposed to growth hormone was hardly detectable. Stimulation by growth hormone of cells prelabelled with (2-palmitoyl 9, 10 [ 3 H])phosphatidylcholine also induced the production of labelled diacyglycerol. Pertussis toxin abolished both diacylglycerol and phosphocholine formation induced by growth hormone. It is concluded that growth hormone mediates diacylglycerol production in Ob1771 cells by means of phosphatidylcholine breakdown involving a phospholipase C which is likely coupled to the growth hormone receptor via a pertussis toxin-sensitive G-protein

  2. Diacylglycerol production induced by growth hormone in Ob1771 preadipocytes arises from phosphatidylcholine breakdown

    Energy Technology Data Exchange (ETDEWEB)

    Catalioto, R.M.; Ailhaud, G.; Negrel, R. (Universite de Nice-Sophia Antipolis (France))

    1990-12-31

    Growth Hormone has recently been shown to stimulate the formation of diacylglycerol in Ob1771 mouse preadipocyte cells without increasing inositol lipid turnover. Addition of growth hormone to Ob1771 cells prelabelled with ({sup 3}H)glycerol or ({sup 3}H)choline led to a rapid, transient and stoechiometric formation of labelled diacylglycerol and phosphocholine, respectively. In contrast, no change was observed in the level of choline and phosphatidic acid whereas the release of water-soluble metabolites in ({sup 3}H)ethanolamine prelabelled cells exposed to growth hormone was hardly detectable. Stimulation by growth hormone of cells prelabelled with (2-palmitoyl 9, 10 ({sup 3}H))phosphatidylcholine also induced the production of labelled diacyglycerol. Pertussis toxin abolished both diacylglycerol and phosphocholine formation induced by growth hormone. It is concluded that growth hormone mediates diacylglycerol production in Ob1771 cells by means of phosphatidylcholine breakdown involving a phospholipase C which is likely coupled to the growth hormone receptor via a pertussis toxin-sensitive G-protein.

  3. Hypoglycemic, hypolipidemic and antiatherogenic effects of oleuropein in alloxan-induced Type 1 diabetic rats

    Directory of Open Access Journals (Sweden)

    Hassan Ahmadvand

    2014-02-01

    Full Text Available Objective: To assess effect of oleuropein on hemoglobin A1C, serum glucose, lipid profile and atherogenic index in alloxan-induced Type 1 diabetic rats. Methods: Thirty Sprage-Dawley male rats were divided into three groups randomly; group one as control, group two diabetic untreatment, and group three treatments with oleuropein by 15 mg/kg i.p. daily, respectively. Diabetes was induced in the second and third groups by alloxan injection subcutaneously. After 8 weeks, the levels of hemoglobin A1C, fasting blood glucose, triglyceride, cholesterol, low density lipoprotein, very low density lipoprotein, high density lipoprotein and atherogenic index of all groups were analyzed. Results: Oleuropein significantly decreased hemoglobin A1C, fasting blood glucose, triglyceride, cholesterol, low density lipoprotein, very low density lipoprotein. High density lipoprotein level was significantly increased when treated with oleuropein. Conclusions: The findings of the present study suggest that oleuropein exert beneficial effects on serum glucose, hemoglobin A1C, lipid profile and atherogenic index in alloxan-induced Type 1 diabetic rats.

  4. A Laser Induced Breakdown Spectroscopy application based on Local Thermodynamic Equilibrium assumption for the elemental analysis of alexandrite gemstone and copper-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    De Giacomo, A. [Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari (Italy); Institute of Inorganic Methodologies and Plasmas - CNR, U.O.S. Bari, Via Amendola 122/D, 70126 Bari (Italy); Dell' Aglio, M. [Institute of Inorganic Methodologies and Plasmas - CNR, U.O.S. Bari, Via Amendola 122/D, 70126 Bari (Italy); Gaudiuso, R., E-mail: rosalba.gaudiuso@ba.imip.cnr.it [Institute of Inorganic Methodologies and Plasmas - CNR, U.O.S. Bari, Via Amendola 122/D, 70126 Bari (Italy); Santagata, A. [Institute of Inorganic Methodologies and Plasmas - CNR, U.O.S. Potenza, Via S. Loja, Zona Ind., 85050 Tito Scalo (PZ) (Italy); Senesi, G.S. [Institute of Inorganic Methodologies and Plasmas - CNR, U.O.S. Bari, Via Amendola 122/D, 70126 Bari (Italy); Rossi, M.; Ghiara, M.R. [Department of Earth Sciences, University of Naples ' Federico II' , Via Mezzocannone 8, 80134 Naples (Italy); Capitelli, F. [Institute of Crystallography - CNR, Via Salaria Km 29.300, 00015 Monterotondo (Roma) (Italy); De Pascale, O. [Institute of Inorganic Methodologies and Plasmas - CNR, U.O.S. Bari, Via Amendola 122/D, 70126 Bari (Italy)

    2012-04-04

    Graphical abstract: Self-calibrated analytical techniques based on the approximation of Local Thermodynamic Equilibrium (LTE) have been employed for the analysis of gemstones and copper-based alloys by LIBS (Laser Induced Breakdown Spectroscopy), with a special focus on LTE conditions in laser induced plasmas. Highlights: Black-Right-Pointing-Pointer Discussion of Local Thermodynamic Equilibrium (LTE) condition in laser-induced plasmas. Black-Right-Pointing-Pointer LIBS enables elemental analysis with self-calibrated LTE-based methods. Black-Right-Pointing-Pointer Be detection in alexandrite gemstone is made possible by LIBS. - Abstract: Laser Induced Breakdown Spectroscopy (LIBS) is an appealing technique to study laser-induced plasmas (LIPs), both from the basic diagnostics point of view and for analytical applications. LIPs are complex dynamic systems, expanding at supersonic velocities and undergoing a transition between different plasma regimes. If the Local Thermodynamic Equilibrium (LTE) condition is valid for such plasmas, several analytical methods can be employed and fast quantitative analyses can be performed on a variety of samples. In the present paper, a discussion about LTE is carried out and an innovative application to the analysis of the alexandrite gemstone is presented. In addition, a study about the influence of plasma parameters on the performance of LTE-based methods is reported for bronze and brass targets.

  5. Effects of angiotensin II type 1 receptor blocker on bones in mice with type 1 diabetes induced by streptozotocin.

    Science.gov (United States)

    Zhang, Yan; Diao, Teng-Yue; Gu, Sa-Sa; Wu, Shu-Yan; Gebru, Yoseph A; Chen, Xi; Wang, Jing-Yu; Ran, Shu; Wong, Man-Sau

    2014-09-01

    This study was performed to address the pathological roles of the skeletal renin-angiotensin system (RAS) in type 1 diabetes-induced osteoporosis and the effects of the angiotensin II type 1 receptor blocker losartan on bones in diabetic mice. Bone histomorphology was detected by H&E staining, Safranin O staining and X-ray radiography. Micro-CT was performed for the analysis of bone parameters. Gene and protein expression were determined by RT-PCR and immunoblotting. Type 1 diabetic mice displayed osteopenia phenotype, and losartan treatment had no osteoprotective effects on diabetic mice as shown by the reduction of bone mineral density and microarchitectural parameters at the proximal metaphysis of the tibia. The mRNA expression of AGT, renin receptor and ACE, and protein expression of renin and AT1R were markedly up-regulated in the bones of vehicle-treated diabetic mice compared to those of non-diabetic mice. The treatment with losartan further significantly increased the expression of AGT, renin, angiotensin II and AT1R, and reduced the expression of AT2R receptor as compared to those of diabetic mice. Local bone RAS functionally played a role in the development of type 1 diabetic osteoporosis, and losartan had no bone-sparing function in diabetes mice because of enhance skeletal RAS activity. © The Author(s) 2013.

  6. Linear correlation for identification of materials by laser induced breakdown spectroscopy: Improvement via spectral filtering and masking

    Energy Technology Data Exchange (ETDEWEB)

    Gornushkin, I.B., E-mail: igor.gornushkin@bam.d [BAM Federal Institute for Materials Research and Testing, Berlin (Germany); Panne, U. [BAM Federal Institute for Materials Research and Testing, Berlin (Germany); Winefordner, J.D. [University of Florida, Gainesville, Florida (United States)

    2009-10-15

    The purpose of this work is to improve the performance of a linear correlation method used for material identification in laser induced breakdown spectroscopy. The improved correlation procedure is proposed based on the selection and use of only essential spectral information and ignoring empty spectral fragments. The method is tested on glass samples of forensic interest. The 100% identification capability of the new method is demonstrated in contrast to the traditional approach where the identification rate falls below 100% for many samples.

  7. Laser Induced Breakdown Spectroscopy, advances in resolution and portability

    International Nuclear Information System (INIS)

    Ponce, L.; Flores, T.; Arronte, M.; Moreira, L.; Hernandez, L. C.; Posada, E. de

    2009-01-01

    Laser Induced Breakdown Spectroscopy (LIBS), can be considered as one of the most dynamic and promising technique in the field of analytical spectroscopy. LIBS has turned into a powerful alternative for a wide front of applications, from the geological exploration to the industrial inspection, including the environmental monitoring, the biomedical analysis, the study of patrimonial works, the safety and defense. The advances in LIBS instrumentation have allowed improving gradually the analysis services and quality, on the basis of a better knowledge of the technology principles. Recently, systems of double pulse have facilitated a better dosing of energy, the improvement of the signal-noise relation and the study of the different process stages. Femtosecond lasers offers the possibility of study in detail the ablation and atomic emission processes. New advances like multi-pulse or multi-wavelength systems -in fact stilling without exploring, must offer new information to advance in this knowledge. Finally, which it does to this technology really attractive, is the aptitude to be employed in field conditions, or for the detection of the elementary composition at long distances. In this presentation there are discussed the designs of portable instrumentation, compact and low cost, which can improve substantially the LIBS possibilities. (Author)

  8. Lowering effect of radioactive irradiation on breakdown voltage and electron avalanche pulse characteristics

    International Nuclear Information System (INIS)

    Kawahashi, Akira; Nakano, Toru; Hosokawa, Tatsuzo; Miyoshi, Yosinori.

    1976-01-01

    In the time resolving measurement of the growing process and breakdown of electron avalanche in a gap of uniform electric field, the phenomenon that DC breakdown voltage slightly lowered was observed when β ray was irradiated as the initial electron source, as compared with unirradiated condition. Beta source used is 90 Sr- 90 Y of 2 mCi in radiative equilibrium. The experimental results and the examination are described in detail. In brief, the remarkable superposition of succeeding avalanche pulse over the preceeding avalanche pulse waveform was observed under the gap condition in which the breakdown voltage decreased in β-ray irradiation. Thus this superposition of avalanche pulses is considered as one of the causes of the breakdown voltage reduction. When β source is used as the initial electron source, the number of supplied initial electrons is very large as compared with unity, and at the same time, a great number of initial electrons can be supplied within the diffusion radius r of avalanche. Then the effect of initial electron number n 0 was considered by employing a diagram for breakdown scheme. The transition from Townsend type breakdown to streamer type breakdown occurs owing to increasing n 0 , and in that condition, the breakdown voltage lowers slightly. (Wakatsuki, Y)

  9. Emission Characteristics of Laser-Induced Plasma Using Collinear Long and Short Dual-Pulse Laser-Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Wang, Zhenzhen; Deguchi, Yoshihiro; Liu, Renwei; Ikutomo, Akihiro; Zhang, Zhenzhen; Chong, Daotong; Yan, Junjie; Liu, Jiping; Shiou, Fang-Jung

    2017-09-01

    Collinear long and short dual-pulse laser-induced breakdown spectroscopy (DP-LIBS) was employed to clarify the emission characteristics from laser-induced plasma. The plasma was sustained and became stable by the long pulse-width laser with the pulse width of 60 μs under free running (FR) conditions as an external energy source. Comparing the measurement results of stainless steel in air using single-pulse LIBS (SP-LIBS) and DP-LIBS, the emission intensity was markedly enhanced using DP-LIBS. The temperature of plasma induced by DP-LIBS was maintained at a higher temperature under different gate delay time and short pulse-width laser power conditions compared with those measured using short SP-LIBS. Moreover, the variation rates of plasma temperatures measured using DP-LIBS were also lower. The superior detection ability was verified by the measurement of aluminum sample in water. The spectra were clearly detected using DP-LIBS, whereas it cannot be identified using SP-LIBS of short and long pulse widths. The effects of gate delay time and short pulse-width laser power were also discussed. These results demonstrate the feasibility and enhanced detection ability of the proposed collinear long and short DP-LIBS method.

  10. Cholecystokinin receptors: disparity between phosphoinositide breakdown and amylase releasing activity of CCK analogues in pancreas

    International Nuclear Information System (INIS)

    Lin, C.W.; Grant, D.; Bianchi, B.; Miller, T.; Witte, D.; Shue, Y.K.; Nadzan, A.

    1986-01-01

    Cholecystokinin (CCK) peptides are a family of hormones which also occur in brain. In pancreas CCK stimulates the release of amylase, a process that is dependent on the mobilization of intracellular Ca 2+ . Recent evidence suggests that inositol 1,4,5-trisphosphate, the breakdown product of phosphatidylinositol 4,5-bisphosphate, is responsible for the rise in intracellular Ca 2+ . Their laboratory has developed assays to study synthetic CCK analogues using radioligand binding, PI breakdown and amylase release. They have shown that there are good correlations among these three assay systems for the carboxy terminal fragments of CCK 8 . Recently, they have discovered synthetic analogues of CCK 4 that are full agonists in amylase release but are ineffective in causing PI breakdown. In particular, A-61576, Boc-5-amino-2-indolemethylene-pent-2-ene-1-oyl-Leu-Asp-Phe-NH 2 , is a full agonist in the amylase releasing assay, but is devoid of PI stimulating activity. A-61576 completely reverses the stimulation of PI response induced by CCK 8 , indicative of an antagonist. Since a mechanism other than the PI breakdown is responsible for amylase release by A-61576, they suggest that separate receptors are responsible for PI breakdown and amylase release

  11. Evaluation of the laser-induced breakdown spectroscopy technique for determination of the chemical composition of copper concentrates

    International Nuclear Information System (INIS)

    Łazarek, Łukasz; Antończak, Arkadiusz J.; Wójcik, Michał R.; Drzymała, Jan; Abramski, Krzysztof M.

    2014-01-01

    Laser-induced breakdown spectroscopy (LIBS), like many other spectroscopic techniques, is a comparative method. Typically, in qualitative analysis, synthetic certified standard with a well-known elemental composition is used to calibrate the system. Nevertheless, in all laser-induced techniques, such calibration can affect the accuracy through differences in the overall composition of the chosen standard. There are also some intermediate factors, which can cause imprecision in measurements, such as optical absorption, surface structure and thermal conductivity. In this work the calibration performed for the LIBS technique utilizes pellets made directly from the tested materials (old well-characterized samples). This choice produces a considerable improvement in the accuracy of the method. This technique was adopted for the determination of trace elements in industrial copper concentrates, standardized by conventional atomic absorption spectroscopy with a flame atomizer. A series of copper flotation concentrate samples was analyzed for three elements: silver, cobalt and vanadium. We also proposed a method of post-processing the measurement data to minimize matrix effects and permit reliable analysis. It has been shown that the described technique can be used in qualitative and quantitative analyses of complex inorganic materials, such as copper flotation concentrates. It was noted that the final validation of such methodology is limited mainly by the accuracy of the characterization of the standards. - Highlights: • A laser-induced breakdown spectroscopy technique is introduced for composition monitoring in industrial copper concentrates. • Calibration samples consisted of pellets produced from the tested materials. • The proposed method of post-processing significantly minimizes matrix effects. • The possible uses of this technique are limited mainly by accurate characterization of the standard samples

  12. Evaluation of the laser-induced breakdown spectroscopy technique for determination of the chemical composition of copper concentrates

    Energy Technology Data Exchange (ETDEWEB)

    Łazarek, Łukasz, E-mail: lukasz.lazarek@pwr.wroc.pl [Laser and Fiber Electronics Group, Faculty of Electronics, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw (Poland); Antończak, Arkadiusz J.; Wójcik, Michał R. [Laser and Fiber Electronics Group, Faculty of Electronics, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw (Poland); Drzymała, Jan [Faculty of Geoengineering, Mining and Geology, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw (Poland); Abramski, Krzysztof M. [Laser and Fiber Electronics Group, Faculty of Electronics, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2014-07-01

    Laser-induced breakdown spectroscopy (LIBS), like many other spectroscopic techniques, is a comparative method. Typically, in qualitative analysis, synthetic certified standard with a well-known elemental composition is used to calibrate the system. Nevertheless, in all laser-induced techniques, such calibration can affect the accuracy through differences in the overall composition of the chosen standard. There are also some intermediate factors, which can cause imprecision in measurements, such as optical absorption, surface structure and thermal conductivity. In this work the calibration performed for the LIBS technique utilizes pellets made directly from the tested materials (old well-characterized samples). This choice produces a considerable improvement in the accuracy of the method. This technique was adopted for the determination of trace elements in industrial copper concentrates, standardized by conventional atomic absorption spectroscopy with a flame atomizer. A series of copper flotation concentrate samples was analyzed for three elements: silver, cobalt and vanadium. We also proposed a method of post-processing the measurement data to minimize matrix effects and permit reliable analysis. It has been shown that the described technique can be used in qualitative and quantitative analyses of complex inorganic materials, such as copper flotation concentrates. It was noted that the final validation of such methodology is limited mainly by the accuracy of the characterization of the standards. - Highlights: • A laser-induced breakdown spectroscopy technique is introduced for composition monitoring in industrial copper concentrates. • Calibration samples consisted of pellets produced from the tested materials. • The proposed method of post-processing significantly minimizes matrix effects. • The possible uses of this technique are limited mainly by accurate characterization of the standard samples.

  13. Elemental analysis by surface-enhanced Laser-Induced Breakdown Spectroscopy combined with liquid–liquid microextraction

    International Nuclear Information System (INIS)

    Aguirre, M.A.; Legnaioli, S.; Almodóvar, F.; Hidalgo, M.; Palleschi, V.; Canals, A.

    2013-01-01

    In this work, the possibility of using Laser-Induced Breakdown Spectrometry (LIBS) combined with liquid–liquid microextraction techniques is evaluated as a simple and fast method for trace elemental analysis. Two different strategies for LIBS analysis of manganese contained in microdroplets of extraction solvent (Triton X-114) are studied: (i) analysis by direct laser irradiation of microdroplets; and (ii) analysis by laser irradiation of microdroplets dried on metallic substrates (surface-enhanced LIBS — SENLIBS). Experiments were carried out using synthetic samples with different concentrations of manganese in a 10% w/w Triton X-114 matrix. The analysis by direct laser irradiation of microdroplets showed low precision, sensitivity and poor linearity across the concentration range evaluated (R 2 −1 of Mn. - Highlights: ► LIBS combined with microextraction procedures for trace analysis is proposed. ► The proposed combination depends on LIBS ability to analyze sample microvolumes. ► A surface-enhanced LIBS methodology for microdroplet analysis was evaluated. ► Results indicate this combination to be promising for trace analysis in liquids

  14. Determination of Different Metals in Steel Waste Samples Using laser Induced Breakdown Spectroscopy

    Directory of Open Access Journals (Sweden)

    A. H. Bakry

    2007-12-01

    Full Text Available Elemental analysis of waste samples collected from steel products manufacturing plant (SPS located at industrial city of Jeddah, Saudi-Arabia has been carried out using Laser Induced Breakdown Spectroscopy (LIBS. The 1064 nm laser radiations from a Nd:YAG laser at an irradiance of 7.6  1010 W cm –2 were used. Atomic emission spectra of the elements present in the waste samples were recorded in the 200 – 620 nm region. Elements such as Fe, W, Ti, Al, Mg, Ca, S, Mn, and Na were detected in these samples. Quantitative determination of the elemental concentration was obtained for these metals against certified standard samples. Parametric dependences of LIBS signal intensity on incident laser energy and time delay between the laser pulse and data acquisition system were also carried out.

  15. Determination of Heating Value of Estonian Oil Shale by Laser-Induced Breakdown Spectroscopy

    Directory of Open Access Journals (Sweden)

    M. Aints

    2018-01-01

    Full Text Available The laser-induced breakdown spectroscopy (LIBS combined with multivariate regression analysis of measured data were utilised for determination of the heating value and the chemical composition of pellets made from Estonian oil shale samples with different heating values. The study is the first where the oil shale heating value is determined on the basis of LIBS spectra. The method for selecting the optimal number of spectral lines for ordinary multivariate least squares regression model is presented. The correlation coefficient between the heating value predicted by the regression model, and that measured by calorimetric bomb, was R2=0.98. The standard deviation of prediction was 0.24 MJ/kg. Concentrations of oil shale components predicted by the regression model were compared with those measured by ordinary methods.

  16. Online monitoring of corrosion behavior in molten metal using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Zeng, Qiang; Pan, Congyuan; Li, Chaoyang; Fei, Teng; Ding, Xiaokang; Du, Xuewei; Wang, Qiuping

    2018-04-01

    The corrosion behavior of structure materials in direct contact with molten metals is widespread in metallurgical industry. The corrosion of casting equipment by molten metals is detrimental to the production process, and the corroded materials can also contaminate the metals being produced. Conventional methods for studying the corrosion behavior by molten metal are offline. This work explored the application of laser-induced breakdown spectroscopy (LIBS) for online monitoring of the corrosion behavior of molten metal. The compositional changes of molten aluminum in crucibles made of 304 stainless steel were obtained online at 1000 °C. Several offline techniques were combined to determine the corrosion mechanism, which was highly consistent with previous studies. Results proved that LIBS was an efficient method to study the corrosion mechanism of solid materials in molten metal.

  17. Quantitative Analysis of Mg in Pipeline Dirt Based on Laser-Induced Breakdown Spectroscopy

    International Nuclear Information System (INIS)

    Wang Shaolong; Wang Yangen; Chen Shanjun; Chen Qi

    2015-01-01

    In order to maintain the pipeline better and remove the dirt more effectively, it was necessary to analyze the contents of elements in dirt. Mg in soil outside of the pipe and the dirt inside of the pipe was quantitatively analyzed and compared by using the laser-induced breakdown spectroscopy (LIBS). Firstly, Mg was quantitatively analyzed on the basis of Mg I 285.213 nm by calibration curve for integrated intensity and peak intensity of the spectrum before and after subtracting noise, respectively. Then calibration curves on the basis of Mg II 279.553 nm and Mg II 280.270 nm were analyzed. The results indicated that it is better to use integrated intensity after subtracting noise of the spectrum line with high relative intensity to make the calibration curve. (paper)

  18. Real-time control of ultrafast laser micromachining by laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Tong Tao; Li Jinggao; Longtin, Jon P.

    2004-01-01

    Ultrafast laser micromachining provides many advantages for precision micromachining. One challenging problem, however, particularly for multilayer and heterogeneous materials, is how to prevent a given material from being ablated, as ultrafast laser micromachining is generally material insensitive. We present a real-time feedback control system for an ultrafast laser micromachining system based on laser-induced breakdown spectroscopy (LIBS). The characteristics of ultrafast LIBS are reviewed and discussed so as to demonstrate the feasibility of the technique. Comparison methods to identify the material emission patterns are developed, and several of the resulting algorithms were implemented into a real-time computer control system. LIBS-controlled micromachining is demonstrated for the fabrication of microheater structures on thermal sprayed materials. Compared with a strictly passive machining process without any such feedback control, the LIBS-based system provides several advantages including less damage to the substrate layer, reduced machining time, and more-uniform machining features

  19. Cluster analysis of polymers using laser-induced breakdown spectroscopy with K-means

    Science.gov (United States)

    Yangmin, GUO; Yun, TANG; Yu, DU; Shisong, TANG; Lianbo, GUO; Xiangyou, LI; Yongfeng, LU; Xiaoyan, ZENG

    2018-06-01

    Laser-induced breakdown spectroscopy (LIBS) combined with K-means algorithm was employed to automatically differentiate industrial polymers under atmospheric conditions. The unsupervised learning algorithm K-means were utilized for the clustering of LIBS dataset measured from twenty kinds of industrial polymers. To prevent the interference from metallic elements, three atomic emission lines (C I 247.86 nm , H I 656.3 nm, and O I 777.3 nm) and one molecular line C–N (0, 0) 388.3 nm were used. The cluster analysis results were obtained through an iterative process. The Davies–Bouldin index was employed to determine the initial number of clusters. The average relative standard deviation values of characteristic spectral lines were used as the iterative criterion. With the proposed approach, the classification accuracy for twenty kinds of industrial polymers achieved 99.6%. The results demonstrated that this approach has great potential for industrial polymers recycling by LIBS.

  20. A Simple Device for Lens-to-Sample Distance Adjustment in Laser-Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Cortez, Juliana; Farias Filho, Benedito B; Fontes, Laiane M; Pasquini, Celio; Raimundo, Ivo M; Pimentel, Maria Fernanda; de Souza Lins Borba, Flávia

    2017-04-01

    A simple device based on two commercial laser pointers is described to assist in the analysis of samples that present uneven surfaces and/or irregular shapes using laser-induced breakdown spectroscopy (LIBS). The device allows for easy positioning of the sample surface at a reproducible distance from the focusing lens that conveys the laser pulse to generate the micro-plasma in a LIBS system, with reproducibility better than ±0.2 mm. In this way, fluctuations in the fluence (J cm -2 ) are minimized and the LIBS analytical signals can be obtained with a better precision even when samples with irregular surfaces are probed.

  1. Detection and evaluation of uranium in different minerals by gamma spectrometry and laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Sergani, F.M.; Khedr, M.A.; Harith, M.A.; El Mongy, S.A.

    2004-01-01

    Analysis, detection and evaluation of source nuclear materials (e.g. uranium) in different minerals by sensitive techniques are a vital objective for uranium exploration, nuclear materials extraction, processing and verification. In this work, uranium in different geological formations was determined using gamma spectrometry and laser induced breakdown spectroscopy (LIBS). The investigated samples were collected from different regions distributed all over Egypt. The samples were then prepared for non-destructive analysis. A hyper pure germanium detector was used to measure the emitted gamma rays of uranium and its daughters in the samples. The concentrations of uranium in ppm (μg/g) in the investigated samples are given and discussed in this work. The highest uranium concentration (4354.9 ppm) was found in uranophane samples of Gattar rocks. In Laser induced breakdown spectroscopy (LIBS) technique, plasma was formed by irradiating the rock surface with focused Q-switched Nd:Yag laser pulses of 7 ns pulse duration at the fundamental wavelength (1064 nm). Atoms and ions originating from the rock surface are excited and ionized in the laser produced hot plasma (∝10 000 K). The plasma emission spectral line is characteristic of the elements present in the plasma and allows identification of the uranium in the uranophane mineral. The strong atomic line at 424.2 nm is used for the qualitative identification of uranium. It can be mentioned that the elevated levels of uranium in some of the investigated uranophane samples are of great economic feasibility to be extracted. (orig.)

  2. NASA Work Breakdown Structure (WBS) Handbook

    Science.gov (United States)

    Terrell, Stefanie M.

    2018-01-01

    The purpose of this document is to provide program/project teams necessary instruction and guidance in the best practices for Work Breakdown Structure (WBS) and WBS dictionary development and use for project implementation and management control. This handbook can be used for all types of NASA projects and work activities including research, development, construction, test and evaluation, and operations. The products of these work efforts may be hardware, software, data, or service elements (alone or in combination). The aim of this document is to assist project teams in the development of effective work breakdown structures that provide a framework of common reference for all project elements.

  3. Multi-Pulse Excitation for Underwater Analysis of Copper-Based Alloys Using a Novel Remote Laser-Induced Breakdown Spectroscopy (LIBS) System.

    Science.gov (United States)

    Guirado, Salvador; Fortes, Francisco J; Laserna, J Javier

    2016-04-01

    In this work, the use of multi-pulse excitation has been evaluated as an effective solution to mitigate the preferential ablation of the most volatile elements, namely Sn, Pb, and Zn, observed during laser-induced breakdown spectroscopy (LIBS) analysis of copper-based alloys. The novel remote LIBS prototype used in this experiments featured both single-pulse (SP-LIBS) and multi-pulse excitation (MP-LIBS). The remote instrument is capable of performing chemical analysis of submersed materials up to a depth of 50 m. Laser-induced breakdown spectroscopy analysis was performed at air pressure settings simulating the conditions during a real subsea analysis. A set of five certified bronze standards with variable concentration of Cu, As, Sn, Pb, and Zn were used. In SP-LIBS, signal emission is strongly sensitive to ambient pressure. In this case, fractionation effect was observed. Multi-pulse excitation circumvents the effect of pressure over the quantitative analysis, thus avoiding the fractionation phenomena observed in single pulse LIBS. The use of copper as internal standard minimizes matrix effects and discrepancies due to variation in ablated mass. © The Author(s) 2016.

  4. Statistics of vacuum breakdown in the high-gradient and low-rate regime

    Science.gov (United States)

    Wuensch, Walter; Degiovanni, Alberto; Calatroni, Sergio; Korsbäck, Anders; Djurabekova, Flyura; Rajamäki, Robin; Giner-Navarro, Jorge

    2017-01-01

    In an increasing number of high-gradient linear accelerator applications, accelerating structures must operate with both high surface electric fields and low breakdown rates. Understanding the statistical properties of breakdown occurrence in such a regime is of practical importance for optimizing accelerator conditioning and operation algorithms, as well as of interest for efforts to understand the physical processes which underlie the breakdown phenomenon. Experimental data of breakdown has been collected in two distinct high-gradient experimental set-ups: A prototype linear accelerating structure operated in the Compact Linear Collider Xbox 12 GHz test stands, and a parallel plate electrode system operated with pulsed DC in the kV range. Collected data is presented, analyzed and compared. The two systems show similar, distinctive, two-part distributions of number of pulses between breakdowns, with each part corresponding to a specific, constant event rate. The correlation between distance and number of pulses between breakdown indicates that the two parts of the distribution, and their corresponding event rates, represent independent primary and induced follow-up breakdowns. The similarity of results from pulsed DC to 12 GHz rf indicates a similar vacuum arc triggering mechanism over the range of conditions covered by the experiments.

  5. Identification of vapor-phase chemical warfare agent simulants and rocket fuels using laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Stearns, Jaime A.; McElman, Sarah E.; Dodd, James A.

    2010-01-01

    Application of laser-induced breakdown spectroscopy (LIBS) to the identification of security threats is a growing area of research. This work presents LIBS spectra of vapor-phase chemical warfare agent simulants and typical rocket fuels. A large dataset of spectra was acquired using a variety of gas mixtures and background pressures and processed using partial least squares analysis. The five compounds studied were identified with a 99% success rate by the best method. The temporal behavior of the emission lines as a function of chamber pressure and gas mixture was also investigated, revealing some interesting trends that merit further study.

  6. Identification of vapor-phase chemical warfare agent simulants and rocket fuels using laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stearns, Jaime A.; McElman, Sarah E.; Dodd, James A.

    2010-05-01

    Application of laser-induced breakdown spectroscopy (LIBS) to the identification of security threats is a growing area of research. This work presents LIBS spectra of vapor-phase chemical warfare agent simulants and typical rocket fuels. A large dataset of spectra was acquired using a variety of gas mixtures and background pressures and processed using partial least squares analysis. The five compounds studied were identified with a 99% success rate by the best method. The temporal behavior of the emission lines as a function of chamber pressure and gas mixture was also investigated, revealing some interesting trends that merit further study.

  7. Breakdown Characteristics Study on an 18 Cell X-band Structure

    International Nuclear Information System (INIS)

    Wang, F

    2008-01-01

    A CLIC designed 18 cells, low group velocity (2.4% to 1.0% c), X-band (11.4 GHz) accelerator structure (denoted T18) was designed at CERN, its cells were built at KEK, and it was assembled and tested at SLAC. An interesting feature of this structure is that the gradient in the last cell is about 50% higher than that in the first cell. This structure has been RF conditioned at SLAC NLCTA for about 1400 hours where it incurred about 2200 breakdowns. This paper presents the characteristics of these breakdowns, including (1) the breakdown rate dependence on gradient, pulse width and conditioning time, (2) the breakdown distribution along the structure, (3) relation between breakdown and pulsed heating dependence study and (4) electric field decay time for breakdown changing over the whole conditioning time. Overall, this structure performed very well, having a final breakdown rate of less than 1e-6/pulse/m at 106 MV/m with 230 ns pulse width

  8. Breakdown Characteristics Study on an 18 Cell X-band Structure

    International Nuclear Information System (INIS)

    Wang Faya

    2009-01-01

    A CLIC designed 18 cells, low group velocity (2.4% to 1.0% c), X-band (11.4 GHz) accelerator structure (denoted T18) was designed at CERN, its cells were built at KEK, and it was assembled and tested at SLAC. An interesting feature of this structure is that the gradient in the last cell is about 50% higher than that in the first cell. This structure has been RF conditioned at SLAC NLCTA for about 1400 hours where it incurred about 2200 breakdowns. This paper presents the characteristics of these breakdowns, including 1) the breakdown rate dependence on gradient, pulse width and conditioning time, 2) the breakdown distribution along the structure, 3) relation between breakdown and pulsed heating dependence study and 4) electric field decay time for breakdown changing over the whole conditioning time. Overall, this structure performed very well, having a final breakdown rate of less than 1e-6/pulse/m at 106 MV/m with 230 ns pulse width.

  9. Experimental Study on High Electrical Breakdown of Water Dielectric

    International Nuclear Information System (INIS)

    Zhang Zicheng; Zhang Jiande; Yang Jianhua

    2005-01-01

    By means of a coaxial apparatus, pressurized water breakdown experiments with microsecond charging have been carried out with different surface roughness of electrodes and different ethylene glycol concentrations of ethylene glycol/water mixture. The experimental results about the breakdown stress and the effective time are presented. The breakdown stress is normalized to the situation that the effective time is transformed to 1 μs and analyzed. The conclusions are as follows: (1) the breakdown stress formula is modified to E = 0.561M A -1/10 t eff -1/N P 1/8 ; (2) the coefficient M is significantly increased by surface polishing and ethylene glycol additive; (3) it is accumulative for the capacity of improving electrical breakdown strength for surface polishing, ethylene glycol additive, and pressurization, of which pressurization is the most effective method; (4) the highest stress of 235.5 kV/cm is observed in ethylene glycol/water mixture with an ethylene glycol concentration of 80% at a hydrostatic pressure of 1215.9 kPa and is about one time greater than that in pure water at constant pressure; (5) for pressurization and surface polishing, the primary mechanism to improve the breakdown strength of water dielectric is the increase in the breakdown time delay. Research results indicate great potential in the application of the high power pulse conditioning system of water dielectric

  10. Using laser-induced breakdown spectroscopy on vacuum alloys-production process for elements concentration analysis

    Science.gov (United States)

    Zhao, Tianzhuo; Fan, Zhongwei; Lian, Fuqiang; Liu, Yang; Lin, Weiran; Mo, Zeqiang; Nie, Shuzhen; Wang, Pu; Xiao, Hong; Li, Xin; Zhong, Qixiu; Zhang, Hongbo

    2017-11-01

    Laser-induced breakdown spectroscopy (LIBS) utilizing an echelle spectrograph-ICCD system is employed for on-line analysis of elements concentration in a vacuum induction melting workshop. Active temperature stabilization of echelle spectrometer is implemented specially for industrial environment applications. The measurement precision is further improved by monitoring laser parameters, such as pulse energy, spatial and temporal profiles, in real time, and post-selecting laser pulses with specific pulse energies. Experimental results show that major components of nickel-based alloys are stable, and can be well detected. By using internal standard method, calibration curves for chromium and aluminum are obtained for quantitative determination, with determination coefficient (relative standard deviation) to be 0.9559 (< 2.2%) and 0.9723 (< 2.8%), respectively.

  11. Applications of laser-induced breakdown spectroscopy in the aluminum electrolysis industry

    Science.gov (United States)

    Sun, Lanxiang; Yu, Haibin; Cong, Zhibo; Lu, Hui; Cao, Bin; Zeng, Peng; Dong, Wei; Li, Yang

    2018-04-01

    The industrial aluminum reduction cell is an electrochemistry reactor that operates under high temperatures and corrosive conditions. Monitoring the molten aluminum and electrolyte components is very important for controlling the chemical reaction process. Due to the lack of fast methods to monitor the components, controlling aluminum reduction cells is difficult. In this work, laser-induced breakdown spectroscopy (LIBS) was applied to aluminum electrolysis. A new method for calculating the molecular ratio, which is an important control parameter that represents the acidity of the electrolyte, was proposed. Experiments were first performed on solid electrolyte samples to test the performance of the proposed method. Using this method, the average relative standard deviation (RSD) of the molecular ratio measurement was 0.39%, and the average root mean square error (RMSE) was 0.0236. These results prove that LIBS can accurately measure the molecular ratio. Then, in situ measurements of the molten aluminum and electrolyte were performed in industrial aluminum induction cells using the developed LIBS equipment. The spectra of the molten electrolyte were successfully obtained and were consistent with the spectra of the solid electrolyte.

