WorldWideScience

Sample records for twofold rotation symmetry

  1. Twofold symmetries of the pure gravity action

    Science.gov (United States)

    Cheung, Clifford; Remmen, Grant N.

    2017-01-01

    We recast the action of pure gravity into a form that is invariant under a twofold Lorentz symmetry. To derive this representation, we construct a general parameterization of all theories equivalent to the Einstein-Hilbert action up to a local field redefinition and gauge fixing. We then exploit this freedom to eliminate all interactions except those exhibiting two sets of independently contracted Lorentz indices. The resulting action is local, remarkably simple, and naturally expressed in a field basis analogous to the exponential parameterization of the nonlinear sigma model. The space of twofold Lorentz invariant field redefinitions then generates an infinite class of equivalent representations. By construction, all off-shell Feynman diagrams are twofold Lorentz invariant while all on-shell tree amplitudes are automatically twofold gauge invariant. We extend our results to curved spacetime and calculate the analogue of the Einstein equations. While these twofold invariances are hidden in the canonical approach of graviton perturbation theory, they are naturally expected given the double copy relations for scattering amplitudes in gauge theory and gravity.

  2. Generation of Supramolecular Chirality around Twofold Rotational or Helical Axes in Crystalline Assemblies of Achiral Components

    Directory of Open Access Journals (Sweden)

    Mikiji Miyata

    2015-10-01

    Full Text Available A multi-point approximation method clarifies supramolecular chirality of twofold rotational or helical assemblies as well as bundles of the one-dimensional (1D assemblies. While one-point approximation of materials claims no chirality generation of such assemblies, multi-point approximations do claim possible generation in the 1D assemblies of bars and plates. Such chirality derives from deformations toward three-axial directions around the helical axes. The chiral columns are bundled in chiral ways through symmetry operations. The preferable right- or left-handed columns are bundled together to yield chiral crystals with right- or left-handedness, respectively, indicating that twofold helix symmetry operations cause chiral crystals composed of achiral components via a three-stepwise and three-directional process.

  3. Twofold hidden conformal symmetry of Kerr-Bolt black holes

    Institute of Scientific and Technical Information of China (English)

    M.R. Setare; V. Kamali

    2012-01-01

    Previously we have shown that a four-dimensional Kerr-Bolt black hole in non-extremal and also in extremal cases could be described by a holographic two-dimensional (2D) conformal field theory (CFT) [Ghezelbash A M,Kamali V and Setare M R 2010 Phys.Rev.D 82 124051; Setare M R and Kamali V 2010 JHEP 10 074].Motivated by recent work [Chen C M,Huang Y M,Sun J R,Wu M F and Zou S J 2010 Phys.Rev.D 82 066004],we show that there is another holographic description for these black holes.The first description is called the J-picture,whose construction is based on the black hole angular momentum.The new description is called the Q-picture,whose constructions originate from the nut charge of the black hole.Similar to the previous cases [Ghezelbash A M,Kamali V and Setare M R 2010 Phys.Rev.D 82 124051; Setare M R and Kamali V 2010 JHEP 10 074],we show that this new picture for a low frequency limit of the wave equation of a massless charged scalar field in the background of a Kerr-Bolt black hole can be written as the Casimir of SL(2,R) symmetry.Our result shows that the entropy of the black hole is reproduced by the Cardy formula.In addition,the absorption cross section is consistent with the finite temperature absorption cross section for a two-dimensional CFT.

  4. Superconductivity with two-fold symmetry in topological superconductor Sr x Bi2Se3

    Science.gov (United States)

    Du, Guan; Li, YuFeng; Schneeloch, J.; Zhong, R. D.; Gu, GenDa; Yang, Huan; Lin, Hai; Wen, Hai-Hu

    2017-03-01

    Topological superconductivity is the quantum condensate of paired electrons with an odd parity of the pairing function. By using a Corbino-shape like electrode configuration, we measure the c-axis resistivity of the recently discovered superconductor Sr x Bi2Se3 with the magnetic field rotating within the basal planes, and find clear evidence of two-fold superconductivity. The Laue diffraction measurements on these samples show that the maximum gap direction is either parallel or perpendicular to the main crystallographic axis. This observation is consistent with the theoretical prediction and strongly suggests that Sr x Bi2Se3 is a topological superconductor.

  5. Magnetocrystalline two-fold symmetry in CaFe2O4 single crystal

    Science.gov (United States)

    Chhaganlal Gandhi, Ashish; Das, Rajasree; Chou, Fang-Cheng; Lin, Jauyn Grace

    2017-05-01

    Understanding of magnetocrystalline anisotropy in CaFe2O4 is a matter of importance for its future applications. A high quality single crystal CaFe2O4 sample is studied by using synchrotron x-ray diffraction, a magnetometer and the electron spin resonance (ESR) technique. A broad feature of the susceptibility curve around room temperature is observed, indicating the development of 1D spin interactions above the on-set of antiferromagnetic transition. The angular dependency of ESR reveals an in-plane two-fold symmetry, suggesting a strong correlation between the room temperature spin structure and magnetocrystalline anisotropy. This finding opens an opportunity for the device utilizing the anisotropy field of CaFe2O4.

  6. Local Rotational Symmetries.

    Science.gov (United States)

    1985-08-01

    way to choose among them. Spirals can occur in natural figures, e.g. a spiralled tail or a coil of rope or vine tendril, and in line drawings. Since...generated and removes it and all regions similar to it from the list of regions. The end result is a pruned list of distinct optimal regions. 4.7...that, at least to a first approximation, the potential symmetry regions pruned by the locality restriction are not perceptually salient. For example

  7. Breaking pseudo-twofold symmetry in the poliovirus 3'-UTR Y-stem by restoring Watson-Crick base pairs

    NARCIS (Netherlands)

    Zoll, G.J.; Tessari, M.; Kuppeveld, F.J.M. van; Melchers, W.J.G.; Heus, H.A.

    2007-01-01

    The previously described NMR structure of a 5'-CU-3'/5'-UU-3' motif, which is highly conserved within the 3'-UTR Y-stem of poliovirus-like enteroviruses, revealed striking regularities of the local helix geometry, thus retaining the pseudo-twofold symmetry of the RNA helix. A mutant virus with both

  8. Breaking pseudo-twofold symmetry in the poliovirus 3'-UTR Y-stem by restoring Watson-Crick base pairs.

    NARCIS (Netherlands)

    Zoll, G.J.; Tessari, M.; Kuppeveld, F.J.M. van; Melchers, W.J.G.; Heus, H.A.

    2007-01-01

    The previously described NMR structure of a 5'-CU-3'/5'-UU-3' motif, which is highly conserved within the 3'-UTR Y-stem of poliovirus-like enteroviruses, revealed striking regularities of the local helix geometry, thus retaining the pseudo-twofold symmetry of the RNA helix. A mutant virus with both

  9. Conformation and sequence evidence for two-fold symmetry in left-handed beta-helix fold.

    Science.gov (United States)

    Shen, Xiaojuan

    2011-09-21

    The left-handed beta-helix (LβH) has received interest recently as it folds as a possible solution for the structure of misfolded proteins associated with prion and Huntington's diseases. Through a combination of sequence and structure analysis, we uncover a novel feature that is common to this unique fold: a two-fold symmetry in both sequence and structure, and this feature always coupled with extended loops in the middle of the helix. Since the results reveal a two-fold symmetric pattern both in the sequence and structure, it may indicate that the symmetry in tertiary structure is coded by the symmetry in primary sequence, which agrees with Anfisen's proposal that a protein's amino-acid sequence specify its three-dimensional structure. It may also indicate that LβH adopts a two-fold repeat pattern during the evolution process and symmetry helps maintaining the stability of the helix structure. The two-fold symmetric pattern and extended loops might be important in maintaining stability of helix proteins. This discovery can be useful in understanding the folding mechanisms of this protein fold and provide insights in the relation between sequences and structures.

  10. On multipartite invariant states III. Rotational symmetry

    CERN Document Server

    Chruscinski, D; Chruscinski, Dariusz; Kossakowski, Andrzej

    2006-01-01

    We construct a class of multipartite states possessing rotational SO(3) symmetry -- these are states of K spin-j_A particles and K spin-j_B particles. The construction of symmetric states follows our two recent papers devoted to unitary and orthogonal multipartite symmetry. We study basic properties of multipartite SO(3) symmetric states: separability criteria and multi-PPT conditions.

  11. Magnetic rotation and chiral symmetry breaking

    Indian Academy of Sciences (India)

    Ashok Kumar Jain; Amita

    2001-08-01

    The deformed mean field of nuclei exhibits various geometrical and dynamical symmetries which manifest themselves as various types of rotational and decay patterns. Most of the symmetry operations considered so far have been defined for a situation wherein the angular momentum coincides with one of the principal axes and the principal axis cranking may be invoked. New possibilities arise with the observation of rotational features in weakly deformed nuclei and now interpreted as magnetic rotational bands. More than 120 MR bands have now been identified by filtering the existing data. We present a brief overview of these bands. The total angular momentum vector in such bands is tilted away from the principal axes. Such a situation gives rise to several new possibilities including breaking of chiral symmetry as discussed recently by Frauendorf. We present the outcome of such symmetries and their possible experimental verification. Some possible examples of chiral bands are presented.

  12. Rotating optical microcavities with broken chiral symmetry

    CERN Document Server

    Sarma, Raktim; Wiersig, Jan; Cao, Hui

    2014-01-01

    We demonstrate in open microcavities with broken chiral symmetry, quasi-degenerate pairs of co-propagating modes in a non-rotating cavity evolve to counter-propagating modes with rotation. The emission patterns change dramatically by rotation, due to distinct output directions of CW and CCW waves. By tuning the degree of spatial chirality, we maximize the sensitivity of microcavity emission to rotation. The rotation-induced change of emission is orders of magnitude larger than the Sagnac effect, pointing to a promising direction for ultrasmall optical gyroscopes.

  13. Mei Symmetry and Lie Symmetry of the Rotational Relativistic Variable Mass System

    Institute of Scientific and Technical Information of China (English)

    FANGJian-Hui

    2003-01-01

    The Mei symmetry and the Lie symmetry of a rotational relativistic variable mass system are studied. The definitions and criteria of the Mei symmetry and the Lie symmetry of the rotational relativistic variable mass system are given. The relation between the Mei symmetry and the Lie symmetry is found. The conserved quantities which the Mei symmetry and the Lie symmetry lead to are obtained. An example is given to illustrate the application of the result.

  14. Rotational symmetry breaking in baby Skyrme models

    CERN Document Server

    Hen, Itay

    2007-01-01

    We consider multisolitons with charges 1 =< B =< 5 in the baby Skyrme model for the one-parametric family of potentials U=\\mu^2 (1-\\phi_3)^s with 0rotationally-symmetric. For higher charges, stable solutions exist only below s \\approx 2. In the charge-two sector the stable solutions are always rotationally-symmetric and ring-like. For charge three and above, rotational symmetry is exhibited only in the small s region; above a certain critical value of s, this symmetry is broken and a strong repulsion between the constituent one-Skyrmions becomes apparent. We also compute the spatial energy distributions of these solutions.

  15. Mei Symmetry and Lie Symmetry of the Rotational Relativistic Variable Mass System

    Institute of Scientific and Technical Information of China (English)

    FANG Jian-Hui

    2003-01-01

    The Mei symmetry and the Lie symmetry of a rotational relativistic variable masssystem are studied. Thedefinitions and criteria of the Mei symmetry and the Lie symmetry of the rotational relativistic variable mass system aregiven. The relation between the Mei symmetry and the Lie symmetry is found. The conserved quantities which the Meisymmetry and the Lie symmetry lead to are obtained. An example is given to illustrate the application of the result.

  16. Review of Rotational Symmetry Breaking in Baby Skyrme Models

    CERN Document Server

    Karliner, Marek

    2009-01-01

    We discuss one of the most interesting phenomena exhibited by baby skyrmions -- breaking of rotational symmetry. The topics we will deal with here include the appearance of rotational symmetry breaking in the static solutions of baby Skyrme models, both in flat as well as in curved spaces, the zero-temperature crystalline structure of baby skyrmions, and finally, the appearance of spontaneous breaking of rotational symmetry in rotating baby skyrmions.

  17. Theory of symmetry for a rotational relativistic Birkhoff system

    Institute of Scientific and Technical Information of China (English)

    罗绍凯; 陈向炜; 郭永新

    2002-01-01

    The theory of symmetry for a rotational relativistic Birkhoff system is studied. In terms of the invariance of therotational relativistic Pfaff-Birkhoff-D'Alembert principle under infinitesimal transformations, the Noether symmetriesand conserved quantities of a rotational relativistic Birkhoff system are given. In terms of the invariance of rotationalrelativistic Birkhoff equations under infinitesimal transformations, the Lie symmetries and conserved quantities of therotational relativistic Birkhoff system are given.

  18. Phase rotation symmetry and the topology of oriented scattering networks

    Science.gov (United States)

    Delplace, Pierre; Fruchart, Michel; Tauber, Clément

    2017-05-01

    We investigate the topological properties of dynamical states evolving on periodic oriented graphs. This evolution, which encodes the scattering processes occurring at the nodes of the graph, is described by a single-step global operator, in the spirit of the Ho-Chalker model. When the successive scattering events follow a cyclic sequence, the corresponding scattering network can be equivalently described by a discrete time-periodic unitary evolution, in line with Floquet systems. Such systems may present anomalous topological phases where all the first Chern numbers are vanishing, but where protected edge states appear in a finite geometry. To investigate the origin of such anomalous phases, we introduce the phase rotation symmetry, a generalization of usual symmetries which only occurs in unitary systems (as opposed to Hamiltonian systems). Equipped with this new tool, we explore a possible explanation of the pervasiveness of anomalous phases in scattering network models, and we define bulk topological invariants suited to both equivalent descriptions of the network model, which fully capture the topology of the system. We finally show that the two invariants coincide, again through a phase rotation symmetry arising from the particular structure of the network model.

  19. Rotation roots and neoclassical viscosity in quasi-symmetry

    Science.gov (United States)

    Cole, A. J.; Hegna, C. C.; Callen, J. D.

    2009-11-01

    In a quasi-symmetric device, there exists a symmetry angle αh= θ-Nζ/M, such that |B| = B0(1 - ɛhM αh ) along a field-line, with several much smaller helical `sidebands.' Provided the departure from symmetry is small, i.e. δBeff/B0ɛh where δBeff/B0 is the effective helical sideband strength, flow damping and thus flow evolution along and `cross' the direction of symmetry in a flux surface decouple [1,2], and can be determined successively. In the context of a fluid-moment approach [3], the momentum equation in the symmetry direction is equivalent to the ambipolarity condition. Steady state rotation solutions of this equation are equivalent to ambipolar radial electric field `roots' in conventional stellarator theory and will be presented for various banana-drift neoclassical flow damping regimes [2].[4pt] [1] J. D. Callen, A. J. Cole, and C. C. Hegna, Tech. Rep. UW-CPTC 08-7, Univ. of Wisconsin, http://www.cptc.wisc.edu (2009).[0pt] [2] A. J. Cole, C. C. Hegna, and J. D. Callen, Tech. Rep. UW-CPTC 08-8, Univ. of Wisconsin, http://www.cptc.wisc.edu (2009).[0pt] [3] K. C. Shaing and J. D. Callen, Phys. Fluids 26, 3315 (1983).

  20. Symmetry axis based object recognition under translation, rotation and scaling.

    Science.gov (United States)

    Hyder, Mashud; Islam, Md Monirul; Akhand, M A H; Murase, Kazuyuki

    2009-02-01

    This paper presents a new approach, known as symmetry axis based feature extraction and recognition (SAFER), for recognizing objects under translation, rotation and scaling. Unlike most previous invariant object recognition (IOR) systems, SAFER puts emphasis on both simplicity and accuracy of the recognition system. To achieve simplicity, it uses simple formulae for extracting invariant features from an object. The scheme used in feature extraction is based on the axis of symmetry and angles of concentric circles drawn around the object. SAFER divides the extracted features into a number of groups based on their similarity. To improve the recognition performance, SAFER uses a number of neural networks (NNs) instead of single NN are used for training and recognition of extracted features. The new approach, SAFER, has been tested on two of real world problems i.e., English characters with two different fonts and images of different shapes. The experimental results show that SAFER can produce good recognition performance in comparison with other algorithms.

  1. Multiresolution Rotational Symmetry Detection via Radius-Based Frieze-Expansion

    Directory of Open Access Journals (Sweden)

    Gang Pan

    2016-01-01

    Full Text Available Rotational symmetry is important for many applications in computer graphics, vision, and image processing. However, it remains difficult to design an effective algorithm for automatic symmetry recognition. In this paper, we present a rotational symmetry detection algorithm, which is easy to use and can determine both the center and the radius of the rotational symmetry supporting region without human interaction. Our algorithm is derived from frieze-expansions approach and improved through a radius-based expansion idea. Multiresolution pyramid is used to accelerate this detection process. We also discuss a solution to deal with rotational symmetry detection under slight affine transformation. Experimental results show that the method is effective for most nature images with rotational symmetry.

  2. Rotational symmetry breaking in the topological superconductor SrxBi2Se3 probed by upper-critical field experiments.

    Science.gov (United States)

    Pan, Y; Nikitin, A M; Araizi, G K; Huang, Y K; Matsushita, Y; Naka, T; de Visser, A

    2016-01-01

    Recently it was demonstrated that Sr intercalation provides a new route to induce superconductivity in the topological insulator Bi2Se3. Topological superconductors are predicted to be unconventional with an odd-parity pairing symmetry. An adequate probe to test for unconventional superconductivity is the upper critical field, Bc2. For a standard BCS layered superconductor Bc2 shows an anisotropy when the magnetic field is applied parallel and perpendicular to the layers, but is isotropic when the field is rotated in the plane of the layers. Here we report measurements of the upper critical field of superconducting SrxBi2Se3 crystals (Tc = 3.0 K). Surprisingly, field-angle dependent magnetotransport measurements reveal a large anisotropy of Bc2 when the magnet field is rotated in the basal plane. The large two-fold anisotropy, while six-fold is anticipated, cannot be explained with the Ginzburg-Landau anisotropic effective mass model or flux flow induced by the Lorentz force. The rotational symmetry breaking of Bc2 indicates unconventional superconductivity with odd-parity spin-triplet Cooper pairs (Δ4-pairing) recently proposed for rhombohedral topological superconductors, or might have a structural nature, such as self-organized stripe ordering of Sr atoms.

  3. SVD for imaging systems with discrete rotational symmetry.

    Science.gov (United States)

    Clarkson, Eric; Palit, Robin; Kupinski, Matthew A

    2010-11-22

    The singular value decomposition (SVD) of an imaging system is a computationally intensive calculation for tomographic imaging systems due to the large dimensionality of the system matrix. The computation often involves memory and storage requirements beyond those available to most end users. We have developed a method that reduces the dimension of the SVD problem towards the goal of making the calculation tractable for a standard desktop computer. In the presence of discrete rotational symmetry we show that the dimension of the SVD computation can be reduced by a factor equal to the number of collection angles for the tomographic system. In this paper we present the mathematical theory for our method, validate that our method produces the same results as standard SVD analysis, and finally apply our technique to the sensitivity matrix for a clinical CT system. The ability to compute the full singular value spectra and singular vectors will augment future work in system characterization, image-quality assessment and reconstruction techniques for tomographic imaging systems.

  4. Spin-rotation symmetry breaking in the superconducting state of CuxBi2Se3

    Science.gov (United States)

    Matano, K.; Kriener, M.; Segawa, K.; Ando, Y.; Zheng, Guo-Qing

    2016-09-01

    Spontaneous symmetry breaking is an important concept for understanding physics ranging from the elementary particles to states of matter. For example, the superconducting state breaks global gauge symmetry, and unconventional superconductors can break further symmetries. In particular, spin-rotational symmetry is expected to be broken in spin-triplet superconductors. However, experimental evidence for such symmetry breaking has not been conclusively obtained so far in any candidate compounds. Here, using 77Se nuclear magnetic resonance measurements, we show that spin-rotation symmetry is spontaneously broken in the hexagonal plane of the electron-doped topological insulator Cu0.3Bi2Se3 below the superconducting transition temperature Tc = 3.4 K. Our results not only establish spin-triplet superconductivity in this compound, but may also serve to lay a foundation for the research of topological superconductivity.

  5. Linking partial and quasi dynamical symmetries in rotational nuclei

    CERN Document Server

    Kremer, C; Leviatan, A; Pietralla, N; Rainovski, G; Trippel, R; Van Isacker, P

    2014-01-01

    Background: Quasi dynamical symmetries (QDS) and partial dynamical symmetries (PDS) play an important role in the understanding of complex systems. Up to now these symmetry concepts have been considered to be unrelated. Purpose: Establish a link between PDS and QDS and find an emperical manifestation. Methods: Quantum number fluctuations and the intrinsic state formalism are used within the framework of the interacting boson model of nuclei. Results: A previously unrecognized region of the parameter space of the interacting boson model that has both O(6) PDS (purity) and SU(3) QDS (coherence) in the ground band is established. Many rare-earth nuclei approximately satisfying both symmetry requirements are identified. Conclusions: PDS are more abundant than previously recognized and can lead to a QDS of an incompatible symmetry.

  6. Rotational Symmetry and Absolute Sign of Second-Order Susceptibility of α-Quartz

    Institute of Scientific and Technical Information of China (English)

    吕荣; 王鸿飞

    2003-01-01

    We investigate the rotational symmetry and absolute sign of the effective second-order susceptibility of the righthanded z-cut α-quartz crystal in different crystal orientations through the second-harmonic-generation phase interference between standard and reference of thin α-quartz plates. The Ds rotational symmetry of the z-cut α-quartz crystal shows 6 alternating sign sections of the second-order susceptibility in the 360° rotation, which leads to two distinctive interference patterns between the reference and standard second harmonic field. From this information, the sign of the interference pattern in the second harmonic phase measurement could be readily derived.

  7. Rotated μ -τ symmetry for one generic neutrino mixing angle: An analytical study

    Science.gov (United States)

    Lashin, E. I.; Chamoun, N.; Hamzaoui, C.; Nasri, S.

    2017-07-01

    We find a realization of the Z2 symmetry in the neutrino mass matrix which expresses a rotation of the μ -τ symmetry and is able to impose a generic smallest mixing angle, in contrast to a zero-value predicted by the usual nonrotated form of the μ -τ symmetry. We extend this symmetry for the lepton sector within the type-I seesaw scenario and show it can accommodate the mixing angles, the mass hierarchies, and the lepton asymmetry in the Universe. We then study the effects of perturbing the specific form of the neutrino mass matrix imposed by the symmetry and compute the resulting mixing and mass spectrum. We trace back this "low-scale" perturbation to a "high-scale" perturbation, and find realizations of this latter one arising from exact symmetries with an enriched matter content.

  8. ΔI = 4 structure in superdeformed rotational band - deformation with C4v symmetry

    Science.gov (United States)

    Hamamoto, Ikuko; Mottelson, Ben

    1995-01-01

    The recent observation of "ΔI = 4 structure" (or, alternatively, we call it "ΔI = 2 staggering") in the rotational spectra of superdeformed nuclei suggests the occurrence of Y44 deformations in the nuclear shape with associated C4v point-symmetry for the rotational Hamiltonian. Requiring the axially symmetric terms to favour rotation about an axis that is perpendicular to the long axis of nuclear shape, we have studied the general class of Hamiltonians with such symmetry. The ΔI = 4 structure can indeed result from the tunnelling between the four equivalent minima that occur in the plane perpendicular to the superdeformation symmetry axis, but the occurrence of this effect is a subtle matter depending sensitively on the axially symmetric terms in the Hamiltonian. We also discuss the dependence of the phase and the amplitude of the ΔI = 2 staggering on parameters.

  9. Form Invariance and Lie Symmetries of the Rotational Relativistic Birkhoff System

    Institute of Scientific and Technical Information of China (English)

    罗绍凯

    2002-01-01

    For a rotational relativistic Birkhoff system, the relation between the form invariance and the Lie symmetries are given under infinitesimal transformations of groups. If the infinitesimal transformation generators ξ0 and ξμ satisfy the conditions of the form invariance, and the determining equation of Lie symmetries holds, the form invariance leads to a Lie symmetry of the system. Furthermore, if the infinitesimal transformations generators ξ0 and ξμ satisfy the conditions of the form invariance and the determining equation of Lie symmetry holds, and if there is a gauge function G satisfying the structure equation of Lie symmetry, then the form invariance will lead to the Lie symmetrical conserved quantity of the system. An example is given to illustrate the application of the results.

  10. Nonlinear modes and symmetry breaking in rotating double-well potentials

    CERN Document Server

    Li, Yongyao; Malomed, Boris A

    2012-01-01

    We study modes trapped in a rotating ring carrying the self-focusing (SF) or defocusing (SDF) cubic nonlinearity and double-well potential $\\cos^{2}\\theta $, where $\\theta $ is the angular coordinate. The model, based on the nonlinear Schr\\"{o}dinger (NLS) equation in the rotating reference frame, describes the light propagation in a twisted pipe waveguide, as well as in other optical settings, and also a Bose-Einstein condensate (BEC)trapped in a torus and dragged by the rotating potential. In the SF and SDF regimes, five and four trapped modes of different symmetries are found, respectively. The shapes and stability of the modes, and transitions between them are studied in the first rotational Brillouin zone. In the SF regime, two symmetry-breaking transitions are found, of subcritical and supercritical types. In the SDF regime, an antisymmetry-breaking transition occurs. Ground-states are identified in both the SF and SDF systems.

  11. Rotating higher spin partition functions and extended BMS symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Campoleoni, A.; Gonzalez, H.A. [Université Libre de Bruxelles and International Solvay Institutes,ULB-Campus Plaine CP231, 1050 Brussels (Belgium); Oblak, B. [Université Libre de Bruxelles and International Solvay Institutes,ULB-Campus Plaine CP231, 1050 Brussels (Belgium); DAMTP, Centre for Mathematical Sciences, University of Cambridge,Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Riegler, M. [Institute for Theoretical Physics, Vienna University of Technology,Wiedner Hauptstrasse 8-10, A-1040 Vienna (Austria)

    2016-04-06

    We evaluate one-loop partition functions of higher-spin fields in thermal flat space with angular potentials; this computation is performed in arbitrary space-time dimension, and the result is a simple combination of Poincaré characters. We then focus on dimension three, showing that suitable products of one-loop partition functions coincide with vacuum characters of higher-spin asymptotic symmetry algebras at null infinity. These are extensions of the bms{sub 3} algebra that emerges in pure gravity, and we propose a way to build their unitary representations and to compute the associated characters. We also extend our investigations to supergravity and to a class of gauge theories involving higher-spin fermionic fields.

  12. Approximate restoration of translational and rotational symmetries within the Lipkin method

    CERN Document Server

    Gao, Y; Toivanen, P

    2015-01-01

    Background: Nuclear self-consistent mean-field approaches are rooted in the density functional theory and, through the spontaneous symmetry breaking mechanism, allow for including important correlations, while keeping the simplicity of the approach. Because real ground states should have all symmetries of the nuclear Hamiltonian, these methods require subsequent symmetry restoration. Purpose: We implement and study Lipkin method of approximate variation after projection applied to the restoration of the translational or rotational symmetries. Methods: We use Lipkin operators up to quadratic terms in momenta or angular momenta with self-consistently determined values of the Peierls-Yoccoz translational masses or moments of inertia, respectively. Calculations based on Skyrme energy-density functional are performed for heavy, deformed, and paired nuclei. Results: In deformed nuclei, the Peierls-Yoccoz translational masses along three different principal-axes directions of the intrinsic system can be different, w...

  13. Observables and initial conditions for rotating and expanding fireballs with spheroidal symmetry

    CERN Document Server

    Csorgo, T; Barna, I F

    2015-01-01

    Utilizing a recently found class of exact, analytic rotating solutions of non-relativistic fireball hydrodynamics, we calculate analytically the single-particle spectra, the elliptic flows and two-particle Bose-Einstein correlation functions for rotating and expanding fireballs with spheroidal symmetry. We demonstrate, that rotation generates final state momentum anisotropies even for a spatially symmetric, spherical initial geometry of the fireball. The mass dependence of the effective temperatures, as well as the HBT radius parameters and the elliptic flow are shown to be sensitive not only to radial flow effects but also to the magnitude of the initial angular momentum.

  14. Symmetry Beyond Perturbation Theory: Floppy Molecules and Rotation-Vibration States

    Science.gov (United States)

    Schmiedt, Hanno; Schlemmer, Stephan; Jensen, Per

    2015-06-01

    In the customary approach to the theoretical description of the nuclear motion in molecules, the molecule is seen as a near-static structure rotating in space. Vibrational motion causing small structural deformations induces a perturbative treatment of the rotation-vibration interaction, which fails in fluxional molecules, where all vibrational motions are large compared to the linear extension of the molecule. An example is protonated methane (CH_5^+). For this molecule, customary theory fails to simulate reliably even the low-energy spectrum. Within the traditional view of rotation and vibration being near-separable, rotational and vibrational wavefunctions can be symmetry classified separately in the molecular symmetry (MS) group. In the present contribution we discuss a fundamental group theoretical approach to the problem of determining the symmetries of molecular rotation-vibration states. We will show that all MS groups discussed so far are subgroups of the special orthogonal group in three dimensions SO(3) This leads to a group theoretical foundation of the technique of equivalent rotations. The MS group of protonated methane (G240) represents, to the best of our knowledge, the first example of an MS group which is not a subgroup of SO(3) (nor of O(3) nor of SU(2)). Because of this, a separate symmetry classification of vibrational and rotational wavefunctions becomes impossible in this MS group, consistent with the fact that a decoupling of vibrational and rotational motion is impossible. We want to discuss the consequences of this. In conclusion, we show that the prototypical floppy molecule CH_5^+ represents a new class of molecules, where usual group theoretical methods for determining selection rules and spectral assignments fail so that new methods have to be developed. P. Kumar and D. Marx, Physical Chemistry Chemical Physics 8, 573 (2006) Z. Jin, B. J. Braams, and J. M. Bowman, The Journal of Physical Chemistry A 110, 1569 (2006) A. S. Petit, J. E

  15. Spin-symmetry conversion and internal rotation in high J molecular systems

    Science.gov (United States)

    Mitchell, Justin; Harter, William

    2006-05-01

    Dynamics and spectra of molecules with internal rotation or rovibrational coupling is approximately modeled by rigid or semi-rigid rotors with attached gyroscopes. Using Rotational Energy (RE)^1 surfaces, high resolution molecular spectra for high angular momentum show two distinct but related phenomena; spin-symmetry conversion and internal rotation. For both cases the high total angular momentum allows for transitions that would otherwise be forbidden. Molecular body-frame J-localization effects associated with tight energy level-clusters dominate the rovibronic spectra of high symmetry molecules, particularly spherical tops at J>10. ^2 The effects include large and widespread spin-symmetry mixing contrary to conventional wisdom^3 about weak nuclear moments. Such effects are discussed showing how RE surface plots may predict them even at low J. Classical dynamics of axially constrained rotors are approximated by intersecting rotational-energy-surfaces (RES) that have (J-S).B.(J-S) forms in the limit of constraints that do no work. Semi-classical eigensolutions are compared to those found by direct diagonalization. ^1 W.G Hater, in Handbook of Atomic, Molecular and Optical Physics, edited by G.W.F Drake (Springer, Germany 2006) ^2 W. G. Harter, Phys. Rev. A24,192-262(1981). ^3 G. Herzberg, Infrared and Raman Spectra (VanNostrand 1945) pp. 458,463.

  16. Relation between perception of vertical axis rotation and vestibulo-ocular reflex symmetry

    Science.gov (United States)

    Peterka, Robert J.; Benolken, Martha S.

    1992-01-01

    Subjects seated in a vertical axis rotation chair controlled their rotational velocity by adjusting a potentiometer. Their goal was to null out pseudorandom rotational perturbations in order to remain perceptually stationary. Most subjects showed a slow linear drift of velocity (a constant acceleration) to one side when they were deprived of an earth-fixed visual reference. The amplitude and direction of this drift can be considered a measure of a static bias in the subject's perception of rotation. The presence of a perceptual bias is consistent with a small, constant imbalance of vestibular function which could be of either central or peripheral origin. Deviations from perfect vestibulo-ocular reflex (VOR) symmetry are also assumed to be related to imbalances in either peripheral or central vestibular function. Researchers looked for correlations between perceptual bias and various measures of vestibular reflex symmetry that might suggest a common source for both reflective and perceptual imbalances. No correlations were found. Measurement errors could not account for these results since repeated tests on the same subjects of both perceptual bias and VOR symmetry were well correlated.

  17. Polyominoes and Polyiamonds as Fundamental Domains of Isohedral Tilings with Rotational Symmetry

    Directory of Open Access Journals (Sweden)

    Gisaku Nakamura

    2011-12-01

    Full Text Available We describe computer algorithms that produce the complete set of isohedral tilings by n-omino or n-iamond tiles in which the tiles are fundamental domains and the tilings have 3-, 4-, or 6-fold rotational symmetry. The symmetry groups of such tilings are of types p3, p31m, p4, p4g, and p6. There are no isohedral tilings with p3m1, p4m, or p6m symmetry groups that have polyominoes or polyiamonds as fundamental domains. We display the algorithms’ output and give enumeration tables for small values of n. This expands earlier works [1,2] and is a companion to [3].

  18. On the ineffectiveness of constant rotation in the primitive equations and their symmetry analysis

    CERN Document Server

    Cardoso-Bihlo, Elsa Dos Santos

    2015-01-01

    Modern weather and climate prediction models are based on a system of nonlinear partial differential equations called the primitive equations. Lie symmetries of the primitive equations are computed and the structure of its maximal Lie invariance algebra, which is infinite dimensional, is studied. The maximal Lie invariance algebra for the case of a nonzero constant Coriolis parameter is mapped to the case of vanishing Coriolis force. The same mapping allows one to transform the constantly rotating primitive equations to the equations in a resting reference frame. This mapping is used to obtain exact solutions for the rotating case from exact solutions from the nonrotating equations. Another important result of the paper is the computation of the complete point symmetry group of the primitive equations using the algebraic method.

  19. Polarization singularities and orbital angular momentum sidebands from rotational symmetry broken by the Pockels effect.

    Science.gov (United States)

    Lu, Xiancong; Wu, Ziwen; Zhang, Wuhong; Chen, Lixiang

    2014-05-02

    The law of angular momentum conservation is naturally linked to the rotational symmetry of the involved system. Here we demonstrate theoretically how to break the rotational symmetry of a uniaxial crystal via the electro-optic Pockels effect. By numerical method based on asymptotic expansion, we discover the 3D structure of polarization singularities in terms of C lines and L surfaces embedded in the emerging light. We visualize the controllable dynamics evolution of polarization singularities when undergoing the Pockels effect, which behaves just like the binary fission of a prokaryotic cell, i.e., the splitting of C points and fission of L lines are animated in analogy with the cleavage of nucleus and division of cytoplasm. We reveal the connection of polarization singularity dynamics with the accompanying generation of orbital angular momentum sidebands. It is unexpected that although the total angular momentum of light is not conserved, the total topological index of C points is conserved.

  20. Coupling between magnetic field and curvature in Heisenberg spins on surfaces with rotational symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho-Santos, Vagson L., E-mail: vagson.santos@ufv.br [Instituto Federal de Educação, Ciência e Tecnologia Baiano, Campus Senhor do Bonfim, 48970-000 Senhor do Bonfim, Bahia (Brazil); Dandoloff, Rossen [Laboratoire de Physique Théorique et Modélisation, Université de Cergy-Pontoise, 95302 Cergy-Pontoise (France)

    2012-10-15

    We study the nonlinear σ-model in an external magnetic field applied on curved surfaces with rotational symmetry. The Euler–Lagrange equations derived from the Hamiltonian yield the double sine-Gordon equation (DSG) provided the magnetic field is tuned with the curvature of the surface. A 2π skyrmion appears like a solution for this model and surface deformations are predicted at the sector where the spins point in the opposite direction to the magnetic field. We also study some specific examples by applying the model on three rotationally symmetric surfaces: the cylinder, the catenoid and the hyperboloid.

  1. Temporal Modulation of Traveling Waves in the Flow Between Rotating Cylinders With Broken Azimuthal Symmetry

    CERN Document Server

    Tennakoon, S G K; Hegseth, J J; Riecke, H; Tennakoon, Sarath G. K.; Hegseth, John. J.; Riecke, Hermann

    1996-01-01

    The effect of temporal modulation on traveling waves in the flows in two distinct systems of rotating cylinders, both with broken azimuthal symmetry, has been investigated. It is shown that by modulating the control parameter at twice the critical frequency one can excite phase-locked standing waves and standing-wave-like states which are not allowed when the system is rotationally symmetric. We also show how previous theoretical results can be extended to handle patterns such as these, that are periodic in two spatial direction.

  2. 300 nm bandwidth adiabatic SOI polarization splitter-rotators exploiting continuous symmetry breaking.

    Science.gov (United States)

    Socci, Luciano; Sorianello, Vito; Romagnoli, Marco

    2015-07-27

    Adiabatic polarization splitter-rotators are investigated exploiting continuous symmetry breaking thereby achieving significant device size and losses reduction in a single mask fabrication process for both SOI channel and ridge waveguides. A crosstalk lower than -25 dB is expected over 300nm bandwidth, making the device suitable for full grid CWDM and diplexer/triplexer FTTH applications at 1310, 1490 and 1550nm.

  3. Group Analysis of Nonlinear Internal Waves in Oceans. II: The symmetries and rotationally invariant solution

    CERN Document Server

    Ibragimov, Nail H; Kovalev, Vladimir F

    2011-01-01

    74J30The maximal group of Lie point symmetries of a system of nonlinear equations used in geophysical fluid dynamics is presented. The Lie algebra of this group is infinite-dimensional and involves three arbitrary functions of time. The invariant solution under the rotation and dilation is constructed. Qualitative analysis of the invariant solution is provided and the energy of this solution is presented.

  4. Extremal rotating black holes in the near-horizon limit: Phase space and symmetry algebra

    Directory of Open Access Journals (Sweden)

    G. Compère

    2015-10-01

    Full Text Available We construct the NHEG phase space, the classical phase space of Near-Horizon Extremal Geometries with fixed angular momenta and entropy, and with the largest symmetry algebra. We focus on vacuum solutions to d dimensional Einstein gravity. Each element in the phase space is a geometry with SL(2,R×U(1d−3 isometries which has vanishing SL(2,R and constant U(1 charges. We construct an on-shell vanishing symplectic structure, which leads to an infinite set of symplectic symmetries. In four spacetime dimensions, the phase space is unique and the symmetry algebra consists of the familiar Virasoro algebra, while in d>4 dimensions the symmetry algebra, the NHEG algebra, contains infinitely many Virasoro subalgebras. The nontrivial central term of the algebra is proportional to the black hole entropy. The conserved charges are given by the Fourier decomposition of a Liouville-type stress-tensor which depends upon a single periodic function of d−3 angular variables associated with the U(1 isometries. This phase space and in particular its symmetries can serve as a basis for a semiclassical description of extremal rotating black hole microstates.

  5. Theory of symmetry and of exact solution properties for fast rotating nuclei; Theorie de la symetrie et des proprietes de solutions exactes pour les noyaux en rotation rapide

    Energy Technology Data Exchange (ETDEWEB)

    Heydon, B.

    1995-07-19

    We propose a study of rotating multi-fermionic systems. The method we developed is based on unitary group theory. The formalism of Gel`fand-Tsetlin is is simplified to binary calculations. With the help of operator of Casimir and physical interpretations using dichotomic symmetries (signature, parity), we show rotating Hamiltonians obey to a new quantum symmetry called P. The study of short range two-body interaction breaking weakly this symmetry, is made by using single j-shell. Nuclear interactions coupling two j-shell are introduced. This study allows us to compare ours results to experimental data for three isotopes of Zirconium. (author). 155 refs.

  6. Charged dual string vacua from interacting rotating black holes via discrete and nonlinear symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Herrera-Aguilar, Alfredo [Instituto de FIsica y Matematicas, Universidad Michoacana de San Nicolas de Hidalgo, Edificio C-3, Ciudad Universitaria, Morelia, Mich., CP 58040 (Mexico); Nowakowski, Marek [Departamento de FIsica, Universidad de los Andes, Cra. 1 No 18A-10, Santa Fe de Bogota (Colombia)

    2004-02-21

    Using the stationary formulation of the toroidally compactified heterotic string theory in terms of a pair of matrix Ernst potentials we consider the four-dimensional truncation of this theory with no U(1) vector fields excited. Imposing one timelike Killing vector permits us to express the stationary effective action as a model in which gravity is coupled to a matrix Ernst potential which, under certain parametrization, allows us to interpret the matter sector of this theory as a double Ernst system. We generate a web of string vacua which are related to each other via a set of discrete symmetries of the effective action (some of them involve S-duality transformations and possess non-perturbative character). Some physical implications of these discrete symmetries are analysed and we find that, in some particular cases, they relate rotating black holes coupled to a dilaton with no Kalb-Ramond field, static black holes with non-trivial dilaton and antisymmetric tensor fields, and rotating and static naked singularities. Further, by applying a nonlinear symmetry, namely, the so-called normalized Harrison transformation, on the seed field configurations corresponding to these neutral backgrounds, we recover the U(1){sup n} Abelian vector sector of the four-dimensional action of the heterotic string, charging in this way the double Ernst system which corresponds to each one of the neutral string vacua, i.e., the stationary and the static black holes and the naked singularities.

  7. Interacting fermions in rotation: chiral symmetry restoration, moment of inertia and thermodynamics

    Science.gov (United States)

    Chernodub, M. N.; Gongyo, Shinya

    2017-01-01

    We study rotating fermionic matter at finite temperature in the framework of the Nambu-Jona-Lasinio model. In order to respect causality the rigidly rotating system must be bound by a cylindrical boundary with appropriate boundary conditions that confine the fermions inside the cylinder. We show the finite geometry with the MIT boundary conditions affects strongly the phase structure of the model leading to three distinct regions characterized by explicitly broken (gapped), partially restored (nearly gapless) and spontaneously broken (gapped) phases at, respectively, small, moderate and large radius of the cylinder. The presence of the boundary leads to specific steplike irregularities of the chiral condensate as functions of coupling constant, temperature and angular frequency. These steplike features have the same nature as the Shubnikov-de Haas oscillations with the crucial difference that they occur in the absence of both external magnetic field and Fermi surface. At finite temperature the rotation leads to restoration of spontaneously broken chiral symmetry while the vacuum at zero temperature is insensitive to rotation ("cold vacuum cannot rotate"). As the temperature increases the critical angular frequency decreases and the transition becomes softer. A phase diagram in angular frequency-temperature plane is presented. We also show that at fixed temperature the fermion matter in the chirally restored (gapless) phase has a higher moment of inertia compared to the one in the chirally broken (gapped) phase.

  8. Generation of protein lattices by fusing proteins with matching rotational symmetry

    Science.gov (United States)

    Sinclair, John C.; Davies, Karen M.; Vénien-Bryan, Catherine; Noble, Martin E. M.

    2011-09-01

    The self-assembly of supramolecular structures that are ordered on the nanometre scale is a key objective in nanotechnology. DNA and peptide nanotechnologies have produced various two- and three-dimensional structures, but protein molecules have been underexploited in this area of research. Here we show that the genetic fusion of subunits from protein assemblies that have matching rotational symmetry generates species that can self-assemble into well-ordered, pre-determined one- and two-dimensional arrays that are stabilized by extensive intermolecular interactions. This new class of supramolecular structure provides a way to manufacture biomaterials with diverse structural and functional properties.

  9. Symmetries and security of a quantum-public-key encryption based on single-qubit rotations

    CERN Document Server

    Seyfarth, U; Alber, G

    2012-01-01

    Exploring the symmetries underlying a previously proposed encryption scheme which relies on single-qubit rotations, we derive an improved upper bound on the maximum information that an eavesdropper might extract from all the available copies of the public key. Subsequently, the robustness of the scheme is investigated in the context of attacks that address each public-key qubit independently. The attacks under consideration make use of projective measurements on single qubits and their efficiency is compared to attacks that address many qubits collectively and require complicated quantum operations.

  10. Rotational and Fine Structure of Pseudo-Jahn Molecules with C_1 Symmetry

    Science.gov (United States)

    Liu, Jinjun

    2016-06-01

    It has been found in our previous works that rotational and fine-structure analysis of spectra involving nearly degenerate electronic states may aid in interpretation and analysis of the vibronic structure, specifically in the case of pseudo-Jahn-Teller (pJT) molecules with C_s symmetry. The spectral analysis of pJT derivatives (isopropoxy and cyclohexoxy of a prototypical JT molecule (the methoxy radical) allowed for quantitative determination of various contributions to the energy separation between the nearly degenerate electronic states, including the relativistic spin-orbit (SO) effect, the electrostatic interaction, and their zero-point energy difference. These states are coupled by SO and Coriolis interactions, which can also be determined accurately in rotational and fine structure analysis. Most recently, the spectroscopic model for rotational analysis of pJT molecules has been extended for analysis of molecules with C_1 symmetry, i.e., no symmetry. This model includes the six independently determinable components of the spin-rotation (SR) tensor and the three components of the SO and Coriolis interactions. It has been employed to simulate and fit high-resolution laser-induced fluorescence (LIF) spectra of jet-cooled alkoxy radicals with C_1 symmetry, including the 2-hexoxy and the 2-pentoxy radicals, as well as previously recorded LIF spectrum of the trans-conformer (defined by its OCCC dihedral angle) of the 2-butoxy radical. Although the LIF spectra can be reproduced by using either the SR constants or SO and Coriolis constants, the latter simulation offers results that are physically more meaningful whereas the SR constants have to be regarded as effective constants. Furthermore, we will review the SO and Coriolis constants of alkoxy radicals that have been investigated, starting from the well-studied methoxy radical (CH_3O). J. Liu, D. Melnik, and T. A. Miller, J. Chem. Phys. 139, 094308 (2013) J. Liu and T. A. Miller, J. Phys. Chem. A 118, 11871

  11. Optically isotropic responses induced by discrete rotational symmetry of nanoparticle clusters

    Science.gov (United States)

    Hopkins, Ben; Liu, Wei; Miroshnichenko, Andrey E.; Kivshar, Yuri S.

    2013-06-01

    Fostered by the recent progress of the fields of plasmonics and metamaterials, the seminal topic of light scattering by clusters of nanoparticles is attracting enormous renewed interest gaining more attention than ever before. Related studies have not only found various new applications in different branches of physics and chemistry, but also spread rapidly into other fields such as biology and medicine. Despite the significant achievements, there still exists unsolved but vitally important challenges of how to obtain robust polarisation-invariant responses of different types of scattering systems. In this paper, we demonstrate polarisation-independent responses of any scattering system with a rotational symmetry with respect to an axis parallel to the propagation direction of the incident wave. We demonstrate that the optical responses such as extinction, scattering, and absorption, can be made independent of the polarisation of the incident wave for all wavelengths. Such polarisation-independent responses are proven to be a robust and generic feature that is purely due to the rotational symmetry of the whole structure. We anticipate our finding will play a significant role in various applications involving light scattering such as sensing, nanoantennas, optical switches, and photovoltaic devices.

  12. Inverse cascade and symmetry breaking in rapidly-rotating Boussinesq convection

    CERN Document Server

    Favier, B; Proctor, M R E

    2014-01-01

    In this paper we present numerical simulations of rapidly-rotating Rayleigh-B\\'enard convection in the Boussinesq approximation with stress-free boundary conditions. At moderately low Rossby number and large Rayleigh number, we show that a large-scale depth-invariant flow is formed, reminiscent of the condensate state observed in two-dimensional flows. We show that the large-scale circulation shares many similarities with the so-called vortex, or slow-mode, of forced rotating turbulence. Our investigations show that at a fixed rotation rate the large-scale vortex is only observed for a finite range of Rayleigh numbers, as the quasi-two-dimensional nature of the flow disappears at very high Rayleigh numbers. We observe slow vortex merging events and find a non-local inverse cascade of energy in addition to the regular direct cascade associated with fast small-scale turbulent motions. Finally, we show that cyclonic structures are dominant in the small-scale turbulent flow and this symmetry breaking persists in ...

  13. Unifying the rotational and permutation symmetry of nuclear spin states: Schur-Weyl duality in molecular physics

    Science.gov (United States)

    Schmiedt, Hanno; Jensen, Per; Schlemmer, Stephan

    2016-08-01

    In modern physics and chemistry concerned with many-body systems, one of the mainstays is identical-particle-permutation symmetry. In particular, both the intra-molecular dynamics of a single molecule and the inter-molecular dynamics associated, for example, with reactive molecular collisions are strongly affected by selection rules originating in nuclear-permutation symmetry operations being applied to the total internal wavefunctions, including nuclear spin, of the molecules involved. We propose here a general tool to determine coherently the permutation symmetry and the rotational symmetry (associated with the group of arbitrary rotations of the entire molecule in space) of molecular wavefunctions, in particular the nuclear-spin functions. Thus far, these two symmetries were believed to be mutually independent and it has even been argued that under certain circumstances, it is impossible to establish a one-to-one correspondence between them. However, using the Schur-Weyl duality theorem we show that the two types of symmetry are inherently coupled. In addition, we use the ingenious representation-theory technique of Young tableaus to represent the molecular nuclear-spin degrees of freedom in terms of well-defined mathematical objects. This simplifies the symmetry classification of the nuclear wavefunction even for large molecules. Also, the application to reactive collisions is very straightforward and provides a much simplified approach to obtaining selection rules.

  14. Unifying the rotational and permutation symmetry of nuclear spin states: Schur-Weyl duality in molecular physics.

    Science.gov (United States)

    Schmiedt, Hanno; Jensen, Per; Schlemmer, Stephan

    2016-08-21

    In modern physics and chemistry concerned with many-body systems, one of the mainstays is identical-particle-permutation symmetry. In particular, both the intra-molecular dynamics of a single molecule and the inter-molecular dynamics associated, for example, with reactive molecular collisions are strongly affected by selection rules originating in nuclear-permutation symmetry operations being applied to the total internal wavefunctions, including nuclear spin, of the molecules involved. We propose here a general tool to determine coherently the permutation symmetry and the rotational symmetry (associated with the group of arbitrary rotations of the entire molecule in space) of molecular wavefunctions, in particular the nuclear-spin functions. Thus far, these two symmetries were believed to be mutually independent and it has even been argued that under certain circumstances, it is impossible to establish a one-to-one correspondence between them. However, using the Schur-Weyl duality theorem we show that the two types of symmetry are inherently coupled. In addition, we use the ingenious representation-theory technique of Young tableaus to represent the molecular nuclear-spin degrees of freedom in terms of well-defined mathematical objects. This simplifies the symmetry classification of the nuclear wavefunction even for large molecules. Also, the application to reactive collisions is very straightforward and provides a much simplified approach to obtaining selection rules.

  15. Coexistence of epitaxial lattice rotation and twinning tilt induced by surface symmetry mismatch

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, L., E-mail: qiaol@ornl.gov, E-mail: biegalskim@ornl.gov; Biegalski, M. D., E-mail: qiaol@ornl.gov, E-mail: biegalskim@ornl.gov [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Xiao, H. Y. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Weber, W. J. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2014-06-02

    Combined x-ray diffraction and first-principles studies of various epitaxial rutile-type metal dioxide films on Al{sub 2}O{sub 3}(0001) substrates reveal an unexpected rectangle-on-parallelogram heteroepitaxy. Unique matching of particular lattice spacings and crystal angles between the oxygen sublattices of Al{sub 2}O{sub 3}(0001) and the film(100) result in coexisted crystal rotation and lattice twinning inside the film. We demonstrate that, besides symmetry and lattice mismatch, angular mismatch along a specific crystal direction is also an important factor determining epitaxy. A generalized theorem has been proposed to explain epitaxial behaviors for tetragonal metal dioxides on Al{sub 2}O{sub 3}(0001).