  12. ERDA Paper: Quantitative Measurement of Chromium, Manganese, Rhenium, and Magnesium in Liquid by Laser-Induced Breakdown Spectroscopy

    International Nuclear Information System (INIS)

    Keller, E.L.

    2000-01-01

    A technique is needed to measure Tc during the waste process at DOE Hanford site. Laser induced breakdown spectroscopy (LIBS), a laser-based, non-intrusive, and sensitive optical diagnostic technique for measuring the concentration of various atomic and molecular species in test media, has the potential to be an on-line monitor to monitor Tc in the effluent from the Tc removal column to track the technetium removal process. In this work, we evaluate the analytical figure of merit of LIBS system for the element that has similar properties to Tc

  13. Transforming growth factor β1 induces the expression of collagen type I by DNA methylation in cardiac fibroblasts.

    Directory of Open Access Journals (Sweden)

    Xiaodong Pan

    Full Text Available Transforming growth factor-beta (TGF-β, a key mediator of cardiac fibroblast activation, has a major influence on collagen type I production. However, the epigenetic mechanisms by which TGF-β induces collagen type I alpha 1 (COL1A1 expression are not fully understood. This study was designed to examine whether or not DNA methylation is involved in TGF-β-induced COL1A1 expression in cardiac fibroblasts. Cells isolated from neonatal Sprague-Dawley rats were cultured and stimulated with TGF-β1. The mRNA levels of COL1A1 and DNA methyltransferases (DNMTs were determined via quantitative polymerase chain reaction and the protein levels of collagen type I were determined via Western blot as well as enzyme-linked immunosorbent assay. The quantitative methylation of the COL1A1 promoter region was analyzed using the MassARRAY platform of Sequenom. Results showed that TGF-β1 upregulated the mRNA expression of COL1A1 and induced the synthesis of cell-associated and secreted collagen type I in cardiac fibroblasts. DNMT1 and DNMT3a expressions were significantly downregulated and the global DNMT activity was inhibited when treated with 10 ng/mL of TGF-β1 for 48 h. TGF-β1 treatment resulted in a significant reduction of the DNA methylation percentage across multiple CpG sites in the rat COL1A1 promoter. Thus, TGF-β1 can induce collagen type I expression through the inhibition of DNMT1 and DNMT3a expressions as well as global DNMT activity, thereby resulting in DNA demethylation of the COL1A1 promoter. These findings suggested that the DNMT-mediated DNA methylation is an important mechanism in regulating the TGF-β1-induced COL1A1 gene expression.

  14. Laser induced breakdown spectroscopy for applications in nuclear industry

    International Nuclear Information System (INIS)

    Suri, B.M.

    2010-01-01

    There are several analytical techniques employing laser spectroscopy - each with its own distinctive potential. Laser Induced Breakdown Spectroscopy (LIBS) is one such technique which is attractive in view of its relative compactness and simplicity (in configuration), remote and online analysis (with no sample handling requirement) and high spatial resolution allowing compositional map or homogeneity analysis. In this technique, a high power pulsed (mostly nanosecond) laser is employed to irradiate the sample causing spark emission, characteristics of the sample composition, which is collected using suitable optics and analysed spectroscopically. Remote and online capability is derived from long distance delivery of laser beams and collection of emitted light by fibres or conventional optics. Since laser can be focused sharply on the target, it can facilitate compositional mapping. Beam Technology Development Group at BARC had initiated work on LIBS of nuclear materials several years ago. Recently the challenge of online monitoring of radioactive waste vitrification plant in a hot cell has been taken up. The theoretical and experimental work done by the group related to instrument development, plasma characterization, quantitative compositional analysis of ternary alloys and uranium vitrified glass samples (comprising more than dozen elements) are described. The future plans for setting up online glass homogeneity monitoring facility are also described. This should fulfill an important demand for optimization of vitrification process. Various other demands of nuclear industry are also reviewed

  15. High-resolution three-dimensional compositional imaging by double-pulse laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Schiavo, C.; Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Poggialini, F.; Pagnotta, S.; Palleschi, V.; Menichetti, L.

    2016-01-01

    In this paper we present a new instrument specifically realized for high-resolution three-dimensional compositional analysis and mapping of materials. The instrument is based on the coupling of a Double-Pulse Laser-Induced Breakdown Spectroscopy (LIBS) instrument with an optical microscope. The compositional mapping of the samples is obtained by scanning the laser beam across the surface of the sample, while the in depth analysis is performed by sending multiple laser pulses on the same point. Depths of analysis of several tens of microns can be obtained. The instrument presented has definite advantages with respect to Laser Ablation-ICP Mass Spectrometry in many applications related to material analysis, biomedicine and environmental diagnostics. An application to the diagnostics of industrial ceramics is presented, demonstrating the feasibility of Double-Pulse LIBS Imaging and its advantages with respect to conventional single-pulse LIBS imaging.

  16. Speciation analysis on Eu(3) in aqueous solution using laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Hotokezaka, H.; Tanaka, S.; Nagasaki, S.

    2001-01-01

    Investigation of the chemical behaviour of lanthanides and actinides in the geosphere is important for the safety assessment of high-level radioactive waste disposal. However, determination of speciation for lanthanides and actinides is difficult, because it is too hard to distinguish between metal ion and colloidal metal in aqueous solution. Laser-induced breakdown spectroscopy (LIBS) can detect both ions and microparticles of metals in aqueous solution, especially, high sensitive to microparticles. In this study, we analysed Eu(III) ion and Eu 2 O 3 particle in aqueous solution by LIBS, and measured the hydrolysis behaviour of Eu(III) in aqueous solution. Furthermore, we tried to detect the plasma emission of Eu(III) ions sorbed on TiO 2 particles, and also tried to observe the adsorption behaviour of Eu(III) ions onto TiO 2 particles in aqueous solution. (authors)

  17. Laser-Induced Breakdown Spectroscopy (LIBS) in a Novel Molten Salt Aerosol System.

    Science.gov (United States)

    Williams, Ammon N; Phongikaroon, Supathorn

    2017-04-01

    In the pyrochemical separation of used nuclear fuel (UNF), fission product, rare earth, and actinide chlorides accumulate in the molten salt electrolyte over time. Measuring this salt composition in near real-time is advantageous for operational efficiency, material accountability, and nuclear safeguards. Laser-induced breakdown spectroscopy (LIBS) has been proposed and demonstrated as a potential analytical approach for molten LiCl-KCl salts. However, all the studies conducted to date have used a static surface approach which can lead to issues with splashing, low repeatability, and poor sample homogeneity. In this initial study, a novel molten salt aerosol approach has been developed and explored to measure the composition of the salt via LIBS. The functionality of the system has been demonstrated as well as a basic optimization of the laser energy and nebulizer gas pressure used. Initial results have shown that this molten salt aerosol-LIBS system has a great potential as an analytical technique for measuring the molten salt electrolyte used in this UNF reprocessing technology.

  18. Detection of heavy metals in soils by laser-induced breakdown spectroscopy (LIBS)

    International Nuclear Information System (INIS)

    Sirven, Jean-Baptiste

    2006-01-01

    In the fields of analysis, control and physical measurement, the laser constitutes a particularly powerful and multi-purpose metrological tool, capable to bring concrete solutions to various matters, including of a societal nature. Among the latter, contamination of sites and soils by heavy metals is an important issue of public health which requires to have measurement means adapted to existing regulations and whose use be sufficiently flexible. As a fast technique which does not need any sample preparation, laser-induced breakdown spectroscopy (LIBS) offers very interesting advantages for making on-site measurements of heavy metals content at the 10-ppm level; the design of a portable system is conceivable in the medium term. In this work we first show that the femtosecond regime presents no advantages with respect to the standard nanosecond regime for our issue. Then we implement an advanced treatment of LIBS spectra by chemometric techniques whose performances significantly improve the results of qualitative and quantitative analyses of soils samples. (author)

  19. Laser Induced Breakdown Spectroscopy in archeometry: A review of its application and future perspectives

    Science.gov (United States)

    Spizzichino, Valeria; Fantoni, Roberta

    2014-09-01

    Laser Induced Breakdown Spectroscopy (LIBS) in the last decades has been more and more applied to the field of Cultural Heritage with great results obtained either alone or in combination with complementary laser techniques. Its ability to analyze, with a minimal loss, different kinds of materials in laboratory, in situ and even in hostile environments has been highly appreciated. The main aim of this paper is to present a review of LIBS applications in the interdisciplinary field of archeometry. The LIBS technique is shortly described both from a theoretical and practical point of view, discussing the instrumental setup, also in comparison with typical features of laser induced fluorescence (LIF) and Raman spectroscopy apparata. The complementary with multivariate analysis, a method that can help in reducing data set dimensions and in pulling out effective information, is stressed. In particular the role of LIBS in Cultural Heritage material characterization, recognition of fakes and indirect dating is described, reporting general considerations and case studies on metal alloys, mural paintings, decorated ceramics, glasses, stones and gems.

  20. HTLV-1 Tax-induced NFκB activation is independent of Lys-63-linked-type polyubiquitination

    International Nuclear Information System (INIS)

    Gohda, Jin; Irisawa, Masato; Tanaka, Yuetsu; Sato, Shintaro; Ohtani, Kiyoshi; Fujisawa, Jun-ichi; Inoue, Jun-ichiro

    2007-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) Tax-induced activation of nuclear factor-κB (NFκB) is thought to play a critical role in T-cell transformation and onset of adult T-cell leukemia. However, the molecular mechanism of the Tax-induced NFκB activation remains unknown. One of the mitogen-activated protein kinase kinase kinses (MAP3Ks) members, TAK1, plays a critical role in cytokine-induced activation of NFκB, which involves lysine 63-linked (K63) polyubiquitination of NEMO, a noncatalytic subunit of the IκB kinase complex. Here we show that Tax induces K63 polyubiquitination of NEMO. However, TAK1 is dispensable for Tax-induced NFκB activation, and deubiquitination of the K63 polyubiquitin chain failed to block Tax-induced NFκB activation. In addition, silencing of other MAP3Ks, including MEKK1, MEKK3, NIK, and TPL-2, did not affect Tax-induced NFκB activation. These results strongly suggest that unlike cytokine signaling, Tax-induced NFκB activation does not involve K63 polyubiquitination-mediated MAP3K activation

  1. High gradient RF breakdown study

    International Nuclear Information System (INIS)

    Laurent, L.; Luhmann, N.C. Jr.; Scheitrum, G.; Hanna, S.; Pearson, C.; Phillips, R.

    1998-01-01

    Stanford Linear Accelerator Center and UC Davis have been investigating high gradient RF breakdown and its effects on pulse shortening in high energy microwave devices. RF breakdown is a critical issue in the development of high power microwave sources and next generation linear accelerators since it limits the output power of microwave sources and the accelerating gradient of linacs. The motivation of this research is to find methods to increase the breakdown threshold level in X-band structures by reducing dark current. Emphasis is focused on improved materials, surface finish, and cleanliness. The test platform for this research is a traveling wave resonant ring. A 30 MW klystron is employed to provide up to 300 MW of traveling wave power in the ring to trigger breakdown in the cavity. Five TM 01 cavities have previously been tested, each with a different combination of surface polish and/or coating. The onset of breakdown was extended up to 250 MV/m with a TiN surface finish, as compared to 210 MV/m for uncoated OFE copper. Although the TiN coating was helpful in depressing the field emission, the lowest dark current was obtained with a 1 microinch surface finish, single-point diamond-turned cavity

  2. DC-driven plasma gun: self-oscillatory operation mode of atmospheric-pressure helium plasma jet comprised of repetitive streamer breakdowns

    Science.gov (United States)

    Wang, Xingxing; Shashurin, Alexey

    2017-02-01

    This paper presents and studies helium atmospheric pressure plasma jet comprised of a series of repetitive streamer breakdowns, which is driven by pure DC high voltage (self-oscillatory behavior). The repetition frequency of the breakdowns is governed by the geometry of discharge electrodes/surroundings and gas flow rate. Each next streamer is initiated when the electric field on the anode tip recovers after the previous breakdown and reaches the breakdown threshold value of about 2.5 kV cm-1. One type of the helium plasma gun designed using this operational principle is demonstrated. The gun operates on about 3 kV DC high voltage and is comprised of the series of the repetitive streamer breakdowns at a frequency of about 13 kHz.

  3. Quantitative analysis of toxic metals lead and cadmium in water jet by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cheri, M. Sadegh; Tavassoli, S. H.

    2011-03-20

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the analysis of toxic metals Pb and Cd in Pb(NO{sub 3}){sub 2} and Cd(NO{sub 3}){sub 2}.4H{sub 2}O aqueous solutions, respectively. The plasma is generated by focusing a nanosecond Nd:YAG ({lambda}=1064 nm) laser on the surface of liquid in the homemade liquid jet configuration. With an assumption of local thermodynamic equilibrium (LTE), calibration curves of Pb and Cd were obtained at different delay times between 1 to 5 {mu}s. The temporal behavior of limit of detections (LOD) was investigated and it is shown that the minimum LODs for Pb and Cd are 4 and 68 parts in 10{sup 6} (ppm), respectively. In order to demonstrate the correctness of the LTE assumption, plasma parameters including plasma temperature and electron density are evaluated, and it is shown that the LTE condition is satisfied at all delay times.

  4. Real-time qualitative study of forsterite crystal - Melt lithium distribution by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Lebedev, V. F.; Makarchuk, P. S.; Stepanov, D. N.

    2017-11-01

    A factor of lithium distribution between single-crystal forsterite (Cr,Li:Mg2SiO4) and its melt are studied by laser-induced breakdown spectroscopy. Lithium content in the crystalline phase is found to achieve a saturation at relatively low Li concentration in the melt (about 0.02%wt.). An algorithm and software are developed for real-time analysis of the studied spectra of lithium trace amounts at wide variation of the plasma radiation intensity. The analyzed plasma spectra processing method is based on the calculation of lithium emission part in the total emission of the target plasma for each recorded spectrum followed by the error estimation for the series of measurements in the normal distribution approximation.

  5. Identification and measurement of dirt composition of manufactured steel plates using laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Orzi, Daniel J O; Bilmes, Gabriel M

    2004-12-01

    Laser-induced breakdown spectroscopy (LIBS) was used for the characterization of the main components of the surface residual dirt produced in cold-rolled steel plates as a consequence of the manufacturing stages. At laser fluences between 0.05 J/cm(2) manufacturing process carbon residuals can also be found. By measuring light emission from the lambda = 495.9 nm line of Fe(I) after laser ablation, we developed a real-time on-line method for the determination of the concentration of iron particles present in the surface dirt. The obtained results open new possibilities in the design of real-time instruments for industrial applications as a quality control of products and processes.

  6. A Coaxial Vortex Ring Model for Vortex Breakdown

    OpenAIRE

    Blackmore, Denis; Brons, Morten; Goullet, Arnaud

    2008-01-01

    A simple - yet plausible - model for B-type vortex breakdown flows is postulated; one that is based on the immersion of a pair of slender coaxial vortex rings in a swirling flow of an ideal fluid rotating around the axis of symmetry of the rings. It is shown that this model exhibits in the advection of passive fluid particles (kinematics) just about all of the characteristics that have been observed in what is now a substantial body of published research on the phenomenon of vortex breakdown....

  7. Space- and time-resolved raman and breakdown spectroscopy: advanced lidar techniques

    Science.gov (United States)

    Silviu, Gurlui; Marius Mihai, Cazacu; Adrian, Timofte; Oana, Rusu; Georgiana, Bulai; Dimitriu, Dan

    2018-04-01

    DARLIOES - the advanced LIDAR is based on space- and time-resolved RAMAN and breakdown spectroscopy, to investigate chemical and toxic compounds, their kinetics and physical properties at high temporal (2 ns) and spatial (1 cm) resolution. The high spatial and temporal resolution are needed to resolve a large variety of chemical troposphere compounds, emissions from aircraft, the self-organization space charges induced light phenomena, temperature and humidity profiles, ice nucleation, etc.

  8. Lowered threshold energy for femtosecond laser induced optical breakdown in a water based eye model by aberration correction with adaptive optics.

    Science.gov (United States)

    Hansen, Anja; Géneaux, Romain; Günther, Axel; Krüger, Alexander; Ripken, Tammo

    2013-06-01

    In femtosecond laser ophthalmic surgery tissue dissection is achieved by photodisruption based on laser induced optical breakdown. In order to minimize collateral damage to the eye laser surgery systems should be optimized towards the lowest possible energy threshold for photodisruption. However, optical aberrations of the eye and the laser system distort the irradiance distribution from an ideal profile which causes a rise in breakdown threshold energy even if great care is taken to minimize the aberrations of the system during design and alignment. In this study we used a water chamber with an achromatic focusing lens and a scattering sample as eye model and determined breakdown threshold in single pulse plasma transmission loss measurements. Due to aberrations, the precise lower limit for breakdown threshold irradiance in water is still unknown. Here we show that the threshold energy can be substantially reduced when using adaptive optics to improve the irradiance distribution by spatial beam shaping. We found that for initial aberrations with a root-mean-square wave front error of only one third of the wavelength the threshold energy can still be reduced by a factor of three if the aberrations are corrected to the diffraction limit by adaptive optics. The transmitted pulse energy is reduced by 17% at twice the threshold. Furthermore, the gas bubble motions after breakdown for pulse trains at 5 kilohertz repetition rate show a more transverse direction in the corrected case compared to the more spherical distribution without correction. Our results demonstrate how both applied and transmitted pulse energy could be reduced during ophthalmic surgery when correcting for aberrations. As a consequence, the risk of retinal damage by transmitted energy and the extent of collateral damage to the focal volume could be minimized accordingly when using adaptive optics in fs-laser surgery.

  9. Standoff Sensing Technology Based on Laser-Induced Breakdown Spectroscopy: Advanced Targeting, Surveillance and Reconnaissance in Security and Architectural Heritage Applications

    OpenAIRE

    Gaona Fernández, María Inmaculada

    2014-01-01

    Due to the ability to perform simultaneous, multi-element and real-time analysis without pretreatment and doing from a distance, laser induced breakdown spectroscopy (LIBS) in standoff mode is now considered a cutting-edge analytical technology. All these features have allowed its application in various fields such as security, environment, cultural heritage protection and space exploration, among the more outstanding. Nonetheless, the fact of working to long distances involves greater dif...

  10. Statistics of vacuum breakdown in the high-gradient and low-rate regime

    Directory of Open Access Journals (Sweden)

    Walter Wuensch

    2017-01-01

    Full Text Available In an increasing number of high-gradient linear accelerator applications, accelerating structures must operate with both high surface electric fields and low breakdown rates. Understanding the statistical properties of breakdown occurrence in such a regime is of practical importance for optimizing accelerator conditioning and operation algorithms, as well as of interest for efforts to understand the physical processes which underlie the breakdown phenomenon. Experimental data of breakdown has been collected in two distinct high-gradient experimental set-ups: A prototype linear accelerating structure operated in the Compact Linear Collider Xbox 12 GHz test stands, and a parallel plate electrode system operated with pulsed DC in the kV range. Collected data is presented, analyzed and compared. The two systems show similar, distinctive, two-part distributions of number of pulses between breakdowns, with each part corresponding to a specific, constant event rate. The correlation between distance and number of pulses between breakdown indicates that the two parts of the distribution, and their corresponding event rates, represent independent primary and induced follow-up breakdowns. The similarity of results from pulsed DC to 12 GHz rf indicates a similar vacuum arc triggering mechanism over the range of conditions covered by the experiments.

  11. Independent component analysis classification of laser induced breakdown spectroscopy spectra

    International Nuclear Information System (INIS)

    Forni, Olivier; Maurice, Sylvestre; Gasnault, Olivier; Wiens, Roger C.; Cousin, Agnès; Clegg, Samuel M.; Sirven, Jean-Baptiste; Lasue, Jérémie

    2013-01-01

    The ChemCam instrument on board Mars Science Laboratory (MSL) rover uses the laser-induced breakdown spectroscopy (LIBS) technique to remotely analyze Martian rocks. It retrieves spectra up to a distance of seven meters to quantify and to quantitatively analyze the sampled rocks. Like any field application, on-site measurements by LIBS are altered by diverse matrix effects which induce signal variations that are specific to the nature of the sample. Qualitative aspects remain to be studied, particularly LIBS sample identification to determine which samples are of interest for further analysis by ChemCam and other rover instruments. This can be performed with the help of different chemometric methods that model the spectra variance in order to identify a the rock from its spectrum. In this paper we test independent components analysis (ICA) rock classification by remote LIBS. We show that using measures of distance in ICA space, namely the Manhattan and the Mahalanobis distance, we can efficiently classify spectra of an unknown rock. The Mahalanobis distance gives overall better performances and is easier to manage than the Manhattan distance for which the determination of the cut-off distance is not easy. However these two techniques are complementary and their analytical performances will improve with time during MSL operations as the quantity of available Martian spectra will grow. The analysis accuracy and performances will benefit from a combination of the two approaches. - Highlights: • We use a novel independent component analysis method to classify LIBS spectra. • We demonstrate the usefulness of ICA. • We report the performances of the ICA classification. • We compare it to other classical classification schemes

  12. All-fiber-coupled laser-induced breakdown spectroscopy sensor for hazardous materials analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bohling, Christian [Institut fuer Physik und Physikalische Technologien, Technische Universitaet Clausthal, Leibnizstrasse 4, 38678 Clausthal-Zellerfeld (Germany); SECOPTA GmbH, Ostendstr. 25, 12459 Berlin (Germany)], E-mail: c.bohling@pe.tu-clausthal.de; Hohmann, Konrad [Institut fuer Physik und Physikalische Technologien, Technische Universitaet Clausthal, Leibnizstrasse 4, 38678 Clausthal-Zellerfeld (Germany)], E-mail: k.hohmann@pe.tu-clausthal.de; Scheel, Dirk [Systektum GmbH, Arnold-Sommerfeld-Str. 6, 38678 Clausthal-Zellerfeld (Germany)], E-mail: d.scheel@systektum.de; Bauer, Christoph [LaserAnwendungsCentrum (LAC) Technische Universitaet Clausthal, Arnold-Sommerfeld-Strasse 6, 38678 Clausthal-Zellerfeld (Germany)], E-mail: c.bauer@pe.tu-clausthal.de; Schippers, Wolfgang [Institut fuer Physik und Physikalische Technologien, Technische Universitaet Clausthal, Leibnizstrasse 4, 38678 Clausthal-Zellerfeld (Germany)], E-mail: w.schippers@pe.tu-clausthal.de; Burgmeier, Joerg [LaserAnwendungsCentrum (LAC) Technische Universitaet Clausthal, Arnold-Sommerfeld-Strasse 6, 38678 Clausthal-Zellerfeld (Germany)], E-mail: j.burgmeier@pe.tu-clausthal.de; Willer, Ulrike [Institut fuer Physik und Physikalische Technologien, Technische Universitaet Clausthal, Leibnizstrasse 4, 38678 Clausthal-Zellerfeld (Germany); LaserAnwendungsCentrum (LAC) Technische Universitaet Clausthal, Arnold-Sommerfeld-Strasse 6, 38678 Clausthal-Zellerfeld (Germany)], E-mail: u.willer@pe.tu-clausthal.de; Holl, Gerhard [Wehrwissenschaftliches Institut fuer Werk-, Explosiv- und Betriebsstoffe (WIWEB), Grosses Cent, 53913, Swisttal (Germany)], E-mail: gerhardholl@bwb.orgd; Schade, Wolfgang [Institut fuer Physik und Physikalische Technologien, Technische Universitaet Clausthal, Leibnizstrasse 4, 38678 Clausthal-Zellerfeld (Germany); LaserAnwendungsCentrum (LAC) Technische Universitaet Clausthal, Arnold-Sommerfeld-Strasse 6, 38678 Clausthal-Zellerfeld (Germany)], E-mail: w.schade@pe.tu-clausthal.de

    2007-12-15

    An all-fiber-coupled laser-induced breakdown spectroscopy (LIBS) sensor device is developed. A passively Q-switched Cr{sup 4+}Nd{sup 3+}:YAG microchip laser is amplified within an Yb fiber amplifier, thus generating high power laser pulses (pulse energy E{sub p} = 0.8 mJ, wavelength {lambda} = 1064 nm, repetition rate f{sub rep.} = 5 kHz, pulse duration t{sub p} = 1.2 ns). A passive (LMA) optical fiber is spliced to the active fiber of an Yb fiber amplifier for direct guiding of high power laser pulses to the sensor tip. In front of the sensor a plasma is generated on the surface to be analyzed. The plasma emission is collected by a set of optical fibers also integrated into the sensor tip. The spectrally resolved LIBS spectra are processed by application of principal component analysis (PCA) and analyzed together with the time-resolved spectra with neural networks. Such procedure allows accurate analysis of samples by LIBS even for materials with similar atomic composition. The system has been tested successfully during field measurements at the German Armed Forces test facility at Oberjettenberg. The LIBS sensor is not restricted to anti-personnel mine detection but has also the potential to be suitable for analysis of bulk explosives and surface contaminations with explosives, e.g. for the detection of improvised explosive devices (IEDs)

  13. The determination of V and Mo by dispersive liquid–liquid microextraction (DLLME) combined with laser-induced breakdown spectroscopy (LIBS)

    OpenAIRE

    Jesus, Amanda M. D. de; Aguirre Pastor, Miguel Ángel; Hidalgo Núñez, Montserrat; Canals Hernández, Antonio; Pereira-Filho, Edenir R.

    2014-01-01

    Laser-induced breakdown spectroscopy (LIBS) is a promising analytical technique with well-known advantages and limitations. However, despite its growing popularity, this technique has been applied mainly to solid samples and there have been a smaller number of studies devoted to liquid samples. This lack of studies is mainly due to experimental difficulties in the analysis of liquid matrices. Sensitivity can be improved and matrix effects minimized in the LIBS analysis of aqueous samples by u...

  14. Mechanical breakdown in the nuclear multifragmentation phenomena. Thermodynamic analysis

    International Nuclear Information System (INIS)

    Bulavin, L.A.; Cherevko, K.V.; Sysoev, V.M.

    2012-01-01

    Based on a similarity of the Van der Waals and nucleon-nucleon interaction the known thermodynamic relations for ordinary liquids are used to analyze the possible decay channels in the proton induced nuclear multifragmentation phenomena. The main features of the different phase trajectories in the P-V plane are compared with the experimental data on multifragmentation. It allowed choosing the phase trajectories with the correct qualitative picture of the phenomena. Based on the thermodynamic analysis of the proton-induced multifragmentation phenomena the most appropriate decay channel corresponding to the realistic phase trajectory is chosen. Macroscopic analysis of the suggested decay channel is done in order to check the possibility of the mechanical breakdown of the heated system. Based on a simple thermodynamic model preliminary quantitative calculations of corresponding macroscopic parameters (energy, pressure) are done and therefore the model verification on macroscopic level is held. It is shown that on macroscopic level the chosen decay channel through the mechanical breakdown meets the necessary conditions for describing the proton-induced multifragmentation phenomena

  15. Investigations of dc breakdown fields

    CERN Document Server

    Ramsvik, Trond; Reginelli, Alessandra; Taborelli, Mauro

    2006-01-01

    The need for high accelerating gradients for the future 30 GHz multi-TeV e+e- Compact Linear Collider (CLIC) at CERN has triggered a comprehensive study of DC breakdown fields of metals in UHV. The study shows that molybdenum (Mo), tungsten (W), titanium (Ti) and TiVAl reach high breakdown fields, and are thus good candidates for the iris material of CLIC structures. A significant decrease in the saturated breakdown field (Esat) is observed for molybdenum and tungsten when exposed to air. Specifically, at air pressures of 10-5 mbar, the decrease in Esat is found to be 50% and 30% for molybdenum and tungsten, respectively. In addition, a 30% decrease is found when molybdenum is conditioned with a CO pressure of ~1-10-5 mbar. Surface analysis measurements and breakdown conditioning in O2 ambience imply that the origin of the decrease in Esat is closely linked to oxide formation on the cathode surface. "Ex-situ" treatments by ion bombardment of molybdenum effectively reduce the oxide layers, and improve the brea...

  16. Laser-Induced Breakdown Spectroscopy Based Protein Assay for Cereal Samples.

    Science.gov (United States)

    Sezer, Banu; Bilge, Gonca; Boyaci, Ismail Hakki

    2016-12-14

    Protein content is an important quality parameter in terms of price, nutritional value, and labeling of various cereal samples. However, conventional analysis methods, namely, Kjeldahl and Dumas, have major drawbacks such as long analysis time, titration mistakes, and carrier gas dependence with high purity. For this reason, there is an urgent need for rapid, reliable, and environmentally friendly technologies for protein analysis. The present study aims to develop a new method for protein analysis in wheat flour and whole meal by using laser-induced breakdown spectroscopy (LIBS), which is a multielemental, fast, and simple spectroscopic method. Unlike the Kjeldahl and Dumas methods, it has potential to analyze a high number of samples in considerably short time. In the study, nitrogen peaks in LIBS spectra of wheat flour and whole meal samples with different protein contents were correlated with results of the standard Dumas method with the aid of chemometric methods. A calibration graph showed good linearity with the protein content between 7.9 and 20.9% and a 0.992 coefficient of determination (R 2 ). The limit of detection was calculated as 0.26%. The results indicated that LIBS is a promising and reliable method with its high sensitivity for routine protein analysis in wheat flour and whole meal samples.

  17. Discrimination between authentic and false tax stamps from liquor bottles using laser-induced breakdown spectroscopy and chemometrics

    International Nuclear Information System (INIS)

    Gonzaga, Fabiano Barbieri; Rocha, Werickson Fortunato de Carvalho; Correa, Deleon Nascimento

    2015-01-01

    This work describes the preliminary application of a compact and low-cost laser-induced breakdown spectroscopy (LIBS) instrument for falsification detection of tax stamps used in alcoholic beverages. The new instrument was based on a diode-pumped passively Q-switched Nd:YLF microchip laser and a mini-spectrometer containing a Czerny–Turner polichromator coupled to a non-intensified, non-gated, and non-cooled 2048 pixel linear sensor array (200 to 850 nm spectral range). Twenty-three tax stamp samples were analyzed by firing laser pulses within two different regions of each sample: a hologram and a blank paper region. For each acquired spectrum, the emitted radiation was integrated for 3000 ms under the continuous application of laser pulses at 100 Hz (integration of 300 plasmas). Principal component analysis (PCA) or hierarchical cluster analysis (HCA) of all emission spectra from the hologram or blank paper region revealed two well-defined groups of authentic and false samples. Moreover, for the hologram data, three subgroups of false samples were found. Additionally, partial least squares discriminant analysis (PLS-DA) was successfully applied for the detection of the false tax stamps using all emission spectra from hologram or blank paper region. The discrimination between the samples was mostly ascribed to different levels of calcium concentration in the samples. - Highlights: • Compact and low-cost laser-induced breakdown spectrometer • Analysis of tax stamps used in alcoholic beverages • Detection of false tax stamps using the LIBS spectra and chemometrics • Falsification detection ascribed to different levels of calcium concentration

  18. Discrimination between authentic and false tax stamps from liquor bottles using laser-induced breakdown spectroscopy and chemometrics

    Energy Technology Data Exchange (ETDEWEB)

    Gonzaga, Fabiano Barbieri, E-mail: fbgonzaga@inmetro.gov.br [Chemical Metrology Division, National Institute of Metrology, Quality and Technology (INMETRO), Av. Nossa Senhora das Graças, 50, Xerém, 25250-020 Duque de Caxias, RJ (Brazil); Rocha, Werickson Fortunato de Carvalho [Chemical Metrology Division, National Institute of Metrology, Quality and Technology (INMETRO), Av. Nossa Senhora das Graças, 50, Xerém, 25250-020 Duque de Caxias, RJ (Brazil); Correa, Deleon Nascimento [Technical–Scientific Police Superintendency, Criminalistic Institute Dr. Octávio Eduardo de Brito Alvarenga—IC-SPTC-SP, 05507-060 São Paulo, SP (Brazil)

    2015-07-01

    This work describes the preliminary application of a compact and low-cost laser-induced breakdown spectroscopy (LIBS) instrument for falsification detection of tax stamps used in alcoholic beverages. The new instrument was based on a diode-pumped passively Q-switched Nd:YLF microchip laser and a mini-spectrometer containing a Czerny–Turner polichromator coupled to a non-intensified, non-gated, and non-cooled 2048 pixel linear sensor array (200 to 850 nm spectral range). Twenty-three tax stamp samples were analyzed by firing laser pulses within two different regions of each sample: a hologram and a blank paper region. For each acquired spectrum, the emitted radiation was integrated for 3000 ms under the continuous application of laser pulses at 100 Hz (integration of 300 plasmas). Principal component analysis (PCA) or hierarchical cluster analysis (HCA) of all emission spectra from the hologram or blank paper region revealed two well-defined groups of authentic and false samples. Moreover, for the hologram data, three subgroups of false samples were found. Additionally, partial least squares discriminant analysis (PLS-DA) was successfully applied for the detection of the false tax stamps using all emission spectra from hologram or blank paper region. The discrimination between the samples was mostly ascribed to different levels of calcium concentration in the samples. - Highlights: • Compact and low-cost laser-induced breakdown spectrometer • Analysis of tax stamps used in alcoholic beverages • Detection of false tax stamps using the LIBS spectra and chemometrics • Falsification detection ascribed to different levels of calcium concentration.

  19. On correction factor in scaling law for low pressure DC gas breakdown

    International Nuclear Information System (INIS)

    Gleb Wataghin, UNICAMP, Campinas, SP (Brazil))" data-affiliation=" (Instituto de Física Gleb Wataghin, UNICAMP, Campinas, SP (Brazil))" >Ronchi, G; Gleb Wataghin, UNICAMP, Campinas, SP (Brazil))" data-affiliation=" (Instituto de Física Gleb Wataghin, UNICAMP, Campinas, SP (Brazil))" >Machida, M

    2014-01-01

    The low pressure gas breakdown described by Paschen's law in Townsend theory, i.e. the breakdown voltage as a function of gas pressure p and the electrode distance d, provides an accurate description of breakdown in DC discharges when the ratio between inter-electrode gap distance d and electrode radii R tends to zero. On increasing of the ratio d/R, the Paschen's curves are shifted to the region of higher breakdown voltage and higher pd values. A modified Paschen's law recently proposed is well satisfied in our measurements. However, the value of constant b changes not only due to gas type but also according to electrode gap distance; furthermore, gas breakdown voltages are considerably modified by plasma-wall interactions due to glass tube proximity in the discharge.

  20. Electrical breakdown in vacuum

    International Nuclear Information System (INIS)

    Beukema, G.P.

    1980-01-01

    The main part of this thesis is dedicated to the field enhancement factor; in particular to the study of the origin, alteration and influence on the breakdown properties of different materials. This work required the examination of large surface areas on the same microscopic scale on which the relevant phenomena occur. (Pre)-breakdown measurements are described in which the anode condition does not play a role in the initiation of a breakdown, while the cathode can be considered as a broad-area electrode. The influence of adsorbed gases on pre-breakdown currents is investigated. It is shown that ions, released by field emission electrons from adsorbed layers on the anode change the emitting properties of a well-conditioned cathode if the current density at the anode is small. A new experimental arrangement is outlined to better distinguish between the different parameters which are important for the initiation of electrical breakdown. Comparative measurements between stainless steel and titanium electrodes are described to study the influence of either the cathode or the anode upon the initiation of a breakdown. (Auth.)

  1. Estimation of Soil Nitrate (NO3) Level Using Laser-Induced Breakdown Spectroscopy (LIBS)

    Science.gov (United States)

    Angkat, A. R.; Seminar, K. B.; Rahmat, M.; Sutandi, A.

    2018-05-01

    Laser-Induced Breakdown Spectroscopy (LIBS) is a method for measuring level of nitrogen (N) in the soil in the form of N-nitrate (NO3) rapidly without going through the process of sieving and drying. The sample soil in the form of pellets subjected to laser pulses using a wavelength of 532 nm, pulse duration 5.5 ns, repetition rate of 10 Hz, and Q-switch delay of 150 μs. Emissions are captured by the spectrometer with the wavelength range of 190-1130 nm. Spectrum characterization was processed through the second derivative in order to obtain a wavelength identity that could be rapidly used to estimate the nitrate content of the soil with a determination coefficient of (R2) 0.9254 and a coefficient of variation (CV) of 8.41%. The results of this study are very potential to be applied for rapid measurement of soil nitrate.

  2. Investigation of the differentiation of ex vivo nerve and fat tissues using laser-induced breakdown spectroscopy (LIBS): Prospects for tissue-specific laser surgery.

    Science.gov (United States)

    Mehari, Fanuel; Rohde, Maximillian; Kanawade, Rajesh; Knipfer, Christian; Adler, Werner; Klämpfl, Florian; Stelzle, Florian; Schmidt, Michael

    2016-10-01

    In the present study, the elemental compositions of fat and nerve tissue during their plasma mediated laser ablation are studied in the context of tissue differentiation for laser surgery applications by using Laser-Induced Breakdown Spectroscopy (LIBS). Tissue samples of porcine fat and nerve were prepared as ex vivo experimental objects. Plasma mediated laser ablation is performed using an Nd : YAG laser in open air and under normal stray light conditions. The performed measurements suggest that the two tissue types show a high similarity in terms of qualitative elemental composition while at the same time revealing a distinct difference in the concentration of the constituent elements. Different analysis approaches are evaluated and discussed to optimize the tissue-differentiation performance of the LIBS approach. Plasma mediated laser tissue ablation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Direct Determination of Contaminants and Major and Minor Nutrients in Solid Fertilizers Using Laser-Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Andrade, Daniel F; Pereira-Filho, Edenir Rodrigues

    2016-10-11

    Contaminants (Cd, Cr, and Pb) as well as minor (B, Cu, Mn, Na, and Zn) and major (Ca and Mg) elements were directly determined in solid fertilizer samples using laser-induced breakdown spectroscopy (LIBS). Factorial designs were used to define the most appropriate LIBS parameters and pellet pressure on solid fertilizers. Emission lines for all of the analytes were collected and employed 12 signal normalization modes. The best results were obtained using a laser energy of 75 mJ, a spot size of 50 μm, a pressure of 10 t/in., and a delay of 2.0 μs. Good correlation was obtained between the calibration model's prediction using the proposed LIBS method and the reference values obtained with ICP-OES. The limits of detection (LOD) for the proposed method varied from 2 mg/kg (for Cd) to 1% (for Zn).

  4. Determination of silicon in plant materials by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Paulino Florêncio de [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000, Piracicaba, SP (Brazil); Centro de Tecnologia Canavieira, PO Box 162, 13400-970 Piracicaba, SP (Brazil); Santos, Dário [Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Rua Prof. Artur Riedel, 275, 09972-270, Diadema, SP (Brazil); Gustinelli Arantes de Carvalho, Gabriel; Nunes, Lidiane Cristina [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000, Piracicaba, SP (Brazil); Silva Gomes, Marcos da [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000, Piracicaba, SP (Brazil); Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP (Brazil); Guerra, Marcelo Braga Bueno [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000, Piracicaba, SP (Brazil); Krug, Francisco José, E-mail: fjkrug@cena.usp.br [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000, Piracicaba, SP (Brazil)

    2013-05-01

    In spite of the importance of Si for improving the productivity of many important crops, such as those from the Poaceae family (e.g. sugar cane, maize, wheat, rice), its quantitative determination in plants is seldom carried out and restricted to few laboratories in the world. There is a survey of methods in the literature, but most of them are either laborious or difficult to validate in view of the low availability of reference materials with a certified Si mass fraction. The aim of this study is to propose a method for the direct determination of Si in pellets of plant materials by laser-induced breakdown spectroscopy (LIBS). The experimental setup was designed by using a Q-switched Nd:YAG laser at 1064 nm (5 ns, 10 Hz) and the emission signals were collected by lenses into an optical fiber coupled to an Echelle spectrometer equipped with an intensified charge-coupled device. Experiments were carried out with leaves from 24 sugar cane varieties, with mass fractions varying from ca. 2 to 10 g kg{sup −1} Si. Pellets prepared from cryogenically ground leaves were used as test samples for both method development and validation of the calibration model. Best results were obtained when the test samples were interrogated with laser fluence of 50 J cm{sup −2} (750 μm spot size) and measurements carried out at Si I 212.412 nm emission line. The results obtained by LIBS were compared with those from inductively coupled plasma optical emission spectrometry after oven-induced alkaline digestion, and no significant differences were observed after applying the Student's t-test at 95% confidence level. The trueness of the proposed LIBS method was also confirmed from the analysis of CRM GBW 07603 (Bush branches and leaves). - Highlights: • This is the first application of LIBS for determination of Si in plant materials. • Data indicate that the method is appropriate for Si diagnosis in routine analysis. • Silicon can be simultaneously determined with macro- and

  5. Determination of silicon in plant materials by laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Souza, Paulino Florêncio de; Santos, Dário; Gustinelli Arantes de Carvalho, Gabriel; Nunes, Lidiane Cristina; Silva Gomes, Marcos da; Guerra, Marcelo Braga Bueno; Krug, Francisco José

    2013-01-01

    In spite of the importance of Si for improving the productivity of many important crops, such as those from the Poaceae family (e.g. sugar cane, maize, wheat, rice), its quantitative determination in plants is seldom carried out and restricted to few laboratories in the world. There is a survey of methods in the literature, but most of them are either laborious or difficult to validate in view of the low availability of reference materials with a certified Si mass fraction. The aim of this study is to propose a method for the direct determination of Si in pellets of plant materials by laser-induced breakdown spectroscopy (LIBS). The experimental setup was designed by using a Q-switched Nd:YAG laser at 1064 nm (5 ns, 10 Hz) and the emission signals were collected by lenses into an optical fiber coupled to an Echelle spectrometer equipped with an intensified charge-coupled device. Experiments were carried out with leaves from 24 sugar cane varieties, with mass fractions varying from ca. 2 to 10 g kg −1 Si. Pellets prepared from cryogenically ground leaves were used as test samples for both method development and validation of the calibration model. Best results were obtained when the test samples were interrogated with laser fluence of 50 J cm −2 (750 μm spot size) and measurements carried out at Si I 212.412 nm emission line. The results obtained by LIBS were compared with those from inductively coupled plasma optical emission spectrometry after oven-induced alkaline digestion, and no significant differences were observed after applying the Student's t-test at 95% confidence level. The trueness of the proposed LIBS method was also confirmed from the analysis of CRM GBW 07603 (Bush branches and leaves). - Highlights: • This is the first application of LIBS for determination of Si in plant materials. • Data indicate that the method is appropriate for Si diagnosis in routine analysis. • Silicon can be simultaneously determined with macro- and micronutrients

  6. Breakdowns in collaborative information seeking

    DEFF Research Database (Denmark)

    Hertzum, Morten

    2010-01-01

    Collaborative information seeking is integral to many professional activities. In hospital work, the medication process encompasses continual seeking for information and collaborative grounding of information. This study investigates breakdowns in collaborative information seeking through analyses...... of the use of the electronic medication record adopted in a Danish healthcare region and of the reports of five years of medication incidents at Danish hospitals. The results show that breakdowns in collaborative information seeking is a major source of medication incidents, that most of these breakdowns...... are breakdowns in collaborative grounding rather than information seeking, that the medication incidents mainly concern breakdowns in the use of records as opposed to oral communication, that the breakdowns span multiple degrees of separation between clinicians, and that the electronic medication record has...

  7. Development and creation of a remote-controlled underwater laser induced breakdown spectrometer for analysis of the chemical composition of sea water and bottom sediments

    Science.gov (United States)

    Golik, Sergey S.; Mayor, Alexsander Yu.; Proschenko, Dmitriy Yu.; Ilyin, Alexey A.; Nagorniy, Ivan G.; Biryukova, Yuliya S.; Babiy, Michael Yu.; Golik, Natalia N.; Gevorgyan, Tigran A.; Lisitsa, Vladimir V.; Borovskiy, Anton V.; Kulchin, Yuri N.

    2017-10-01

    The developed underwater laser induced breakdown spectrometer consists of two units: 1- remotely operated vehicle (ROV) with the next main characteristics: work deep - up to 150 meters, maximum speed of immersion 1 m/s, maximum cruise velocity - 2 m/s and 2 - spectrometer unit (SU) consist of a DPSS Nd: YAG laser excitation source (double pulse with 50 mJ energy for each pulse at wavelength 1064 nm, pulse width 12 ns and pulse repetition rate 1-15 Hz, DF251, SOL Instruments), a spectrum recording system (Maya HR4000 or 2000 Pro spectrometer, Ocean Optics) and microcomputer. These two units are connected by Ethernet network and registered spectral data are automatically processed in a MATLAB platform.

  8. Identifying a novel role for X-prolyl aminopeptidase (Xpnpep) 2 in CrVI-induced adverse effects on germ cell nest breakdown and follicle development in rats.

    Science.gov (United States)

    Banu, Sakhila K; Stanley, Jone A; Sivakumar, Kirthiram K; Arosh, Joe A; Barhoumi, Rola; Burghardt, Robert C

    2015-03-01

    Environmental exposure to endocrine-disrupting chemicals (EDCs) is one cause of premature ovarian failure (POF). Hexavalent chromium (CrVI) is a heavy metal EDC widely used in more than 50 industries, including chrome plating, welding, wood processing, and tanneries. Recent data from U.S. Environmental Protection Agency indicate increased levels of Cr in drinking water from several American cities, which potentially predispose residents to various health problems. Recently, we demonstrated that gestational exposure to CrVI caused POF in F1 offspring. The current study was performed to identify the molecular mechanism behind CrVI-induced POF. Pregnant rats were treated with 25 ppm of potassium dichromate from Gestational Day (GD) 9.5 to GD 14.5 through drinking water, and the fetuses were exposed to CrVI through transplacental transfer. Ovaries were removed from the fetuses or pups on Embryonic Day (ED) 15.5, ED 17.5, Postnatal Day (PND) 1, PND 4, or PND 25, and various analyses were performed. Results showed that gestational exposure to CrVI: 1) increased germ cell/oocyte apoptosis and advanced germ cell nest (GCN) breakdown; 2) increased X-prolyl aminopeptidase (Xpnpep) 2, a POF marker in humans, during GCN breakdown; 3) decreased Xpnpep2 during postnatal follicle development; and 4) increased colocalization of Xpnpep2 with Col3 and Col4. We also found that Xpnpep2 inversely regulated the expression of Col1, Col3, and Col4 in all the developmental stages studied. Thus, CrVI advanced GCN breakdown and increased follicle atresia in F1 female progeny by targeting Xpnpep2. © 2015 by the Society for the Study of Reproduction, Inc.

  9. Phosphate ore beneficiation via determination of phosphorus-to-silica ratios by Laser Induced Breakdown Spectroscopy

    International Nuclear Information System (INIS)

    Asimellis, George; Giannoudakos, Aggelos; Kompitsas, Michael

    2006-01-01

    We report development and application of an in-situ applicable method to determine phosphate ore rock quality based on Laser-Induced Breakdown Spectroscopy (LIBS). This is an economically viable method for real-time evaluation of ore phosphate rocks in order to separate high-silica pebbles prior to deep beneficiation. This is achieved by monitoring relative emission line intensities from key probe elements via single laser ablation shots: the ratio of the phosphorous to silica line intensities (P/Si ratio) provides a simple and reliable indicator of ore rock quality. This is a unique LIBS application where no other current analytical spectroscopic method (ICP or XRF) can be applied. Method development is discussed, and results with actual ore samples are presented

  10. Studies of Basalt Through Laser Induced Breakdown Spectroscopy (LIBS for the Manufacturing of Lapilli Blocks

    Directory of Open Access Journals (Sweden)

    Ismael De la Viuda-Pérez

    2016-10-01

    Full Text Available Basaltic samples selected from different areas of Tenerife were analyzed by applying laser induced breakdown spectroscopy (LIBS, Raman spectroscopy and X Ray Diffraction (XRD in order to identify the basic chemical composition and mineralogy. The basic composition obtained from the analysis was: O, F, Na, K, Mg, Al Si, Ca, Ti and Fe. Raman spectroscopic and XRD analyses indicated a basaltic mineralogy which is consistent with the basic composition results obtained from LIBS. The results of the analyses carried out using portable instrumentation proved the suitability of the LIBS, specially combined with the Raman spectroscopy for their application in the mineralogical-chemical identification in the areas where basalts and lapilli are extracted for construction works in Tenerife.

  11. A Comparison of Multivariate and Pre-Processing Methods for Quantitative Laser-Induced Breakdown Spectroscopy of Geologic Samples

    Science.gov (United States)

    Anderson, R. B.; Morris, R. V.; Clegg, S. M.; Bell, J. F., III; Humphries, S. D.; Wiens, R. C.

    2011-01-01

    The ChemCam instrument selected for the Curiosity rover is capable of remote laser-induced breakdown spectroscopy (LIBS).[1] We used a remote LIBS instrument similar to ChemCam to analyze 197 geologic slab samples and 32 pressed-powder geostandards. The slab samples are well-characterized and have been used to validate the calibration of previous instruments on Mars missions, including CRISM [2], OMEGA [3], the MER Pancam [4], Mini-TES [5], and Moessbauer [6] instruments and the Phoenix SSI [7]. The resulting dataset was used to compare multivariate methods for quantitative LIBS and to determine the effect of grain size on calculations. Three multivariate methods - partial least squares (PLS), multilayer perceptron artificial neural networks (MLP ANNs) and cascade correlation (CC) ANNs - were used to generate models and extract the quantitative composition of unknown samples. PLS can be used to predict one element (PLS1) or multiple elements (PLS2) at a time, as can the neural network methods. Although MLP and CC ANNs were successful in some cases, PLS generally produced the most accurate and precise results.

  12. Barrier breakdown mechanism in nano-scale perpendicular magnetic tunnel junctions with ultrathin MgO barrier

    Science.gov (United States)

    Lv, Hua; Leitao, Diana C.; Hou, Zhiwei; Freitas, Paulo P.; Cardoso, Susana; Kämpfe, Thomas; Müller, Johannes; Langer, Juergen; Wrona, Jerzy

    2018-05-01

    Recently, the perpendicular magnetic tunnel junctions (p-MTJs) arouse great interest because of its unique features in the application of spin-transfer-torque magnetoresistive random access memory (STT-MRAM), such as low switching current density, good thermal stability and high access speed. In this paper, we investigated current induced switching (CIS) in ultrathin MgO barrier p-MTJs with dimension down to 50 nm. We obtained a CIS perpendicular tunnel magnetoresistance (p-TMR) of 123.9% and 7.0 Ω.μm2 resistance area product (RA) with a critical switching density of 1.4×1010 A/m2 in a 300 nm diameter junction. We observe that the extrinsic breakdown mechanism dominates, since the resistance of our p-MTJs decreases gradually with the increasing current. From the statistical analysis of differently sized p-MTJs, we observe that the breakdown voltage (Vb) of 1.4 V is 2 times the switching voltage (Vs) of 0.7 V and the breakdown process exhibits two different breakdown states, unsteady and steady state. Using Simmons' model, we find that the steady state is related with the barrier height of the MgO layer. Furthermore, our study suggests a more efficient method to evaluate the MTJ stability under high bias rather than measuring Vb. In conclusion, we developed well performant p-MTJs for the use in STT-MRAM and demonstrate the mechanism and control of breakdown in nano-scale ultrathin MgO barrier p-MTJs.

  13. AVLIS Production Plant work breakdown structure and Dictionary

    International Nuclear Information System (INIS)

    1984-01-01

    The work breakdown structure has been prepared for the AVLIS Production Plant to define, organize, and identify the work efforts and is summarized in Fig. 1-1 for the top three project levels. The work breakdown structure itself is intended to be the primary organizational tool of the AVLIS Production Plant and is consistent with the overall AVLIS Program Work Breakdown Structure. It is designed to provide a framework for definition and accounting of all of the elements that are required for the eventual design, procurement, and construction of the AVLIS Production Plant. During the present phase of the AVLIS Project, the conceptual engineering phase, the work breakdown structure is intended to be the master structure and project organizer of documents, designs, and cost estimates. As the master project organizer, the key role of the work breakdown structure is to provide the mechanism for developing completeness in AVLIS cost estimates and design development of all hardware and systems. The work breakdown structure provides the framework for tracking, on a one-to-one basis, the component design criteria, systems requirements, design concepts, design drawings, performance projections, and conceptual cost estimates. It also serves as a vehicle for contract reporting. 12 figures, 2 tables

  14. Blackbody Emission from Laser Breakdown in High-Pressure Gases

    Science.gov (United States)

    Bataller, A.; Plateau, G. R.; Kappus, B.; Putterman, S.

    2014-08-01

    Laser induced breakdown of pressurized gases is used to generate plasmas under conditions where the atomic density and temperature are similar to those found in sonoluminescing bubbles. Calibrated streak spectroscopy reveals that a blackbody persists well after the exciting femtosecond laser pulse has turned off. Deviation from Saha's equation of state and an accompanying large reduction in ionization potential are observed at unexpectedly low atomic densities—in parallel with sonoluminescence. In laser breakdown, energy input proceeds via excitation of electrons whereas in sonoluminescence it is initiated via the atoms. The similar responses indicate that these systems are revealing the thermodynamics and transport of a strongly coupled plasma.

  15. Properties of optical breakdown in BK7 glass induced by an extended-cavity femtosecond laser oscillator.

    Science.gov (United States)

    Do, Binh T; Phillips, Mark C; Miller, Paul A; Kimmel, Mark W; Britsch, Justin; Cho, Seong-Ho

    2009-02-16

    Using an extended-cavity femtosecond oscillator, we investigated optical breakdown in BK7 glass caused by the accumulated action of many laser pulses. By using a pump-probe experiment and collecting the transmitted pump along with the reflected pump and the broadband light generated by the optical breakdown, we measured the build-up time to optical breakdown as a function of the pulse energy, and we also observed the instability of the plasma due to the effect of defocusing and shielding created by the electron gas. The spectrum of the broadband light emitted by the optical breakdown and the origin of the material modification in BK7 glass was studied. We developed a simple model of electromagnetic wave propagation in plasma that is consistent with the observed behavior of the reflection, absorption, and transmission of the laser light.

  16. Long-term Hyperglycemia Naturally Induces Dental Caries but Not Periodontal Disease in Type 1 and Type 2 Diabetic Rodents.

    Science.gov (United States)

    Nakahara, Yutaka; Ozaki, Kiyokazu; Matsuura, Tetsuro

    2017-11-01

    Periodontal disease (PD) in patients with diabetes is described as the sixth complication of diabetes. We have previously shown that diabetes increases dental caries, and carious inflammation might have a strong effect on the adjacent periodontal tissue in diabetic rodent models. However, the possibility that hyperglycemia may induce PD in diabetic animals could not be completely eliminated. The goal of this study was to confirm the presence of PD in diabetic animal models by preventing carious inflammation with fluoride administration. F344 rats injected with alloxan (type 1 diabetic model) and db/db mice (type 2 diabetic model) were given either tap water alone or tap water containing fluoride. A cariostatic effect of fluoride was evident in the diabetic animals. Meanwhile, fluoride treatment drastically attenuated periodontal inflammation in addition to preventing dental caries. Furthermore, with fluoride treatment, periodontitis was notably nonexistent in the periodontal tissue surrounding the normal molars, whereas the caries-forming process was clearly observed in the teeth that were enveloped with persistent periodontitis, suggesting that enhanced periodontal inflammation might have been derived from the dental caries in the diabetic rodents rather than from the PD. In conclusion, long-term hyperglycemia naturally induces dental caries but not PD in type 1 and type 2 diabetic rodents. © 2017 by the American Diabetes Association.

  17. Analysis of explosive and other organic residues by laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lazic, V., E-mail: lazic@frascati.enea.i [ENEA, FIS-LAS, Via. E. Fermi 45, 00044 Frascati (RM) (Italy); Palucci, A. [ENEA, FIS-LAS, Via. E. Fermi 45, 00044 Frascati (RM) (Italy); Jovicevic, S. [Institute of Physics, 11080 Belgrade, Pregrevica 118 (Serbia); Poggi, C.; Buono, E. [ENEA, FIS-LAS, Via. E. Fermi 45, 00044 Frascati (RM) (Italy)

    2009-10-15

    With the aim of realizing a compact instrument for detection of energetic materials at trace levels, laser induced breakdown spectroscopy was applied on residues from nine explosives in air surroundings. Different potentially interfering organic materials were also analyzed. The residues were not uniformly distributed on an aluminum support and single-shot discrimination was attempted. For a single residue type, large shot-to-shot fluctuations of the line intensity ratios characteristic for organic samples were observed, which made material classification difficult. It was found that both atomic and molecular emission intensities, as well as their ratios, are strongly affected by an amount of the ablated support material, which mainly determines the plasma temperature. With respect to the spectra from the clean support, emission intensities of atomic oxygen and nitrogen are always reduced in the presence of an organic material, even if its molecules contain these elements. This was attributed to chemical reactions in a plasma containing carbon or its fragments. Hydrogen atomic emission depends strongly on the local humidity above the sampled point and its line intensity shows shot to shot variations up to 50%, also on a homogeneous sample. It is argued that shock waves generated by previous spatially and/or temporally close laser pulses blow away a relatively heavy water aerosol, which later diffuses slowly back towards the sampled point. C{sub 2} and CN exhibit a peak emission behavior with atomic Al emission, and their variable ratio indicates an existence of different formation or removal mechanisms from the plasma, depending on the plasma parameters and on the composition of the organic residue. On the basis of these observations, an attempt is made to establish a suitable procedure for data analysis and to determine the optimal experimental conditions, which would allow for discrimination of explosives from other, potentially interfering, residues.

  18. Kinetic-energy induced smoothening and delay of epitaxial breakdown in pulsed-laser deposition

    International Nuclear Information System (INIS)

    Shin, Byungha; Aziz, Michael J.

    2007-01-01

    We have isolated the effect of kinetic energy of depositing species from the effect of flux pulsing during pulsed-laser deposition (PLD) on surface morphology evolution of Ge(001) homoepitaxy at low temperature (100 deg. C). Using a dual molecular beam epitaxy (MBE) PLD chamber, we compare morphology evolution from three different growth methods under identical experimental conditions except for the differing nature of the depositing flux: (a) PLD with average kinetic energy 300 eV (PLD-KE); (b) PLD with suppressed kinetic energy comparable to thermal evaporation energy (PLD-TH); and (c) MBE. The thicknesses at which epitaxial breakdown occurs are ranked in the order PLD-KE>MBE>PLD-TH; additionally, the surface is smoother in PLD-KE than in MBE. The surface roughness of the films grown by PLD-TH cannot be compared due to the early epitaxial breakdown. These results demonstrate convincingly that kinetic energy is more important than flux pulsing in the enhancement of epitaxial growth, i.e., the reduction in roughness and the delay of epitaxial breakdown

  19. Enhancement and stabilization of plasma using collinear long-short double-pulse laser-induced breakdown spectroscopy

    Science.gov (United States)

    Cui, Minchao; Deguchi, Yoshihiro; Wang, Zhenzhen; Fujita, Yuki; Liu, Renwei; Shiou, Fang-Jung; Zhao, Shengdun

    2018-04-01

    A collinear long-short dual-pulse laser-induced breakdown spectroscopy (DP-LIBS) method was employed to enhance and stabilize the laser-induced plasma from steel sample. The long-pulse-width laser beam with the pulse width of 60 μs was generated by a Nd: YAG laser which was operated at FR (free running) mode. The comparative experiments were carried out between single pulse LIBS (SP-LIBS) and long-short DP-LIBS. The recorded results showed that the emission intensities and the temperature of plasma were enhanced by long-short DP-LIBS. The plasma images showed that the plasma was bigger and had a longer lifetime in long-short DP-LIBS situation. Through the calculation of time-resolved plasma temperature and intensity ratio, it can be concluded that the plasma was stabilized by the long-pulse-width laser beam. The long-short DP-LIBS method also generated the stable plasma condition from the samples with different initial temperatures, which overcame the difficulties of LIBS in the online measurement for steel production line.

  20. Identification of offal adulteration in beef by laser induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Velioglu, Hasan Murat; Sezer, Banu; Bilge, Gonca; Baytur, Süleyman Efe; Boyaci, Ismail Hakki

    2018-04-01

    Minced meat is the major ingredient in sausages, beef burgers, and similar products; and thus it is the main product subjected to adulteration with meat offal. Determination of this kind of meat adulteration is crucial due to religious, economic and ethical concerns. The aim of the present study is to discriminate the beef meat and offal samples by using laser induced breakdown spectroscopy (LIBS). To this end, LIBS and multivariate data analysis were used to discriminate pure beef and offal samples qualitatively and to determine the offal mixture adulteration quantitatively. In this analysis, meat samples were frozen and LIBS analysis were performed. The results indicate that by using principal component analysis (PCA), discrimination of pure offal and offal mixture adulterated beef samples can be achieved successfully. Besides, adulteration ratio can be determined using partial least square analysis method (PLS) with 0.947 coefficient of determination (R 2 ) and 3.8% of limit of detection (LOD) values for offal mixture adulterated beef samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Micro-Laser-Induced Breakdown Spectroscopy (Micro-LIBS) Study on Ancient Roman Mortars.

    Science.gov (United States)

    Pagnotta, Stefano; Lezzerini, Marco; Ripoll-Seguer, Laura; Hidalgo, Montserrat; Grifoni, Emanuela; Legnaioli, Stefano; Lorenzetti, Giulia; Poggialini, Francesco; Palleschi, Vincenzo

    2017-04-01

    The laser-induced breakdown spectroscopy (LIBS) technique was used for analyzing the composition of an ancient Roman mortar (5th century A.D.), exploiting an experimental setup which allows the determination of the compositions of binder and aggregate in few minutes, without the need for sample treatment. Four thousand LIBS spectra were acquired from an area of 10 mm 2 , with a 50 µm lateral resolution. The elements of interest in the mortar sample (H, C, O, Na, Mg, Al, Si, K, Ca, Ti, Mn, Fe) were detected and mapped. The collected data graphically shown as compositional images were interpreted using different statistical approaches for the determination of the chemical composition of the binder and aggregate fraction. The methods of false color imaging, blind separation, and self-organizing maps were applied and their results are discussed in this paper. In particular, the method based on the use of self-organizing maps gives well interpretable results in very short times, without any reduction in the dimensionality of the system.

  2. RCRA materials analysis by laser-induced breakdown spectroscopy: Detection limits in soils

    International Nuclear Information System (INIS)

    Koskelo, A.; Cremers, D.A.

    1994-01-01

    The goal of the Technical Task Plan (TTP) that this report supports is research, development, testing and evaluation of a portable analyzer for RCRA and other metals. The instrumentation to be built will be used for field-screening of soils. Data quality is expected to be suitable for this purpose. The data presented in this report were acquired to demonstrate the detection limits for laser-induced breakdown spectroscopy (LIBS) of soils using instrument parameters suitable for fieldable instrumentation. The data are not expected to be the best achievable with the high pulse energies available in laboratory lasers. The report presents work to date on the detection limits for several elements in soils using LIBS. The elements targeted in the Technical Task Plan are antimony, arsenic, beryllium, cadmium, chromium, lead, selenium, and zirconium. Data for these elements are presented in this report. Also included are other data of interest to potential customers for the portable LIBS apparatus. These data are for barium, mercury, cesium and strontium. Data for uranium and thorium will be acquired during the tasks geared toward mixed waste characterization

  3. Influence of Er:YAG and Nd:YAG wavelengths on laser-induced breakdown spectroscopy measurements under air or helium atmosphere

    International Nuclear Information System (INIS)

    Detalle, Vincent; Sabsabi, Mohamad; St-Onge, Louis; Hamel, Andre; Heon, Rene

    2003-01-01

    Laser-induced breakdown spectroscopy (LIBS) is widely dependent on the conditions of its implementation in terms of laser characteristics (wavelength, energy, and pulse duration), focusing conditions, and surrounding gas. In this study two wavelengths, 1.06 and 2.94 μm, obtained with Nd:YAG and Er:YAG lasers, respectively, were used for LIBS analysis of aluminum alloy samples in two conditions of surrounding gas. The influence of the laser wavelength on the laser-produced plasma was studied for the same irradiance by use of air or helium as a buffer gas at atmospheric pressure. We used measurements of light emission to determine the temporally resolved space-averaged electron density and plasma temperature in the laser-induced plasma. We also examined the effect of laser wavelength in two different ambient conditions in terms of spectrochemical analysis by LIBS. The results indicate that the effect of the surrounding gas depends on the laser wavelength and the use of an Er:YAG laser could increase linearity by limiting the leveling in the calibration curve for some elements in aluminum alloys. There is also a significant difference between the plasma induced by the two lasers in terms of electron density and plasma temperature

  4. Qualitative tissue differentiation by analysing the intensity ratios of atomic emission lines using laser induced breakdown spectroscopy (LIBS): prospects for a feedback mechanism for surgical laser systems.

    Science.gov (United States)

    Kanawade, Rajesh; Mahari, Fanuel; Klämpfl, Florian; Rohde, Maximilian; Knipfer, Christian; Tangermann-Gerk, Katja; Adler, Werner; Schmidt, Michael; Stelzle, Florian

    2015-01-01

    The research work presented in this paper focuses on qualitative tissue differentiation by monitoring the intensity ratios of atomic emissions using 'Laser Induced Breakdown Spectroscopy' (LIBS) on the plasma plume created during laser tissue ablation. The background of this study is to establish a real time feedback control mechanism for clinical laser surgery systems during the laser ablation process. Ex-vivo domestic pig tissue samples (muscle, fat, nerve and skin) were used in this experiment. Atomic emission intensity ratios were analyzed to find a characteristic spectral line for each tissue. The results showed characteristic elemental emission intensity ratios for the respective tissues. The spectral lines and intensity ratios of these specific elements varied among the different tissue types. The main goal of this study is to qualitatively and precisely identify different tissue types for tissue specific laser surgery. © 2015 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag.

  5. A spectrum standardization approach for laser-induced breakdown spectroscopy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhe, E-mail: zhewang@mail.tsinghua.edu.cn; Li Lizhi; West, Logan; Li Zheng, E-mail: lz-dte@tsinghua.edu.cn; Ni Weidou

    2012-02-15

    This paper follows and completes a previous presentation of a spectrum normalization method for laser-induced breakdown spectroscopy (LIBS) measurements by converting the experimentally recorded line intensity at varying operational conditions to the intensity that would be obtained under a 'standard state' condition, characterized by a standard plasma temperature, electron number density, and total number density of the interested species. At first, for each laser shot and corresponding spectrum, the line intensities of the interested species are converted to the intensity at a fixed plasma temperature and electron number density, but with varying total number density. Under this state, if the influence of changing plasma morphology is neglected, the sum of multiple spectral line intensities for the measured element is proportional to the total number density of the specific element. Therefore, the fluctuation of the total number density, or the variation of ablation mass, can be compensated for by applying the proportional relationship. The application of this method to Cu in 29 brass alloy samples, showed an improvement over the commonly applied normalization method with regard to measurement precision and accuracy. The average relative standard deviation (RSD) value, average value of the error bar, R{sup 2}, root mean square error of prediction (RMSEP), and average value of the maximum relative error were: 5.29%, 0.68%, 0.98, 2.72%, 16.97%, respectively, while the above parameter values for normalization with the whole spectrum area were: 8.61%, 1.37%, 0.95, 3.28%, 29.19%, respectively. - Highlights: Black-Right-Pointing-Pointer Intensity converted into an ideal standard plasma state for uncertainty reduction. Black-Right-Pointing-Pointer Ablated mass fluctuations compensated by variation of sum of multiple intensities. Black-Right-Pointing-Pointer A spectrum standardization model established. Black-Right-Pointing-Pointer Results in both uncertainty

  6. Determination of elemental composition of coffee using UV-pulsed laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Gondal, M. A.; Baig, Umair; Dastageer, M. A.; Sarwar, Mohsin

    2016-01-01

    A detection system based on laser induced breakdown spectroscopy (LIBS) was built using 266 nm wavelength pulsed laser from the fourth harmonic of Nd:YAG laser, 500 mm spectrograph and gated ICCD camera with built-in delay generator. The LIBS system was used to study the elemental composition in coffee available in the local market of Saudi Arabia for the detection of elements in coffee samples. The LIBS spectrum of coffee sample revealed the presence magnesium, calcium, aluminum, copper, sodium, barium, bromine, cobalt, chromium, cerium manganese and molybdenum. Atomic transition line of sodium is used to study the parametric dependence of LIBS signal. The study of the dependence of LIBS signal on the laser pulse energy is proven to be linear and the dependence of LIBS signal on the time delay between the excitation and data acquisition showed a typical increase, a peak value and a decrease with the optimum excitation – acquisition delay at 400 ns.

  7. Quantitative analysis of titanium concentration using calibration-free laser-induced breakdown spectroscopy (LIBS)

    Science.gov (United States)

    Zaitun; Prasetyo, S.; Suliyanti, M. M.; Isnaeni; Herbani, Y.

    2018-03-01

    Laser-induced breakdown spectroscopy (LIBS) can be used for quantitative and qualitative analysis. Calibration-free LIBS (CF-LIBS) is a method to quantitatively analyze concentration of elements in a sample in local thermodynamic equilibrium conditions without using available matrix-matched calibration. In this study, we apply CF-LIBS for quantitative analysis of Ti in TiO2 sample. TiO2 powder sample was mixed with polyvinyl alcohol and formed into pellets. An Nd:YAG pulsed laser at a wavelength of 1064 nm was focused onto the sample to generate plasma. The spectrum of plasma was recorded using spectrophotometer then compared to NIST spectral line to determine energy levels and other parameters. The value of plasma temperature obtained using Boltzmann plot is 8127.29 K and electron density from calculation is 2.49×1016 cm-3. Finally, the concentration of Ti in TiO2 sample from this study is 97% that is in proximity with the sample certificate.

  8. Effective laser-induced breakdown spectroscopy (LIBS) detection using double pulse at optimum configuration.

    Science.gov (United States)

    Choi, Soo Jin; Yoh, Jack J

    2011-08-01

    A short laser pulse is irradiated on a sample to create a highly energetic plasma that emits light of a specific peak wavelength according to the material. By identifying different peaks for the analyzed samples, their chemical composition can be rapidly determined. The characteristics of the laser-induced breakdown spectroscopy (LIBS) plasma are strongly dependent on the ambient conditions. Research aimed at enhancing LIBS intensity is of great benefit in advancing LIBS for the exploration of harsh environments. By using double-pulse LIBS, the signal intensity of Al and Ca lines was enhanced by five times compared to the single-pulse signal. Also, the angles of the target and detector are adjusted to simulate samples of arbitrary shape. We verified that there exists an optimal angle at which specific elements of a test sample may be detected with stronger signal intensity. We provide several optimum configurations for the LIBS system for maximizing the signal intensity for the analysis of a nonstandard aluminum sample.

  9. Determination of elemental composition of coffee using UV-pulsed laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gondal, M. A., E-mail: magondal@kfupm.edu.sa; Baig, Umair; Dastageer, M. A.; Sarwar, Mohsin [Laser Research Group, Physics Department, King Fahd University of Petroleum and Minerals, P.O Box 5047, Dhahran 31261 (Saudi Arabia)

    2016-06-10

    A detection system based on laser induced breakdown spectroscopy (LIBS) was built using 266 nm wavelength pulsed laser from the fourth harmonic of Nd:YAG laser, 500 mm spectrograph and gated ICCD camera with built-in delay generator. The LIBS system was used to study the elemental composition in coffee available in the local market of Saudi Arabia for the detection of elements in coffee samples. The LIBS spectrum of coffee sample revealed the presence magnesium, calcium, aluminum, copper, sodium, barium, bromine, cobalt, chromium, cerium manganese and molybdenum. Atomic transition line of sodium is used to study the parametric dependence of LIBS signal. The study of the dependence of LIBS signal on the laser pulse energy is proven to be linear and the dependence of LIBS signal on the time delay between the excitation and data acquisition showed a typical increase, a peak value and a decrease with the optimum excitation – acquisition delay at 400 ns.

  10. Laser-induced breakdown spectroscopy analysis of the copper added to gadolinium (Contract research)

    International Nuclear Information System (INIS)

    Akaoka, Katsuaki; Maruyama, Youichiro; Oba, Masaki; Miyabe, Masabumi; Wakaida, Ikuo

    2008-11-01

    For applying Laser-induced breakdown Spectroscopy (LIBS) to the analysis of nuclear fuel materials, it is very important to investigate the analytical method to identify the emission spectrum and its intensity on impurities intermingled within complex emission spectra of matrix elements such as uranium (U) and plutonium (Pu). Experiments using gadolinium (Gd) as simulated sample, in which several 100 ppm of copper (Cu) was contained, were performed and the analytical performance was estimated. The spectrum was decomposed into each peak of some spectra component on Gd and Cu. And the result, intensity of Cu component intermingled in Gd was determined quantitatively. In order to evaluate the linearity in the impurity analysis, the experiments with various concentration of Cu were carried out. The detection limit was determined to be about 70 ppm from the equivalent noise level which was estimated from the standard deviation in wavelength. The results curried out under the other laser conditions (intensity and wavelength) ware also evaluated. (author)

  11. Multi-elemental imaging of paraffin-embedded human samples by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Moncayo, S.; Trichard, F.; Busser, B.; Sabatier-Vincent, M.; Pelascini, F.; Pinel, N.; Templier, I.; Charles, J.; Sancey, L.; Motto-Ros, V.