  16. Motion of an antiviral compound in a rhinovirus capsid under rotational symmetry boundary conditions.

    Science.gov (United States)

    Yoneda, Shigetaka; Yoneda, Teruyo; Kurihara, Youji; Umeyama, Hideaki

    2002-08-01

    A molecular dynamics (MD) simulation of a complex of a rhinovirus protein shell referred to as a "capsid" and an anti-rhinovirus drug, WIN52084s, was performed under the rotational symmetry boundary conditions. For the simulation, the energy parameters of WIN52084s in all-atom approximations were determined by ab initio calculations using a 6-31G* basis set and the two-conformational two-stage restricted electrostatic potential fit method. The motion of WIN52084s and the capsid was focused on in the analysis of the trajectory of the simulation. The root mean square deviations of WIN52084s from the X-ray structure were decomposed to conformational, translational, and rotational components. The translation was further decomposed to radial, longitudinal, and lateral components. The conformation of WIN52084s was rigid, but moving in the pocket. The easiest path of motion for WlN52084s was on the longitudinal line, providing a track for the binding process required of the anti-rhinovirus drug to enter the pocket. The conformation of the pocket was also preserved in the simulation, although the position of the pocket in the capsid fluctuated in the lateral and radial directions.

  17. Identical rotational bands in the A {approx} 130 superdeformed region analysed in terms of the pseudospin symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Szymanski, Z. [Inst. for Theoretical Physics, Warsaw Univ., Warsaw (Poland)]|[Inst. for Nuclear Problems, Warsaw (Poland)

    1996-04-01

    Assignments for the configurations underlying the formation of identical bands in terms of the eigenstates of rotating harmonic oscillator are discussed in superdeformed nuclei. The method which is based on the pseudo-SU(3) symmetry is applied to the superdeformed bands in nuclei from the A {approx} 130 region. (author) 19 refs, 1 fig., 1 tab

  18. Dynamic scaling of the restoration of rotational symmetry in Heisenberg quantum antiferromagnets

    Science.gov (United States)

    Weinberg, Phillip; Sandvik, Anders W.

    2017-08-01

    We apply imaginary-time evolution with the operator e-τ H to study relaxation dynamics of gapless quantum antiferromagnets described by the spin-rotation-invariant Heisenberg Hamiltonian H . Using quantum Monte Carlo simulations to obtain unbiased results, we propagate an initial state with maximal order parameter msz (the staggered magnetization) in the z spin direction and monitor the expectation value 〈ms〉 as a function of imaginary time τ . Results for different system sizes (lengths) L exhibit an initial essentially size independent relaxation of 〈ms〉 toward its value in the infinite-size spontaneously symmetry broken state, followed by a strongly size dependent final decay to zero when the O (3 ) rotational symmetry of the order parameter is restored. We develop a generic finite-size scaling theory that shows the relaxation time diverges asymptotically as Lz, where z is the dynamic exponent of the low-energy excitations. We use the scaling theory to develop a practical way of extracting the dynamic exponent from the numerical finite-size data, systematically eliminating scaling corrections. We apply the method to spin-1 /2 Heisenberg antiferromagnets on two different lattice geometries: the standard two-dimensional (2D) square lattice and a site-diluted 2D square lattice at the percolation threshold. In the 2D case we obtain z =2.001 (5 ) , which is consistent with the known value z =2 , while for the site-diluted lattice we find z =3.90 (1 ) or z =2.056 (8 ) Df , where Df=91 /48 is the fractal dimensionality of the percolating system. This is an improvement on previous estimates of z ≈3.7 . The scaling results also show a fundamental difference between the two cases; for the 2D square lattice, the data can be collapsed onto a common scaling function even when 〈ms〉 is relatively large, reflecting the Anderson tower of quantum rotor states with a common dynamic exponent z =2 . For the diluted 2D square lattice, the scaling works well only for

  19. Fifth-order field aberration coefficients for an optical surface of rotational symmetry.

    Science.gov (United States)

    Gaj, M

    1971-07-01

    The approximate formulas for the principal ray parameters, such as directional cosines and heights of incidence, as well as for the paraxial sagittal quantities h(s) and H (s) have been expressed by paraxial quantities and Seidel aberrations to fifth-order accuracy. On the basis of these relations an expression for the sagittal radius of curvature r(s), (for a given y ) has been obtained. These quantities are used to derive fifth-order field aberration coefficients for arbitrary surfaces of rotational symmetry by using the wave aberration formula for sagittal focus {M. Gaj, Opt. Spectrosk. 21, 373 (1966) [Opt. Spectrosc. 21, 209 (1966)]}. The resulting expression has four terms. The first one depends only on asphericity and tends to equal zero when the surface becomes spherical. The second is a disturbance term and disappears in the Seidel region. The third and fourth terms may be treated as a generalization of the Petzval curvature and of the Seidel astigmatism, respectively. The limits of the terms, when h tends to zero, has been examined.

  20. Security of continuous-variable quantum key distribution: towards a de Finetti theorem for rotation symmetry in phase space

    Energy Technology Data Exchange (ETDEWEB)

    Leverrier, A [Institut Telecom/Telecom ParisTech, CNRS LTCI, 46, rue Barrault, 75634 Paris Cedex 13 (France); Karpov, E; Cerf, N J [Quantum Information and Communication, Ecole Polytechnique, CP 165/59, Universite Libre de Bruxelles, 50 avenue F D Roosevelt, B-1050 Brussels (Belgium); Grangier, P [Laboratoire Charles Fabry, Institut d' Optique, CNRS, Universite Paris-Sud, Campus Polytechnique, RD 128, 91127 Palaiseau Cedex (France)], E-mail: anthony.leverrier@enst.fr

    2009-11-15

    Proving the unconditional security of quantum key distribution (QKD) is a highly challenging task as one needs to determine the most efficient attack compatible with experimental data. This task is even more demanding for continuous-variable QKD as the Hilbert space where the protocol is described is infinite dimensional. A possible strategy to address this problem is to make an extensive use of the symmetries of the protocol. In this paper, we investigate a rotation symmetry in phase space that is particularly relevant to continuous-variable QKD, and explore the way towards a new quantum de Finetti theorem that would exploit this symmetry and provide a powerful tool to assess the security of continuous-variable protocols. As a first step, a single-party asymptotic version of this quantum de Finetti theorem in phase space is derived.

  1. Security of continuous-variable quantum key distribution: towards a de Finetti theorem for rotation symmetry in phase space

    Science.gov (United States)

    Leverrier, A.; Karpov, E.; Grangier, P.; Cerf, N. J.

    2009-11-01

    Proving the unconditional security of quantum key distribution (QKD) is a highly challenging task as one needs to determine the most efficient attack compatible with experimental data. This task is even more demanding for continuous-variable QKD as the Hilbert space where the protocol is described is infinite dimensional. A possible strategy to address this problem is to make an extensive use of the symmetries of the protocol. In this paper, we investigate a rotation symmetry in phase space that is particularly relevant to continuous-variable QKD, and explore the way towards a new quantum de Finetti theorem that would exploit this symmetry and provide a powerful tool to assess the security of continuous-variable protocols. As a first step, a single-party asymptotic version of this quantum de Finetti theorem in phase space is derived.

  2. Spin and Time-Reversal Symmetries of Superconducting Electron Pairs Probed by the Muon Spin Rotation and Relaxation Technique

    Science.gov (United States)

    Higemoto, Wataru; Aoki, Yuji; MacLaughlin, Douglas E.

    2016-09-01

    Unconventional superconductivity based on the strong correlation of electrons is one of the central issues of solid-state physics. Although many experimental techniques are appropriate for investigating unconventional superconductivity, a complete perspective has not been established yet. The symmetries of electron pairs are crucial properties for understanding the essential state of unconventional superconductivity. In this review, we discuss the investigation of the time-reversal and spin symmetries of superconducting electron pairs using the muon spin rotation and relaxation technique. By detecting a spontaneous magnetic field under zero field and/or the temperature dependence of the muon Knight shift in the superconducting phase, the time-reversal symmetry and spin parity of electron pairs have been determined for several unconventional superconductors.

  3. Molecular symmetry, super-rotation, and semiclassical motion new ideas for solving old problems

    CERN Document Server

    Schmiedt, Hanno

    2017-01-01

    This book presents a range of fundamentally new approaches to solving problems involving traditional molecular models. Fundamental molecular symmetry is shown to open new avenues for describing molecular dynamics beyond standard perturbation techniques. Traditional concepts used to describe molecular dynamics are based on a few fundamental assumptions, the ball-and-stick picture of molecular structure and the respective perturbative treatment of different kinds of couplings between otherwise separate motions.  The book points out the conceptual limits of these models and, by focusing on the most essential idea of theoretical physics, namely symmetry, shows how to overcome those limits by introducing fundamentally new concepts. The book begins with an introduction to molecular symmetry in general, followed by a discussion of nuclear spin symmetry. Here, a new correlation between identical particle exchange and spin angular momentum symmetry of nuclei is exhibited. The central part of the book is the discussio...

  4. Estimating the Error of an Asymptotic Solution Describing the Angular Oscillations of the Axis of Symmetry of a Rotating Rigid Body

    Science.gov (United States)

    Konosevich, B. I.

    2014-07-01

    The error of the Wentzel-Kramers-Brillouin solution of the equations describing the angular motion of the axis of symmetry of rotation of a rigid body (projectile) is estimated. It is established that order of this estimate does not depend on whether the low-frequency oscillations of the axis of symmetry are damped or not

  5. Induction of unidirectional π-electron rotations in low-symmetry aromatic ring molecules using two linearly polarized stationary lasers.

    Science.gov (United States)

    Mineo, Hirobumi; Yamaki, Masahiro; Kim, Gap-Sue; Teranishi, Yoshiaki; Lin, Sheng Hsien; Fujimura, Yuichi

    2016-09-29

    A new laser-control scenario of unidirectional π-electron rotations in a low-symmetry aromatic ring molecule having no degenerate excited states is proposed. This scenario is based on dynamic Stark shifts of two relevant excited states using two linearly polarized stationary lasers. Each laser is set to selectively interact with one of the two electronic states, the lower and higher excited states are shifted up and down with the same rate, respectively, and the two excited states become degenerate at their midpoint. One of the four control parameters of the two lasers, i.e. two frequencies and two intensities, determines the values of all the other parameters. The direction of π-electron rotations, clockwise or counter-clockwise rotation, depends on the sign of the relative phase of the two lasers at the initial time. An analytical expression for the time-dependent expectation value of the rotational angular momentum operator is derived using the rotating wave approximation (RWA). The control scenario depends on the initial condition of the electronic states. The control scenario with the ground state as the initial condition was applied to toluene molecules. The derived time-dependent angular momentum consists of a train of unidirectional angular momentum pulses. The validity of the RWA was checked by numerically solving the time-dependent Schrödinger equation. The simulation results suggest an experimental realization of the induction of unidirectional π-electron rotations in low-symmetry aromatic ring molecules without using any intricate quantum-optimal control procedure. This may open up an effective generation method of ring currents and current-induced magnetic fields in biomolecules such as amino acids having aromatic ring molecules for searching their interactions.

  6. Rotation Driven Shape-Phase Transition of the Yrast Nuclear States with O(6) Symmetry in the Interacting Boson Model

    Institute of Scientific and Technical Information of China (English)

    MU Liang-Zhu; LIU Yu-Xin

    2005-01-01

    @@ In a framework of the interacting boson model (usually referred to as IBM-1) with angular momentum projection on the coherent state, we obtain the energy surface functional of nuclei in terms of angular momentum and shape parameters. Analysing the rotation driven effect on the equilibrium shape shows that the yrast states of the nuclei with O(6) symmetry will experience a shape-phase transition from γ-soft deformed to triaxially deformed and then to spherical shape along the yrast line as the angular momentum increases.

  7. On the use of applying Lie-group symmetry analysis to turbulent channel flow with streamwise rotation

    CERN Document Server

    Frewer, Michael

    2016-01-01

    The study by Oberlack et al. (2006) consists of two main parts: a direct numerical simulation (DNS) of a turbulent plane channel flow with streamwise rotation and a preceding Lie-group symmetry analysis on the two-point correlation equation (TPC) to analytically predict the scaling of the mean velocity profiles for different rotation rates. We will only comment on the latter part, since the DNS result obtained in the former part has already been commented on by Recktenwald et al. (2009), stating that the observed mismatch between DNS and their performed experiment is possibly due to the prescription of periodic boundary conditions on a too small computational domain in the spanwise direction. By revisiting the group analysis part in Oberlack et al. (2006), we will generate more natural scaling laws describing better the mean velocity profiles than the ones proposed. However, due to the statistical closure problem of turbulence, this improvement is illusive. As we will demonstrate, any arbitrary invariant scal...

  8. Comparison of the Symmetry of Right and Left Lateral Cervical Flexion and Rotation and the Cervical FRR in Young Computer Workers

    OpenAIRE

    Yoo, Won-gyu

    2014-01-01

    [Purpose] This study compared the symmetry of right and left lateral cervical flexion and rotation, and the cervical flexion-relaxation ratio (FRR) in young computer workers in Korea. [Subjects and Methods] Twenty computer workers (14 males and 6 females) participated in this study. We measured their right and left lateral cervical flexion, rotation, and FRR. [Results] Right and left lateral flexion and right and left rotation showed no significant differences between the sides. The left cerv...

  9. Linking partial and quasi dynamical symmetries in rotational nuclei and shell evolution in {sup 96}Zr

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, Christoph

    2016-01-27

    The first part of this thesis revolves around symmetries in the sd-IBA-1. A region of approximate O(6) symmetry for the ground-state band, a partial dynamical symmetry (PDS) of type III, in the parameter space of the extended consistent-Q formalism is identified through quantum number fluctuations. The simultaneous occurrence of a SU(3) quasi dynamical symmetry for nuclei in the region of O(6) PDS is explained via the β=1, γ=0 intrinsic state underlying the ground-state band. The previously unrelated concepts of PDS and QDS are connected for the first time and many nuclei in the rare earth region that approximately satisfy both symmetry requirements are identified. Ground-state to ground-state (p, t) transfer reactions are presented as an experimental signature to identify pairs of nuclei that both exhibit O(6) PDS. In the second part of this thesis inelastic electron scattering off {sup 96}Zr is studied. The experiment was performed at the high resolution Lintott spectrometer at the S-DALINAC and covered a momentum-transfer range of 0.28 - 0.59 fm{sup -1}. Through a relative analysis using Plane Wave Born Approximation (PWBA) the B(E2;2{sup +}{sub 2}→0{sup +}{sub 1}) value is extracted without incurring the additional model dependence of a Distorted Wave Born Approximation (DWBA). By combining this result with known multipole mixing ratios and branching ratios all decay strengths of the 2{sup +}{sub 2} state are determined. A mixing calculation establishes very weak mixing (V{sub mix}=76 keV) between states of the ground-state band and those of the band build on top of the 0{sup +}{sub 2} state which includes the 2{sup +}{sub 2} state. The occurrence of these two isolated bands is interpreted within the shell model in terms of type II shell evolution.

  10. Noncritical generation of nonclassical frequency combs via spontaneous rotational symmetry breaking

    CERN Document Server

    Navarrete-Benlloch, Carlos; de Valcárcel, Germán J

    2016-01-01

    Synchronously pumped optical parametric oscillators (SPOPOs) are optical cavities containing a nonlinear crystal capable of down-converting a frequency comb to lower frequencies. These have received a lot of attention lately, because their intrinsic multimode nature makes them compact sources of quantum correlated light with promising applications in modern quantum information technologies. In this work we show that SPOPOs are also capable of accessing the challenging but interesting regime where spontaneous symmetry breaking plays a crucial role in the quantum properties of the emitted light, difficult to access with any other nonlinear optical cavity. Apart from opening the possibility of studying experimentally this elusive regime of dissipative phase transitions, our predictions will have a practical impact, since we show that spontaneous symmetry breaking provides a specific spatiotemporal mode with perfect squeezing for any value of the system parameters, turning SPOPOs into robust sources of highly non...

  11. Twofold Vlidation of NMET Writing Tests

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>This article takes the validation of NMET writing tests as a point of penetration to examine meticulously and fastidiously whether tests of this kind influence on a national basis can test what it is supposed to test.Here,I shall deal with this issue in a twofold manner,viz.face validity and content validity.Moreover,I also aim to produce findings that could help to guide revisions and promote effectiveness of NMET.After the quantifying and categorizing data collected,I eventually came up with four tables to clearly demonstrate the twofold validity of NMET writing tests.

  12. Fill-level symmetry and minimization of energy states in rotating tumblers with polygonal cross-sections

    Science.gov (United States)

    Pohlman, Nicholas A.; Paprocki, Daniel F., Jr.; Si, Yun

    2012-11-01

    Typically in rotating tumblers, constant rotation rates and circular cross-sections are used as they jointly produce a steady, uniform flowing layer at the free surface. On the other hand, experiments conducted in polygon-shaped tumblers produce unsteady conditions due to the rapidly changing flowing layer length. Results analyzing free surface properties indicate that the particle dynamics within the flowing layer attempt to minimize energy of the flowing system: The arithmetic difference between the angle of repose and the tumbler orientation has a functional relationship with the instantaneous flowing layer length in the form of a catenary. The peaks of the catenary are affected by the number of sides on the polygon cross-section as well as the symmetry around the critical 50% fill fraction. Furthermore, oscillation of the flowing layer position appears to affect the free surface curvature. This result is likely due to the rapidly increasing and decreasing length of the free surface and the rotational inertia of particles entering the flowing layer. Funding provided by NIU's Office of Student Engagement and Experiential Learning.

  13. Effects of rotation and boundaries on chiral symmetry breaking of relativistic fermions

    Science.gov (United States)

    Chernodub, M. N.; Gongyo, Shinya

    2017-05-01

    In order to avoid unphysical causality-violating effects, any rigidly rotating system must be bounded in directions transverse to the axis of rotation. We demonstrate that this requirement implies substantial dependence of properties of the relativistically rotating system on the boundary conditions. We consider a system of interacting fermions described by the Nambu-Jona-Lasinio model in a space bounded by the cylindrical surface of the finite radius. In order to confine the fermions inside the cylinder, we impose "chiral" MIT boundary conditions on its surface. These boundary conditions are parametrized by a continuous chiral angle Θ . We find that, at any value of Θ , the chiral restoration temperature Tc decreases as a quadratic function of the angular frequency Ω . However, the position and the slope of the critical curve Tc=Tc(Ω ) in the phase diagram depend noticeably on the value of the chiral angle.

  14. Interacting fermions in rotation: chiral symmetry restoration, moment of inertia and thermodynamics

    CERN Document Server

    Chernodub, M N

    2016-01-01

    We study rotating fermionic matter at finite temperature in the framework of the Nambu-Jona-Lasinio model. In order to respect causality the rigidly rotating system must be bound by a cylindrical boundary with appropriate boundary conditions that confine the fermions inside the cylinder. We show the finite geometry with the MIT boundary conditions affects strongly the phase structure of the model leading to three distinct regions characterized by explicitly broken (gapped), partially restored (nearly gapless) and spontaneously broken (gapped) phases at, respectively, small, moderate and large radius of the cylinder. The presence of the boundary leads to specific steplike irregularities of the chiral condensate as functions of coupling constant, temperature and angular frequency. These steplike features have the same nature as the Shubnikov-de Haas oscillations with the crucial difference that they occur in the absence of both external magnetic field and Fermi surface. At finite temperature the rotation leads ...

  15. Inversion symmetry breaking by oxygen octahedral rotations in the Ruddlesden-Popper NaRTiO4 family.

    Science.gov (United States)

    Akamatsu, Hirofumi; Fujita, Koji; Kuge, Toshihiro; Sen Gupta, Arnab; Togo, Atsushi; Lei, Shiming; Xue, Fei; Stone, Greg; Rondinelli, James M; Chen, Long-Qing; Tanaka, Isao; Gopalan, Venkatraman; Tanaka, Katsuhisa

    2014-05-01

    Rotations of oxygen octahedra are ubiquitous, but they cannot break inversion symmetry in simple perovskites. However, in a layered oxide structure, this is possible, as we demonstrate here in A-site ordered Ruddlesden-Popper NaRTiO4 (R denotes rare-earth metal), previously believed to be centric. By revisiting this series via synchrotron x-ray diffraction, optical second-harmonic generation, piezoresponse force microscopy, and first-principles phonon calculations, we find that the low-temperature phase belongs to the acentric space group P42(1)m, which is piezoelectric and nonpolar. The mechanism underlying this large new family of acentric layered oxides is prevalent, and could lead to many more families of acentric oxides.

  16. Quadruple space-group ambiguity owing to rotational and translational noncrystallographic symmetry in human liver fructose-1,6-bisphosphatase.

    Science.gov (United States)

    Ruf, Armin; Tetaz, Tim; Schott, Brigitte; Joseph, Catherine; Rudolph, Markus G

    2016-11-01

    Fructose-1,6-bisphosphatase (FBPase) is a key regulator of gluconeogenesis and a potential drug target for type 2 diabetes. FBPase is a homotetramer of 222 symmetry with a major and a minor dimer interface. The dimers connected via the minor interface can rotate with respect to each other, leading to the inactive T-state and active R-state conformations of FBPase. Here, the first crystal structure of human liver FBPase in the R-state conformation is presented, determined at a resolution of 2.2 Å in a tetragonal setting that exhibits an unusual arrangement of noncrystallographic symmetry (NCS) elements. Self-Patterson function analysis and various intensity statistics revealed the presence of pseudo-translation and the absence of twinning. The space group is P41212, but structure determination was also possible in space groups P43212, P4122 and P4322. All solutions have the same arrangement of three C2-symmetric dimers spaced by 1/3 along an NCS axis parallel to the c axis located at (1/4, 1/4, z), which is therefore invisible in a self-rotation function analysis. The solutions in the four space groups are related to one another and emulate a body-centred lattice. If all NCS elements were crystallographic, the space group would be I4122 with a c axis three times shorter and a single FBPase subunit in the asymmetric unit. I4122 is a minimal, non-isomorphic supergroup of the four primitive tetragonal space groups, explaining the space-group ambiguity for this crystal.

  17. Comparison of the Symmetry of Right and Left Lateral Cervical Flexion and Rotation and the Cervical FRR in Young Computer Workers.

    Science.gov (United States)

    Yoo, Won-Gyu

    2014-05-01

    [Purpose] This study compared the symmetry of right and left lateral cervical flexion and rotation, and the cervical flexion-relaxation ratio (FRR) in young computer workers in Korea. [Subjects and Methods] Twenty computer workers (14 males and 6 females) participated in this study. We measured their right and left lateral cervical flexion, rotation, and FRR. [Results] Right and left lateral flexion and right and left rotation showed no significant differences between the sides. The left cervical FRR was significantly lower than the right cervical FRR. [Conclusion] The cervical FRR, expressed as a numerical value, is a more sensitive marker for measuring neuromuscular changes associated with mild asymmetry than CROM.

  18. On spin-rotation contribution to nuclear spin conversion in $C_{3v}$-symmetry molecules Application to $CH_{3}F$

    CERN Document Server

    Guskov, K I

    1999-01-01

    The symmetrized contribution of $E$-type spin-rotation interaction to conversion between spin modifications of $E$- and $A_1$-types in molecules with ${\\rm C}_{3{\\rm v}}$-symmetry is considered. Using the high-$J$ descending of collisional broadening for accidental rotational resonances between these spin modifications, it was possible to co-ordinate the theoretical description of the conversion with (updated) experimental data for two carbon-substituted isotopes of fluoromethane. As a result, both $E$% -type spin-rotation constants are obtained. They are roughly one and a half times more than the corresponding constants for (deutero)methane.

  19. Conformation characters of gel sheets with rotational symmetry: the role of boundary

    CERN Document Server

    Zhai, Xiaobo; Zhao, Shumin

    2014-01-01

    In this paper, we systemically study the conformation characters of rotational symmetric gel sheets with free boundary and investigate the role of boundary on the equilibrium conformation. In gel sheet the boundary provides a residual strain which leads to re-distribution of stress and impacts the shape of equilibrium conformation accordingly. For sheet with boundary, the in-plane stretching energy is far larger than the bending energy in some cases. It is intrinsic different from closed membrane. In gel sheets, the boundary doesn't only quantitatively amend to the elastic energy. The residual strain on boundary cooperates with bending and stretching to determine the equilibrium conformation rather than just the last two factors. Furthermore, on the boundary of gel sheet, there is an additional energy induced by boundary line tension $\\gamma $. If $\\gamma =0$, there is $10\\%$ difference of elastic energy from the experimental result. Finally, we discuss the effects of such line tension $\\gamma $ and propose a...

  20. Anisotropic non-Gaussianity from Rotational Symmetry Breaking Excited Initial States

    CERN Document Server

    Ashoorioon, Amjad; Koivisto, Tomi

    2016-01-01

    If the initial quantum state of the primordial perturbations broke rotational invariance, that would be seen as a statistical anisotropy in the angular correlations of the cosmic microwave background radiation (CMBR) temperature fluctuations. This can be described by a general parameterisation of the initial conditions that takes into account the possible direction-dependence of both the amplitude and the phase of particle creation during inflation. The leading effect in the CMBR two-point function is typically a quadrupole modulation, whose coefficient is analytically constrained here to be $|B| \\lesssim 0.06$. The CMBR three-point function then acquires enhanced non-gaussianity, especially for the local configurations. In the large occupation number limit, a distinctive prediction is a modulation of the non-gaussianity around a mean value depending on the angle that short and long wavelength modes make with the preferred direction. The maximal variations with respect to the mean value occur for the configur...

  1. Polynomial Graphs and Symmetry

    Science.gov (United States)

    Goehle, Geoff; Kobayashi, Mitsuo

    2013-01-01

    Most quadratic functions are not even, but every parabola has symmetry with respect to some vertical line. Similarly, every cubic has rotational symmetry with respect to some point, though most cubics are not odd. We show that every polynomial has at most one point of symmetry and give conditions under which the polynomial has rotational or…

  2. Polynomial Graphs and Symmetry

    Science.gov (United States)

    Goehle, Geoff; Kobayashi, Mitsuo

    2013-01-01

    Most quadratic functions are not even, but every parabola has symmetry with respect to some vertical line. Similarly, every cubic has rotational symmetry with respect to some point, though most cubics are not odd. We show that every polynomial has at most one point of symmetry and give conditions under which the polynomial has rotational or…

  3. Multinodal fifth-order optical aberrations of optical systems without rotational symmetry: the comatic aberrations.

    Science.gov (United States)

    Thompson, Kevin P

    2010-06-01

    Building on an earlier work on the nodal aberration theory of the 3rd-order aberrations [J. Opt. Soc. Am. A22, 1389 (2005)] and the first paper in this series on the nodal aberration theory of higher-order aberrations [J. Opt. Soc. Am. A26, 1090 (2009)], this paper continues the derivation and presentation of the intrinsic, characteristic, often multinodal geometry for each type/family of the 3rd- and 5th-order optical aberrations as categorized by parallel developments for rotationally symmetric optics. The first paper in this series on the higher-order terms developed the nodal properties of the spherical aberration family, including W(060), W(240M), and W(242), and for completeness 7th-order spherical aberration W(080). This second paper in the series develops and presents the intrinsic, characteristic, often multinodal properties of the family of comatic aberrations through 5th order, specifically W(151), W(331M), and W(333) [field-linear, 5th-order aperture coma; field-cubed, 3rd-order aperture coma; and field-cubed, elliptical coma (a 3rd-order in aperture 5th-order vector aberration)]. This paper will present the first derivations of trinodal aberrations by the author.

  4. Symmetry, outliers, and geodesics in coronary artery centerline reconstruction from rotational angiography.

    Science.gov (United States)

    Unberath, Mathias; Taubmann, Oliver; Hell, Michaela; Achenbach, Stephan; Maier, Andreas

    2017-08-10

    The performance of many state-of-the-art coronary artery centerline reconstruction algorithms in rotational angiography heavily depends on accurate two-dimensional centerline information that, in practice, is not available due to segmentation errors. To alleviate the need for correct segmentations, we propose generic extensions to symbolic centerline reconstruction algorithms that target symmetrization, outlier rejection, and topology recovery on asymmetrically reconstructed point clouds. Epipolar geometry- and graph cut-based reconstruction algorithms are used to reconstruct three-dimensional point clouds from centerlines in reference views. These clouds are input to the proposed methods that consist of (a) merging of asymmetric reconstructions, (b) removal of inconsistent three-dimensional points using the reprojection error, and (c) projection domain-informed geodesic computation. We validate our extensions in a numerical phantom study and on two clinical datasets. In the phantom study, the overlap measure between the reconstructed point clouds and the three-dimensional ground truth increased from 68.4 ± 9.6% to 85.9 ± 3.3% when the proposed extensions were applied. In addition, the averaged mean and maximum reprojection error decreased from 4.32 ± 3.03 mm to 0.189 ± 0.182 mm and from 8.39 ± 6.08 mm to 0.392 ± 0.434 mm. For the clinical data, the mean and maximum reprojection error improved from 1.73 ± 0.97 mm to 0.882 ± 0.428 mm and from 3.83 ± 1.87 mm to 1.48 ± 0.61 mm, respectively. The application of the proposed extensions yielded superior reconstruction quality in all cases and effectively removed erroneously reconstructed points. Future work will investigate possibilities to integrate parts of the proposed extensions directly into reconstruction. © 2017 American Association of Physicists in Medicine.

  5. Anisotropic non-gaussianity from rotational symmetry breaking excited initial states

    Energy Technology Data Exchange (ETDEWEB)

    Ashoorioon, Amjad [INFN - Sezione di Bologna, IS FLAG,viale B. Pichat 6/2, I-40127 Bologna (Italy); Casadio, Roberto [INFN - Sezione di Bologna, IS FLAG,viale B. Pichat 6/2, I-40127 Bologna (Italy); Dipartimento di Fisica e Astronomia, Alma Mater Università di Bologna,via Irnerio 46, 40126 Bologna (Italy); Koivisto, Tomi [Nordita, KTH Royal Institute of Technology and Stockholm University,Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)

    2016-12-01

    If the initial quantum state of the primordial perturbations broke rotational invariance, that would be seen as a statistical anisotropy in the angular correlations of the cosmic microwave background radiation (CMBR) temperature fluctuations. This can be described by a general parameterisation of the initial conditions that takes into account the possible direction-dependence of both the amplitude and the phase of particle creation during inflation. The leading effect in the CMBR two-point function is typically a quadrupole modulation, whose coefficient is analytically constrained here to be |B|≲0.06. The CMBR three-point function then acquires enhanced non-gaussianity, especially for the local configurations. In the large occupation number limit, a distinctive prediction is a modulation of the non-gaussianity around a mean value depending on the angle that short and long wavelength modes make with the preferred direction. The maximal variations with respect to the mean value occur for the configurations which are coplanar with the preferred direction and the amplitude of the non-gaussianity increases (decreases) for the short wavelength modes aligned with (perpendicular to) the preferred direction. For a high scale model of inflation with maximally pumped up isotropic occupation and ϵ≃0.01 the difference between these two configurations is about 0.27, which could be detectable in the future. For purely anisotropic particle creation, the non-Gaussianity can be larger and its anisotropic feature very sharp. The non-gaussianity can then reach f{sub NL}∼30 in the preferred direction while disappearing from the correlations in the orthogonal plane.

  6. Anisotropic non-gaussianity from rotational symmetry breaking excited initial states

    Science.gov (United States)

    Ashoorioon, Amjad; Casadio, Roberto; Koivisto, Tomi

    2016-12-01

    If the initial quantum state of the primordial perturbations broke rotational invariance, that would be seen as a statistical anisotropy in the angular correlations of the cosmic microwave background radiation (CMBR) temperature fluctuations. This can be described by a general parameterisation of the initial conditions that takes into account the possible direction-dependence of both the amplitude and the phase of particle creation during inflation. The leading effect in the CMBR two-point function is typically a quadrupole modulation, whose coefficient is analytically constrained here to be |B| lesssim 0.06. The CMBR three-point function then acquires enhanced non-gaussianity, especially for the local configurations. In the large occupation number limit, a distinctive prediction is a modulation of the non-gaussianity around a mean value depending on the angle that short and long wavelength modes make with the preferred direction. The maximal variations with respect to the mean value occur for the configurations which are coplanar with the preferred direction and the amplitude of the non-gaussianity increases (decreases) for the short wavelength modes aligned with (perpendicular to) the preferred direction. For a high scale model of inflation with maximally pumped up isotropic occupation and epsilonsimeq 0.01 the difference between these two configurations is about 0.27, which could be detectable in the future. For purely anisotropic particle creation, the non-Gaussianity can be larger and its anisotropic feature very sharp. The non-gaussianity can then reach 0fNL ~ 3 in the preferred direction while disappearing from the correlations in the orthogonal plane.

  7. (Pseudo-Goldstone boson interaction in D=2+1 systems with a spontaneously broken internal rotation symmetry

    Directory of Open Access Journals (Sweden)

    Christoph P. Hofmann

    2016-03-01

    Full Text Available The low-temperature properties of systems characterized by a spontaneously broken internal rotation symmetry, O(N→O(N−1, are governed by Goldstone bosons and can be derived systematically within effective Lagrangian field theory. In the present study we consider systems living in two spatial dimensions, and evaluate their partition function at low temperatures and weak external fields up to three-loop order. Although our results are valid for any such system, here we use magnetic terminology, i.e., we refer to quantum spin systems. We discuss the sign of the (pseudo-Goldstone boson interaction in the pressure, staggered magnetization, and susceptibility as a function of an external staggered field for general N. As it turns out, the d=2+1 quantum XY model (N=2 and the d=2+1 Heisenberg antiferromagnet (N=3, are rather special, as they represent the only cases where the spin-wave interaction in the pressure is repulsive in the whole parameter regime where the effective expansion applies. Remarkably, the d=2+1 XY model is the only system where the interaction contribution in the staggered magnetization (susceptibility tends to positive (negative values at low temperatures and weak external field.

  8. Spontaneous symmetry breaking by charge stripes in the high pressure phase of superconducting La1.875Ba0.125CuO4.

    Science.gov (United States)

    Hücker, M; Zimmermann, M V; Debessai, M; Schilling, J S; Tranquada, J M; Gu, G D

    2010-02-05

    In those cases where charge-stripe order has been observed in cuprates, the crystal structure is such that the average rotational symmetry of the CuO2 planes is reduced from fourfold to twofold. As a result, one could argue that the reduced lattice symmetry is essential to the existence of stripe order. We use pressure to restore the average fourfold symmetry in a single crystal of La1.875Ba0.125CuO4, and show by x-ray diffraction that charge-stripe order still occurs. Thus, electronically driven stripe order can spontaneously break the lattice symmetry.

  9. Spontaneous Symmetry Breaking by Charge Stripes in the High Pressure Phase of Superconducting La1:875Ba0:125CuO4

    Energy Technology Data Exchange (ETDEWEB)

    Hucker, M.; Zimmermann, M.v; Debessai, M.; Schilling, J.S.; Tranquada, J.M.; Gu, G.D.

    2010-02-05

    In those cases where charge-stripe order has been observed in cuprates, the crystal structure is such that the average rotational symmetry of the CuO{sub 2} planes is reduced from fourfold to twofold. As a result, one could argue that the reduced lattice symmetry is essential to the existence of stripe order. We use pressure to restore the average fourfold symmetry in a single crystal of La{sub 1.875}Ba{sub 0.125}CuO{sub 4}, and show by x-ray diffraction that charge-stripe order still occurs. Thus, electronically driven stripe order can spontaneously break the lattice symmetry.

  10. Spontaneous Symmetry Breaking by Charge Stripes in the High Pressure Phase of Superconducting La1.875Ba0.125CuO4

    Science.gov (United States)

    Hücker, M.; v. Zimmermann, M.; Debessai, M.; Schilling, J. S.; Tranquada, J. M.; Gu, G. D.

    2010-02-01

    In those cases where charge-stripe order has been observed in cuprates, the crystal structure is such that the average rotational symmetry of the CuO2 planes is reduced from fourfold to twofold. As a result, one could argue that the reduced lattice symmetry is essential to the existence of stripe order. We use pressure to restore the average fourfold symmetry in a single crystal of La1.875Ba0.125CuO4, and show by x-ray diffraction that charge-stripe order still occurs. Thus, electronically driven stripe order can spontaneously break the lattice symmetry.

  11. Symmetries, Symmetry Breaking, Gauge Symmetries

    CERN Document Server

    Strocchi, Franco

    2015-01-01

    The concepts of symmetry, symmetry breaking and gauge symmetries are discussed, their operational meaning being displayed by the observables {\\em and} the (physical) states. For infinitely extended systems the states fall into physically disjoint {\\em phases} characterized by their behavior at infinity or boundary conditions, encoded in the ground state, which provide the cause of symmetry breaking without contradicting Curie Principle. Global gauge symmetries, not seen by the observables, are nevertheless displayed by detectable properties of the states (superselected quantum numbers and parastatistics). Local gauge symmetries are not seen also by the physical states; they appear only in non-positive representations of field algebras. Their role at the Lagrangian level is merely to ensure the validity on the physical states of local Gauss laws, obeyed by the currents which generate the corresponding global gauge symmetries; they are responsible for most distinctive physical properties of gauge quantum field ...

  12. Floquet topological phases protected by time glide symmetry

    Science.gov (United States)

    Morimoto, Takahiro; Po, Hoi Chun; Vishwanath, Ashvin

    2017-05-01

    We study Floquet topological phases in periodically driven systems that are protected by "time glide symmetry", a combination of reflection and half time period translation. Time glide symmetry is an analog of glide symmetry with partial time translation replacing the partial space translation and, hence, is an intrinsically dynamical symmetry which may be engineered in periodically driven systems by exploiting the controllability of driving. We present lattice models of time glide symmetric Floquet topological insulators in two and three dimensions. The topological numbers characterizing those Floquet topological phases are derived from the half-period time-evolution operator along with time glide operator. Moreover, we classify Floquet topological phases protected by time glide symmetry in general dimensions using a Clifford algebra approach. The obtained classification table is similar to that for topological crystalline insulators protected by static reflection symmetry, but shows nontrivial entries in different combination of symmetries, which clarifies that time glide symmetric Floquet topological phases are a distinct set of topological phases from topological crystalline insulators. We also classify Floquet topological phases with "time screw symmetry", defined as a twofold spatial rotation accompanied by half-period time translation.

  13. Observation of b2 symmetry vibrational levels of the SO2 C̃ (1)B2 state: Vibrational level staggering, Coriolis interactions, and rotation-vibration constants.

    Science.gov (United States)

    Park, G Barratt; Jiang, Jun; Saladrigas, Catherine A; Field, Robert W

    2016-04-14

    The C̃ (1)B2 state of SO2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. However, low-lying levels with odd quanta of antisymmetric stretch (b2 vibrational symmetry) have not previously been observed because transitions into these levels from the zero-point level of the X̃ state are vibronically forbidden. We use IR-UV double resonance to observe the b2 vibrational levels of the C̃ state below 1600 cm(-1) of vibrational excitation. This enables a direct characterization of the vibrational level staggering that results from the double-minimum potential. In addition, it allows us to deperturb the strong c-axis Coriolis interactions between levels of a1 and b2 vibrational symmetry and to determine accurately the vibrational dependence of the rotational constants in the distorted C̃ electronic state.

  14. Observation of b2 symmetry vibrational levels of the SO2 C ˜ 1B2 state: Vibrational level staggering, Coriolis interactions, and rotation-vibration constants

    Science.gov (United States)

    Park, G. Barratt; Jiang, Jun; Saladrigas, Catherine A.; Field, Robert W.

    2016-04-01

    The C ˜ 1B2 state of SO2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. However, low-lying levels with odd quanta of antisymmetric stretch (b2 vibrational symmetry) have not previously been observed because transitions into these levels from the zero-point level of the X ˜ state are vibronically forbidden. We use IR-UV double resonance to observe the b2 vibrational levels of the C ˜ state below 1600 cm-1 of vibrational excitation. This enables a direct characterization of the vibrational level staggering that results from the double-minimum potential. In addition, it allows us to deperturb the strong c-axis Coriolis interactions between levels of a1 and b2 vibrational symmetry and to determine accurately the vibrational dependence of the rotational constants in the distorted C ˜ electronic state.

  15. 角动量对易关系与转动对称%The Commutation Relation of Angular Momentum and Rotational Symmetry

    Institute of Scientific and Technical Information of China (English)

    赵岩

    2001-01-01

    从系统的转动对称性,即从角动量在空间转动对称中守恒这一根本性质出发来推导其对易关系,从这一本质联系确定出角动量的统一定义式,这一定义式既适用于轨道角动量,也适用于自旋角动量等.%The commutation relation of angular momentum is deduced under the base of the rotational symmetry in system.According to the relation,a united definition equation is defined.The definition equation applies to not only orbital-angular momentum but also spin-angular momentum.

  16. Weak ferromagnetic order breaking the threefold rotational symmetry of the underlying kagome lattice in CdC u3(OH) 6(NO3)2.H2O

    Science.gov (United States)

    Okuma, Ryutaro; Yajima, Takeshi; Nishio-Hamane, Daisuke; Okubo, Tsuyoshi; Hiroi, Zenji

    2017-03-01

    Novel magnetic phases are expected to occur in highly frustrated spin systems. Here, we study the structurally perfect kagome antiferromagnet CdC u3(OH) 6(NO3)2.H2O by magnetization, magnetic torque, and heat capacity measurements using single crystals. An antiferromagnetic order accompanied by a small spontaneous magnetization that surprisingly is confined in the kagome plane sets in at TN˜4 K , well below the nearest-neighbor exchange interaction J /kB=45 K . This suggests that a unique "q =0 " type 120∘ spin structure with "negative" (downward) vector chirality, which breaks the underlying threefold rotational symmetry of the kagome lattice and thus allows a spin canting within the plane, is exceptionally realized in this compound rather than a common one with "positive" (upward) vector chirality. The origin is discussed in terms of the Dzyaloshinskii-Moriya interaction.

  17. Rotating Bose-Einstein condensates with a finite number of atoms confined in a ring potential: Spontaneous symmetry breaking beyond the mean-field approximation

    Science.gov (United States)

    Roussou, A.; Smyrnakis, J.; Magiropoulos, M.; Efremidis, Nikolaos K.; Kavoulakis, G. M.

    2017-03-01

    Motivated by recent experiments on Bose-Einstein condensed atoms which rotate in annular and/or toroidal traps, we study the effect of the finiteness of the atom number N on the states of lowest energy for a fixed expectation value of the angular momentum, under periodic boundary conditions. To attack this problem, we develop a general strategy, considering a linear superposition of the eigenstates of the many-body Hamiltonian, with amplitudes that we extract from the mean-field approximation. This many-body state breaks the symmetry of the Hamiltonian; it has the same energy to leading order in N as the mean-field state and the corresponding eigenstate of the Hamiltonian, however, it has a lower energy to subleading order in N and thus it is energetically favorable.

  18. Homonuclear chemical shift correlation in rotating solids via RN{sup {nu}}{sub n} symmetry-based adiabatic RF pulse schemes

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, Kerstin; Leppert, Joerg; Haefner, Sabine; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai [Institut fuer Molekulare Biotechnologie, Abteilung Molekulare Biophysik/NMR-Spektroskopie (Germany)], E-mail: raman@imb-jena.de

    2004-12-15

    The efficacy of RN{sup {nu}}{sub n} symmetry-based adiabatic Zero-Quantum (ZQ) dipolar recoupling schemes for obtaining chemical shift correlation data at moderate magic angle spinning frequencies has been evaluated. RN{sub n}{sup {nu}} sequences generally employ basic inversion elements that correspond to a net 180 deg. rotation about the rotating frame x-axis. It is shown here via numerical simulations and experimental measurements that it is also possible to achieve efficient ZQ dipolar recoupling via RN{sub n}{sup {nu}} schemes employing adiabatic pulses. Such an approach was successfully used for obtaining {sup 1}3C chemical shift correlation spectra of a uniformly labelled sample of (CUG){sub 9}7- a triplet repeat expansion RNA that has been implicated in the neuromuscular disease myotonic dystrophy. An analysis of the {sup 1}3C sugar carbon chemical shifts suggests, in agreement with our recent {sup 1}5N MAS-NMR studies, that this RNA adopts an A-helical conformation.

  19. Crystal morphology of sucrose influenced by rotation axes parallel to growth planes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Three different types of growth forms of sucrose (P21) were found by calculating with the Fourier transform method of crystal morphology. The observed central distances of the (100) and (001) faces are smaller than those calculated. It will be shown that the two-fold screw axis, which runs parallel to these faces, influences the rate of growth. The effectiveness of these symmetry elements is relative to the rotation angle around the face normal.

  20. Symmetry versus Asymmetry in the Molecules of Life: Homomeric Protein Assemblies

    Directory of Open Access Journals (Sweden)

    Biserka Kojić-Prodić

    2010-04-01

    Full Text Available The essay is dedicated to the relation of symmetry and asymmetry-chirality in Nature. The Introduction defines symmetry and its impact on basic definitions in science and human activities. The following section Chirality of molecules reveals breifly development of notion of chirality and its significance in living organisms and science. Homochirality is a characteristic hallmark of life and its significance is presented in the section Homochirality of Life. Proteins, important constituents of living cells performing versatile functions are chiral macromolecules composed of L-amino acids. In particular, the protein assemblies are of a great importance in functions of a cell. Therefore, they have attracted researches to examine them from different points of view. Among proteins of known three-dimensional structures about 50–80% of them exist as homomeric protein complexes. Protein monomers lack any intrinsic, underlying symmetry, i.e. enantiomorphic protein molecules involve left-handed amino acids but their asymmetry does not appear to extend to the level of quaternary structures (homomeric complexes as observed by Chothia in 1991. In the section Homomeric assemblies we performed our analysis of very special cases of homomers revealing non-crystallographic symmetry in crystals. Homochiral proteins can crystallize only in enantiomorphic space groups. Among 230 existing space groups 65 are enantiomorphic containing limited symmetry elements that are rotation and screw-rotation axes. Any axis of rotation symmetry of a crystal lattice must be two-fold, three-fold, four-fold, or six-fold. Five-fold, seven-fold, and higher-fold rotation symmetry axes are incompatible with the symmetry under spatial displacement of the three-dimensional crystal lattice.

  1. Complex method of the plane elasticity in 2D quasicrystal with point group 10 mm tenfold rotational symmetry and holey problems

    Institute of Scientific and Technical Information of China (English)

    刘官厅; 范天佑

    2003-01-01

    The complex method of the plane elasticity in 2D quasicrystal with point group 10 mm tenfold rotational symmetry is established. First displacement potential function in the quasicrystal is represented by four analytic functions. Then by utilizing the properties of analytic function and through a great deal of derivation, the complex representations of stresses and displacements components of phonon fields and phason fields in the quasicrystal are given, which are the theoretical foundation for this method. From this theory, and by the help of conformal transformations in the theory of complex function, the problems of elliptic hole in the quasicrystal are solved. Its special cases are the solutions of well-known crack problem. Meanwhile, the results show that even if under the self-counterbalance force in the quasicrystal plane with elliptic hole, the stress components of phonon fields are also related to material constants of the quasicrystal when the phonon fields and phason fields are coupled, which is another distinctive difference from the properties of classical elastic theory. Besides, the present work is generalization and application of the complex method in the classical elastic theory established by Muskhelishvili to 2D quasicrystal. As in the classical elastic theory, if only conformal transformation from the quasicrystal plane to unit circle is found, any holey and crack problem in the quasicrystal plane could be solved.

  2. Rotational Symmetry of Classical Orbits, Arbitrary Quantization of Angular Momentum and the Role of Gauge Field in Two-Dimensional Space

    CERN Document Server

    Xin, Jun-Li

    2010-01-01

    We study the quantum-classical correspondence in terms of coherent wave functions of a charged particle in two-dimensional central-scalar-potentials as well as the gauge field of a magnetic flux in the sense that the probability clouds of wave functions are well localized on classical orbits. For both closed and open classical orbits, the non-integer angular-momentum quantization with the level-space of angular momentum being greater or less than $\\hbar$ is determined uniquely by the same rotational symmetry of classical orbits and probability clouds of coherent wave functions, which is not necessarily $2\\pi$-periodic. The gauge potential of a magnetic flux impenetrable to the particle cannot change the quantization rule but is able to shift the spectrum of canonical angular momentum by a flux-dependent value, which results in a common topological phase for all wave functions in the given model. The quantum mechanical model of anyon proposed by Wilczek (Phys. Rev. Lette. 48, 1144) becomes a special case of th...

  3. Rotational symmetry of classical orbits, arbitrary quantization of angular momentum and the role of the gauge field in two-dimensional space

    Science.gov (United States)

    Xin, Jun-Li; Liang, Jiu-Qing

    2012-04-01

    We study quantum—classical correspondence in terms of the coherent wave functions of a charged particle in two-dimensional central-scalar potentials as well as the gauge field of a magnetic flux in the sense that the probability clouds of wave functions are well localized on classical orbits. For both closed and open classical orbits, the non-integer angular-momentum quantization with the level space of angular momentum being greater or less than ħ is determined uniquely by the same rotational symmetry of classical orbits and probability clouds of coherent wave functions, which is not necessarily 2π-periodic. The gauge potential of a magnetic flux impenetrable to the particle cannot change the quantization rule but is able to shift the spectrum of canonical angular momentum by a flux-dependent value, which results in a common topological phase for all wave functions in the given model. The well-known quantum mechanical anyon model becomes a special case of the arbitrary quantization, where the classical orbits are 2π-periodic.

  4. Rotational symmetry of classical orbits, arbitrary quantization of angular momentum and the role of the gauge field in two-dimensional space

    Institute of Scientific and Technical Information of China (English)

    Xin Jun-Li; Liang Jiu-Qing

    2012-01-01

    We study quantum-classical correspondence in terms of the coherent wave functions of a charged particle in twodimensional central-scalar potentials as well as the gauge field of a magnetic flux in the sense that the probability clouds of wave functions are well localized on classical orbits.For both closed and open classical orbits,the non-integer angular-momentum quantization with the level space of angular momentum being greater or less than h is determined uniquely by the same rotational symmetry of classical orbits and probability clouds of coherent wave functions,which is not necessarily 2π-periodic.The gauge potential of a magnetic flux impenetrable to the particle cannot change the quantization rule but is able to shift the spectrum of canonical angular momentum by a flux-dependent value,which results in a common topological phase for all wave functions in the given model.The well-known quantum mechanical anyon model becomes a special case of the arbitrary quantization,where the classical orbits are 2π-periodic.

  5. Mean flow generation in rotating anelastic two-dimensional convection

    CERN Document Server

    Currie, Laura K

    2016-01-01

    We investigate the processes that lead to the generation of mean flows in two-dimensional anelastic convection. The simple model consists of a plane layer that is rotating about an axis inclined to gravity. The results are two-fold: firstly we numerically investigate the onset of convection in three-dimensions, paying particular attention to the role of stratification and highlight a curious symmetry. Secondly, we investigate the mechanisms that drive both zonal and meridional flows in two dimensions. We find that, in general, non-trivial Reynolds stresses can lead to systematic flows and, using statistical measures, we quantify the role of stratification in modifying the coherence of these flows.