    2017-07-01

    Chemical elements play central roles for physiological homeostasis in human cells, and their dysregulation might lead to a certain number of pathologies. Novel imaging techniques that improve the work of pathologists for tissue analysis and diagnostics are continuously sought. We report the use of Laser-Induced Breakdown Spectroscopy (LIBS) to perform multi-elemental images of human paraffin-embedded skin samples on the entire biopsy scale in a complementary and compatible way with microscope histopathological examination. A specific instrumental configuration is proposed in order to detect most of the elements of medical interest (i.e. P, Al, Mg, Na, Zn, Si, Fe, and Cu). As an example of medical application, we selected and analysed skin biopsies, including healthy skin tissue, cutaneous metastasis of melanoma, Merkel-cell carcinoma and squamous cell carcinoma. Clear distinctions in the distribution of chemical elements are observed from the different samples investigated. This study demonstrates the high complementarity of LIBS elemental imaging with conventional histopathology, opening new opportunities for any medical application involving metals.

  12. Viability study of using the Laser-Induced Breakdown Spectroscopy technique for radioactive waste detection at IPEN-CNEN/SP, Brazil

    International Nuclear Information System (INIS)

    Tunes, Matheus A.; Schon, Claudio G.

    2013-01-01

    this work a viability study to apply the Laser-Induced Breakdown Spectroscopy (LIBS) technique for radioactive waste characterization was developed using a high power q-switched Nd:YAG rod-Laser, operating at 1064 nm with 9 ns of pulse-width and pulse-to-pulse energy around 10 to 20 mJ. When applied in a non-radioactive deionized water sample, our methodology exhibits a good potential to spectroscopy detection of Hydrogen species with resolution around 0.035 nm at full width at half maximum (FWHM). (author)

  13. Establishment of the laser induced breakdown spectroscopy in a vacuum atmosphere for a accuracy improvement

    International Nuclear Information System (INIS)

    Kim, Seung Hyun; Kim, H. D.; Shin, H. S.

    2009-06-01

    This report describes the fundamentals of the Laser Induced Breakdown Spectroscopy(LIBS), and it describes the quantitative analysis method in the vacuum condition to obtain a high measurement accuracy. The LIBS system employs the following major components: a pulsed laser, a gas chamber, an emission spectrometer, a detector, and a computer. When the output from a pulsed laser is focused onto a small spot on a sample, an optically induced plasma, called a laser-induced plasma (LIP) is formed at the surface. The LIBS is a laser-based sensitive optical technique used to detect certain atomic and molecular species by monitoring the emission signals from a LIP. This report was described a fundamentals of the LIBS and current states of research. And, It was described a optimization of measurement condition and characteristic analysis of a LIP by measurement of the fundamental metals. The LIBS system shows about a 0.63 ∼ 5.82% measurement errors and calibration curve for the 'Cu, Cr and Ni'. It also shows about a 5% less of a measurement errors and calibration curve for a Nd and Sm. As a result, the LIBS accuracy for a part was little improved than preexistence by the optimized condition

  14. Critical effects of downstream boundary conditions on vortex breakdown

    Science.gov (United States)

    Kandil, Osama; Kandil, Hamdy A.; Liu, C. H.

    1992-01-01

    The unsteady, compressible, full Navier-Stokes (NS) equations are used to study the critical effects of the downstream boundary conditions on the supersonic vortex breakdown. The present study is applied to two supersonic vortex breakdown cases. In the first case, quasi-axisymmetric supersonic swirling flow is considered in a configured circular duct, and in the second case, quasi-axisymmetric supersonic swirling jet, that is issued from a nozzle into a supersonic jet of lower Mach number, is considered. For the configured duct flow, four different types of downstream boundary conditions are used, and for the swirling jet flow from the nozzle, two types of downstream boundary conditions are used. The solutions are time accurate which are obtained using an implicit, upwind, flux-difference splitting, finite-volume scheme.

  15. Influence of laser wavelength on the laser induced breakdown spectroscopy measurement of thin CuIn1−xGaxSe2 solar cell films

    International Nuclear Information System (INIS)

    Kim, Chan Kyu; In, Jung Hwan; Lee, Seok Hee; Jeong, Sungho

    2013-01-01

    Laser induced breakdown spectroscopy (LIBS) measurement of thin CuIn x Ga 1−x Se 2 (CIGS) films (1.2–1.9 μm) with varying Ga to In ratios was carried out using the fundamental (1064 nm) and second harmonic (532 nm) wavelength Nd:YAG lasers (τ = 5 ns, spot diameter = 150 μm, top-hat profile) in air. The concentration ratios of Ga to In, x Ga ≡ Ga/(Ga + In), of the CIGS samples ranged from 0.027 to 0.74 for which the band gap varied nearly proportionally to x Ga from 0.96 to 1.42. It was found that the LIBS signal of 1064 nm (1.17 eV) wavelength laser was significantly influenced by x Ga , whereas that of the 532 nm (2.34 eV) laser was consistent for all values of x Ga . The observed dependency of the LIBS signal intensity on the laser wavelength was attributed to the large difference of photon energy of the two wavelengths that changed the absorption of incident laser energy by the film. The 532 nm wavelength was found to be advantageous for multi-shot analysis that enabled depth profile analysis of the thin CIGS films and for improving measurement precision by averaging the multi-shot LIBS spectra. - Highlights: • The ablation characteristics of CIGS solar cell films change drastically with laser wavelength. • The LIBS signal intensity of 1064 nm wavelength laser depends strongly on Ga concentration. • Multi-shot LIBS analysis using a 532 nm laser is more advantageous for accuracy and consistency

  16. Calibration-Free Laser-Induced Breakdown Spectroscopy: State of the art

    Science.gov (United States)

    Tognoni, E.; Cristoforetti, G.; Legnaioli, S.; Palleschi, V.

    2010-01-01

    The aim of this paper is offering a critical review of Calibration-Free Laser-Induced Breakdown Spectroscopy (CF-LIBS), the approach of multi-elemental quantitative analysis of LIBS spectra, based on the measurement of line intensities and plasma properties (plasma electron density and temperature) and on the assumption of a Boltzmann population of excited levels, which does not require the use of calibration curves or matrix-matched standards. The first part of this review focuses on the applications of the CF-LIBS method. Quantitative results reported in the literature, obtained in the analysis of various materials and in a wide range of experimental conditions, are summarized, with a special emphasis on the departure from nominal composition values. The second part is a discussion of the simplifying assumptions which lie at the basis of the CF-LIBS algorithm (stoichiometric ablation and complete atomization, thermal equilibrium, homogeneous plasma, thin radiation, detection of all elements). The inspection of the literature suggests that the CF-LIBS method is more accurate in analyzing metallic alloys rather than dielectrics. However, the full exploitation of the method seems to be still far to come, especially for the lack of a complete characterization of the effects of experimental constraints. However, some general directions can be suggested to help the analyst in designing LIBS measurements in a way which is more suited for CF-LIBS analysis.

  17. Age-related modifications of type I collagen impair DDR1-induced apoptosis in non-invasive breast carcinoma cells.

    Science.gov (United States)

    Charles, Saby; Hassan, Rammal; Kevin, Magnien; Emilie, Buache; Sylvie, Brassart-Pasco; Laurence, Van-Gulick; Pierre, Jeannesson; Erik, Maquoi; Hamid, Morjani

    2018-05-07

    Type I collagen and DDR1 axis has been described to decrease cell proliferation and to initiate apoptosis in non-invasive breast carcinoma in three-dimensional cell culture matrices. Moreover, MT1-MMP down-regulates these effects. Here, we address the effect of type I collagen aging and MT1-MMP expression on cell proliferation suppression and induced-apoptosis in non-invasive MCF-7 and ZR-75-1 breast carcinoma. We provide evidence for a decrease in cell growth and an increase in apoptosis in the presence of adult collagen when compared to old collagen. This effect involves a differential activation of DDR1, as evidenced by a higher DDR1 phosphorylation level in adult collagen. In adult collagen, inhibition of DDR1 expression and kinase function induced an increase in cell growth to a level similar to that observed in old collagen. The impact of aging on the sensitivity of collagen to MT1-MMP has been reported recently. We used the MT1-MMP expression strategy to verify whether, by degrading adult type I collagen, it could lead to the same phenotype observed in old collagen 3D matrix. MT1-MMP overexpression abrogated the proliferation suppression and induced-apoptosis effects only in the presence of adult collagen. This suggests that differential collagen degradation by MT1-MMP induced a structural disorganization of adult collagen and inhibits DDR1 activation. This could in turn impair DDR1-induced cell growth suppression and apoptosis. Taken together, our data suggest that modifications of collagen structural organization, due to aging, contribute to the loss of the growth suppression and induced apoptosis effect of collagen in luminal breast carcinoma. MT1-MMP-dependent degradation and aging of collagen have no additive effects on these processes.

  18. Unexpected temporal evolution of atomic spectral lines of aluminum in a laser induced breakdown spectroscopy experiment

    International Nuclear Information System (INIS)

    Saad, Rawad; L'Hermite, Daniel; Bousquet, Bruno

    2014-01-01

    The temporal evolution of the laser induced breakdown (LIBS) signal of a pure aluminum sample was studied under nitrogen and air atmospheres. In addition to the usual decrease of signal due to plasma cooling, unexpected temporal evolutions were observed for a spectral lines of aluminum, which revealed the existence of collisional energy transfer effects. Furthermore, molecular bands of AlN and AlO were observed in the LIBS spectra, indicating recombination of aluminum with the ambient gas. Within the experimental conditions reported in this study, both collisional energy transfer and recombination processes occurred around 1.5 μs after the laser shot. This highlights the possible influence of collisional and chemical effects inside the plasma that can play a role on LIBS signals. - Highlights: • Persistence of two Al I lines related to the 61,844 cm −1 energy level only under nitrogen atmosphere. • Collisional energy transfer effect exists between aluminum and nitrogen. • Observation of molecular band of AlN (under nitrogen) and AlO (under air) after a delay time of 1.5 µs. • 20% of oxygen in air is sufficient to annihilate both the collisional energy transfer effect and the AlN molecular formation

  19. Exploring laser-induced breakdown spectroscopy for nuclear materials analysis and in-situ applications

    Science.gov (United States)

    Martin, Madhavi Z.; Allman, Steve; Brice, Deanne J.; Martin, Rodger C.; Andre, Nicolas O.

    2012-08-01

    Laser-induced breakdown spectroscopy (LIBS) has been used to determine the limits of detection of strontium (Sr) and cesium (Cs), common nuclear fission products. Additionally, detection limits were determined for cerium (Ce), often used as a surrogate for radioactive plutonium in laboratory studies. Results were obtained using a laboratory instrument with a Nd:YAG laser at fundamental wavelength of 1064 nm, frequency doubled to 532 nm with energy of 50 mJ/pulse. The data was compared for different concentrations of Sr and Ce dispersed in a CaCO3 (white) and carbon (black) matrix. We have addressed the sampling errors, limits of detection, reproducibility, and accuracy of measurements as they relate to multivariate analysis in pellets that were doped with the different elements at various concentrations. These results demonstrate that LIBS technique is inherently well suited for in situ analysis of nuclear materials in hot cells. Three key advantages are evident: (1) small samples (mg) can be evaluated; (2) nuclear materials can be analyzed with minimal sample preparation; and (3) samples can be remotely analyzed very rapidly (ms-seconds). Our studies also show that the methods can be made quantitative. Very robust multivariate models have been used to provide quantitative measurement and statistical evaluation of complex materials derived from our previous research on wood and soil samples.

  20. Laser-induced breakdown spectroscopy used to detect endophyte-mediated accumulation of metals by tall fescue

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Madhavi Z.; Stewart, Arthur J.; Gwinn, Kimberley D.; Waller, John C.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) was used to determine the impact of endophyte (Neotyphodium sp.) infection on elemental composition of tall fescue (Festuca arundinacea). Leaf material from endophyte-infected (E+) and endophyte-free (E-) tall fescue populations in established plots was examined. Leaf-tissue digestates were also tested for metals, by inductively coupled plasma (ICP) mass spectrometry (MS). Seven of eleven metals (Ca, Mg, Fe, Mn, Cu, Ni, and Zn) were measured by both techniques at concentrations great enough for a reliable comparison. Mg, Zn, and Cd, a toxic metal that can be present in forage, were readily detected by LIBS, even though Cd concentrations in the plants were below levels typically achieved using ICP MS detection. Implications of these results for research on forage analysis and phytoremediation are discussed.

  1. AC BREAKDOWN IN GASES

    Science.gov (United States)

    electron- emission (multipactor) region, and (3) the low-frequency region. The breakdown mechanism in each of these regions is explained. An extensive bibliography on AC breakdown in gases is included.

  2. Applications of ultra-short pulsed laser ablation: thin films deposition and fs/ns dual-pulse laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Teghil, R; De Bonis, A; Galasso, A; Santagata, A; Albano, G; Villani, P; Spera, D; Parisi, G P

    2008-01-01

    In this paper, we report a survey of two of the large number of possible practical applications of the laser ablation performed by an ultra-short pulse laser, namely pulsed laser deposition (PLD) and fs/ns dual-pulse laser-induced breakdown spectroscopy (DP-LIBS). These applications differ from those using just longer pulsed lasers as a consequence of the distinctive characteristics of the plasma produced by ultra-short laser beams. The most important feature of this plasma is the large presence of particles with nanometric size which plays a fundamental role in both applications.

  3. Quantitative analysis by laser-induced breakdown spectroscopy based on generalized curves of growth

    Energy Technology Data Exchange (ETDEWEB)

    Aragón, C., E-mail: carlos.aragon@unavarra.es; Aguilera, J.A.

    2015-08-01

    A method for quantitative elemental analysis by laser-induced breakdown spectroscopy (LIBS) is proposed. The method (Cσ-LIBS) is based on Cσ graphs, generalized curves of growth which allow including several lines of various elements at different concentrations. A so-called homogeneous double (HD) model of the laser-induced plasma is used, defined by an integration over a single-region of the radiative transfer equation, combined with a separated treatment for neutral atoms (z = 0) and singly-charged ions (z = 1) in Cσ graphs and characteristic parameters. The procedure includes a criterion, based on a model limit, for eliminating data which, due to a high line intensity or concentration, are not well described by the HD model. An initial procedure provides a set of parameters (βA){sup z}, (ηNl){sup z}, T{sup z} and N{sub e}{sup z} (z = 0, 1) which characterize the plasma and the LIBS system. After characterization, two different analytical procedures, resulting in relative and absolute concentrations, may be applied. To test the method, fused glass samples prepared from certified slags and pure compounds are analyzed. We determine concentrations of Ca, Mn, Mg, V, Ti, Si and Al relative to Fe in three samples prepared from slags, and absolute concentrations of Fe, Ca and Mn in three samples prepared from Fe{sub 2}O{sub 3}, CaCO{sub 3} and Mn{sub 2}O{sub 3}. The accuracy obtained is 3.2% on the average for relative concentrations and 9.2% for absolute concentrations. - Highlights: • Method for quantitative analysis by LIBS, based on Csigma graphs • Conventional calibration is replaced with characterization of the LIBS system. • All elements are determined from measurement of one or two Csigma graphs. • The method is tested with fused glass disks prepared from slags and pure compounds. • Accurate results for relative (3.2%) and absolute concentrations (9.2%)

  4. Cave breakdown by vadose weathering.

    Directory of Open Access Journals (Sweden)

    Osborne R. Armstrong L.

    2002-01-01

    Full Text Available Vadose weathering is a significant mechanism for initiating breakdown in caves. Vadose weathering of ore bodies, mineral veins, palaeokarst deposits, non-carbonate keystones and impure, altered or fractured bedrock, which is intersected by caves, will frequently result in breakdown. Breakdown is an active, ongoing process. Breakdown occurs throughout the vadose zone, and is not restricted to large diameter passages, or to cave ceilings. The surfaces of disarticulated blocks are commonly coated, rather than having fresh broken faces, and blocks continue to disintegrate after separating from the bedrock. Not only gypsum, but also hydromagnesite and aragonite are responsible for crystal wedging. It is impossible to study or identify potential breakdown foci by surface surveys alone, in-cave observation and mapping are essential.

  5. Second- and third-harmonic generation as a local probe for nanocrystal-doped polymer materials with a suppressed optical breakdown threshold

    Science.gov (United States)

    Konorov, S. O.; Fedotov, A. B.; Ivanov, A. A.; Alfimov, M. V.; Zabotnov, S. V.; Naumov, A. N.; Sidorov-Biryukov, D. A.; Podshivalov, A. A.; Petrov, A. N.; Fornarini, L.; Carpanese, M.; Ferrante, G.; Fantoni, R.; Zheltikov, A. M.

    2003-09-01

    Second- and third-harmonic generation processes are shown to allow the detection of absorptive agglomerates of nanocrystals in transparent materials and the visualization of optical breakdown in nanocomposite materials. Correlations between laser-induced breakdown and the behavior of the second- and third-harmonic signals produced in SiC/PMMA nanocomposite films are studied. The potential of second- and third-harmonic generation for the on-line visualization of laser breakdown in nanocomposite polymer materials is revealed, with the ablative material removal being monitored by the decay of the second- and third-harmonic signals. The second and third harmonics generated around the optical breakdown threshold by 75-fs pulses of 1.25-μm Cr:forsterite laser radiation are respectively more than two and four orders of magnitude more intense than the second and third harmonics produced under identical conditions by 40-ps pulses of a Nd:YAG laser. The breakdown threshold for PMMA films doped with 10-20-nm SiC nanocrystals forming absorptive agglomerates are demonstrated to be more than an order of magnitude lower than the breakdown threshold for crystalline SiC and about an order of magnitude lower than that for nondoped PMMA films.

  6. Influence of Lead on the Interpretation of Bone Samples with Laser-Induced Breakdown Spectroscopy

    Directory of Open Access Journals (Sweden)

    Abdolhamed Shahedi

    2016-01-01

    Full Text Available This study is devoted to tracing and identifying the elements available in bone sample using Laser-Induced Breakdown Spectroscopy (LIBS. The bone samples were prepared from the thigh of laboratory rats, which consumed 325.29 g/mol lead acetate having 4 mM concentration in specified time duration. About 76 atomic lines have been analyzed and we found that the dominant elements are Ca I, Ca II, Mg I, Mg II, Fe I, and Fe II. Temperature curve and bar graph were drawn to compare bone elements of group B which consumed lead with normal group, group A, in the same laboratory conditions. Plasma parameters including plasma temperature and electron density were determined by considering Local Thermodynamic Equilibrium (LTE condition in the plasma. An inverse relationship has been detected between lead absorption and elements like Calcium and Magnesium absorption comparing elemental values for both the groups.

  7. Hydroxymethylated Dioxobilins in Senescent Arabidopsis thaliana Leaves: Sign of a Puzzling Biosynthetic Intermezzo of Chlorophyll Breakdown.

    Science.gov (United States)

    Süssenbacher, Iris; Kreutz, Christoph R; Christ, Bastien; Hörtensteiner, Stefan; Kräutler, Bernhard

    2015-08-10

    1-Formyl-19-oxobilin-type tetrapyrroles are characteristic, abundant products of chlorophyll breakdown in senescent leaves. However, in some leaves, 1,19-dioxobilin-type chlorophyll catabolites (DCCs) lacking the formyl group accumulate instead. A P450 enzyme was identified in in vitro studies that removed the formyl group of a primary fluorescent chlorophyll catabolite (pFCC) and generated fluorescent DCCs. These DCCs are precursors of isomeric nonfluorescent DCCs (NDCCs). Here, we report a structural investigation of the NDCCs in senescent leaves of wild-type Arabidopsis thaliana. Four new NDCCs were characterized, two of which carried a stereoselectively added hydroxymethyl group. Such formal DCC hydroxymethylations were previously found in DCCs in leaves of a mutant of A. thaliana. They are now indicated to be a feature of chlorophyll breakdown in A. thaliana, associated with the specific in vivo deformylation of pFCC en route to NDCCs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Collision and diffusion in microwave breakdown of nitrogen gas in and around microgaps

    International Nuclear Information System (INIS)

    Campbell, J. D.; Lenters, G. T.; Bowman, A.; Remillard, S. K.

    2014-01-01

    The microwave induced breakdown of N 2 gas in microgaps was modeled using the collision frequency between electrons and neutral molecules and the effective electric field concept. Low pressure breakdown at the threshold electric field occurs outside the gap, but at high pressures it is found to occur inside the microgap with a large threshold breakdown electric field corresponding to a very large electron oscillation amplitude. Three distinct pressure regimes are apparent in the microgap breakdown: a low pressure multipactor branch, a mid-pressure Paschen branch, both of which occur in the space outside the microgap, and a high pressure diffusion-drift branch, which occurs inside the microgap. The Paschen and diffusion-drift branches are divided by a sharp transition and each separately fits the collision frequency model. There is evidence that considerable electron loss to the microgap faces accompanies the diffusion-drift branch in microgaps

  9. Fast Breakdown as Coronal/Ionization Waves?

    Science.gov (United States)

    Krehbiel, P. R.; Petersen, D.; da Silva, C. L.

    2017-12-01

    Studies of high-power narrow bipolar events (NBEs) have shown they are produced by a newly-recognized breakdown process called fast positive breakdown (FPB, Rison et al., 2016, doi:10.1038/ncomms10721). The breakdown was inferred to be produced by a system of positive streamers that propagate at high speed ( ˜3-6 x 107 m/s) due to occurring in a localized region of strong electric field. The polarity of the breakdown was determined from broadband interferometer (INTF) observations of the propagation direction of its VHF radiation, which was downward into the main negative charge region of a normally-electrified storm. Subsequent INTF observations being conducted in at Kennedy Space Center in Florida have shown a much greater incidence of NBEs than in New Mexico. Among the larger dataset have been clear-cut instances of some NBEs being produced by upward breakdown that would be of negative polarity. The speed and behavior of the negative breakdown is the same as that of the fast positive, leading to it being termed fast negative breakdown (FNB). The similarity (not too mention its occurrence) is surprising, given the fact that negative streamers and breakdown develops much differently than that of positive breakdown. The question is how this happens. In this study, we compare fast breakdown characteristics to well-known streamer properties as inferred from laboratory experiments and theoretical analysis. Additionally, we begin to explore the possibility that both polarities of fast breakdown are produced by what may be called coronal or ionization waves, in which the enhanced electric field produced by streamer or coronal breakdown of either polarity propagates away from the advancing front at the speed of light into a medium that is in a metastable condition of being at the threshold of hydrometeor-mediated corona onset or other ionization processes. The wave would develop at a faster speed than the streamer breakdown that gives rise to it, and thus would be

  10. Surrogate decision makers' perspectives on preventable breakdowns in care among critically ill patients: A qualitative study.

    Science.gov (United States)

    Fisher, Kimberly A; Ahmad, Sumera; Jackson, Madeline; Mazor, Kathleen M

    2016-10-01

    To describe surrogate decision makers' (SDMs) perspectives on preventable breakdowns in care among critically ill patients. We screened 70 SDMs of critically ill patients for those who identified a preventable breakdown in care, defined as an event where the SDM believes something "went wrong", that could have been prevented, and resulted in harm. In-depth interviews were conducted with SDMs who identified an eligible event. 32 of 70 participants (46%) identified at least one preventable breakdown in care, with a total of 75 discrete events. Types of breakdowns involved medical care (n=52), communication (n=59), and both (n=40). Four additional breakdowns were related to problems with SDM bedside access to the patient. Adverse consequences of breakdowns included physical harm, need for additional medical care, emotional distress, pain, suffering, loss of trust, life disruption, impaired decision making, and financial expense. 28 of 32 SDMs raised their concerns with clinicians, yet only 25% were satisfactorily addressed. SDMs of critically ill patients frequently identify preventable breakdowns in care which result in harm. An in-depth understanding of the types of events SDMs find problematic and the associated harms is an important step towards improving the safety and patient-centeredness of healthcare. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Pre-breakdown phenomena and discharges in a gas-liquid system

    Science.gov (United States)

    Tereshonok, D. V.; Babaeva, N. Yu; Naidis, G. V.; Panov, V. A.; Smirnov, B. M.; Son, E. E.

    2018-04-01

    In this paper, we investigate pre-breakdown and breakdown phenomena in gas-liquid systems. Cavitation void formation and breakdown in bubbles immersed in liquids are studied numerically, while complete breakdown of bubbled water is studied in experiments. It is shown that taking into account the dependence of water dielectric constant on electric field strength plays the same important role for cavitation void appearance under the action of electrostriction forces as the voltage rise time. It is also shown that the initial stage of breakdown in deformed bubbles immersed in liquid strongly depends on spatial orientation of the bubbles relative to the external electric field. The effect of immersed microbubbles, distributed in bulk water, on breakdown time and voltage is studied experimentally. At the breakdown voltage, the slow ‘thermal’ mechanism is changed by the fast ‘streamer-leader’ showing a decrease in breakdown time by two orders of magnitude by introducing microbubbles (0.1% of volumetric gas content) into the water. In addition, the plasma channel is found to pass between nearby microbubbles, exhibiting some ‘guidance’ effect.

  12. Evaluation of laser induced breakdown spectroscopy for cadmium determination in soils

    International Nuclear Information System (INIS)

    Santos, Dario; Nunes, Lidiane C.; Trevizan, Lilian C.; Godoi, Quienly; Leme, Flavio O.; Braga, Jez Willian B.; Krug, Francisco Jose

    2009-01-01

    Cadmium is known to be a toxic agent that accumulates in the living organisms and present high toxicity potential over lifetime. Efforts towards the development of methods for microanalysis of environmental samples, including the determination of this element by graphite furnace atomic absorption spectrometry (GFAAS), inductively coupled plasma optical emission spectrometry (ICP OES), and inductively coupled plasma-mass spectrometry (ICP-MS) techniques, have been increasing. Laser induced breakdown spectroscopy (LIBS) is an emerging technique dedicated to microanalysis and there is a lack of information dealing with the determination of cadmium. The aim of this work is to demonstrate the feasibility of LIBS for cadmium detection in soils. The experimental setup was designed using a laser Q-switched (Nd:YAG, 10 Hz, λ = 1064 nm) and the emission signals were collimated by lenses into an optical fiber coupled to a high-resolution intensified charge-coupled device (ICCD)-echelle spectrometer. Samples were cryogenically ground and thereafter pelletized before LIBS analysis. Best results were achieved by exploring a test portion (i.e. sampling spots) with larger surface area, which contributes to diminish the uncertainty due to element specific microheterogeneity. Calibration curves for cadmium determination were achieved using certified reference materials. The metrological figures of merit indicate that LIBS can be recommended for screening of cadmium contamination in soils.

  13. 11beta-hydroxysteroid dehydrogenase type 1 regulates glucocorticoid-induced insulin resistance in skeletal muscle.

    LENUS (Irish Health Repository)

    Morgan, Stuart A

    2009-11-01

    Glucocorticoid excess is characterized by increased adiposity, skeletal myopathy, and insulin resistance, but the precise molecular mechanisms are unknown. Within skeletal muscle, 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts cortisone (11-dehydrocorticosterone in rodents) to active cortisol (corticosterone in rodents). We aimed to determine the mechanisms underpinning glucocorticoid-induced insulin resistance in skeletal muscle and indentify how 11beta-HSD1 inhibitors improve insulin sensitivity.

  14. Use of Laser-Induced Breakdown Spectroscopy for the Detection of Glycemic Elements in Indian Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Prashant Kumar Rai

    2013-01-01

    Full Text Available The demand for interdisciplinary research is increasing in the new millennium to help us understand complex problems and find solutions by integrating the knowledge from different disciplines. The present review is an excellent example of this and shows how unique combination of physics, chemistry, and biological techniques can be used for the evaluation of Indian medicinal herbs used for treating diabetes mellitus. Laser-induced breakdown spectroscopy (LIBS is a sensitive optical technique that is widely used for its simplicity and versatility. This review presents the most recent application of LIBS for detection of glycemic elements in medicinal plants. The characteristics of matrices, object analysis, use of laser system, and analytical performances with respect to Indian herbs are discussed.

  15. Space Charge Modulated Electrical Breakdown of Oil Impregnated Paper Insulation Subjected to AC-DC Combined Voltages

    Directory of Open Access Journals (Sweden)

    Yuanwei Zhu

    2018-06-01

    Full Text Available Based on the existing acknowledgment that space charge modulates AC and DC breakdown of insulating materials, this investigation promotes the related investigation into the situations of more complex electrical stress, i.e., AC-DC combined voltages. Experimentally, the AC-DC breakdown characteristics of oil impregnated paper insulation were systematically investigated. The effects of pre-applied voltage waveform, AC component ratio, and sample thickness on AC-DC breakdown characteristics were analyzed. After that, based on an improved bipolar charge transport model, the space charge profiles and the space charge induced electric field distortion during AC-DC breakdown were numerically simulated to explain the differences in breakdown characteristics between the pre-applied AC and pre-applied DC methods under AC-DC combined voltages. It is concluded that large amounts of homo-charges are accumulated during AC-DC breakdown, which results in significantly distorted inner electric field, leading to variations of breakdown characteristics of oil impregnated paper insulation. Therefore, space charges under AC-DC combined voltages must be considered in the design of converter transformers. In addition, this investigation could provide supporting breakdown data for insulation design of converter transformers and could promote better understanding on the breakdown mechanism of insulating materials subjected to AC-DC combined voltages.

  16. Effects of Nanoparticle Materials on Prebreakdown and Breakdown Properties of Transformer Oil

    Directory of Open Access Journals (Sweden)

    Yuzhen Lv

    2018-04-01

    Full Text Available In order to reveal the effects of nanoparticle materials on prebreakdown and breakdown properties of transformer oil, three types of nanoparticle materials, including conductive Fe3O4, semiconductive TiO2 and insulating Al2O3 nanoparticles, were prepared with the same size and surface modification. An experimental study on the breakdown strength and prebreakdown streamer propagation characteristics were investigated for transformer oil and three types of nanofluids under positive lightning impulse voltage. The results indicate that the type of nanoparticle materials has a notable impact on breakdown strength and streamer propagation characteristics of transformer oil. Breakdown voltages of nanofluids are markedly increased by 41.3% and 29.8% respectively by the presence of Fe3O4 and TiO2 nanoparticles. Whereas a slight increase of only 7.4% is observed for Al2O3 nanofluid. Moreover, main discharge channels with thicker and denser branches are formed and the streamer propagation velocities are greatly lowered both in Fe3O4 and TiO2 nanofluids, while no obvious change appears in the propagation process of streamers in Al2O3 nanofluid in comparison with that in pure oil. The test results of trap characteristics reveal that the densities of shallow traps both in Fe3O4 and TiO2 nanofluids are much higher than that in Al2O3 nanofluid and pure oil, greatly reducing the distortion of the electric field. Thus, the propagations of positive streamers in the nanofluids are significantly suppressed by Fe3O4 and TiO2 nanoparticles, leading to the improvements of breakdown strength.

  17. Quantification of gold and silver in minerals by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Díaz, Daniel; Hahn, David W.; Molina, Alejandro

    2017-10-01

    The performance of laser-induced breakdown spectroscopy (LIBS) to identify and quantify gold and silver in ore samples was evaluated. Ores from a gold-producing mine and samples artificially doped with Au and Ag solutions to previously defined concentrations (surrogates) were prepared as 50-mm pellets prior to LIBS analysis. Silver detection and intensity measurement was straightforward for concentrations from 0.4 to 43 μg/g and from 1.1 to 375 μg/g in ore and surrogate samples, respectively. Au emission lines were not found after ensemble average or accumulation of 100-single shot LIBS spectra of ore samples containing up to 9.5 μg/g Au. However, the Au signal was present in the spectra of surrogate samples, for which a detection limit of about 0.8 μg/g was determined. When the number of sampling shots in ore samples increased, various single shot spectra registered Au emission lines. The number of spectra containing Au emission lines increased with the number of single shots. Those results, as well as scanning electron microscopy analysis of ore samples, suggest that the discrete analyte distribution as well as the inherent discrete characteristics associated to LIBS made the presence of gold in the LIBS spark an unlikely occurrence. The particle sampling rates (the percentage of laser pulses expected to sample at least one particle) were estimated for gold concentrations of 1.1 and 10.0 μg/g as 0.04% and 0.32%, respectively. A Monte Carlo simulation indicated that > 100 gold-containing particles should be sampled to accurately represent the discrete character of gold in the ore. Sampling 100 such particles requires > 105 laser pulses over a single pellet. Despite the fact that this rather large number of shots makes difficult to conduct conditional analysis on pellets, for some samples that withstood 5000 shots, gold quantification in ores was successfully achieved at concentrations as low as 1 μg/g. Results are encouraging and illustrate the applicability

  18. A nuclear power unit with a Babcock type steam generating system-analysis of the break-down in the Three Mile Island power plant

    International Nuclear Information System (INIS)

    Werner, A.

    1980-01-01

    Installations of the primary and the secondary circuits and basic automatic control and protection systems for a nuclear power unit with Babcock type vertical, once-through steam generator are described. On this background the course of the break-down in the Three Mile Island power plant at Harrisburg is presented and analysed. (author)

  19. The wavelength dependence of gold nanorod-mediated optical breakdown during infrared ultrashort pulses

    Energy Technology Data Exchange (ETDEWEB)

    Davletshin, Yevgeniy R.; Kumaradas, J. Carl [Department of Physics, Ryerson University, Toronto, ON (Canada)

    2017-04-15

    This paper investigates the wavelength dependence of the threshold of gold nanorod-mediated optical breakdown during picosecond and femtosecond near infrared optical pulses. It was found that the wavelength dependence in the picosecond regime is governed solely by the changes of a nanorod's optical properties. On the other hand, the optical breakdown threshold during femtosecond pulse exposure falls within one of two regimes. When the ratio of the maximum electric field from the outside to the inside of the nanorod is less then 7 (the absorption regime) the seed electrons are initiated by photo-thermal emission, and the wavelength dependence in the threshold of optical breakdown is the result of optical properties of the nanoparticle. When the ratio is greater than 7 (the near-field regime) more seed electrons are initiated by multiphoton ionization, and the wavelength dependence of the threshold of optical breakdown results from a combination of nanorod's optical properties and transitions in the order of multiphoton ionization. The findings of this study can guide the design of nanoparticle based optical breakdown applications. This analysis also deepens the understanding of nanoparticle-mediated laser induced breakdown for picosecond and femtosecond pulses at near infrared wavelengths. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Verapamil-induced breakdown of the blood-brain barrier presenting as a transient right middle cerebral artery syndrome.

    Science.gov (United States)

    Pace, Jonathan; Nelson, Jeffrey; Ray, Abhishek; Hu, Yin

    2017-12-01

    A middle-aged patient presented for elective embolization of an incidentally found right internal carotid aneurysm. An angiogram was performed, during which the left internal carotid artery was visualized to evaluate a second, small aneurysm. During the embolization of the right internal carotid artery aneurysm, a catheter-induced vasospasm was identified that prompted treatment with intra-arterial verapamil. The procedure was uncomplicated; a postoperative rotational flat-panel computed tomography scan was performed on the angiography table that demonstrated right hemisphere contrast staining. The patient developed a right middle cerebral artery (MCA) syndrome after extubation with repeat cerebral angiography negative for occlusion and magnetic resonance imaging negative for stroke. The patient was observed for 48 hours, during which time the patient had slowly improved. At a six-week follow up visit, the patient had fully recovered. We present an interesting case of a verapamil-induced breakdown of the blood-brain barrier and self-limited right MCA syndrome.

  1. Substrate-bias effect on the breakdown characteristic in a new silicon high-voltage device structure

    International Nuclear Information System (INIS)

    Li Qi; Wang Weidong; Zhao Qiuming; Wei Xueming

    2012-01-01

    A novel silicon double-RESURF LDMOS structure with an improved breakdown characteristic by substrate bias technology (SB) is reported. The P-type epitaxial layer is embedded between an N-type drift region and an N-type substrate to block the conduction path in the off-state and change the distributions of the bulk electric field. The substrate bias strengthens the charge share effect of the drift region near the source, and the vertical electric field peak under the drain is decreased, which is especially helpful in improving the vertical breakdown voltage in a lateral power device with a thin drift region. The numerical results by MEDICI indicate that the breakdown voltage of the proposed device is increased by 97% compared with a conventional LDMOS, while maintaining a lowon-resistance. (semiconductor devices)

  2. Assessment of statistical uncertainty in the quantitative analysis of solid samples in motion using laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cabalin, L.M.; Gonzalez, A. [Department of Analytical Chemistry, University of Malaga, E-29071 Malaga (Spain); Ruiz, J. [Department of Applied Physics I, University of Malaga, E-29071 Malaga (Spain); Laserna, J.J., E-mail: laserna@uma.e [Department of Analytical Chemistry, University of Malaga, E-29071 Malaga (Spain)

    2010-08-15

    Statistical uncertainty in the quantitative analysis of solid samples in motion by laser-induced breakdown spectroscopy (LIBS) has been assessed. For this purpose, a LIBS demonstrator was designed and constructed in our laboratory. The LIBS system consisted of a laboratory-scale conveyor belt, a compact optical module and a Nd:YAG laser operating at 532 nm. The speed of the conveyor belt was variable and could be adjusted up to a maximum speed of 2 m s{sup -1}. Statistical uncertainty in the analytical measurements was estimated in terms of precision (reproducibility and repeatability) and accuracy. The results obtained by LIBS on shredded scrap samples under real conditions have demonstrated that the analytical precision and accuracy of LIBS is dependent on the sample geometry, position on the conveyor belt and surface cleanliness. Flat, relatively clean scrap samples exhibited acceptable reproducibility and repeatability; by contrast, samples with an irregular shape or a dirty surface exhibited a poor relative standard deviation.

  3. Assessment of statistical uncertainty in the quantitative analysis of solid samples in motion using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Cabalín, L. M.; González, A.; Ruiz, J.; Laserna, J. J.

    2010-08-01

    Statistical uncertainty in the quantitative analysis of solid samples in motion by laser-induced breakdown spectroscopy (LIBS) has been assessed. For this purpose, a LIBS demonstrator was designed and constructed in our laboratory. The LIBS system consisted of a laboratory-scale conveyor belt, a compact optical module and a Nd:YAG laser operating at 532 nm. The speed of the conveyor belt was variable and could be adjusted up to a maximum speed of 2 m s - 1 . Statistical uncertainty in the analytical measurements was estimated in terms of precision (reproducibility and repeatability) and accuracy. The results obtained by LIBS on shredded scrap samples under real conditions have demonstrated that the analytical precision and accuracy of LIBS is dependent on the sample geometry, position on the conveyor belt and surface cleanliness. Flat, relatively clean scrap samples exhibited acceptable reproducibility and repeatability; by contrast, samples with an irregular shape or a dirty surface exhibited a poor relative standard deviation.

  4. Assessment of statistical uncertainty in the quantitative analysis of solid samples in motion using laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Cabalin, L.M.; Gonzalez, A.; Ruiz, J.; Laserna, J.J.

    2010-01-01

    Statistical uncertainty in the quantitative analysis of solid samples in motion by laser-induced breakdown spectroscopy (LIBS) has been assessed. For this purpose, a LIBS demonstrator was designed and constructed in our laboratory. The LIBS system consisted of a laboratory-scale conveyor belt, a compact optical module and a Nd:YAG laser operating at 532 nm. The speed of the conveyor belt was variable and could be adjusted up to a maximum speed of 2 m s -1 . Statistical uncertainty in the analytical measurements was estimated in terms of precision (reproducibility and repeatability) and accuracy. The results obtained by LIBS on shredded scrap samples under real conditions have demonstrated that the analytical precision and accuracy of LIBS is dependent on the sample geometry, position on the conveyor belt and surface cleanliness. Flat, relatively clean scrap samples exhibited acceptable reproducibility and repeatability; by contrast, samples with an irregular shape or a dirty surface exhibited a poor relative standard deviation.

  5. Laser Induced Breakdown Spectroscopy in archeometry: A review of its application and future perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Spizzichino, Valeria, E-mail: valeria.spizzichino@enea.it; Fantoni, Roberta

    2014-09-01

    Laser Induced Breakdown Spectroscopy (LIBS) in the last decades has been more and more applied to the field of Cultural Heritage with great results obtained either alone or in combination with complementary laser techniques. Its ability to analyze, with a minimal loss, different kinds of materials in laboratory, in situ and even in hostile environments has been highly appreciated. The main aim of this paper is to present a review of LIBS applications in the interdisciplinary field of archeometry. The LIBS technique is shortly described both from a theoretical and practical point of view, discussing the instrumental setup, also in comparison with typical features of laser induced fluorescence (LIF) and Raman spectroscopy apparata. The complementary with multivariate analysis, a method that can help in reducing data set dimensions and in pulling out effective information, is stressed. In particular the role of LIBS in Cultural Heritage material characterization, recognition of fakes and indirect dating is described, reporting general considerations and case studies on metal alloys, mural paintings, decorated ceramics, glasses, stones and gems. - Highlights: • Applications of LIBS to archeometry are reviewed. • Complementary among LIBS, LIF, Raman and multivariate analysis is highlighted. • Three major areas of successful LIBS application in archeometry are identified. • Significant results have been presented for several different materials.

  6. Facilitating breakdown in noble gases at near-atmospheric pressure using antennas

    Energy Technology Data Exchange (ETDEWEB)

    Sobota, A; Van Veldhuizen, E M; Haverlag, M [Eindhoven University of Technology, Department of Applied Physics, Postbus 513, 5600MB Eindhoven (Netherlands); Gendre, M F; Manders, F, E-mail: a.sobota@tue.nl [Philips Lighting, Mathildelaan 1, 5600JM Eindhoven (Netherlands)

    2011-04-20

    Electrical breakdown in near-atmospheric pressure noble gases requires voltages that are quite high, which is undesirable for a large number of possible applications. Metallic structures (antennas) were used on the outer side of the lamp burner to enhance the electric field locally while keeping the same potential difference across the electrodes. Optical and electrical measurements were performed in an argon or xenon atmosphere at 0.3 or 0.7 bar, with 4 or 7 mm between the electrode tips. We used rod-shaped tungsten electrodes of 0.6 mm in diameter. We found that both active and passive antennas facilitate breakdown, and we demonstrated the differences between the two types and their effects on the breakdown process.

  7. Facilitating breakdown in noble gases at near-atmospheric pressure using antennas

    International Nuclear Information System (INIS)

    Sobota, A; Van Veldhuizen, E M; Haverlag, M; Gendre, M F; Manders, F

    2011-01-01

    Electrical breakdown in near-atmospheric pressure noble gases requires voltages that are quite high, which is undesirable for a large number of possible applications. Metallic structures (antennas) were used on the outer side of the lamp burner to enhance the electric field locally while keeping the same potential difference across the electrodes. Optical and electrical measurements were performed in an argon or xenon atmosphere at 0.3 or 0.7 bar, with 4 or 7 mm between the electrode tips. We used rod-shaped tungsten electrodes of 0.6 mm in diameter. We found that both active and passive antennas facilitate breakdown, and we demonstrated the differences between the two types and their effects on the breakdown process.

  8. Detection of pesticides and dioxins in tissue fats and rendering oils using laser-induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Multari, Rosalie A; Cremers, David A; Scott, Thomas; Kendrick, Peter

    2013-03-13

    In laser-induced breakdown spectroscopy (LIBS), a series of powerful laser pulses are directed at a surface to form microplasmas from which light is collected and spectrally analyzed to identify the surface material. In most cases, no sample preparation is needed, and results can be automated and made available within seconds to minutes. Advances in LIBS spectral data analysis using multivariate regression techniques have led to the ability to detect organic chemicals in complex matrices such as foods. Here, the use of LIBS to differentiate samples contaminated with aldrin, 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin, chlorpyrifos, and dieldrin in the complex matrices of tissue fats and rendering oils is described. The pesticide concentrations in the samples ranged from 0.005 to 0.1 μg/g. All samples were successfully differentiated from each other and from control samples. Sample concentrations could also be differentiated for all of the pesticides and the dioxin included in this study. The results presented here provide first proof-of-principle data for the ability to create LIBS-based instrumentation for the rapid analysis of pesticide and dioxin contamination in tissue fat and rendered oils.

  9. Voltage breakdown on niobium and copper surfaces

    International Nuclear Information System (INIS)

    Werner, G.R.; Padamsee, H.; Betzwieser, J.C.; Liu, Y.G.; Rubin, K.H.R.; Shipman, J.E.; Ying, L.T.

    2003-01-01

    Experiments have shown that voltage breakdown in superconducting niobium RF cavities is in many ways similar to voltage breakdown on niobium cathodes in DC voltage gaps; most striking are the distinctive starburst patterns and craters that mark the site of voltage breakdown in both superconducting cavities and DC vacuum gaps. Therefore, we can learn much about RF breakdown from simpler, faster DC experiments. We have direct evidence, in the form of before'' and ''after'' pictures, that breakdown events caused by high surface electric fields occur with high probability at contaminant particles on surfaces. Although the pre-breakdown behavior (field emission) seems to depend mostly on the contaminant particles present and little on the substrate, the breakdown event itself is greatly affected by the substrate-niobium, heavily oxidized niobium, electropolished copper, and diamond-machined copper cathodes lead to different kinds of breakdown events. By studying DC voltage breakdown we hope to learn more details about the processes involved in the transition from field emission to catastrophic arcing and the cratering of the surface; as well as learning how to prevent breakdown, we would like to learn how to cause breakdown, which could be important when ''processing'' cavities to reduce field emission. (author)

  10. Understanding the signature of rock coatings in laser-induced breakdown spectroscopy data

    Science.gov (United States)

    Lanza, Nina L.; Ollila, Ann M.; Cousin, Agnes; Wiens, Roger C.; Clegg, Samuel M.; Mangold, Nicolas; Bridges, Nathan; Cooper, Daniel; Schmidt, Mariek E.; Berger, Jeffrey; Arvidson, Raymond E.; Melikechi, Noureddine; Newsom, Horton E.; Tokar, Robert; Hardgrove, Craig; Mezzacappa, Alissa; Jackson, Ryan S.; Clark, Benton C.; Forni, Olivier; Maurice, Sylvestre; Nachon, Marion; Anderson, Ryan B.; Blank, Jennifer; Deans, Matthew; Delapp, Dorothea; Léveillé, Richard; McInroy, Rhonda; Martinez, Ronald; Meslin, Pierre-Yves; Pinet, Patrick

    2015-01-01

    Surface compositional features on rocks such as coatings and weathering rinds provide important information about past aqueous environments and water–rock interactions. The search for these features represents an important aspect of the Curiosity rover mission. With its unique ability to do fine-scale chemical depth profiling, the ChemCam laser-induced breakdown spectroscopy instrument (LIBS) onboard Curiosity can be used to both identify and analyze rock surface alteration features. In this study we analyze a terrestrial manganese-rich rock varnish coating on a basalt rock in the laboratory with the ChemCam engineering model to determine the LIBS signature of a natural rock coating. Results show that there is a systematic decrease in peak heights for elements such as Mn that are abundant in the coating but not the rock. There is significant spatial variation in the relative abundance of coating elements detected by LIBS depending on where on the rock surface sampled; this is due to the variability in thickness and spatial discontinuities in the coating. Similar trends have been identified in some martian rock targets in ChemCam data, suggesting that these rocks may have coatings or weathering rinds on their surfaces.

  11. Double-pulse laser-induced breakdown spectroscopy analysis of scales from petroleum pipelines

    Science.gov (United States)

    Cavalcanti, G. H.; Rocha, A. A.; Damasceno, R. N.; Legnaioli, S.; Lorenzetti, G.; Pardini, L.; Palleschi, V.

    2013-09-01

    Pipeline scales from the Campos Bay Petroleum Field near Rio de Janeiro, Brazil have been analyzed by both Raman spectroscopy and by laser-induced breakdown spectroscopy (LIBS) using a double-pulse, calibration-free approach. Elements that are characteristic of petroleum (e.g. C, H, N, O, Mg, Na, Fe and V) were detected, in addition to the Ca, Al, and Si which form the matrix of the scale. The LIBS results were compared with the results of micro-Raman spectroscopy, which confirmed the nature of the incrustations inferred by the LIBS analysis. Results of this preliminary study suggest that diffusion of pipe material into the pipeline intake column plays an important role in the growth of scale. Thanks to the simplicity and relative low cost of equipment and to the fact that no special chemical pre-treatment of the samples is needed, LIBS can offer very fast acquisition of data and the possibility of in situ measurements. LIBS could thus represent an alternative or complementary method for the chemical characterization of the scales by comparison to conventional analytical techniques, such as X-ray diffraction or X-ray fluorescence.

  12. Study of atomic and molecular emission spectra of Sr by laser induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Bhatt, Chet R; Alfarraj, Bader; Ayyalasomayajula, Krishna K; Ghany, Charles; Yueh, Fang Y; Singh, Jagdish P

    2015-12-01

    Laser Induced Breakdown Spectroscopy (LIBS) is an ideal analytical technique for in situ analysis of elemental composition. We have performed a comparative study of the quantitative and qualitative analysis of atomic and molecular emission from LIBS spectra. In our experiments, a mixture of SrCl2 and Al2O3 in powder form was used as a sample. The atomic emission from Sr and molecular emission from SrCl and SrO observed in LIBS spectra were analyzed. The optimum laser energies, gate delays, and gate widths for selected atomic lines and molecular bands were determined from spectra recorded at various experimental parameters. These optimum experimental conditions were used to collect calibration data, and the calibration curves were used to predict the Sr concentration. Limits of detection (LODs) for selected atomic and molecular emission spectra were determined.

  13. ABNORMAL PLASMA NORADRENALINE RESPONSE AND EXERCISE INDUCED ALBUMINURIA IN TYPE-1 (INSULIN-DEPENDENT) DIABETES-MELLITUS

    NARCIS (Netherlands)

    HOOGENBERG, K; DULLAART, RPF

    1992-01-01

    Submaximal exercise provokes an abnormal elevation in albuminuria in type 1 (insulin-dependent) diabetes mellitus. Plasma catecholamines might be involved in this phenomenon by a renal vasoconstrictive effect. Twelve healthy subjects (Controls: albuminuria It is concluded that the exercise-induced

  14. Inhibitory effects of ethanol on phosphatidylinositol breakdown in pancreatic acini

    International Nuclear Information System (INIS)

    Towner, S.J.; Peppin, J.F.; Tsukamoto, H.

    1986-01-01

    Recently the physiological relationship between the phospholipid effect and secretagogue-induced cellular function has begun to be understood. In this study, the authors investigated acute and chronic effects of ethanol on phosphatidylinositol (PI) synthesis and breakdown in pancreatic acini. Five pairs of male Wistar rats were intragastrically infused for 30 days with high fat diet (25% total calories) plus ethanol or isocaloric dextrose. After intoxication, isolated in HEPES media, followed by 30 min incubation with CCK-8 (0, 100, 300 or 600 pM) and ethanol (0 or 100 mM). Acinar lipids were extracted and counted for labeled PI. Incorporation of 3 H-inositol into alcoholic acinar PI was reduced to 38.2% of that in controls. A percent maximal PI break down by CCK-8 was similar in the two groups (13-24% of basal). However, the magnitude of PI breakdown was markedly lower in alcoholic acini (482 vs 1081 dpm) due to the decreased PI synthesis rate. The presence of 100 mM ethanol in the media further inhibited the breakdown by 50% in this group. These results strongly indicate that chronic ethanol intoxication inhibits PI synthesis and breakdown in pancreatic acini, and that this inhibition can be potentiated by acute ethanol administration

  15. Numerical simulation of a precessing vortex breakdown

    International Nuclear Information System (INIS)

    Jochmann, P.; Sinigersky, A.; Hehle, M.; Schaefer, O.; Koch, R.; Bauer, H.-J.

    2006-01-01

    The objective of this work is to present the results of time-dependent numerical predictions of a turbulent symmetry breaking vortex breakdown in a realistic gas turbine combustor. The unsteady Reynolds-averaged Navier-Stokes (URANS) equations are solved by using the k-ε two-equation model as well as by a full second-order closure using the Reynolds stress model of Speziale, Sarkar and Gatski (SSG). The results for a Reynolds number of 5.2 x 10 4 , a swirl number of 0.52 and an expansion ratio of 5 show that the flow is emerging from the swirler as a spiral gyrating around a zone of strong recirculation which is also asymmetric and precessing. These flow structures which are typical for the spiral type (S-type) vortex breakdown have been confirmed by PIV and local LDA measurements in a corresponding experimental setup. Provided that high resolution meshes are employed the calculations with both turbulence models are capable to reproduce the spatial and temporal dynamics of the flow

  16. Radon inhalation suppresses nephropathy in streptozotocin-induced type-1 diabetic mice

    International Nuclear Information System (INIS)

    Nishiyama, Yuichi; Kataoka, Takahiro; Yamato, Keiko; Etani, Reo; Taguchi, Takehito; Yamaoka, Kiyonori

    2016-01-01

    In this study, we investigated the suppressive effects of radon inhalation against nephropathy in C57BL/6J mice with type-1 diabetes induced by intraperitoneal injection of streptozotocin (50 mg/kg weight, given five times). Four weeks after diabetes induction, the diabetic mice were continuously treated with inhaled radon-222 of 2000 Bq/m3 or air only (sham) for four weeks. The results showed that radon inhalation did not affect type-1 diabetic symptoms such as body weight loss, hyperglycemia, and hypoinsulinemia. However, diabetic mice treated with radon showed lower urinary albumin excretion and fibrotic change in renal glomeruli compared with diabetic mice not treated with radon. Furthermore, renal superoxide dismutase activity and glutathione content were significantly higher in diabetic mice treated with radon than in diabetic mice not treated with radon. These findings suggested that radon inhalation enhanced renal antioxidants activities, resulting in the suppression of diabetic nephropathy. This study may contribute to the development of a novel approach in the treatment of nephropathy for diabetic patients. (author)

  17. Wavelength comparison for laser induced breakdown spectroscopy caries detection

    Science.gov (United States)

    Amaral, Marcello M.; Raele, Marcus P.; Ana, Patrícia A.; Núñez, Sílvia C.; Zamataro, Claudia B.; Zezell, Denise M.

    2018-02-01

    Laser Induced Breakdown Spectroscopy (LIBS) is a technique capable to perform elemental analyses of a variety of samples, independent of matter state. Other spectroscopy techniques may require a destructive and time-consuming sample preparation. On the other hand, LIBS is a less destructive technique with no (or considerably less) sample preparation, using a relatively simple experimental setup. LIBS also provides a multielement analysis into one single spectrum acquisition, applying a Nd:YAG short-pulsed laser to ensure the stoichiometry between the sample and the generated plasma. LIBS have been applied on the study of carious lesions using a Nd:YAG into its fundamental emission at 1064 nm. It was shown that ratio of P/Ca and Zn/Ca can be used to monitor the cariogenic process. Another minor elements, e.g. C and Cu, associated with bacteria biofilm were also measured with the Nd:YAG laser. The fundamental wavelength emission (1064 nm) of Nd:YAG is coincident with a hydroxyapatite transmission window and it may affect the result. In order to address this issue a study used the second harmonic of the Nd:YAG laser at 532 nm. It was show that it is also possible perform LIBS on carious lesion using the Nd:YAG at 532 nm. However, there is not a work direct comparing the LIBS at 532 nm and 1064 nm for carious lesion detection. So, the aim of this work was to investigate the influence of laser wavelength on the LIBS performance for carious lesion detection. In both cases the carious lesion was detected with the advantage of no interference with hydroxyapatite at 532 nm.

  18. Breakdown, fractoemission, diffusion: role of defects in dielectrics

    International Nuclear Information System (INIS)

    Vigouroux, J.P.; Serruys, Y.

    1987-01-01

    During the surface analysis of dielectric materials, the impinging ionising particles induce point defects localised in the band gap and build an electrical charge. The electric field created by the charged defects modifies the physico-chemical properties of surface and bulk. We show that the fundamental study of defects allows a better understanding of technological phenomena such as dielectric breakdown, fracture and diffusion [fr

  19. Accuracy enhancement of laser induced breakdown spectra using permittivity and size optimized plasma confinement rings.

    Science.gov (United States)

    Li, An; Guo, Shuai; Wazir, Nasrullah; Chai, Ke; Liang, Liang; Zhang, Min; Hao, Yan; Nan, Pengfei; Liu, Ruibin

    2017-10-30

    The inevitable problems in laser induced breakdown spectroscopy are matrix effect and statistical fluctuation of the spectral signal, which can be partly avoided by utilizing a proper confined unit. The dependences of spectral signal enhancement on relative permittivity were studied by varying materials to confine the plasma, which include polytetrafluoroethylene(PTFE), nylon/dacron, silicagel, and nitrile-butadiene rubber (NBR) with the relative permittivity 2.2, ~3.3, 3.6, 8~13, 15~22. We found that higher relative permittivity rings induce stronger enhancement ability, which restricts the energy dissipation of plasma better and due to the reflected electromagnetic wave from the wall of different materials, the electromagnetic field of plasma can be well confined and makes the distribution of plasma more orderly. The spectral intensities of the characteristic lines Si I 243.5 nm and Si I 263.1 nm increased approximately 2 times with relative permittivity values from 2.2 to ~20. The size dependent enhancement of PTFE was further checked and the maximum gain was realized by using a confinement ring with a diameter size of 5 mm and a height of 3 mm (D5mmH3mm), and the rings with D2mmH1mm and D3mmH2mm also show higher enhancement factor. In view of peak shift, peak lost and accidental peaks in the obtained spectra were properly treated in data progressing; the spectral fluctuation decreased drastically for various materials with different relative permittivities as confined units, which means the core of plasma is stabilized, attributing to the confinement effect. Furthermore, the quantitative analysis in coal shows wonderful results-the prediction fitting coefficient R 2 reaches 0.98 for ash and 0.99 for both volatile and carbon.

  20. Experimental Study of Magnetic Field Production and Dielectric Breakdown of Auto-Magnetizing Liners

    Science.gov (United States)

    Shipley, Gabriel; Awe, Thomas; Hutchinson, Trevor; Hutsel, Brian; Slutz, Stephen; Lamppa, Derek

    2017-10-01

    AutoMag liners premagnetize the fuel in MagLIF targets and provide enhanced x-ray diagnostic access and increased current delivery without requiring external field coils. AutoMag liners are composite liners made with discrete metallic helical conduction paths separated by insulating material. First, a low dI/dt ``foot'' current pulse (1 MA in 100 ns) premagnetizes the fuel. Next, a higher dI/dt pulse with larger induced electric field initiates breakdown on the composite liner's; surface, switching the current from helical to axial to implode the liner. Experiments on MYKONOS have tested the premagnetization and breakdown phases of AutoMag and demonstrate axial magnetic fields above 90 Tesla for a 550 kA peak current pulse. Electric fields of 17 MV/m have been generated before breakdown. AutoMag may enhance MagLIF performance by increasing the premagnetization strength significantly above 30 T, thus reducing thermal-conduction losses and mitigating anomalous diffusion of magnetic field out of hotter fuel regions, by, for example, the Nernst thermoelectric effect. This project was funded in part by Sandia's Laboratory Directed Research and Development Program (Projects No. 200169 and 195306).

  1. Discrimination of lymphoma using laser-induced breakdown spectroscopy conducted on whole blood samples

    Science.gov (United States)

    Chen, Xue; Li, Xiaohui; Yang, Sibo; Yu, Xin; Liu, Aichun

    2018-01-01

    Lymphoma is a significant cancer that affects the human lymphatic and hematopoietic systems. In this work, discrimination of lymphoma using laser-induced breakdown spectroscopy (LIBS) conducted on whole blood samples is presented. The whole blood samples collected from lymphoma patients and healthy controls are deposited onto standard quantitative filter papers and ablated with a 1064 nm Q-switched Nd:YAG laser. 16 atomic and ionic emission lines of calcium (Ca), iron (Fe), magnesium (Mg), potassium (K) and sodium (Na) are selected to discriminate the cancer disease. Chemometric methods, including principal component analysis (PCA), linear discriminant analysis (LDA) classification, and k nearest neighbor (kNN) classification are used to build the discrimination models. Both LDA and kNN models have achieved very good discrimination performances for lymphoma, with an accuracy of over 99.7%, a sensitivity of over 0.996, and a specificity of over 0.997. These results demonstrate that the whole-blood-based LIBS technique in combination with chemometric methods can serve as a fast, less invasive, and accurate method for detection and discrimination of human malignancies. PMID:29541503

  2. Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars

    Science.gov (United States)

    Bazalgette Courrèges-Lacoste, Grégory; Ahlers, Berit; Pérez, Fernando Rull

    2007-12-01

    Among the different instruments that have been pre-selected to be on-board the Pasteur payload on ExoMars is the Raman/ laser induced breakdown spectroscopy (LIBS) instrument. Raman spectroscopy and LIBS will be integrated into a single instrument sharing many hardware commonalities. An international team under the lead of TNO has been gathered to produce a design concept for a combined Raman spectrometer/LIBS elegant bread-board (EBB). The instrument is based on a specially designed, extremely compact, spectrometer with high resolution over a large wavelength range, suitable for both Raman spectroscopy and LIBS measurements. Low mass, size and power consumption are the main drivers of the instrument's design concept. In this paper, science objectives for the combined instrument are detailed. Background information on Raman spectroscopy and LIBS are presented, focussing on the synergy of these two techniques. In the last section, the instrument concept resulting from the assessment of the feasibility of the combined Raman/LIBS EBB is presented.

  3. Influences on the Emissions of Bacterial Plasmas Generated through Nanosecond Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Malenfant, Dylan J.

    In the past decade, laser-induced breakdown spectroscopy has been shown to provide compositional data that can be used for discrimination between bacterial specimens at the strain level. This work demonstrates the viability of this technique in a clinical setting. Studies were conducted to investigate the impact of emissions generated by a nitrocellulose filter paper background on the classification of four species: E. coli, S. epidermidis, M. smegmatis, and P. aeruginosa. Limits of detection were determined as 48+/-12 kCFU per ablation event for new mounting procedures using standard diagnostic laboratory techniques, and a device for centrifuge filtration was designed for sampling from low-titer bacterial suspensions. Plasma emissions from samples grown at biological levels of magnesium, zinc, and glucose were shown not to deviate from controls. A limit of detection for environmental zinc was found to be 11 ppm. Discrimination with heat-killed samples was demonstrated, providing a sterile diagnostic environment.

  4. Forensic Discrimination of Latent Fingerprints Using Laser-Induced Breakdown Spectroscopy (LIBS) and Chemometric Approaches.

    Science.gov (United States)

    Yang, Jun-Ho; Yoh, Jack J

    2018-01-01

    A novel technique is reported for separating overlapping latent fingerprints using chemometric approaches that combine laser-induced breakdown spectroscopy (LIBS) and multivariate analysis. The LIBS technique provides the capability of real time analysis and high frequency scanning as well as the data regarding the chemical composition of overlapping latent fingerprints. These spectra offer valuable information for the classification and reconstruction of overlapping latent fingerprints by implementing appropriate statistical multivariate analysis. The current study employs principal component analysis and partial least square methods for the classification of latent fingerprints from the LIBS spectra. This technique was successfully demonstrated through a classification study of four distinct latent fingerprints using classification methods such as soft independent modeling of class analogy (SIMCA) and partial least squares discriminant analysis (PLS-DA). The novel method yielded an accuracy of more than 85% and was proven to be sufficiently robust. Furthermore, through laser scanning analysis at a spatial interval of 125 µm, the overlapping fingerprints were reconstructed as separate two-dimensional forms.

  5. Determination of the postmortem interval by Laser Induced Breakdown Spectroscopy using swine skeletal muscles

    International Nuclear Information System (INIS)

    Marín-Roldan, A.; Manzoor, S.; Moncayo, S.; Navarro-Villoslada, F.; Izquierdo-Hornillos, R.C.; Caceres, J.O.

    2013-01-01

    Skin and muscle samples are useful to discriminate individuals as well as their postmortem interval (PMI) in crime scenes and natural or caused disasters. In this study, a simple and fast method based on Laser Induced Breakdown Spectroscopy (LIBS) has been developed to estimate PMI using swine skeletal muscle samples. Environmental conditions (moisture, temperature, fauna, etc.) having strong influence on the PMI determination were considered. Time-dependent changes in the emission intensity ratio for Mg, Na, Hα and K were observed, as a result of the variations in their concentration due to chemical reactions in tissues and were correlated with PMI. This relationship, which has not been reported previously in the forensic literature, offers a simple and potentially valuable means of estimating the PMI. - Highlights: • LIBS has been applied for Postmortem Interval estimation. • Environmental and sample storage conditions have been considered. • Significant correlation of elemental emission intensity with PMI has been observed. • Pig skeletal muscle samples have been used

  6. Evaluation of laser induced breakdown spectroscopy for the determination of macronutrients in plant materials

    Energy Technology Data Exchange (ETDEWEB)

    Trevizan, Lilian Cristina [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Av. Centenario 303, 13416-000, Piracicaba-SP (Brazil)], E-mail: lilian@conectcor.com.br; Santos, Dario [Universidade Federal de Sao Paulo - UNIFESP, Rua Prof. Artur Riedel 275, 09972-270, Diadema-SP (Brazil); Elgul Samad, Ricardo; Dias Vieira, Nilson [Centro de Lasers e Aplicacoes, IPEN/CNEN-SP, Av. Prof. Lineu Prestes 2242, 05508-000, Sao Paulo-SP (Brazil); Seimi Nomura, Cassiana [Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adelia 166, 09210-170, Santo Andre-SP (Brazil); Nunes, Lidiane Cristina [Departamento de Quimica, Universidade Federal de Sao Carlos, Rod. Washington Luis, km 235, 13565-905, Sao Carlos-SP (Brazil); Rufini, Iolanda Aparecida; Krug, Francisco Jose [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Av. Centenario 303, 13416-000, Piracicaba-SP (Brazil)

    2008-10-15

    Laser induced breakdown spectroscopy (LIBS) has become an analytical tool for the direct analysis of a large variety of materials in order to provide qualitative and/or quantitative information. However, there is a lack of information for LIBS analysis of agricultural and environmental samples. In this work a LIBS system has been evaluated for the determination of macronutrients (P, K, Ca, Mg) in pellets of vegetal reference materials. An experimental setup was designed by using a Nd:YAG laser operating at 1064 nm and an Echelle spectrometer with ICCD detector. The plasma temperature was estimated by Boltzmann plots and instrumental parameters such as delay time, lens-to-sample distance and pulse energy were evaluated. Certified reference materials as well as reference materials were used for analytical calibrations of P, K, Ca, and Mg. Most results of the direct analysis of plant samples by LIBS were in reasonable agreement with those obtained by ICP OES after wet acid decomposition.

  7. Evaluation of laser induced breakdown spectroscopy for the determination of macronutrients in plant materials

    International Nuclear Information System (INIS)

    Trevizan, Lilian Cristina; Santos, Dario; Elgul Samad, Ricardo; Dias Vieira, Nilson; Seimi Nomura, Cassiana; Nunes, Lidiane Cristina; Rufini, Iolanda Aparecida; Krug, Francisco Jose

    2008-01-01

    Laser induced breakdown spectroscopy (LIBS) has become an analytical tool for the direct analysis of a large variety of materials in order to provide qualitative and/or quantitative information. However, there is a lack of information for LIBS analysis of agricultural and environmental samples. In this work a LIBS system has been evaluated for the determination of macronutrients (P, K, Ca, Mg) in pellets of vegetal reference materials. An experimental setup was designed by using a Nd:YAG laser operating at 1064 nm and an Echelle spectrometer with ICCD detector. The plasma temperature was estimated by Boltzmann plots and instrumental parameters such as delay time, lens-to-sample distance and pulse energy were evaluated. Certified reference materials as well as reference materials were used for analytical calibrations of P, K, Ca, and Mg. Most results of the direct analysis of plant samples by LIBS were in reasonable agreement with those obtained by ICP OES after wet acid decomposition

  8. Determination of the postmortem interval by Laser Induced Breakdown Spectroscopy using swine skeletal muscles

    Energy Technology Data Exchange (ETDEWEB)

    Marín-Roldan, A.; Manzoor, S.; Moncayo, S.; Navarro-Villoslada, F.; Izquierdo-Hornillos, R.C.; Caceres, J.O., E-mail: jcaceres@quim.ucm.es

    2013-10-01

    Skin and muscle samples are useful to discriminate individuals as well as their postmortem interval (PMI) in crime scenes and natural or caused disasters. In this study, a simple and fast method based on Laser Induced Breakdown Spectroscopy (LIBS) has been developed to estimate PMI using swine skeletal muscle samples. Environmental conditions (moisture, temperature, fauna, etc.) having strong influence on the PMI determination were considered. Time-dependent changes in the emission intensity ratio for Mg, Na, Hα and K were observed, as a result of the variations in their concentration due to chemical reactions in tissues and were correlated with PMI. This relationship, which has not been reported previously in the forensic literature, offers a simple and potentially valuable means of estimating the PMI. - Highlights: • LIBS has been applied for Postmortem Interval estimation. • Environmental and sample storage conditions have been considered. • Significant correlation of elemental emission intensity with PMI has been observed. • Pig skeletal muscle samples have been used.

  9. An investigation of Laser Induced Breakdown Spectroscopy for use as a control in the laser removal of rock from fossils found at the Malapa hominin site, South Africa

    CSIR Research Space (South Africa)

    Roberts, DE

    2012-07-01

    Full Text Available Laser Induced Breakdown Spectroscopy (LIBS) was used to study the spectra from fossils and surrounding rock recovered from the Cradle of Mankind site at Malapa, South Africa. The objective was to find a suitable spectral line(s), specific to fossils...

  10. Fast Detection of Copper Content in Rice by Laser-Induced Breakdown Spectroscopy with Uni- and Multivariate Analysis

    Science.gov (United States)

    Ye, Lanhan; Song, Kunlin; Shen, Tingting

    2018-01-01

    Fast detection of heavy metals is very important for ensuring the quality and safety of crops. Laser-induced breakdown spectroscopy (LIBS), coupled with uni- and multivariate analysis, was applied for quantitative analysis of copper in three kinds of rice (Jiangsu rice, regular rice, and Simiao rice). For univariate analysis, three pre-processing methods were applied to reduce fluctuations, including background normalization, the internal standard method, and the standard normal variate (SNV). Linear regression models showed a strong correlation between spectral intensity and Cu content, with an R2 more than 0.97. The limit of detection (LOD) was around 5 ppm, lower than the tolerance limit of copper in foods. For multivariate analysis, partial least squares regression (PLSR) showed its advantage in extracting effective information for prediction, and its sensitivity reached 1.95 ppm, while support vector machine regression (SVMR) performed better in both calibration and prediction sets, where Rc2 and Rp2 reached 0.9979 and 0.9879, respectively. This study showed that LIBS could be considered as a constructive tool for the quantification of copper contamination in rice. PMID:29495445

  11. Electrical breakdown of water in microgaps

    International Nuclear Information System (INIS)

    Schoenbach, Karl; Kolb, Juergen; Xiao Shu; Katsuki, Sunao; Minamitani, Yasushi; Joshi, Ravindra

    2008-01-01

    Experimental and modeling studies on electrical breakdown in water in submillimeter gaps between pin and plane electrodes have been performed. Prebreakdown, breakdown and recovery of the water gaps were studied experimentally by using optical and electrical diagnostics with a temporal resolution on the order of one nanosecond. By using Mach-Zehnder interferometry, the electric field distribution in the prebreakdown phase was determined by means of the Kerr effect. Electric fields values in excess of the computed electric fields, which reach >4 MV cm -1 for applied electrical pulses of 20 ns duration, were recorded at the tip of the pin electrode, an effect which can be explained by a reduced permittivity of water at high electric fields. Breakdown of the gaps, streamer-to-arc transition, was recorded by means of high-speed electrical diagnostics, and through high-speed photography. It was shown, through simulations, that breakdown is initiated by field emission at the interface of preexisting microbubbles. Impact ionization within the micro-bubble's gas then contributes to plasma development. Experiments using pulse-probe methods and Schlieren diagnostics allowed us to follow the development of the disturbance caused by the breakdown over a time of more than milliseconds and to determine the recovery time of a water switch. In order to trigger water switches a trigger electrode with a triple point has been utilized. The results of this research have found application in the construction of compact pulse power generators for bioelectric applications.

  12. Comparing predictive ability of Laser-Induced Breakdown Spectroscopy to Near Infrared Spectroscopy for soil texture and organic carbon determination

    DEFF Research Database (Denmark)

    Knadel, Maria; Peng, Yi; Gislum, René

    Soil organic carbon (SOC) and texture have a practical value for agronomy and the environment. Thus, alternative techniques to supplement or substitute for the expensive conventional analysis of soil are developed. Here the feasibility of laser-induced breakdown spectroscopy (LIBS) to determine SOC...... and texture was tested and compared with near infrared spectroscopy (NIRS) technique and traditional laboratory analysis. Calibration models were developed on 50 topsoil samples. For all properties except silt, higher predictive ability of LIBS than NIRS models was obtained. Successful calibrations indicate...... that LIBS can be used as a fast and reliable method for SOC and texture estimation....