  6. Fuzzy unit commitment solution - A novel twofold simulated annealing approach

    Energy Technology Data Exchange (ETDEWEB)

    Saber, Ahmed Yousuf; Senjyu, Tomonobu; Yona, Atsushi; Urasaki, Naomitsu [Faculty of Engineering, University of the Ryukyus, 1 Senbaru, Nishihara-cho Nakagami, Okinawa 903-0213 (Japan); Funabashi, Toshihisa [Meidensha Corporation, Riverside Building 36-2, Tokyo 103-8515 (Japan)

    2007-10-15

    The authors propose a twofold simulated annealing (twofold-SA) method for the optimization of fuzzy unit commitment formulation in this paper. In the proposed method, simulated annealing (SA) and fuzzy logic are combined to obtain SA acceptance probabilities from fuzzy membership degrees. Fuzzy load is calculated from error statistics and an initial solution is generated by a priority list method. The initial solution is decomposed into hourly-schedules and each hourly-schedule is modified by decomposed-SA using a bit flipping operator. Fuzzy membership degrees are the selection attributes of the decomposed-SA. A new solution consists of these hourly-schedules of entire scheduling period after repair, as unit-wise constraints may not be fulfilled at the time of an individual hourly-schedule modification. This helps to detect and modify promising schedules of appropriate hours. In coupling-SA, this new solution is accepted for the next iteration if its cost is less than that of current solution. However, a higher cost new solution is accepted with the temperature dependent total cost membership function. Computation time of the proposed method is also improved by the imprecise tolerance of the fuzzy model. Besides, excess units with the system dependent probability distribution help to handle constraints efficiently and imprecise economic load dispatch (ELD) calculations are modified to save the execution time. The proposed method is tested using standard reported data sets. Numerical results show an improvement in solution cost and time compared to the results obtained from other existing methods. (author)

  7. Differences between two subgroups of low back pain patients in lumbopelvic rotation and symmetry in the erector spinae and hamstring muscles during trunk flexion when standing.

    Science.gov (United States)

    Kim, Min-hee; Yoo, Won-gyu; Choi, Bo-ram

    2013-04-01

    The present study was performed to examine lumbopelvic rotation and to identify asymmetry of the erector spinae and hamstring muscles in people with and without low back pain (LBP). The control group included 16 healthy subjects, the lumbar-flexion-rotation syndrome LBP group included 17 subjects, and the lumbar-extension-rotation syndrome LBP group included 14 subjects. Kinematic parameters were recorded using a 3D motion-capture system, and electromyography parameters were measured using a Noraxon TeleMyo 2400T. The two LBP subgroups showed significantly more lumbopelvic rotation during trunk flexion in standing than did the control group. The muscle activity and flexion-relaxation ratio asymmetries of the erector spinae muscles in the lumbar-flexion-rotation syndrome LBP group were significantly greater than those in the control group, and the muscle activity and flexion-relaxation ratio asymmetry of the hamstring muscles in the lumbar-extension-rotation syndrome LBP group were significantly greater than those in the control group. Imbalance or asymmetry of passive tissue could lead to asymmetry of muscular activation. Muscle imbalance can cause asymmetrical alignment or movements such as unexpected rotation. The results showed a greater increase in lumbopelvic rotation during trunk flexion in standing among the lumbar-flexion-rotation syndrome and lumbar-extension-rotation syndrome LBP groups compared with the control group. The differences between the two LBP subgroups may be a result of imbalance and asymmetry in erector spinae and hamstring muscle properties.

  8. Sex is always well worth its two-fold cost.

    Directory of Open Access Journals (Sweden)

    Alexander Feigel

    Full Text Available Sex is considered as an evolutionary paradox, since its positive contribution to Darwinian fitness remains unverified for some species. Defenses against unpredictable threats (parasites, fluctuating environment and deleterious mutations are indeed significantly improved by wider genetic variability and by positive epistasis gained by sexual reproduction. The corresponding evolutionary advantages, however, do not overcome universally the barrier of the two-fold cost for sharing half of one's offspring genome with another member of the population. Here we show that sexual reproduction emerges and is maintained even when its Darwinian fitness is twice as low as the fitness of asexuals. We also show that more than two sexes (inheritance of genetic material from three or even more parents are always evolutionary unstable. Our approach generalizes the evolutionary game theory to analyze species whose members are able to sense the sexual state of their conspecifics and to adapt their own sex consequently, either by switching or by taxis towards the highest concentration of the complementary sex. The widespread emergence and maintenance of sex follows therefore from its co-evolution with the even more widespread environmental sensing abilities.

  9. Ubiquitous symmetries

    Science.gov (United States)

    Nucci, M. C.

    2016-09-01

    We review some of our recent work devoted to the problem of quantization with preservation of Noether symmetries, finding hidden linearity in superintegrable systems, and showing that nonlocal symmetries are in fact local. In particular, we derive the Schrödinger equation for the isochronous Calogero goldfish model using its relation to Darwin equation. We prove the linearity of a classical superintegrable system on a plane of nonconstant curvature. We find the Lie point symmetries that correspond to the nonlocal symmetries (also reinterpreted as λ-symmetries) of the Riccati chain.

  10. Coordinate-Free Rotation Operator.

    Science.gov (United States)

    Leubner, C.

    1979-01-01

    Suggests the use of a coordinate-free rotation operator for the teaching of rotations in Euclidean three space because of its twofold didactic advantage. Illustrates the potentialities of the coordinate-free rotation operator approach by a number of examples. (Author/GA)

  11. Spontaneous Breaking of Spatial and Spin Symmetry in Spinor Condensates

    DEFF Research Database (Denmark)

    Scherer, M.; Lücke, B.; Gebreyesus, G.;

    2010-01-01

    Parametric amplification of quantum fluctuations constitutes a fundamental mechanism for spontaneous symmetry breaking. In our experiments, a spinor condensate acts as a parametric amplifier of spin modes, resulting in a twofold spontaneous breaking of spatial and spin symmetry in the amplified...

  12. Mirror symmetry

    CERN Document Server

    Voisin, Claire

    1999-01-01

    This is the English translation of Professor Voisin's book reflecting the discovery of the mirror symmetry phenomenon. The first chapter is devoted to the geometry of Calabi-Yau manifolds, and the second describes, as motivation, the ideas from quantum field theory that led to the discovery of mirror symmetry. The other chapters deal with more specialized aspects of the subject: the work of Candelas, de la Ossa, Greene, and Parkes, based on the fact that under the mirror symmetry hypothesis, the variation of Hodge structure of a Calabi-Yau threefold determines the Gromov-Witten invariants of its mirror; Batyrev's construction, which exhibits the mirror symmetry phenomenon between hypersurfaces of toric Fano varieties, after a combinatorial classification of the latter; the mathematical construction of the Gromov-Witten potential, and the proof of its crucial property (that it satisfies the WDVV equation), which makes it possible to construct a flat connection underlying a variation of Hodge structure in the ...

  13. Quantum Symmetry

    CERN Document Server

    Häring, Reto Andreas

    1993-01-01

    The representations of the observable algebra of a low dimensional quantum field theory form the objects of a braided tensor category. The search for gauge symmetry in the theory amounts to finding an algebra which has the same representation category. In this paper we try to establish that every quantum field theory satisfying some basic axioms posseses a weak quasi Hopf algebra as gauge symmetry. The first step is to construct a functor from the representation category to the category of finite dimensional vector spaces. Given such a functor we can use a generalized reconstruction theorem to find the symmetry algebra. It is shown how this symmetry algebra is used to build a gauge covariant field algebra and we investigate the question why this generality is necessary.

  14. Observation of b$_2$ symmetry vibrational levels of the SO$_2$ $\\tilde{\\mbox{C}}$ $^1$B$_2$ state: Vibrational level staggering, Coriolis interactions, and rotation-vibration constants

    CERN Document Server

    Park, G Barratt; Saladrigas, Catherine A; Field, Robert W

    2016-01-01

    The $\\mathrm{\\tilde{C}}$ $^1$B$_2$ state of SO$_2$ has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. However, low-lying levels with odd quanta of antisymmetric stretch (b$_2$ vibrational symmetry) have not previously been observed because transitions into these levels from the zero-point level of the $\\mathrm{\\tilde{X}}$ state are vibronically forbidden. We use IR-UV double resonance to observe the b$_2$ vibrational levels of the $\\mathrm{\\tilde{C}}$ state below 1600 cm$^{-1}$ of vibrational excitation. This enables a direct characterization of the vibrational level staggering that results from the double-minimum potential. In addition, it allows us to deperturb the strong $c$-axis Coriolis interactions between levels of a$_1$ and b$_2$ vibrational symmetry, and to determine accurately the vibrational dependence of the rotational constants in the distorted $\\mathrm{\\tilde{C}}$ electronic state.

  15. A note on the interplay between symmetries, reduction and conservation laws of Stokes’ first problem for third-grade rotating fluids

    Indian Academy of Sciences (India)

    K Fakhar; A A Zainal; A H Kara

    2011-09-01

    We investigate the invariance properties, nontrivial conservation laws and interplay between these notions that underly the equations governing Stokes’ first problem for third-grade rotating fluids. We show that a knowledge of this leads to a number of different reductions of the governing equations and, thus, a number of exact solutions can be obtained and a spectrum of further analyses may be pursued.

  16. Triplet pair amplitude in a trapped s -wave superfluid Fermi gas with broken spin rotation symmetry. II. Three-dimensional continuum case

    Science.gov (United States)

    Inotani, Daisuke; Hanai, Ryo; Ohashi, Yoji

    2016-10-01

    We extend our recent work [Y. Endo et al., Phys. Rev. A 92, 023610 (2015)], 10.1103/PhysRevA.92.023610 for a parity-mixing effect in a model of two-dimensional lattice fermions to a realistic three-dimensional ultracold Fermi gas. Including effects of broken local spatial inversion symmetry by a trap potential within the framework of the real-space Bogoliubov-de Gennes theory at T =0 , we point out that an odd-parity p -wave Cooper-pair amplitude is expected to have already been realized in previous experiments on an (even-parity) s -wave superfluid Fermi gas with spin imbalance. This indicates that when one suddenly changes the s -wave pairing interaction to an appropriate p -wave one by using a Feshbach technique in this case, a nonvanishing p -wave superfluid order parameter is immediately obtained, which is given by the product of the p -wave interaction and the p -wave pair amplitude that has already been induced in the spin-imbalanced s -wave superfluid Fermi gas. Thus, by definition, the system is in the p -wave superfluid state, at least just after this manipulation. Since the achievement of a p -wave superfluid state is one of the most exciting challenges in cold Fermi gas physics, our results may provide an alternative approach to this unconventional pairing state. In addition, since the parity-mixing effect cannot be explained as far as one deals with a trap potential in the local density approximation (LDA), it is considered as a crucial example which requires us to go beyond the LDA.

  17. Inherited Symmetry

    Science.gov (United States)

    Attanucci, Frank J.; Losse, John

    2008-01-01

    In a first calculus course, it is not unusual for students to encounter the theorems which state: If f is an even (odd) differentiable function, then its derivative is odd (even). In our paper, we prove some theorems which show how the symmetry of a continuous function f with respect to (i) the vertical line: x = a or (ii) with respect to the…

  18. Symmetry selective third harmonic generation from plasmonic metacrystals

    CERN Document Server

    Chen, Shumei; Zeuner, Franziska; Wong, Wing Han; Pun, Edwin Yue Bun; Zentgraf, Thomas; Cheah, Kok Wai; Zhang, Shuang

    2014-01-01

    Nonlinear processes are often governed by selection rules imposed by the symmetries of the molecular configurations. The most well-known examples include the role of mirror symmetry breaking for the generation of even harmonics, and the selection rule related to the rotation symmetry in harmonic generation for fundamental beams with circular polarizations. While the role of mirror symmetry breaking in second harmonic generation has been extensively studied in plasmonic systems, the investigation on selection rules pertaining to circular polarization states of harmonic generation has been limited to crystals, i.e. symmetries at the atomic level. Here we demonstrate the rotational symmetry dependent third harmonic generation from nonlinear plasmonic metacrystals. We show that the selection rule can be imposed by the rotational symmetry of meta-crystals embedded into an isotropic organic nonlinear thin film. The results presented here may open new avenues for designing symmetry-dependent nonlinear optical respon...

  19. Symmetry, Symmetry Breaking and Topology

    Directory of Open Access Journals (Sweden)

    Siddhartha Sen

    2010-07-01

    Full Text Available The ground state of a system with symmetry can be described by a group G. This symmetry group G can be discrete or continuous. Thus for a crystal G is a finite group while for the vacuum state of a grand unified theory G is a continuous Lie group. The ground state symmetry described by G can change spontaneously from G to one of its subgroups H as the external parameters of the system are modified. Such a macroscopic change of the ground state symmetry of a system from G to H correspond to a “phase transition”. Such phase transitions have been extensively studied within a framework due to Landau. A vast range of systems can be described using Landau’s approach, however there are also systems where the framework does not work. Recently there has been growing interest in looking at such non-Landau type of phase transitions. For instance there are several “quantum phase transitions” that are not of the Landau type. In this short review we first describe a refined version of Landau’s approach in which topological ideas are used together with group theory. The combined use of group theory and topological arguments allows us to determine selection rule which forbid transitions from G to certain of its subgroups. We end by making a few brief remarks about non-Landau type of phase transition.

  20. CONSERVATION PROCESS MODEL (CPM): A TWOFOLD SCIENTIFIC RESEARCH SCOPE IN THE INFORMATION MODELLING FOR CULTURAL HERITAGE

    National Research Council Canada - National Science Library

    D. Fiorani; M. Acierno

    2017-01-01

    The aim of the present research is to develop an instrument able to adequately support the conservation process by means of a twofold approach, based on both BIM environment and ontology formalisation...

  1. Breaking Symmetries

    Directory of Open Access Journals (Sweden)

    Kirstin Peters

    2010-11-01

    Full Text Available A well-known result by Palamidessi tells us that πmix (the π-calculus with mixed choice is more expressive than πsep (its subset with only separate choice. The proof of this result argues with their different expressive power concerning leader election in symmetric networks. Later on, Gorla offered an arguably simpler proof that, instead of leader election in symmetric networks, employed the reducibility of incestual processes (mixed choices that include both enabled senders and receivers for the same channel when running two copies in parallel. In both proofs, the role of breaking (initial symmetries is more or less apparent. In this paper, we shed more light on this role by re-proving the above result - based on a proper formalization of what it means to break symmetries without referring to another layer of the distinguishing problem domain of leader election. Both Palamidessi and Gorla rephrased their results by stating that there is no uniform and reasonable encoding from πmix into πsep. We indicate how the respective proofs can be adapted and exhibit the consequences of varying notions of uniformity and reasonableness. In each case, the ability to break initial symmetries turns out to be essential.

  2. Matrix Representation of Symmetry Operators in Elementary Crystallography

    Science.gov (United States)

    Cody, R. D.

    1972-01-01

    Presents the derivation of rotation and reflection matrix representation of symmetry operators as used in the initial discussion of crystal symmetry in elementary mineralogy at Iowa State University. Includes references and an appended list of matrix representations of the important crystallographic symmetry operators, excluding the trigonal and…

  3. Symmetries in Images on Ancient Seals

    CERN Document Server

    Sparavigna, Amelia

    2008-01-01

    In this paper, we discuss the presence of symmetries in images engraved on ancient seals, in particular on stamp seals. Mainly used to secure the containers from tampering and for owner's identification, these objects appeared during the 5th millennium BC in Mesopotamia. Usually the seals were engraved with simple images, suitable to communicate an immediate information. Rotational symmetries are already displayed by the most ancient stamp seals, whose images reach a quasi-perfect symmetry in their small circular or ovoid spaces. Bilateral symmetries are quite common in Egyptian scarab seals.

  4. Symmetry distribution of cities in China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The authors of this paper induced five principles of geographical symmetry based on the space distributions of cities and towns in China. There is a symmetry distribution of cities and towns. The symmetry characteristics are the following: (i) the average coordination number of the cities (including large cities, medium cities and county towns) is 6 ( i.g. rotation symmetry); (ii) the distribution of large and medium cities are shown to be the latticework in which two directions are parallel to two main tectonic ones in China, respectively; (iii) the distribution of county towns of a province is also shown to be the latticework in which two directions are parallel to two tectonic ones in this province (i. g. two-dimensional translation ) and (iv) the concentric circle distribution of cities (CCDC) is centered round a large city (i. g. rotation symmetry).

  5. Breaking Symmetries

    CERN Document Server

    Peters, Kirstin

    2010-01-01

    A well-known result by Palamidessi tells us that {\\pi}mix (the {\\pi}-calculus with mixed choice) is more expressive than {\\pi}sep (its subset with only separate choice). The proof of this result argues with their different expressive power concerning leader election in symmetric networks. Later on, Gorla of- fered an arguably simpler proof that, instead of leader election in symmetric networks, employed the reducibility of "incestual" processes (mixed choices that include both enabled senders and receivers for the same channel) when running two copies in parallel. In both proofs, the role of breaking (ini- tial) symmetries is more or less apparent. In this paper, we shed more light on this role by re-proving the above result-based on a proper formalization of what it means to break symmetries-without referring to another layer of the distinguishing problem domain of leader election. Both Palamidessi and Gorla rephrased their results by stating that there is no uniform and reason- able encoding from {\\pi}mix i...

  6. Breaking Symmetries

    CERN Document Server

    Peters, Kirstin; 10.4204/EPTCS.41.10

    2010-01-01

    A well-known result by Palamidessi tells us that \\pimix (the \\pi-calculus with mixed choice) is more expressive than \\pisep (its subset with only separate choice). The proof of this result argues with their different expressive power concerning leader election in symmetric networks. Later on, Gorla offered an arguably simpler proof that, instead of leader election in symmetric networks, employed the reducibility of incestual processes (mixed choices that include both enabled senders and receivers for the same channel) when running two copies in parallel. In both proofs, the role of breaking (initial) symmetries is more or less apparent. In this paper, we shed more light on this role by re-proving the above result - based on a proper formalization of what it means to break symmetries without referring to another layer of the distinguishing problem domain of leader election. Both Palamidessi and Gorla rephrased their results by stating that there is no uniform and reasonable encoding from \\pimix into \\pisep. We...

  7. Beyond bilateral symmetry: geometric morphometric methods for any type of symmetry

    Directory of Open Access Journals (Sweden)

    Klingenberg Christian

    2011-09-01

    Full Text Available Abstract Background Studies of symmetric structures have made important contributions to evolutionary biology, for example, by using fluctuating asymmetry as a measure of developmental instability or for investigating the mechanisms of morphological integration. Most analyses of symmetry and asymmetry have focused on organisms or parts with bilateral symmetry. This is not the only type of symmetry in biological shapes, however, because a multitude of other types of symmetry exists in plants and animals. For instance, some organisms have two axes of reflection symmetry (biradial symmetry; e.g. many algae, corals and flowers or rotational symmetry (e.g. sea urchins and many flowers. So far, there is no general method for the shape analysis of these types of symmetry. Results We generalize the morphometric methods currently used for the shape analysis of bilaterally symmetric objects so that they can be used for analyzing any type of symmetry. Our framework uses a mathematical definition of symmetry based on the theory of symmetry groups. This approach can be used to divide shape variation into a component of symmetric variation among individuals and one or more components of asymmetry. We illustrate this approach with data from a colonial coral that has ambiguous symmetry and thus can be analyzed in multiple ways. Our results demonstrate that asymmetric variation predominates in this dataset and that its amount depends on the type of symmetry considered in the analysis. Conclusions The framework for analyzing symmetry and asymmetry is suitable for studying structures with any type of symmetry in two or three dimensions. Studies of complex symmetries are promising for many contexts in evolutionary biology, such as fluctuating asymmetry, because these structures can potentially provide more information than structures with bilateral symmetry.

  8. Ray-tracing for qP waves in media with rotated axis of symmetry%旋转轴对称介质中的qP波射线追踪

    Institute of Scientific and Technical Information of China (English)

    杨文军; 孙福利

    2011-01-01

    本文使用qP波一阶射线追踪方程(FORT)计算光滑、非均匀旋转轴对称弱各向异性介质中qP波传播的路径和走时.此FORT方程只依赖于15个弱各向异性参数,而非标准射线方程中的21个弹性参数.通常弹性参数模型是在局部坐标系中给定的,而在实际中需要的是全局坐标系下的弹性参数,因此为了解决两个坐标系下弹,性参数的变换问题,本文从Bond变换方程出发,推导出了旋转轴对称介质中的弹性参数张量变换方程.全局坐标系中的弹性参数是由局部坐标系中弹性参数通过两个坐标系间极角和方位角的正、余弦函数组合给出的,所得到的弹性参数能够完全匹配FORT方程.最后通过对旋转TI模型和正交模型进行数值模拟验证本方法的有效性和适应性,结果表明本方法对于具有不同各向异性类型、各向异性强度和旋转角度的介质都具有很高的计算精度.%We use the first-order ray tracing (FORT) formulas of qP waves to calculate pathes and traveltimes of qP waves propagation in smooth, inhomogeneous and weakly anisotropic medium with arbitrarily symmetric axes. The FORT equations depend only on 15 weak-anisotropy parameters, not on the 21 elastic moduli used in the standard raytracing equations. The elastic modulus of anisotropic media is presented in the local coordinate system, while practical coordinate is in the global system, the Cartesian coordinate system. In order to solve the inconsistency problem between the global coordinate system and the local coordinate system, in this paper, the tensor transformation equations of elastic modulus in media with rotated axis of symmetry are derived from the Bond transformation equations. The weak-anisotropy parameters in the global coordinate system can be explicitly expressed as the combination with the sine and cosine functions of polar angle and azimuth between these different coordinate systems,and the weak

  9. Illuminating Molecular Symmetries with Bicircular High-Order-Harmonic Generation

    CERN Document Server

    Reich, Daniel M

    2016-01-01

    We present a complete theory of bicircular high-order-harmonic emission from N-fold rotationally symmetric molecules. Using a rotating frame of reference we predict the complete structure of the high-order-harmonic spectra for arbitrary driving frequency ratios and show how molecular symmetries can be directly identified from the harmonic signal. Our findings reveal that a characteristic fingerprint of rotational molecular symmetries can be universally observed in the ultrafast response of molecules to strong bicircular fields.

  10. Geometric symmetries in light nuclei

    CERN Document Server

    Bijker, Roelof

    2016-01-01

    The algebraic cluster model is is applied to study cluster states in the nuclei 12C and 16O. The observed level sequences can be understood in terms of the underlying discrete symmetry that characterizes the geometrical configuration of the alpha-particles, i.e. an equilateral triangle for 12C, and a regular tetrahedron for 16O. The structure of rotational bands provides a fingerprint of the underlying geometrical configuration of alpha-particles.

  11. Testing the Twofold Multidimensionality of Academic Self-Concept: A Study with Chinese Vocational Students

    Science.gov (United States)

    Yang, Lan; Arens, A. Katrin; Watkins, David A.

    2016-01-01

    In order to extend previous research on the twofold multidimensionality of academic self-concept (i.e. its domain-specific structure and separation into competence and affect components), the present study tests its generalisability among vocational students from mainland China. A Chinese version of self-description questionnaire I was…

  12. CP and other Symmetries of Symmetries

    CERN Document Server

    Trautner, Andreas

    2016-01-01

    Outer automorphisms of symmetries ("symmetries of symmetries") in relativistic quantum field theories are studied, including charge conjugation (C), space-reflection (P) , and time-reversal (T) transformations. The group theory of outer automorphisms is pedagogically introduced and it is shown that CP transformations are special outer automorphisms of the global, local, and space-time symmetries of a theory. It is shown that certain discrete groups allow for a group theoretical prediction of parameter independent CP violating complex phases with fixed geometrical values. The remainder of this thesis pioneers the study of outer automorphisms which are not related to C, P, or T. It is shown how outer automorphisms, in general, relate symmetry invariants and, in theories with spontaneous symmetry breaking, imply relations between different vacuum expectation values. Thereby, outer automorphisms can give rise to emergent symmetries. An example model with a discrete symmetry and three copies of the Standard Model ...

  13. Geometrical symmetries of nuclear systems: D(3h) and T(d) symmetries in light nuclei

    CERN Document Server

    Bijker, Roelof

    2016-01-01

    The role of discrete (or point-group) symmetries in alpha-cluster nuclei is discussed in the framework of the algebraic cluster model which describes the relative motion of the alpha-particles. Particular attention is paid to the discrete symmetry of the geometric arrangement of the alpha-particles, and the consequences for the structure of the corresponding rotational bands. The method is applied to study cluster states in the nuclei 12C and 16O. The observed level sequences can be understood in a simple way as a consequence of the underlying discrete symmetry that characterizes the geometrical configuration of the alpha-particles, i.e. an equilateral triangle with D(3h) symmetry for 12C, and a tetrahedron with T(d) symmetry for 16O. The structure of rotational bands provides a fingerprint of the underlying geometrical configuration of alpha-particles.

  14. Galactic oscillator symmetry

    Science.gov (United States)

    Rosensteel, George

    1995-01-01

    Riemann ellipsoids model rotating galaxies when the galactic velocity field is a linear function of the Cartesian coordinates of the galactic masses. In nuclear physics, the kinetic energy in the linear velocity field approximation is known as the collective kinetic energy. But, the linear approximation neglects intrinsic degrees of freedom associated with nonlinear velocity fields. To remove this limitation, the theory of symplectic dynamical symmetry is developed for classical systems. A classical phase space for a self-gravitating symplectic system is a co-adjoint orbit of the noncompact group SP(3,R). The degenerate co-adjoint orbit is the 12 dimensional homogeneous space Sp(3,R)/U(3), where the maximal compact subgroup U(3) is the symmetry group of the harmonic oscillator. The Hamiltonian equations of motion on each orbit form a Lax system X = (X,F), where X and F are elements of the symplectic Lie algebra. The elements of the matrix X are the generators of the symplectic Lie algebra, viz., the one-body collective quadratic functions of the positions and momenta of the galactic masses. The matrix F is composed from the self-gravitating potential energy, the angular velocity, and the hydostatic pressure. Solutions to the hamiltonian dynamical system on Sp(3,R)/U(3) are given by symplectic isospectral deformations. The Casimirs of Sp(3,R), equal to the traces of powers of X, are conserved quantities.

  15. Some symmetries in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Henley, E.M.

    1981-09-01

    Internal and space-time symmetries are discussed in this group of lectures. The first of the lectures deals with an internal symmetry, or rather two related symmetries called charge independence and charge symmetry. The next two discuss space-time symmetries which also hold approximately, but are broken only by the weak forces; that is, these symmetries hold for both the hadronic and electromagnetic forces. (GHT)

  16. Exchange bias and strain effect co-modulated magnetic symmetry in La0.6Sr0.4MnO3/orthorhombic-YMnO3 multiferroic heterostructures

    KAUST Repository

    Zheng, Dongxing

    2017-05-03

    The exchange bias and strain effect co-modulated magnetic symmetry in all oxide La0.6Sr0.4MnO3 (LSMO) and orthorhombic YMnO3 (YMO) multiferroic heterostructures were studied. Because of the lattice mismatch between the LSMO and YMO layers, the LSMO layer exhibits a 90° rotation growth on the YMO layer. The strain induced growth not only leads to a 90° phase shift in the anisotropic magnetoresistance (AMR) curves, but also brings a two-fold symmetric magnetoelastic coupling energy along the LSMO $[1\\\\,1\\\\,0]$ direction. With the incorporation of magnetoelastic coupling energy and exchange coupling energy, the exchange bias induced torque shows a phase shift and causes the asymmetry of the peak position and value in the AMR curves. This work illustrates a modulated magnetic symmetry in ferromagnetic/multiferroic systems by interfacial exchange coupling and strain effect, which will benefit the design of magnetoelectric devices.

  17. Symmetry and symmetry breaking in particle physics

    OpenAIRE

    Tsou, ST

    1998-01-01

    Symmetry, in particular gauge symmetry, is a fundamental principle in theoretical physics. It is intimately connected to the geometry of fibre bundles. A refinement to the gauge principle, known as ``spontaneous symmetry breaking'', leads to one of the most successful theories in modern particle physics. In this short talk, I shall try to give a taste of this beautiful and exciting concept.

  18. Translational Symmetry and Microscopic Constraints on Symmetry-Enriched Topological Phases: A View from the Surface

    Science.gov (United States)

    Cheng, Meng; Zaletel, Michael; Barkeshli, Maissam; Vishwanath, Ashvin; Bonderson, Parsa

    2016-10-01

    The Lieb-Schultz-Mattis theorem and its higher-dimensional generalizations by Oshikawa and Hastings require that translationally invariant 2D spin systems with a half-integer spin per unit cell must either have a continuum of low energy excitations, spontaneously break some symmetries, or exhibit topological order with anyonic excitations. We establish a connection between these constraints and a remarkably similar set of constraints at the surface of a 3D interacting topological insulator. This, combined with recent work on symmetry-enriched topological phases with on-site unitary symmetries, enables us to develop a framework for understanding the structure of symmetry-enriched topological phases with both translational and on-site unitary symmetries, including the effective theory of symmetry defects. This framework places stringent constraints on the possible types of symmetry fractionalization that can occur in 2D systems whose unit cell contains fractional spin, fractional charge, or a projective representation of the symmetry group. As a concrete application, we determine when a topological phase must possess a "spinon" excitation, even in cases when spin rotational invariance is broken down to a discrete subgroup by the crystal structure. We also describe the phenomena of "anyonic spin-orbit coupling," which may arise from the interplay of translational and on-site symmetries. These include the possibility of on-site symmetry defect branch lines carrying topological charge per unit length and lattice dislocations inducing degeneracies protected by on-site symmetry.

  19. The two-fold singularity of nonsmooth flows:Leading order dynamics in n-dimensions

    OpenAIRE

    Colombo, Alessandro; Jeffrey, Mike R.

    2013-01-01

    A discontinuity in a system of ordinary differential equations can create allow that slides along the discontinuity locus. Prior to sliding, the flow may have collapsed onto the discontinuity, making the reverse flow non-unique, as happens when dry-friction causes objects to stick. Alternatively, a flow may slide along the discontinuity before escaping it at some indeterminable time, implying non-uniqueness in forward time. At a two-fold singularity these two behaviours are brought together, ...

  20. Ratchet device with broken friction symmetry

    DEFF Research Database (Denmark)

    Norden, Bengt; Zolotaryuk, Yaroslav; Christiansen, Peter Leth

    2002-01-01

    An experimental setup (gadget) has been made for demonstration of a ratchet mechanism induced by broken symmetry of a dependence of dry friction on external forcing. This gadget converts longitudinal oscillating or fluctuating motion into a unidirectional rotation, the direction of which is in ac......An experimental setup (gadget) has been made for demonstration of a ratchet mechanism induced by broken symmetry of a dependence of dry friction on external forcing. This gadget converts longitudinal oscillating or fluctuating motion into a unidirectional rotation, the direction of which...

  1. Bayesian Predictive Inference of a Proportion Under a Twofold Small-Area Model

    Directory of Open Access Journals (Sweden)

    Nandram Balgobin

    2016-03-01

    Full Text Available We extend the twofold small-area model of Stukel and Rao (1997; 1999 to accommodate binary data. An example is the Third International Mathematics and Science Study (TIMSS, in which pass-fail data for mathematics of students from US schools (clusters are available at the third grade by regions and communities (small areas. We compare the finite population proportions of these small areas. We present a hierarchical Bayesian model in which the firststage binary responses have independent Bernoulli distributions, and each subsequent stage is modeled using a beta distribution, which is parameterized by its mean and a correlation coefficient. This twofold small-area model has an intracluster correlation at the first stage and an intercluster correlation at the second stage. The final-stage mean and all correlations are assumed to be noninformative independent random variables. We show how to infer the finite population proportion of each area. We have applied our models to synthetic TIMSS data to show that the twofold model is preferred over a onefold small-area model that ignores the clustering within areas. We further compare these models using a simulation study, which shows that the intracluster correlation is particularly important.

  2. A female-biased sex ratio reduces the twofold cost of sex

    Science.gov (United States)

    Kobayashi, Kazuya; Hasegawa, Eisuke

    2016-04-01

    The evolution of sexual reproduction remains a fascinating enigma in biology. Theoretically, populations of sexual organisms investing half of their resources into producing male offspring that don’t contribute to reproduction should grow at only half the rate of their asexual counterparts. This demographic disadvantage due to male production is known as the twofold cost of sex. However, the question of whether this cost is truly twofold for sexual females remains unanswered. The cost of producing males should decrease when the number of male offspring is reduced. Here, we report a case where the cost of males is actually less than twofold. By measuring the numbers of sexual strain coexisting with asexual strain among thrips, our survey revealed that the sexual strain showed female-biased sex ratios and that the relative frequency of sexual strain is negatively correlated with the proportion of males in the sexual strain. Using computer simulations, we confirmed that a female-biased sex ratio evolves in sexual individuals due to the coexistence of asexual individuals. Our results demonstrate that there is a cost of producing males that depends on the number of males. We therefore conclude that sexual reproduction can evolve with far fewer benefits than previously assumed.

  3. Symmetry in chemistry

    CERN Document Server

    Jaffé, Hans H

    1977-01-01

    This book, devoted exclusively to symmetry in chemistry and developed in an essentially nonmathematical way, is a must for students and researchers. Topics include symmetry elements and operations, multiple symmetry operations, multiplication tables and point groups, group theory applications, and crystal symmetry. Extensive appendices provide useful tables.

  4. Lattice Regularization and Symmetries

    CERN Document Server

    Hasenfratz, Peter; Von Allmen, R; Allmen, Reto von; Hasenfratz, Peter; Niedermayer, Ferenc

    2006-01-01

    Finding the relation between the symmetry transformations in the continuum and on the lattice might be a nontrivial task as illustrated by the history of chiral symmetry. Lattice actions induced by a renormalization group procedure inherit all symmetries of the continuum theory. We give a general procedure which gives the corresponding symmetry transformations on the lattice.

  5. Deriving diffeomorphism symmetry

    CERN Document Server

    Kleppe, Astri

    2014-01-01

    In an earlier article, we have "derived" space, as a part of the Random Dynamics project. In order to get locality we need to obtain reparametrization symmetry, or equivalently, diffeomorphism symmetry. There we sketched a procedure for how to get locality by first obtaining reparametrization symmetry, or equivalently, diffeomorphism symmetry. This is the object of the present article.

  6. Symmetry in social exchange and health

    Science.gov (United States)

    Siegrist, Johannes

    2005-10-01

    Symmetry is a relevant concept in sociological theories of exchange. It is rooted in the evolutionary old norm of social reciprocity and is particularly important in social contracts. Symmetry breaking through violation of the norm of reciprocity generates strain in micro-social systems and, above all, in victims of non-symmetric exchange. In this contribution, adverse healthconsequences of symmetry breaking in contractual social exchange are analysed, with a main focus on the employment contract. Scientific evidence is derived from prospective epidemiological studies testing the model of effort-reward imbalance at work. Overall, a twofold elevated risk of incident disease is observed in employed men and women who are exposed to non-symmetric exchange. Health risks include coronary heart disease, depression and alcohol dependence, among others. Preliminary results suggest similar effects on health produced by symmetry breaking in other types of social relationships (e.g. partnership, parental roles). These findings underline the importance of symmetry in contractual social exchange for health and well-being.

  7. Symmetries in Nuclei

    CERN Document Server

    Van Isacker, P

    2010-01-01

    The use of dynamical symmetries or spectrum generating algebras for the solution of the nuclear many-body problem is reviewed. General notions of symmetry and dynamical symmetry in quantum mechanics are introduced and illustrated with simple examples such as the SO(4) symmetry of the hydrogen atom and the isospin symmetry in nuclei. Two nuclear models, the shell model and the interacting boson model, are reviewed with particular emphasis on their use of group-theoretical techniques.

  8. Triaxial rotation in atomic nuclei

    Institute of Scientific and Technical Information of China (English)

    CHEN Yong-Shou; GAO Zao-Chun

    2009-01-01

    The Projected Shell Model has been developed to include the spontaneously broken axial symmetry so that the rapidly rotating triaxial nuclei can be described microscopically. The theory provides an useful tool to gain an insight into how a triaxial nucleus rotates, a fundamental question in nuclear structure. We shall address some current interests that are strongly associated with the triaxial rotation. A feasible method to explore the problem has been suggested.

  9. A Method of Image Symmetry Detection Based on Phase Information

    Institute of Scientific and Technical Information of China (English)

    WU Jun; YANG Zhaoxuan; FENG Dengchao

    2005-01-01

    Traditional methods for detecting symmetry in image suffer greatly from the contrast of image and noise, and they all require some preprocessing. This paper presents a new method of image symmetry detection. This method detects symmetry with phase information utilizing logGabor wavelets, because phase information is stable and significant, while symmetric points produce patterns easy to be recognised and confirmable in local phase. Phase method does not require any preprocessing, and its result is accurate or invariant to contrast, rotation and illumination conditions. This method can detect mirror symmetry, rotating symmetry and curve symmetry at one time. Results of experiment show that, compared with pivotal element algorithm based on intensity information, phase method is more accurate and robust.

  10. The symmetry of man.

    Science.gov (United States)

    Ermolenko, Alexander E; Perepada, Elena A

    2007-01-01

    The paper contains a description of basic regularities in the manifestation of symmetry of human structural organization and its ontogenetic and phylogenetic development. A concept of macrobiocrystalloid with inherent complex symmetry is proposed for the description of the human organism in its integrity. The symmetry can be characterized as two-plane radial (quadrilateral), where the planar symmetry is predominant while the layout of organs of radial symmetry is subordinated to it. Out of the two planes of symmetry (sagittal and horizontal), the sagittal plane is predominant. The symmetry of the chromosome, of the embrio at the early stages of cell cleavage as well as of some organs and systems in their phylogenetic development is described. An hypothesis is postulated that the two-plane symmetry is formed by two mechanisms: a) the impact of morphogenetic fields of the whole crystalloid organism during embriogenesis and, b) genetic mechanisms of the development of chromosomes having two-plane symmetry.

  11. Soft-wall domain-growth kinetics of twofold-degenerate ordering

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.

    1986-01-01

    The domain growth in a two-dimensional twofold-degenerate system with soft domain walls is shown to obey dynamical scaling. The value of the growth exponent is n≃0.25 which differs from the classical Lifshitz-Allen-Cahn prediction n=(1/2), but accords with recent findings for other growth models ...... with soft walls. The results suggest that domain-wall softness may be more important than the degeneracy of the ground state for a possible universal classification of domain-growth kinetics....

  12. Lorentz symmetry breaking effects on relativistic EPR correlations

    Energy Technology Data Exchange (ETDEWEB)

    Belich, H. [Universidade Federal do Espirito Santo, Departamento de Fisica e Quimica, Vitoria, ES (Brazil); Furtado, C.; Bakke, K. [Universidade Federal da Paraiba, Departamento de Fisica, Caixa Postal 5008, Joao Pessoa, PB (Brazil)

    2015-09-15

    Lorentz symmetry breaking effects on relativistic EPR (Einstein-Podolsky-Rosen) correlations are discussed. From the modified Maxwell theory coupled to gravity, we establish a possible scenario of the Lorentz symmetry violation and write an effective metric for the Minkowski spacetime. Then we obtain the Wigner rotation angle via the Fermi-Walker transport of spinors and consider the WKB (Wentzel-Kramers-Brillouin) approximation in order to study the influence of Lorentz symmetry breaking effects on the relativistic EPR correlations. (orig.)

  13. Rotating Polygons on a Fluid Surface

    DEFF Research Database (Denmark)

    Bohr, Tomas; Jansson, Thomas; Haspang, Martin

    The free surface of a rotating fluid will, due to the centrifugal force, be pressed radially outward. If the fluid rotates as a rigid body in a cylindrical container the surface will assume a parabolic shape. If, however, the flow is driven by rotating the bottom plate, the axial symmetry can break...

  14. Conserved symmetries in noncommutative quantum mechanics

    CERN Document Server

    Kupriyanov, V G

    2014-01-01

    We consider a problem of the consistent deformation of physical system introducing a new features, but preserving its fundamental properties. In particular, we study how to implement the noncommutativity of space-time without violation of the rotational symmetry in quantum mechanics or the Lorentz symmetry in f{i}eld theory. Since the canonical (Moyal) noncommutativity breaks the above symmetries one should work with more general case of coordinate-dependent noncommutative spaces, when the commutator between coordinates is a function of these coordinates. F{i}rst we describe in general lines how to construct the quantum mechanics on coordinate-dependent noncommutative spaces. Then we consider the particular examples: the Hydrogen atom on rotationally invariant noncommutative space and the Dirac equation on covariant noncommutative space-time.

  15. Conserved symmetries in noncommutative quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Kupriyanov, V.G. [CMCC, Universidade Federal do ABC, Santo Andre, SP (Brazil)

    2014-09-11

    We consider a problem of the consistent deformation of physical system introducing a new features, but preserving its fundamental properties. In particular, we study how to implement the noncommutativity of space-time without violation of the rotational symmetry in quantum mechanics or the Lorentz symmetry in field theory. Since the canonical (Moyal) noncommutativity breaks the above symmetries one should work with more general case of coordinate-dependent noncommutative spaces, when the commutator between coordinates is a function of these coordinates. First we describe in general lines how to construct the quantum mechanics on coordinate-dependent noncommutative spaces. Then we consider the particular examples: the Hydrogen atom on rotationally invariant noncommutative space and the Dirac equation on covariant noncommutative space-time. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Symmetries in Physics

    Science.gov (United States)

    Brading, Katherine; Castellani, Elena

    2010-01-01

    Preface; Copyright acknowledgements; List of contributors; 1. Introduction; Part I. Continuous Symmetries: 2. Classic texts: extracts from Weyl and Wigner; 3. Review paper: On the significance of continuous symmetry to the foundations of physics C. Martin; 4. The philosophical roots of the gauge principle: Weyl and transcendental phenomenological idealism T. Ryckman; 5. Symmetries and Noether's theorems K. A. Brading and H. R. Brown; 6. General covariance, gauge theories, and the Kretschmann objection J. Norton; 7. The interpretation of gauge symmetry M. Redhead; 8. Tracking down gauge: an ode to the constrained Hamiltonian formalism J. Earman; 9. Time-dependent symmetries: the link between gauge symmetries and indeterminism D. Wallace; 10. A fourth way to the Aharanov-Bohm effect A. Nounou; Part II. Discrete Symmetries: 11. Classic texts: extracts from Lebniz, Kant and Black; 12. Review paper: Understanding permutation symmetry S. French and D. Rickles; 13. Quarticles and the identity of discernibles N. Hugget; 14. Review paper: Handedness, parity violation, and the reality of space O. Pooley; 15. Mirror symmetry: what is it for a relational space to be orientable? N. Huggett; 16. Physics and Leibniz's principles S. Saunders; Part III. Symmetry Breaking: 17: Classic texts: extracts from Curie and Weyl; 18. Extract from G. Jona-Lasinio: Cross-fertilization in theoretical physics: the case of condensed matter and particle physics G. Jona-Lasinio; 19. Review paper: On the meaning of symmetry breaking E. Castellani; 20. Rough guide to spontaneous symmetry breaking J. Earman; 21. Spontaneous symmetry breaking: theoretical arguments and philosophical problems M. Morrison; Part IV. General Interpretative Issues: 22. Classic texts: extracts from Wigner; 23. Symmetry as a guide to superfluous theoretical structure J. Ismael and B. van Fraassen; 24. Notes on symmetries G. Belot; 25. Symmetry, objectivity, and design P. Kosso; 26. Symmetry and equivalence E. Castellani.

  17. Two-fold Mellin–Barnes transforms of Usyukina–Davydychev functions

    Energy Technology Data Exchange (ETDEWEB)

    Kniehl, Bernd A., E-mail: kniehl@desy.de [II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Kondrashuk, Igor [Grupo de Matemática Aplicada, Departamento de Ciencias Básicas, Universidad del Bío-Bío, Campus Fernando May, Casilla 447, Chillán (Chile); Fakultät für Physik, Universität Bielefeld, Universitätsstraße 25, 33615 Bielefeld (Germany); Notte-Cuello, Eduardo A. [Departamento de Matemáticas, Facultad de Ciencias, Universidad de La Serena, Av. Cisternas 1200, La Serena (Chile); Parra-Ferrada, Ivan [Carrera de Pedagogia en Matemática, Facultad de Educación y Humanidades, Universidad del Bío-Bío, Campus Castilla, Casilla 447, Chillán (Chile); Rojas-Medar, Marko [Grupo de Matemática Aplicada, Departamento de Ciencias Básicas, Universidad del Bío-Bío, Campus Fernando May, Casilla 447, Chillán (Chile)

    2013-11-01

    In our previous paper (Allendes et al., 2013 [10]), we showed that multi-fold Mellin–Barnes (MB) transforms of Usyukina–Davydychev (UD) functions may be reduced to two-fold MB transforms. The MB transforms were written there as polynomials of logarithms of ratios of squares of the external momenta with certain coefficients. We also showed that these coefficients have a combinatoric origin. In this paper, we present an explicit formula for these coefficients. The procedure of recovering the coefficients is based on taking the double-uniform limit in certain series of smooth functions of two variables which is constructed according to a pre-determined iterative way. The result is obtained by using basic methods of mathematical analysis. We observe that the finiteness of the limit of this iterative chain of smooth functions should reflect itself in other mathematical constructions, too, since it is not related in any way to the explicit form of the MB transforms. This finite double-uniform limit is represented in terms of a differential operator with respect to an auxiliary parameter which acts on the integrand of a certain two-fold MB integral. To demonstrate that our result is compatible with original representations of UD functions, we reproduce the integrands of these original integral representations by applying this differential operator to the integrand of the simple integral representation of the scalar triangle four-dimensional integral J(1,1,1−ε)

  18. Perturbation treatment of symmetry breaking within random matrix theory

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, J.X. de [Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Strasse 38, D-01187 Dresden (Germany); Instituto de Fisica, Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, S.P. (Brazil); Hussein, M.S. [Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Strasse 38, D-01187 Dresden (Germany); Instituto de Fisica, Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, S.P. (Brazil)], E-mail: mhussein@mpipks-dresden.mpg.de; Pato, M.P.; Sargeant, A.J. [Instituto de Fisica, Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, S.P. (Brazil)

    2008-07-07

    We discuss the applicability, within the random matrix theory, of perturbative treatment of symmetry breaking to the experimental data on the flip symmetry breaking in quartz crystal. We found that the values of the parameter that measures this breaking are different for the spacing distribution as compared to those for the spectral rigidity. We consider both two-fold and three-fold symmetries. The latter was found to account better for the spectral rigidity than the former. Both cases, however, underestimate the experimental spectral rigidity at large L. This discrepancy can be resolved if an appropriate number of eigenfrequencies is considered to be missing in the sample. Our findings are relevant for symmetry violation studies in general.

  19. Approximate flavor symmetries

    OpenAIRE

    Rašin, Andrija

    1994-01-01

    We discuss the idea of approximate flavor symmetries. Relations between approximate flavor symmetries and natural flavor conservation and democracy models is explored. Implications for neutrino physics are also discussed.

  20. The Symmetry Principle

    Directory of Open Access Journals (Sweden)

    Joe Rosen

    2005-12-01

    Full Text Available Abstract: The symmetry principle is described in this paper. The full details are given in the book: J. Rosen, Symmetry in Science: An Introduction to the General Theory (Springer-Verlag, New York, 1995.

  1. Origin of family symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Nilles, Hans Peter [Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Bonn Univ. (Germany). Physikalisches Inst.; Ratz, Michael [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-04-15

    Discrete (family) symmetries might play an important role in models of elementary particle physics. We discuss the origin of such symmetries in the framework of consistent ultraviolet completions of the standard model in field and string theory. The symmetries can arise due to special geometrical properties of extra compact dimensions and the localization of fields in this geometrical landscape. We also comment on anomaly constraints for discrete symmetries.

  2. Neutrinos and flavor symmetries

    Science.gov (United States)

    Tanimoto, Morimitsu

    2015-07-01

    We discuss the recent progress of flavor models with the non-Abelian discrete symmetry in the lepton sector focusing on the θ13 and CP violating phase. In both direct approach and indirect approach of the flavor symmetry, the non-vanishing θ13 is predictable. The flavor symmetry with the generalised CP symmetry can also predicts the CP violating phase. We show the phenomenological analyses of neutrino mixing for the typical flavor models.

  3. Neutrinos and flavor symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Tanimoto, Morimitsu

    2015-07-15

    We discuss the recent progress of flavor models with the non-Abelian discrete symmetry in the lepton sector focusing on the θ{sub 13} and CP violating phase. In both direct approach and indirect approach of the flavor symmetry, the non-vanishing θ{sub 13} is predictable. The flavor symmetry with the generalised CP symmetry can also predicts the CP violating phase. We show the phenomenological analyses of neutrino mixing for the typical flavor models.

  4. Fuzzy ta/2 symmetries of straight chain conjugate polyene molecules

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    On the basis of our recent studies on the molecular fuzzy point group symmetry,we further probe into the more complicated planar one-dimensional fuzzy periodic molecules-straight chain conjugate polyene.Except for the fuzzy translation transformation,the space transformation of the fuzzy screw rotation and the glide plane will be referred to.In addition,other fuzzy point symmetry transformation lain in the space transformation is discussed.Usually there is a correlation between the fuzzy symmetry characterization caused by the transition of the point symmetry elements and by certain space symmetry transformation.For the molecular orbital,the irreducible representation component is analyzed besides the membership function of the fuzzy symmetry transformation.Also,we inquire into the relativity between some molecular property and the fuzzy symmetry characterization.

  5. Chiral symmetry and chiral-symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)

  6. An Efficient Two-Fold Marginalized Bayesian Filter for Multipath Estimation in Satellite Navigation Receivers

    Directory of Open Access Journals (Sweden)

    Robertson Patrick

    2010-01-01

    Full Text Available Multipath is today still one of the most critical problems in satellite navigation, in particular in urban environments, where the received navigation signals can be affected by blockage, shadowing, and multipath reception. Latest multipath mitigation algorithms are based on the concept of sequential Bayesian estimation and improve the receiver performance by exploiting the temporal constraints of the channel dynamics. In this paper, we specifically address the problem of estimating and adjusting the number of multipath replicas that is considered by the receiver algorithm. An efficient implementation via a two-fold marginalized Bayesian filter is presented, in which a particle filter, grid-based filters, and Kalman filters are suitably combined in order to mitigate the multipath channel by efficiently estimating its time-variant parameters in a track-before-detect fashion. Results based on an experimentally derived set of channel data corresponding to a typical urban propagation environment are used to confirm the benefit of our novel approach.

  7. Complete controllability of finite quantum systems with twofold energy level degeneracy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhedong; Fu, H C, E-mail: hcfu@szu.edu.c [School of Physical Sciences and Technology, Shenzhen University, Shenzhen 518060 (China)

    2010-05-28

    Complete controllability of finite-dimensional quantum systems with energy level degeneracy is investigated using two different approaches. One approach is to apply a weak constant field to eliminate the degeneracy and then control it using techniques developed for non-degenerate quantum systems. Conditions for the elimination of degeneracy are found and the issues of influence of relaxation time of a constant external field on the target state are addressed through the fidelity. Another approach is to control the degenerate system by a single control field directly. It is found that the system with twofold degenerate excited states and non-degenerate ground state is completely controllable except for the two-level system. Conditions of complete controllability are found for both systems with different energy gaps and with equal energy gaps.

  8. An unusual binodal (6,8)-connected 3D supramolecular network with twofold self-penetration

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A dicarboxylate ligand,5-carboxyl-1-carboxymethyl-2-oxidopyridinium (H2L),was utilized to form four complexes with the general formula [M(HL)2(H2O)]·2H2O,M = CuII (1),ZnII (2),MnII (3),CdII (4).The crystals were isomorphous,belonging to the monoclinic C2/c space group.They were constructed from 1D chains and further linked by hydrogen bonds into a novel binodal (6,8)-connected 3D supramolecular network with twofold self-penetration.Photoluminescence studies revealed that complexes 2-4 displayed intense structure-related fluorescent emission bands.