  13. The 1064 nm laser-induced breakdown spectroscopy (LIBS) inspection to detect the nutrient elements in freshly cut carrot samples

    Science.gov (United States)

    Yudasari, N.; Prasetyo, S.; Suliyanti, M. M.

    2018-03-01

    The laser-induced breakdown spectroscopy (LIBS) technique was applied to detect the nutrient elements contained in fresh carrot. Nd:YAG laser the wavelength of 1064 nm was employed in the experiments for ablation. Employing simple set-up of LIBS and preparing the sample with less step method, we are able to detect 18 chemical elements including some fundamental element of carrot, i.e Mg, Al, Fe, Mn, Ti, Ca, and Mn. By applying normalized profiles calculation on some of the element, we are able to compare the concentration level of each element of the outer and inner part of carrot.

  14. Breakdown resistance of refractory metals compared to copper

    CERN Document Server

    Taborelli, M; Kildemo, M

    2004-01-01

    The behaviour of Mo, W and Cu with respect to electrical breakdown in ultra high vacuum has been investigated by means of a capacitor discharge method. The maximum stable electric field without breakdown and the field enhancement factor, beta have been measured between electrodes of the same material in a sphere/plane geometry for anode and cathode, respectively. The maximum stable field increases as a function of the number of breakdown events for W and Mo. In contrast, no systematic increase is observed for Cu. The highest values obtained are typically 500 MV/m for W, 350 MV/m for Mo and only 180 MV/m for Cu. This conditioning, found for the refractory metals, corresponds to a simultaneous decrease of beta and is therefore related to the field emission properties of the surface and their modification upon sparking. Accordingly, high beta values and no applicable field increase occur for Cu even after repeated breakdown. The results are compared with RF breakdown experiments [1] performed on prototype 30 GHz...

  15. Breakdown of highly excited oxygen in a DC electric field

    International Nuclear Information System (INIS)

    Vagin, N.P.; Ionin, A.A.; Klimachev, Yu.M.; Sinitsin, D.V.; Yuryshev, N.N.; Deryugin, A.A.; Kochetov, I.V.; Napartovich, A.P.

    2000-01-01

    The breakdown of oxygen in a dc electric field is studied. A high concentration of oxygen molecules in the a 1 Δ g excited state is obtained in a purely chemical reactor. A decrease in the breakdown voltage at degrees of excitation exceeding 50% is observed. The theoretical decrement in the breakdown voltage obtained by solving the Boltzmann equation is in good agreement with the experimental data

  16. The rate of dielectric breakdown weathering of lunar regolith in permanently shadowed regions

    Science.gov (United States)

    Jordan, A. P.; Stubbs, T. J.; Wilson, J. K.; Schwadron, N. A.; Spence, H. E.

    2017-02-01

    Large solar energetic particle events may cause dielectric breakdown in the upper 1 mm of regolith in permanently shadowed regions (PSRs). We estimate how the resulting breakdown weathering compares to meteoroid impact weathering. Although the SEP event rates measured by the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO) are too low for breakdown to have significantly affected the regolith over the duration of the LRO mission, regolith gardened by meteoroid impacts has been exposed to SEPs for ∼106 yr. Therefore, we estimate that breakdown weathering's production rate of vapor and melt in the coldest PSRs is up to 1.8 - 3.5 ×10-7 kg m-2 yr-1 , which is comparable to that produced by meteoroid impacts. Thus, in PSRs, up to 10-25% of the regolith may have been melted or vaporized by dielectric breakdown. Breakdown weathering could also be consistent with observations of the increased porosity ("fairy castles") of PSR regolith. We also show that it is conceivable that breakdown-weathered material is present in Apollo soil samples. Consequently, breakdown weathering could be an important process within PSRs, and it warrants further investigation.

  17. Optimization design on breakdown voltage of AlGaN/GaN high-electron mobility transistor

    Science.gov (United States)

    Yang, Liu; Changchun, Chai; Chunlei, Shi; Qingyang, Fan; Yuqian, Liu

    2016-12-01

    Simulations are carried out to explore the possibility of achieving high breakdown voltage of GaN HEMT (high-electron mobility transistor). GaN cap layers with gradual increase in the doping concentration from 2 × 1016 to 5 × 1019 cm-3 of N-type and P-type cap are investigated, respectively. Simulation results show that HEMT with P-doped GaN cap layer shows more potential to achieve higher breakdown voltage than N-doped GaN cap layer under the same doping concentration. This is because the ionized net negative space charges in P-GaN cap layer could modulate the surface electric field which makes more contribution to RESURF effect. Furthermore, a novel GaN/AlGaN/GaN HEMT with P-doped GaN buried layer in GaN buffer between gate and drain electrode is proposed. It shows enhanced performance. The breakdown voltage of the proposed structure is 640 V which is increased by 12% in comparison to UID (un-intentionally doped) GaN/AlGaN/GaN HEMT. We calculated and analyzed the distribution of electrons' density. It is found that the depleted region is wider and electric field maximum value is induced at the left edge of buried layer. So the novel structure with P-doped GaN buried layer embedded in GaN buffer has the better improving characteristics of the power devices. Project supported by the National Basic Research Program of China (No. 2014CB339900) and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (No. 2015-0214.XY.K).

  18. On dielectric breakdown statistics

    International Nuclear Information System (INIS)

    Tuncer, Enis; James, D Randy; Sauers, Isidor; Ellis, Alvin R; Pace, Marshall O

    2006-01-01

    In this paper, we investigate the dielectric breakdown data of some insulating materials and focus on the applicability of the two- and three-parameter Weibull distributions. A new distribution function is also proposed. In order to assess the model distribution's trustworthiness, we employ the Monte Carlo technique and, randomly selecting data-subsets from the whole dielectric breakdown data, determine whether the selected probability functions accurately describe the breakdown data. The utility and strength of the proposed expression are illustrated distinctly by the numerical procedure. The proposed expression is shown to be a valuable alternative to the Weibull ones

  19. Vortex Breakdown Generated by off-axis Bifurcation in a cylinder with rotating covers

    DEFF Research Database (Denmark)

    Bisgaard, Anders; Brøns, Morten; Sørensen, Jens Nørkær

    2006-01-01

    Vortex breakdown of bubble type is studied for the flow in a cylinder with rotating top and bottom covers. For large ratios of the angular velocities of the covers, we observe numerically that the vortex breakdown bubble in the steady regime may occur through the creation of an off-axis vortex ring....... This scenario does not occur in existing bifurcation theory based on a simple degeneracy in the flow field. We extend the theory to cover a non-simple degeneracy, and derive the associated bifurcation diagrams. We show that the vortex breakdown scenario involving a vortex ring can be explained from this theory...

  20. Space-resolved analysis of trace elements in fresh vegetables using ultraviolet nanosecond laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Juve, Vincent; Portelli, Richard; Boueri, Myriam; Baudelet, Matthieu; Yu Jin

    2008-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to analyze trace elements contained in fresh vegetables. A quadrupled Nd:YAG laser is used in the experiments for ablation. Analyzed samples come from local markets and represent frequently consumed vegetables. For a typical root vegetable, such as potato, spectral analysis of the plasma emission reveals more than 400 lines emitted by 27 elements and 2 molecules, C 2 and CN. Among these species, one can find trace as well as ultra-trace elements. A space-resolved analysis of several trace elements with strong emissions is then applied to typical root, stem and fruit vegetables. The results from this study demonstrate the potential of an interesting tool for botanical and agricultural studies as well for food quality/safety and environment pollution assessment and control

  1. Ac breakdown in near-atmospheric pressure noble gases: I. Experiment

    International Nuclear Information System (INIS)

    Sobota, A; Kanters, J H M; Van Veldhuizen, E M; Haverlag, M; Manders, F; Gendre, M F; Hendriks, J

    2011-01-01

    Ac-driven breakdown processes have been explored much less than the pulsed or dc breakdown, even though they have possible applications in industry. This paper focuses on the frequency range between 60 kHz and 1 MHz, at a pin-pin electrode geometry and gap lengths of 4 or 7 mm. The breakdown process was examined in argon and xenon at 0.3 and 0.7 bar. We used electrical and optical measurements to characterize the breakdown process, to observe the influence of frequency change and the effect of ignition enhancers-UV irradiation and radioactive material.

  2. Ac breakdown in near-atmospheric pressure noble gases: I. Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sobota, A; Kanters, J H M; Van Veldhuizen, E M; Haverlag, M [Eindhoven University of Technology, Department of Applied Physics, Postbus 513, 5600MB Eindhoven (Netherlands); Manders, F; Gendre, M F; Hendriks, J, E-mail: a.sobota@tue.nl [Philips Lighting, LightLabs, Mathildelaan 1, 5600JM Eindhoven (Netherlands)

    2011-06-08

    Ac-driven breakdown processes have been explored much less than the pulsed or dc breakdown, even though they have possible applications in industry. This paper focuses on the frequency range between 60 kHz and 1 MHz, at a pin-pin electrode geometry and gap lengths of 4 or 7 mm. The breakdown process was examined in argon and xenon at 0.3 and 0.7 bar. We used electrical and optical measurements to characterize the breakdown process, to observe the influence of frequency change and the effect of ignition enhancers-UV irradiation and radioactive material.

  3. Laser-induced breakdown spectroscopy measurements of uranium and thorium powders and uranium ore

    Energy Technology Data Exchange (ETDEWEB)

    Judge, Elizabeth J. [Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Barefield, James E., E-mail: jbarefield@lanl.gov [Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Berg, John M. [Manufacturing Engineering and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Clegg, Samuel M.; Havrilla, George J.; Montoya, Velma M.; Le, Loan A.; Lopez, Leon N. [Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2013-05-01

    Laser-induced breakdown spectroscopy (LIBS) was used to analyze depleted uranium and thorium oxide powders and uranium ore as a potential rapid in situ analysis technique in nuclear production facilities, environmental sampling, and in-field forensic applications. Material such as pressed pellets and metals, has been extensively studied using LIBS due to the high density of the material and more stable laser-induced plasma formation. Powders, on the other hand, are difficult to analyze using LIBS since ejection and removal of the powder occur in the laser interaction region. The capability of analyzing powders is important in allowing for rapid analysis of suspicious materials, environmental samples, or trace contamination on surfaces since it most closely represents field samples (soil, small particles, debris etc.). The rapid, in situ analysis of samples, including nuclear materials, also reduces costs in sample collection, transportation, sample preparation, and analysis time. Here we demonstrate the detection of actinides in oxide powders and within a uranium ore sample as both pressed pellets and powders on carbon adhesive discs for spectral comparison. The acquired LIBS spectra for both forms of the samples differ in overall intensity but yield a similar distribution of atomic emission spectral lines. - Highlights: • LIBS analysis of mixed actinide samples: depleted uranium oxide and thorium oxide • LIBS analysis of actinide samples in powder form on carbon adhesive discs • Detection of uranium in a complex matrix (uranium ore) as a precursor to analyzing uranium in environmental samples.

  4. Nitrate induces a type 1 diabetic profile in alligator hatchlings.

    Science.gov (United States)

    Edwards, Thea M; Hamlin, Heather J; Freymiller, Haley; Green, Stephen; Thurman, Jenna; Guillette, Louis J

    2018-01-01

    Type 1 diabetes (T1D) is a chronic autoimmune disease that affects 1 in 300 children by age 18. T1D is caused by inflammation-induced loss of insulin-producing pancreatic beta cells, leading to high blood glucose and a host of downstream complications. Although multiple genes are associated with T1D risk, only 5% of genetically susceptible individuals actually develop clinical disease. Moreover, a growing number of T1D cases occur in geographic clusters and among children with low risk genotypes. These observations suggest that environmental factors contribute to T1D etiology. One potential factor, supported primarily by epidemiological studies, is the presence of nitrate and nitrite in drinking water. To test this hypothesis, female hatchling alligators were exposed to environmentally relevant concentrations of nitrate in their tank water (reference, 10mg/L, or 100mg/L NO 3 -N) from hatch through 5 weeks or 5 months of age. At each time point, endpoints related to T1D were investigated: plasma levels of glucose, triglycerides, testosterone, estradiol, and thyroxine; pancreas, fat body, and thyroid weights; weight gain or loss; presence of immune cells in the pancreas; and pancreatic beta cell number, assessed by antibody staining of nkx6.1 protein. Internal dosing of nitrate was confirmed by measuring plasma and urine nitrate levels and whole blood methemoglobin. Cluster analysis indicated that high nitrate exposure (most animals exposed to 100mg/L NO3-N and one alligator exposed to 10mg/L NO3-N) induced a profile of endpoints consistent with early T1D that could be detected after 5 weeks and was more strongly present after 5 months. Our study supports epidemiological data correlating elevated nitrate with T1D onset in humans, and highlights nitrate as a possible environmental contributor to the etiology of T1D, possibly through its role as a nitric oxide precursor. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Shock/vortex interaction and vortex-breakdown modes

    Science.gov (United States)

    Kandil, Osama A.; Kandil, H. A.; Liu, C. H.

    1992-01-01

    Computational simulation and study of shock/vortex interaction and vortex-breakdown modes are considered for bound (internal) and unbound (external) flow domains. The problem is formulated using the unsteady, compressible, full Navier-Stokes (NS) equations which are solved using an implicit, flux-difference splitting, finite-volume scheme. For the bound flow domain, a supersonic swirling flow is considered in a configured circular duct and the problem is solved for quasi-axisymmetric and three-dimensional flows. For the unbound domain, a supersonic swirling flow issued from a nozzle into a uniform supersonic flow of lower Mach number is considered for quasi-axisymmetric and three-dimensional flows. The results show several modes of breakdown; e.g., no-breakdown, transient single-bubble breakdown, transient multi-bubble breakdown, periodic multi-bubble multi-frequency breakdown and helical breakdown.

  6. Electrical Breakdown Phenomena Involving Material Interfaces

    Science.gov (United States)

    2013-06-01

    create ozone through chemical reactions involving reactive species created by the electrical discharge [3]. The glow discharge breakdown in such...2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Investigation Of Pre-Ionization And Atmospheric Pulsed Discharge Plasma 5a...growth of the air discharge in the form of a conductive filament consisting of electrons and ions. This filament is created by temporal pulse that

  7. Calibration curves for commercial copper and aluminum alloys using handheld laser-induced breakdown spectroscopy

    Science.gov (United States)

    Bennett, B. N.; Martin, M. Z.; Leonard, D. N.; Garlea, E.

    2018-03-01

    Handheld laser-induced breakdown spectroscopy (HH LIBS) was used to study the elemental composition of four copper alloys and four aluminum alloys to produce calibration curves. The HH LIBS instrument used is a SciAps Z-500, commercially available, that contains a class-1 solid-state laser with an output wavelength of 1532 nm, laser energy of 5 mJ/pulse, and a pulse duration of 5 ns. Test samples were solid specimens comprising copper and aluminum alloys and data were collected from the samples' surface at three different locations, employing a 12-point-grid pattern for each data set. All three data sets of the spectra were averaged, and the intensity, corrected by subtraction of background, was used to produce the elemental calibration curves. Calibration curves are presented for the matrix elements, copper and aluminum, as well as several minor elements. The surface damage produced by the laser was examined by microscopy. The alloys were tested in air and in a glovebox to evaluate the instrument's ability to identify the constituents within materials under different environmental conditions. The main objective of using this HH LIBS technology is to determine its capability to fingerprint the presence of certain elements related to subpercent level within materials in real time and in situ, as a starting point for undertaking future complex material characterization work.

  8. Experimental study of vortex breakdown in a cylindrical, swirling flow

    Science.gov (United States)

    Stevens, J. L.; Celik, Z. Z.; Cantwell, B. J.; Lopez, J. M.

    1996-01-01

    The stability of a steady, vortical flow in a cylindrical container with one rotating endwall has been experimentally examined to gain insight into the process of vortex breakdowwn. The dynamics of the flow are governed by the Reynolds number (Re) and the aspect ratio of the cylinder. Re is given by Omega R(sup 2)/nu, where Omega is the speed of rotation of the endwall, R is the cylinder radius, and nu is the kinematic viscosity of the fluid filling the cylinder. The aspect ratio is H/R, where H is the height of the cylinder. Numerical simulation studies disagree whether or not the steady breakdown is stable beyond a critical Reynolds number, Re(sub c). Previous experimental researches have considered the steady and unsteady flows near Re(sub c), but have not explored the stability of the steady breakdown structures beyond this value. In this investigation, laser induced fluorescence was utilized to observe both steady and unsteady vortex breakdown at a fixed H/R of 2.5 with Re varying around Re(sub c). When the Re of a steady flow was slowly increased beyond Re(sub c), the breakdown structure remained steady even though unsteadiness was possible. In addition, a number of hysteresis events involving the oscillation periods of the unsteady flow were noted. The results show that both steady and unsteady vortex breakdown occur for a limited range of Re above Re(sub c). Also, with increasing Re, complex flow transformations take place that alter the period at which the unsteady flow oscillates.

  9. Breakdown of the 1/N expansion in the continuum limit of strong coupling lattice QCD

    International Nuclear Information System (INIS)

    Bralic, N.; Pontificia Universidade Catolica de Chile, Santiago. Facultad de Fisica); Loewe, M.

    1983-08-01

    The restoration of lorentz covariance in the continuum limit of strong coupling lattice QCD is shown to require the breakdown of the 1/N expansion. With the leading 1/N appoximation becoming irrelevant in that limit. To leading order in 1/N lorentz convariance can be restored only as an approximate long distance symmetry a non conventional continuum limit with a non hermitian hamiltonian. (Author) [pt

  10. Breakdown characteristics of xenon HID Lamps

    Science.gov (United States)

    Babaeva, Natalia; Sato, Ayumu; Brates, Nanu; Noro, Koji; Kushner, Mark

    2009-10-01

    The breakdown characteristics of mercury free xenon high intensity discharge (HID) lamps exhibit a large statistical time lag often having a large scatter in breakdown voltages. In this paper, we report on results from a computational investigation of the processes which determine the ignition voltages for positive and negative pulses in commercial HID lamps having fill pressures of up to 20 atm. Steep voltage rise results in higher avalanche electron densities and earlier breakdown times. Circuit characteristics also play a role. Large ballast resistors may limit current to the degree that breakdown is quenched. The breakdown voltage critically depends on cathode charge injection by electric field emission (or other mechanisms) which in large part controls the statistical time lag for breakdown. For symmetric lamps, ionization waves (IWs) simultaneously develop from the bottom and top electrodes. Breakdown typically occurs when the top and bottom IWs converge. Condensed salt layers having small conductivities on the inner walls of HID lamps and on the electrodes can influence the ignition behavior. With these layers, IWs tend to propagate along the inner wall and exhibit a different structure depending on the polarity.

  11. Rapid Analysis of Ash Composition Using Laser-Induced Breakdown Spectroscopy (LIBS)

    Energy Technology Data Exchange (ETDEWEB)

    Tyler L. Westover

    2013-01-01

    Inorganic compounds are known to be problematic in the thermochemical conversion of biomass to syngas and ultimately hydrocarbon fuels. The elements Si, K, Ca, Na, S, P, Cl, Mg, Fe, and Al are particularly problematic and are known to influence reaction pathways, contribute to fouling and corrosion, poison catalysts, and impact waste streams. Substantial quantities of inorganic species can be entrained in the bark of trees during harvest operations. Herbaceous feedstocks often have even greater quantities of inorganic constituents, which can account for as much as one-fifth of the total dry matter. Current methodologies to measure the concentrations of these elements, such as inductively coupled plasma-optical emission spectrometry/mass spectrometry (ICP-OES/MS) are expensive in time and reagents. This study demonstrates that a new methodology employing laser-induced breakdown spectroscopy (LIBS) can rapidly and accurately analyze the inorganic constituents in a wide range of biomass materials, including both woody and herbaceous examples. This technique requires little or no sample preparation, does not consume any reagents, and the analytical data is available immediately. In addition to comparing LIBS data with the results from ICP-OES methods, this work also includes discussions of sample preparation techniques, calibration curves for interpreting LIBS spectra, minimum detection limits, and the use of internal standards and standard reference materials.

  12. Microanalysis of tool steel and glass with laser-induced breakdown spectroscopy

    Science.gov (United States)

    Loebe, Klaus; Uhl, Arnold; Lucht, Hartmut

    2003-10-01

    A laser microscope system for the microanalytical characterization of complex materials is described. The universal measuring principle of laser-induced breakdown spectroscopy (LIBS) in combination with echelle optics permits a fast simultaneous multielement analysis with a possible spatial resolution below 10 pm. The developed system features completely UV-transparent optics for the laser-microscope coupling and the emission beam path and enables parallel signal detection within the wavelength range of 200-800 nm with a spectral resolution of a few picometers. Investigations of glass defects and tool steels were performed. The characterization of a glass defect in a tumbler by a micro-LIBS line scan, with use of a 266-nm diode-pumped Nd:YAG laser for excitation, is possible by simple comparison of plasma spectra of the defect and the surrounding area. Variations in the main elemental composition as well as impurities by trace elements are detected at the same time. Through measurement of the calibration samples with the known concentration of the corresponding element, a correlation between the intensity of spectral lines and the element concentration was also achieved. The change of elemental composition at the transient stellite solder of tool steels has been determined by an area scan. The two-dimensional pictures show abrupt changes of the element distribution along the solder edge and allow fundamental researches of dynamic modifications (e.g., diffusion) in steel.

  13. Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models

    Science.gov (United States)

    Anderson, Ryan; Clegg, Samuel M.; Frydenvang, Jens; Wiens, Roger C.; McLennan, Scott M.; Morris, Richard V.; Ehlmann, Bethany L.; Dyar, M. Darby

    2017-01-01

    Accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the Laser-Induced Breakdown Spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response of an element’s emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “sub-model” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. The sub-model method, using partial least squares regression (PLS), is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.

  14. Application of laser-induced breakdown spectroscopy to the analysis of algal biomass for industrial biotechnology

    Science.gov (United States)

    Pořízka, P.; Prochazka, D.; Pilát, Z.; Krajcarová, L.; Kaiser, J.; Malina, R.; Novotný, J.; Zemánek, P.; Ježek, J.; Šerý, M.; Bernatová, S.; Krzyžánek, V.; Dobranská, K.; Novotný, K.; Trtílek, M.; Samek, O.

    2012-08-01

    We report on the application of laser-induced breakdown spectroscopy (LIBS) to the determination of elements distinctive in terms of their biological significance (such as potassium, magnesium, calcium, and sodium) and to the monitoring of accumulation of potentially toxic heavy metal ions in living microorganisms (algae), in order to trace e.g. the influence of environmental exposure and other cultivation and biological factors having an impact on them. Algae cells were suspended in liquid media or presented in a form of adherent cell mass on a surface (biofilm) and, consequently, characterized using their spectra. In our feasibility study we used three different experimental arrangements employing double-pulse LIBS technique in order to improve on analytical selectivity and sensitivity for potential industrial biotechnology applications, e.g. for monitoring of mass production of commercial biofuels, utilization in the food industry and control of the removal of heavy metal ions from industrial waste waters.

  15. Breakdown processes in wire chambers, prevention and rate capability

    International Nuclear Information System (INIS)

    Atac, M.

    1983-01-01

    Breakdowns were optically and electronically observed in drift tubes and drift chambers. They occur at a critical gain for given intensity in a gas mixture when ultraviolet photons are not completely quenched. It was observed that the breakdowns depended critically on average current for a given gas mixture independent of the size of the drift tubes used. Using 4.6% ethyl alcohol vapor mixed into 50/50 argon ethane gas, breakdown are eliminated up to 7 /sub μ/A average current drawn by pulses on a 1 cm section of an anode wire under an intense source. Pulses with an avalanche size of 10 6 electron rates above 10 6 pulses per centimeter per wire may be obtained with the elimination of breakdowns

  16. Breakdown processes in wire chambers, prevention and rate capability

    International Nuclear Information System (INIS)

    Atac, M.

    1982-01-01

    Breakdowns were optically and electronically observed in drift tubes and drift chambers. They occur at a critical gain for given intensity in a gas mixture when ultraviolet photons are not completely quenched. It was observed that the breakdowns depended critically on average current for a given gas mixture independent of the size of the drift tubes used. Using 4.6% ethyl alcohol vapor mixed into 50/50 argon ethane gas, breakdowns are eliminated up to 7 μA average current drawn by pulses on a 1 cm section of an anode wire under an intense source. Pulses with an avalanche size of 10 6 electron rates above 10 6 pulses per centimeter per wire may be obtained with the elimination of breakdowns

  17. Temporal dependence of the enhancement of material removal in femtosecond-nanosecond dual-pulse laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Scaffidi, Jon; Pearman, William; Carter, J. Chance; Colston, Bill W. Jr.; Angel, S. Michael

    2004-01-01

    Despite the large neutral atomic and ionic emission enhancements that have been noted in collinear and orthogonal dual-pulse laser-induced breakdown spectroscopy, the source or sources of these significant signal and signal-to-noise ratio improvements have yet to be explained. In the research reported herein, the combination of a femtosecond preablative air spark and a nanosecond ablative pulse yields eightfold and tenfold material removal improvement for brass and aluminum, respectively, but neutral atomic emission is enhanced by only a factor of 3-4. Additionally, temporal correlation between enhancement of material removal and of atomic emission is quite poor, suggesting that the atomic-emission enhancements noted in the femtosecond-nanosecond pulse configuration result in large part from some source other than simple improvement in material removal

  18. Application of Laser Induced Breakdown Spectroscopy under Polar Conditions

    Science.gov (United States)

    Clausen, J. L.; Hark, R.; Bol'shakov, A.; Plumer, J.

    2015-12-01

    Over the past decade our research team has evaluated the use of commercial-off-the-shelf laser-induced breakdown spectroscopy (LIBS) for chemical analysis of snow and ice samples under polar conditions. One avenue of research explored LIBS suitability as a detector of paleo-climate proxy indicators (Ca, K, Mg, and Na) in ice as it relates to atmospheric circulation. LIBS results revealed detection of peaks for C and N, consistent with the presence of organic material, as well as major ions (Ca, K, Mg, and Na) and trace metals (Al, Cu, Fe, Mn, Ti). The detection of Ca, K, Mg, and Na confirmed that LIBS has sufficient sensitivity to be used as a tool for characterization of paleo-climate proxy indicators in ice-core samples. Techniques were developed for direct analysis of ice as well as indirect measurements of ice via melting and filtering. Pitfalls and issues of direct ice analysis using several cooling techniques to maintain ice integrity will be discussed. In addition, a new technique, laser ablation molecular isotopic spectroscopy (LAMIS) was applied to detection of hydrogen and oxygen isotopes in ice as isotopic analysis of ice is the main tool in paleoclimatology and glaciology studies. Our results demonstrated that spectra of hydroxyl isotopologues 16OH, 18OH, and 16OD can be recorded with a compact spectrograph to determine hydrogen and oxygen isotopes simultaneously. Quantitative isotopic calibration for ice analysis can be accomplished using multivariate chemometric regression as previously realized for water vapor. Analysis with LIBS and LAMIS required no special sample preparation and was about ten times faster than analysis using ICP-MS. Combination of the two techniques in one portable instrument for in-field analysis appears possible and would eliminate the logistical and cost issues associated with ice core management.

  19. Dramatically enhanced electrical breakdown strength in cellulose nanopaper

    Directory of Open Access Journals (Sweden)

    Jianwen Huang

    2016-09-01

    Full Text Available Electrical breakdown behaviors of nanopaper prepared from nanofibrillated cellulose (NFC were investigated. Compared to conventional insulating paper made from micro softwood fibers, nanopaper has a dramatically enhanced breakdown strength. Breakdown field of nanopaper is 67.7 kV/mm, whereas that of conventional paper is only 20 kV/mm. Air voids in the surface of conventional paper are observed by scanning electron microscope (SEM. Further analyses using mercury intrusion show that pore diameter of conventional paper is around 1.7 μm, while that of nanopaper is below 3 nm. Specific pore size of nanopaper is determined to be approximately 2.8 nm by the gas adsorption technique. In addition, theoretical breakdown strengths of nanopaper and conventional paper are also calculated to evaluate the effect of pore size. It turns out that theoretical values agree well with experimental data, indicating that the improved strength in nanopaper is mainly attributed to the decreased pore size. Due to its outstanding breakdown strength, this study indicates the suitability of nanopaper for electrical insulation in ultra-high voltage convert transformers and other electrical devices.

  20. Determination of Metal Elements in Wine Using Laser-Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Bocková, Jana; Tian, Ye; Yin, Hualiang; Delepine-Gilon, Nicole; Chen, Yanping; Veis, Pavel; Yu, Jin

    2017-08-01

    We developed a method for sensitive elemental analysis of wines using laser-induced breakdown spectroscopy (LIBS). In order to overcome the inefficiency of direct ablation of bulk wine (an organic liquid), a thin layer of wine residue was prepared on a metallic target according to an appropriated heating procedure applied to an amount of liquid wine dropped on the target surface. The obtained ensemble was thus ablated. Such a sample preparation procedure used a very small volume of 2 mL of wine and took only 30 min without reagent or solvent. The results show the detection of tens of metal and non-metal elements including majors (Na, Mg, K, Ca), minors, and traces (Li, B, Si, P, Ti, Mn, Fe, Cu, Zn, Rb, Sr, Ba, and Pb) in wines purchased from local supermarkets and from different production places in France. Commercially available wines were then spiked with certified standard solutions of Ti and Fe. Three series of laboratory reference samples were thus prepared using three different wines (a red wine and a white wine from a same production region and a red wine from another production region) with concentrations of Ti and Fe in the range of 1-40 mg/L. Calibration graphs established with the spiked samples allowed extracting the figures-of-merit parameters of the method for wine analysis such as the coefficient of determination ( R 2 ) and the limits of detection and quantification (LOD and LOQ). The calibration curves built with the three wines were then compared. We studied the residual matrix effect between these wines in the determination of the concentrations of Ti and Fe.

  1. Association of hypoxia inducible factor-1 alpha gene polymorphism with both type 1 and type 2 diabetes in a Caucasian (Hungarian sample

    Directory of Open Access Journals (Sweden)

    Panczel Pal

    2009-08-01

    Full Text Available Abstract Background Hypoxia inducible factor-1 alpha (HIF-1α is a transcription factor that plays an important role in neo-vascularisation, embryonic pancreas beta-cell mass development, and beta cell protection. Recently a non synonymous single nucleotide polymorphism (g.C45035T SNP, rs11549465 of HIF-1α gene, resulting in the p.P582S amino acid change has been shown to be associated with type 2 diabetes (T2DM in a Japanese population. Our aim was to replicate these findings on a Caucasian (Hungarian population, as well as to study whether this genetic effect is restricted to T2DM or can be expanded to diabetes in general. Methods A large Caucasian sample (N = 890 was recruited including 370 T2DM, 166 T1DM and 354 healthy subjects. Genotyping was validated by two independent methods: a restriction fragment analysis (RFLP and a real time PCR using TaqMan probes. An overestimation of heterozygotes by RFLP was observed as a consequence of a nearby SNP (rs34005929. Therefore genotyping results of the justified TaqMan system were accepted. The measured genotype distribution corresponded to Hardy-Weinberg equilibrium (P = 0.740 Results As the TT genotype was extremely rare in the population (0.6% in clinical sample and 2.5% in controls, the genotypes were grouped as T absent (CC and T present (CT and TT. Genotype-wise analysis showed a significant increase of T present group in controls (24.0% as compared to patients (16.8%, P = 0.008. This genetic effect was demonstrated in the separated samples of type 1 (15.1%, P = 0.020, and also in type 2 (17.6%, P = 0.032 diabetes. Allele-wise analysis gave identical results showing a higher frequency of the T allele in the control sample (13.3% than in the clinical sample (8.7%, P = 0.002 with similar results in type 1 (7.8%, P = 0.010 and type 2 (9.1%, P = 0.011 diabetes. The odds ratio for diabetes (either type 1 or 2 was 1.56 in the presence of the C allele. Conclusion We confirmed the protective effect

  2. Laser-induced breakdown spectroscopy in gases using ungated detection in combination with polarization filtering and online background correction

    International Nuclear Information System (INIS)

    Kiefer, J; Tröger, J W; Seeger, T; Leipertz, A; Li, B; Li, Z S; Aldén, M

    2010-01-01

    Quantitative and fast analysis of gas mixtures is an important task in the field of chemical, security and environmental analysis. In this paper we present a diagnostic approach based on laser-induced breakdown spectroscopy (LIBS). A polarization filter in the signal collection system enables sufficient suppression of elastically scattered light which otherwise reduces the dynamic range of the measurement. Running the detector with a doubled repetition rate as compared to the laser online background correction is obtained. Quantitative measurements of molecular air components in synthetic, ambient and expiration air are performed and demonstrate the potential of the method. The detection limits for elemental oxygen and hydrogen are in the order of 15 ppm and 10 ppm, respectively

  3. A chimeric antigen receptor for TRAIL-receptor 1 induces apoptosis in various types of tumor cells.

    Science.gov (United States)

    Kobayashi, Eiji; Kishi, Hiroyuki; Ozawa, Tatsuhiko; Hamana, Hiroshi; Nakagawa, Hidetoshi; Jin, Aishun; Lin, Zhezhu; Muraguchi, Atsushi

    2014-10-31

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and its associated receptors (TRAIL-R/TR) are attractive targets for cancer therapy because TRAIL induces apoptosis in tumor cells through TR while having little cytotoxicity on normal cells. Therefore, many agonistic monoclonal antibodies (mAbs) specific for TR have been produced, and these induce apoptosis in multiple tumor cell types. However, some TR-expressing tumor cells are resistant to TR-specific mAb-induced apoptosis. In this study, we constructed a chimeric antigen receptor (CAR) of a TRAIL-receptor 1 (TR1)-specific single chain variable fragment (scFv) antibody (TR1-scFv-CAR) and expressed it on a Jurkat T cell line, the KHYG-1 NK cell line, and human peripheral blood lymphocytes (PBLs). We found that the TR1-scFv-CAR-expressing Jurkat cells killed target cells via TR1-mediated apoptosis, whereas TR1-scFv-CAR-expressing KHYG-1 cells and PBLs killed target cells not only via TR1-mediated apoptosis but also via CAR signal-induced cytolysis, resulting in cytotoxicity on a broader range if target cells than with TR1-scFv-CAR-expressing Jurkat cells. The results suggest that TR1-scFv-CAR could be a new candidate for cancer gene therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Novel estimation of the humification degree of soil organic matter by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Ferreira, Edilene Cristina; Ferreira, Ednaldo José; Villas-Boas, Paulino Ribeiro; Senesi, Giorgio Saverio; Carvalho, Camila Miranda; Romano, Renan Arnon; Martin-Neto, Ladislau; Milori, Débora Marcondes Bastos Pereira

    2014-09-01

    Soil organic matter (SOM) constitutes an important reservoir of terrestrial carbon and can be considered an alternative for atmospheric carbon storage, contributing to global warming mitigation. Soil management can favor atmospheric carbon incorporation into SOM or its release from SOM to atmosphere. Thus, the evaluation of the humification degree (HD), which is an indication of the recalcitrance of SOM, can provide an estimation of the capacity of carbon sequestration by soils under various managements. The HD of SOM can be estimated by using various analytical techniques including fluorescence spectroscopy. In the present work, the potential of laser-induced breakdown spectroscopy (LIBS) to estimate the HD of SOM was evaluated for the first time. Intensities of emission lines of Al, Mg and Ca from LIBS spectra showing correlation with fluorescence emissions determined by laser-induced fluorescence spectroscopy (LIFS) reference technique were used to obtain a multivaried calibration model based on the k-nearest neighbor (k-NN) method. The values predicted by the proposed model (A-LIBS) showed strong correlation with LIFS results with a Pearson's coefficient of 0.87. The HD of SOM obtained after normalizing A-LIBS by total carbon in the sample showed a strong correlation to that determined by LIFS (0.94), thus suggesting the great potential of LIBS for this novel application.