  9. W-symmetry

    CERN Document Server

    Bouwknegt, P G

    1995-01-01

    W-symmetry is an extension of conformal symmetry in two dimensions. Since its introduction in 1985, W-symmetry has become one of the central notions in the study of two-dimensional conformal field theory. The mathematical structures that underlie W-symmetry are so-called W-algebras, which are higher-spin extensions of the Virasoro algebra. This book contains a collection of papers on W-symmetry, covering the period from 1985 through 1993. Its main focus is the construction of W-algebras and their representation theory. A recurrent theme is the intimate connection between W-algebras and affine

  10. Rotations, quaternions, and double groups

    CERN Document Server

    Altmann, Simon L

    2005-01-01

    This self-contained text presents a consistent description of the geometric and quaternionic treatment of rotation operators, employing methods that lead to a rigorous formulation and offering complete solutions to many illustrative problems.Geared toward upper-level undergraduates and graduate students, the book begins with chapters covering the fundamentals of symmetries, matrices, and groups, and it presents a primer on rotations and rotation matrices. Subsequent chapters explore rotations and angular momentum, tensor bases, the bilinear transformation, projective representations, and the g

  11. On the Thermal Symmetry of Markovian Master Equation

    CERN Document Server

    Tay, B A

    2007-01-01

    The quantum Markovian master equation of the reduced dynamics of a harmonic oscillator coupled to a thermal reservoir is shown to possess a thermal symmetry. This symmetry is a Bogoliubov transformation that can be represented by a hyperbolic rotation acting in the Liouville space of the reduced dynamics. The Liouville space is obtained as an extension from the Hilbert space by introducing tilde variables as carried out in thermofield dynamics formalism. The angle of rotation depends on the temperature of the reservoir, or the value of Planck's constant. The symmetry connects the thermal states of the system between any temperature, including absolute zero that contains a purely quantum effect. The Caldeira-Leggett equation and the classical Fokker-Planck equation also possess a thermal symmetry. We discuss how the thermal symmetry affects the change in the shape of a Gaussian wave packet. We also construct temperature dependent density states of a harmonic oscillator, which contain thermal ground states as w...

  12. Dynamic Paper Constructions for Easier Visualization of Molecular Symmetry

    Science.gov (United States)

    Sein, Lawrence T., Jr.

    2010-01-01

    A system for construction of simple poster-board models is described. The models dynamically demonstrate the symmetry operations of proper rotation, improper rotation, reflection, and inversion for the chemically important point groups D[subscript 3h], D[subscript 4h], D[subscript 5h], D[subscript 6h], T[subscript d], and O[subscript h]. The…

  13. Dynamic Paper Constructions for Easier Visualization of Molecular Symmetry

    Science.gov (United States)

    Sein, Lawrence T., Jr.

    2010-01-01

    A system for construction of simple poster-board models is described. The models dynamically demonstrate the symmetry operations of proper rotation, improper rotation, reflection, and inversion for the chemically important point groups D[subscript 3h], D[subscript 4h], D[subscript 5h], D[subscript 6h], T[subscript d], and O[subscript h]. The…

  14. Weak Lie symmetry and extended Lie algebra

    Energy Technology Data Exchange (ETDEWEB)

    Goenner, Hubert [Institute for Theoretical Physics, Friedrich-Hund-Platz 1, University of Goettingen, D-37077 Gottingen (Germany)

    2013-04-15

    The concept of weak Lie motion (weak Lie symmetry) is introduced. Applications given exhibit a reduction of the usual symmetry, e.g., in the case of the rotation group. In this context, a particular generalization of Lie algebras is found ('extended Lie algebras') which turns out to be an involutive distribution or a simple example for a tangent Lie algebroid. Riemannian and Lorentz metrics can be introduced on such an algebroid through an extended Cartan-Killing form. Transformation groups from non-relativistic mechanics and quantum mechanics lead to such tangent Lie algebroids and to Lorentz geometries constructed on them (1-dimensional gravitational fields).

  15. Sheared and unsheared rotation of driven dust clusters

    Energy Technology Data Exchange (ETDEWEB)

    Schablinski, Jan; Block, Dietmar; Carstensen, Jan; Greiner, Franko; Piel, Alexander [Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universitaet Kiel, Leibnizstraße 19-Kiel, SH 24098 (Germany)

    2014-07-15

    Finite size plasma crystals confined in an anisotropic potential well were studied under a rotating and radially unsheared drive in experiment and simulation at moderate rotational frequencies. A radially sheared rotation of these strongly coupled systems is observed for most cluster configurations with a low symmetry. The results show that a differential rotation can be effected by a non-sheared driving force.

  16. ON THE NOETHER SYMMETRY AND LIE SYMMETRY OF MECHANICAL SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    梅凤翔; 郑改华

    2002-01-01

    The Noether symmetry is an invariance of Hamilton action under infinitesimal transformations of time and the coordinates. The Lie symmetry is an invariance of the differential equations of motion under the transformations. In this paper, the relation between these two symmetries is proved definitely and firstly for mechanical systems. The results indicate that all the Noether symmetries are Lie symmetries for Lagrangian systems meanwhile a Noether symmetry is a Lie symmetry for the general holonomic or nonholonomic systems provided that some conditions hold.

  17. From physical symmetries to emergent gauge symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Barceló, Carlos [Instituto de Astrofísica de Andalucía (IAA-CSIC),Glorieta de la Astronomía, 18008 Granada (Spain); Carballo-Rubio, Raúl [Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Laboratory for Quantum Gravity & Strings,Department of Mathematics & Applied Mathematics, University of Cape Town,Private Bag, Rondebosch 7701 (South Africa); Di Filippo, Francesco [Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Dipartamento di Scienze Fisiche “E.R. Caianiello”, Università di Salerno,I-84081 Fisciano (Italy); Garay, Luis J. [Departamento de Física Teórica II, Universidad Complutense de Madrid, 28040 Madrid (Spain); Instituto de Estructura de la Materia (IEM-CSIC), Serrano 121, 28006 Madrid (Spain)

    2016-10-17

    Gauge symmetries indicate redundancies in the description of the relevant degrees of freedom of a given field theory and restrict the nature of observable quantities. One of the problems faced by emergent theories of relativistic fields is to understand how gauge symmetries can show up in systems that contain no trace of these symmetries at a more fundamental level. In this paper we start a systematic study aimed to establish a satisfactory mathematical and physical picture of this issue, dealing first with abelian field theories. We discuss how the trivialization, due to the decoupling and lack of excitation of some degrees of freedom, of the Noether currents associated with physical symmetries leads to emergent gauge symmetries in specific situations. An example of a relativistic field theory of a vector field is worked out in detail in order to make explicit how this mechanism works and to clarify the physics behind it. The interplay of these ideas with well-known results of importance to the emergent gravity program, such as the Weinberg-Witten theorem, are discussed.

  18. From physical symmetries to emergent gauge symmetries

    Science.gov (United States)

    Barceló, Carlos; Carballo-Rubio, Raúl; Di Filippo, Francesco; Garay, Luis J.

    2016-10-01

    Gauge symmetries indicate redundancies in the description of the relevant degrees of freedom of a given field theory and restrict the nature of observable quantities. One of the problems faced by emergent theories of relativistic fields is to understand how gauge symmetries can show up in systems that contain no trace of these symmetries at a more fundamental level. In this paper we start a systematic study aimed to establish a satisfactory mathematical and physical picture of this issue, dealing first with abelian field theories. We discuss how the trivialization, due to the decoupling and lack of excitation of some degrees of freedom, of the Noether currents associated with physical symmetries leads to emergent gauge symmetries in specific situations. An example of a relativistic field theory of a vector field is worked out in detail in order to make explicit how this mechanism works and to clarify the physics behind it. The interplay of these ideas with well-known results of importance to the emergent gravity program, such as the Weinberg-Witten theorem, are discussed.

  19. From physical symmetries to emergent gauge symmetries

    CERN Document Server

    Barceló, Carlos; Di Filippo, Francesco; Garay, Luis J

    2016-01-01

    Gauge symmetries indicate redundancies in the description of the relevant degrees of freedom of a given field theory and restrict the nature of observable quantities. One of the problems faced by emergent theories of relativistic fields is to understand how gauge symmetries can show up in systems that contain no trace of these symmetries at a more fundamental level. In this paper we start a systematic study aimed to establish a satisfactory mathematical and physical picture of this issue, dealing first with abelian field theories. We discuss how the trivialization, due to the decoupling and lack of excitation of some degrees of freedom, of the Noether currents associated with physical symmetries leads to emergent gauge symmetries in specific situations. An example of a relativistic field theory of a vector field is worked out in detail in order to make explicit how this mechanism works and to clarify the physics behind it. The interplay of these ideas with well-known results of importance to the emergent grav...

  20. Two-fold Mellin-Barnes transforms of Usyukina-Davydychev functions

    CERN Document Server

    Kniehl, Bernd; Notte-Cuello, Eduardo A; Ferrada, Ivan Parra; Rojas-Medar, Marko

    2013-01-01

    In our previous paper (Nucl.Phys.B 870 (2013) 243) we showed that multi-fold Mellin-Barnes (MB) transforms of the Usyukina-Davydychev (UD) functions may be reduced to two-fold MB transforms. The MB transforms were written there as polynomials of logarithms of ratios of squares of the external momenta with certain coefficients. We also showed that these coefficients have a combinatoric origin. In this paper we present an explicit formula for these coefficients. The procedure of recovering the coefficients is based on taking the double uni-form limit in certain series of smooth functions of two variables which is constructed according to a pre-determined iterative way. The result is obtained by using basic methods of mathematical analysis. We observe that the finiteness of the limit of this iterative chain of smooth functions should reflect itself in other mathematical constructions, too, since it is not related in any way to the explicit form of the MB transforms.

  1. A Two-folded Impact Analysis of Schema Changes on Database Applications

    Institute of Scientific and Technical Information of China (English)

    Spyridon K.Gardikiotis; Nicos Malevris

    2009-01-01

    Database applications are becoming increasingly popular, mainly due to the advanced data management facilities that the underlying database management system offers compared against traditional legacy software applications. The interaction, however, of such applications with the database system introduces a number of issues, among which, this paper addresses the impact analysis of the changes performed at the database schema level. Our motivation is to provide the software engineers of database applications with automated methods that facilitate major maintenance tasks, such as source code corrections and regression testing, which should be triggered by the occurrence of such changes. The presented impact analysis is thus two-folded: the impact is analysed in terms of both the affected source code statements and the affected test suites concerning the testing of these applications. To achieve the former objective, a program slicing technique is employed, which is based on an extended version of the program dependency graph. The latter objective requires the analysis of test suites generated for database applications, which is accomplished by employing testing techniques tailored for this type of applications. Utilising both the slicing and the testing techniques enhances program comprehension of database applications, while also supporting the development of a number of practical metrics regarding their maintainability against schema changes. To evaluate the feasibility and effectiveness of the presented techniques and metrics, a software tool, called DATA, has been implemented. The experimental results from its usage on the TPC-C case study are reported and analysed.

  2. Two-fold Mellin-Barnes transforms of Usyukina-Davydychev functions

    Energy Technology Data Exchange (ETDEWEB)

    Kniehl, Bernd [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kondrashuk, Igor [Univ. del Bio Bio, Chillan (Chile). Dept. de Ciencias Basicas; Bielefeld Univ. (Germany). Fakultaet fuer Physik; Notte-Cuello, Eduardo A. [Univ. de La Serena (Chile). Dept. de Matematicas; Parra-Ferrada, Ivan [Univ. del Bio Bio, Chillan (Chile). Facultad de Educacion y Humanidades; Rojas-Medar, Marko [Univ. del Bio Bio, Chillan (Chile). Dept. de Ciencias Basicas

    2013-04-15

    In our previous paper (Nucl.Phys.B 870 (2013) 243) we showed that multi-fold Mellin-Barnes (MB) transforms of the Usyukina-Davydychev (UD) functions may be reduced to two-fold MB transforms. The MB transforms were written there as polynomials of logarithms of ratios of squares of the external momenta with certain coefficients. We also showed that these coefficients have a combinatoric origin. In this paper we present an explicit formula for these coefficients. The procedure of recovering the coefficients is based on taking the double uni-form limit in certain series of smooth functions of two variables which is constructed according to a pre-determined iterative way. The result is obtained by using basic methods of mathematical analysis. We observe that the finiteness of the limit of this iterative chain of smooth functions should reflect itself in other mathematical constructions, too, since it is not related in any way to the explicit form of the MB transforms.

  3. CONSERVATION PROCESS MODEL (CPM: A TWOFOLD SCIENTIFIC RESEARCH SCOPE IN THE INFORMATION MODELLING FOR CULTURAL HERITAGE

    Directory of Open Access Journals (Sweden)

    D. Fiorani

    2017-05-01

    Full Text Available The aim of the present research is to develop an instrument able to adequately support the conservation process by means of a twofold approach, based on both BIM environment and ontology formalisation. Although BIM has been successfully experimented within AEC (Architecture Engineering Construction field, it has showed many drawbacks for architectural heritage. To cope with unicity and more generally complexity of ancient buildings, applications so far developed have shown to poorly adapt BIM to conservation design with unsatisfactory results (Dore, Murphy 2013; Carrara 2014. In order to combine achievements reached within AEC through BIM environment (design control and management with an appropriate, semantically enriched and flexible The presented model has at its core a knowledge base developed through information ontologies and oriented around the formalization and computability of all the knowledge necessary for the full comprehension of the object of architectural heritage an its conservation. Such a knowledge representation is worked out upon conceptual categories defined above all within architectural criticism and conservation scope. The present paper aims at further extending the scope of conceptual modelling within cultural heritage conservation already formalized by the model. A special focus is directed on decay analysis and surfaces conservation project.

  4. Synthesis, crystal structure, and magnetic properties of a two-fold interpenetrated diamondoid open framework

    Science.gov (United States)

    Wu, Jing-Yun; Cheng, Fu-Yin; Chiang, Ming-Hsi

    2016-10-01

    Self-assembly of an enlarged angular pyridinecarboxylate ligand and cobalt(II) acetate under mild conditions afforded a three-dimensional open-framework coordination polymer, [Co2(μ-H2O)(pyca-43)4]n (1, Hpyca-43=(E)-3-((pyridin-4-yl)methyleneamino)benzoic acid). The molecular structure of 1 has rationalized to be a porous two-fold interpenetrated diamondoid-like network, with dinuclear Co2(μ-H2O)(O2C)4N4 clusters as tetrahedral secondary building units (SBUs), possessing highly solvent accessible volume of approximately 53.0%. Least-squares fit of the magnetic susceptibility data (20-300 K) of 1 yields Curie constant C=6.15 cm3 mol-1 K and Weiss constant θ=-11.6 K. Every Co2 subunit within the network is magnetically insulated to other dimers. The magnetic exchange parameter between Co(II) centers is estimated to -0.72 cm-1, suggesting a weak antiferromagnetic interaction. The gav value of 4.65 from fitting to the Lines model indicates that the decrease of the χMT value upon cooling is dominated by depopulation of the excited Kramer's states to the effective ground singlet. In addition, the thermal stability and adsorption properties of 1 are also reported.

  5. Intense green luminescence associated with two-fold coordinated Si in silica aerogel doped with ?

    Science.gov (United States)

    Li, Y. H.; Mo, C. M.; Yao, L. Z.; Liu, R. C.; Cai, W. L.; Li, X. M.; Wu, Z. Q.; Zhang, L. D.

    1998-02-01

    Amorphous silica aerogels doped with 0953-8984/10/7/013/img11 ions (SADAs) were prepared by the sol-gel route and supercritical drying. The visible luminescence of SADAs was measured and compared with that of porous silicon (PS), pure silica aerogels (PSAs) and silica xerogels doped with 0953-8984/10/7/013/img11 ions (SXDAs). The effect of annealing on the luminescence intensity of SADAs was investigated. Results show that (1) the luminescent intensity of as-prepared SADAs is much higher than that of as-prepared PSAs and SXDAs after annealing at 0953-8984/10/7/013/img13 (2) after annealing at 0953-8984/10/7/013/img14, the visible luminescence of SADAs is further substantially enhanced and becomes much higher than that of PS. However, for PSAs and SXDAs after annealing at 0953-8984/10/7/013/img14 the luminescent intensity is still kept at a very low value in comparison with that of SADAs. The strong visible luminescence appearing in SADAs is ascribed to significant amounts of the twofold coordinated Si (the 0953-8984/10/7/013/img16 (neutral) centre) in SADAs.

  6. Pseudo-unitary dynamics of free relativistic quantum mechanical twofold systems

    Science.gov (United States)

    Cardoso, J. G.

    2012-05-01

    A finite-dimensional pseudo-unitary framework is set up for describing the dynamics of free elementary particles in a purely relativistic quantum mechanical way. States of any individual particles or antiparticles are defined as suitably normalized vectors belonging to the two-complex-dimensional spaces that occur in local orthogonal decompositions of isomorphic copies of Cartan's space. The corresponding dynamical variables thus show up as bounded pseudo-Hermitian operator restrictions that possess real discrete spectra. Any measurement processes have to be performed locally in orthocronous proper Lorentz frames, but typical observational correlations are expressed in terms of symbolic configurations which come from the covariant action on spaces of state vectors of the Poincaré subgroup of an adequate realization of SU(2,2). The overall approach turns out to supply a supposedly natural description of the dynamics of free twofold systems in flat spacetime. One of the main outlooks devised here brings forward the possibility of carrying out methodically the construction of a background to a new relativistic theory of quantum information.

  7. Conservation Process Model (cpm): a Twofold Scientific Research Scope in the Information Modelling for Cultural Heritage

    Science.gov (United States)

    Fiorani, D.; Acierno, M.

    2017-05-01

    The aim of the present research is to develop an instrument able to adequately support the conservation process by means of a twofold approach, based on both BIM environment and ontology formalisation. Although BIM has been successfully experimented within AEC (Architecture Engineering Construction) field, it has showed many drawbacks for architectural heritage. To cope with unicity and more generally complexity of ancient buildings, applications so far developed have shown to poorly adapt BIM to conservation design with unsatisfactory results (Dore, Murphy 2013; Carrara 2014). In order to combine achievements reached within AEC through BIM environment (design control and management) with an appropriate, semantically enriched and flexible The presented model has at its core a knowledge base developed through information ontologies and oriented around the formalization and computability of all the knowledge necessary for the full comprehension of the object of architectural heritage an its conservation. Such a knowledge representation is worked out upon conceptual categories defined above all within architectural criticism and conservation scope. The present paper aims at further extending the scope of conceptual modelling within cultural heritage conservation already formalized by the model. A special focus is directed on decay analysis and surfaces conservation project.

  8. Theory for magnetic linear dichroism of electronic transitions between twofold-degenerate molecular spin levels

    Science.gov (United States)

    Bominaar, Emile L.; Achim, Catalina; Peterson, Jim

    1998-07-01

    Magnetic linear dichroism (MLD) spectroscopy is a relatively new technique which previously has been almost exclusively applied to atoms. These investigations have revealed that the study of MLD, in conjunction with electronic absorption and magnetic circular dichroism (MCD) spectroscopies, provides significant additional information concerning the electronic structure of atoms. More recent measurements have indicated that MLD is also observable from transition ions in inorganic compounds and metalloproteins. While the theory for atomic MLD has been worked out in considerable detail during the last two decades, an MLD theory of practical utility for the analysis of the spectra derived from the majority of paramagnetic molecules is not available. In the present contribution, the MLD of an electric-dipole-allowed transition between twofold-degenerate molecular spin levels is analyzed, assuming nonsaturating conditions. As for atomic systems, it is found that the MLD of a single molecule is dominated by the term G0. However, this term vanishes in the powder average evaluated for a randomly oriented ensemble of molecules, leading to a drastic reduction of the MLD differential absorption for systems with spin S=1/2 compared to that observed for systems with higher ground-state spin. It is found that MLD and MCD spectroscopies on solution samples have complementary spin-state specific sensitivities which suggest that the two methods can be used to selectively probe the individual metal sites in multicenter metalloprotein assemblies.

  9. A twofold quantum delayed-choice experiment in a superconducting circuit.

    Science.gov (United States)

    Liu, Ke; Xu, Yuan; Wang, Weiting; Zheng, Shi-Biao; Roy, Tanay; Kundu, Suman; Chand, Madhavi; Ranadive, Arpit; Vijay, Rajamani; Song, Yipu; Duan, Luming; Sun, Luyan

    2017-05-01

    Wave-particle complementarity lies at the heart of quantum mechanics. To illustrate this mysterious feature, Wheeler proposed the delayed-choice experiment, where a quantum system manifests the wave- or particle-like attribute, depending on the experimental arrangement, which is made after the system has entered the interferometer. In recent quantum delayed-choice experiments, these two complementary behaviors were simultaneously observed with a quantum interferometer in a superposition of being closed and open. We suggest and implement a conceptually different quantum delayed-choice experiment by introducing a which-path detector (WPD) that can simultaneously record and neglect the system's path information, but where the interferometer itself is classical. Our experiment is realized with a superconducting circuit, where a cavity acts as the WPD for an interfering qubit. Using this setup, we implement the first twofold delayed-choice experiment, which demonstrates that the system's behavior depends not only on the measuring device's configuration that can be chosen even after the system has been detected but also on whether we a posteriori erase or mark the which-path information, the latter of which cannot be revealed by previous quantum delayed-choice experiments. Our results represent the first demonstration of both counterintuitive features with the same experimental setup, significantly extending the concept of quantum delayed-choice experiment.

  10. Discrete R-symmetries and Anomaly Universality in Heterotic Orbifolds

    CERN Document Server

    Bizet, Nana Geraldine Cabo; Pena, Damian Kaloni Mayorga; Parameswaran, Susha L; Schmitz, Matthias; Zavala, Ivonne

    2013-01-01

    We study discrete R-symmetries, which appear in 4D low energy effective field theory derived from hetetoric orbifold models. We derive the R-symmetries directly from geometrical symmetries of orbifolds. In particular, we obtain the corresponding R-charges by requiring that the couplings be invariant under these symmetries. This allows for a more general treatment than the explicit computations of correlation functions made previously by the authors, including models with discrete Wilson lines, and orbifold symmetries beyond plane-by-plane rotational invariance. Surprisingly, for the cases covered by earlier explicit computations, the R-charges differ from the previous result. We study the anomalies associated with these R-symmetries, and comment on the results.

  11. Discrete R-symmetries and anomaly universality in heterotic orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Bizet, Nana G. Cabo [Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear,Calle 30, esq.a 5ta Ave, Miramar, 6122 La Habana (Cuba); Kobayashi, Tatsuo [Department of Physics, Kyoto University,Kyoto 606-8502 (Japan); Peña, Damián K. Mayorga [Bethe Center for Theoretical Physics and Physikalisches Institut der Universität Bonn,Nussallee 12, 53115 Bonn (Germany); Parameswaran, Susha L. [Department of Mathematics and Physics, Leibniz Universität Hannover,Welfengarten 1, 30167 Hannover (Germany); Schmitz, Matthias [Bethe Center for Theoretical Physics and Physikalisches Institut der Universität Bonn,Nussallee 12, 53115 Bonn (Germany); Zavala, Ivonne [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands)

    2014-02-24

    We study discrete R-symmetries, which appear in the 4D low energy effective field theory derived from heterotic orbifold models. We derive the R-symmetries directly from the geometrical symmetries of the orbifolds. In particular, we obtain the corresponding R-charges by requiring that the couplings be invariant under these symmetries. This allows for a more general treatment than the explicit computations of correlation functions made previously by the authors, including models with discrete Wilson lines, and orbifold symmetries beyond plane-by-plane rotational invariance. The R-charges obtained in this manner differ from those derived in earlier explicit computations. We study the anomalies associated with these R-symmetries, and comment on the results.

  12. Optimization leads to symmetry

    Institute of Scientific and Technical Information of China (English)

    Chenghong WANG; Yuqian GUO; Daizhan CHENG

    2004-01-01

    The science of complexity studies the behavior and properties of complex systems in nature and human society.Particular interest has been put on their certain simple common properties.Symmetry is one of such properties.Symmetric phenomena can be found in many complex systems.The purpose of this paper is to reveal the internal reason of the symmetry.Using some physical systems and geometric objects,the paper shows that many symmetries are caused by optimization under certain criteria.It has also been revealed that an evolutional process may lead to symmetry.

  13. Approximate and renormgroup symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Ibragimov, Nail H. [Blekinge Institute of Technology, Karlskrona (Sweden). Dept. of Mathematics Science; Kovalev, Vladimir F. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Mathematical Modeling

    2009-07-01

    ''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)

  14. Symmetries in atmospheric sciences

    CERN Document Server

    Bihlo, Alexander

    2009-01-01

    Selected applications of symmetry methods in the atmospheric sciences are reviewed briefly. In particular, focus is put on the utilisation of the classical Lie symmetry approach to derive classes of exact solutions from atmospheric models. This is illustrated with the barotropic vorticity equation. Moreover, the possibility for construction of partially-invariant solutions is discussed for this model. A further point is a discussion of using symmetries for relating different classes of differential equations. This is illustrated with the spherical and the potential vorticity equation. Finally, discrete symmetries are used to derive the minimal finite-mode version of the vorticity equation first discussed by E. Lorenz (1960) in a sound mathematical fashion.

  15. Loss of Exchange Symmetry in Multiqubit States under Ising Chain Evolution

    Institute of Scientific and Technical Information of China (English)

    Sudha; B. G. Divyamani; A. R. Usha Devi

    2011-01-01

    Keeping in view of importance of exchange symmetry aspects in studies on spin squeezing of multiqubit states, we show that the one-dimensional Ising Hamiltonian with nearest neighbor interactions does not retain the exchange symmetry of initially symmetric multiqubit states. Specifically we show that among 4-qubit states obeying exchange symmetry, all states except W class (and their linear combination) lose their symmetry under time evolution with Ising Hamiltonian. Attributing the loss of symmetry of the initially symmetric states to rotational asymmetry of the one-dimensional Ising Hamiltonian with more than 3 qubits, we indicate that all N-qubit states (N > 5) obeying permutation symmetry lose their symmetry after time evolution with Ising Hamiltonian.%@@ Keeping in view of importance of exchange symmetry aspects in studies on spin squeezing of multiqubit states, we show that the one-dimensional Ising Hamiltonian with nearest neighbor interactions does not retain the exchange symmetry of initially symmetric multiqubit states.Specifically we show that among 4-qubit states obeying exchange symmetry, all states except W class (and their linear combination) lose their symmetry under time evolution with Ising Hamiltonian.Attributing the loss of symmetry of the initially symmetric states to rotational asymmetry of the one-dimensional Ising Hamiltonian with more than 3 qubits, we indicate that all N-qubit states (N > 5) obeying permutation symmetry lose their symmetry after time evolution with Ising Hamiltonian.

  16. Stellar rotation effects in polarimetric microlensing

    CERN Document Server

    Sajadian, Sedighe

    2016-01-01

    It is well known that the polarization signal in microlensing events of hot stars is larger than that of main-sequence stars. Most hot stars rapidly rotate around their stellar axes. The stellar rotation makes ellipticity and gravity-darkening effects which break the spherical symmetry of the source shape and the circular symmetry of the source surface brightness respectively. Hence, it causes a net polarization signal for the source star. This polarization signal should be considered in polarimetry microlensing of fast rotating stars. For moderate rotating stars, lensing can magnify or even characterize small polarization signals due to the stellar rotation through polarimetry observations. The gravity-darkening effect due to a rotating source star makes asymmetric perturbations in polarimetry and photometry microlensing curves whose maximum happens when the lens trajectory crosses the projected position of the rotation pole on the sky plane. The stellar ellipticity makes a time shift (i) in the position of ...

  17. Low-power broadband homonuclear dipolar recoupling in MAS NMR by two-fold symmetry pulse schemes for magnetization transfers and double-quantum excitation

    Science.gov (United States)

    Teymoori, Gholamhasan; Pahari, Bholanath; Edén, Mattias

    2015-12-01

    We provide an experimental, numerical, and high-order average Hamiltonian evaluation of an open-ended series of homonuclear dipolar recoupling sequences, SR2 2p 1 with p = 1, 2, 3, … . While operating at a very low radio-frequency (rf) power, corresponding to a nutation frequency of 1/2 of the magic-angle spinning (MAS) rate (ωnut =ωr / 2), these recursively generated double-quantum (2Q) dipolar recoupling schemes offer a progressively improved compensation to resonance offsets and rf inhomogeneity for increasing pulse-sequence order p. The excellent recoupling robustness to these experimental obstacles, as well as to CSA, is demonstrated for 2Q filtering (2QF) experiments and for driving magnetization transfers in 2D NMR correlation spectroscopy, where the sequences may provide either double or zero quantum dipolar Hamiltonians during mixing. Experimental and numerical demonstrations, which mostly target conditions of "ultra-fast" MAS (≳50 kHz) and high magnetic fields, are provided for recoupling of 13C across a wide range of isotropic and anisotropic chemical shifts, as well as dipolar coupling constants, encompassing [2,3-13C2 ]alanine, [1,3-13C2 ]alanine, diammonium [1,4-13C2 ]fumarate, and [U-13 C]tyrosine. When compared at equal power levels, a superior performance is observed for the SR2p 1 sequences with p ⩾ 3 relative to existing and well-established 2Q recoupling techniques. At ultra-fast MAS, proton decoupling is redundant during the homonuclear dipolar recoupling of dilute spins in organic solids, which renders the family of SR2p 1 schemes the first efficient 2Q recoupling option for general applications, such as 2Q-1Q correlation NMR and high-order multiple-quantum excitation, under truly low-power rf conditions.

  18. AAV8 capsid variable regions at the two-fold symmetry axis contribute to high liver transduction by mediating nuclear entry and capsid uncoating

    Energy Technology Data Exchange (ETDEWEB)

    Tenney, Rebeca M.; Bell, Christie L.; Wilson, James M., E-mail: wilsonjm@mail.med.upenn.edu

    2014-04-15

    Adeno-associated virus serotype 8 (AAV8) is a promising vector for liver-directed gene therapy. Although efficient uncoating of viral capsids has been implicated in AAV8's robust liver transduction, much about the biology of AAV8 hepatotropism remains unclear. Our study investigated the structural basis of AAV8 liver transduction efficiency by constructing chimeric vector capsids containing sequences derived from AAV8 and AAV2 – a highly homologous yet poorly hepatotropic serotype. Engineered vectors containing capsid variable regions (VR) VII and IX from AAV8 in an AAV2 backbone mediated near AAV8-like transduction in mouse liver, with higher numbers of chimeric genomes detected in whole liver cells and isolated nuclei. Interestingly, chimeric capsids within liver nuclei also uncoated similarly to AAV8 by 6 weeks after administration, in contrast with AAV2, of which a significantly smaller proportion were uncoated. This study links specific AAV capsid regions to the transduction ability of a clinically relevant AAV serotype. - Highlights: • We construct chimeric vectors to identify determinants of AAV8 liver transduction. • An AAV2-based vector with 17 AAV8 residues exhibited high liver transduction in mice. • This vector also surpassed AAV2 in cell entry, nuclear entry and onset of expression. • Most chimeric vector particles were uncoated at 6 weeks, like AAV8 and unlike AAV2. • Chimera retained heparin binding and was antigenically distinct from AAV2 and AAV8.

  19. Symmetry and Interculturality

    Science.gov (United States)

    Marchis, Iuliana

    2009-01-01

    Symmetry is one of the fundamental concepts in Geometry. It is a Mathematical concept, which can be very well connected with Art and Ethnography. The aim of the article is to show how to link the geometrical concept symmetry with interculturality. For this mosaics from different countries are used.

  20. Symmetry Festival 2016

    CERN Document Server

    2016-01-01

    The Symmetry Festival is a science and art program series, the most important periodic event (see its history) to bring together scientists, artists, educators and practitioners interested in symmetry (its roots, what is behind, applications, etc.), or in the consequences of its absence.

  1. Symmetries in Optimal Control

    NARCIS (Netherlands)

    Schaft, A.J. van der

    1987-01-01

    It is argued that the existence of symmetries may simplify, as in classical mechanics, the solution of optimal control problems. A procedure for obtaining symmetries for the optimal Hamiltonian resulting from the Maximum Principle is given; this avoids the actual calculation of the optimal

  2. Lectures on Yangian Symmetry

    CERN Document Server

    Loebbert, Florian

    2016-01-01

    In these introductory lectures we discuss the topic of Yangian symmetry from various perspectives. Forming the classical counterpart of the Yangian and an extension of ordinary Noether symmetries, first the concept of nonlocal charges in classical, two-dimensional field theory is reviewed. We then define the Yangian algebra following Drinfeld's original motivation to construct solutions to the quantum Yang-Baxter equation. Different realizations of the Yangian and its mathematical role as a Hopf algebra and quantum group are discussed. We demonstrate how the Yangian algebra is implemented in quantum, two-dimensional field theories and how its generators are renormalized. Implications of Yangian symmetry on the two-dimensional scattering matrix are investigated. We furthermore consider the important case of discrete Yangian symmetry realized on integrable spin chains. Finally we give a brief introduction to Yangian symmetry in planar, four-dimensional super Yang-Mills theory and indicate its impact on the dila...

  3. Spontaneous Symmetry Probing

    CERN Document Server

    Nicolis, Alberto

    2011-01-01

    For relativistic quantum field theories, we consider Lorentz breaking, spatially homogeneous field configurations or states that evolve in time along a symmetry direction. We dub this situation "spontaneous symmetry probing" (SSP). We mainly focus on internal symmetries, i.e. on symmetries that commute with the Poincare group. We prove that the fluctuations around SSP states have a Lagrangian that is explicitly time independent, and we provide the field space parameterization that makes this manifest. We show that there is always a gapless Goldstone excitation that perturbs the system in the direction of motion in field space. Perhaps more interestingly, we show that if such a direction is part of a non-Abelian group of symmetries, the Goldstone bosons associated with spontaneously broken generators that do not commute with the SSP one acquire a gap, proportional to the SSP state's "speed". We outline possible applications of this formalism to inflationary cosmology.

  4. Partial Dynamical Symmetry as an Intermediate Symmetry Structure

    CERN Document Server

    Leviatan, A

    2003-01-01

    We introduce the notion of a partial dynamical symmetry for which a prescribed symmetry is neither exact nor completely broken. We survey the different types of partial dynamical symmetries and present empirical examples in each category.

  5. Mei Symmetry and Lie Symmetry of Relativistic Hamiltonian System

    Institute of Scientific and Technical Information of China (English)

    FANG Jian-Hui; YAN Xiang-Hong; LI Hong; CHEN Pei-Sheng

    2004-01-01

    The Mei symmetry and the Lie symmetry of the relativistic Hamiltonian system are studied. The definition and criterion of the Mei symmetry and the Lie symmetry of the relativistic Hamiltonian system are given. The relationship between them is found. The conserved quantities which the Mei symmetry and the Lie symmetry lead to are obtained.An example is given to illustrate the application of the result.

  6. Polygons on a rotating fluid surface

    DEFF Research Database (Denmark)

    Jansson, Thomas R.N.; Haspang, Martin P.; Jensen, Kåre H.;

    2006-01-01

    rotating rigidly with a speed different from that of the plate. With water, we have observed polygons with up to 6 corners. It has been known for many years that such flows are prone to symmetry breaking, but apparently the polygonal surface shapes have never been observed. The creation of rotating...

  7. Symmetry analysis of transport properties in helical superconductor junctions

    Science.gov (United States)

    Cheng, Qiang; Zhang, Yinhan; Zhang, Kunhua; Jin, Biao; Zhang, Changlian

    2017-03-01

    We study the discrete symmetries satisfied by helical p-wave superconductors with the d-vectors {{k}x}\\hat{x}+/- {{k}y}\\hat{y} or {{k}y}\\hat{x}+/- {{k}x}\\hat{y} and the transformations brought by symmetry operations to ferromagnet and spin-singlet superconductors, which show intimate associations with the transport properties in heterojunctions, including helical superconductors. In particular, the partial symmetries of the Hamiltonian under spin-rotation and gauge-rotation operations are responsible for the novel invariances of the conductance in tunnel junctions and the new selection rules for the lowest current and peculiar phase diagrams in Josephson junctions, which were reported recently. The symmetries of constructed free energies for Josephson junctions are also analyzed, and are consistent with the results from the Hamiltonian.

  8. Dynamical symmetries of the shell model

    Energy Technology Data Exchange (ETDEWEB)

    Van Isacker, P

    2000-07-01

    The applications of spectrum generating algebras and of dynamical symmetries in the nuclear shell model are many and varied. They stretch back to Wigner's early work on the supermultiplet model and encompass important landmarks in our understanding of the structure of the atomic nucleus such as Racah's SU(2) pairing model and Elliot's SU(3) rotational model. One of the aims of this contribution has been to show the historical importance of the idea of dynamical symmetry in nuclear physics. Another has been to indicate that, in spite of being old, this idea continues to inspire developments that are at the forefront of today's research in nuclear physics. It has been argued in this contribution that the main driving features of nuclear structure can be represented algebraically but at the same time the limitations of the symmetry approach must be recognised. It should be clear that such approach can only account for gross properties and that any detailed description requires more involved numerical calculations of which we have seen many fine examples during this symposium. In this way symmetry techniques can be used as an appropriate starting point for detailed calculations. A noteworthy example of this approach is the pseudo-SU(3) model which starting from its initial symmetry Ansatz has grown into an adequate and powerful description of the nucleus in terms of a truncated shell model. (author)

  9. Partial Dynamical Symmetries

    CERN Document Server

    Leviatan, A

    2010-01-01

    This overview focuses on the notion of partial dynamical symmetry (PDS), for which a prescribed symmetry is obeyed by a subset of solvable eigenstates, but is not shared by the Hamiltonian. General algorithms are presented to identify interactions, of a given order, with such intermediate-symmetry structure. Explicit bosonic and fermionic Hamiltonians with PDS are constructed in the framework of models based on spectrum generating algebras. PDSs of various types are shown to be relevant to nuclear spectroscopy, quantum phase transitions and systems with mixed chaotic and regular dynamics.

  10. Physics from symmetry

    CERN Document Server

    Schwichtenberg, Jakob

    2015-01-01

    This is a textbook that derives the fundamental theories of physics from symmetry.   It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations.

  11. The Twofold Multidimensionality of Academic Self-Concept: Domain Specificity and Separation between Competence and Affect Components

    Science.gov (United States)

    Arens, A. Katrin; Yeung, Alexander Seeshing; Craven, Rhonda G.; Hasselhorn, Marcus

    2011-01-01

    Academic self-concept is consistently proven to be multidimensional rather than unidimensional as it is domain specific in nature. However, each specific self-concept domain may be further separated into competence and affect components. This study examines the twofold multidimensionality of academic self-concept (i.e., its domain specificity and…

  12. Twofold reduction of phosphofructokinase activity in Lactococcus lactis results in strong decreases in growth rate and in glycolytic flux

    DEFF Research Database (Denmark)

    Andersen, Heidi Winterberg; Solem, Christian; Hammer, Karin;

    2001-01-01

    Two mutant strains of Lactococcus lactis in which the promoter of the las operon, harboring pfk, pyk, and ldh, were replaced by synthetic promoters were constructed. These las mutants had an approximately twofold decrease in the activity of phosphofructokinase, whereas the activities of pyruvate...

  13. Broken Time Translation Symmetry as a Model for Quantum State Reduction

    Directory of Open Access Journals (Sweden)

    Jasper van Wezel

    2010-04-01

    Full Text Available The symmetries that govern the laws of nature can be spontaneously broken, enabling the occurrence of ordered states. Crystals arise from the breaking of translation symmetry, magnets from broken spin rotation symmetry and massive particles break a phase rotation symmetry. Time translation symmetry can be spontaneously broken in exactly the same way. The order associated with this form of spontaneous symmetry breaking is characterised by the emergence of quantum state reduction: systems which spontaneously break time translation symmetry act as ideal measurement machines. In this review the breaking of time translation symmetry is first compared to that of other symmetries such as spatial translations and rotations. It is then discussed how broken time translation symmetry gives rise to the process of quantum state reduction and how it generates a pointer basis, Born’s rule, etc. After a comparison between this model and alternative approaches to the problem of quantum state reduction, the experimental implications and possible tests of broken time translation symmetry in realistic experimental settings are discussed.

  14. Animal Gaits and Symmetry

    Science.gov (United States)

    Golubitsky, Martin

    2012-04-01

    Many gaits of four-legged animals are described by symmetry. For example, when a horse paces it moves both left legs in unison and then both right legs and so on. The motion is described by two symmetries: Interchange front and back legs, and swap left and right legs with a half-period phase shift. Biologists postulate the existence of a central pattern generator (CPG) in the neuronal system that sends periodic signals to the legs. CPGs can be thought of as electrical circuits that produce periodic signals and can be modeled by systems with symmetry. In this lecture we discuss animal gaits; use gait symmetries to construct a simplest CPG architecture that naturally produces quadrupedal gait rhythms; and make several testable predictions about gaits.

  15. Dynamical spacetime symmetry

    CERN Document Server

    Lovelady, Benjamin C

    2015-01-01

    According to the Coleman-Mandula theorem, any gauge theory of gravity combined with an internal symmetry based on a Lie group must take the form of a direct product in order to be consistent with basic assumptions of quantum field theory. However, we show that an alternative gauging of a simple group can lead dynamically to a spacetime with compact internal symmetry. The biconformal gauging of the conformal symmetry of n-dim Euclidean space doubles the dimension to give a symplectic manifold. Examining one of the Lagrangian submanifolds in the flat case, we find that in addition to the expected SO(n) connection and curvature, the solder form necessarily becomes Lorentzian. General coordinate invariance gives rise to an SO(n-1,1) connection on the spacetime. The principal fiber bundle character of the original SO(n) guarantees that the two symmetries enter as a direct product, in agreement with the Coleman-Mandula theorem.

  16. Gauge symmetry from decoupling

    Energy Technology Data Exchange (ETDEWEB)

    Wetterich, C., E-mail: c.wetterich@thphys.uni-heidelberg.de

    2017-02-15

    Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.

  17. Gauge symmetry from decoupling

    Directory of Open Access Journals (Sweden)

    C. Wetterich

    2017-02-01

    Full Text Available Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.

  18. CPT Symmetry Without Hermiticity

    CERN Document Server

    Mannheim, Philip D

    2016-01-01

    In the literature the $CPT$ theorem has only been established for Hamiltonians that are Hermitian. Here we extend the $CPT$ theorem to quantum field theories with non-Hermitian Hamiltonians. Our derivation is a quite minimal one as it requires only the time independent evolution of scalar products and invariance under complex Lorentz transformations. The first of these requirements does not force the Hamiltonian to be Hermitian. Rather, it forces its eigenvalues to either be real or to appear in complex conjugate pairs, forces the eigenvectors of such conjugate pairs to be conjugates of each other, and forces the Hamiltonian to admit of an antilinear symmetry. The latter requirement then forces this antilinear symmetry to be $CPT$, with Hermiticity of a Hamiltonian thus only being a sufficient condition for $CPT$ symmetry and not a necessary one. $CPT$ symmetry thus has primacy over Hermiticity, and it rather than Hermiticity should be taken as a guiding principle for constructing quantum theories. With confo...

  19. Gauge symmetry from decoupling

    Science.gov (United States)

    Wetterich, C.

    2017-02-01

    Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang-Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.

  20. Dynamical spacetime symmetry

    Science.gov (United States)

    Lovelady, Benjamin C.; Wheeler, James T.

    2016-04-01

    According to the Coleman-Mandula theorem, any gauge theory of gravity combined with an internal symmetry based on a Lie group must take the form of a direct product in order to be consistent with basic assumptions of quantum field theory. However, we show that an alternative gauging of a simple group can lead dynamically to a spacetime with compact internal symmetry. The biconformal gauging of the conformal symmetry of n-dimensional Euclidean space doubles the dimension to give a symplectic manifold. Examining one of the Lagrangian submanifolds in the flat case, we find that in addition to the expected S O (n ) connection and curvature, the solder form necessarily becomes Lorentzian. General coordinate invariance gives rise to an S O (n -1 ,1 ) connection on the spacetime. The principal fiber bundle character of the original S O (n ) guarantees that the two symmetries enter as a direct product, in agreement with the Coleman-Mandula theorem.

  1. Dynamics of Rotating, Magnetized Neutron Stars

    OpenAIRE

    Liebling, Steven L.

    2010-01-01

    Using a fully general relativistic implementation of ideal magnetohydrodynamics with no assumed symmetries in three spatial dimensions, the dynamics of magnetized, rigidly rotating neutron stars are studied. Beginning with fully consistent initial data constructed with Magstar, part of the Lorene project, we study the dynamics and stability of rotating, magnetized polytropic stars as models of neutron stars. Evolutions suggest that some of these rotating, magnetized stars may be minimally uns...

  2. Superconductivity and symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Sarasua, L.G., E-mail: sarasua@fisica.edu.uy [Instituto de Fisica, Facultad de Ciencias, Universidad de la Republica, Montevideo (Uruguay)

    2012-02-15

    In the present work we consider the relation between superconductivity and spontaneous gauge symmetry breaking (SGBS). We show that ODLRO does not require in principle SBGS, even in the presence of particle number fluctuations, by examining exact solutions of a fermionic pairing model. The criteria become equivalent if a symmetry breaking field is allowed, which can be attributed to the interaction with the environment. However, superconducting states without SBGS are not forbidden.

  3. Quantum Spectral Symmetries

    Science.gov (United States)

    Hamhalter, Jan; Turilova, Ekaterina

    2017-02-01

    Quantum symmetries of spectral lattices are studied. Basic properties of spectral order on A W ∗-algebras are summarized. Connection between projection and spectral automorphisms is clarified by showing that, under mild conditions, any spectral automorphism is a composition of function calculus and Jordan ∗-automorphism. Complete description of quantum spectral symmetries on Type I and Type II A W ∗-factors are completely described.

  4. Dihedral flavor symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Alexander Simon

    2009-06-10

    This thesis deals with the possibility of describing the flavor sector of the Standard Model of Particle Physics (with neutrino masses), that is the fermion masses and mixing matrices, with a discrete, non-abelian flavor symmetry. In particular, mass independent textures are considered, where one or several of the mixing angles are determined by group theory alone and are independent of the fermion masses. To this end a systematic analysis of a large class of discrete symmetries, the dihedral groups, is analyzed. Mass independent textures originating from such symmetries are described and it is shown that such structures arise naturally from the minimization of scalar potentials, where the scalars are gauge singlet flavons transforming non-trivially only under the flavor group. Two models are constructed from this input, one describing leptons, based on the group D{sub 4}, the other describing quarks and employing the symmetry D{sub 14}. In the latter model it is the quark mixing matrix element V{sub ud} - basically the Cabibbo angle - which is at leading order predicted from group theory. Finally, discrete flavor groups are discussed as subgroups of a continuous gauge symmetry and it is shown that this implies that the original gauge symmetry is broken by fairly large representations. (orig.)

  5. The nuclear symmetry energy

    Science.gov (United States)

    Baldo, M.; Burgio, G. F.

    2016-11-01

    The nuclear symmetry energy characterizes the variation of the binding energy as the neutron to proton ratio of a nuclear system is varied. This is one of the most important features of nuclear physics in general, since it is just related to the two component nature of the nuclear systems. As such it is one of the most relevant physical parameters that affect the physics of many phenomena and nuclear processes. This review paper presents a survey of the role and relevance of the nuclear symmetry energy in different fields of research and of the accuracy of its determination from the phenomenology and from the microscopic many-body theory. In recent years, a great interest was devoted not only to the Nuclear Matter symmetry energy at saturation density but also to its whole density dependence, which is an essential ingredient for our understanding of many phenomena. We analyze the nuclear symmetry energy in different realms of nuclear physics and astrophysics. In particular we consider the nuclear symmetry energy in relation to nuclear structure, astrophysics of Neutron Stars and supernovae, and heavy ion collision experiments, trying to elucidate the connections of these different fields on the basis of the symmetry energy peculiarities. The interplay between experimental and observational data and theoretical developments is stressed. The expected future developments and improvements are schematically addressed, together with most demanded experimental and theoretical advances for the next few years.

  6. Aspects Of Baryon Number As A U(1) Symmetry

    CERN Document Server

    Pawl, A E

    2005-01-01

    The non-observation of proton decay strongly suggests that baryon number is a global U(1) (phase rotation) symmetry of the low-energy effective Lagrangian of particle physics. In the first half of this thesis, we explore the surprisingly dramatic consequences of this U(1) symmetry for the Affleck-Dine model of baryogenesis. Affleck-Dine baryogenesis is a popular model for the creation of a matter-antimatter asymmetry which relys on setting a complex scalar field into phase rotation. The phase symmetry of the Lagrangian has all important effect oil the evolution of this scalar field. The baryon number symmetry need not be restricted to a global symmetry. There is growing evidence from string theory, in fact, that global U(1) symmetries must have a gauge origin. In the second half of this thesis, we consider the details of how two different approaches to breaking a, gauged U(1) baryon symmetry would function in a universe with a low Planck scale. A universe with a low Planck scale (Mpl ∼ 103 GeV) has r...

  7. Local particle-ghost symmetry

    CERN Document Server

    Kawamura, Yoshiharu

    2015-01-01

    We study the quantization of systems with local particle-ghost symmetries. The systems contain ordinary particles including gauge bosons and their counterparts obeying different statistics. The particle-ghost symmetry is a kind of fermionic symmetry, different from the space-time supersymmetry and the BRST symmetry. Subsidiary conditions on states guarantee the unitarity of systems.

  8. Spin-stabilized magnetic levitation without vertical axis of rotation

    Science.gov (United States)

    Romero, Louis [Albuquerque, NM; Christenson, Todd [Albuquerque, NM; Aaronson, Gene [Albuquerque, NM

    2009-06-09

    The symmetry properties of a magnetic levitation arrangement are exploited to produce spin-stabilized magnetic levitation without aligning the rotational axis of the rotor with the direction of the force of gravity. The rotation of the rotor stabilizes perturbations directed parallel to the rotational axis.

  9. Symmetry broken and restored coupled-cluster theory: II. Global gauge symmetry and particle number

    Science.gov (United States)

    Duguet, T.; Signoracci, A.

    2017-01-01

    We have recently extended many-body perturbation theory (MBPT) and coupled-cluster theory performed on top of a Slater determinant breaking rotational symmetry to allow for the restoration of the angular momentum at any truncation order (Duguet 2015 J. Phys. G: Nucl. Part. Phys. 42 025107). Following a similar route, we presently extend Bogoliubov MBPT and Bogoliubov coupled cluster theory performed on top of a Bogoliubov reference state breaking global gauge symmetry to allow for the restoration of the particle number at any truncation order. Eventually, formalisms can be merged to handle SU(2) and U(1) symmetries at the same time. The long-term goal relates to the ab initio description of near-degenerate finite quantum systems with an open-shell character.

  10. Invariants of broken discrete symmetries

    CERN Document Server

    Kalozoumis, P; Diakonos, F K; Schmelcher, P

    2014-01-01

    The parity and Bloch theorems are generalized to the case of broken global symmetry. Local inversion or translation symmetries are shown to yield invariant currents that characterize wave propagation. These currents map the wave function from an arbitrary spatial domain to any symmetry-related domain. Our approach addresses any combination of local symmetries, thus applying in particular to acoustic, optical and matter waves. Nonvanishing values of the invariant currents provide a systematic pathway to the breaking of discrete global symmetries.

  11. The Nuclear Symmetry Energy

    CERN Document Server

    Baldo, M

    2016-01-01

    The nuclear symmetry energy characterizes the variation of the binding energy as the neutron to proton ratio of a nuclear system is varied. This is one of the most important features of nuclear physics in general, since it is just related to the two component nature of the nuclear systems. As such it is one of the most relevant physical parameters that affect the physics of many phenomena and nuclear processes. This review paper presents a survey of the role and relevance of the nuclear symmetry energy in different fields of research and of the accuracy of its determination from the phenomenology and from the microscopic many-body theory. In recent years, a great interest was devoted not only to the Nuclear Matter symmetry energy at saturation density but also to its whole density dependence, which is an essential ingredient for our understanding of many phenomena. We analyze the nuclear symmetry energy in different realms of nuclear physics and astrophysics. In particular we consider the nuclear symmetry ene...

  12. Lectures on Yangian symmetry

    Science.gov (United States)

    Loebbert, Florian

    2016-08-01

    In these introductory lectures we discuss the topic of Yangian symmetry from various perspectives. Forming the classical counterpart of the Yangian and an extension of ordinary Noether symmetries, first the concept of nonlocal charges in classical, two-dimensional field theory is reviewed. We then define the Yangian algebra following Drinfel’d's original motivation to construct solutions to the quantum Yang-Baxter equation. Different realizations of the Yangian and its mathematical role as a Hopf algebra and quantum group are discussed. We demonstrate how the Yangian algebra is implemented in quantum, two-dimensional field theories and how its generators are renormalized. Implications of Yangian symmetry on the two-dimensional scattering matrix are investigated. We furthermore consider the important case of discrete Yangian symmetry realized on integrable spin chains. Finally we give a brief introduction to Yangian symmetry in planar, four-dimensional super Yang-Mills theory and indicate its impact on the dilatation operator and tree-level scattering amplitudes. These lectures are illustrated by several examples, in particular the two-dimensional chiral Gross-Neveu model, the Heisenberg spin chain and { N }=4 superconformal Yang-Mills theory in four dimensions.

  13. Universal 23 symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Joshipura, A.S. [Physical Research Laboratory, Navarangpura, Ahmedabad (India)

    2008-01-15

    The possible maximal mixing seen in the oscillations of atmospheric neutrinos has led to the postulate of {mu}-{tau} symmetry, which interchanges {nu}{sub {mu}} and {nu}{sub {tau}}. We argue that such a symmetry need not be special to neutrinos but can be extended to all fermions. The assumption that all fermion mass matrices are approximately invariant under the interchange of the second and the third generation fields is shown to be phenomenologically viable and has interesting consequences. In the quark sector, the smallness of V{sub ub} and V{sub cb} can be consequences of this approximate 2-3 symmetry. The same approximate symmetry can simultaneously lead to a large atmospheric mixing angle and can describe the leptonic mixing quite well. We identify two generic scenarios leading to this. One is based on the conventional type-I seesaw mechanism and the other follows from the type-II seesaw model. The latter requires a quasi-degenerate neutrino spectrum for obtaining large atmospheric neutrino mixing in the presence of an approximate {mu}-{tau} symmetry. (orig.)

  14. Test of Lorentz symmetry with trapped ions

    Science.gov (United States)

    Pruttivarasin, Thaned

    2016-05-01

    The outcome of an experiment should not depend on the orientation of the apparatus in space. This important cornerstone of physics is deeply engrained into the Standard Model of Physics by requiring that all fields must be Lorentz invariant. However, it is well-known that the Standard Model is incomplete. Some theories conjecture that at the Planck scale Lorentz symmetry might be broken and measurable at experimentally accessible energy scales. Therefore, a search for violation of Lorentz symmetry directly probes physics beyond the Standard model. We present a novel experiment utilizing trapped calcium ions as a direct probe of Lorentz-violation in the electron-photon sector. We monitor the energy between atomic states with different orientations of the electronic wave-functions as they rotate together with the motion of the Earth. This is analogous to the famous Michelson-Morley experiment. To remove magnetic field noise, we perform the experiment with the ions prepared in the decoherence-free states. Our result improves on the most stringent bounds on Lorentz symmetry for electrons by 100 times. The experimental scheme is readily applicable to many ion species, hence opening up paths toward much improved test of Lorentz symmetry in the future. (Ph. D. Advisor: Hartmut Haeffner, University of California, Berkeley).

  15. Rigidity and symmetry

    CERN Document Server

    Weiss, Asia; Whiteley, Walter

    2014-01-01

    This book contains recent contributions to the fields of rigidity and symmetry with two primary focuses: to present the mathematically rigorous treatment of rigidity of structures, and to explore the interaction of geometry, algebra, and combinatorics. Overall, the book shows how researchers from diverse backgrounds explore connections among the various discrete structures with symmetry as the unifying theme.  Contributions present recent trends and advances in discrete geometry, particularly in the theory of polytopes. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory, classical geometry, hyperbolic geometry and topology.  The volume will also be a valuable source as an introduction to the ideas of both combinatorial and geometric rigidity theory and its applications, incorporating the surprising impact of symmetry. It will appeal to students at both the advanced undergraduate and gradu...

  16. Seeing Science through Symmetry

    Science.gov (United States)

    Gould, L. I.

    Seeing Through Symmetry is a course that introduces non-science majors to the pervasive influence of symmetry in science. The concept of symmetry is usedboth as a link between subjects (such as physics, biology, mathematics, music, poetry, and art) and as a method within a subject. This is done through the development and use of interactive multimedia learning environments to stimulate learning. Computer-based labs enable the student to further explore the concept by being gently led from the arts to science. This talk is an update that includes some of the latest changes to the course. Explanations are given on methodology and how a variety of interactive multimedia tools contribute to both the lecture and lab portion of the course (created in 1991 and taught almost every semester since then, including one in Sweden).

  17. Binary Tetrahedral Flavor Symmetry

    CERN Document Server

    Eby, David A

    2013-01-01

    A study of the T' Model and its variants utilizing Binary Tetrahedral Flavor Symmetry. We begin with a description of the historical context and motivations for this theory, together with some conceptual background for added clarity, and an account of our theory's inception in previous works. Our model endeavors to bridge two categories of particles, leptons and quarks, a unification made possible by the inclusion of additional Higgs particles, shared between the two fermion sectors and creating a single coherent system. This is achieved through the use of the Binary Tetrahedral symmetry group and an investigation of the Tribimaximal symmetry evidenced by neutrinos. Our work details perturbations and extensions of this T' Model as we apply our framework to neutrino mixing, quark mixing, unification, and dark matter. Where possible, we evaluate model predictions against experimental results and find excellent matching with the atmospheric and reactor neutrino mixing angles, an accurate prediction of the Cabibb...

  18. Segmentation Using Symmetry Deviation

    DEFF Research Database (Denmark)

    Hollensen, Christian; Højgaard, L.; Specht, L.

    2011-01-01

    and evaluate the method. The method uses deformable registration on computed tomography(CT) to find anatomical symmetry deviations of Head & Neck squamous cell carcinoma and combining it with positron emission tomography (PET) images. The method allows the use anatomical and symmetrical information of CT scans...... to improve automatic delineations. Materials: PET/CT scans from 30 patients were used for this study, 20 without cancer in hypopharyngeal volume and 10 with hypharyngeal carcinoma. An head and neck atlas was created from the 20 normal patients. The atlas was created using affine and non-rigid registration...... of the CT-scans into a single atlas. Afterwards the standard deviation of anatomical symmetry for the 20 normal patients was evaluated using non-rigid registration and registered onto the atlas to create an atlas for normal anatomical symmetry deviation. The same non-rigid registration was used on the 10...

  19. Leadership, power and symmetry

    DEFF Research Database (Denmark)

    Spaten, Ole Michael

    2016-01-01

    Research publications concerning managers who coach their own employees are barely visible despite its wide- spread use in enterprises (McCarthy & Milner, 2013; Gregory & Levy, 2011; Crabb, 2011). This article focuses on leadership, power and moments of symmetry in the coaching relationship...... session. Thereafter we executed qualitative interviews with both managers and employees. Subsequently, a Thematic Analysis resulted in several themes, including power and moments of symmetry in the coaching relationship. One main conclusion is that the most fruitful coaching was obtained when the coachee...... experienced moments of symmetry and that necessary and sufficient conditions to bring forth such moments include a strong working alliance and the coach being aware of the power at play....

  20. Electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Chanowitz, M.S.

    1990-09-01

    The Higgs mechanism is reviewed in its most general form, requiring the existence of a new symmetry-breaking force and associated particles, which need not however be Higgs bosons. The first lecture reviews the essential elements of the Higgs mechanism, which suffice to establish low energy theorems for the scattering of longitudinally polarized W and Z gauge bosons. An upper bound on the scale of the symmetry-breaking physics then follows from the low energy theorems and partial wave unitarity. The second lecture reviews particular models, with and without Higgs bosons, paying special attention to how the general features discussed in lecture 1 are realized in each model. The third lecture focuses on the experimental signals of strong WW scattering that can be observed at the SSC above 1 TeV in the WW subenergy, which will allow direct measurement of the strength of the symmetry-breaking force. 52 refs., 10 figs.

  1. Symmetry energy and density

    CERN Document Server

    Trautmann, Wolfgang; Russotto, Paolo

    2016-01-01

    The nuclear equation-of-state is a topic of highest current interest in nuclear structure and reactions as well as in astrophysics. In particular, the equation-of-state of asymmetric matter and the symmetry energy representing the difference between the energy densities of neutron matter and of symmetric nuclear matter are not sufficiently well constrained at present. The density dependence of the symmetry energy is conventionally expressed in the form of the slope parameter L describing the derivative with respect to density of the symmetry energy at saturation. Results deduced from nuclear structure and heavy-ion reaction data are distributed around a mean value L=60 MeV. Recent studies have more thoroughly investigated the density range that a particular observable is predominantly sensitive to. Two thirds of the saturation density is a value typical for the information contained in nuclear-structure data. Higher values exceeding saturation have been shown to be probed with meson production and collective ...

  2. Gravitation and Duality Symmetry

    CERN Document Server

    D'Andrade, V C; Pereira, J G

    2005-01-01

    By generalizing the Hodge dual operator to the case of soldered bundles, and working in the context of the teleparallel equivalent of general relativity, an analysis of the duality symmetry in gravitation is performed. Although the basic conclusion is that, at least in the general case, gravitation does not present duality symmetry, there is a particular theory in which this symmetry is present. This theory is a self dual (or anti-self dual) teleparallel gravity in which, owing to the fact that it does not contribute to the gravitational interaction of fermions, the purely tensor part of torsion is assumed to vanish. The corresponding fermionic gravitational interaction is found to be chiral. Since duality is intimately related to renormalizability, this theory will probably be much more amenable to renormalization than teleparallel gravity or general relativity. Although obtained in the context of teleparallel gravity, these results must also be true for general relativity.

  3. Flavour from accidental symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Ferretti, Luca [SISSA/ISAS and INFN, I-34013 Trieste (Italy); King, Stephen F. [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Romanino, Andrea [SISSA/ISAS and INFN, I-34013 Trieste (Italy)

    2006-11-15

    We consider a new approach to fermion masses and mixings in which no special 'horizontal' dynamics is invoked to account for the hierarchical pattern of charged fermion masses and for the peculiar features of neutrino masses. The hierarchy follows from the vertical, family-independent structure of the model, in particular from the breaking pattern of the Pati-Salam group. The lightness of the first two fermion families can be related to two family symmetries emerging in this context as accidental symmetries.

  4. Symmetry, structure, and spacetime

    CERN Document Server

    Rickles, Dean

    2007-01-01

    In this book Rickles considers several interpretative difficulties raised by gauge-type symmetries (those that correspond to no change in physical state). The ubiquity of such symmetries in modern physics renders them an urgent topic in philosophy of physics. Rickles focuses on spacetime physics, and in particular classical and quantum general relativity. Here the problems posed are at their most pathological, involving the apparent disappearance of spacetime! Rickles argues that both traditional ontological positions should be replaced by a structuralist account according to which relational

  5. Weakly broken galileon symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Pirtskhalava, David [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy); Santoni, Luca; Trincherini, Enrico [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy); INFN, Sezione di Pisa, Piazza dei Cavalieri 7, 56126 Pisa (Italy); Vernizzi, Filippo [Institut de Physique Théorique, Université Paris Saclay, CEA, CNRS, Gif-sur-Yvette cédex, F-91191 (France)

    2015-09-01

    Effective theories of a scalar ϕ invariant under the internal galileon symmetryϕ→ϕ+b{sub μ}x{sup μ} have been extensively studied due to their special theoretical and phenomenological properties. In this paper, we introduce the notion of weakly broken galileon invariance, which characterizes the unique class of couplings of such theories to gravity that maximally retain their defining symmetry. The curved-space remnant of the galileon’s quantum properties allows to construct (quasi) de Sitter backgrounds largely insensitive to loop corrections. We exploit this fact to build novel cosmological models with interesting phenomenology, relevant for both inflation and late-time acceleration of the universe.

  6. Baryons and Chiral Symmetry

    CERN Document Server

    Liu, Keh-Fei

    2016-01-01

    The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of $\\pi N \\sigma$ term and strangeness. The third one is the role of chiral $U(1)$ anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.

  7. Deformed discrete symmetries

    Science.gov (United States)

    Arzano, Michele; Kowalski-Glikman, Jerzy

    2016-09-01

    We construct discrete symmetry transformations for deformed relativistic kinematics based on group valued momenta. We focus on the specific example of κ-deformations of the Poincaré algebra with associated momenta living on (a sub-manifold of) de Sitter space. Our approach relies on the description of quantum states constructed from deformed kinematics and the observable charges associated with them. The results we present provide the first step towards the analysis of experimental bounds on the deformation parameter κ to be derived via precision measurements of discrete symmetries and CPT.

  8. Determining Symmetry Properties of Gravitational Fields of Terrestrial Group Planets

    Directory of Open Access Journals (Sweden)

    R.A. Kascheev

    2016-09-01

    Full Text Available Numerous models of gravity fields of the Solar system bodies have been constructed recently owing to successful space missions. These models are sets of harmonic coefficients of gravity potential expansion in series of spherical functions, which is Laplace series. The sets of coefficients are different in quantity of numerical parameters, sources and composition of the initial observational data, methods to obtain and process them, and, consequently, in a variety of properties and accuracy characteristics. For this reason, the task of comparison of different models of celestial bodies considered in the paper is of interest and relevant. The main purpose of this study is comparison of the models of gravitational potential of the Earth, Moon, Mars, and Venus with the quantitative criteria of different types of symmetries developed by us. It is assumed that some particular symmetry of the density distribution function of the planetary body causes similar symmetry of its gravitational potential. The symmetry of gravitational potential, in its turn, imposes additional conditions (restrictions, which must be satisfied by the harmonic coefficients. The paper deals with seven main types of symmetries: central, axial, two symmetries specular relative to the equatorial planes and prime meridian, as well as three rotational symmetries (at π angle around the coordinate system axes. According to the results of calculations carried out for the Earth, Moon, Mars, and Venus, the values of the criteria vary considerably for different types of symmetries and for different planets. It means that the specific value of each criterion corresponding to a particular celestial body is indicative of the properties and internal structure characteristics of the latter and, therefore, it can be used as a tool for comparative planetology. On the basis of the performed calculations, it is possible to distinguish two groups of celestial bodies having similar properties of

  9. Accounting for crop rotations in acreage choice modeling: a tractable modeling framework

    OpenAIRE

    Carpentier, Alain; Gohin, Alexandre

    2014-01-01

    Crop rotation effects and constraints are major determinants of farmers’ crop choices. Crop rotations are also keystone elements of most environmentally friendly cropping systems. The aim of this paper is twofold. First, it proposes simple tools for investigating optimal dynamic crop acreage choices accounting for crop rotation effects and constraints in an uncertain context. Second, it illustrates the impacts of crop rotation effects and constraints on farmers’ acreage choices through simple...

  10. The nuclear symmetry energy

    NARCIS (Netherlands)

    Dieperink, AEL; van Neck, D; Suzuki, T; Otsuka, T; Ichimura, M

    2005-01-01

    The role of isospin asymmetry in nuclei and neutron stars is discussed, with an emphasis on the density dependence of the nuclear symmetry energy. Results obtained with the self-consistent Green function method are presented and compared with various other theoretical predictions. Implications for t

  11. Quantum entanglement and symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Chruscinski, D; Kossakowski, A [Institute of Physics, Nicolaus Copernicus University, Grudziadzka 5/7, 87-100 Torun (Poland)

    2007-11-15

    One of the main problem in Quantum Information Theory is to test whether a given state of a composite quantum system is entangled or separable. It turns out that within a class of states invariant under the action of the symmetry group this problem considerably simplifies. We analyze multipartite invariant states and the corresponding symmetric quantum channels.

  12. Quantum entanglement and symmetry

    Science.gov (United States)

    Chruściński, D.; Kossakowski, A.

    2007-11-01

    One of the main problem in Quantum Information Theory is to test whether a given state of a composite quantum system is entangled or separable. It turns out that within a class of states invariant under the action of the symmetry group this problem considerably simplifies. We analyze multipartite invariant states and the corresponding symmetric quantum channels.

  13. Broken symmetry makes helium

    CERN Multimedia

    Gray, P L

    2003-01-01

    "The subatomic pion particle breaks the charge symmetry rule that governs both fusion and decay. In experiments performed at the Indiana University Cyclotron Laboratory, physicists forced heavy hydrogen (1 proton + 1 neutron) to fuse into helium in a controlled, measurable environment" (1 paragraph).

  14. Symmetries in fundamental physics

    CERN Document Server

    Sundermeyer, Kurt

    2014-01-01

    Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P.Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also underst...

  15. Symmetries in fundamental physics

    CERN Document Server

    Sundermeyer, Kurt

    2014-01-01

    Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P. Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also unders...

  16. Horror Vacui Symmetry.

    Science.gov (United States)

    Crumpecker, Cheryl

    2003-01-01

    Describes an art lesson used with children in the third grade to help them learn about symmetry, as well as encouraging them to draw larger than usual. Explains that students learn about the belief called "Horror Vacui" of the Northwest American Indian tribes and create their interpretation of this belief. (CMK)

  17. Gauging without Initial Symmetry

    CERN Document Server

    Kotov, Alexei

    2016-01-01

    The gauge principle is at the heart of a good part of fundamental physics: Starting with a group G of so-called rigid symmetries of a functional defined over space-time Sigma, the original functional is extended appropriately by additional Lie(G)-valued 1-form gauge fields so as to lift the symmetry to Maps(Sigma,G). Physically relevant quantities are then to be obtained as the quotient of the solutions to the Euler-Lagrange equations by these gauge symmetries. In this article we show that one can construct a gauge theory for a standard sigma model in arbitrary space-time dimensions where the target metric is not invariant with respect to any rigid symmetry group, but satisfies a much weaker condition: It is sufficient to find a collection of vector fields v_a on the target M satisfying the extended Killing equation v_{a(i;j)}=0 for some connection acting on the index a. For regular foliations this is equivalent to merely requiring the distribution orthogonal to the leaves to be invariant with respect to leaf...

  18. The politics of symmetry

    NARCIS (Netherlands)

    Pels, D.L.

    1996-01-01

    While symmetry and impartiality have become ruling principles in S&TS, defining its core ideal of a 'value-free relativism', their philosophical anchorage has attracted much less discussion than the issue or:how far their jurisdiction can be extended or generalized. This paper seeks to argue that sy

  19. Applications of chiral symmetry

    CERN Document Server

    Pisarski, R D

    1995-01-01

    I discuss several topics in the applications of chiral symmetry at nonzero temperature, including: where the rho goes, disoriented chiral condensates, and the phase diagram for QCD with 2+1 flavors. (Based upon talks presented at the "Workshop on Finite Temperature QCD", Wuhan, P.R.C., April, 1994.)

  20. Testing for central symmetry

    NARCIS (Netherlands)

    Einmahl, John; Gan, Zhuojiong

    2016-01-01

    Omnibus tests for central symmetry of a bivariate probability distribution are proposed. The test statistics compare empirical measures of opposite regions. Under rather weak conditions, we establish the asymptotic distribution of the test statistics under the null hypothesis; it follows that they a

  1. Symmetries of hadrons after unbreaking the chiral symmetry

    CERN Document Server

    Glozman, L Ya; Schröck, M

    2012-01-01

    We study hadron correlators upon artificial restoration of the spontaneously broken chiral symmetry. In a dynamical lattice simulation we remove the lowest lying eigenmodes of the Dirac operator from the valence quark propagators and study evolution of the hadron masses obtained. All mesons and baryons in our study, except for a pion, survive unbreaking the chiral symmetry and their exponential decay signals become essentially better. From the analysis of the observed spectroscopic patterns we conclude that confinement still persists while the chiral symmetry is restored. All hadrons fall into different chiral multiplets. The broken U(1)_A symmetry does not get restored upon unbreaking the chiral symmetry. We also observe signals of some higher symmetry that includes chiral symmetry as a subgroup. Finally, from comparison of the \\Delta - N splitting before and after unbreaking of the chiral symmetry we conclude that both the color-magnetic and the flavor-spin quark-quark interactions are of equal importance.

  2. Convective dynamo action in a spherical shell: symmetries and modulation

    CERN Document Server

    Raynaud, Raphaël

    2016-01-01

    We consider dynamo action driven by three-dimensional rotating anelastic convection in a spherical shell. Motivated by the behaviour of the solar dynamo, we examine the interaction of hydromagnetic modes with different symmetries and demonstrate how complicated interactions between convection, differential rotation and magnetic fields may lead to modulation of the basic cycle. For some parameters, Type 1 modulation occurs by the transfer of energy between modes of different symmetries with little change in the overall amplitude, for other parameters, the modulation is of Type 2, where the amplitude is significantly affected (leading to grand minima in activity) without significant changes in symmetry. Most importantly, we identify the presence of "supermodulation" in the solutions, where the activity switches chaotically between Type 1 and Type 2 modulation, this is believed to be an important process in solar activity.

  3. Whirling skirts and rotating cones

    CERN Document Server

    Guven, Jemal; Müller, Martin Michael

    2013-01-01

    Steady, dihedrally symmetric patterns with sharp peaks may be observed on a spinning skirt, lagging behind the material flow of the fabric. These qualitative features are captured with a minimal model of traveling waves on an inextensible, flexible, generalized-conical sheet rotating about a fixed axis. Conservation laws are used to reduce the dynamics to a quadrature describing a particle in a three-parameter family of potentials. One parameter is associated with the stress in the sheet, the second is the Noether current associated with rotational invariance, and the third is a Rossby number which indicates the relative strength of Coriolis forces. Solutions are quantized by enforcing a topology appropriate to a skirt and a particular choice of dihedral symmetry. A perturbative analysis of nearly axisymmetric cones shows that Coriolis effects are essential in establishing skirt-like solutions. Fully non-linear solutions with three-fold symmetry are presented, which bear a suggestive resemblance to the observ...

  4. Rotating flow

    CERN Document Server

    Childs, Peter R N

    2010-01-01

    Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows. Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries. Traditional fluid and flow dynamics

  5. Unidirectional Heat Transport Driven by Rotating Cholesteric Droplets

    Science.gov (United States)

    Sato, Sayumi; Bono, Shinji; Tabe, Yuka

    2017-02-01

    When a cholesteric liquid crystal (LC) is submitted to a thermal gradient, it exhibits continuous director rotation. The phenomenon is called the Lehmann effect and is understood as a thermomechanical coupling in chiral LCs without mirror symmetry. Since the Lehmann effect is considered to possess time-reversal symmetry, one can expect the inverse process, i.e., rotating chiral LCs to pump heat along the rotational axis. We report the first observation of heat transport driven by rotating cholesteric droplets. This result suggests a new function of the cholesterics as a micro heat pump.

  6. On the Physical Reasons for the Extension of Symmetry Groups in Molecular Spectroscopy

    Directory of Open Access Journals (Sweden)

    Carlo di Lauro

    2010-02-01

    Full Text Available Several situations of general interest, in which the symmetry groups usually applied to spectroscopy problems need to be extended, are reviewed. It is emphasized that any symmetry group of geometrical operations to be used in Molecular Spectroscopy should be extended for completeness by considering the time reversal operator, as far as the Hamiltonian is invariant with respect to the inversion of the direction of motion. This can explain the degeneracy of pairs of vibrational and rotational states spanning the so-called separably degenerate irreducible representations, in symmetric tops of low symmetry, and Kramers degeneracy in odd electron molecules in the absence of magnetic fields. An extension with account of time reversal is also useful to determine relative phase conventions on vibration-rotation wavefunctions, which render all vibration-rotation matrix elements real. An extension of a molecular symmetry group may be required for molecules which can attain different geometries by large amplitude periodical motions, if such motions are hindered and are not completely free. Special cases involving the internal rotation are discussed in detail. It is observed that the symmetry classification of vibrational modes involving displacements normal to the internal rotation axis is not univocal, but can be done in several ways, which actually correspond to different conventions on the separation of vibration and internal rotation in the adopted basis functions. The symmetry species of the separate vibrational and torsional factors of these functions depend on the adopted convention.

  7. Symmetry elements in space groups and point groups. Addenda to two IUCr reports on the nomenclature of symmetry.

    Science.gov (United States)

    Flack, H D; Wondratschek, H; Hahn, T; Abrahams, S C

    2000-01-01

    The definition of 'symmetry element' given in the Report of the IUCr Ad-Hoc Committee on the Nomenclature of Symmetry by de Wolff et al. [Acta Cryst. (1989). A45, 494-499] is shown to contain an ambiguity in the case of space groups P6/m, P6/mmm, P6/mcc and point groups 6/m and 6/mmm. The ambiguity is removed by redefining the 'geometric element' as a labelled geometric item in which the label is related to the rotation angle of the rotation or rotoinversion symmetry operation. The complete set of different types of glide plane is shown to contain three more than the 15 that are illustrated in the 1992 Report by de Wolff et al. [Acta Cryst. (1992). A48, 727-732].

  8. On Symmetries in Optimal Control

    OpenAIRE

    van der Schaft, A. J.

    1986-01-01

    We discuss the use of symmetries in solving optimal control problems. In particular a procedure for obtaining symmetries is given which can be performed before the actual calculation of the optimal control and optimal Hamiltonian.

  9. On Symmetries in Optimal Control

    NARCIS (Netherlands)

    Schaft, A.J. van der

    1986-01-01

    We discuss the use of symmetries in solving optimal control problems. In particular a procedure for obtaining symmetries is given which can be performed before the actual calculation of the optimal control and optimal Hamiltonian.

  10. A relativistic symmetry in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ginocchio, J N [MS B283, Theoretical Division, Los Alamos National Laboratory Los Alamos, New Mexico 87545 (Mexico)

    2007-11-15

    We review some of the empirical and theoretical evidence supporting pseudospin symmetry in nuclei as a relativistic symmetry. We review the case that the eigenfunctions of realistic relativistic nuclear mean fields approximately conserve pseudospin symmetry in nuclei. We discuss the implications of pseudospin symmetry for magnetic dipole transitions and Gamow-Teller transitions between states in pseudospin doublets. We explore a more fundamental rationale for pseudospin symmetry in terms of quantum chromodynamics (QCD), the basic theory of the strong interactions. We show that pseudospin symmetry in nuclei implies spin symmetry for an anti-nucleon in a nuclear environment. We also discuss the future and what role pseudospin symmetry may be expected to play in an effective field theory of nucleons.

  11. Invariants of broken discrete symmetries

    OpenAIRE

    Kalozoumis, P.; Morfonios, C.; Diakonos, F. K.; Schmelcher, P.

    2014-01-01

    The parity and Bloch theorems are generalized to the case of broken global symmetry. Local inversion or translation symmetries are shown to yield invariant currents that characterize wave propagation. These currents map the wave function from an arbitrary spatial domain to any symmetry-related domain. Our approach addresses any combination of local symmetries, thus applying in particular to acoustic, optical and matter waves. Nonvanishing values of the invariant currents provide a systematic ...

  12. Symmetry of “Twins”

    OpenAIRE

    Vladan Nikolić; Ljiljana Radović; Biserka Marković

    2015-01-01

    The idea of construction of twin buildings is as old as architecture itself, and yet there is hardly any study emphasizing their specificity. Most frequently there are two objects or elements in an architectural composition of “twins” in which there may be various symmetry relations, mostly bilateral symmetries. The classification of “twins” symmetry in this paper is based on the existence of bilateral symmetry, in terms of the perception of an observer. The classification includes both, 2D a...

  13. Dynamical Symmetries in Classical Mechanics

    Science.gov (United States)

    Boozer, A. D.

    2012-01-01

    We show how symmetries of a classical dynamical system can be described in terms of operators that act on the state space for the system. We illustrate our results by considering a number of possible symmetries that a classical dynamical system might have, and for each symmetry we give examples of dynamical systems that do and do not possess that…

  14. Scattering matrices with block symmetries

    OpenAIRE

    Życzkowski, Karol

    1997-01-01

    Scattering matrices with block symmetry, which corresponds to scattering process on cavities with geometrical symmetry, are analyzed. The distribution of transmission coefficient is computed for different number of channels in the case of a system with or without the time reversal invariance. An interpolating formula for the case of gradual time reversal symmetry breaking is proposed.

  15. Emergence of Symmetries from Entanglement

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Maximal Entanglement appears to be a key ingredient for the emergence of symmetries. We first illustrate this phenomenon using two examples: the emergence of conformal symmetry in condensed matter systems and  the relation of tensor networks to holography. We further present a Principle of Maximal Entanglement that seems to dictate to a large extend the structure of gauge symmetry.

  16. Rotating Wavepackets

    Science.gov (United States)

    Lekner, John

    2008-01-01

    Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

  17. Surface Broken Symmetry on Orthorhombic Double-layer Sr3(Ru1-xMnx)2 O7

    Science.gov (United States)

    Chen, Chen; Nascimento, V. B.; Diao, Zhenyu; Zhang, Jiandi; Jin, Rongying; Plummer, E. W.

    The surface of double-layered ruthenate Sr3Ru2O7 exhibits octahedra tilt distortion and an enhanced rotational distortion caused by the broken symmetry. Previous LEED IV calculation reveals that the tilt angle is (2.5+/-1.7)°at 80 K (B. Hu et. al., Physical Review B 81, 184104 (2010). A glideline symmetry and a mirror symmetry along this direction are both broken. Results from LEED IV simulations show that both broken symmetries originate from the emergence of surface tilt. The degree of broken symmetry is more sensitive to the tilt angle, thus producing a smaller error than from conventional LEED IV calculation. When Mn doping is induced into the compound, the tilt is removed and the symmetry of the LEED pattern returns to what is expected for rotation, two glide planes and four-fold symmetry. Supported by NSF DMR-1002622.

  18. Leadership, power and symmetry

    DEFF Research Database (Denmark)

    Spaten, Ole Michael

    2016-01-01

    regarding managers coaching their employees and it is asked; what contributes to coaching of high quality when one reflects on the power aspect as being immanent? Fourteen middle managers coached five of their employees, and all members of each party wrote down cues and experiences immediately after each......Research publications concerning managers who coach their own employees are barely visible despite its wide- spread use in enterprises (McCarthy & Milner, 2013; Gregory & Levy, 2011; Crabb, 2011). This article focuses on leadership, power and moments of symmetry in the coaching relationship...... session. Thereafter we executed qualitative interviews with both managers and employees. Subsequently, a Thematic Analysis resulted in several themes, including power and moments of symmetry in the coaching relationship. One main conclusion is that the most fruitful coaching was obtained when the coachee...

  19. Asymmetry, Symmetry and Beauty

    Directory of Open Access Journals (Sweden)

    Abbe R. Kopra

    2010-07-01

    Full Text Available Asymmetry and symmetry coexist in natural and human processes.  The vital role of symmetry in art has been well demonstrated. This article highlights the complementary role of asymmetry. Further we show that the interaction of asymmetric action (recursion and symmetric opposition (sinusoidal waves are instrumental in generating creative features (relatively low entropy, temporal complexity, novelty (less recurrence in the data than in randomized copies and complex frequency composition. These features define Bios, a pattern found in musical compositions and in poetry, except for recurrence instead of novelty. Bios is a common pattern in many natural and human processes (quantum processes, the expansion of the universe, gravitational waves, cosmic microwave background radiation, DNA, physiological processes, animal and human populations, and economic time series. The reduction in entropy is significant, as it reveals creativity and contradicts the standard claim of unavoidable decay towards disorder. Artistic creations capture fundamental features of the world.

  20. Symmetry rules How science and nature are founded on symmetry

    CERN Document Server

    Rosen, Joe

    2008-01-01

    When we use science to describe and understand the world around us, we are in essence grasping nature through symmetry. In fact, modern theoretical physics suggests that symmetry is a, if not the, foundational principle of nature. Emphasizing the concepts, this book leads the reader coherently and comprehensively into the fertile field of symmetry and its applications. Among the most important applications considered are the fundamental forces of nature and the Universe. It is shown that the Universe cannot possess exact symmetry, which is a principle of fundamental significance. Curie's principle - which states that the symmetry of the effect is at least that of the cause - features prominently. An introduction to group theory, the mathematical language of symmetry, is included. This book will convince all interested readers of the importance of symmetry in science. Furthermore, it will serve as valuable background reading for all students in the physical sciences.

  1. Symmetry and quantum mechanics

    CERN Document Server

    Corry, Scott

    2016-01-01

    This book offers an introduction to quantum mechanics for professionals, students, and others in the field of mathematics who have a minimal background in physics with an understanding of linear algebra and group theory. It covers such topics as Lie groups, algebras and their representations, and analysis (Hilbert space, distributions, the spectral Theorem, and the Stone-Von Neumann Theorem). The book emphasizes the role of symmetry and is useful to physicists as it provides a mathematical introduction to the topic.

  2. Symmetry issue in Galileons

    CERN Document Server

    Momeni, Davood

    2014-01-01

    The symmetry issue for Galileons has been studied. In particular we address scaling (conformal) and Noether symmetrized Galileons. We have been proven a series of theorems about the form of Noether conserved charge (current) for irregular (not quadratic) dynamical systems. Special attentions have been made on Galileons. We have been proven that for Galileons always is possible to find a way to "symmetrized" Galileo's field .

  3. Invisibility and PT symmetry

    OpenAIRE

    MOSTAFAZADEH, Ali

    2013-01-01

    PHYSICAL REVIEW A 87, 012103 (2013) Invisibility and PT symmetry Ali Mostafazadeh* Department of Mathematics, Koc¸ University, Sarıyer 34450, Istanbul, Turkey (Received 9 July 2012; published 3 January 2013) For a general complex scattering potential defined on a real line, we show that the equations governing invisibility of the potential are invariant under the combined action of parity and time-reversal (PT ) transformation. We determine the PT -symmetric as well as no...

  4. Symmetry in music

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, O F, E-mail: o.f.herrero@hotmail.co [Conservatorio Superior de Musica ' Eduardo Martinez Torner' Corrada del Obispo s/n 33003 - Oviedo - Asturias (Spain)

    2010-06-01

    Music and Physics are very close because of the symmetry that appears in music. A periodic wave is what music really is, and there is a field of Physics devoted to waves researching. The different musical scales are the base of all kind of music. This article tries to show how this musical scales are made, how the consonance is the base of many of them and how symmetric they are.

  5. A two-fold interpenetrated flexible bi-pillared-layer framework of Fe(II) with interesting solvent adsorption property

    Indian Academy of Sciences (India)

    Ritesh Haldar; Tapas Kumar Majia

    2011-11-01

    A two-fold interpenetrated microporous bi-pillared-layer framework of Fe(II), {[Fe(2,6-napdc)(4,4'-bipy)](EtOH)(H2O)} (1) (2,6-napdc =2,6-naphthalenedicarboxylate; 4,4'-bipy=4,4'-bipyridine) composed of mixed ligand system has been synthesized and structurally characterized. The 2,6-napdc linkers form a 2D corrugated sheet of {Fe(2,6-napdc)} by linking the secondary building unit of Fe2(CO2)2 in the plane, which are further connected by double 4,4'-bipy pillars resulting in a bi-pillared-layer type 3D framework. The 3D framework is two-fold interpenetrated and exhibits a 3D channel structure (4.0 × 3.5, 1.5 × 0.5 and 2.2 × 2.1 Å2) occupied by the guest water and ethanol molecules. Framework 1 shows high thermal stability, and the desolvated framework (1′) renders permanent porosity realized by N2 adsorption profile at 77K (BET surface area of ∼ 52 m2 g-1). Moreover, the framework 1′ also uptakes different solvent vapours (water, methanol and ethanol) and their type-I profile suggest strong interaction with pore surfaces and overall hydrophilic nature of the framework. Temperature dependent magnetic measurements suggest overall antiferromagnetic behaviour in compound 1.

  6. Rotational elasticity

    Science.gov (United States)

    Vassiliev, Dmitri

    2017-04-01

    We consider an infinite three-dimensional elastic continuum whose material points experience no displacements, only rotations. This framework is a special case of the Cosserat theory of elasticity. Rotations of material points are described mathematically by attaching to each geometric point an orthonormal basis that gives a field of orthonormal bases called the coframe. As the dynamical variables (unknowns) of our theory, we choose the coframe and a density. We write down the general dynamic variational functional for our rotational theory of elasticity, assuming our material to be physically linear but the kinematic model geometrically nonlinear. Allowing geometric nonlinearity is natural when dealing with rotations because rotations in dimension three are inherently nonlinear (rotations about different axes do not commute) and because there is no reason to exclude from our study large rotations such as full turns. The main result of the talk is an explicit construction of a class of time-dependent solutions that we call plane wave solutions; these are travelling waves of rotations. The existence of such explicit closed-form solutions is a non-trivial fact given that our system of Euler-Lagrange equations is highly nonlinear. We also consider a special case of our rotational theory of elasticity which in the stationary setting (harmonic time dependence and arbitrary dependence on spatial coordinates) turns out to be equivalent to a pair of massless Dirac equations. The talk is based on the paper [1]. [1] C.G.Boehmer, R.J.Downes and D.Vassiliev, Rotational elasticity, Quarterly Journal of Mechanics and Applied Mathematics, 2011, vol. 64, p. 415-439. The paper is a heavily revised version of preprint https://arxiv.org/abs/1008.3833

  7. Symmetry fractionalization: symmetry-protected topological phases of the bond-alternating spin-1/2 Heisenberg chain.

    Science.gov (United States)

    Haghshenas, R; Langari, A; Rezakhani, A T

    2014-11-12

    We study different phases of the one-dimensional bond-alternating spin-1/2 Heisenberg model by using the symmetry fractionalization mechanism. We employ the infinite matrix-product state representation of the ground state (through the infinite-size density matrix renormalization group algorithm) to obtain inequivalent projective representations and commutation relations of the (unbroken) symmetry groups of the model, which are used to identify the different phases. We find that the model exhibits trivial as well as symmetry-protected topological phases. The symmetry-protected topological phases are Haldane phases on even/odd bonds, which are protected by the time-reversal (acting on the spin as σ → -σ), parity (permutation of the chain about a specific bond), and dihedral (π-rotations about a pair of orthogonal axes) symmetries. Additionally, we investigate the phases of the most general two-body bond-alternating spin-1/2 model, which respects the time-reversal, parity, and dihedral symmetries, and obtain its corresponding twelve different types of the symmetry-protected topological phases.

  8. Symmetry and Condensed Matter Physics

    Science.gov (United States)

    El-Batanouny, M.; Wooten, F.

    2008-03-01

    Preface; 1. Symmetry and physics; 2. Symmetry and group theory; 3. Group representations: concepts; 4. Group representations: formalism and methodology; 5. Dixon's method for computing group characters; 6. Group action and symmetry projection operators; 7. Construction of the irreducible representations; 8. Product groups and product representations; 9. Induced representations; 10. Crystallographic symmetry and space-groups; 11. Space groups: Irreps; 12. Time-reversal symmetry: color groups and the Onsager relations; 13. Tensors and tensor fields; 14. Electronic properties of solids; 15. Dynamical properties of molecules, solids and surfaces; 16. Experimental measurements and selection rules; 17. Landau's theory of phase transitions; 18. Incommensurate systems and quasi-crystals; References; Bibliography; Index.

  9. Invariants of Broken Discrete Symmetries

    Science.gov (United States)

    Kalozoumis, P. A.; Morfonios, C.; Diakonos, F. K.; Schmelcher, P.

    2014-08-01

    The parity and Bloch theorems are generalized to the case of broken global symmetry. Local inversion or translation symmetries in one dimension are shown to yield invariant currents that characterize wave propagation. These currents map the wave function from an arbitrary spatial domain to any symmetry-related domain. Our approach addresses any combination of local symmetries, thus applying, in particular, to acoustic, optical, and matter waves. Nonvanishing values of the invariant currents provide a systematic pathway to the breaking of discrete global symmetries.

  10. Acoustic Rotation Modes in Complex Plasmas

    Institute of Scientific and Technical Information of China (English)

    白冬雪; 王正汹; 王晓钢

    2004-01-01

    Acoustic rotation modes in complex plasmas are investigated in a cylindrical system with an axial symmetry.The linear mode solution is derived. The mode in an infinite area is reduced to a classical dust acoustic wave in the region away from the centre. When the dusty plasma is confined in a finite region, the breathing and rotating-void behaviour are observed. Vivid structures of different mode number solutions are illustrated.

  11. Symmetry of “Twins”

    Directory of Open Access Journals (Sweden)

    Vladan Nikolić

    2015-02-01

    Full Text Available The idea of construction of twin buildings is as old as architecture itself, and yet there is hardly any study emphasizing their specificity. Most frequently there are two objects or elements in an architectural composition of “twins” in which there may be various symmetry relations, mostly bilateral symmetries. The classification of “twins” symmetry in this paper is based on the existence of bilateral symmetry, in terms of the perception of an observer. The classification includes both, 2D and 3D perception analyses. We start analyzing a pair of twin buildings with projection of the architectural composition elements in 2D picture plane (plane of the composition and we distinguish four 2D keyframe cases based on the relation between the bilateral symmetry of the twin composition and the bilateral symmetry of each element. In 3D perception for each 2D keyframe case there are two sub-variants, with and without a symmetry plane parallel to the picture plane. The bilateral symmetry is dominant if the corresponding symmetry plane is orthogonal to the picture plane. The essence of the complete classification is relation between the bilateral (dominant symmetry of the architectural composition and the bilateral symmetry of each element of that composition.

  12. Spontaneous spherical symmetry breaking in atomic confinement

    CERN Document Server

    Sveshnikov, K

    2016-01-01

    The effect of spontaneous breaking of initial SO(3) symmetry is shown to be possible for an H-like atom in the ground state, when it is confined in a spherical box under general boundary conditions of "not going out" through the box surface (i.e. third kind or Robin's ones), for a wide range of physically reasonable values of system parameters. The reason is that such boundary conditions could yield a large magnitude of electronic wavefunction in some sector of the box boundary, what in turn promotes atomic displacement from the box center towards this part of the boundary, and so the underlying SO(3) symmetry spontaneously breaks. The emerging Goldstone modes, coinciding with rotations around the box center, restore the symmetry by spreading the atom over a spherical shell localized at some distances from the box center. Atomic confinement inside the cavity proceeds dynamically -- due to the boundary condition the deformation of electronic wavefunction near the boundary works as a spring, that returns the at...

  13. Lithium Salt of NH2-substituted Graphene Nanoribbon with Twofold Donor-acceptor Framework: Large Nonlinear Optical Property

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhong-jun; LI Zhi-ru; HUANG Xu-ri; SUN Chia-chung

    2011-01-01

    Based on graphene, a new class of second-order nonlinear optical(NLO) material, the lithium salt of NH2-substituted graphene nanoribbon with the twofold donor(D)/acceptor(A) mode, was reported. Eight stable 2Li-2NH2-GNR lithium salts, especially cis lithium salts, display considerably large ,β0 values. The combination of NH2-substituting and cis Li-doping makes β0 greatly increased from 0(GNR) to 1.2×105-2.9×105 a.u.(cis-2Li2NH2-GNRs). Our largest β0 value(2.9× l05 a.u.) for cis-2Li-1,3-2NH2-AGNR is comparable to the record value of 1.7× l05 a.u. for a long donor-acceptor polyene.

  14. T4 fibrations over Calabi–Yau two-folds and non-Kähler manifolds in string theory

    Directory of Open Access Journals (Sweden)

    Hai Lin

    2016-08-01

    Full Text Available We construct a geometric model of eight-dimensional manifolds and realize them in the context of type II string theory. These eight-manifolds are constructed by non-trivial T4 fibrations over Calabi–Yau two-folds. These give rise to eight-dimensional non-Kähler Hermitian manifolds with SU(4 structure. The eight-manifold is also a circle fibration over a seven-dimensional G2 manifold with skew torsion. The eight-manifolds of this type appear as internal manifolds with SU(4 structure in type IIB string theory with F3 and F7 fluxes. These manifolds have generalized calibrated cycles in the presence of fluxes.

  15. Complex Structure of the Four-Dimensional Kerr Geometry: Stringy System, Kerr Theorem, and Calabi-Yau Twofold

    Directory of Open Access Journals (Sweden)

    Alexander Burinskii

    2013-01-01

    Full Text Available The 4D Kerr geometry displays many wonderful relations with quantum world and, in particular, with superstring theory. The lightlike structure of fields near the Kerr singular ring is similar to the structure of Sen solution for a closed heterotic string. Another string, open and complex, appears in the complex representation of the Kerr geometry initiated by Newman. Combination of these strings forms a membrane source of the Kerr geometry which is parallel to the structure of M-theory. In this paper we give one more evidence of this relationship, emergence of the Calabi-Yau twofold (K3 surface in twistorial structure of the Kerr geometry as a consequence of the Kerr theorem. Finally, we indicate that the Kerr stringy system may correspond to a complex embedding of the critical N = 2 superstring.

  16. Groups and symmetry

    CERN Document Server

    Farmer, David W

    1995-01-01

    In most mathematics textbooks, the most exciting part of mathematics-the process of invention and discovery-is completely hidden from the reader. The aim of Groups and Symmetry is to change all that. By means of a series of carefully selected tasks, this book leads readers to discover some real mathematics. There are no formulas to memorize; no procedures to follow. The book is a guide: Its job is to start you in the right direction and to bring you back if you stray too far. Discovery is left to you. Suitable for a one-semester course at the beginning undergraduate level, there are no prerequ

  17. Symmetry implies independence

    CERN Document Server

    Renner, R

    2007-01-01

    Given a quantum system consisting of many parts, we show that symmetry of the system's state, i.e., invariance under swappings of the subsystems, implies that almost all of its parts are virtually identical and independent of each other. This result generalises de Finetti's classical representation theorem for infinitely exchangeable sequences of random variables as well as its quantum-mechanical analogue. It has applications in various areas of physics as well as information theory and cryptography. For example, in experimental physics, one typically collects data by running a certain experiment many times, assuming that the individual runs are mutually independent. Our result can be used to justify this assumption.

  18. Geometry and symmetry

    CERN Document Server

    Yale, Paul B

    2012-01-01

    This book is an introduction to the geometry of Euclidean, affine, and projective spaces with special emphasis on the important groups of symmetries of these spaces. The two major objectives of the text are to introduce the main ideas of affine and projective spaces and to develop facility in handling transformations and groups of transformations. Since there are many good texts on affine and projective planes, the author has concentrated on the n-dimensional cases.Designed to be used in advanced undergraduate mathematics or physics courses, the book focuses on ""practical geometry,"" emphasi

  19. Mirror symmetry II

    CERN Document Server

    Greene, Brian R

    1997-01-01

    Mirror symmetry has undergone dramatic progress during the last five years. Tremendous insight has been gained on a number of key issues. This volume surveys these results. Some of the contributions in this work have appeared elsewhere, while others were written specifically for this collection. The areas covered are organized into 4 sections, and each presents papers by both physicists and mathematicians. This volume collects the most important developments that have taken place in mathematical physics since 1991. It is an essential reference tool for both mathematics and physics libraries and for students of physics and mathematics.

  20. Whirling orbits around twirling black holes from conformal symmetry

    CERN Document Server

    Hadar, Shahar

    2016-01-01

    Dynamics in the throat of rapidly rotating Kerr black holes is governed by an emergent near-horizon conformal symmetry. The throat contains unstable circular orbits at radii extending from the ISCO down to the light ring. We show that they are related by conformal transformations to physical plunges and osculating trajectories. These orbits have angular momentum arbitrarily higher than that of ISCO. Using the conformal symmetry we compute analytically the radiation produced by the physical orbits. We also present a simple formula for the full self-force on such trajectories in terms of the self-force on circular orbits.

  1. Topological Insulators and Nematic Phases from Spontaneous Symmetry Breaking in

    Energy Technology Data Exchange (ETDEWEB)

    Sun, K.

    2010-05-26

    We investigate the stability of a quadratic band-crossing point (QBCP) in 2D fermionic systems. At the non-interacting level, we show that a QBCP exists and is topologically stable for a Berry flux {-+}2{pi}, if the point symmetry group has either fourfold or sixfold rotational symmetries. This putative topologically stable free-fermion QBCP is marginally unstable to arbitrarily weak shortrange repulsive interactions. We consider both spinless and spin-1/2 fermions. Four possible ordered states result: a quantum anomalous Hall phase, a quantum spin Hall phase, a nematic phase, and a nematic-spin-nematic phase.

  2. The fundamental role of symmetry in nuclear models

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, D. J. [Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7 (Canada)

    2013-06-10

    The purpose of these lectures is to illustrate how symmetry and pattern recognition play essential roles in the progression from experimental observation to an understanding of nuclear phenomena in terms of interacting neutrons and protons. We do not discuss weak interactions nor relativistic and sub-nucleon degrees of freedom. The explicit use of symmetry and the power of algebraic methods, in combination with analytical and geometrical methods are illustrated by their use in deriving a shell-model description of nuclear rotational dynamics and the structure of deformed nuclei.

  3. Implications of physical symmetries in adaptive image classifiers

    DEFF Research Database (Denmark)

    Sams, Thomas; Hansen, Jonas Lundbek

    2000-01-01

    It is demonstrated that rotational invariance and reflection symmetry of image classifiers lead to a reduction in the number of free parameters in the classifier. When used in adaptive detectors, e.g. neural networks, this may be used to decrease the number of training samples necessary to learn ...... a given classification task, or to improve generalization of the neural network. Notably, the symmetrization of the detector does not compromise the ability to distinguish objects that break the symmetry. (C) 2000 Elsevier Science Ltd. All rights reserved....

  4. Symmetry and structure of SrTiO3 nanotubes

    Science.gov (United States)

    Evarestov, Robert

    2011-06-01

    The full study of perovskite type nanotubes with square morphology is given for the first time. The line symmetry group L = ZP (a product of one axial point group P and one infinite cyclic group Z of generalized translations) of single-walled (SW) and double-walled (DW) SrTiO3 nanotubes (NT) is considered. The nanotube is defined by the square lattice translation vector L = l1a + l2b and chiral vector R = n1a + n2b, (l1, l2, n1 and n2 are integers). The nanotube of the chirality (n1,n2) is obtained by folding the (001) slabs of two- layers (with the layer group P4mm) and of three layers (with the layer group P4/mmm) in a way that the chiral vector R becomes circumference of the nanotube. Due to the orthogonality relation (RL) = 0, l1/l2 = -n2/n1 i.e. SW nanotubes with square morphology are commensurate for any rolling vector R(n1,n2). For SW (n,0) NTs the line symmetry groups belong to family 11 (T^Dnh) and are n/mmm or for even and odd n, respectively. For SW (n,n) NTs the line symmetry groups (2n)n/mcm belong to family 13 (T2n1 Dnh). The line symmetry group of a double-wall nanotube is found as intersection L2 = Z2P2 = (L ∩ L') of the symmetry groups L and L' of its single-wall constituents as earlier considered for DW CNTs. The symmetry group of DWNT (n,0)@M(n,0) belongs to the same family 11 (T^Dnh) as its SW constituents. The symmetry group of DWNT (n,n)@M(n,n) depends on the parity of M. For DW NTs with odd M, the line symmetry groups are the same as for their SW constituents and belong to family 13 (T2n1 Dnh). For even M, the rotations about screw axis of order 2n are changed by rotations around pure rotation axis of order n so that DW NT line symmetry groups belong to family 11 (T^Dnh). Commensurate STO DWNTs (n1,0)@(n2,0) and (n1, n1)@(n2, n2) belong to family 11 (T^Dnh) with n equal to the greatest common divisor of n1 and n2.

  5. Bootstrap Dynamical Symmetry Breaking

    Directory of Open Access Journals (Sweden)

    Wei-Shu Hou

    2013-01-01

    Full Text Available Despite the emergence of a 125 GeV Higgs-like particle at the LHC, we explore the possibility of dynamical electroweak symmetry breaking by strong Yukawa coupling of very heavy new chiral quarks Q . Taking the 125 GeV object to be a dilaton with suppressed couplings, we note that the Goldstone bosons G exist as longitudinal modes V L of the weak bosons and would couple to Q with Yukawa coupling λ Q . With m Q ≳ 700  GeV from LHC, the strong λ Q ≳ 4 could lead to deeply bound Q Q ¯ states. We postulate that the leading “collapsed state,” the color-singlet (heavy isotriplet, pseudoscalar Q Q ¯ meson π 1 , is G itself, and a gap equation without Higgs is constructed. Dynamical symmetry breaking is affected via strong λ Q , generating m Q while self-consistently justifying treating G as massless in the loop, hence, “bootstrap,” Solving such a gap equation, we find that m Q should be several TeV, or λ Q ≳ 4 π , and would become much heavier if there is a light Higgs boson. For such heavy chiral quarks, we find analogy with the π − N system, by which we conjecture the possible annihilation phenomena of Q Q ¯ → n V L with high multiplicity, the search of which might be aided by Yukawa-bound Q Q ¯ resonances.