  5. Feasibility of laser-induced breakdown spectroscopy (LIBS) for classification of sea salts.

    Science.gov (United States)

    Tan, Man Minh; Cui, Sheng; Yoo, Jonghyun; Han, Song-Hee; Ham, Kyung-Sik; Nam, Sang-Ho; Lee, Yonghoon

    2012-03-01

    We have investigated the feasibility of laser-induced breakdown spectroscopy (LIBS) as a fast, reliable classification tool for sea salts. For 11 kinds of sea salts, potassium (K), magnesium (Mg), calcium (Ca), and aluminum (Al), concentrations were measured by inductively coupled plasma-atomic emission spectroscopy (ICP-AES), and the LIBS spectra were recorded in the narrow wavelength region between 760 and 800 nm where K (I), Mg (I), Ca (II), Al (I), and cyanide (CN) band emissions are observed. The ICP-AES measurements revealed that the K, Mg, Ca, and Al concentrations varied significantly with the provenance of each salt. The relative intensities of the K (I), Mg (I), Ca (II), and Al (I) peaks observed in the LIBS spectra are consistent with the results using ICP-AES. The principal component analysis of the LIBS spectra provided the score plot with quite a high degree of clustering. This indicates that classification of sea salts by chemometric analysis of LIBS spectra is very promising. Classification models were developed by partial least squares discriminant analysis (PLS-DA) and evaluated. In addition, the Al (I) peaks enabled us to discriminate between different production methods of the salts. © 2012 Society for Applied Spectroscopy

  6. Numerical investigation of unsteady vortex breakdown past 80°/65° double-delta wing

    Directory of Open Access Journals (Sweden)

    Liu Jian

    2014-06-01

    Full Text Available An improved delayed detached eddy simulation (IDDES method based on the k-ω-SST (shear stress transport turbulence model was applied to predict the unsteady vortex breakdown past an 80°/65° double-delta wing (DDW, where the angles of attack (AOAs range from 30° to 40°. Firstly, the IDDES model and the relative numerical methods were validated by simulating the massively separated flow around an NACA0021 straight wing at the AOA of 60°. The fluctuation properties of the lift and pressure coefficients were analyzed and compared with the available measurements. For the DDW case, the computations were compared with such measurements as the mean lift, drag, pitching moment, pressure coefficients and breakdown locations. Furthermore, the unsteady properties were investigated in detail, such as the frequencies of force and moments, pressure fluctuation on the upper surface, typical vortex breakdown patterns at three moments, and the distributions of kinetic turbulence energy at a stream wise section. Two dominated modes are observed, in which their Strouhal numbers are 1.0 at the AOAs of 30°, 32° and 34° and 0.7 at the AOAs of 36°, 38° and 40°. The breakdown vortex always moves upstream and downstream and its types change alternatively. Furthermore, the vortex can be identified as breakdown or not through the mean pressure, root mean square of pressure, or even through correlation analysis.

  7. Adaptive optics for reduced threshold energy in femtosecond laser induced optical breakdown in water based eye model

    Science.gov (United States)

    Hansen, Anja; Krueger, Alexander; Ripken, Tammo

    2013-03-01

    In ophthalmic microsurgery tissue dissection is achieved using femtosecond laser pulses to create an optical breakdown. For vitreo-retinal applications the irradiance distribution in the focal volume is distorted by the anterior components of the eye causing a raised threshold energy for breakdown. In this work, an adaptive optics system enables spatial beam shaping for compensation of aberrations and investigation of wave front influence on optical breakdown. An eye model was designed to allow for aberration correction as well as detection of optical breakdown. The eye model consists of an achromatic lens for modeling the eye's refractive power, a water chamber for modeling the tissue properties, and a PTFE sample for modeling the retina's scattering properties. Aberration correction was performed using a deformable mirror in combination with a Hartmann-Shack-sensor. The influence of an adaptive optics aberration correction on the pulse energy required for photodisruption was investigated using transmission measurements for determination of the breakdown threshold and video imaging of the focal region for study of the gas bubble dynamics. The threshold energy is considerably reduced when correcting for the aberrations of the system and the model eye. Also, a raise in irradiance at constant pulse energy was shown for the aberration corrected case. The reduced pulse energy lowers the potential risk of collateral damage which is especially important for retinal safety. This offers new possibilities for vitreo-retinal surgery using femtosecond laser pulses.

  8. Remote quantitative analysis of cerium through a shielding window by stand-off laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Gong, Yongdeuk; Choi, Daewoong; Han, Bo-Young; Yoo, Jonghyun; Han, Song-Hee; Lee, Yonghoon

    2014-01-01

    Highlights: • Remote LIBS analysis of cerium in the samples located behind a shielding window. • Effects of a shielding window on the remote LIBS analysis were investigated. • Multivariate analysis improves the calibration quality. - Abstract: Laser-Induced Breakdown Spectroscopy (LIBS) has been considered in many applications in nuclear industry. LIBS can be an ideal technique for analyzing the inaccessible nuclear materials typically located behind a shielding window. We report the effect of optical transmittance of the shielding window on the analytical performances of stand-off LIBS for the preliminary surrogate sample of demonstration pyrochemical process, a mixture of cerium oxide (CeO 2 ) and potassium chloride (KCl). A pulsed laser beam was focused on the surface of the sample located 1.45 m away from the stand-off LIBS device. The laser-induced plasma emission was collected through a Schmidt–Cassegrain telescope. LIBS spectra were obtained in an open path and through the shielding window. Univariate calibration curves were obtained using the integrated area of partially resolved Ce I and II lines. The limits of detection (LOD) for Ce were estimated to be 0.046 and 0.061 wt.% for the open-path and through-window analysis, respectively. We found that the through-window LOD is mainly influenced by the optical transmittance of the shielding window and therefore, the through-window LOD can be predicted from the open-path LOD and the optical transmittance of the shielding window. Also, multivariate calibration using partial least squares regression was successfully applied. The quality of calibration could be improved by the multivariate analysis

  9. Remote quantitative analysis of cerium through a shielding window by stand-off laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yongdeuk [Department of Chemistry, Mokpo National University, Jeonnam 534-729 (Korea, Republic of); Choi, Daewoong [Department of Chemistry, Mokpo National University, Jeonnam 534-729 (Korea, Republic of); Korea Atomic Energy Research Institute, P.O. Box 255, Yuseong, Daejeon 305-353 (Korea, Republic of); Han, Bo-Young, E-mail: byhan@kaeri.re.kr [Korea Atomic Energy Research Institute, P.O. Box 255, Yuseong, Daejeon 305-353 (Korea, Republic of); Yoo, Jonghyun [Applied Spectra, 46665 Fremont Boulevard, Fremont, CA 94538 (United States); Han, Song-Hee [Division of Maritime Transportation System, Mokpo National Maritime University, Jeonnam 530-729 (Korea, Republic of); Lee, Yonghoon, E-mail: yhlee@mokpo.ac.kr [Department of Chemistry, Mokpo National University, Jeonnam 534-729 (Korea, Republic of)

    2014-10-15

    Highlights: • Remote LIBS analysis of cerium in the samples located behind a shielding window. • Effects of a shielding window on the remote LIBS analysis were investigated. • Multivariate analysis improves the calibration quality. - Abstract: Laser-Induced Breakdown Spectroscopy (LIBS) has been considered in many applications in nuclear industry. LIBS can be an ideal technique for analyzing the inaccessible nuclear materials typically located behind a shielding window. We report the effect of optical transmittance of the shielding window on the analytical performances of stand-off LIBS for the preliminary surrogate sample of demonstration pyrochemical process, a mixture of cerium oxide (CeO{sub 2}) and potassium chloride (KCl). A pulsed laser beam was focused on the surface of the sample located 1.45 m away from the stand-off LIBS device. The laser-induced plasma emission was collected through a Schmidt–Cassegrain telescope. LIBS spectra were obtained in an open path and through the shielding window. Univariate calibration curves were obtained using the integrated area of partially resolved Ce I and II lines. The limits of detection (LOD) for Ce were estimated to be 0.046 and 0.061 wt.% for the open-path and through-window analysis, respectively. We found that the through-window LOD is mainly influenced by the optical transmittance of the shielding window and therefore, the through-window LOD can be predicted from the open-path LOD and the optical transmittance of the shielding window. Also, multivariate calibration using partial least squares regression was successfully applied. The quality of calibration could be improved by the multivariate analysis.

  10. Laser-induced breakdown spectroscopy (LIBS): an overview of recent progress and future potential for biomedical applications.

    Science.gov (United States)

    Rehse, S J; Salimnia, H; Miziolek, A W

    2012-02-01

    The recent progress made in developing laser-induced breakdown spectroscopy (LIBS) has transformed LIBS from an elemental analysis technique to one that can be applied for the reagentless analysis of molecularly complex biological materials or clinical specimens. Rapid advances in the LIBS technology have spawned a growing number of recently published articles in peer-reviewed journals which have consistently demonstrated the capability of LIBS to rapidly detect, biochemically characterize and analyse, and/or accurately identify various biological, biomedical or clinical samples. These analyses are inherently real-time, require no sample preparation, and offer high sensitivity and specificity. This overview of the biomedical applications of LIBS is meant to summarize the research that has been performed to date, as well as to suggest to health care providers several possible specific future applications which, if successfully implemented, would be significantly beneficial to humankind.

  11. Skin breakdown in acute care pediatrics.

    Science.gov (United States)

    Suddaby, Elizabeth C; Barnett, Scott D; Facteau, Lorna

    2006-04-01

    The purpose of this study was to develop a simple, single-page measurement tool that evaluates risk of skin breakdown in the peadiatric population and apply it to the acutely hospitalized child. Data were collected over a 15-month period from 347 patients on four in-patient units (PICU, medical-surgical, oncology, and adolescents) on skin breakdown using the AHCPR staging guidelines and compared to the total score on the Starkid SkinScale in order to determine its ability to predict skin breakdown. The inter-rater reliability of the Starkid Skin Scale was r2 = 0.85 with an internal reliablity of 0.71. The sensitivity of the total score was low (17.5%) but highly specific (98.5%). The prevalence of skin breakdown in the acutely hospitalized child was 23%, the majority (77.5%) occurring as erythema of the skin. Buttocks, perineum, and occiput were the most common locations of breakdown. Occiput breakdown was more common in critically ill (PICU) patients while diaper dermatitis was more common in the general medical-surgical population.

  12. UV-induced transcription from the human immunodeficiency virus type 1 (HIV-1) long terminal repeat and UV-induced secretion of an extracellular factor that induces HIV-1 transcription in nonirradiated cells

    International Nuclear Information System (INIS)

    Stein, B.; Kraemer, M.R.; Rahmsdorf, H.J.; Ponta, H.; Herrlich, P.

    1989-01-01

    UV irradiation, but not visible sunlight, induces the transcription of human immunodeficiency virus type 1 (HIV-1). Chimeric constructs carrying all or parts of the HIV-1 long terminal repeat linked to an indicator gene were transfected into HeLa cells or murine and human T-cell lines, and their response to irradiation was tested. The cis-acting element conferring UV responsiveness is identical to the sequence binding transcription factor NF kappa B. UV irradiation enhances NF kappa B binding activity as assayed by gel retardation experiments. Interestingly, the requirement for UV irradiation can be replaced by cocultivation of transfected cells with UV-irradiated nontransfected (HIV-1-negative) cells. A UV-induced extracellular protein factor is detected in the culture medium conditioned by UV-treated cells. The factor is produced upon UV irradiation by several murine and human cell lines, including HeLa, Molt-4, and Jurkat, and acts on several cells. These data suggest that the UV response of keratinocytes in human skin can be magnified and spread to deeper layers that are more shielded, including the Langerhans cells, and that this indirect UV response may contribute to the activation of HIV-1 in humans

  13. Field deployment test of laser-induced breakdown spectroscopy (LIBS) technology at the Yucca Mountain Exploratory Studies Facility, Test Alcove No. 1, March 2-9, 1994: Milestone Report LA4047

    International Nuclear Information System (INIS)

    Blacic, J.; Pettit, D.; Cremers, D.

    1996-01-01

    A field test in the Exploratory Studies Facility at Yucca Mountain, Nevada was performed to determine the feasibility of real-time elemental analysis of rock encountered in air core drilling using the technique of laser-induced breakdown spectroscopy (LIBS). Over the period March 2-9, 1994, hundreds of LIBS spectra were collected in real-time, reflecting the elemental composition of dust produced at the drill head of the second horizontal core hole in Test Alcove No. 1. The particle-laden, drill-coring effluent air stream served as the means to obtain a representative rock sample immediately surrounding the drill bit. LIBS spectra were taken with the spectral range centered at 250, 330, 410, and 500 nm so that representative, overlapping spectral coverage from 200 to 550 nm was obtained for the dust. Spectral lines for the major elements Si, Al, K, Na, and Fe and the minor elements Ca, Mg, Ti, and Mn were observed. Some simple engineering improvements to the cyclone separator were identified if this approach to dust analysis is pursued in the future

  14. Signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy applied to different soils

    Energy Technology Data Exchange (ETDEWEB)

    Nicolodelli, Gustavo, E-mail: gunicolodelli@hotmail.com [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Senesi, Giorgio Saverio, E-mail: giorgio.senesi@imip.cnr.it [Institute of Inorganic Methodologies and Plasmas, CNR, Bari, 70126 Bari (Italy); Romano, Renan Arnon, E-mail: renan.romano@gmail.com [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Physics Institute of São Carlos, University of São Paulo, IFSC-USP, Av. Trabalhador são-carlense, 400 Pq. Arnold Schimid, 13566-590 São Carlos, SP (Brazil); Oliveira Perazzoli, Ivan Luiz de, E-mail: ivanperazzoli@hotmail.com [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Milori, Débora Marcondes Bastos Pereira, E-mail: debora.milori@embrapa.br [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil)

    2015-09-01

    Laser-induced breakdown spectroscopy (LIBS) is a well-known consolidated analytical technique employed successfully for the qualitative and quantitative analysis of solid, liquid, gaseous and aerosol samples of very different nature and origin. Several techniques, such as dual-pulse excitation setup, have been used in order to improve LIBS's sensitivity. The purpose of this paper was to optimize the key parameters as excitation wavelength, delay time and interpulse, that influence the double pulse (DP) LIBS technique in the collinear beam geometry when applied to the analysis at atmospheric air pressure of soil samples of different origin and texture from extreme regions of Brazil. Additionally, a comparative study between conventional single pulse (SP) LIBS and DP LIBS was performed. An optimization of DP LIBS system, choosing the correct delay time between the two pulses, was performed allowing its use for different soil types and the use of different emission lines. In general, the collinear DP LIBS system improved the analytical performances of the technique by enhancing the intensity of emission lines of some elements up to about 5 times, when compared with conventional SP-LIBS, and reduced the continuum emission. Further, the IR laser provided the best performance in re-heating the plasma. - Highlights: • The correct choice of the delay time between the two pulses is crucial for the DP system. • An optimization of DP LIBS system was performed allowing its use for different soil and the use of different emission lines. • The DP LIBS system improved the analytical performances of the technique up to about 5 times, when compared with SP LIBS. • The IR laser provided the best performance in re-heating the plasma.

  15. Combination of laser-induced breakdown spectroscopy and Raman spectroscopy for multivariate classification of bacteria

    Science.gov (United States)

    Prochazka, D.; Mazura, M.; Samek, O.; Rebrošová, K.; Pořízka, P.; Klus, J.; Prochazková, P.; Novotný, J.; Novotný, K.; Kaiser, J.

    2018-01-01

    In this work, we investigate the impact of data provided by complementary laser-based spectroscopic methods on multivariate classification accuracy. Discrimination and classification of five Staphylococcus bacterial strains and one strain of Escherichia coli is presented. The technique that we used for measurements is a combination of Raman spectroscopy and Laser-Induced Breakdown Spectroscopy (LIBS). Obtained spectroscopic data were then processed using Multivariate Data Analysis algorithms. Principal Components Analysis (PCA) was selected as the most suitable technique for visualization of bacterial strains data. To classify the bacterial strains, we used Neural Networks, namely a supervised version of Kohonen's self-organizing maps (SOM). We were processing results in three different ways - separately from LIBS measurements, from Raman measurements, and we also merged data from both mentioned methods. The three types of results were then compared. By applying the PCA to Raman spectroscopy data, we observed that two bacterial strains were fully distinguished from the rest of the data set. In the case of LIBS data, three bacterial strains were fully discriminated. Using a combination of data from both methods, we achieved the complete discrimination of all bacterial strains. All the data were classified with a high success rate using SOM algorithm. The most accurate classification was obtained using a combination of data from both techniques. The classification accuracy varied, depending on specific samples and techniques. As for LIBS, the classification accuracy ranged from 45% to 100%, as for Raman Spectroscopy from 50% to 100% and in case of merged data, all samples were classified correctly. Based on the results of the experiments presented in this work, we can assume that the combination of Raman spectroscopy and LIBS significantly enhances discrimination and classification accuracy of bacterial species and strains. The reason is the complementarity in

  16. Mechanism of electrical breakdown of gases for pressures from 10-9 to 1 bar and inter-electrode gaps from 0.1 to 0.5 mm

    International Nuclear Information System (INIS)

    Osmokrovic, P; Vujisic, M; Stankovic, K; Vasic, A; Loncar, B

    2007-01-01

    This paper discusses the mechanisms of gas breakdown at low values of pressure and inter-electrode gap, i.e. in the vicinity of the Paschen minimum. In this area of pressure and inter-electrode gap values, breakdown occurs either through gas or vacuum mechanisms, and also the so called anomalous Paschen effect appears. Electrical breakdown of electropositive, electronegative and noble gases has been investigated theoretically, experimentally and numerically. Based on the results obtained, regions in which particular breakdown mechanisms appear have been demarcated. Special attention has been devoted to the anomalous Paschen effect as well as to the avalanche vacuum breakdown mechanism

  17. Type 1 Diabetes and Interferon Therapy

    OpenAIRE

    Nakamura, Kan; Kawasaki, Eiji; Imagawa, Akihisa; Awata, Takuya; Ikegami, Hiroshi; Uchigata, Yasuko; Kobayashi, Tetsuro; Shimada, Akira; Nakanishi, Koji; Makino, Hideichi; Maruyama, Taro; Hanafusa, Toshiaki

    2011-01-01

    OBJECTIVE Interferon therapy can trigger induction of several autoimmune diseases, including type 1 diabetes. To assess the clinical, immunologic, and genetic characteristics of type 1 diabetes induced by interferon therapy, we conducted a nationwide cross-sectional survey. RESEARCH DESIGN AND METHODS Clinical characteristics, anti-islet autoantibodies, and HLA-DR typing were examined in 91 patients for whom type 1 diabetes developed during or shortly after interferon therapy. RESULTS Median ...

  18. Spectroscopic detection of health hazardous contaminants in lipstick using Laser Induced Breakdown Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gondal, M.A., E-mail: magondal@kfupm.edu.sa [Physics Department and Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Seddigi, Z.S. [Chemistry Department, Umm Al-Qura University, Makkah (Saudi Arabia); Nasr, M.M. [Natural Science Departments, Riyadh College of Dentistry and Pharmacy, P.O. Box 321815, Riyadh 11343 (Saudi Arabia); Gondal, B. [Plastic and Reconstructive Aesthetic Surgery, Whitfield Hospital, Waterford (Ireland)

    2010-03-15

    Laser Induced Breakdown Spectroscopy (LIBS) technique was applied to determine the concentrations of different toxic elements like lead, chromium, cadmium and zinc in four different lipstick brands sold at local markets in Saudi Arabia. These samples contain toxic elements like lead, cadmium and chromium which are carcinogen dermatitis, allergic and eczematous. Their extraction from human body takes over 40 years and accumulation in the body cause problems like disruption of nervous systems and kidney damage. They could trigger to systemic lupus erythematosus (SLE). In order to test the validity of our LIBS results, standard technique like (ICP-AES) was also applied. To the best of our knowledge, this is the first study where LIBS technique was applied for the measurement of toxic substances in lipsticks. The maximum concentration detected in four lipstick brands was much higher than the permissible safe limits for human use and could lead to serious health problems. It is worth mentioning that the lipstick is not a solid rather is in fluid state which is not trivial to analyze using LIBS technique. For this purpose, special treatment of the lipstick samples was necessary to analyze with our LIBS method.

  19. Spectroscopic detection of health hazardous contaminants in lipstick using Laser Induced Breakdown Spectroscopy

    International Nuclear Information System (INIS)

    Gondal, M.A.; Seddigi, Z.S.; Nasr, M.M.; Gondal, B.

    2010-01-01

    Laser Induced Breakdown Spectroscopy (LIBS) technique was applied to determine the concentrations of different toxic elements like lead, chromium, cadmium and zinc in four different lipstick brands sold at local markets in Saudi Arabia. These samples contain toxic elements like lead, cadmium and chromium which are carcinogen dermatitis, allergic and eczematous. Their extraction from human body takes over 40 years and accumulation in the body cause problems like disruption of nervous systems and kidney damage. They could trigger to systemic lupus erythematosus (SLE). In order to test the validity of our LIBS results, standard technique like (ICP-AES) was also applied. To the best of our knowledge, this is the first study where LIBS technique was applied for the measurement of toxic substances in lipsticks. The maximum concentration detected in four lipstick brands was much higher than the permissible safe limits for human use and could lead to serious health problems. It is worth mentioning that the lipstick is not a solid rather is in fluid state which is not trivial to analyze using LIBS technique. For this purpose, special treatment of the lipstick samples was necessary to analyze with our LIBS method.

  20. Colloid Detection in Natural Ground Water from Ruprechtov by Laser-Induced Breakdown Detection

    Energy Technology Data Exchange (ETDEWEB)

    Hauser, W.; Geckeis, H.; Goetz, R. [FZK - Inst. fuer Nukleare Entsorgung, Ka rlsruhe (Germany)]. e-mail: hauser@ine.fzk.de; Noseck, U. [Gesellschaft fuer Anlagen- und Reaktorsicherheit, D-38122 Braunschweig (Germany); Laciok, A. [Nuclear Research Inst. Rez plc, Waste and Environmental Management Dept., Husinec-Rez, PSC 250 68 (Czech Republic)

    2007-06-15

    A borehole ground water sampling system and a mobile laser-induced breakdown detection (LIBD) equipment for colloid detection combined with a geomonitoring unit have been applied to characterize the natural background colloid concentration in ground waters of the Ruprechtov natural analogue site (Czech Republic). Ground water has been sampled using steel cylinders. To minimize artifacts during ground water sampling the contact to atmospheric oxygen has been excluded. The ground water samples collected in this way are transported to the laboratory where they have been connected to a series of flow-through detection cells. Argon gas is used to press the ground water through these detection cells for colloid analysis (LIBD), pH, Eh, electrical conductivity and oxygen content. After the above mentioned analysis additional samples are taken for chemical analysis by ICP-AES, ICP-MS, IC- and DOC-detection. Our data obtained by in-situ- and laboratory- measurements point out that the natural colloid concentration found at the Ruprechtov site is a strong function of the ground water ionic strength. The LIBD determined natural background colloid concentrations found at Ruprechtov are compared with data of studies performed in Aespoe (Sweden) and Grimsel (Switzerland)

  1. The development of fieldable laser-induced breakdown spectrometer: No limits on the horizon

    International Nuclear Information System (INIS)

    Fortes, F.J.; Laserna, J.J.

    2010-01-01

    In this review, new trends in the development of fieldable instrumentation based on laser-induced breakdown spectroscopy (LIBS) and its recent applications is presented. Depending on the LIBS configuration we will distinguish between portable, remote and stand-off instruments. Moreover, the development of portable systems gives greater flexibility and also increases the range of LIBS applications. In general, portable instruments are employed in close-contact applications like immovable artworks, contaminated soils and environmental diagnostic, while remote and stand-off instruments are normally used in analytical applications at distances where access to the sample is difficult or hazardous. Although remote and stand-off instruments are both used for chemical analysis at distances, the instrumental configurations are completely different. In remote analysis, an optical fiber is employed to deliver the laser energy a certain distance. This approach has been usually restricted to industrial applications, bulk analysis in water, geological measurements and chemical analysis on nuclear stations. In the case of stand-off applications, the laser beam and the returning plasma light are transmitted in an open-path configuration. In this article we also discuss the instrumental requirements in the design of remote and stand-off instruments.

  2. Identification of quantum dots labeled metallothionein by fast scanning laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Konecna, Marie; Novotny, Karel; Krizkova, Sona; Blazkova, Iva; Kopel, Pavel; Kaiser, Jozef; Hodek, Petr; Kizek, Rene

    2014-01-01

    The technique described in this paper allows detection of quantum dots (QDs) specifically deposited on the polystyrene surface by laser-induced breakdown spectroscopy (LIBS). Using LIBS, the distribution of QDs or their conjugates with biomolecules deposited on the surface can be observed, regardless of the fact if they exhibit fluorescence or not. QDs deposited on the specific surface of polystyrene microplate in the form of spots are detected by determination of the metal included in the QDs structure. Cd-containing QDs (CdS, CdTe) stabilized with mercaptopropionic (MPA) or mercaptosuccinic (MSA) acid, respectively, alone or in the form of conjugates with metallothionein (MT) biomolecule are determined by using the 508.58 nm Cd emission line. The observed absolute detection limit for Cd in CdTe QDs conjugates with MT in one spot was 3 ng Cd. Due to the high sensitivity of this technique, the immunoanalysis in combination with LIBS was also investigated. Cd spatial distribution in sandwich immunoassay was detected. - Highlights: • We describe determination of biomolecules labeled with quantum dots by LIBS. • LIBS and immunoassay are applied for the determination of metallothionein. • Metallothionein amount detected by LIBS is 10-times lower compared to ELISA

  3. Identification of quantum dots labeled metallothionein by fast scanning laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Konecna, Marie [Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Novotny, Karel [Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-625 00 Brno (Czech Republic); Krizkova, Sona [Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Blazkova, Iva [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Kopel, Pavel [Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Kaiser, Jozef [Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Institute of Physical Engineering, Brno University of Technology, Technicka 2, CZ-616 69 Brno (Czech Republic); Hodek, Petr [Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, CZ-128 00 Prague,Czech Republic (Czech Republic); Kizek, Rene [Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); and others

    2014-11-01

    The technique described in this paper allows detection of quantum dots (QDs) specifically deposited on the polystyrene surface by laser-induced breakdown spectroscopy (LIBS). Using LIBS, the distribution of QDs or their conjugates with biomolecules deposited on the surface can be observed, regardless of the fact if they exhibit fluorescence or not. QDs deposited on the specific surface of polystyrene microplate in the form of spots are detected by determination of the metal included in the QDs structure. Cd-containing QDs (CdS, CdTe) stabilized with mercaptopropionic (MPA) or mercaptosuccinic (MSA) acid, respectively, alone or in the form of conjugates with metallothionein (MT) biomolecule are determined by using the 508.58 nm Cd emission line. The observed absolute detection limit for Cd in CdTe QDs conjugates with MT in one spot was 3 ng Cd. Due to the high sensitivity of this technique, the immunoanalysis in combination with LIBS was also investigated. Cd spatial distribution in sandwich immunoassay was detected. - Highlights: • We describe determination of biomolecules labeled with quantum dots by LIBS. • LIBS and immunoassay are applied for the determination of metallothionein. • Metallothionein amount detected by LIBS is 10-times lower compared to ELISA.

  4. Ventricular fibrillation induced by coagulating mode bipolar electrocautery during pacemaker implantation in Myotonic Dystrophy type 1 patient.

    Science.gov (United States)

    Russo, Vincenzo; Rago, Anna; DI Meo, Federica; Cioppa, Nadia Della; Papa, Andrea Antonio; Russo, Maria Giovanna; Nigro, Gerardo

    2014-12-01

    The occurrence of ventricular fibrillation, induced by bipolar electrocautery during elective dual chamber pacemaker implantation, is reported in a patient affected by Myotonic Distrophy type 1 with normal left ventricular ejection fraction.

  5. Antisense targeting of TGF-β1 augments BMP-induced upregulation of osteopontin, type I collagen and Cbfa1 in human Saos-2 cells

    International Nuclear Information System (INIS)

    Shen, Zhong-Jian; Kook Kim, Sang; Youn Jun, Do; Park, Wan; Ho Kim, Young; Malter, James S.; Jo Moon, Byung

    2007-01-01

    Despite commonalities in signal transduction in osteoblasts from different species, the role of TGF-β1 on bone formation remains elusive. In particular, the role of autocrine TGF-β1 on human osteoblasts is largely unknown. Here we show the effect of TGF-β1 knock-down on the proliferation and differentiation of osteoblasts induced by BMP2. Treatment with antisense TGF-β1 moderately increased the rate of cell proliferation, which was completely reversed by the exogenous addition of TGF-β1. Notably, TGF-β1 blockade significantly enhanced BMP2-induced upregulation of mRNAs encoding osteopontin, type I collagen and Cbfa1, which was suppressed by exogenous TGF-β1. Moreover, TGF-β1 knock-down increased BMP2-induced phosphorylation of Smad1/5 as well as their nuclear import, which paralleled a reduction of inhibitory Smad6. These data suggest autocrine TGF-β1 antagonizes BMP signaling through modulation of inducible Smad6 and the activity of BMP specific Smad1/5

  6. Airborne Nanoparticle Detection By Sampling On Filters And Laser-Induced Breakdown Spectroscopy Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dewalle, Pascale; Sirven, Jean-Baptiste [CEA Saclay, DEN, Department of Physical Chemistry, F-91191 Gif-sur-Yvette (France); Roynette, Audrey; Gensdarmes, Francois [IRSN, DSU, Aerosol Physics and Metrology Laboratory, F-91192 Gif-sur-Yvette (France); Golanski, Luana; Motellier, Sylvie, E-mail: jean-baptiste.sirven@cea.fr [CEA Grenoble, DRT, LITEN, Laboratory of Nanomaterial Chemistry and Security, F-38054 Grenoble (France)

    2011-07-06

    Nowadays, due to their unique physical and chemical properties, engineered nanoparticles are increasingly used in a variety of industrial sectors. However, questions are raised about the safety of workers who produce and handle these particles. Therefore it is necessary to assess the potential exposure by inhalation of these workers. There is thereby a need to develop a suitable instrumentation which can detect selectively the presence of engineered nanoparticles in the ambient atmosphere. In this paper Laser-Induced Breakdown Spectroscopy (LIBS) is used to meet this target. LIBS can be implemented on site since it is a fast and direct technique which requires no sample preparation. The approach consisted in sampling Fe{sub 2}O{sub 3} and TiO{sub 2} nanoparticles on a filter, respectively a mixed cellulose ester membrane and a polycarbonate membrane, and to measure the surface concentration of Fe and Ti by LIBS. Then taking into account the sampling parameters (flow, duration, filter surface) we could calculate a detection limit in volume concentration in the atmosphere. With a sampling at 10 L/min on a 10 cm{sup 2} filter during 1 min, we obtained detection limits of 56 {mu}g/m{sup 3} for Fe and 22 {mu}g/m{sup 3} for Ti. These figures, obtained in real time, are significantly below existing workplace exposure recommendations of the EU-OSHA and of the NIOSH. These results are very encouraging and will be completed in a future work on airborne carbon nanotube detection.

  7. Determination of uranium concentration in an ore sample using laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Kim, Y.-S.; Han, B.-Y.; Shin, H.S.; Kim, H.D.; Jung, E.C.; Jung, J.H.; Na, S.H.

    2012-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been recognized as a promising technique for analyzing sensitive nuclear materials such as uranium, plutonium, and curium in a high-radiation environment, especially since the implementation of IAEA (International Atomic Energy Agency) safeguards. The uranium spectra of ore samples were quantitatively analyzed prior to analyzing sensitive materials in the nuclear industry. The purpose of this experiment is to extract quantitative information about the uranium in a uranium ore using a standard addition approach. The uranium ore samples containing different concentrations of U were prepared by mixing raw ore powder with natural uranium oxide powders. Calibration sets of 0.2, 0.4, 0.6, 0.8 and 1.0 wt.% uranium concentrations within the uranium ore sample were achieved. A pulsed and Q-switched Nd:YAG laser at a wavelength of 532 nm was used as a light source. An echelle spectrometer that covers a 190–420 nm wavelength range is used to generate a calibration curve and determine the detection limit of uranium in the ore matrix. The neutral atomic-emission peak at a wavelength of 356.659 nm indicated a detection limit of ∼ 158 ppm for uranium, and the uranium concentration was determined in a raw ore sample that has an unknown quantity of uranium. - Highlights: ► The feasibility of LIBS application to monitor uranium element was carried out. ► The detection limit of U in ore was determined by a standard additional approach. ► Quantitative analyses of U concentration in a natural uranium ore were performed.

  8. Automatic variable selection method and a comparison for quantitative analysis in laser-induced breakdown spectroscopy

    Science.gov (United States)

    Duan, Fajie; Fu, Xiao; Jiang, Jiajia; Huang, Tingting; Ma, Ling; Zhang, Cong

    2018-05-01

    In this work, an automatic variable selection method for quantitative analysis of soil samples using laser-induced breakdown spectroscopy (LIBS) is proposed, which is based on full spectrum correction (FSC) and modified iterative predictor weighting-partial least squares (mIPW-PLS). The method features automatic selection without artificial processes. To illustrate the feasibility and effectiveness of the method, a comparison with genetic algorithm (GA) and successive projections algorithm (SPA) for different elements (copper, barium and chromium) detection in soil was implemented. The experimental results showed that all the three methods could accomplish variable selection effectively, among which FSC-mIPW-PLS required significantly shorter computation time (12 s approximately for 40,000 initial variables) than the others. Moreover, improved quantification models were got with variable selection approaches. The root mean square errors of prediction (RMSEP) of models utilizing the new method were 27.47 (copper), 37.15 (barium) and 39.70 (chromium) mg/kg, which showed comparable prediction effect with GA and SPA.

  9. Laser ablation-laser induced breakdown spectroscopy for the measurement of total elemental concentration in soils.

    Science.gov (United States)

    Pareja, Jhon; López, Sebastian; Jaramillo, Daniel; Hahn, David W; Molina, Alejandro

    2013-04-10

    The performances of traditional laser-induced breakdown spectroscopy (LIBS) and laser ablation-LIBS (LA-LIBS) were compared by quantifying the total elemental concentration of potassium in highly heterogeneous solid samples, namely soils. Calibration curves for a set of fifteen samples with a wide range of potassium concentrations were generated. The LA-LIBS approach produced a superior linear response different than the traditional LIBS scheme. The analytical response of LA-LIBS was tested with a large set of different soil samples for the quantification of the total concentration of Fe, Mn, Mg, Ca, Na, and K. Results showed an acceptable linear response for Ca, Fe, Mg, and K while poor signal responses were found for Na and Mn. Signs of remaining matrix effects for the LA-LIBS approach in the case of soil analysis were found and discussed. Finally, some improvements and possibilities for future studies toward quantitative soil analysis with the LA-LIBS technique are suggested.

  10. Quantitative analysis of Al-Si alloy using calibration free laser induced breakdown spectroscopy (CF-LIBS)

    Science.gov (United States)

    Shakeel, Hira; Haq, S. U.; Aisha, Ghulam; Nadeem, Ali

    2017-06-01

    The quantitative analysis of the standard aluminum-silicon alloy has been performed using calibration free laser induced breakdown spectroscopy (CF-LIBS). The plasma was produced using the fundamental harmonic (1064 nm) of the Nd: YAG laser and the emission spectra were recorded at 3.5 μs detector gate delay. The qualitative analysis of the emission spectra confirms the presence of Mg, Al, Si, Ti, Mn, Fe, Ni, Cu, Zn, Sn, and Pb in the alloy. The background subtracted and self-absorption corrected emission spectra were used for the estimation of plasma temperature as 10 100 ± 300 K. The plasma temperature and self-absorption corrected emission lines of each element have been used for the determination of concentration of each species present in the alloy. The use of corrected emission intensities and accurate evaluation of plasma temperature yield reliable quantitative analysis up to a maximum 2.2% deviation from reference sample concentration.

  11. Feasibility of Trace Alcohol Congener Detection and Identification Using Laser-Induced Breakdown Spectroscopy

    International Nuclear Information System (INIS)

    Zhang Jialiang; Wang Shangmin; Zhao Lixian; Liu Liying; Wang Dezhen

    2014-01-01

    In this paper, a feasible scheme is reported for the detection and identification of trace alcohol congeners that have identical elemental composition using laser-induced breakdown spectroscopy (LIBS). In the scheme, an intensive pulsed laser is used to break down trace alcohol samples and the optical emission spectra of the induced plasma are collected for the detection and identification of alcohol molecules. In order to prepare trace alcohol samples, pure ethanol or methanol is bubbled by argon carrier gas and then mixed into matrix gases. The key issue for the scheme is to constitute indices from the LIBS data of the alcohol samples. Two indices are found to be suitable for alcohol detection and identification. One is the emission intensity ratio (denoted as H/C) of the hydrogen line (653.3 nm) to the carbon line (247.9 nm) for identification and the other is the ratio of the carbon line (as C/Ar) or the hydrogen line (as H/Ar) to the argon lines (866.7 nm) for quantitative detection. The calibration experiment result shows that the index H/C is specific for alcohol congeners while almost being independent of alcohol concentration. In detail, the H/C keeps a specific constant of 34 and 23 respectively for ethanol and methanol. In the meanwhile, the C/Ar and H/Ar indices respond almost linearly to the alcohol concentration below 1300 ppm, and are therefore competent for concentration measurement. With the indices, trace alcohol concentration measurement achieves a limit of 140 ppm using a laser pulse energy of 300 mJ. (plasma technology)

  12. Plasma breakdown in a capacitively-coupled radiofrequency argon discharge

    Science.gov (United States)

    Smith, H. B.; Charles, C.; Boswell, R. W.