  6. Applications of chiral symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Pisarski, R.D.

    1995-03-01

    The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T{sub {chi}} implies that the {rho} and a{sub 1} vector mesons are degenerate in mass. In a gauged linear sigma model the {rho} mass increases with temperature, m{sub {rho}}(T{sub {chi}}) > m{sub {rho}}(0). The author conjectures that at T{sub {chi}} the thermal {rho} - a{sub 1}, peak is relatively high, at about {approximately}1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The {omega} meson also increases in mass, nearly degenerate with the {rho}, but its width grows dramatically with temperature, increasing to at least {approximately}100 MeV by T{sub {chi}}. The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from {open_quotes}quenched{close_quotes} heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates.

  7. Symmetry in Complex Networks

    Directory of Open Access Journals (Sweden)

    Angel Garrido

    2011-01-01

    Full Text Available In this paper, we analyze a few interrelated concepts about graphs, such as their degree, entropy, or their symmetry/asymmetry levels. These concepts prove useful in the study of different types of Systems, and particularly, in the analysis of Complex Networks. A System can be defined as any set of components functioning together as a whole. A systemic point of view allows us to isolate a part of the world, and so, we can focus on those aspects that interact more closely than others. Network Science analyzes the interconnections among diverse networks from different domains: physics, engineering, biology, semantics, and so on. Current developments in the quantitative analysis of Complex Networks, based on graph theory, have been rapidly translated to studies of brain network organization. The brain's systems have complex network features—such as the small-world topology, highly connected hubs and modularity. These networks are not random. The topology of many different networks shows striking similarities, such as the scale-free structure, with the degree distribution following a Power Law. How can very different systems have the same underlying topological features? Modeling and characterizing these networks, looking for their governing laws, are the current lines of research. So, we will dedicate this Special Issue paper to show measures of symmetry in Complex Networks, and highlight their close relation with measures of information and entropy.

  8. From symmetry to particles

    Energy Technology Data Exchange (ETDEWEB)

    El Naschie, M.S. [King Abdul Aziz City of Science and Technology, Riyadh (Saudi Arabia)

    2007-04-15

    The notion of a particle-like state emerging from a symmetry breaking is given five corresponding pictures. We start from a geometrical picture in two dimensions involving a modular curve constructed using 336 triangles. The same number of building blocks is found again, this time as 336 contact points in the ten dimensional space of super string theory in the context of the largest kissing number of lattice sphere packing. The next corresponding representation is an abstract one pertinent to the order of the simple linear Lie group SL(2, n) in seven dimensions (n = 7) which leads to 336 symmetries. Subsequently a tensorial picture is given using the Riemannian tensor of relativity theory but this time in an eight dimensional space (n = 8) for which the number of independent components is again 336. Finally we use a physical string theory related picture in the 12 dimensions of F theory to find 336 moduli space dimensions representing the instanton cells of our theory. It is evident that the five preceding pictures are ten fold interconnected and exchangeable. This additional mental freedom does not only enhance the feeling of understanding, but also facilitates the easy recognition of complex mathematical relations and its connection to the physical concepts.

  9. Origami Optimization: Role of Symmetry in Accelerating Design

    Science.gov (United States)

    Buskohl, Philip; Fuchi, Kazuko; Bazzan, Giorgio; Durstock, Michael; Reich, Gregory; Joo, James; Vaia, Richard

    Origami structures morph between 2D and 3D conformations along predetermined fold lines that efficiently program the form, function and mobility of the structure. Design optimization tools have recently been developed to predict optimal fold patterns with mechanics-based metrics, such as the maximal energy storage, auxetic response and actuation. Origami actuator design problems possess inherent symmetries associated with the grid, mechanical boundary conditions and the objective function, which are often exploited to reduce the design space and computational cost of optimization. However, enforcing symmetry eliminates the prediction of potentially better performing asymmetric designs, which are more likely to exist given the discrete nature of fold line optimization. To better understand this effect, actuator design problems with different combinations of rotation and reflection symmetries were optimized while varying the number of folds allowed in the final design. In each case, the optimal origami patterns transitioned between symmetric and asymmetric solutions depended on the number of folds available for the design, with fewer symmetries present with more fold lines allowed. This study investigates the interplay of symmetry and discrete vs continuous optimization in origami actuators and provides insight into how the symmetries of the reference grid regulate the performance landscape. This work was supported by the Air Force Office of Scientific Research.

  10. SYMMETRY IN WORLD TRADE NETWORK

    Institute of Scientific and Technical Information of China (English)

    Hui WANG; Guangle YAN; Yanghua XIAO

    2009-01-01

    Symmetry of the world trade network provides a novel perspective to understand the world-wide trading system. However, symmetry in the world trade network (WTN) has been rarely studied so far. In this paper, the authors systematically explore the symmetry in WTN. The authors construct WTN in 2005 and explore the size and structure of its automorphism group, through which the authors find that WTN is symmetric, particularly, locally symmetric to a certain degree. Furthermore, the authors work out the symmetric motifs of WTN and investigate the structure and function of the symmetric motifs, coming to the conclusion that local symmetry will have great effect on the stability of the WTN and that continuous symmetry-breakings will generate complexity and diversity of the trade network. Finally, utilizing the local symmetry of the network, the authors work out the quotient of WTN, which is the structural skeleton dominating stability and evolution of WTN.

  11. In search of symmetry lost

    CERN Multimedia

    Wilczek, Frank

    2004-01-01

    Powerful symmetry principles have guided physicists in their quest for nature's fundamental laws. The successful gauge theory of electroweak interactions postulates a more extensive symmetry for its equations than are manifest in the world (8 pages) Powerful symmetry principles have guided physicists in their quest for nature's fundamental laws. The successful gauge theory of electroweak interactions postulates a more extensive symmetry for its equations than are manifest in the world. The discrepancy is ascribed to a pervasive symmetry-breaking field, which fills all space uniformly, rendering the Universe a sort of exotic superconductor. So far, the evidence for these bold ideas is indirect. But soon the theory will undergo a critical test depending on whether the quanta of this symmetry-breaking field, the so-called Higgs particles, are produced at the Large Hadron Collider (due to begin operation in 2007).

  12. Symmetry of crystals and molecules

    CERN Document Server

    Ladd, Mark

    2014-01-01

    This book successfully combines a thorough treatment of molecular and crystalline symmetry with a simple and informal writing style. By means of familiar examples the author helps to provide the reader with those conceptual tools necessary for the development of a clear understanding of what are often regarded as 'difficult' topics. Christopher Hammond, University of Leeds This book should tell you everything you need to know about crystal and molecular symmetry. Ladd adopts an integrated approach so that the relationships between crystal symmetry, molecular symmetry and features of chemical interest are maintained and reinforced. The theoretical aspects of bonding and symmetry are also well represented, as are symmetry-dependent physical properties and the applications of group theory. The comprehensive coverage will make this book a valuable resource for a broad range of readers.

  13. Symmetry breaking. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Strocchi, F. [Scuola Normale Superiore, Classe di Scienze, Pisa (Italy)

    2008-07-01

    This new edition of Prof. Strocchi's well received primer on rigorous aspects of symmetry breaking presents a more detailed and thorough discussion of the mechanism of symmetry breaking in classical field theory in relation with the Noether theorem. Moreover, the link between symmetry breaking without massless Goldstone bosons in Coulomb systems and in gauge theories is made more explicit in terms of the delocalized Coulomb dynamics. Furthermore, the chapter on the Higgs mechanism has been significantly expanded with a non-perturbative treatment of the Higgs phenomenon, at the basis of the standard model of particle physics, in the local and in the Coulomb gauges. Last but not least, a subject index has been added and a number of misprints have been corrected. From the reviews of the first edition: The notion of spontaneous symmetry breaking has proven extremely valuable, the problem is that most derivations are perturbative and heuristic. Yet mathematically precise versions do exist, but are not widely known. It is precisely the aim of his book to correct this unbalance. - It is remarkable to see how much material can actually be presented in a rigorous way (incidentally, many of the results presented are due to Strocchi himself), yet this is largely ignored, the original heuristic derivations being, as a rule, more popular. - At each step he strongly emphasizes the physical meaning and motivation of the various notions introduced, a book that fills a conspicuous gap in the literature, and does it rather well. It could also be a good basis for a graduate course in mathematical physics. It can be recommended to physicists as well and, of course, for physics/mathematics libraries. J.-P. Antoine, Physicalia 28/2, 2006 Strocchi's main emphasis is on the fact that the loss of symmetric behaviour requires both the non-symmetric ground states and the infinite extension of the system. It is written in a pleasant style at a level suitable for graduate students in

  14. Exact Dynamical and Partial Symmetries

    CERN Document Server

    Leviatan, A

    2010-01-01

    We discuss a hierarchy of broken symmetries with special emphasis on partial dynamical symmetries (PDS). The latter correspond to a situation in which a non-invariant Hamiltonian accommodates a subset of solvable eigenstates with good symmetry, while other eigenstates are mixed. We present an algorithm for constructing Hamiltonians with this property and demonstrate the relevance of the PDS notion to nuclear spectroscopy, to quantum phase transitions and to mixed systems with coexisting regularity and chaos.

  15. Exact dynamical and partial symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A, E-mail: ami@phys.huji.ac.il [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)

    2011-03-01

    We discuss a hierarchy of broken symmetries with special emphasis on partial dynamical symmetries (PDS). The latter correspond to a situation in which a non-invariant Hamiltonian accommodates a subset of solvable eigenstates with good symmetry, while other eigenstates are mixed. We present an algorithm for constructing Hamiltonians with this property and demonstrate the relevance of the PDS notion to nuclear spectroscopy, to quantum phase transitions and to mixed systems with coexisting regularity and chaos.

  16. Physical Theories with Average Symmetry

    OpenAIRE

    Alamino, Roberto C.

    2013-01-01

    This Letter probes the existence of physical laws invariant only in average when subjected to some transformation. The concept of a symmetry transformation is broadened to include corruption by random noise and average symmetry is introduced by considering functions which are invariant only in average under these transformations. It is then shown that actions with average symmetry obey a modified version of Noether's Theorem with dissipative currents. The relation of this with possible violat...

  17. Rotational Energy Transfer in N2

    Science.gov (United States)

    Huo, Winifred M.

    1994-01-01

    Using the N2-N2 intermolecular potential of van der Avoird et al. rotational energy transfer cross sections have been calculated using both the coupled state (CS) and infinite order sudden (IOS) approximations. The rotational energy transfer rate constants at 300 K, calculated in the CS approximation, are in reasonable agreement with the measurements of Sitz and Farrow. The IOS approximation qualitatively reproduces the dependence of the rate constants on the rotational quantum numbers, but consistently overestimates their magnitudes. The treatment of exchange symmetry will be discussed.

  18. Physical Theories with Average Symmetry

    CERN Document Server

    Alamino, Roberto C

    2013-01-01

    This Letter probes the existence of physical laws invariant only in average when subjected to some transformation. The concept of a symmetry transformation is broadened to include corruption by random noise and average symmetry is introduced by considering functions which are invariant only in average under these transformations. It is then shown that actions with average symmetry obey a modified version of Noether's Theorem with dissipative currents. The relation of this with possible violations of physical symmetries, as for instance Lorentz invariance in some quantum gravity theories, is briefly commented.

  19. The conservation of orbital symmetry

    CERN Document Server

    Woodward, R B

    2013-01-01

    The Conservation of Orbital Symmetry examines the principle of conservation of orbital symmetry and its use. The central content of the principle was that reactions occur readily when there is congruence between orbital symmetry characteristics of reactants and products, and only with difficulty when that congruence does not obtain-or to put it more succinctly, orbital symmetry is conserved in concerted reaction. This principle is expected to endure, whatever the language in which it may be couched, or whatever greater precision may be developed in its application and extension. The book ope

  20. Toric Symmetry of CP^3

    CERN Document Server

    Karp, Dagan; Riggins, Paul; Whitcher, Ursula

    2011-01-01

    We exhaustively analyze the toric symmetries of CP^3 and its toric blowups. Our motivation is to study toric symmetry as a computational technique in Gromov-Witten theory and Donaldson-Thomas theory. We identify all nontrivial toric symmetries. The induced nontrivial isomorphisms lift and provide new symmetries at the level of Gromov-Witten Theory and Donaldson-Thomas Theory. The polytopes of the toric varieties in question include the permutohedron, the cyclohedron, the associahedron, and in fact all graph associahedra, among others.

  1. Givental graphs and inversion symmetry

    CERN Document Server

    Dunin-Barkowski, P; Spitz, L

    2012-01-01

    Inversion symmetry is a very non-trivial discrete symmetry of Frobenius manifolds. It was obtained by Dubrovin from one of the elementary Schlesinger transformations of a special ODE associated to Frobenius manifold. In this paper, we review the Givental group action on Frobenius manifolds in terms of Feynman graphs and then we obtain an interpretation of the inversion symmetry in terms of the action of the Givental group. We also consider the implication of this interpretation of the inversion symmetry for the Schlesinger transformations and for the Hamiltonians of the associated principle hierarchy.

  2. Leptogenesis and residual CP symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Peng; Ding, Gui-Jun [Department of Modern Physics, University of Science and Technology of China,Hefei, Anhui 230026 (China); King, Stephen F. [Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom)

    2016-03-31

    We discuss flavour dependent leptogenesis in the framework of lepton flavour models based on discrete flavour and CP symmetries applied to the type-I seesaw model. Working in the flavour basis, we analyse the case of two general residual CP symmetries in the neutrino sector, which corresponds to all possible semi-direct models based on a preserved Z{sub 2} in the neutrino sector, together with a CP symmetry, which constrains the PMNS matrix up to a single free parameter which may be fixed by the reactor angle. We systematically study and classify this case for all possible residual CP symmetries, and show that the R-matrix is tightly constrained up to a single free parameter, with only certain forms being consistent with successful leptogenesis, leading to possible connections between leptogenesis and PMNS parameters. The formalism is completely general in the sense that the two residual CP symmetries could result from any high energy discrete flavour theory which respects any CP symmetry. As a simple example, we apply the formalism to a high energy S{sub 4} flavour symmetry with a generalized CP symmetry, broken to two residual CP symmetries in the neutrino sector, recovering familiar results for PMNS predictions, together with new results for flavour dependent leptogenesis.

  3. Symmetry fractionalization and twist defects

    Science.gov (United States)

    Tarantino, Nicolas; Lindner, Netanel H.; Fidkowski, Lukasz

    2016-03-01

    Topological order in two-dimensions can be described in terms of deconfined quasiparticle excitations—anyons—and their braiding statistics. However, it has recently been realized that this data does not completely describe the situation in the presence of an unbroken global symmetry. In this case, there can be multiple distinct quantum phases with the same anyons and statistics, but with different patterns of symmetry fractionalization—termed symmetry enriched topological order. When the global symmetry group G, which we take to be discrete, does not change topological superselection sectors—i.e. does not change one type of anyon into a different type of anyon—one can imagine a local version of the action of G around each anyon. This leads to projective representations and a group cohomology description of symmetry fractionalization, with the second cohomology group {H}2(G,{{ A }}{{abelian}}) being the relevant group. In this paper, we treat the general case of a symmetry group G possibly permuting anyon types. We show that despite the lack of a local action of G, one can still make sense of a so-called twisted group cohomology description of symmetry fractionalization, and show how this data is encoded in the associativity of fusion rules of the extrinsic ‘twist’ defects of the symmetry. Furthermore, building on work of Hermele (2014 Phys. Rev. B 90 184418), we construct a wide class of exactly-solvable models which exhibit this twisted symmetry fractionalization, and connect them to our formal framework.

  4. Nonlinear Zel'dovich effect: Parametric amplification from medium rotation

    CERN Document Server

    Faccio, Daniele

    2016-01-01

    The interaction of light with rotating media has attracted recent interest for both fundamental and applied studies including rotational Doppler shift measurements. It is also possible to obtain amplification through the scattering of light with orbital angular momentum from a rotating and absorbing cylinder, as proposed by Zel'dovich more than 40 years ago. This amplification mechanism has never been observed experimentally yet has connections to other fields such as Penrose superradiance in rotating black holes. Here we propose a nonlinear optics system whereby incident light carrying orbital angular momentum drives parametric interaction in a rotating medium. The crystal rotation is shown to take the phase-mismatched parametric interaction with negligible energy exchange at zero rotation to amplification for sufficiently large rotation rates. The amplification is shown to result from breaking of anti-PT symmetry induced by the medium rotation.

  5. Nonlinear Zel'dovich Effect: Parametric Amplification from Medium Rotation

    Science.gov (United States)

    Faccio, Daniele; Wright, Ewan M.

    2017-03-01

    The interaction of light with rotating media has attracted recent interest for both fundamental and applied studies including rotational Doppler shift measurements. It is also possible to obtain amplification through the scattering of light with orbital angular momentum from a rotating and absorbing cylinder, as proposed by Zel'dovich more than forty years ago. This amplification mechanism has never been observed experimentally yet has connections to other fields such as Penrose superradiance in rotating black holes. Here we propose a nonlinear optics system whereby incident light carrying orbital angular momentum drives parametric interaction in a rotating medium. The crystal rotation is shown to take the phase-mismatched parametric interaction with negligible energy exchange at zero rotation to amplification for sufficiently large rotation rates. The amplification is shown to result from breaking of anti-P T symmetry induced by the medium rotation.

  6. Symmetry reduction related with nonlocal symmetry for Gardner equation

    Science.gov (United States)

    Ren, Bo

    2017-01-01

    Based on the truncated Painlevé method or the Möbious (conformal) invariant form, the nonlocal symmetry for the (1+1)-dimensional Gardner equation is derived. The nonlocal symmetry can be localized to the Lie point symmetry by introducing one new dependent variable. Thanks to the localization procedure, the finite symmetry transformations are obtained by solving the initial value problem of the prolonged systems. Furthermore, by using the symmetry reduction method to the enlarged systems, many explicit interaction solutions among different types of solutions such as solitary waves, rational solutions, Painlevé II solutions are given. Especially, some special concrete soliton-cnoidal interaction solutions are analyzed both in analytical and graphical ways.

  7. Bosonization and Mirror Symmetry

    CERN Document Server

    Kachru, Shamit; Torroba, Gonzalo; Wang, Huajia

    2016-01-01

    We study bosonization in 2+1 dimensions using mirror symmetry, a duality that relates pairs of supersymmetric theories. Upon breaking supersymmetry in a controlled way, we dynamically obtain the bosonization duality that equates the theory of a free Dirac fermion to QED3 with a single scalar boson. This duality may be used to demonstrate the bosonization duality relating an $O(2)$-symmetric Wilson-Fisher fixed point to QED3 with a single Dirac fermion, Peskin-Dasgupta-Halperin duality, and the recently conjectured duality relating the theory of a free Dirac fermion to fermionic QED3 with a single flavor. Chern-Simons and BF couplings for both dynamical and background gauge fields play a central role in our approach. In the course of our study, we describe a chiral mirror pair that may be viewed as the minimal supersymmetric generalization of the two bosonization dualities.

  8. Quantum mechanics symmetries

    CERN Document Server

    Greiner, Walter

    1989-01-01

    "Quantum Dynamics" is a major survey of quantum theory based on Walter Greiner's long-running and highly successful courses at the University of Frankfurt. The key to understanding in quantum theory is to reinforce lecture attendance and textual study by working through plenty of representative and detailed examples. Firm belief in this principle led Greiner to develop his unique course and to transform it into a remarkable and comprehensive text. The text features a large number of examples and exercises involving many of the most advanced topics in quantum theory. These examples give practical and precise demonstrations of how to use the often subtle mathematics behind quantum theory. The text is divided into five volumes: Quantum Mechanics I - An Introduction, Quantum Mechanics II - Symmetries, Relativistic Quantum Mechanics, Quantum Electrodynamics, Gauge Theory of Weak Interactions. These five volumes take the reader from the fundamental postulates of quantum mechanics up to the latest research in partic...

  9. Gauged Flavor Symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Heeck, Julian

    2013-04-15

    Augmenting the Standard Model by three right-handed neutrinos allows for an anomaly-free gauge group extension G{sub max}=U(1){sub B−L}×U(1){sub L{sub e−L{sub μ}}}×U(1){sub L{sub μ−L{sub τ}}}. Simple U(1) subgroups of G{sub max} can be used to impose structure on the righthanded neutrino mass matrix, which then propagates to the active neutrino mass matrix via the seesaw mechanism. We show how this framework can be used to gauge the approximate lepton-number symmetries behind the normal, inverted, and quasidegenerate neutrino mass spectrum, and also how to generate texture-zeros and vanishing minors in the neutrino mass matrix, leading to testable relations among mixing parameters.

  10. Bosonization and mirror symmetry

    Science.gov (United States)

    Kachru, Shamit; Mulligan, Michael; Torroba, Gonzalo; Wang, Huajia

    2016-10-01

    We study bosonization in 2 +1 dimensions using mirror symmetry, a duality that relates pairs of supersymmetric theories. Upon breaking supersymmetry in a controlled way, we dynamically obtain the bosonization duality that equates the theory of a free Dirac fermion to QED3 with a single scalar boson. This duality may be used to demonstrate the bosonization duality relating an O (2 )-symmetric Wilson-Fisher fixed point to QED3 with a single Dirac fermion, Peskin-Dasgupta-Halperin duality, and the recently conjectured duality relating the theory of a free Dirac fermion to fermionic QED3 with a single flavor. Chern-Simons and BF couplings for both dynamical and background gauge fields play a central role in our approach. In the course of our study, we describe a "chiral" mirror pair that may be viewed as the minimal supersymmetric generalization of the two bosonization dualities.

  11. Quantal rotation and its coupling to intrinsic motion in nuclei

    CERN Document Server

    Nakatsukasa, Takashi; Matsuzaki, Masayuki; Shimizu, Yoshifumi R

    2016-01-01

    Symmetry breaking is an importance concept in nuclear physics and other fields of physics. Self-consistent coupling between the mean-field potential and the single-particle motion is a key ingredient in the unified model of Bohr and Mottelson, which could lead to a deformed nucleus as a consequence of spontaneous breaking of the rotational symmetry. Some remarks on the finite-size quantum effects are given. In finite nuclei, the deformation inevitably introduces the rotation as a symmetry-restoring collective motion (Anderson-Nambu-Goldstone mode), and the rotation affects the intrinsic motion. In order to investigate the interplay between the rotational and intrinsic motions in a variety of collective phenomena, we use the cranking prescription together with the quasiparticle random phase approximation. At low spin, the coupling effect can be seen in the generalized intensity relation. A feasible quantization of the cranking model is presented, which provides a microscopic approach to the higher-order intens...

  12. 康德论美的双重特性%Kant on the Twofold Logical Peculiarity of Beauty

    Institute of Scientific and Technical Information of China (English)

    王奎

    2015-01-01

    与认识和道德不同,康德认为美具有一种双重的逻辑特性:“好像主观性”和“好像客观性”。一方面美以个人的情感而非概念为基础,不能通过经验归纳或理性演绎而得到证明,因而好像是主观的;另一方面,美同经验判断一样要求人们的普遍同意,好像又是客观的。美的本质体现在主客体之间的这种关系,既不是纯然主观的,也不是客观的,任何将美还原为单纯主观性或客观性的观点都是对康德美学的误读。康德美学的独特性就在于这两种看似矛盾的特性在审美判断中可以共存。%s:In contrast with cognitive and moral judgments,Kant holds that the beauty has a twofold logical peculiarity,namely〞as if subjectivity〞and〞as if objectivity〞.On one hand,grounded on one's own feeling rather than any concept,the judgment of taste cannot be confirmed or disconfirmed through empiri-cal induction or rational deduction,just as if it were subjective.On the other hand,like empirical judg-ments,the beauty requires the assent of everyone,as if it were objective.The beauty is therefore neither purely subjective nor objective,and is best to be described as relation of object to the subject.In this con-text,the view that reduces the beauty to mere subjectivity or objectivity is obviously a misunderstanding of Kant's intentions.It is characteristic of Kant's aesthetics that the twofold seeming paradoxical peculiarity can coexist in a single judgment of taste.

  13. Symmetries and deformations in the spherical shell model

    Science.gov (United States)

    Van Isacker, P.; Pittel, S.

    2016-02-01

    We discuss symmetries of the spherical shell model that make contact with the geometric collective model of Bohr and Mottelson. The most celebrated symmetry of this kind is SU(3), which is the basis of Elliott’s model of rotation. It corresponds to a deformed mean field induced by a quadrupole interaction in a single major oscillator shell N and can be generalized to include several major shells. As such, Elliott’s SU(3) model establishes the link between the spherical shell model and the (quadrupole component of the) geometric collective model. We introduce the analogue symmetry induced by an octupole interaction in two major oscillator shells N-1 and N, leading to an octupole-deformed solution of the spherical shell model. We show that in the limit of large oscillator shells, N\\to ∞ , the algebraic octupole interaction tends to that of the geometric collective model.

  14. Noether symmetry analysis of anisotropic universe in modified gravity

    Science.gov (United States)

    Shamir, M. Farasat; Kanwal, Fiza

    2017-05-01

    In this paper we study the anisotropic universe using Noether symmetries in modified gravity. In particular, we choose a locally rotationally symmetric Bianchi type-I universe for the analysis in f(R,G) gravity, where R is the Ricci scalar and G is the Gauss-Bonnet invariant. Firstly, a model f(R,G)=f_0R^l+f_1G^n is proposed and the corresponding Noether symmetries are investigated. We have also recovered the Noether symmetries for f( R) and f(G) theories of gravity. Secondly, some important cosmological solutions are reconstructed. Exponential and power-law solutions are reported for a well-known f(R,G) model, i.e., f(R,G)=f_0R^nG^{1-n}. Especially, Kasner's solution is recovered and it is anticipated that the familiar de Sitter spacetime giving Λ CDM cosmology may be reconstructed for some suitable value of n.

  15. Symmetry Breaking by Nonstationay Optimisation

    NARCIS (Netherlands)

    Prestwich, S.; Hnich, B.; Rossi, R.; Tarim, S.A.

    2008-01-01

    We describe a new partial symmetry breaking method that can be used to break arbitrary variable/value symmetries in combination with depth first search, static value ordering and dynamic variable ordering. The main novelty of the method is a new dominance detection technique based on local search in

  16. Lie Symmetries of Ishimori Equation

    Institute of Scientific and Technical Information of China (English)

    SONG Xu-Xia

    2013-01-01

    The Ishimori equation is one of the most important (2+1)-dimensional integrable models,which is an integrable generalization of (1+1)-dimensional classical continuous Heisenberg ferromagnetic spin equations.Based on importance of Lie symmetries in analysis of differential equations,in this paper,we derive Lie symmetries for the Ishimori equation by Hirota's direct method.

  17. Hole localization and symmetry breaking

    NARCIS (Netherlands)

    Broer, R; Nieuwpoort, W.C.

    1999-01-01

    A brief overview is presented of some theoretical work on the symmetry breaking of electronic wavefunctions that followed the early work on Bagus and Schaefer who observed that a considerable lower SCF energy could be obtained for an ionized state of the O2 molecule with a 1s hole if the symmetry re

  18. Symmetry Breaking by Nonstationay Optimisation

    NARCIS (Netherlands)

    Prestwich, S.; Hnich, B.; Rossi, R.; Tarim, S.A.

    2008-01-01

    We describe a new partial symmetry breaking method that can be used to break arbitrary variable/value symmetries in combination with depth first search, static value ordering and dynamic variable ordering. The main novelty of the method is a new dominance detection technique based on local search in

  19. Enhanced ultraviolet emission and its irreversible temperature antiquenching behavior of twofold coordinated silicon centers in silica glass

    Science.gov (United States)

    Nagayoshi, Yu; Uchino, Takashi

    2016-10-01

    It has been well documented that an oxygen divacancy center, or a twofold-coordinated Si center, in silica glass yields a singlet-to-singlet photoluminescence (PL) emission at 4.4 eV with a decay time of ˜4 ns. Although the 4.4-eV PL band is interesting in terms of a deep-ultraviolet light emitter, the emission efficiency has been too low to be considered for a practical application. In this work, we show that a highly luminescent silica glass, with an internal quantum yield of 68% for the 4.4-eV PL band at room temperature, can be prepared when micrometer-sized silica powders are heat treated at ˜1900 °C under inert gas atmosphere by using a high-frequency induction heating unit equipped with a graphite crucible. We also show that the intensity of the 4.4-eV emission in the thus prepared silica glass exhibits an irreversible temperature antiquenching behavior in the temperature region below ˜320 K during heating-cooling cycles. The anomalous temperature dependencies of the 4.4-eV emission can be interpreted in terms of thermally activated trapping-detrapping processes of photoexcited electrons associated with deep trap states.

  20. An unprecedented two-fold nested super-polyrotaxane: sulfate-directed hierarchical polythreading assembly of uranyl polyrotaxane moieties

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Lei; Wu, Qun-yan; Yuan, Li-yong; Wang, Lin; An, Shu-wen; Xie, Zhen-ni; Hu, Kong-qiu; Shi, Wei-qun [Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); Chai, Zhi-fang [Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); School of Radiological and Interdisciplinary Sciences and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou (China); Burns, Peter C. [Department of Chemistry and Biochemistry, University of Notre Dame, IN (United States)

    2016-08-01

    The hierarchical assembly of well-organized submoieties could lead to more complicated superstructures with intriguing properties. We describe herein an unprecedented polyrotaxane polythreading framework containing a two-fold nested super-polyrotaxane substructure, which was synthesized through a uranyl-directed hierarchical polythreading assembly of one-dimensional polyrotaxane chains and two-dimensional polyrotaxane networks. This special assembly mode actually affords a new way of supramolecular chemistry instead of covalently linked bulky stoppers to construct stable interlocked rotaxane moieties. An investigation of the synthesis condition shows that sulfate can assume a vital role in mediating the formation of different uranyl species, especially the unique trinuclear uranyl moiety [(UO{sub 2}){sub 3}O(OH){sub 2}]{sup 2+}, involving a notable bent [O=U=O] bond with a bond angle of 172.0(9) . Detailed analysis of the coordination features, the thermal stability as well as a fluorescence, and electrochemical characterization demonstrate that the uniqueness of this super-polyrotaxane structure is mainly closely related to the trinuclear uranyl moiety, which is confirmed by quantum chemical calculations. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Asymptotic Symmetries from finite boxes

    CERN Document Server

    Andrade, Tomas

    2015-01-01

    It is natural to regulate an infinite-sized system by imposing a boundary condition at finite distance, placing the system in a "box." This breaks symmetries, though the breaking is small when the box is large. One should thus be able to obtain the asymptotic symmetries of the infinite system by studying regulated systems. We provide concrete examples in the context of Einstein-Hilbert gravity (with negative or zero cosmological constant) by showing in 4 or more dimensions how the Anti-de Sitter and Poincar\\'e asymptotic symmetries can be extracted from gravity in a spherical box with Dirichlet boundary conditions. In 2+1 dimensions we obtain the full double-Virasoro algebra of asymptotic symmetries for AdS$_3$ and, correspondingly, the full Bondi-Metzner-Sachs (BMS) algebra for asymptotically flat space. In higher dimensions, a related approach may continue to be useful for constructing a good asymptotically flat phase space with BMS asymptotic symmetries.

  2. UV completion without symmetry restoration

    CERN Document Server

    Endlich, Solomon; Penco, Riccardo

    2013-01-01

    We show that it is not possible to UV-complete certain low-energy effective theories with spontaneously broken space-time symmetries by embedding them into linear sigma models, that is, by adding "radial" modes and restoring the broken symmetries. When such a UV completion is not possible, one can still raise the cutoff up to arbitrarily higher energies by adding fields that transform non-linearly under the broken symmetries, that is, new Goldstone bosons. However, this (partial) UV completion does not necessarily restore any of the broken symmetries. We illustrate this point by considering a concrete example in which a combination of space-time and internal symmetries is broken down to a diagonal subgroup. Along the way, we clarify a recently proposed interpretation of inverse Higgs constraints as gauge-fixing conditions.

  3. Discrete symmetries in the MSSM

    Energy Technology Data Exchange (ETDEWEB)

    Schieren, Roland

    2010-12-02

    The use of discrete symmetries, especially abelian ones, in physics beyond the standard model of particle physics is discussed. A method is developed how a general, abelian, discrete symmetry can be obtained via spontaneous symmetry breaking. In addition, anomalies are treated in the path integral approach with special attention to anomaly cancellation via the Green-Schwarz mechanism. All this is applied to the minimal supersymmetric standard model. A unique Z{sup R}{sub 4} symmetry is discovered which solves the {mu}-problem as well as problems with proton decay and allows to embed the standard model gauge group into a simple group, i.e. the Z{sup R}{sub 4} is compatible with grand unification. Also the flavor problem in the context of minimal flavor violation is addressed. Finally, a string theory model is presented which exhibits the mentioned Z{sup R}{sub 4} symmetry and other desirable features. (orig.)

  4. Shape analysis with subspace symmetries

    KAUST Repository

    Berner, Alexander

    2011-04-01

    We address the problem of partial symmetry detection, i.e., the identification of building blocks a complex shape is composed of. Previous techniques identify parts that relate to each other by simple rigid mappings, similarity transforms, or, more recently, intrinsic isometries. Our approach generalizes the notion of partial symmetries to more general deformations. We introduce subspace symmetries whereby we characterize similarity by requiring the set of symmetric parts to form a low dimensional shape space. We present an algorithm to discover subspace symmetries based on detecting linearly correlated correspondences among graphs of invariant features. We evaluate our technique on various data sets. We show that for models with pronounced surface features, subspace symmetries can be found fully automatically. For complicated cases, a small amount of user input is used to resolve ambiguities. Our technique computes dense correspondences that can subsequently be used in various applications, such as model repair and denoising. © 2010 The Author(s).

  5. Invisibility and PT Symmetry: A Simple Geometrical Viewpoint

    Directory of Open Access Journals (Sweden)

    Luis L. Sánchez-Soto

    2014-05-01

    Full Text Available We give a simplified account of the properties of the transfer matrix for a complex one-dimensional potential, paying special attention to the particular instance of unidirectional invisibility. In appropriate variables, invisible potentials appear as performing null rotations, which lead to the helicity-gauge symmetry of massless particles. In hyperbolic geometry, this can be interpreted, via Möbius transformations, as parallel displacements, a geometric action that has no Euclidean analogy.

  6. On Duality Symmetry in Charged P-Form Theories

    CERN Document Server

    Menezes, R; Menezes, Roberto; Wotzasek, Clovis

    2004-01-01

    We study duality transformation and duality symmetry in the the electromagnetic-like charged p-form theories. It is shown that the dichotomic characterization of duality groups as $Z_2$ or SO(2) remains as the only possibilities but are now present in all dimensions even and odd. This is a property defined in the symplectic sector of the theory both for massive and massless tensors. It is shown that the duality groups depend, in general, both on the ranks of the fields and on the dimension of the spacetime. We search for the physical origin of this two-fold property and show that it is traceable to the dimensional and rank dependence of the parity of certain operator (a generalized-curl) that naturally decomposes the symplectic sector of the action. These operators are only slightly different in the massive and in the massless cases but their physical origin are quite distinct.

  7. Effect of gravity level fluctuations for rotating fluids in high and low rotating speeds

    Science.gov (United States)

    Hung, R. J.; Tsao, Y. D.; Hong, B. B.; Leslie, F. W.

    1989-01-01

    Time-dependent evolutions of the profile of the free surface (bubble shapes) for a cylindrical container partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry, have been studied. Numerical computations of the dynamics of bubble shapes have been carried out with sinusoidal-function vibration of the gravity environment at high and low cylinder speeds.

  8. Gravitation and Gauge Symmetries

    CERN Document Server

    Stewart, J

    2002-01-01

    The purpose of this book (I quote verbatim from the back cover) is to 'shed light upon the intrinsic structure of gravity and the principle of gauge invariance, which may lead to a consistent unified field theory', a very laudable aim. The content divides fairly clearly into four sections (and origins). After a brief introduction, chapters 2-6 review the 'Structure of gravity as a theory based on spacetime gauge symmetries'. This is fairly straightforward material, apparently based on a one-semester graduate course taught at the University of Belgrade for about two decades, and, by implication, this is a reasonably accurate description of its level and assumed knowledge. There follow two chapters of new material entitled 'Gravity in flat spacetime' and 'Nonlinear effects in gravity'. The final three chapters, entitled 'Supersymmetry and supergravity', 'Kaluza-Klein theory' and 'String theory' have been used for the basis of a one-semester graduate course on the unification of fundamental interactions. The boo...

  9. Symmetries in nuclear structure

    CERN Document Server

    Allaart, K; Dieperink, A

    1983-01-01

    The 1982 summer school on nuclear physics, organized by the Nuclear Physics Division of the Netherlands' Physical Society, was the fifth in a series that started in 1963. The number of students attending has always been about one hundred, coming from about thirty countries. The theme of this year's school was symmetry in nuclear physics. This book covers the material presented by the enthusi­ astic speakers, who were invited to lecture on this subject. We think they have succeeded in presenting us with clear and thorough introductory talks at graduate or higher level. The time schedule of the school and the location allowed the participants to make many informal contacts during many social activities, ranging from billiards to surf board sailing. We hope and expect that the combination of a relaxed atmosphere during part of the time and hard work during most of the time, has furthered the interest in, and understanding of, nuclear physics. The organization of the summer school was made possible by substantia...

  10. Spontaneous Planar Chiral Symmetry Breaking in Cells

    Science.gov (United States)

    Hadidjojo, Jeremy; Lubensky, David

    Recent progress in animal development has highlighted the central role played by planar cell polarity (PCP) in epithelial tissue morphogenesis. Through PCP, cells have the ability to collectively polarize in the plane of the epithelium by localizing morphogenetic proteins along a certain axis. This allows direction-dependent modulation of tissue mechanical properties that can translate into the formation of complex, non-rotationally invariant shapes. Recent experimental observations[1] show that cells, in addition to being planar-polarized, can also spontaneously develop planar chirality, perhaps in the effort of making yet more complex shapes that are reflection non-invariant. In this talk we will present our work in characterizing general mechanisms that can lead to spontaneous chiral symmetry breaking in cells. We decompose interfacial concentration of polarity proteins in a hexagonal cell packing into irreducible representations. We find that in the case of polar concentration distributions, a chiral state can only be reached from a secondary instability after the cells are polarized. However in the case of nematic distributions, we show that a finite-amplitude (subcritical, or ``first-order'') nematic transition can send the system from disorder directly to a chiral state. In addition, we find that perturbing the system by stretching the hexagonal packing enables direct (supercritical, or ``second-order'') chiral transition in the nematic case. Finally, we do a Landau expansion to study competition between stretch-induced chirality and the tendency towards a non-chiral state in packings that have retained the full 6-fold symmetry.

  11. O'Hanlon actions by Noether symmetry

    OpenAIRE

    Darabi, F.

    2015-01-01

    By using the conformal symmetry between Brans-Dicke action with $\\omega=-\\frac{3}{2}$ and O'Hanlon action, we seek the O'Hanlon actions in Einstein frame respecting the Noether symmetry. Since the Noether symmetry is preserved under conformal transformations, the existence of Noether symmetry in the Brans-Dicke action asserts the Noether symmetry in O'Hanlon action in Einstein frame. Therefore, the potentials respecting Noether symmetry in Brans-Dicke action give the corresponding potentials ...

  12. Insulators and metals with topological order and discrete symmetry breaking

    Science.gov (United States)

    Chatterjee, Shubhayu; Sachdev, Subir

    2017-05-01

    Numerous experiments have reported discrete symmetry breaking in the high-temperature pseudogap phase of the hole-doped cuprates, including breaking of one or more of lattice rotation, inversion, and time-reversal symmetries. In the absence of translational symmetry breaking or topological order, these conventional order parameters cannot explain the gap in the charged fermion excitation spectrum in the antinodal region. Zhao et al. [L. Zhao, D. H. Torchinsky, H. Chu, V. Ivanov, R. Lifshitz, R. Flint, T. Qi, G. Cao, and D. Hsieh, Nat. Phys. 12, 32 (2016), 10.1038/nphys3517] and Jeong et al. [J. Jeong, Y. Sidis, A. Louat, V. Brouet, and P. Bourges, Nat. Commun. 8, 15119 (2017), 10.1038/ncomms15119] have also reported inversion and time-reversal symmetry breaking in insulating Sr2IrO4 similar to that in the metallic cuprates, but coexisting with Néel order. We extend an earlier theory of topological order in insulators and metals, in which the topological order combines naturally with the breaking of these conventional discrete symmetries. We find translationally invariant states with topological order coexisting with both Ising-nematic order and spontaneous charge currents. The link between the discrete broken symmetries and the topological-order-induced pseudogap explains why the broken symmetries do not survive in the confining phases without a pseudogap at large doping. Our theory also connects to the O(3) nonlinear sigma model and CP1 descriptions of quantum fluctuations of the Néel order. In this framework, the optimal doping criticality of the cuprates is primarily associated with the loss of topological order.

  13. Spectral theorem and partial symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Gozdz, A. [University of Maria Curie-Sklodowska, Department of Mathematical Physics, Institute of Physics (Poland); Gozdz, M. [University of Maria Curie-Sklodowska, Department of Complex Systems and Neurodynamics, Institute of Informatics (Poland)

    2012-10-15

    A novel method of the decompositon of a quantum system's Hamiltonian is presented. In this approach the criterion of the decomposition is determined by the symmetries possessed by the sub-Hamiltonians. This procedure is rather generic and independent of the actual global symmetry, or the lack of it, of the full Hamilton operator. A detailed investigation of the time evolution of the various sub-Hamiltonians, therefore the change in time of the symmetry of the physical object, is presented for the case of a vibrator-plus-rotor model. Analytical results are illustrated by direct numerical calculations.

  14. Astroparticle tests of Lorentz symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Jorge [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2016-07-01

    Lorentz symmetry is a cornerstone of modern physics. As the spacetime symmetry of special relativity, Lorentz invariance is a basic component of the standard model of particle physics and general relativity, which to date constitute our most successful descriptions of nature. Deviations from exact symmetry would radically change our view of the universe and current experiments allow us to test the validity of this assumption. In this talk, I describe effects of Lorentz violation in cosmic rays and gamma rays that can be studied in current observatories.

  15. Symmetry protected single photon subradiance

    CERN Document Server

    Cai, Han; Svidzinsky, Anatoly A; Zhu, Shi-Yao; Scully, Marlan O

    2016-01-01

    We study the protection of subradiant states by the symmetry of the atomic distributions in the Dicke limit, in which collective Lamb shift cannot be neglected. We find that anti-symmetric states are subradiant states for distribution with reflection symmetry. These states can be prepared by anti-symmetric optical modes and converted to superradiant states by properly tailored 2\\pipulses. Continuous symmetry can also be used to achieve subradiance. This study is relevant to the problem of robust quantum memory with long storage time and fast readout.

  16. Hydrodynamic Instabilities in Rotating Fluids

    Institute of Scientific and Technical Information of China (English)

    KarlBuehler

    2000-01-01

    Rotating flow systems are often used to study stability phenomena and structure developments.The closed spherical gap prblem is generalized into an open flow system by superimposing a mass flux in meridional direction.The basic solutions at low Reynolds numbers are described by analytical methods.The nonlinear supercritical solutions are simulated numerically and realized in experiments.Novel steady and time-dependent modes of flows are obtained.The extensive results concern the stability behaviour.non-uniqueness of supercritical solutions,symmetry behaviour and transitions between steady and time-dependent solutions.The experimental investigations concern the visualization of the various instabilities and the quatitative description of the flow structures including the laminar-turbulent transition.A Comparison between theoretical and experimental results shows good agreement within the limit of rotational symmetric solutions from the theory.

  17. Broken versus Non-Broken Time Reversal Symmetry: Irreversibility and Response

    Directory of Open Access Journals (Sweden)

    Sara Dal Cengio

    2016-07-01

    Full Text Available We review some approaches to macroscopic irreversibility from reversible microscopic dynamics, introducing the contribution of time dependent perturbations within the framework of recent developments in non-equilibrium statistical physics. We show that situations commonly assumed to violate the time reversal symmetry (presence of magnetic fields, rotating reference frames, and some time dependent perturbations in reality do not violate this symmetry, and can be treated with standard theories and within standard experimental protocols.

  18. Three-dimensional organic Dirac-line materials due to nonsymmorphic symmetry: A data mining approach

    Science.gov (United States)

    Geilhufe, R. Matthias; Bouhon, Adrien; Borysov, Stanislav S.; Balatsky, Alexander V.

    2017-01-01

    A data mining study of electronic Kohn-Sham band structures was performed to identify Dirac materials within the Organic Materials Database. Out of that, the three-dimensional organic crystal 5,6-bis(trifluoromethyl)-2-methoxy-1 H -1,3-diazepine was found to host different Dirac-line nodes within the band structure. From a group theoretical analysis, it is possible to distinguish between Dirac-line nodes occurring due to twofold degenerate energy levels protected by the monoclinic crystalline symmetry and twofold degenerate accidental crossings protected by the topology of the electronic band structure. The obtained results can be generalized to all materials having the space group P 21/c (No. 14, C2h 5) by introducing three distinct topological classes.

  19. The Limits of Custodial Symmetry

    CERN Document Server

    Chivukula, R Sekhar; Foadi, Roshan; Simmons, Elizabeth H

    2010-01-01

    We introduce a toy model implementing the proposal of using a custodial symmetry to protect the Z b_L bbar_L coupling from large corrections. This "doublet-extended standard model" adds a weak doublet of fermions (including a heavy partner of the top quark) to the particle content of the standard model in order to implement an O(4) x U(1)_X = SU(2)_L x SU(2)_R x P_LR x U(1)_X symmetry in the top-quark mass generating sector. This symmetry is softly broken to the gauged SU(2)_L x U(1)_Y electroweak symmetry by a Dirac mass M for the new doublet; adjusting the value of M allows us to explore the range of possibilities between the O(4)-symmetric (M to 0) and standard-model-like (M to infinity) limits.

  20. The Limits of Custodial Symmetry

    CERN Document Server

    Chivukula, R Sekhar; Foadi, Roshan; Simmons, Elizabeth H

    2010-01-01

    We introduce a toy model implementing the proposal of using a custodial symmetry to protect the Zbb coupling from large corrections. This "doublet-extended standard model" adds a weak doublet of fermions (including a heavy partner of the top quark) to the particle content of the standard model in order to implement an O(4) x U(1)_X = SU(2)_L x SU(2)_R x P_{LR} x U(1)_X symmetry that protects the Zbb coupling. This symmetry is softly broken to the gauged SU(2)_L x U(1)_Y electroweak symmetry by a Dirac mass M for the new doublet; adjusting the value of M allows us to explore the range of possibilities between the O(4)-symmetric (M to 0) and standard-model-like (M to infinity) limits.

  1. Symmetries from the solution manifold

    Science.gov (United States)

    Aldaya, Víctor; Guerrero, Julio; Lopez-Ruiz, Francisco F.; Cossío, Francisco

    2015-07-01

    We face a revision of the role of symmetries of a physical system aiming at characterizing the corresponding Solution Manifold (SM) by means of Noether invariants as a preliminary step towards a proper, non-canonical, quantization. To this end, "point symmetries" of the Lagrangian are generally not enough, and we must resort to the more general concept of contact symmetries. They are defined in terms of the Poincaré-Cartan form, which allows us, in turn, to find the symplectic structure on the SM, through some sort of Hamilton-Jacobi (HJ) transformation. These basic symmetries are realized as Hamiltonian vector fields, associated with (coordinate) functions on the SM, lifted back to the Evolution Manifold through the inverse of this HJ mapping, that constitutes an inverse of the Noether Theorem. The specific examples of a particle moving on S3, at the mechanical level, and nonlinear SU(2)-sigma model in field theory are sketched.

  2. External symmetry in general relativity

    CERN Document Server

    Cotaescu, I I

    2000-01-01

    We propose a generalization of the isometry transformations to the geometric context of the field theories with spin where the local frames are explicitly involved. We define the external symmetry transformations as isometries combined with suitable tetrad gauge transformations and we show that these form a group which is locally isomorphic with the isometry one. We point out that the symmetry transformations that leave invariant the equations of the fields with spin have generators with specific spin terms which represent new physical observables. The examples we present are the generators of the central symmetry and those of the maximal symmetries of the de Sitter and anti-de Sitter spacetimes derived in different tetrad gauge fixings. Pacs: 04.20.Cv, 04.62.+v, 11.30.-j

  3. Symmetry via Lie algebra cohomology

    CERN Document Server

    Eastwood, Michael

    2010-01-01

    The Killing operator on a Riemannian manifold is a linear differential operator on vector fields whose kernel provides the infinitesimal Riemannian symmetries. The Killing operator is best understood in terms of its prolongation, which entails some simple tensor identities. These simple identities can be viewed as arising from the identification of certain Lie algebra cohomologies. The point is that this case provides a model for more complicated operators similarly concerned with symmetry.

  4. Dynamical (Super)Symmetry Breaking

    CERN Document Server

    Murayama, H

    2001-01-01

    Dynamical Symmetry Breaking (DSB) is a concept theorists rely on very often in the discussions of strong dynamics, model building, and hierarchy problems. In this talk, I will discuss why this is such a permeating concept among theorists and how they are used in understanding physics. I also briefly review recent progress in using dynamical symmetry breaking to construct models of supersymmetry breaking and fermion masses.

  5. Discrete R Symmetries and Anomalies

    OpenAIRE

    Michael Dine(Santa Cruz Institute for Particle Physics and Department of Physics, Santa Cruz CA 95064, U.S.A.); Angelo Monteux(Santa Cruz Institute for Particle Physics, University of California Santa Cruz, 1156 High Street, Santa Cruz, U.S.A.)

    2012-01-01

    We comment on aspects of discrete anomaly conditions focussing particularly on $R$ symmetries. We review the Green-Schwarz cancellation of discrete anomalies, providing a heuristic explanation why, in the heterotic string, only the "model-independent dilaton" transforms non-linearly under discrete symmetries; this argument suggests that, in other theories, multiple fields might play a role in anomaly cancellations, further weakening any anomaly constraints at low energies. We provide examples...

  6. Torus breakdown in the symmetry-reduced state space of the Kuramoto-Sivashinsky system

    CERN Document Server

    Budanur, Nazmi Burak

    2015-01-01

    Systems such as fluid flows in channels and pipes or the complex Ginzburg-Landau system, defined over periodic domains, exhibit both continuous symmetries, translational and rotational, as well as discrete symmetries under spatial reflections or complex conjugation. The simplest, and very common symmetry of this type is the equivariance of the defining equations under the orthogonal group O(2). We formulate a novel symmetry-reduction scheme for such systems by combining the method of slices with invariant polynomial methods, and show how it works by applying it to the Kuramoto-Sivashinsky system in one spatial dimension. As an example, we track a relative periodic orbit through a sequence of bifurcation to the onset of chaos. Within the symmetry-reduced state space we are able to compute and visualize the unstable manifolds of relative periodic orbits, their torus bifurcations, a transition to chaos via torus breakdown, and heteroclinic connections between various relative periodic orbits. It would be very ha...

  7. Sensitive Probe for Symmetry Potential

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-Ye; XIAO Guo-Qing; GUO Wen-Jun; REN ZhongZhou; ZUO Wei; LEE Xi-Guo

    2007-01-01

    Based on both very obvious isospin effect of the neutron-proton number ratio of nucleon emissions (n/p)nucl on symmetry potential and (n/p)nucl's sensitive dependence on symmetry potential in the nuclear reactions induced by halo-neutron projectiles, compared to the same mass stable projectile, probing symmetry potential is investigated within the isospin-dependent quantum molecular dynamics with isospin and momentum-dependent interactions for different symmetry potentials U1sym and U2sym. It is found that the neutron-halo projectile induces very obvious increase of (n/p)nucl and strengthens the dependence of (n/p)nucl on the symmetry potential for all the beam energies and impact parameters, compared to the same mass stable projectile under the same incident channel condition. Therefore (n/p)nucl induced by the neutron-halo projectile is a more favourable probe than the normal neutron-rich and neutron-poor projectiles for extracting the symmetry potential.

  8. Leptogenesis and residual CP symmetry

    CERN Document Server

    Chen, Peng; King, Stephen F

    2016-01-01

    We discuss flavour dependent leptogenesis in the framework of lepton flavour models based on discrete flavour and CP symmetries applied to the type-I seesaw model. Working in the flavour basis, we analyse the case of two general residual CP symmetries in the neutrino sector, which corresponds to all possible semi-direct models based on a preserved $Z_2$ in the neutrino sector, together with a CP symmetry, which constrains the PMNS matrix up to a single free parameter which may be fixed by the reactor angle. We systematically study and classify this case for all possible residual CP symmetries, and show that the $R$-matrix is tightly constrained up to a single free parameter, with only certain forms being consistent with successful leptogenesis, leading to possible connections between leptogenesis and PMNS parameters. The formalism is completely general in the sense that the two residual CP symmetries could result from any high energy discrete flavour theory which respects any CP symmetry. As a simple example,...

  9. Enumeration of symmetry classes of convex polyominoes in the square lattice

    OpenAIRE

    Leroux, Pierre; Rassart, Etienne; Robitaille, Ariane

    1998-01-01

    This paper concerns the enumeration of rotation-type and congruence-type convex polyominoes on the square lattice. These can be defined as orbits of the groups C4, of rotations, and D4, of symmetries of the square acting on (translation- type) polyominoes. In virtue of Burnside's Lemma, it is sufficient to enumerate the various symmetry classes (fixed points) of polyominoes defined by the elements of C4 and D4. Using the Temperley--Bousquet-Melou methodology, we solve this problem and provide...

  10. Dual Symmetry in Bent-Core Liquid Crystals and Unconventional Superconductors

    Directory of Open Access Journals (Sweden)

    Vladimir Lorman

    2010-01-01

    Full Text Available We extend the Landau theory of bent-core mesophases and d-wave high-Tc superconductors by considering additional secondary pseudo-proper order parameters. These systems exhibit a remarkable analogy relating their symmetry groups, lists of phases, and an infinite set of physical tensors. This analogy lies upon an internal dual structure shared by the two theories. We study the dual operator transforming rotations into translations in liquid crystals, and gauge symmetries into rotations in superconductors. It is used to classify the bent-core line defects, and to analyze the electronic gap structure of lamellar d-wave superfluids.

  11. Superdeformed rotational bands in the presence of Y44 deformation

    Science.gov (United States)

    Hamamoto, Ikuko; Mottelson, Ben

    1994-08-01

    The observation of ΔI = 4 staggering in the rotational spectra of superdeformed nuclei suggests the occurence of Y44 deformations in the nuclear shape with associated C4 v point-symmetry for the rotational Hamiltonian. We have investigated the general class of Hamiltonians with such symmetry. In addition, we require the axially symmetric terms to favour rotation about an axis that is perpendicular to the long axis of nuclear shape. The δI = 4 staggering can indeed result from the tunneling between the four equivalent minima that occur in the plane perpendicular to the superdeformation symmetry axis, but the occurence of this effect is a subtle matter depending sensitively on the axially symmetric terms in the Hamiltonian.

  12. SASS: a symmetry adapted stochastic search algorithm exploiting site symmetry.

    Science.gov (United States)

    Wheeler, Steven E; Schleyer, Paul V R; Schaefer, Henry F

    2007-03-14

    A simple symmetry adapted search algorithm (SASS) exploiting point group symmetry increases the efficiency of systematic explorations of complex quantum mechanical potential energy surfaces. In contrast to previously described stochastic approaches, which do not employ symmetry, candidate structures are generated within simple point groups, such as C2, Cs, and C2v. This facilitates efficient sampling of the 3N-6 Pople's dimensional configuration space and increases the speed and effectiveness of quantum chemical geometry optimizations. Pople's concept of framework groups [J. Am. Chem. Soc. 102, 4615 (1980)] is used to partition the configuration space into structures spanning all possible distributions of sets of symmetry equivalent atoms. This provides an efficient means of computing all structures of a given symmetry with minimum redundancy. This approach also is advantageous for generating initial structures for global optimizations via genetic algorithm and other stochastic global search techniques. Application of the SASS method is illustrated by locating 14 low-lying stationary points on the cc-pwCVDZ ROCCSD(T) potential energy surface of Li5H2. The global minimum structure is identified, along with many unique, nonintuitive, energetically favorable isomers.

  13. Test of Pseudospin Symmetry in Deformed Nuclei

    CERN Document Server

    Ginocchio, J N; Meng, J; Zhou, S G; Zhou, Shan-Gui

    2004-01-01

    Pseudospin symmetry is a relativistic symmetry of the Dirac Hamiltonian with scalar and vector mean fields equal and opposite in sign. This symmetry imposes constraints on the Dirac eigenfunctions. We examine extensively the Dirac eigenfunctions of realistic relativistic mean field calculations of deformed nuclei to determine if these eigenfunctions satisfy these pseudospin symmetry constraints.

  14. Symmetry and group theory in chemistry

    CERN Document Server

    Ladd, M

    1998-01-01

    A comprehensive discussion of group theory in the context of molecular and crystal symmetry, this book covers both point-group and space-group symmetries.Provides a comprehensive discussion of group theory in the context of molecular and crystal symmetryCovers both point-group and space-group symmetriesIncludes tutorial solutions

  15. Generalised CP and $\\Delta (96)$ Family Symmetry

    CERN Document Server

    Ding, Gui-Jun

    2014-01-01

    We perform a comprehensive study of the $\\Delta (96)$ family symmetry combined with the generalised CP symmetry $H_{\\rm{CP}}$. We investigate the lepton mixing parameters which can be obtained from the original symmetry $\\Delta (96)\\rtimes H_{\\rm{CP}}$ breaking to different remnant symmetries in the neutrino and charged lepton sectors, namely $G_{\

  16. Comparing dualities and gauge symmetries

    Science.gov (United States)

    De Haro, Sebastian; Teh, Nicholas; Butterfield, Jeremy N.

    2017-08-01

    We discuss some aspects of the relation between dualities and gauge symmetries. Both of these ideas are of course multi-faceted, and we confine ourselves to making two points. Both points are about dualities in string theory, and both have the 'flavour' that two dual theories are 'closer in content' than you might think. For both points, we adopt a simple conception of a duality as an 'isomorphism' between theories: more precisely, as appropriate bijections between the two theories' sets of states and sets of quantities. The first point (Section 3) is that this conception of duality meshes with two dual theories being 'gauge related' in the general philosophical sense of being physically equivalent. For a string duality, such as T-duality and gauge/gravity duality, this means taking such features as the radius of a compact dimension, and the dimensionality of spacetime, to be 'gauge'. The second point (Sections 4-6) is much more specific. We give a result about gauge/gravity duality that shows its relation to gauge symmetries (in the physical sense of symmetry transformations that are spacetime-dependent) to be subtler than you might expect. For gauge theories, you might expect that the duality bijections relate only gauge-invariant quantities and states, in the sense that gauge symmetries in one theory will be unrelated to any symmetries in the other theory. This may be so in general; and indeed, it is suggested by discussions of Polchinski and Horowitz. But we show that in gauge/gravity duality, each of a certain class of gauge symmetries in the gravity/bulk theory, viz. diffeomorphisms, is related by the duality to a position-dependent symmetry of the gauge/boundary theory.

  17. Magnetic fields and rotation of spiral galaxies

    CERN Document Server

    Battaner, E; Florido, E

    1998-01-01

    We present a simplified model in which we suggest that two important galactic problems -the magnetic field configuration at large scales and the flat rotation curve- may be simultaneously explained. A highly convective disc produces a high turbulent magnetic diffusion in the vertical direction, stablishing a merging of extragalactic and galactic magnetic fields. The outer disc may then adquire a magnetic energy gradient very close to the gradient required to explain the rotation curve, without the hypothesis of galactic dark matter. Our model predicts symmetries of the galactic field in noticeable agreement with the large scale structure of our galaxy.

  18. Symmetry Breaking for Answer Set Programming

    CERN Document Server

    Drescher, Christian

    2010-01-01

    In the context of answer set programming, this work investigates symmetry detection and symmetry breaking to eliminate symmetric parts of the search space and, thereby, simplify the solution process. We contribute a reduction of symmetry detection to a graph automorphism problem which allows to extract symmetries of a logic program from the symmetries of the constructed coloured graph. We also propose an encoding of symmetry-breaking constraints in terms of permutation cycles and use only generators in this process which implicitly represent symmetries and always with exponential compression. These ideas are formulated as preprocessing and implemented in a completely automated flow that first detects symmetries from a given answer set program, adds symmetry-breaking constraints, and can be applied to any existing answer set solver. We demonstrate computational impact on benchmarks versus direct application of the solver. Furthermore, we explore symmetry breaking for answer set programming in two domains: firs...

  19. Parity-time symmetry broken by point-group symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Fernández, Francisco M., E-mail: fernande@quimica.unlp.edu.ar; Garcia, Javier [INIFTA (UNLP, CCT La Plata-CONICET), División Química Teórica, Blvd. 113 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)

    2014-04-15

    We discuss a parity-time (PT) symmetric Hamiltonian with complex eigenvalues. It is based on the dimensionless Schrödinger equation for a particle in a square box with the PT-symmetric potential V(x, y) = iaxy. Perturbation theory clearly shows that some of the eigenvalues are complex for sufficiently small values of |a|. Point-group symmetry proves useful to guess if some of the eigenvalues may already be complex for all values of the coupling constant. We confirm those conclusions by means of an accurate numerical calculation based on the diagonalization method. On the other hand, the Schrödinger equation with the potential V(x, y) = iaxy{sup 2} exhibits real eigenvalues for sufficiently small values of |a|. Point group symmetry suggests that PT-symmetry may be broken in the former case and unbroken in the latter one.

  20. Gauge symmetry enhancement in Hamiltonian formalism

    CERN Document Server

    Hong, S T; Lee, T H; Oh, P; Oh, Phillial

    2003-01-01

    We study the Hamiltonian structure of the gauge symmetry enhancement in the enlarged CP(N) model coupled with U(2) chern-Simons term, which contains a free parameter governing explicit symmetry breaking and symmetry enhancement. After giving a general discussion of the geometry of constrained phase space suitable for the symmetry enhancement, we explicitly perform the Dirac analysis of out model and compute the Dirac brackets for the symmetry enhanced and broken cases. We also discuss some related issues.

  1. Localization of Nonlocal Symmetries and Symmetry Reductions of Burgers Equation

    Science.gov (United States)

    Wu, Jian-Wen; Lou, Sen-Yue; Yu, Jun

    2017-05-01

    The nonlocal symmetries of the Burgers equation are explicitly given by the truncated Painlevé method. The auto-Bäcklund transformation and group invariant solutions are obtained via the localization procedure for the nonlocal residual symmetries. Furthermore, the interaction solutions of the solition-Kummer waves and the solition-Airy waves are obtained. Supported by the Global Change Research Program China under Grant No. 2015CB953904, the National Natural Science Foundations of China under Grant Nos. 11435005, 11175092, and 11205092, Shanghai Knowledge Service Platform for Trustworthy Internet of Things under Grant No. ZF1213, and K. C. Wong Magna Fund in Ningbo University

  2. Big break for charge symmetry

    CERN Document Server

    Miller, G A

    2003-01-01

    Two new experiments have detected charge-symmetry breaking, the mechanism responsible for protons and neutrons having different masses. Symmetry is a crucial concept in the theories that describe the subatomic world because it has an intimate connection with the laws of conservation. The theory of the strong interaction between quarks - quantum chromodynamics - is approximately invariant under what is called charge symmetry. In other words, if we swap an up quark for a down quark, then the strong interaction will look almost the same. This symmetry is related to the concept of sup i sospin sup , and is not the same as charge conjugation (in which a particle is replaced by its antiparticle). Charge symmetry is broken by the competition between two different effects. The first is the small difference in mass between up and down quarks, which is about 200 times less than the mass of the proton. The second is their different electric charges. The up quark has a charge of +2/3 in units of the proton charge, while ...

  3. Symmetry Guide to Ferroaxial Transitions

    Science.gov (United States)

    Hlinka, J.; Privratska, J.; Ondrejkovic, P.; Janovec, V.

    2016-04-01

    The 212 species of the structural phase transitions with a macroscopic symmetry breaking are inspected with respect to the occurrence of the ferroaxial order parameter, the electric toroidal moment. In total, 124 ferroaxial species are found, some of them being also fully ferroelectric (62) or fully ferroelastic ones (61). This ensures a possibility of electrical or mechanical switching of ferroaxial domains. Moreover, there are 12 ferroaxial species that are neither ferroelectric nor ferroelastic. For each species, we have also explicitly worked out a canonical form for a set of representative equilibrium property tensors of polar and axial nature in both high-symmetry and low-symmetry phases. This information was gathered into the set of 212 mutually different symbolic matrices, expressing graphically the presence of nonzero independent tensorial components and the symmetry-imposed links between them, for both phases simultaneously. Symmetry analysis reveals the ferroaxiality in several currently debated materials, such as VO2 , LuFe2 O4 , and URu2 Si2 .

  4. TOPICAL REVIEW: Tunneling magnetoresistance from a symmetry filtering effect

    Directory of Open Access Journals (Sweden)

    William H Butler

    2008-01-01

    Full Text Available This paper provides a brief overview of the young, but rapidly growing field of spintronics. Its primary objective is to explain how as electrons tunnel through simple insulators such as MgO, wavefunctions of certain symmetries are preferentially transmitted. This symmetry filtering property can be converted into a spin-filtering property if the insulator is joined epitaxially to a ferromagnetic electrode with the same two-dimensional symmetry parallel to the interface. A second requirement of the ferromagnetic electrodes is that a wavefunction with the preferred symmetry exists in one of the two spin channels but not in the other. These requirements are satisfied for electrons traveling perpendicular to the interface for Fe–MgO–Fe tunnel barriers. This leads to a large change in the resistance when the magnetic moment of one of the electrodes is rotated relative to those of the other electrode. This large tunneling magnetoresistance effect is being used as the read sensor in hard drives and may form the basis for a new type of magnetic memory.

  5. Heisenberg symmetry and hypermultiplet manifolds

    CERN Document Server

    Antoniadis, Ignatios; Petropoulos, P Marios; Siampos, Konstantinos

    2015-01-01

    We study the emergence of Heisenberg (Bianchi II) algebra in hyper-K\\"ahler and quaternionic spaces. This is motivated by the r\\^ole these spaces with this symmetry play in $\\mathcal{N}=2$ hypermultiplet scalar manifolds. We show how to construct related pairs of hyper-K\\"ahler and quaternionic spaces under general symmetry assumptions, the former being a zooming-in limit of the latter at vanishing cosmological constant. We further apply this method for the two hyper-K\\"ahler spaces with Heisenberg algebra, which is reduced to $U(1)\\times U(1)$ at the quaternionic level. We also show that no quaternionic spaces exist with a strict Heisenberg symmetry -- as opposed to $\\text{Heisenberg} \\ltimes U(1)$. We finally discuss the realization of the latter by gauging appropriate $Sp(2,4)$ generators in $\\mathcal{N}=2$ conformal supergravity.

  6. Symmetry and Asymmetry Level Measures

    Directory of Open Access Journals (Sweden)

    Angel Garrido

    2010-04-01

    Full Text Available Usually, Symmetry and Asymmetry are considered as two opposite sides of a coin: an object is either totally symmetric, or totally asymmetric, relative to pattern objects. Intermediate situations of partial symmetry or partial asymmetry are not considered. But this dichotomy on the classification lacks of a necessary and realistic gradation. For this reason, it is convenient to introduce "shade regions", modulating the degree of Symmetry (a fuzzy concept. Here, we will analyze the Asymmetry problem by successive attempts of description and by the introduction of the Asymmetry Level Function, as a new Normal Fuzzy Measure. Our results (both Theorems and Corollaries suppose to be some new and original contributions to such very active and interesting field of research. Previously, we proceed to the analysis of the state of art.

  7. Gribov problem and BRST symmetry

    CERN Document Server

    Fujikawa, K

    1995-01-01

    After a brief historical comment on the study of BRS(or BRST) symmetry , we discuss the quantization of gauge theories with Gribov copies. A path integral with BRST symmetry can be formulated by summing the Gribov-type copies in a very specific way if the functional correspondence between \\tau and the gauge parameter \\omega defined by \\tau (x) = f( A_{\\mu}^{\\omega}(x)) is ``globally single valued'', where f( A_{\\mu}^{\\omega}(x)) = 0 specifies the gauge condition. As an example of the theory which satisfies this criterion, we comment on a soluble gauge model with Gribov-type copies recently analyzed by Friedberg, Lee, Pang and Ren. We also comment on a possible connection of the dynamical instability of BRST symmetry with the Gribov problem on the basis of an index notion.

  8. Hidden Symmetries of Stochastic Models

    Directory of Open Access Journals (Sweden)

    Boyka Aneva

    2007-05-01

    Full Text Available In the matrix product states approach to $n$ species diffusion processes the stationary probability distribution is expressed as a matrix product state with respect to a quadratic algebra determined by the dynamics of the process. The quadratic algebra defines a noncommutative space with a $SU_q(n$ quantum group action as its symmetry. Boundary processes amount to the appearance of parameter dependent linear terms in the algebraic relations and lead to a reduction of the $SU_q(n$ symmetry. We argue that the boundary operators of the asymmetric simple exclusion process generate a tridiagonal algebra whose irriducible representations are expressed in terms of the Askey-Wilson polynomials. The Askey-Wilson algebra arises as a symmetry of the boundary problem and allows to solve the model exactly.

  9. Heisenberg symmetry and hypermultiplet manifolds

    Directory of Open Access Journals (Sweden)

    Ignatios Antoniadis

    2016-04-01

    Full Text Available We study the emergence of Heisenberg (Bianchi II algebra in hyper-Kähler and quaternionic spaces. This is motivated by the rôle these spaces with this symmetry play in N=2 hypermultiplet scalar manifolds. We show how to construct related pairs of hyper-Kähler and quaternionic spaces under general symmetry assumptions, the former being a zooming-in limit of the latter at vanishing scalar curvature. We further apply this method for the two hyper-Kähler spaces with Heisenberg algebra, which is reduced to U(1×U(1 at the quaternionic level. We also show that no quaternionic spaces exist with a strict Heisenberg symmetry – as opposed to Heisenberg⋉U(1. We finally discuss the realization of the latter by gauging appropriate Sp(2,4 generators in N=2 conformal supergravity.

  10. An Introduction to Emergent Symmetries

    CERN Document Server

    Gomes, Pedro R S

    2015-01-01

    These are intended to be introductory notes on emergent symmetries, i.e., symmetries which manifest themselves in specific sectors of energy in many systems. The emphasis is on the physical aspects rather than computation methods. We include some elementary background material and proceed to our discussion by examining several interesting problems in field theory, statistical mechanics and condensed matter. These problems illustrate how some important symmetries, such as Lorentz invariance and supersymmetry, usually believed to be fundamental, can arise naturally in low-energy regimes of systems involving a large number of degrees of freedom. The aim is to discuss how these examples could help us to face other complex and fundamental problems.

  11. Photonic Crystals Engineering For Light Manipulation: Low Symmetry, Graded Index and Parity Time Symmetry

    CERN Document Server

    Turduev, Mirbek

    2016-01-01

    The great interest to the two and three dimensionally periodic structures, called photonic crystals (PCs), has begun with the pioneer works of Yablonovitch and John as one can efficiently control the propagation of the electromagnetic (EM) waves in the same manner with semiconductors that affect the electron conduction. One of the main peculiar properties of PCs is that they have photonic band gap in the transmission spectrum similar to electronic band gap and hence, they are able to prevent the light to propagate in certain frequency regions irrespective of the propagation direction in space. Inside the band gaps, neither optical modes nor spontaneous emissions exist. Breaking the rotational and mirror symmetries of PC unit cells provides rich dispersive features such as tilted self-collimation, and wavelength de-multiplexing effects. Another important issue in PC designs is that it is feasible to design graded index medium if the parameters of the two dimensional PCs is intentionally rearranged. That type o...

  12. Mathieu Moonshine and Symmetry Surfing

    CERN Document Server

    Gaberdiel, Matthias R; Paul, Hynek

    2016-01-01

    Mathieu Moonshine, the observation that the Fourier coefficients of the elliptic genus on K3 can be interpreted as dimensions of representations of the Mathieu group M24, has been proven abstractly, but a conceptual understanding in terms of a representation of the Mathieu group on the BPS states, is missing. Some time ago, Taormina and Wendland showed that such an action can be naturally defined on the lowest non-trivial BPS states, using the idea of `symmetry surfing', i.e., by combining the symmetries of different K3 sigma models. In this paper we find non-trivial evidence that this construction can be generalized to all BPS states.

  13. Cosmological Reflection of Particle Symmetry

    Directory of Open Access Journals (Sweden)

    Maxim Khlopov

    2016-08-01

    Full Text Available The standard model involves particle symmetry and the mechanism of its breaking. Modern cosmology is based on inflationary models with baryosynthesis and dark matter/energy, which involves physics beyond the standard model. Studies of the physical basis of modern cosmology combine direct searches for new physics at accelerators with its indirect non-accelerator probes, in which cosmological consequences of particle models play an important role. The cosmological reflection of particle symmetry and the mechanisms of its breaking are the subject of the present review.

  14. Symposium Symmetries in Science XIII

    CERN Document Server

    Gruber, Bruno J; Yoshinaga, Naotaka; Symmetries in Science XI

    2005-01-01

    This book is a collection of reviews and essays about the recent developments in the area of Symmetries and applications of Group Theory. Contributions have been written mostly at the graduate level but some are accessible to advanced undergraduates. The book is of interest to a wide audience and covers a broad range of topics with a strong degree of thematical unity. The book is part of a Series of books on Symmetries in Science and may be compared to the published Proceedings of the Colloquia on Group Theoretical Methods in Physics. Here, however, prevails a distinguished character for presenting extended reviews on present applications to Science, not restricted to Theoretical Physics.

  15. Symmetry of intramolecular quantum dynamics

    CERN Document Server

    Burenin, Alexander V

    2012-01-01

    The main goal of this book is to give a systematic description of intramolecular quantum dynamics on the basis of only the symmetry principles. In this respect, the book has no analogs in the world literature. The obtained models lead to a simple, purely algebraic, scheme of calculation and are rigorous in the sense that their correctness is limited only to the correct choice of symmetry of the internal dynamics. The book is basically intended for scientists working in the field of molecular spectroscopy, quantum and structural chemistry.

  16. Quantum Symmetries and Exceptional Collections

    Science.gov (United States)

    Karp, Robert L.

    2011-01-01

    We study the interplay between discrete quantum symmetries at certain points in the moduli space of Calabi-Yau compactifications, and the associated identities that the geometric realization of D-brane monodromies must satisfy. We show that in a wide class of examples, both local and compact, the monodromy identities in question always follow from a single mathematical statement. One of the simplest examples is the {{mathbb Z}_5} symmetry at the Gepner point of the quintic, and the associated D-brane monodromy identity.

  17. Quantum symmetries and exceptional collections

    CERN Document Server

    Karp, Robert L

    2008-01-01

    We study the interplay between discrete quantum symmetries at certain points in the moduli space of Calabi-Yau compactifications, and the associated identities that the geometric realization of D-brane monodromies must satisfy. We show that in a wide class of examples, both local and compact, the monodromy identities in question always follow from a single mathematical statement. One of the simplest examples is the Z_5 symmetry at the Gepner point of the quintic, and the associated D-brane monodromy identity.

  18. Theta functions and mirror symmetry

    CERN Document Server

    Gross, Mark

    2012-01-01

    This is a survey covering aspects of varied work of the authors with Mohammed Abouzaid, Paul Hacking, and Sean Keel. While theta functions are traditionally canonical sections of ample line bundles on abelian varieties, we motivate, using mirror symmetry, the idea that theta functions exist in much greater generality. This suggestion originates with the work of the late Andrei Tyurin. We outline how to construct theta functions on the degenerations of varieties constructed in previous work of the authors, and then explain applications of this construction to homological mirror symmetry and constructions of broad classes of mirror varieties.

  19. Unconventional superconductors experimental investgation of the order-parameter symmetry

    CERN Document Server

    Goll, Gernot

    2006-01-01

    This book offers a comprehensive summary of experiments that are especially suited to reveal the order-parameter symmetry of unconventional superconductors. It briefly introduces readers to the basic theoretical concepts and terms of unconventional superconductivity, followed by a detailed overview of experimental techniques and results investigating the superconducting energy gap and phase, plus the pairing symmetry. This review includes measurements of specific heat, thermal conductivity, penetration depth and nuclearmagnetic resonance and muon-spin rotation experiments. Further, point-contact and tunnelling spectroscopy and Josephson experiments are addressed. Current understanding is reviewed from the experimental point of view. With an appendix offering five tables with almost 200 references that summarize the present results from ambient pressure heavy-fermion and noncopper-oxide superconductors, the monograph provides a valuable resource for further studies in this field.

  20. Tadpoles and Symmetries in Higgs-Gauge Unification Theories

    CERN Document Server

    Quirós, Mariano

    2005-01-01

    In theories with extra dimensions the Standard Model Higgs fields can be identified with internal components of bulk gauge fields (Higgs-gauge unification). The bulk gauge symmetry protects the Higgs mass from quadratic divergences, but at the fixed points localized tadpoles can be radiatively generated if U(1) subgroups are conserved, making the Higgs mass UV sensitive. We show that a global symmetry, remnant of the internal rotation group after orbifold projection, can prevent the generation of such tadpoles. In particular we consider the classes of orbifold compactifications T^d/Z_N (d even, N>2) and T^d/Z_2 (arbitrary d) and show that in the first case tadpoles are always allowed, while in the second they can appear only for d=2 (six dimensions).

  1. Learning from data to design functional materials without inversion symmetry

    Science.gov (United States)

    Balachandran, Prasanna V.; Young, Joshua; Lookman, Turab; Rondinelli, James M.

    2017-02-01

    Accelerating the search for functional materials is a challenging problem. Here we develop an informatics-guided ab initio approach to accelerate the design and discovery of noncentrosymmetric materials. The workflow integrates group theory, informatics and density-functional theory to uncover design guidelines for predicting noncentrosymmetric compounds, which we apply to layered Ruddlesden-Popper oxides. Group theory identifies how configurations of oxygen octahedral rotation patterns, ordered cation arrangements and their interplay break inversion symmetry, while informatics tools learn from available data to select candidate compositions that fulfil the group-theoretical postulates. Our key outcome is the identification of 242 compositions after screening ~3,200 that show potential for noncentrosymmetric structures, a 25-fold increase in the projected number of known noncentrosymmetric Ruddlesden-Popper oxides. We validate our predictions for 19 compounds using phonon calculations, among which 17 have noncentrosymmetric ground states including two potential multiferroics. Our approach enables rational design of materials with targeted crystal symmetries and functionalities.

  2. On the symmetry and degeneracy of H3(+).

    Science.gov (United States)

    Crabtree, Kyle N; McCall, Benjamin J

    2013-10-03

    The fundamental molecular ion H3(+) has impacted astronomy, chemistry, and physics, particularly since the discovery of its rovibrational spectrum. Consisting of three identical fermions, its properties are profoundly influenced by the requirements of exchange symmetry, most notably the nonexistence of its ground rotational state. Spectroscopy of H3(+) is often used to infer the relative abundances of its two nuclear spin modifications, ortho- and para-H3(+), which are important in areas as diverse as electron dissociative recombination and deuterium fractionation in cold interstellar clouds. In this paper, we explore in detail the impact of exchange symmetry on the states of H3(+), with a particular focus on the state degeneracies necessary for converting spectral transition intensities to relative abundances. We address points of confusion in the literature surrounding these issues and discuss the implications for proton-transfer reactions of H3(+) at low temperatures.

  3. Topological semimetals protected by off-centered symmetries in nonsymmorphic crystals

    Science.gov (United States)

    Yang, Bohm-Jung; Bojesen, Troels Arnfred; Morimoto, Takahiro; Furusaki, Akira

    2017-02-01

    Topological semimetals have energy bands near the Fermi energy sticking together at isolated points/lines/planes in the momentum space, which are often accompanied by stable surface states and intriguing bulk topological responses. Although it has been known that certain crystalline symmetries play an important role in protecting band degeneracy, a general recipe for stabilizing the degeneracy, especially in the presence of spin-orbit coupling, is still lacking. Here we show that a class of novel topological semimetals with point/line nodes can emerge in the presence of an off-centered rotation/mirror symmetry whose symmetry line/plane is displaced from the center of other symmorphic symmetries in nonsymmorphic crystals. Due to the partial translation perpendicular to the rotation axis/mirror plane, an off-centered rotation/mirror symmetry always forces two energy bands to stick together and form a doublet pair in the relevant invariant line/plane in momentum space. Such a doublet pair provides a basic building block for emerging topological semimetals with point/line nodes in systems with strong spin-orbit coupling.

  4. Systematic construction of spin liquids on the square lattice from tensor networks with SU(2) symmetry

    Science.gov (United States)

    Mambrini, Matthieu; Orús, Román; Poilblanc, Didier

    2016-11-01

    We elaborate a simple classification scheme of all rank-5 SU(2) spin rotational symmetric tensors according to (i) the onsite physical spin S , (ii) the local Hilbert space V⊗4 of the four virtual (composite) spins attached to each site, and (iii) the irreducible representations of the C4 v point group of the square lattice. We apply our scheme to draw a complete list of all SU(2)-symmetric translationally and rotationally invariant projected entangled pair states (PEPS) with bond dimension D ≤6 . All known SU(2)-symmetric PEPS on the square lattice are recovered and simple generalizations are provided in some cases. More generally, to each of our symmetry class can be associated a (D -1 )-dimensional manifold of spin liquids (potentially) preserving lattice symmetries and defined in terms of D -independent tensors of a given bond dimension D . In addition, generic (low-dimensional) families of PEPS explicitly breaking either (i) particular point-group lattice symmetries (lattice nematics) or (ii) time-reversal symmetry (chiral spin liquids) or (iii) SU(2) spin rotation symmetry down to U(1 ) (spin nematics or Néel antiferromagnets) can also be constructed. We apply this framework to search for new topological chiral spin liquids characterized by well-defined chiral edge modes, as revealed by their entanglement spectrum. In particular, we show how the symmetrization of a double-layer PEPS leads to a chiral topological state with a gapless edge described by a SU (2) 2 Wess-Zumino-Witten model.

  5. Charge symmetry at the partonic level

    Energy Technology Data Exchange (ETDEWEB)

    Londergan, J. T.; Peng, J. C.; Thomas, A. W.

    2010-07-01

    This review article discusses the experimental and theoretical status of partonic charge symmetry. It is shown how the partonic content of various structure functions gets redefined when the assumption of charge symmetry is relaxed. We review various theoretical and phenomenological models for charge symmetry violation in parton distribution functions. We summarize the current experimental upper limits on charge symmetry violation in parton distributions. A series of experiments are presented, which might reveal partonic charge symmetry violation, or alternatively might lower the current upper limits on parton charge symmetry violation.

  6. Symmetry Non-restoration at High Temperature

    CERN Document Server

    Rius, N

    1998-01-01

    We discuss the (non)-restoration of global and local symmetries at high temperature. First, we analyze a two-scalar model with $Z_2 \\times Z_2$ symmetry using the exact renormalization group. We conclude that inverse symmetry breaking is possible in this kind of models within the perturbative regime. Regarding local symmetries, we consider the $SU(2) \\otimes U(1)$ gauge symmetry and focus on the case of a strongly interacting scalar sector. Employing a model-independent chiral Lagrangian we find indications of symmetry restoration.

  7. A model of intrinsic symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Li [Research Center for Quantum Manipulation, Department of Physics, Fudan University, Shanghai 200433 (China); Li, Sheng [Department of Physics, Zhejiang Normal University, Zhejiang 310004 (China); George, Thomas F., E-mail: tfgeorge@umsl.edu [Office of the Chancellor and Center for Nanoscience, Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, MO 63121 (United States); Department of Physics and Astronomy, University of Missouri-St. Louis, St. Louis, MO 63121 (United States); Sun, Xin, E-mail: xin_sun@fudan.edu.cn [Research Center for Quantum Manipulation, Department of Physics, Fudan University, Shanghai 200433 (China)

    2013-11-01

    Different from the symmetry breaking associated with a phase transition, which occurs when the controlling parameter is manipulated across a critical point, the symmetry breaking presented in this Letter does not need parameter manipulation. Instead, the system itself suddenly undergoes symmetry breaking at a certain time during its evolution, which is intrinsic symmetry breaking. Through a polymer model, it is revealed that the origin of the intrinsic symmetry breaking is nonlinearity, which produces instability at the instance when the evolution crosses an inflexion point, where this instability breaks the original symmetry.

  8. Partial Dynamical Symmetries in Nuclei

    CERN Document Server

    Leviatan, A

    2000-01-01

    Partial dynamical symmetries (PDS) are shown to be relevant to the interpretation of the $K=0_2$ band and to the occurrence of F-spin multiplets of ground and scissors bands in deformed nuclei. Hamiltonians with bosonic and fermionic PDS are presented.

  9. Symmetry-protected topological entanglement

    Science.gov (United States)

    Marvian, Iman

    2017-01-01

    We propose an order parameter for the symmetry-protected topological (SPT) phases which are protected by Abelian on-site symmetries. This order parameter, called the SPT entanglement, is defined as the entanglement between A and B , two distant regions of the system, given that the total charge (associated with the symmetry) in a third region C is measured and known, where C is a connected region surrounded by A , B , and the boundaries of the system. In the case of one-dimensional systems we prove that in the limit where A and B are large and far from each other compared to the correlation length, the SPT entanglement remains constant throughout a SPT phase, and furthermore, it is zero for the trivial phase while it is nonzero for all the nontrivial phases. Moreover, we show that the SPT entanglement is invariant under the low-depth quantum circuits which respect the symmetry, and hence it remains constant throughout a SPT phase in the higher dimensions as well. Also, we show that there is an intriguing connection between SPT entanglement and the Fourier transform of the string order parameters, which are the traditional tool for detecting SPT phases. This leads to an algorithm for extracting the relevant information about the SPT phase of the system from the string order parameters. Finally, we discuss implications of our results in the context of measurement-based quantum computation.

  10. Symmetry structure and phase transitions

    Indian Academy of Sciences (India)

    Ashok Goyal; Meenu Dahiya; Deepak Chandra

    2003-05-01

    We study chiral symmetry structure at finite density and temperature in the presence of external magnetic field and gravity, a situation relevant in the early Universe and in the core of compact stars. We then investigate the dynamical evolution of phase transition in the expanding early Universe and possible formation of quark nuggets and their survival.

  11. Quantitative Analysis of Face Symmetry.

    Science.gov (United States)

    Tamir, Abraham

    2015-06-01

    The major objective of this article was to report quantitatively the degree of human face symmetry for reported images taken from the Internet. From the original image of a certain person that appears in the center of each triplet, 2 symmetric combinations were constructed that are based on the left part of the image and its mirror image (left-left) and on the right part of the image and its mirror image (right-right). By applying a computer software that enables to determine length, surface area, and perimeter of any geometric shape, the following measurements were obtained for each triplet: face perimeter and area; distance between the pupils; mouth length; its perimeter and area; nose length and face length, usually below the ears; as well as the area and perimeter of the pupils. Then, for each of the above measurements, the value C, which characterizes the degree of symmetry of the real image with respect to the combinations right-right and left-left, was calculated. C appears on the right-hand side below each image. A high value of C indicates a low symmetry, and as the value is decreasing, the symmetry is increasing. The magnitude on the left relates to the pupils and compares the difference between the area and perimeter of the 2 pupils. The major conclusion arrived at here is that the human face is asymmetric to some degree; the degree of asymmetry is reported quantitatively under each portrait.

  12. Strong coupling electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Barklow, T.L. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Burdman, G. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics; Chivukula, R.S. [Boston Univ., MA (United States). Dept. of Physics

    1997-04-01

    The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models.

  13. (Hybrid) Baryons Symmetries and Masses

    CERN Document Server

    Page, P R

    1999-01-01

    We construct (hybrid) baryons in the flux-tube model of Isgur and Paton. In the limit of adiabatic quark motion, we build proper eigenstates of orbital angular momentum and construct the flavour, spin and J^P of hybrid baryons from the symmetries of the system. The lowest mass hybrid baryon is estimated at approximately 2 GeV.

  14. Dark Energy and Spacetime Symmetry

    Directory of Open Access Journals (Sweden)

    Irina Dymnikova

    2017-03-01

    Full Text Available The Petrov classification of stress-energy tensors provides a model-independent definition of a vacuum by the algebraic structure of its stress-energy tensor and implies the existence of vacua whose symmetry is reduced as compared with the maximally symmetric de Sitter vacuum associated with the Einstein cosmological term. This allows to describe a vacuum in general setting by dynamical vacuum dark fluid, presented by a variable cosmological term with the reduced symmetry which makes vacuum fluid essentially anisotropic and allows it to be evolving and clustering. The relevant solutions to the Einstein equations describe regular cosmological models with time-evolving and spatially inhomogeneous vacuum dark energy, and compact vacuum objects generically related to a dark energy: regular black holes, their remnants and self-gravitating vacuum solitons with de Sitter vacuum interiors—which can be responsible for observational effects typically related to a dark matter. The mass of objects with de Sitter interior is generically related to vacuum dark energy and to breaking of space-time symmetry. In the cosmological context spacetime symmetry provides a mechanism for relaxing cosmological constant to a needed non-zero value.

  15. Turning Students into Symmetry Detectives

    Science.gov (United States)

    Wilders, Richard; VanOyen, Lawrence

    2011-01-01

    Exploring mathematical symmetry is one way of increasing students' understanding of art. By asking students to search designs and become pattern detectives, teachers can potentially increase their appreciation of art while reinforcing their perception of the use of math in their day-to-day lives. This article shows teachers how they can interest…

  16. Hidden Local Symmetry and Beyond

    CERN Document Server

    Yamawaki, Koichi

    2016-01-01

    Gerry Brown was a godfather of our hidden local symmetry (HLS) for the vector meson from the birth of the theory throughout his life. The HLS is originated from very nature of the nonlinear realization of the symmetry G based on the manifold G/H, and thus is universal to any physics based on the nonlinear realization. Here I focus on the Higgs Lagrangian of the Standard Model (SM), which is shown to be equivalent to the nonlinear sigma model based on G/H= SU(2)_L x SU(2)_R/SU(2)_V with additional symmetry, the nonlinearly realized scale symmetry. Then the SM does have a dynamical gauge boson of the SU(2)_V HLS, "SM rho meson", in addition to the Higgs as a pseudo dilaton as well as the NG bosons to be absorbed into the W and Z. Based on the recent work done with S. Matsuzaki and H. Ohki, I discuss a novel possibility that the SM rho meson acquires kinetic term by the SM dynamics itself, which then stabilizes the skyrmion dormant in the SM as a viable candidate for the dark matter, what we call "Dark SM skyrmi...

  17. Symmetry violation in weak decays

    NARCIS (Netherlands)

    Vos, Kimberley Keri

    2016-01-01

    Our current knowledge of particle physics is described by the Standard Model (SM). This model, however, leaves important observations unexplained. To answer these outstanding questions, as of yet, unknown physics is required. In the search for new physics, symmetries and their breaking play a guidin

  18. Hidden local symmetry and beyond

    Science.gov (United States)

    Yamawaki, Koichi

    Gerry Brown was a godfather of our hidden local symmetry (HLS) for the vector meson from the birth of the theory throughout his life. The HLS is originated from very nature of the nonlinear realization of the symmetry G based on the manifold G/H, and thus is universal to any physics based on the nonlinear realization. Here, I focus on the Higgs Lagrangian of the Standard Model (SM), which is shown to be equivalent to the nonlinear sigma model based on G/H = SU(2)L × SU(2)R/SU(2)V with additional symmetry, the nonlinearly-realized scale symmetry. Then, the SM does have a dynamical gauge boson of the SU(2)V HLS, "SM ρ meson", in addition to the Higgs as a pseudo-dilaton as well as the NG bosons to be absorbed in to the W and Z. Based on the recent work done with Matsuzaki and Ohki, I discuss a novel possibility that the SM ρ meson acquires kinetic term by the SM dynamics itself, which then stabilizes the skyrmion dormant in the SM as a viable candidate for the dark matter, what we call "dark SM skyrmion (DSMS)".

  19. Symmetry of tetrahydroxycalix[4]arenes

    Directory of Open Access Journals (Sweden)

    M. GHORBANI

    2006-10-01

    Full Text Available Graph theory provides an elegant and natural representation of molecular symmetry and the resulting group expressed in terms of permutations is isomorphic to the permutation-inversion group of Longuet-Higgins. In this paper, using the group theory package GAP, the character table and the automorphism group of the Euclidean graph of tetrahydroxycalix[4]arenes were computed.

  20. Transport of parallel momentum induced by current-symmetry breaking in toroidal plasmas.

    Science.gov (United States)

    Camenen, Y; Peeters, A G; Angioni, C; Casson, F J; Hornsby, W A; Snodin, A P; Strintzi, D

    2009-03-27

    The symmetry of a physical system strongly impacts on its properties. In toroidal plasmas, the symmetry along a magnetic field line usually constrains the radial flux of parallel momentum to zero in the absence of background flows. By breaking the up-down symmetry of the toroidal currents, this constraint can be relaxed. The parallel asymmetry in the magnetic configuration then leads to an incomplete cancellation of the turbulent momentum flux across a flux surface. The magnitude of the subsequent toroidal rotation increases with the up-down asymmetry and its sign depends on the direction of the toroidal magnetic field and plasma current. Such a mechanism offers new insights in the interpretation and control of the intrinsic toroidal rotation in present day experiments.

  1. Rotator cuff exercises

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000357.htm Rotator cuff exercises To use the sharing features on this ... gov/pubmed/25560729 . Read More Frozen shoulder Rotator cuff problems Rotator cuff repair Shoulder arthroscopy Shoulder CT scan Shoulder ...

  2. Rotating Cavitation Supression Project

    Data.gov (United States)

    National Aeronautics and Space Administration — FTT proposes development of a rotating cavitation (RC) suppressor for liquid rocket engine turbopump inducers. Cavitation instabilities, such as rotating...

  3. Pseudospin symmetry as an accidental symmetry in the relativistic framework

    Energy Technology Data Exchange (ETDEWEB)

    Marcos, S.; Niembro, R. [Universidad de Cantabria, Departamento de Fisica Moderna, Santander (Spain); Lopez-Quelle, M. [Universidad de Cantabria, Departamento de Fisica Aplicada, Santander (Spain); Savushkin, L.N. [St. Petersburg University for Telecommunications, Department of Physics, St. Petersburg (Russian Federation)

    2008-08-15

    We analyse the arguments used in the relativistic context to base the quasi-degeneracy of pseudospin doublets (PSDs) observed in atomic nuclei on the smallness of the single-particle central potential ({sigma}{sub S}+{sigma}{sub 0}), discussing, especially, the implications of the results obtained in the limit {sigma}{sub S}+{sigma}{sub 0}=0. We study also the transition from a relativistic model, where {sigma}{sub S}+{sigma}{sub 0} is a harmonic-oscillator potential and exhibits degenerate PSDs, to a more realistic one with broken pseudospin symmetry. We examine, in particular, the effect of the corresponding pseudospin symmetry-breaking term on the Dirac spinors of the PSDs. An extension of the Nilsson model to the relativistic case is also considered. (orig.)

  4. The Root Lattice D4 and Planar Quasilattices with Octagonal and Dodecagonal Symmetry

    Science.gov (United States)

    Baake, M.; Joseph, D.; Schlottmann, M.

    Quasiperiodic patterns with eight- and twelvefold symmetry are presented which share the root lattice D4, i.e., the 4-D face-centered hypercubic lattice, for their minimal embedding in four-space. We derive the patterns by means of the dualization method and investigate key properties like vertex configurations, local deflation/inflation symmetries and kinematic diffraction. The generalized point symmetries (and thus the Laue group) of these patterns are the dihedral groups d8 and d12, respectively, which share a common subgroup, d4. We introduce a contiunous one-parameter rotation between the two phases which leaves this subgroup invariant. This should prove useful for modelling alloys like V15Ni10Si where quasicrystalline phases with eight- and twelvefold symmetry coexist.

  5. Symmetry Breaking of Counter-Propagating Light in a Nonlinear Resonator

    Science.gov (United States)

    Del Bino, Leonardo; Silver, Jonathan M.; Stebbings, Sarah L.; Del'Haye, Pascal

    2017-01-01

    Spontaneous symmetry breaking is a concept of fundamental importance in many areas of physics, underpinning such diverse phenomena as ferromagnetism, superconductivity, superfluidity and the Higgs mechanism. Here we demonstrate nonreciprocity and spontaneous symmetry breaking between counter-propagating light in dielectric microresonators. The symmetry breaking corresponds to a resonance frequency splitting that allows only one of two counter-propagating (but otherwise identical) states of light to circulate in the resonator. Equivalently, this effect can be seen as the collapse of standing waves and transition to travelling waves within the resonator. We present theoretical calculations to show that the symmetry breaking is induced by Kerr-nonlinearity-mediated interaction between the counter-propagating light. Our findings pave the way for a variety of applications including optically controllable circulators and isolators, all-optical switching, nonlinear-enhanced rotation sensing, optical flip-flops for photonic memories as well as exceptionally sensitive power and refractive index sensors. PMID:28220865

  6. Effective Field Theory of Emergent Symmetry Breaking in Deformed Atomic Nuclei

    CERN Document Server

    Papenbrock, T

    2015-01-01

    Spontaneous symmetry breaking in non-relativistic quantum systems has previously been addressed in the framework of effective field theory. Low-lying excitations are constructed from Nambu-Goldstone modes using symmetry arguments only. We extend that approach to finite systems. The approach is very general. To be specific, however, we consider atomic nuclei with intrinsically deformed ground states. The emergent symmetry breaking in such systems requires the introduction of additional degrees of freedom on top of the Nambu-Goldstone modes. Symmetry arguments suffice to construct the low-lying states of the system. In deformed nuclei these are vibrational modes each of which serves as band head of a rotational band.

  7. Symmetry breaking in MAST plasma turbulence due to toroidal flow shear

    Science.gov (United States)

    Fox, M. F. J.; van Wyk, F.; Field, A. R.; Ghim, Y.-c.; Parra, F. I.; Schekochihin, A. A.; the MAST Team

    2017-03-01

    The flow shear associated with the differential toroidal rotation of tokamak plasmas breaks an underlying symmetry of the turbulent fluctuations imposed by the up–down symmetry of the magnetic equilibrium. Using experimental beam-emission-spectroscopy measurements and gyrokinetic simulations, this symmetry breaking in ion-scale turbulence in MAST is shown to manifest itself as a tilt of the spatial correlation function and a finite skew in the distribution of the fluctuating density field. The tilt is a statistical expression of the ‘shearing’ of the turbulent structures by the mean flow. The skewness of the distribution is related to the emergence of long-lived density structures in sheared, near-marginal plasma turbulence. The extent to which these effects are pronounced is argued (with the aid of the simulations) to depend on the distance from the nonlinear stability threshold. Away from the threshold, the symmetry is effectively restored.

  8. Symmetry breaking in MAST plasma turbulence due to toroidal flow shear

    CERN Document Server

    Fox, M F J; Field, A R; Ghim, Y -c; Parra, F I; Schekochihin, A A

    2016-01-01

    The flow shear associated with the differential toroidal rotation of tokamak plasmas breaks an underlying symmetry of the turbulent fluctuations imposed by the up-down symmetry of the magnetic equilibrium. Using experimental Beam-Emission-Spectroscopy (BES) measurements and gyrokinetic simulations, this symmetry breaking in ion-scale turbulence in MAST is shown to manifest itself as a tilt of the spatial correlation function and a finite skew in the distribution of the fluctuating density field. The tilt is a statistical expression of the "shearing" of the turbulent structures by the mean flow. The skewness of the distribution is related to the emergence of long-lived density structures in sheared, near-marginal plasma turbulence. The extent to which these effects are pronounced is argued (with the aid of the simulations) to depend on the distance from the nonlinear stability threshold. Away from the threshold, the symmetry is effectively restored.

  9. Notes on generalized global symmetries in QFT

    CERN Document Server

    Sharpe, E

    2015-01-01

    It was recently argued that quantum field theories possess one-form and higher-form symmetries, labelled `generalized global symmetries.' In this paper, we describe how those higher-form symmetries can be understood mathematically as special cases of more general 2-groups and higher groups, and discuss examples of quantum field theories admitting actions of more general higher groups than merely one-form and higher-form symmetries. We discuss analogues of topological defects for some of these higher symmetry groups, relating some of them to ordinary topological defects. We also discuss topological defects in cases in which the moduli `space' (technically, a stack) admits an action of a higher symmetry group. Finally, we outline a proposal for how certain anomalies might potentially be understood as describing a transmutation of an ordinary group symmetry of the classical theory into a 2-group or higher group symmetry of the quantum theory, which we link to WZW models and bosonization.

  10. Inflation, Symmetry, and B-Modes

    CERN Document Server

    Hertzberg, Mark P

    2014-01-01

    We examine the role of using symmetry and effective field theory in inflationary model building. We describe the standard formulation of starting with an approximate shift symmetry for a scalar field, and then introducing corrections systematically in order to maintain control over the inflationary potential. We find that this leads to models in good agreement with recent data. On the other hand, there are attempts in the literature to deviate from this paradigm by envoking other symmetries and corrections. In particular: in a suite of recent papers, several authors have made the claim that standard Einstein gravity with a cosmological constant and a massless scalar carries conformal symmetry. They further claim that such a theory carries another hidden symmetry; a global SO(1,1) symmetry. By deforming around the global SO(1,1) symmetry, they are able to produce a range of inflationary models with asymptotically flat potentials, whose flatness is claimed to be protected by these symmetries. These models tend ...

  11. Noether gauge symmetry approach in quintom cosmology

    CERN Document Server

    Aslam, Adnan; Momeni, Davood; Myrzakulov, Ratbay; Rashid, Muneer Ahmad; Raza, Muhammad

    2013-01-01

    In literature usual point like symmetries of the Lagrangian have been introduced to study the symmetries and the structure of the fields. This kind of Noether symmetry is a subclass of a more general family of symmetries, called Noether Gauge Symmetries (NGS). Motivated by this mathematical tool, in this article, we discuss the generalized Noether symmetry of Quintom model of dark energy, which is a two component fluid model of quintessence and phantom fields. Our model is a generalization of the Noether symmetries of a single and multiple components which have been investigated in detail before. We found the general form of the quintom potential in which the whole dynamical system has a point like symmetry. We investigated different possible solutions of the system for diverse family of gauge function. Specially, we discovered two family of potentials, one corresponds to a free quintessence (phantom) and the second is in the form of quadratic interaction between two components. These two families of potentia...

  12. Rotation Breaking Induced by ELMs on EAST

    DEFF Research Database (Denmark)

    Xiong, H.; Xu, G.; Sun, Y.

    Spontaneous rotation has been observed in LHCD H-mode plasmas with type III ELMs (edge localized modes) on EAST, and it revealed that type III ELMs can induce the loss of both core and edge toroidal rotation. Here we work on the breaking mechanism during the ELMs. Several large tokamaks have...... discovered ELMs' filamentary structures. It revealed that the ELMs are filamentary perturbations of positive density formed along the local field lines close to the LCFS. Currents flowing in the filaments induce magnetic perturbations, which break symmetry of magnetic field strength and lead to deformation...... of magnetic surface, thus generate NTV (neoclassical toroidal viscosity) torque that affects toroidal rotation. We adopt 1cm maximum edge magnetic surface displacement from experimental observation, and our calculation shows that the edge torque is about 0.35 N/m2, and the core very small. The expected...