    1998-10-01

    Low pressure, capacitively-coupled rf discharges are widely used in research and commercial ventures. Understanding of the non-equilibrium processes which occur in these discharges during breakdown is of interest, both for industrial applications and for a deeper understanding of fundamental plasma behaviour. The voltage required to breakdown the discharge V_brk has long been known to be a strong function of the product of the neutral gas pressure and the electrode seperation (pd). This paper investigates the dependence of V_brk on pd in rf systems using experimental, computational and analytic techniques. Experimental measurements of V_brk are made for pressures in the range 1 -- 500 mTorr and electrode separations of 2 -- 20 cm. A Paschen-style curve for breakdown in rf systems is developed which has the minimum breakdown voltage at a much smaller pd value, and breakdown voltages which are significantly lower overall, than for Paschen curves obtained from dc discharges. The differences between the two systems are explained using a simple analytic model. A Particle-in-Cell simulation is used to investigate a similar pd range and examine the effect of the secondary emission coefficient on the rf breakdown curve, particularly at low pd values. Analytic curves are fitted to both experimental and simulation results.

  13. Laser-Induced Breakdown Spectroscopy for Rapid Discrimination of Heavy-Metal-Contaminated Seafood Tegillarca granosa

    Directory of Open Access Journals (Sweden)

    Guoli Ji

    2017-11-01

    Full Text Available Tegillarca granosa samples contaminated artificially by three kinds of toxic heavy metals including zinc (Zn, cadmium (Cd, and lead (Pb were attempted to be distinguished using laser-induced breakdown spectroscopy (LIBS technology and pattern recognition methods in this study. The measured spectra were firstly processed by a wavelet transform algorithm (WTA, then the generated characteristic information was subsequently expressed by an information gain algorithm (IGA. As a result, 30 variables obtained were used as input variables for three classifiers: partial least square discriminant analysis (PLS-DA, support vector machine (SVM, and random forest (RF, among which the RF model exhibited the best performance, with 93.3% discrimination accuracy among those classifiers. Besides, the extracted characteristic information was used to reconstruct the original spectra by inverse WTA, and the corresponding attribution of the reconstructed spectra was then discussed. This work indicates that the healthy shellfish samples of Tegillarca granosa could be distinguished from the toxic heavy-metal-contaminated ones by pattern recognition analysis combined with LIBS technology, which only requires minimal pretreatments.

  14. Comparison of brass alloys composition by laser-induced breakdown spectroscopy and self-organizing maps

    Energy Technology Data Exchange (ETDEWEB)

    Pagnotta, Stefano; Grifoni, Emanuela; Legnaioli, Stefano [Applied and Laser Spectroscopy Laboratory, ICCOM-CNR, Research Area of Pisa, Via G. Moruzzi 1, 56124 Pisa (Italy); Lezzerini, Marco [Department of Earth Sciences, University of Pisa, Via S. Maria 53, 56126 Pisa (Italy); Lorenzetti, Giulia [Applied and Laser Spectroscopy Laboratory, ICCOM-CNR, Research Area of Pisa, Via G. Moruzzi 1, 56124 Pisa (Italy); Palleschi, Vincenzo, E-mail: vincenzo.palleschi@cnr.it [Applied and Laser Spectroscopy Laboratory, ICCOM-CNR, Research Area of Pisa, Via G. Moruzzi 1, 56124 Pisa (Italy); Department of Civilizations and Forms of Knowledge, University of Pisa, Via L. Galvani 1, 56126 Pisa (Italy)

    2015-01-01

    In this paper we face the problem of assessing similarities in the composition of different metallic alloys, using the laser-induced breakdown spectroscopy technique. The possibility of determining the degree of similarity through the use of artificial neural networks and self-organizing maps is discussed. As an example, we present a case study involving the comparison of two historical brass samples, very similar in their composition. The results of the paper can be extended to many other situations, not necessarily associated with cultural heritage and archeological studies, where objects with similar composition have to be compared. - Highlights: • A method for assessing the similarity of materials analyzed by LIBS is proposed. • Two very similar fragments of historical brass were analyzed. • Using a simple artificial neural network the composition of the two alloys was determined. • The composition of the two brass alloys was the same within the experimental error. • Using self-organizing maps, the probability of the alloys to have the same composition was assessed.

  15. The detection of He in tungsten following ion implantation by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Shaw, G.; Bannister, M.; Biewer, T. M.; Martin, M. Z.; Meyer, F.; Wirth, B. D.

    2018-01-01

    Laser-induced breakdown spectroscopy (LIBS) results are presented that provide depth-resolved identification of He implanted in polycrystalline tungsten (PC-W) targets by a 200 keV He+ ion beam, with a surface temperature of approximately 900 °C and a peak fluence of 1023 m-2. He retention, and the influence of He on deuterium and tritium recycling, permeation, and retention in PC-W plasma facing components are important questions for the divertor and plasma facing components in a fusion reactor, yet are difficult to quantify. The purpose of this work is to demonstrate the ability of LIBS to identify helium in tungsten; to investigate the sensitivity of laser parameters including, laser energy and gate delay, that directly influence the sensitivity and depth resolution of LIBS; and to perform a proof-of-principle experiment using LIBS to measure relative He intensities as a function of depth. The results presented demonstrate the potential not only to identify helium but also to develop a methodology to quantify gaseous impurity concentration in PC-W as a function of depth.

  16. Comparison of brass alloys composition by laser-induced breakdown spectroscopy and self-organizing maps

    International Nuclear Information System (INIS)

    Pagnotta, Stefano; Grifoni, Emanuela; Legnaioli, Stefano; Lezzerini, Marco; Lorenzetti, Giulia; Palleschi, Vincenzo

    2015-01-01

    In this paper we face the problem of assessing similarities in the composition of different metallic alloys, using the laser-induced breakdown spectroscopy technique. The possibility of determining the degree of similarity through the use of artificial neural networks and self-organizing maps is discussed. As an example, we present a case study involving the comparison of two historical brass samples, very similar in their composition. The results of the paper can be extended to many other situations, not necessarily associated with cultural heritage and archeological studies, where objects with similar composition have to be compared. - Highlights: • A method for assessing the similarity of materials analyzed by LIBS is proposed. • Two very similar fragments of historical brass were analyzed. • Using a simple artificial neural network the composition of the two alloys was determined. • The composition of the two brass alloys was the same within the experimental error. • Using self-organizing maps, the probability of the alloys to have the same composition was assessed

  17. Fast Detection of Copper Content in Rice by Laser-Induced Breakdown Spectroscopy with Uni- and Multivariate Analysis

    Directory of Open Access Journals (Sweden)

    Fei Liu

    2018-02-01

    Full Text Available Fast detection of heavy metals is very important for ensuring the quality and safety of crops. Laser-induced breakdown spectroscopy (LIBS, coupled with uni- and multivariate analysis, was applied for quantitative analysis of copper in three kinds of rice (Jiangsu rice, regular rice, and Simiao rice. For univariate analysis, three pre-processing methods were applied to reduce fluctuations, including background normalization, the internal standard method, and the standard normal variate (SNV. Linear regression models showed a strong correlation between spectral intensity and Cu content, with an R 2 more than 0.97. The limit of detection (LOD was around 5 ppm, lower than the tolerance limit of copper in foods. For multivariate analysis, partial least squares regression (PLSR showed its advantage in extracting effective information for prediction, and its sensitivity reached 1.95 ppm, while support vector machine regression (SVMR performed better in both calibration and prediction sets, where R c 2 and R p 2 reached 0.9979 and 0.9879, respectively. This study showed that LIBS could be considered as a constructive tool for the quantification of copper contamination in rice.

  18. Novel estimation of the humification degree of soil organic matter by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Edilene Cristina, E-mail: edilene@iq.unesp.br [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); São Paulo State University—UNESP, Analytical Chemistry Department, P.O. Box 355, 14801-970 Rua Prof. Francisco Degni, 55, CEP 14800-900 Araraquara, SP (Brazil); Ferreira, Ednaldo José, E-mail: ednaldo.ferreira@embrapa.br [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Villas-Boas, Paulino Ribeiro, E-mail: paulino.villas-boas@embrapa.br [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Senesi, Giorgio Saverio, E-mail: giorgio.senesi@ba.imip.cnr.it [Institute of Inorganic Methodologies and Plasmas, CNR, Bari 70126 (Italy); Carvalho, Camila Miranda, E-mail: camilamc@gmail.com [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Physics Institute of São Carlos, University of São Paulo, IFSC-USP, Av. Trabalhador são-carlense, 400 Pq. Arnold Schimid, 13566-590 São Carlos, SP (Brazil); Romano, Renan Arnon, E-mail: renan.romano@gmail.com [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Physics Institute of São Carlos, University of São Paulo, IFSC-USP, Av. Trabalhador são-carlense, 400 Pq. Arnold Schimid, 13566-590 São Carlos, SP (Brazil); Martin-Neto, Ladislau, E-mail: ladislau.martin@embrapa.br [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); and others

    2014-09-01

    Soil organic matter (SOM) constitutes an important reservoir of terrestrial carbon and can be considered an alternative for atmospheric carbon storage, contributing to global warming mitigation. Soil management can favor atmospheric carbon incorporation into SOM or its release from SOM to atmosphere. Thus, the evaluation of the humification degree (HD), which is an indication of the recalcitrance of SOM, can provide an estimation of the capacity of carbon sequestration by soils under various managements. The HD of SOM can be estimated by using various analytical techniques including fluorescence spectroscopy. In the present work, the potential of laser-induced breakdown spectroscopy (LIBS) to estimate the HD of SOM was evaluated for the first time. Intensities of emission lines of Al, Mg and Ca from LIBS spectra showing correlation with fluorescence emissions determined by laser-induced fluorescence spectroscopy (LIFS) reference technique were used to obtain a multivaried calibration model based on the k-nearest neighbor (k-NN) method. The values predicted by the proposed model (A-LIBS) showed strong correlation with LIFS results with a Pearson's coefficient of 0.87. The HD of SOM obtained after normalizing A-LIBS by total carbon in the sample showed a strong correlation to that determined by LIFS (0.94), thus suggesting the great potential of LIBS for this novel application. - Highlights: • Humification degree of soil organic matter (HD) • Importance of soil organic matter HD in keeping carbon in soil • Laser induced fluorescence spectroscopy (LIFS) for HD estimation (reference method) • New LIBS application to predict HD.

  19. Magnetic breakdown in an array of overlapping Fermi surfaces

    International Nuclear Information System (INIS)

    Kadigrobov, A.M.; Radić, D.; Bjeliš, A.

    2015-01-01

    We develop a theoretical framework for a magnetic breakdown in an array of circular two-dimensional bands with a finite overlap of neighboring Fermi surfaces due to the presence of a presumably weak periodic potential, and apply the obtained results to the electron bands in carbon honeycomb structures of doped graphene and intercalated graphite compounds. In contrast to the standard treatment, inaugurated more than fifty years ago by Slutskin and Kadigrobov, with electron semiclassical trajectories encircling significantly overlapping Fermi surfaces, we examine a configuration in which bands are related in a way that the Fermi surfaces only slightly overlap, forming internal band pockets with areas of the size comparable to the area of the quantum magnetic flux for a given external magnetic field. Such band configuration has to be treated quantum mechanically. The calculation leads to the results for magnetic breakdown coefficients comprising an additional large factor with respect to the standard results, proportional to the ratio of the Fermi energy and the cyclotron energy. Also, these coefficients show oscillating dependence on energy, as well as on the wave number of periodic potential. Both mentioned elements enable the adjustment of the preferred wave vector of possible magnetic breakdown induced density wave instability at the highest possible critical temperature

  20. Quantitative analysis of lead in aqueous solutions by ultrasonic nebulizer assisted laser induced breakdown spectroscopy

    Science.gov (United States)

    Zhong, Shi-Lei; Lu, Yuan; Kong, Wei-Jin; Cheng, Kai; Zheng, Ronger

    2016-08-01

    In this study, an ultrasonic nebulizer unit was established to improve the quantitative analysis ability of laser-induced breakdown spectroscopy (LIBS) for liquid samples detection, using solutions of the heavy metal element Pb as an example. An analytical procedure was designed to guarantee the stability and repeatability of the LIBS signal. A series of experiments were carried out strictly according to the procedure. The experimental parameters were optimized based on studies of the pulse energy influence and temporal evolution of the emission features. The plasma temperature and electron density were calculated to confirm the LTE state of the plasma. Normalizing the intensities by background was demonstrated to be an appropriate method in this work. The linear range of this system for Pb analysis was confirmed over a concentration range of 0-4,150ppm by measuring 12 samples with different concentrations. The correlation coefficient of the fitted calibration curve was as high as 99.94% in the linear range, and the LOD of Pb was confirmed as 2.93ppm. Concentration prediction experiments were performed on a further six samples. The excellent quantitative ability of the system was demonstrated by comparison of the real and predicted concentrations of the samples. The lowest relative error was 0.043% and the highest was no more than 7.1%.

  1. Melted Paraffin Wax as an Innovative Liquid and Solid Extractant for Elemental Analysis by Laser-Induced Breakdown Spectroscopy.

    Science.gov (United States)

    Papai, Rodrigo; Sato, Roseli Hiromi; Nunes, Lidiane Cristina; Krug, Francisco José; Gaubeur, Ivanise

    2017-03-07

    This work proposes a new development in the use of melted paraffin wax as a new extractant in a procedure designed to aggregate the advantages of liquid phase extraction (extract homogeneity, fast, and efficient transfer, low cost and simplicity) to solid phase extraction. As proof of concept, copper(II) in aqueous samples was converted into a hydrophobic complex of copper(II) diethyldithiocarbamate and subsequently extracted into paraffin wax. Parameters which affect the complexation and extraction (pH, DDTC, and Triton X-100 concentration, vortex agitation time and complexation time) were optimized in a univariate way. The combination of the extraction proposed procedure with laser-induced breakdown spectroscopy allowed the precise copper determination (coefficient of variation = 3.1%, n = 10) and enhanced detectability because of the concentration factor of 18 times. A calibration curve was obtained with a linear range of 0.50-10.00 mg L -1 (R 2 = 0.9990, n = 7), LOD = 0.12 mg L -1 , and LOQ = 0.38 mg L -1 under optimized conditions. An extraction procedure efficiency of 94% was obtained. The accuracy of the method was confirmed through the analysis of a reference material of human blood serum, by the spike and recovery trials with seawater, tap water, mineral water, and alcoholic beverages and by comparing with those results obtained by graphite furnace atomic absorption spectrometry.

  2. Determination of a brass alloy concentration composition using calibration-free laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Achouri, M.; Baba-Hamed, T.; Beldjilali, S. A., E-mail: sidahmed.beldjilali@univ-usto.dz; Belasri, A. [Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf USTO-MB, LPPMCA (Algeria)

    2015-09-15

    Laser-induced breakdown spectroscopy (LIBS) is a technique that can provide qualitative and quantitative measurements of the characteristics of irradiated metals. In the present work, we have calculated the parameters of the plasma produced from a brass alloy sample under the action of a pulsed Nd: YAG laser operating at 1064 nm. The emission lines of copper atoms (Cu I), zinc atoms (Zn I), and lead atoms (Pb I), which are elements of a brass alloy composition, were used to investigate the parameters of the brass plasma. The spectral profiles of Cu, Zn, and Pb lines have been used to extract the electron temperature and density of the brass alloy plasma. The characteristics of Cu, Zn, and Pb were determined quantatively by the calibration-free LIBS (CF-LIBS) method considering for accurate analysis that the laser-induced ablated plasma is optically thin in local thermodynamic equilibrium conditions and the plasma ablation is stoichiometric. The Boltzmann plot method was used to evaluate the plasma temperature, and the Stark broadened profiles were used to determine the electron density. An algorithm based on the experimentally measured values of the intensity of spectral lines and the basic laws of plasma physics was developed for the determination of Cu, Zn, and Pb concentrations in the brass sample. The concentrations C{sub CF-LIBS} calculated by CF-LIBS and the certified concentrations C{sub certified} were very close.

  3. Nitric oxide-induced calcium release: activation of type 1 ryanodine receptor by endogenous nitric oxide.

    Science.gov (United States)

    Kakizawa, Sho; Yamazawa, Toshiko; Iino, Masamitsu

    2013-01-01

    Ryanodine receptors (RyRs), located in the sarcoplasmic/endoplasmic reticulum (SR/ER) membrane, are required for intracellular Ca2+ release that is involved in a wide range of cellular functions. In addition to Ca2+-induced Ca2+ release in cardiac cells and voltage-induced Ca2+ release in skeletal muscle cells, we recently identified another mode of intracellular Ca2+ mobilization mediated by RyR, i.e., nitric oxide-induced Ca2+ release (NICR), in cerebellar Purkinje cells. NICR is evoked by neuronal activity, is dependent on S-nitrosylation of type 1 RyR (RyR1) and is involved in the induction of long-term potentiation (LTP) of cerebellar synapses. In this addendum, we examined whether peroxynitrite, which is produced by the reaction of nitric oxide with superoxide, may also have an effect on the Ca2+ release via RyR1 and the cerebellar LTP. We found that scavengers of peroxynitrite have no significant effect either on the Ca2+ release via RyR1 or on the cerebellar LTP. We also found that an application of a high concentration of peroxynitrite does not reproduce neuronal activity-dependent Ca2+ release in Purkinje cells. These results support that NICR is induced by endogenous nitric oxide produced by neuronal activity through S-nitrosylation of RyR1.

  4. Standoff Laser-Induced Breakdown Spectroscopy (LIBS) Using a Miniature Wide Field of View Spatial Heterodyne Spectrometer with Sub-Microsteradian Collection Optics.

    Science.gov (United States)

    Barnett, Patrick D; Lamsal, Nirmal; Angel, S Michael

    2017-04-01

    A spatial heterodyne spectrometer (SHS) is described for standoff laser-induced breakdown spectroscopy (LIBS) measurements. The spatial heterodyne LIBS spectrometer (SHLS) is a diffraction grating based interferometer with no moving parts that offers a very large field of view, high light throughput, and high spectral resolution in a small package. The field of view of the SHLS spectrometer is shown to be ∼1° in standoff LIBS measurements. In the SHLS system described here, the collection aperture was defined by the 10 mm diffraction gratings in the SHS and standoff LIBS measurements were made up to 20 m with no additional collection optics, corresponding to a collection solid angle of 0.2 μsr, or f/2000, and also using a small telescope to increase the collection efficiency. The use of a microphone was demonstrated to rapidly optimize laser focus for 20 m standoff LIBS measurements.

  5. In vivo multiphoton-microscopy of picosecond-laser-induced optical breakdown in human skin.

    Science.gov (United States)

    Balu, Mihaela; Lentsch, Griffin; Korta, Dorota Z; König, Karsten; Kelly, Kristen M; Tromberg, Bruce J; Zachary, Christopher B

    2017-08-01

    Improvements in skin appearance resulting from treatment with fractionated picosecond-lasers have been noted, but optimizing the treatment efficacy depends on a thorough understanding of the specific skin response. The development of non-invasive laser imaging techniques in conjunction with laser therapy can potentially provide feedback for guidance and optimizing clinical outcome. The purpose of this study was to demonstrate the capability of multiphoton microscopy (MPM), a high-resolution, label-free imaging technique, to characterize in vivo the skin response to a fractionated non-ablative picosecond-laser treatment. Two areas on the arm of a volunteer were treated with a fractionated picosecond laser at the Dermatology Clinic, UC Irvine. The skin response to treatment was imaged in vivo with a clinical MPM-based tomograph at 3 hours and 24 hours after treatment and seven additional time points over a 4-week period. MPM revealed micro-injuries present in the epidermis. Pigmented cells were particularly damaged in the process, suggesting that melanin is likely the main absorber for laser induced optical breakdown. Damaged individual cells were distinguished as early as 3 hours post pico-laser treatment with the 532 nm wavelength, and 24 hours post-treatment with both 532 and 1064 nm wavelengths. At later time points, clusters of cellular necrotic debris were imaged across the treated epidermis. After 24 hours of treatment, inflammatory cells were imaged in the proximity of epidermal micro-injuries. The epidermal injuries were exfoliated over a 4-week period. This observational and descriptive pilot study demonstrates that in vivo MPM imaging can be used non-invasively to provide label-free contrast for describing changes in human skin following a fractionated non-ablative laser treatment. The results presented in this study represent the groundwork for future longitudinal investigations on an expanded number of subjects to understand the response to treatment

  6. Gas Breakdown of Radio Frequency Glow Discharges in Helium at near Atmospheric Pressure

    International Nuclear Information System (INIS)

    Liu Xinkun; Xu Jinzhou; Cui Tongfei; Guo Ying; Zhang Jing; Shi Jianjun

    2013-01-01

    A one-dimensional self-consistent fluid model was developed for radio frequency glow discharge in helium at near atmospheric pressure, and was employed to study the gas breakdown characteristics in terms of breakdown voltage. The effective secondary electron emission coefficient and the effective electric field for ions were demonstrated to be important for determining the breakdown voltage of radio frequency glow discharge at near atmospheric pressure. The constant of A was estimated to be 64±4 cm −1 Torr −1 , which was proportional to the first Townsend coefficient and could be employed to evaluate the gas breakdown voltage. The reduction in the breakdown voltage of radio frequency glow discharge with excitation frequency was studied and attributed to the electron trapping effect in the discharge gap

  7. Real time and in situ determination of lead in road sediments using a man-portable laser-induced breakdown spectroscopy analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Cunat, J.; Fortes, F.J. [Department of Analytical Chemistry, University of Malaga, E-29071 Malaga (Spain); Laserna, J.J. [Department of Analytical Chemistry, University of Malaga, E-29071 Malaga (Spain)], E-mail: laserna@uma.es

    2009-02-02

    In situ, real time levels of lead in road sediments have been measured using a man-portable laser-induced breakdown spectroscopy analyzer. The instrument consists of a backpack and a probe housing a Q-switched Nd:YAG laser head delivering 50 mJ per pulse at 1064 nm. Plasma emission was collected and transmitted via fiber optic to a compact cross Czerny-Turner spectrometer equipped with a linear CCD array allocated in the backpack together with a personal computer. The limit of detection (LOD) for lead and the precision measured in the laboratory were 190 {mu}g g{sup -1} (calculated by the 3{sigma} method) and 9% R.S.D. (relative standard deviation), respectively. During the field campaign, averaged Pb concentration in the sediments were ranging from 480 {mu}g g{sup -1} to 660 {mu}g g{sup -1} depending on the inspected area, i.e. the entrance, the central part and the exit of the tunnel. These results were compared with those obtained with flame-atomic absorption spectrometry (flame-AAS). The relative error, expressed as [100(LIBS result - flame AAS result)/(LIBS result)], was approximately 14%.

  8. Arachidonic acid and lipoxin A4 attenuate alloxan-induced cytotoxicity to RIN5F cells in vitro and type 1 diabetes mellitus in vivo.

    Science.gov (United States)

    Gundala, Naveen K V; Naidu, Vegi G M; Das, Undurti N

    2017-03-01

    We studied whether polyunsaturated fatty acids (PUFAs) can protect rat insulinoma (RIN5F) cells against alloxan-induced apoptosis in vitro and type 1 diabetes mellitus (type 1 DM) in vivo and if so, mechanism of this beneficial action. In vitro study was conducted using RIN5F cells while in vivo study was performed in Wistar rats. The effect of PUFAs, cyclo-oxygenase and lipoxygenase inhibitors, various eicosanoids and PUFAs metabolites: lipoxin A4 (LXA4), resolvin D2 and protectin against alloxan-induced cytotoxicity to RIN5F cells and type 1 DM was studied. Expression of PDX1, P65 NF-kB and IKB in RIN5F cells and Nrf2, GLUT2, COX2, iNOS protein levels in the pancreatic tissue and plasma glucose, insulin and tumor necrosis factor-α and antioxidants, lipid peroxides and nitric oxide were measured. Of all, arachidonic acid (AA) was found to be the most effective against alloxan-induced cytotoxicity to RIN5F cells and preventing type 1 DM. Both cyclo-oxygenase and lipoxygenase inhibitors did not block the beneficial actions of AA in vitro and in vivo. Alloxan inhibited LXA4 production by RIN5F cells and in alloxan-induced type 1 DM Wistar rats. AA-treatment restored LXA4 levels to normal both in vitro and in vivo. LXA4 protected RIN5F cells against alloxan-induced cytotoxicity and prevented type 1 DM and restored expression of Nrf2, Glut2, COX2, and iNOS genes and abnormal antioxidants to near normal. AA seems to bring about its beneficial actions against alloxan-induced cytotoxicity and type 1 DM by enhancing the production of LXA4. © 2016 BioFactors, 43(2):251-271, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  9. Influence of arsenic co-contamination on DDT breakdown and microbial activity

    International Nuclear Information System (INIS)

    Zwieten, Lukas van; Ayres, Matthew R.; Morris, Stephen G.

    2003-01-01

    Co-occurrence of arsenic and DDT in soil may result increased persistence of DDT. - The impacts of arsenic co-contamination on the natural breakdown of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) in soil are investigated in a study of 12 former cattle dip sites located in northeastern NSW, Australia. This study examines the relationship between the intrinsic breakdown of DDT to 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane (DDD) and 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene (DDE), and the impacts of arsenic co-contamination on this breakdown. Between-site analysis demonstrated that arsenic at 2000 mg/kg gave a 50% reduction in the concentration of DDD compared to background arsenic of 5 mg/kg. Within-site analysis also showed the ratio of DDT:DDD increased in soils as arsenic concentrations increased. This within-site trend was also apparent with the DDT:DDE ratio, suggesting inhibition of DDT breakdown by arsenic co-contamination. Microbial activity was inhibited as residues of total DDTs and arsenic increased. Hence arsenic co-contamination and high concentrations of DDT in soil may result in an increased persistence of DDT in the environment studied

  10. Breakdown concepts for contingency tables

    NARCIS (Netherlands)

    Kuhnt, S.

    2010-01-01

    Loglinear Poisson models are commonly used to analyse contingency tables. So far, robustness of parameter estimators as well as outlier detection have rarely been treated in this context. We start with finite-sample breakdown points. We yield that the breakdown point of mean value estimators

  11. Kinetic Simulations of Dense Plasma Focus Breakdown

    Science.gov (United States)

    Schmidt, A.; Higginson, D. P.; Jiang, S.; Link, A.; Povilus, A.; Sears, J.; Bennett, N.; Rose, D. V.; Welch, D. R.

    2015-11-01

    A dense plasma focus (DPF) device is a type of plasma gun that drives current through a set of coaxial electrodes to assemble gas inside the device and then implode that gas on axis to form a Z-pinch. This implosion drives hydrodynamic and kinetic instabilities that generate strong electric fields, which produces a short intense pulse of x-rays, high-energy (>100 keV) electrons and ions, and (in deuterium gas) neutrons. A strong factor in pinch performance is the initial breakdown and ionization of the gas along the insulator surface separating the two electrodes. The smoothness and isotropy of this ionized sheath are imprinted on the current sheath that travels along the electrodes, thus making it an important portion of the DPF to both understand and optimize. Here we use kinetic simulations in the Particle-in-cell code LSP to model the breakdown. Simulations are initiated with neutral gas and the breakdown modeled self-consistently as driven by a charged capacitor system. We also investigate novel geometries for the insulator and electrodes to attempt to control the electric field profile. The initial ionization fraction of gas is explored computationally to gauge possible advantages of pre-ionization which could be created experimentally via lasers or a glow-discharge. Prepared by LLNL under Contract DE-AC52-07NA27344.

  12. Effects of streamwise vortex breakdown on supersonic combustion.

    Science.gov (United States)

    Hiejima, Toshihiko

    2016-04-01

    This paper presents a numerical simulation study of the combustion structure of streamwise vortex breakdown at Mach number 2.48. Hydrogen fuel is injected into a combustor at sonic speed from the rear of a hypermixer strut that can generate streamwise vortices. The results show that the burning behavior is enhanced at the points of the shock waves that are incident on the vortex and therefore the vortex breakdown in the subsonic region occurs due to combustion. The breakdown domain in the mainstream is found to form a flame-holding region suited to combustion and to lead to a stable combustion field with detached flames. In this way, streamwise vortex breakdown has an essential role in combustion enhancement and the formation of flames that hold under supersonic inflow conditions. Finally, the combustion property defined here is shown to coincide with the produced-water mass flow. This property shows that the amount of combustion is saturated at equivalence ratios over 0.4, although there is a slight increase beyond 1.

  13. Humidity effects on wire insulation breakdown strength.

    Energy Technology Data Exchange (ETDEWEB)

    Appelhans, Leah

    2013-08-01

    Methods for the testing of the dielectric breakdown strength of insulation on metal wires under variable humidity conditions were developed. Two methods, an ASTM method and the twisted pair method, were compared to determine if the twisted pair method could be used for determination of breakdown strength under variable humidity conditions. It was concluded that, although there were small differences in outcomes between the two testing methods, the non-standard method (twisted pair) would be appropriate to use for further testing of the effects of humidity on breakdown performance. The dielectric breakdown strength of 34G copper wire insulated with double layer Poly-Thermaleze/Polyamide-imide insulation was measured using the twisted pair method under a variety of relative humidity (RH) conditions and exposure times. Humidity at 50% RH and below was not found to affect the dielectric breakdown strength. At 80% RH the dielectric breakdown strength was significantly diminished. No effect for exposure time up to 140 hours was observed at 50 or 80%RH.

  14. Influence of Initial Vorticity Distribution on Axisymmetric Vortex Breakdown and Reconnection

    Science.gov (United States)

    Young, Larry A.

    2007-01-01

    An analytical treatment has been developed to study some of the axisymmetric vortex breakdown and reconnection fluid dynamic processes underlying body-vortex interactions that are frequently manifested in rotorcraft and propeller-driven fixed-wing aircraft wakes. In particular, the presence of negative vorticity in the inner core of a vortex filament (one example of which is examined in this paper) subsequent to "cutting" by a solid body has a profound influence on the vortex reconnection, leading to analog flow behavior similar to vortex breakdown phenomena described in the literature. Initial vorticity distributions (three specific examples which are examined) without an inner core of negative vorticity do not exhibit vortex breakdown and instead manifest diffusion-like properties while undergoing vortex reconnection. Though this work focuses on laminar vortical flow, this work is anticipated to provide valuable insight into rotary-wing aerodynamics as well as other types of vortical flow phenomena.

  15. Numerical simulation of the effects of variation of angle of attack and sweep angle on vortex breakdown over delta wings

    Science.gov (United States)

    Ekaterinaris, J. A.; Schiff, Lewis B.

    1990-01-01

    In the present investigation of the vortical flowfield structure over delta wings at high angles of attack, three-dimensional Navier-Stokes numerical simulations were conducted to predict the complex leeward flowfield characteristics; these encompass leading-edge separation, secondary separation, and vortex breakdown. Attention is given to the effect on solution accuracy of circumferential grid-resolution variations in the vicinity of the wing leading edge, and well as to the effect of turbulence modeling on the solutions. When a critical angle-of-attack was reached, bubble-type vortex breakdown was found. With further angle-of-attack increase, a change from bubble-type to spiral-type vortex breakdown was predicted by the numerical solution.

  16. Influence of Ambient Gas on Laser-Induced Breakdown Spectroscopy of Uranium Metal

    International Nuclear Information System (INIS)

    Zhang Dacheng; Ma Xinwen; Wang Shulong; Zhu Xiaolong

    2015-01-01

    Laser-induced breakdown spectroscopy (LIBS) is regarded as a suitable method for the remote analysis of materials in any phase, even in an environment with high radiation levels. In the present work we used the third harmonic pulse of a Nd:YAG laser for ablation of uranium metal and measured the plasma emission with a fiber-optic spectrometer. The LIBS spectra of uranium metal and their features in different ambient gases (i.e., argon, neon, oxygen, and nitrogen) at atmospheric pressure were studied. Strong continuum spectrum and several hundreds of emission lines from UI and UII were observed. It is found that the continuum spectrum observed in uranium not only comes from bremsstrahlung emission but is also due to the complex spectrum of uranium. The influence of ambient gas and the gas flow rate for ablation of uranium metal was investigated. The experimental results indicate that the intensity of the uranium lines was enhanced in argon and nitrogen. However, the intensity of uranium lines was decreased in oxygen due to the generation of UO and other oxides. The results also showed that the highest intensity of uranium lines were obtained in argon gas with a gas flow rate above 2.5 L/min. The enhanced mechanism in ambient gas and the influence of the gas flow rate were analyzed in this work. (paper)

  17. Evaluation of minor element concentrations in potatoes using laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Beldjilali, S.; Borivent, D.; Mercadier, L.; Mothe, E.; Clair, G.; Hermann, J.

    2010-01-01

    We have performed spectroscopic analysis of the plasma generated by Nd:YAG laser irradiation of flesh and skin of fresh potatoes. From the spectra recorded with an Echelle spectrometer 11 minor elements have been identified. Their relative concentrations were estimated by comparing the measured spectra to the spectral radiance computed for a plasma in local thermal equilibrium. According the moderate plasma temperature of about 6500 K at the time of spectroscopic observation, the electrons are essentially generated by the ionization of the minor metal atoms, making plasma modeling possible although the organic elements may be out of equilibrium. Among the spectral lines selected for the analysis, the Na I 588.99 and 589.59 nm doublet was found to be partially self-absorbed allowing us to estimate the number density of sodium atoms. The value was found to agree with the number density predicted by the plasma model. As a result, the relative concentrations of the detected minor elements have been estimated for both the flesh and skin of the potatoes. Among these, aluminum and silicon were found to have relatively large mass fractions in the potato skin whereas their presence was not detected in the flesh. The present study shows that laser-induced breakdown spectroscopy is a promising tool to measure the elemental composition of fresh vegetables without any sample preparation.

  18. Reported reasons for breakdown of marriage and cohabitation in Britain: Findings from the third National Survey of Sexual Attitudes and Lifestyles (Natsal-3.

    Directory of Open Access Journals (Sweden)

    Kirsten Gravningen

    Full Text Available Breakdown of marriage and cohabitation is common in Western countries and is costly for individuals and society. Most research on reasons for breakdown has focused on marriages ending in divorce and/or have used data unrepresentative of the population. We present prevalence estimates of, and differences in, reported reasons for recent breakdown of marriages and cohabitations in Britain.Descriptive analyses of data from Britain's third National Survey of Sexual Attitudes and Lifestyles (Natsal-3, a probability sample survey (15,162 people aged 16-74 years undertaken 2010-2012, using computer-assisted personal interviewing. We examined participants' reported reasons for live-in partnership breakdown in the past 5 years and how these varied by gender and partnership type (married vs. cohabitation.Overall, 10.9% (95% CI: 9.9-11.9% of men and 14.1% (13.2-15.0% of women reported live-in partnership breakdown in the past 5 years. Mean duration of men's marriages was 14.2 years (95% CI: 12.8-15.7 vs. cohabitations; 3.5 years (3.0-4.0, and for women: 14.6 years (13.5-15.8 vs. 4.2 years (3.7-4.8. Among 706 men and 1254 women reporting experience of recent breakdown, the reasons 'grew apart' (men 39%, women 36%, 'arguments' (27%, 30%, 'unfaithfulness/adultery' (18%, 24%, p<0.05, and 'lack of respect/appreciation' (17%, 25%, p<0.05 were the most common, irrespective of partnership type. A total of 16% of women vs. 4% of men cited domestic violence. After adjusting for age at interview and duration of partnership, there were no significant differences in reasons given for breakup by partnership type, except that men more commonly cited 'moving due to changing circumstances' as a reason for a cohabitation ending than for a marriage (AOR = 3.78, 95% CI: 1.08-13.21; and among women, 'not sharing housework' (0.54, 0.35-0.83 and 'sexual difficulties' (0.45, 0.25-0.84 were less commonly cited as reasons for cohabitation ending than marriage.These representative

  19. Hyperammonemic encephalopathy due to suture line breakdown after bladder operation.

    Science.gov (United States)

    Boogerd, W; Zoetmulder, F A; Moffie, D

    1990-01-01

    A patient is described with a severe encephalopathy and hyperammonemia in absence of liver dysfunction, attributed to urine absorption into the systemic circulation due to suture line breakdown after bladder dome resection. At autopsy characteristic Alzheimer type II astrocytes were found in the basal ganglia.

  20. Multiple helical modes of vortex breakdown

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Naumov, I. V.; Okulov, Valery

    2011-01-01

    Experimental observations of vortex breakdown in a rotating lid-driven cavity are presented. The results show that vortex breakdown for cavities with high aspect ratios is associated with the appearance of stable helical vortex multiplets. By using results from stability theory generalizing Kelvi......’s problem on vortex polygon stability, and systematically exploring the cavity flow, we succeeded in identifying two new stable vortex breakdown states consisting of triple and quadruple helical multiplets....