  13. Approximate Flavor Symmetry in Supersymmetric Model

    OpenAIRE

    Tao, Zhijian

    1998-01-01

    We investigate the maximal approximate flavor symmetry in the framework of generic minimal supersymmetric standard model. We consider the low energy effective theory of the flavor physics with all the possible operators included. Spontaneous flavor symmetry breaking leads to the approximate flavor symmetry in Yukawa sector and the supersymmetry breaking sector. Fermion mass and mixing hierachies are the results of the hierachy of the flavor symmetry breaking. It is found that in this theory i...

  14. Horizontal Symmetry: Bottom Up and Top Down

    CERN Document Server

    Lam, C S

    2011-01-01

    A group-theoretical connection between horizontal symmetry $\\G$ and fermion mixing is established, and applied to neutrino mixing. The group-theoretical approach is consistent with a dynamical theory based on $U(1)\\times \\G$, but the dynamical theory can be used to pick out the most stable mixing that purely group-theoretical considerations cannot. A symmetry common to leptons and quarks is also discussed. This higher symmetry picks $A_4$ over $S_4$ to be the preferred symmetry for leptons.

  15. Partial Dynamical Symmetry in Nuclear Systems

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J E

    2003-06-02

    Partial dynamical symmetry (PDS) extends and complements the concepts of exact and dynamical symmetry. It allows one to remove undesired constraints from an algebraic theory, while preserving some of the useful aspects of a dynamical symmetry, and to study the effects of symmetry breaking in a controlled manner. An example of a PDS in an interacting fermion system is presented. The associated PDS Hamiltonians are closely related with a realistic quadrupole-quadrupole interaction and provide new insights into this important interaction.

  16. Stationary MHD equilibria describing azimuthal rotations in symmetric plasmas

    Science.gov (United States)

    da Silva, Sidney T.; Viana, Ricardo L.

    2016-12-01

    We consider the stationary magnetohydrodynamical (MHD) equilibrium equation for an axisymmetric plasma undergoing azimuthal rotations. The case of cylindrical symmetry is treated, and we present two semi-analytical solutions for the stationary MHD equilibrium equations, from which a number of physical properties of the magnetically confined plasma are derived.

  17. Unified rotational dynamics of molecular crystals with orientational phase transition

    NARCIS (Netherlands)

    Michel, K.H.; Raedt, H. De

    1976-01-01

    A unified theory for the rotational dynamics of molecular crystals with orientational phase transitions is given. As basic secular variables one takes symmetry adapted functions, which describe the molecular orientations, and the angular momenta of the molecules. Using Mori’s projection operator tec

  18. Dynamical Symmetries Reflected in Realistic Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Sviratcheva, K.D.; Draayer, J.P.; /Louisiana State U.; Vary, J.P.; /Iowa State U. /LLNL, Livermore /SLAC

    2007-04-06

    Realistic nucleon-nucleon (NN) interactions, derived within the framework of meson theory or more recently in terms of chiral effective field theory, yield new possibilities for achieving a unified microscopic description of atomic nuclei. Based on spectral distribution methods, a comparison of these interactions to a most general Sp(4) dynamically symmetric interaction, which previously we found to reproduce well that part of the interaction that is responsible for shaping pairing-governed isobaric analog 0{sup +} states, can determine the extent to which this significantly simpler model Hamiltonian can be used to obtain an approximate, yet very good description of low-lying nuclear structure. And furthermore, one can apply this model in situations that would otherwise be prohibitive because of the size of the model space. In addition, we introduce a Sp(4) symmetry breaking term by including the quadrupole-quadrupole interaction in the analysis and examining the capacity of this extended model interaction to imitate realistic interactions. This provides a further step towards gaining a better understanding of the underlying foundation of realistic interactions and their ability to reproduce striking features of nuclei such as strong pairing correlations or collective rotational motion.

  19. Modulation field induces universe rotation

    CERN Document Server

    Chen, Chien Yu

    2008-01-01

    Noncommutative field theory is a theory concerning a background field on the string world sheet. Whole of the universe is survived on background field situation. In this paper, we consider a module field on spacetime expansion without modifying commutative relation, and omit the deformed effects by $\\star$ production. Lorentz symmetry is conserved on module and unmodule coordinate, the violation point is under the translation between each others by module expansion. However, considering a background field on spacetime geodesic we could understand that even magnetic force could not be generated by putting a module $Poincar\\check{e}$ boost due to CPT conservation. Which phenomenon, each particle field will be rotated and expanded. Assembling the commutative and anti-commutative null vector by putting an operated coefficients on three orthogonal states. Spacetime is homogeneous but anisotropic, since the energy fluid is not uniformed by a distribution of modulation field. Therefore, concentrating on which signif...

  20. Symmetries in multi-Higgs-doublet models

    CERN Document Server

    Ivanov, I P

    2012-01-01

    We report the recent progress in understanding of symmetries which can be implemented in the scalar sector of electroweak symmetry breaking models with several Higgs doublets. In particular we present the list of finite reparametrization symmetry groups which can appear in the three-Higgs-doublet models.

  1. Generalized Partial Dynamical Symmetry in Nuclei

    CERN Document Server

    Leviatan, A

    2002-01-01

    We introduce the notion of a generalized partial dynamical symmetry for which part of the eigenstates have part of the dynamical symmetry. This general concept is illustrated with the example of Hamiltonians with a partial dynamical O(6) symmetry in the framework of the interacting boson model. The resulting spectrum and electromagnetic transitions are compared with empirical data in $^{162}$Dy.

  2. Generalized partial dynamical symmetry in nuclei.

    Science.gov (United States)

    Leviatan, A; Isacker, P Van

    2002-11-25

    We introduce the notion of a generalized partial dynamical-symmetry for which part of the eigenstates have part of the dynamical symmetry. This general concept is illustrated with the example of Hamiltonians with a partial dynamical O(6) symmetry in the framework of the interacting boson model. The resulting spectrum and electromagnetic transitions are compared with empirical data in 162Dy.

  3. Partial Dynamical Symmetry in Deformed Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A. [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)

    1996-07-01

    We discuss the notion of partial dynamical symmetry in relation to nuclear spectroscopy. Explicit forms of Hamiltonians with partial SU(3) symmetry are presented in the framework of the interacting boson model of nuclei. An analysis of the resulting spectrum and electromagnetic transitions demonstrates the relevance of such partial symmetry to the spectroscopy of axially deformed nuclei. {copyright} {ital 1996 The American Physical Society.}

  4. Partial dynamical symmetry in deformed nuclei

    CERN Document Server

    Leviatan, A

    1996-01-01

    We discuss the notion of partial dynamical symmetry in relation to nuclear spectroscopy. Explicit forms of Hamiltonians with partial SU(3) symmetry are presented in the framework of the interacting boson model of nuclei. An analysis of the resulting spectrum and electromagnetic transitions demonstrates the relevance of such partial symmetry to the spectroscopy of axially deformed nuclei.

  5. Simultaneous occurrence of distinct symmetries in nuclei

    CERN Document Server

    Leviatan, A

    2015-01-01

    We show that distinct emergent symmetries, such as partial dynamical symmetry and quasi dynamical symmetry, can occur simultaneously in the same or different eigenstates of the Hamiltonian. Implications for nuclear spectroscopy in the rare-earth region and for first-order quantum phase transitions between spherical and deformed shapes, are considered.

  6. General Formalism for the BRST Symmetry

    Institute of Scientific and Technical Information of China (English)

    Suhail Ahmad

    2013-01-01

    In this paper we will discuss Faddeev-Popov method for gauge theories with a general form of gauge symmetry in an abstract way.We will then develope a general formalism for dealing with the BRST symmetry.This formalism will make it possible to analyse the BRST symmetry for any theory.

  7. Parameter Symmetry of the Interacting Boson Model

    CERN Document Server

    Shirokov, A M; Smirnov, Yu F; Shirokov, Andrey M.; Smirnov, Yu. F.

    1998-01-01

    We discuss the symmetry of the parameter space of the interacting boson model (IBM). It is shown that for any set of the IBM Hamiltonian parameters (with the only exception of the U(5) dynamical symmetry limit) one can always find another set that generates the equivalent spectrum. We discuss the origin of the symmetry and its relevance for physical applications.

  8. Noether symmetries and duality transformations in cosmology

    Science.gov (United States)

    Paliathanasis, Andronikos; Capozziello, Salvatore

    2016-09-01

    We discuss the relation between Noether (point) symmetries and discrete symmetries for a class of minisuperspace cosmological models. We show that when a Noether symmetry exists for the gravitational Lagrangian, then there exists a coordinate system in which a reversal symmetry exists. Moreover, as far as concerns, the scale-factor duality symmetry of the dilaton field, we show that it is related to the existence of a Noether symmetry for the field equations, and the reversal symmetry in the normal coordinates of the symmetry vector becomes scale-factor duality symmetry in the original coordinates. In particular, the same point symmetry as also the same reversal symmetry exists for the Brans-Dicke scalar field with linear potential while now the discrete symmetry in the original coordinates of the system depends on the Brans-Dicke parameter and it is a scale-factor duality when ωBD = 1. Furthermore, in the context of the O’Hanlon theory for f(R)-gravity, it is possible to show how a duality transformation in the minisuperspace can be used to relate different gravitational models.

  9. Symmetries of the dissipative Hofstadter model

    CERN Document Server

    Freed, D E

    1993-01-01

    The dissipative Hofstadter model, which describes a particle in 2-D subject to a periodic potential, uniform magnetic field, and dissipation, is also related to open string boundary states. This model exhibits an SL(2,Z) duality symmetry and hidden reparametrization invariance symmetries. These symmetries are useful for finding exact solutions for correlation functions.

  10. Symmetry and electromagnetism. Simetria y electromagnetismo

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes Cobas, L.E.; Font Hernandez, R.

    1993-01-01

    An analytical treatment of electrostatic and magnetostatic field symmetry, as a function of charge and current distribution symmetry, is proposed. The Newmann Principle, related to the cause-effect symmetry relation, is presented and applied to the characterization of simple configurations. (Author) 5 refs.

  11. Symmetry Breaking for Black-Scholes Equations

    Institute of Scientific and Technical Information of China (English)

    YANG Xuan-Liu; ZHANG Shun-Li; QU Chang-Zheng

    2007-01-01

    Black-Scholes equation is used to model stock option pricing. In this paper, optimal systems with one to four parameters of Lie point symmetries for Black-Scholes equation and its extension are obtained. Their symmetry breaking interaction associated with the optimal systems is also studied. As a result, symmetry reductions and corresponding solutions for the resulting equations are obtained.

  12. Neutrino mass, mixing and discrete symmetries

    CERN Document Server

    Smirnov, Alexei Y

    2013-01-01

    Status of the discrete symmetry approach to explanation of the lepton masses and mixing is summarized in view of recent experimental results, in particular, establishing relatively large 1-3 mixing. The lepton mixing can originate from breaking of discrete flavor symmetry $G_f$ to different residual symmetries $G_{\\ell}$ and $G_\

  13. Prediction of human eye fixations using symmetry

    NARCIS (Netherlands)

    Kootstra, Gert; Schomaker, Lambert

    2009-01-01

    Humans are very sensitive to symmetry in visual patterns. Reaction time experiments show that symmetry is detected and recognized very rapidly. This suggests that symmetry is a highly salient feature. Existing computational models of saliency, however, have mainly focused on contrast as a measure of

  14. Exact Chiral Symmetry on the Lattice

    CERN Document Server

    Neuberger, H

    2001-01-01

    Developments during the last eight years have refuted the folklore that chiral symmetries cannot be preserved on the lattice. The mechanism that permits chiral symmetry to coexist with the lattice is quite general and may work in Nature as well. The reconciliation between chiral symmetry and the lattice is likely to revolutionize the field of numerical QCD.

  15. Intrinsic Axial Flows in CSDX and Dynamical Symmetry Breaking in ITG Turbulence

    Science.gov (United States)

    Li, Jiacong; Diamond, P. H.; Hong, R.; Thakur, S. C.; Xu, X. Q.; Tynan, G. R.

    2016-10-01

    Toroidal plasma rotation can enhance confinement when combined with weak magnetic shear. Also, external rotation drive in future fusion devices (e.g. ITER) will be weak. Together, these two considerations drive us to study intrinsic rotations with weak magnetic shear. In particular, a global transition is triggered in CSDX when magnetic field B exceeds a critical strength threshold. At the transition an ion feature emerges in the core turbulence. Recent studies show that a dynamical symmetry breaking mechanism in drift wave turbulence can drive intrinsic axial flows in CSDX, as well as enhance intrinsic rotations in tokamaks. Here, we focus on what happens when ion features emerge in CSDX, and how ion temperature gradient (ITG) driven turbulence drives intrinsic rotations with weak magnetic shear. The effect of dynamical symmetry breaking in ITG turbulence depends on the stability regime. In a marginally stable regime, dynamical symmetry breaking results in an augmented turbulence viscosity (chi-phi). However, when ITG is far from the stability boundary, a negative increment in turbulent viscosity is induced. This material is based upon work supported by the U.S. Department of Energy, Office of Fusion Energy Sciences, under Award No. DE-FG02-04ER54738.

  16. Rotational Doppler effect in nonlinear optics

    Science.gov (United States)

    Li, Guixin; Zentgraf, Thomas; Zhang, Shuang

    2016-08-01

    The translational Doppler effect of electromagnetic and sound waves has been successfully applied in measurements of the speed and direction of vehicles, astronomical objects and blood flow in human bodies, and for the Global Positioning System. The Doppler effect plays a key role for some important quantum phenomena such as the broadened emission spectra of atoms and has benefited cooling and trapping of atoms with laser light. Despite numerous successful applications of the translational Doppler effect, it fails to measure the rotation frequency of a spinning object when the probing wave propagates along its rotation axis. This constraint was circumvented by deploying the angular momentum of electromagnetic waves--the so-called rotational Doppler effect. Here, we report on the demonstration of rotational Doppler shift in nonlinear optics. The Doppler frequency shift is determined for the second harmonic generation of a circularly polarized beam passing through a spinning nonlinear optical crystal with three-fold rotational symmetry. We find that the second harmonic generation signal with circular polarization opposite to that of the fundamental beam experiences a Doppler shift of three times the rotation frequency of the optical crystal. This demonstration is of fundamental significance in nonlinear optics, as it provides us with insight into the interaction of light with moving media in the nonlinear optical regime.

  17. Gravitating fluids with Lie symmetries

    CERN Document Server

    Msomi, A M; Maharaj, S D

    2010-01-01

    We analyse the underlying nonlinear partial differential equation which arises in the study of gravitating flat fluid plates of embedding class one. Our interest in this equation lies in discussing new solutions that can be found by means of Lie point symmetries. The method utilised reduces the partial differential equation to an ordinary differential equation according to the Lie symmetry admitted. We show that a class of solutions found previously can be characterised by a particular Lie generator. Several new families of solutions are found explicitly. In particular we find the relevant ordinary differential equation for all one-dimensional optimal subgroups; in several cases the ordinary differential equation can be solved in general. We are in a position to characterise particular solutions with a linear barotropic equation of state.

  18. Critical Point Symmetries in Nuclei

    CERN Document Server

    Bonatsos, D; Petrellis, D; Terziev, P A; Yigitoglu, I; Bonatsos, Dennis

    2006-01-01

    Critical Point Symmetries (CPS) appear in regions of the nuclear chart where a rapid change from one symmetry to another is observed. The first CPSs, introduced by F. Iachello, were E(5), which corresponds to the transition from vibrational [U(5)] to gamma-unstable [O(6)] behaviour, and X(5), which represents the change from vibrational [U(5)] to prolate axially deformed [SU(3)] shapes. These CPSs have been obtained as special solutions of the Bohr collective Hamiltonian. More recent special solutions of the same Hamiltonian, to be described here, include Z(5) and Z(4), which correspond to maximally triaxial shapes (the latter with ``frozen'' gamma=30 degrees), as well as X(3), which corresponds to prolate shapes with ``frozen'' gamma=0. CPSs have the advantage of providing predictions which are parameter free (up to overall scale factors) and compare well to experiment. However, their mathematical structure [with the exception of E(5)] needs to be clarified.

  19. CP symmetry in optical systems

    CERN Document Server

    Dana, Brenda; Malomed, Boris A

    2015-01-01

    We introduce a model of a dual-core optical waveguide with opposite signs of the group-velocity-dispersion (GVD) in the two cores, and a phase-velocity mismatch between them. The coupler is embedded into an active host medium, which provides for the linear coupling of a gain-loss type between the two cores. The same system can be derived, without phenomenological assumptions, by considering the three-wave propagation in a medium with the quadratic nonlinearity, provided that the depletion of the second-harmonic pump is negligible. This linear system offers an optical realization of the charge-parity ($\\mathcal{CP}$) symmetry, while the addition of the intra-core cubic nonlinearity breaks the symmetry. By means of direct simulations and analytical approximations, it is demonstrated that the linear system generates expanding Gaussian states, while the nonlinear one gives rise to broad oscillating solitons, as well as a general family of stable stationary gap solitons.

  20. Superconformal Symmetry, NMSSM, and Inflation

    CERN Document Server

    Ferrara, Sergio; Linde, Andrei; Marrani, Alessio; Van Proeyen, Antoine

    2011-01-01

    We identify a particularly simple class of supergravity models describing superconformal coupling of matter to supergravity. In these models, which we call the canonical superconformal supergravity (CSS) models, the kinetic terms in the Jordan frame are canonical, and the scalar potential is the same as in the global theory. The pure supergravity part of the total action has a local Poincare supersymmetry, whereas the chiral and vector multiplets coupled to supergravity have a larger local superconformal symmetry. The scale-free globally supersymmetric theories, such as the NMSSM with a scale-invariant superpotential, can be naturally embedded into this class of theories. After the supergravity embedding, the Jordan frame scalar potential of such theories remains scale free; it is quartic, it contains no mass terms, no nonrenormalizable terms, no cosmological constant. The local superconformal symmetry can be broken by additional terms, which, in the small field limit, are suppressed by the gravitational coup...

  1. Symmetry breaking around a wormhole

    Science.gov (United States)

    Choudhury, A. L.

    1996-11-01

    We have modified the extended version Coule and Maeda's version (D. H. Coule and Kei-ichi Maeda, Class.Quant.Grav.7,995(1990)) of the Gidding-Strominger model (S. B. Giddings and A. Strominger, Nucl.Phys. B307, 854(l988)) of the euclidean gravitational field interacting with axion. The new model has R-symmetry in contrast to the previous model. At the lowest perturbation case the model retains a wormhole solution. We assume that the scalar expands adiabatically and satisfies ideal gas law in a crude first approximation. Under the Higg's mechanism the symmetry can be broken at the tree approximation. This mechanism, we hope, can be used to introduce the degeneracy of quark masses.

  2. Flavor Symmetries in Extra Dimensions

    CERN Document Server

    Aranda, A; Aranda, Alfredo

    2002-01-01

    We present a model of flavor based on a discrete local symmetry that reproduces all fermion masses and mixing angles both in the quark and lepton sectors. The particle content of the model is that of the standard model plus an additional flavon field. All the fields propagate in a fifth universal extra dimension and the flavor scale is associated with the cutoff of the 5D theory which is $\\sim 10$ TeV. The Yukawa matrices as well as the Majorana mass matrix for the neutrinos are generated by higher dimension operators involving the flavon field. When the flavon field acquires a vacuum expectation value it breaks the flavor symmetry and thus generates the Yukawa couplings. The model is consistent with the nearly bimaximal solution to the solar and atmospheric neutrino deficits.

  3. Symmetry realization of texture zeros

    Energy Technology Data Exchange (ETDEWEB)

    Grimus, W. [Institut fuer Theoretische Physik, Universitaet Wien, Boltzmanngasse 5, 1090, Wien (Austria); Joshipura, A.S. [Physical Research Laboratory, 380009, Ahmedabad (India); Lavoura, L. [Centro de Fisica das Interaccoes Fundamentais, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, 1049-001, Lisboa (Portugal); Tanimoto, M. [Department of Physics, Niigata University, Ikarashi 2-8050, 950-2181, Niigata (Japan)

    2004-08-01

    We show that it is possible to enforce texture zeros in arbitrary entries of the fermion mass matrices by means of Abelian symmetries; in this way, many popular mass-matrix textures find a symmetry justification. We propose two alternative methods which allow one to place zeros in any number of elements of the mass matrices that one wants. They are applicable simultaneously in the quark and lepton sectors. They are also applicable in grand unified theories. The number of scalar fields required by our methods may be large; still, in many interesting cases this number can be reduced considerably. The larger the desired number of texture zeros is, the simpler are the models which reproduce the texture. (orig.)

  4. Symmetry realization of texture zeros

    CERN Document Server

    Grimus, Walter; Lavoura, L; Tanimoto, M

    2004-01-01

    We show that it is possible to enforce texture zeros in arbitrary entries of the fermion mass matrices by means of Abelian symmetries; in this way, many popular mass-matrix textures find a symmetry justification. We propose two alternative methods which allow to place zeros in any number of elements of the mass matrices that one wants. They are applicable simultaneously in the quark and lepton sectors. They are also applicable in Grand Unified Theories. The number of scalar fields required by our methods may be large; still, in many interesting cases this number can be reduced considerably. The larger the desired number of texture zeros is, the simpler are the models which reproduce the texture.

  5. Dark Matter and Global Symmetries

    CERN Document Server

    Mambrini, Yann; Queiroz, Farinaldo S

    2015-01-01

    General considerations in general relativity and quantum mechanics rule out global symmetries in the context of any consistent theory of quantum gravity. Motivated by this, we derive stringent and robust bounds from gamma-ray, X-ray, cosmic ray, neutrino and CMB data on models that invoke global symmetries to stabilize the dark matter particle. Under realistic assumptions we are able to rule out fermionic, vector, and scalar dark matter candidates across a broad mass range (keV-TeV), including the WIMP regime. We then specialize our analysis and apply our bounds to specific models such as the Two-Higgs-Doublet, Left-Right, Singlet Fermionic, Zee-Babu, 3-3-1 and Radiative See-Saw models. In the supplemental material we derive robust, updated model-independent limits on the dark matter lifetime.

  6. Lepton mixing and discrete symmetries

    Science.gov (United States)

    Hernandez, D.; Smirnov, A. Yu.

    2012-09-01

    The pattern of lepton mixing can emerge from breaking a flavor symmetry in different ways in the neutrino and charged lepton Yukawa sectors. In this framework, we derive the model-independent conditions imposed on the mixing matrix by the structure of discrete groups of the von Dyck type which include A4, S4, and A5. We show that, in general, these conditions lead to at least two equations for the mixing parameters (angles and CP phase δ). These constraints, which correspond to unbroken residual symmetries, are consistent with nonzero 13 mixing and deviations from maximal 2-3 mixing. For the simplest case, which leads to an S4 model and reproduces the allowed values of the mixing angles, we predict δ=(90°-120°).

  7. Application of a two-parameter quantum algebra to rotational spectroscopy of nuclei

    Science.gov (United States)

    Barbier, R.; Kibler, M.

    1996-10-01

    A two-parameter quantum algebra Uqp( u2) is briefly investigated in this paper. The basic ingredients of a model based on the Uqp( u2) symmetry, the qp-rotator model, are presented in detail. Some general tendencies arising from the application of this model to the description of rotational bands of various atomic nuclei are summarized.

  8. Cosmological Reflection of Particle Symmetry

    OpenAIRE

    Maxim Khlopov

    2016-01-01

    The standard model involves particle symmetry and the mechanism of its breaking. Modern cosmology is based on inflationary models with baryosynthesis and dark matter/energy, which involves physics beyond the standard model. Studies of the physical basis of modern cosmology combine direct searches for new physics at accelerators with its indirect non-accelerator probes, in which cosmological consequences of particle models play an important role. The cosmological reflection of particle symmetr...

  9. Explaining quantum spontaneous symmetry breaking

    Science.gov (United States)

    Liu, Chuang; Emch, Gérard G.

    Two accounts of quantum symmetry breaking (SSB) in the algebraic approach are compared: the representational and the decompositional account. The latter account is argued to be superior for understanding quantum SSB. Two exactly solvable models are given as applications of our account: the Weiss-Heisenberg model for ferromagnetism and the BCS model for superconductivity. Finally, the decompositional account is shown to be more conducive to the causal explanation of quantum SSB.

  10. Symmetries in Lagrangian Field Theory

    Science.gov (United States)

    Búa, Lucia; Bucataru, Ioan; León, Manuel de; Salgado, Modesto; Vilariño, Silvia

    2015-06-01

    By generalising the cosymplectic setting for time-dependent Lagrangian mechanics, we propose a geometric framework for the Lagrangian formulation of classical field theories with a Lagrangian depending on the independent variables. For that purpose we consider the first-order jet bundles J1π of a fiber bundle π : E → ℝk where ℝk is the space of independent variables. Generalized symmetries of the Lagrangian are introduced and the corresponding Noether theorem is proved.

  11. Symmetries of partial differential equations

    OpenAIRE

    Gaussier, Hervé; Merker, Joël

    2004-01-01

    We establish a link between the study of completely integrable systems of partial differential equations and the study of generic submanifolds in C^n. Using the recent developments of Cauchy-Riemann geometry we provide the set of symmetries of such a system with a Lie group structure. Finally we determine the precise upper bound of the dimension of this Lie group for some specific systems of partial differential equations.

  12. Models of electroweak symmetry breaking

    CERN Document Server

    Pomarol, Alex

    2015-01-01

    This chapter present models of electroweak symmetry breaking arising from strongly interacting sectors, including both Higgsless models and mechanisms involving a composite Higgs. These scenarios have also been investigated in the framework of five-dimensional warped models that, according to the AdS/CFT correspondence, have a four-dimensional holographic interpretation in terms of strongly coupled field theories. We explore the implications of these models at the LHC.

  13. Dirac neutrinos from flavor symmetry

    CERN Document Server

    Aranda, Alfredo; Morisi, S; Peinado, E; Valle, J W F

    2013-01-01

    We present a model where Majorana neutrino mass terms are forbidden by the flavor symmetry group Delta(27). Neutrinos are Dirac fermions and their masses arise in the same way as that of the charged fermions, due to very small Yukawa couplings. The model fits current neutrino oscillation data and correlates the octant of the atmospheric angle with the magnitude of the lightest neutrino mass, with maximal mixing excluded for any neutrino mass

  14. Measuring Complexity through Average Symmetry

    OpenAIRE

    Alamino, Roberto C.

    2015-01-01

    This work introduces a complexity measure which addresses some conflicting issues between existing ones by using a new principle - measuring the average amount of symmetry broken by an object. It attributes low (although different) complexity to either deterministic or random homogeneous densities and higher complexity to the intermediate cases. This new measure is easily computable, breaks the coarse graining paradigm and can be straightforwardly generalised, including to continuous cases an...

  15. Painlevé property, symmetries and symmetry reductions of the coupled Burgers system

    Institute of Scientific and Technical Information of China (English)

    Lian Zeng-Ju; Chen Li-Li; Lou Sen-Yue

    2005-01-01

    The Painlevé property, inverse recursion operator, infinite number of symmetries and Lie symmetry reductions of the coupled Burgers equation are given explicitly. Three sets of infinitely many symmetries of the considered model are obtained by acting the recursion operator and the inverse recursion operator on the trivial symmetries such as the identity transformation, the space translation and the scaling transformation respectively. These symmetries constitute an infinite dimensional Lie algebra while its finite dimensional Lie point symmetry subalgebra is used to find possible symmetry reductions and then the group invariant solutions.

  16. Dark matter and global symmetries

    Science.gov (United States)

    Mambrini, Yann; Profumo, Stefano; Queiroz, Farinaldo S.

    2016-09-01

    General considerations in general relativity and quantum mechanics are known to potentially rule out continuous global symmetries in the context of any consistent theory of quantum gravity. Assuming the validity of such considerations, we derive stringent bounds from gamma-ray, X-ray, cosmic-ray, neutrino, and CMB data on models that invoke global symmetries to stabilize the dark matter particle. We compute up-to-date, robust model-independent limits on the dark matter lifetime for a variety of Planck-scale suppressed dimension-five effective operators. We then specialize our analysis and apply our bounds to specific models including the Two-Higgs-Doublet, Left-Right, Singlet Fermionic, Zee-Babu, 3-3-1 and Radiative See-Saw models. Assuming that (i) global symmetries are broken at the Planck scale, that (ii) the non-renormalizable operators mediating dark matter decay have O (1) couplings, that (iii) the dark matter is a singlet field, and that (iv) the dark matter density distribution is well described by a NFW profile, we are able to rule out fermionic, vector, and scalar dark matter candidates across a broad mass range (keV-TeV), including the WIMP regime.

  17. Assessing symmetry of financial returns series

    CERN Document Server

    Coronel-Brizio, H F; Rodriguez-Achach, M

    2007-01-01

    Testing symmetry of a probability distribution is a common question arising from applications in several fields. Particularly, in the study of observables used in the analysis of stock market index variations, the question of symmetry has not been fully investigated by means of statistical procedures. In this work a distribution-free test statistic Tn for testing symmetry, derived by Einmahl and McKeague, based on the empirical likelihood approach, is used to address the study of symmetry of financial returns. The asymptotic points of the test statistic Tn are also calculated and a procedure for assessing symmetry for the analysis of the returns of stock market indices is presented.

  18. Automatic CP invariance and flavor symmetry

    CERN Document Server

    Dutta, G; Dutta, Gautam; Joshipura, Anjan S

    1996-01-01

    The approximate conservation of CP can be naturally understood if it arises as an automatic symmetry of the renormalizable Lagrangian. We present a specific realistic example with this feature. In this example, the global Peccei-Quinn symmetry and gauge symmetries of the model make the renormalizable Lagrangian CP invariant but allow non zero hierarchical masses and mixing among the three generations. The left-right and a horizontal U(1)_H symmetry is imposed to achieve this. The non-renormalizable interactions invariant under these symmetries violate CP whose magnitude can be in the experimentally required range if U(1)_H is broken at very high, typically, near the grand unification scale.

  19. Neutrino masses and spontaneously broken flavor symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Staudt, Christian

    2014-06-16

    We study the phenomenology of supersymmetric flavor models. We show how the predictions of models based on spontaneously broken non-Abelian discrete flavor symmetries are altered when we include so-called Kaehler corrections. Furthermore, we discuss anomaly-free discrete R symmetries which are compatible with SU(5) unification. We find a set of symmetries compatible with suppressed Dirac neutrino masses and a unique symmetry consistent with the Weinberg operator. We also study a pseudo-anomalous U(1){sub R} symmetry which explains the fermion mass hierarchies and, when amended with additional singlet fields, ameliorates the fine-tuning problem.

  20. Symmetries, Integrals and Solutions of Ordinary Differential Equations of Maximal Symmetry

    Indian Academy of Sciences (India)

    P G L Leach; R R Warne; N Caister; V Naicker; N Euler

    2010-02-01

    Second-and third-order scalar ordinary differential equations of maximal symmetry in the traditional sense of point, respectively contact, symmetry are examined for the mappings they produce in solutions and fundamental first integrals. The properties of the `exceptional symmetries’, i.e. those not considered to be generic to scalar equations of maximal symmetry, can be recast into a form which is applicable to all such equations of maximal symmetry. Some properties of these symmetries are demonstrated.

  1. Mei Symmetry and Noether Symmetry of the Relativistic Variable Mass System

    Institute of Scientific and Technical Information of China (English)

    FANG Jian-Hui

    2004-01-01

    The definition and criterion of the Mei symmetry of a relativistic variable mass system are given. The relation between the Mei symmetry and the Noether symmetry of the system is found under infinitesimal transformations of groups. The conserved quantities to which the Mei symmetry and Noether symmetry of the system lead are obtained.An example is given to illustrate the application of the result.

  2. The Symmetry of Optical Field in Photonic Crystal Fibre with Trigonal Symmetry

    Directory of Open Access Journals (Sweden)

    Ivan Turek

    2006-01-01

    Full Text Available Some photographs of intensity of optical field of a photonic crystal fibre are presented in the contribution. Presented photographs document that the symmetry of photonic crystal creating the cladding of fibre is manifested in the symmetry of distribution of the optical field intensity. In case when more modes are excited in the fibre the symmetry of the generated field can be different as the symmetry of the eventual modes. How the symmetry may be changed is illustrated by amodel example.

  3. Generalization of Friedberg-Lee symmetry

    Science.gov (United States)

    Huang, Chao-Shang; Li, Tianjun; Liao, Wei; Zhu, Shou-Hua

    2008-07-01

    We study the possible origin of Friedberg-Lee symmetry. First, we propose the generalized Friedberg-Lee symmetry in the potential by including the scalar fields in the field transformations, which can be broken down to the Friedberg-Lee symmetry spontaneously. We show that the generalized Friedberg-Lee symmetry allows a typical form of Yukawa couplings, and the realistic neutrino masses and mixings can be generated via the seesaw mechanism. If the right-handed neutrinos transform nontrivially under the generalized Friedberg-Lee symmetry, we can have the testable TeV scale seesaw mechanism. Second, we present two models with the SO(3)×U(1) global flavor symmetry in the lepton sector. After the flavor symmetry breaking, we can obtain the charged lepton masses, and explain the neutrino masses and mixings via the seesaw mechanism. Interestingly, the complete neutrino mass matrices are similar to those of the above models with generalized Friedberg-Lee symmetry. So the Friedberg-Lee symmetry is the residual symmetry in the neutrino mass matrix after the SO(3)×U(1) flavor symmetry breaking.

  4. Brain Activity in Response to Visual Symmetry

    Directory of Open Access Journals (Sweden)

    Marco Bertamini

    2014-12-01

    Full Text Available A number of studies have explored visual symmetry processing by measuring event related potentials and neural oscillatory activity. There is a sustained posterior negativity (SPN related to the presence of symmetry. There is also functional magnetic resonance imaging (MRI activity in extrastriate visual areas and in the lateral occipital complex. We summarise the evidence by answering six questions. (1 Is there an automatic and sustained response to symmetry in visual areas? Answer: Yes, and this suggests automatic processing of symmetry. (2 Which brain areas are involved in symmetry perception? Answer: There is an extended network from extrastriate areas to higher areas. (3 Is reflection special? Answer: Reflection is the optimal stimulus for a more general regularity-sensitive network. (4 Is the response to symmetry independent of view angle? Answer: When people classify patterns as symmetrical or random, the response to symmetry is view-invariant. When people attend to other dimensions, the network responds to residual regularity in the image. (5 How are brain rhythms in the two hemispheres altered during symmetry perception? Answer: Symmetry processing (rather than presence produces more alpha desynchronization in the right posterior regions. Finally, (6 does symmetry processing produce positive affect? Answer: Not in the strongest sense, but behavioural measures reveal implicit positive evaluation of abstract symmetry.

  5. Axial symmetry and conformal Killing vectors

    CERN Document Server

    Mars, M; Mars, Marc; Senovilla, Jose M.M.

    1993-01-01

    Axisymmetric spacetimes with a conformal symmetry are studied and it is shown that, if there is no further conformal symmetry, the axial Killing vector and the conformal Killing vector must commute. As a direct consequence, in conformally stationary and axisymmetric spacetimes, no restriction is made by assuming that the axial symmetry and the conformal timelike symmetry commute. Furthermore, we prove that in axisymmetric spacetimes with another symmetry (such as stationary and axisymmetric or cylindrically symmetric spacetimes) and a conformal symmetry, the commutator of the axial Killing vector with the two others mush vanish or else the symmetry is larger than that originally considered. The results are completely general and do not depend on Einstein's equations or any particular matter content.

  6. Symmetries of Ginsparg-Wilson Chiral Fermions

    CERN Document Server

    Mandula, Jeffrey E

    2009-01-01

    The group structure of the variant chiral symmetry discovered by Luscher in the Ginsparg-Wilson description of lattice chiral fermions is analyzed. It is shown that the group contains an infinite number of linearly independent symmetry generators, and the Lie algebra is given explicitly. CP is an automorphism of this extended chiral group, and the CP transformation properties of the symmetry generators are found. The group has an infinite-parameter subgroup, and the factor group whose elements are its cosets is isomorphic to the continuum chiral symmetry group. Features of the currents associated with these symmetries are discussed, including the fact that some different, non-commuting symmetry generators lead to the same Noether current. These are universal features of lattice chiral fermions based on the Ginsparg-Wilson relation; they occur in the overlap, domain-wall, and perfect-action formulations. In a solvable example - free overlap fermions - these non-canonical elements of lattice chiral symmetry are...

  7. Symmetries of Massive and Massless Neutrinos

    CERN Document Server

    Kim, Y S

    2016-01-01

    Wigner's little groups are subgroups of the Lorentz group dictating the internal space-time symmetries of massive and massless particles. These little groups are like O(3) and E(2) for massive and massless particles respectively. While the geometry of the O(3) symmetry is familiar to us, the geometry of the flat plane cannot explain the E(2)-like symmetry for massless particles. However, the geometry of a circular cylinder can explain the symmetry with the helicity and gauge degrees of freedom. It is shown further that the symmetry of the massless particle can be obtained as a zero-mass limit of O(3)-like symmetry for massive particles. It is shown further that the polarization of massless neutrinos is a consequence of gauge invariance, while the symmetry of massive neutrinos is still like O(3).

  8. Faddeev-Jackiw approach to hidden symmetries

    CERN Document Server

    Wotzasek, C

    1994-01-01

    The study of hidden symmetries within Dirac's formalism does not possess a systematic procedure due to the lack of first-class constraints to act as symmetry generators. On the other hand, in the Faddeev-Jackiw approach, gauge and reparametrization symmetries are generated by the null eigenvectors of the sympletic matrix and not by constraints, suggesting the possibility of dealing systematically with hidden symmetries through this formalism. It is shown in this paper that indeed hidden symmetries of noninvariant or gauge fixed systems are equally well described by null eigenvectors of the sympletic matrix, just as the explicit invariances. The Faddeev-Jackiw approach therefore provide a systematic algorithm for treating all sorts of symmetries in an unified way. This technique is illustrated here by the SL(2,R) Kac-Moody current algebra of the 2-D induced gravity proposed by Polyakov, which is a hidden symmetry in the canonical approach of constrained systems via Dirac's method, after conformal and reparamet...

  9. Symmetry constraints on many-body localization

    Science.gov (United States)

    Potter, Andrew C.; Vasseur, Romain

    2016-12-01

    We derive general constraints on the existence of many-body localized (MBL) phases in the presence of global symmetries, and show that MBL is not possible with symmetry groups that protect multiplets (e.g., all non-Abelian symmetry groups). Based on simple representation theoretic considerations, we derive general Mermin-Wagner-type principles governing the possible alternative fates of nonequilibrium dynamics in isolated, strongly disordered quantum systems. Our results rule out the existence of MBL symmetry-protected topological phases with non-Abelian symmetry groups, as well as time-reversal symmetry-protected electronic topological insulators, and in fact all fermion topological insulators and superconductors in the 10-fold way classification. Moreover, extending our arguments to systems with intrinsic topological order, we rule out MBL phases with non-Abelian anyons as well as certain classes of symmetry-enriched topological orders.

  10. Quantal rotation and its coupling to intrinsic motion in nuclei

    Science.gov (United States)

    Nakatsukasa, Takashi; Matsuyanagi, Kenichi; Matsuzaki, Masayuki; Shimizu, Yoshifumi R.

    2016-07-01

    Symmetry breaking is an important concept in nuclear physics and other fields of physics. Self-consistent coupling between the mean-field potential and the single-particle motion is a key ingredient in the unified model of Bohr and Mottelson, which could lead to a deformed nucleus as a consequence of spontaneous breaking of the rotational symmetry. Some remarks on the finite-size quantum effects are given. In finite nuclei, the deformation inevitably introduces the rotation as a symmetry-restoring collective motion (Anderson-Nambu-Goldstone mode), and the rotation affects the intrinsic motion. In order to investigate the interplay between the rotational and intrinsic motions in a variety of collective phenomena, we use the cranking prescription together with the quasiparticle random phase approximation (QRPA). At low spin, the coupling effect can be seen in the generalized intensity relation. A feasible quantization of the cranking model is presented, which provides a microscopic approach to the higher-order intensity relation. At high spin, the semiclassical cranking prescription works well. We discuss properties of collective vibrational motions under rapid rotation and/or large deformation. The superdeformed shell structure plays a key role in emergence of a new soft mode which could lead to instability toward the {K}π ={1}- octupole shape. A wobbling mode of excitation, which is a clear signature of the triaxiality, is discussed in terms of a microscopic point of view. A crucial role played by the quasiparticle alignment is presented.

  11. Quantum Wigner molecules in semiconductor quantum dots and cold-atom optical traps and their mathematical symmetries

    CERN Document Server

    Yannouleas, Constantine

    2016-01-01

    Strong repelling interactions between a few fermions or bosons confined in two-dimensional circular traps lead to particle localization and formation of quantum Wigner molecules (QWMs) possessing definite point-group space symmetries. These point-group symmetries are "hidden" (or emergent), namely they cannot be traced in the circular single-particle densities (SPDs) associated with the exact many-body wave functions, but they are manifested as characteristic signatures in the ro-vibrational spectra. An example, among many, are the few-body QWM states under a high magnetic field or at fast rotation, which are precursor states for the fractional quantum Hall effect. The hidden geometric symmetries can be directly revealed by using spin-resolved conditional probability distributions, which are extracted from configuration-interaction (CI), exact-diagonalization wave functions. The hidden symmetries can also be revealed in the CI SPDs by reducing the symmetry of the trap (from circular to elliptic to quasi-linea...

  12. Noether symmetry analysis of anisotropic universe in modified gravity

    Energy Technology Data Exchange (ETDEWEB)

    Shamir, M.F.; Kanwal, Fiza [National University of Computer and Emerging Sciences, Department of Sciences and Humanities, Lahore (Pakistan)

    2017-05-15

    In this paper we study the anisotropic universe using Noether symmetries in modified gravity. In particular, we choose a locally rotationally symmetric Bianchi type-I universe for the analysis in f(R, G) gravity, where R is the Ricci scalar and G is the Gauss-Bonnet invariant. Firstly, a model f(R, G) = f{sub 0}R{sup l} + f{sub 1}G{sup n} is proposed and the corresponding Noether symmetries are investigated. We have also recovered the Noether symmetries for f(R) and f(G) theories of gravity. Secondly, some important cosmological solutions are reconstructed. Exponential and power-law solutions are reported for a well-known f(R, G) model, i.e., f(R, G) = f{sub 0}R{sup n}G{sup 1-n}. Especially, Kasner's solution is recovered and it is anticipated that the familiar de Sitter spacetime giving ΛCDM cosmology may be reconstructed for some suitable value of n. (orig.)

  13. Time Order and ‘Speaking Out’: Traditional Farming and Beliefs in Europe and Indonesia and Sky Symmetry Considerations

    Directory of Open Access Journals (Sweden)

    Harm Henricus Hollestelle

    2016-09-01

    With the concept of ‘speaking out’ I connect with the theatre training work of Iris Warren and Kristin Linklater. At the same time, while objects and their properties belong to the domain of physics, I will use some basic symmetry concepts from physics. Correlation then takes the form of an interwoven fabric where cause and effect are entangled. Different subsistence practices will correlate with different symmetries, i.e. translational and rotational symmetries, of the sky universe, that can be recognized from artistic expressions like personal ornaments.

  14. True and false symmetries in the classification of optical scatterers

    Science.gov (United States)

    Crosta, Giovanni F.; Videen, Gorden

    2014-05-01

    A plane wave is scattered by a potential of bounded support. Translation, rotation and reflection of the potential, q0 induce transformations of the scattered wave. The latter can be represented by means of Born sequences, where q0 appears under the integral sign: non-local formulas are thus derived, the properties of which are discussed. Next, the symmetries induced by the 1st BORN approximation are addressed. Invariance of the squared modulus of the scattering amplitude holds for translation and reflection. The transformation Tɛ := 13 +Σ3ℓ=1ɛℓAℓ, with {ɛℓ;} real and {Aℓ} the generators of rotations in IR3, is investigated. Conditions on the {ɛ ℓ} are derived, by which the scattering amplitude coming from the first BORN approximation is invariant to Tɛ. As an application, these "false symmetries" are compared to those induced by limited angular resolution of a detector in light scattering experiments. Namely, scattering patterns are made available by the TAOS (Two-dimensional Angle-resolved Optical Scattering) method, which consists of detecting single airborne aerosol particles and collecting the intensity of the light they scatter from a pulsed, monochromatic laser beam. The optics and the detector properties determine the resolution at which a pattern is saved. The implications on the performance of TAOS pattern analysis are briefly discussed.

  15. Evidence for Triangular D_3h Symmetry in 12C

    CERN Document Server

    Marin-Lambarri, D J; Freer, M; Gai, M; Kokalova, Tz; Parker, D J; Wheldon, C

    2014-01-01

    We report a measurement of a new high spin Jp = 5- state at 22.4(0.2) MeV in 12C which fits very well to the predicted (ground state) rotational band of an oblate equilateral triangular spinning top with a D_3h symmetry characterized by the sequence 0+, 2+, 3-, 4+/-, 5- with almost degenerate 4+ and 4- (parity doublet) states. Such a D_3h symmetry was observed in triatomic molecules and it is observed here for the first time in nuclear physics. We discuss a classification of other rotation-vibration bands in 12C such as the (0+) Hoyle band and the (1-) bending mode band and suggest measurements in search of the predicted ("missing") states that may shed new light on clustering in 12C and light nuclei. In particular the observation (or non-observation) of the predicted ("missing") states in the Hoyle band will allow us to conclude the geometrical arrangement of the three alpha-particle composing the Hoyle state at 7.654 MeV in 12C.

  16. Symmetry Breaking in the Hidden-Order Phase of URu2Si2

    Science.gov (United States)

    Shibauchi, Takasada

    2013-03-01

    In the heavy fermion compound URu2Si2, the hidden-order transition occurs at 17.5 K, whose nature has posed a long-standing mystery. A second-order phase transition is characterized by spontaneous symmetry breaking, and thus the nature of the hidden order cannot be determined without understanding which symmetry is being broken. Our magnetic torque measurements in small pure crystals reveal the emergence of an in-plane anisotropy of the magnetic susceptibility below the transition temperature, indicating the spontaneous breaking of four-fold rotational symmetry of the tetragonal URu2Si2. In addition, our recent observation of cyclotron resonance allows the full determination of the electron-mass structure of the main Fermi-surface sheets, which implies an anomalous in-plane mass anisotropy consistent with the rotational symmetry breaking. These results impose strong constraints on the symmetry of the hidden order parameter. This work has been done in collaboration with R. Okazaki, S. Tonegawa, K. Hashimoto, K. Ikada, Y. H. Lin, H. Shishido, H. J. Shi, Y. Haga, T. D. Matsuda, E. Yamamoto, Y. Onuki, H. Ikeda, and Y. Matsuda.

  17. First-order quantum phase transitions: Test ground for emergent chaoticity, regularity and persisting symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Macek, M., E-mail: mmacek@Racah.phys.huji.ac.il; Leviatan, A., E-mail: ami@phys.huji.ac.il

    2014-12-15

    We present a comprehensive analysis of the emerging order and chaos and enduring symmetries, accompanying a generic (high-barrier) first-order quantum phase transition (QPT). The interacting boson model Hamiltonian employed, describes a QPT between spherical and deformed shapes, associated with its U(5) and SU(3) dynamical symmetry limits. A classical analysis of the intrinsic dynamics reveals a rich but simply-divided phase space structure with a Hénon–Heiles type of chaotic dynamics ascribed to the spherical minimum and a robustly regular dynamics ascribed to the deformed minimum. The simple pattern of mixed but well-separated dynamics persists in the coexistence region and traces the crossing of the two minima in the Landau potential. A quantum analysis discloses a number of regular low-energy U(5)-like multiplets in the spherical region, and regular SU(3)-like rotational bands extending to high energies and angular momenta, in the deformed region. These two kinds of regular subsets of states retain their identity amidst a complicated environment of other states and both occur in the coexistence region. A symmetry analysis of their wave functions shows that they are associated with partial U(5) dynamical symmetry (PDS) and SU(3) quasi-dynamical symmetry (QDS), respectively. The pattern of mixed but well-separated dynamics and the PDS or QDS characterization of the remaining regularity, appear to be robust throughout the QPT. Effects of kinetic collective rotational terms, which may disrupt this simple pattern, are considered.

  18. Model of a rotating magnetic cloud

    Science.gov (United States)

    Farrugia, C. J.; Osherovich, V. A.; Burlaga, L. F.

    1992-01-01

    The possibility that magnetic clouds rotate while they propagate antisunward was investigated. Magnetic clouds are modeled as magnetic flux ropes which rotate rigidly about the axis of symmetry. An ideal magnetohydrodynamic model, in which the evolution of the magnetic structure is related to the time evolution of the angular frequency, is developed. A class of 'separable' magnetic fields is employed to reduce the problem to a nonlinear ordinary differential equation for the evolution function, and it is solved numerically. The corresponding effective potential gives rise to two modes of evolution--expansion and oscillation--depending on the energy and on the value of a dimensionless parameter, k. Parameter k depends on the gas pressure, the ratio of the magnetic field components, and the frequency of rotation. There is a critical value of k, k(sub c), above which the oscillatory regime disappears and the flux rope invariably expands, regardless of the energy. Below k(sub c) the energy determines whether the configuration is confined or unbounded. Rotation always helps expansion by lowering the potential barrier. A data example was studied and features which are interpreted as signatures of rotation are presented. The angular speed is comparable to the Alfven speed, and the core of the rotating cloud completes on average one full revolution every three days at 1 AU. The parameter k is calculated from observations, and it is found to be close to, but below, critical. Only three out of the nine clouds examined showed signatures of rotation. Theoretical analysis suggests that close to the Sun rotation effects may play a more important role in the evolution of magnetic clouds than 1 AU.

  19. Critique of the two-fold measure of prediction success for ratios: application for the assessment of drug-drug interactions.

    Science.gov (United States)

    Guest, Eleanor J; Aarons, Leon; Houston, J Brian; Rostami-Hodjegan, Amin; Galetin, Aleksandra

    2011-02-01

    Current assessment of drug-drug interaction (DDI) prediction success is based on whether predictions fall within a two-fold range of the observed data. This strategy results in a potential bias toward successful prediction at lower interaction levels [ratio of the area under the concentration-time profile (AUC) in the presence of inhibitor/inducer compared with control is assessment of different DDI prediction algorithms if databases contain large proportion of interactions in this lower range. Therefore, the current study proposes an alternative method to assess prediction success with a variable prediction margin dependent on the particular AUC ratio. The method is applicable for assessment of both induction and inhibition-related algorithms. The inclusion of variability into this predictive measure is also considered using midazolam as a case study. Comparison of the traditional two-fold and the new predictive method was performed on a subset of midazolam DDIs collated from previous databases; in each case, DDIs were predicted using the dynamic model in Simcyp simulator. A 21% reduction in prediction accuracy was evident using the new predictive measure, in particular at the level of no/weak interaction (AUC ratio assessed via the new predictive measure. Thus, the study proposes a more logical method for the assessment of prediction success and its application for induction and inhibition DDIs.

  20. Lumped model for rotational modes in phononic crystals

    KAUST Repository

    Peng, Pai

    2012-10-16

    We present a lumped model for the rotational modes induced by the rotational motion of individual scatterers in two-dimensional phononic crystals comprised of square arrays of solid cylindrical scatterers in solid hosts. The model provides a physical interpretation of the origin of the rotational modes, reveals the important role played by the rotational motion in determining the band structure, and reproduces the dispersion relations in a certain range. The model increases the possibilities of manipulating wave propagation in phononic crystals. In particular, expressions derived from the model for eigenfrequencies at high symmetry points unambiguously predict the presence of a new type of Dirac-like cone at the Brillouin center, which is found to be the result of accidental degeneracy of the rotational and dipolar modes.